US20200161468A1 - Fin structure and method for manufacturing the same - Google Patents
Fin structure and method for manufacturing the same Download PDFInfo
- Publication number
- US20200161468A1 US20200161468A1 US16/259,688 US201916259688A US2020161468A1 US 20200161468 A1 US20200161468 A1 US 20200161468A1 US 201916259688 A US201916259688 A US 201916259688A US 2020161468 A1 US2020161468 A1 US 2020161468A1
- Authority
- US
- United States
- Prior art keywords
- layer
- fin
- substrate
- isolation layer
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 90
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 75
- 238000002955 isolation Methods 0.000 claims abstract description 71
- 230000008569 process Effects 0.000 claims description 57
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 18
- 239000002210 silicon-based material Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 238000005137 deposition process Methods 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 6
- 238000001039 wet etching Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76243—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76294—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
Definitions
- the present disclosure relates to a fin structure and a method for manufacturing the same, and more particularly, to a fin structure for a fin field-effect transistor (FinFET) and a method for manufacturing the same.
- FinFET fin field-effect transistor
- Semiconductor devices are essential for many modern applications. With the advancement of electronic technology, semiconductor devices are steadily becoming smaller while providing greater functionality and including greater amounts of integrated circuits. Due to the miniaturized scale of semiconductor devices, fin structures are widely used in field-effect transistors.
- the fin structure includes a substrate, and a fin block extending from the substrate.
- the fin includes an isolation layer and a top fin layer.
- the isolation layer can electrically isolate the top fin layer from the substrate.
- a method for manufacturing a conventional fin structure includes many complicated steps and consumes large amounts of time and materials.
- the isolation layer of the fin block is formed through a doping process or an oxidation process. During the process of forming the isolation layer, a protective cladding layer is deposited around the top fin layer to prevent the top fin layer from oxidization. After the forming of the isolation layer, the protective cladding layer is removed.
- One aspect of the present disclosure provides a method for manufacturing a fin structure.
- the method comprises steps of: providing a substrate; forming at least one recess in an upper portion of the substrate; forming a fin block in the at least one recess, wherein the fin block includes an isolation layer and a top fin layer over the isolation layer; and removing a portion of the substrate to expose the top fin layer.
- the substrate is a monocrystalline silicon layer.
- the isolation layer includes oxide material formed through a deposition process.
- the top fin layer is formed through an epitaxial growth process.
- the top fin layer includes epitaxial monocrystalline silicon material.
- the portion of the substrate is removed by an etching process.
- the isolation layer electrically isolates the top fin layer from a base portion of the substrate.
- the top fin layer is formed after the forming of the isolation layer.
- Another aspect of the present disclosure provides a method for manufacturing a fin structure, the method comprising steps of: forming an upper portion on a base portion; forming at least one recess in the upper portion; forming a fin block in the at least one recess; forming an isolation layer in the fin block; and removing at least a portion of the upper portion to expose at least a portion of the fin block.
- the fin block includes a top fin layer over the isolation layer, and the top fin layer is exposed after removing at least the portion of the upper portion.
- the base portion is a silicon substrate layer
- the upper portion includes dielectric material formed through a deposition process.
- the isolation layer includes oxide material formed through a separation by implantation of oxygen (SIMOX) process.
- SIMOX separation by implantation of oxygen
- the upper portion is removed by an etching process.
- the fin block in the at least one recess is formed through a selective epitaxial growth (SEG) process.
- SEG selective epitaxial growth
- the isolation layer electrically isolates the top fin layer from the base portion.
- a fin structure comprising: a substrate; and at least one fin block disposed on the substrate, wherein the fin block includes an isolation layer and a top fin layer, the isolation layer is disposed on the substrate, the top fin layer is disposed on the isolation layer, at least a portion of the top fin layer is exposed, the top fin layer is an epitaxial layer, and the isolation layer is in contact with the top fin layer.
- the top fin layer includes epitaxial mono crystalline silicon material, and the isolation layer is in contact with a base portion of the substrate.
- the substrate further includes a base portion and an upper portion disposed on the base portion, the upper portion includes at least one recess, and a portion of each of the at least one fin block is disposed in the at least one recess.
- the upper portion and the base portion are integrally formed from monocrystalline silicon material.
- the upper portion is a dielectric layer
- the base portion is a monocrystalline silicon substrate layer
- the method for manufacturing the fin structure is simpler.
- the present fin structure can be manufactured without many steps, such as a doping process, an oxidation process, or a process for depositing a protective cladding layer.
- FIG. 1 is a flow diagram illustrating a method for manufacturing a fin structure in accordance with some embodiments of the present disclosure.
- FIGS. 2 to 5 are schematic cross-sectional views during stages of manufacturing a fin structure by the method of FIG. 1 in accordance with some embodiments of the present disclosure.
- FIG. 6 is a flow diagram illustrating a method for manufacturing a fin structure in accordance with some embodiments of the present disclosure.
- FIGS. 7 to 10 are schematic cross-sectional views during stages of manufacturing a fin structure by the method of FIG. 6 in accordance with some embodiments of the present disclosure.
- references to “one embodiment,” “some embodiments,” “an embodiment,” “exemplary embodiment,” “other embodiments,” “another embodiment,” etc. indicate that the embodiment(s) of the disclosure so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in the embodiment” does not necessarily refer to the same embodiment, although it may.
- first, second, third, etc. may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections are not limited by these terms. Rather, these terms are merely used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present inventive concept.
- FIG. 1 is a flow diagram illustrating a method 100 for manufacturing a fin structure 200 in accordance with some embodiments of the present disclosure.
- FIGS. 2 to 5 are schematic cross-sectional views of stages of manufacturing a fin structure 200 in accordance with some embodiments of the present disclosure.
- the method 100 includes a number of operations ( 102 , 104 , 106 , 108 , and 110 ), and the description and illustration below are not deemed as a limitation to the sequence of the operations.
- a substrate 202 is provided.
- the substrate 202 is a monocrystalline silicon layer.
- the substrate 202 is a bulk silicon substrate, a bulk ceramic substrate, a silicon on insulator (SOI) substrate, or the like.
- At least one recess 206 is formed in an upper portion 203 of the substrate 202 .
- a plurality of recesses 206 are formed.
- the forming of a plurality of recesses is for preparing a fin structure for a multiple-fin field-effect transistor (FET).
- the recess 206 is formed in the substrate 202 through any suitable recessing process, such as a wet etching process, a dry etching process, or the like.
- an isolation layer 207 is formed in the recess 206 .
- the isolation layer 207 includes oxide material formed through any suitable deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like.
- a top fin layer 209 is formed over the isolation layer 207 after the forming of the isolation layer 207 . Accordingly, a fin block 208 is formed in the at least one recess 206 .
- the fin block 208 includes the isolation layer 207 and the top fin layer 209 over the isolation layer 207 .
- the top fin layer 209 includes epitaxial monocrystalline silicon material. In some embodiments, the top fin layer 209 is formed through an epitaxial growth process.
- the isolation layer 207 of the fin block 208 electrically isolates the top fin layer 209 from the base portion 204 of the substrate 202 . Therefore, the isolation layer 207 can reduce risk of current leakage.
- a portion of the substrate 202 is removed to expose at least a portion of the fin block 208 .
- a portion of the upper portion 203 is removed to expose a portion of the top fin layer 209 .
- the upper portion 203 is removed completely to expose the top fin layer 209 completely.
- the portion of the substrate 202 is removed through any suitable etching process, such as a wet etching process, a dry etching process, or the like.
- a shallow trench isolation process is performed to electrically isolate the fin structure 200 from another fin structure adjacent to the fin structure 200 .
- a gate structure is formed over the top fin layer 209 to obtain a fin field-effect transistor (FinFET).
- FinFET fin field-effect transistor
- the fin structure 200 includes the substrate 202 , and at least a fin block 208 disposed on the substrate 202 .
- the substrate 202 is a monocrystalline silicon layer. In some embodiments, the substrate 202 is a bulk silicon substrate, or the like.
- the fin block 208 includes the isolation layer 207 and the top fin layer 209 .
- the isolation layer 207 is disposed on the substrate 202 .
- the isolation layer 207 includes oxide material formed through any suitable deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- the top fin layer 209 is disposed on the isolation layer 207 . At least the portion of the top fin layer 209 is exposed. In some embodiments, the top fin layer 209 is an epitaxial layer. In some embodiments, the isolation layer 207 is in contact with the top fin layer 209 .
- the top fin layer 209 includes epitaxial monocrystalline silicon material. In some embodiments, the top fin layer 209 is formed through an epitaxial growth process.
- the upper portion 203 and the base portion 204 are integrally formed from monocrystalline silicon material.
- the isolation layer 207 is in contact with the base portion 204 of the substrate 202 and the top fin layer 209 .
- the isolation layer 207 electrically isolates the top fin layer 209 from the base portion 204 of the substrate 202 . Therefore, the isolation layer 207 can reduce risk of current leakage.
- the substrate 202 includes the base portion 204 and the upper portion 203 disposed on the base portion 204 .
- the upper portion 203 includes the plurality of recesses 206 , and the portion of each fin block 208 is disposed in the at least one recess 206 .
- the plurality of recesses 206 are formed through any suitable recessing process, such as a wet etching process, a dry etching process, or the like.
- FIG. 6 is a flow diagram illustrating a method 600 for manufacturing a fin structure in accordance with some embodiments of the present disclosure.
- FIGS. 7 to 10 are schematic cross-sectional views of stages of manufacturing a fin structure in accordance with some embodiments of the present disclosure.
- the method 600 includes a number of operations ( 602 , 604 , 606 , 608 , and 610 ), and the description and illustration below are not deemed as a limitation to the sequence of the operations.
- an upper portion 203 is formed on a base portion 204 .
- a substrate 202 includes the upper portion 203 and the base portion 204 .
- the base portion 204 of the substrate 202 is a silicon substrate layer. In some embodiments, the base portion 204 of the substrate 202 is a monocrystalline silicon layer.
- the base portion 204 of the substrate 202 is a bulk silicon substrate, a ceramic substrate, a silicon on insulator substrate (SOI), or the like.
- the upper portion 203 includes dielectric material, such as oxide, or the like.
- the upper portion 203 is formed through a deposition process, such as a physical vapor deposition (PVD) process or a chemical vapor deposition (CVD) process, or the like.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- At least one recess 206 is formed in the upper portion 203 of the substrate 202 .
- a plurality of said recesses 206 are formed through any suitable recessing process, such as a wet etching process, a dry etching process, or the like.
- a fin block 208 is formed in the at least one recess 206 .
- the fin block 208 in the at least one recess 206 is formed through a selective epitaxial growth (SEG) process.
- the fin block 208 includes epitaxial monocrystalline silicon material.
- an isolation layer 207 is formed in the fin block 208 .
- the fin block 208 includes the top fin layer 209 over the isolation layer 207 .
- the isolation layer 207 includes oxide material.
- the isolation layer 207 is converted from a portion of silicon material of the fin block through a separation by implantation of oxygen (SIMOX) process.
- SIMOX separation by implantation of oxygen
- the isolation layer 207 is formed by an oxygen ion beam implantation process followed by a high temperature annealing process to create a buried silicon dioxide layer in the fin block 208 .
- the isolation layer 207 electrically isolates the top fin layer 209 from the base portion 204 . Therefore, the isolation layer 207 can reduce risk of current leakage between the top fin layer and the base portion 204 of the substrate 202 .
- a portion of the upper portion 203 is removed to expose at least a portion of the top fin layer 209 . In some embodiments, the upper portion 203 is removed completely to expose the top fin layer 209 completely.
- the upper portion 203 is removed through any suitable etching process, such as a wet etching process, a dry etching process, or the like.
- a shallow trench isolation process is performed to electrically isolate the fin structure 700 from another fin structure adjacent to the fin structure 700 .
- a gate structure is formed over the top fin layer 209 to obtain a fin field-effect transistor (FinFET).
- FinFET fin field-effect transistor
- the fin structure 700 includes the substrate 202 and at least a fin block 208 disposed on the substrate 202 .
- the fin block 208 includes the isolation layer 207 and the top fin layer 209 .
- the isolation layer 207 is disposed on the substrate 202 .
- the top fin layer 209 is disposed on the isolation layer 207 .
- the top fin layer 209 of the fin block 208 includes epitaxial monocrystalline silicon material.
- the isolation layer 207 of the fin block 208 is in contact with the base portion 204 of the substrate 202 and the top fin layer 209 of the fin block 208 .
- the top fin layer 209 is an epitaxial layer.
- the isolation layer 207 is in contact with the top fin layer 209 .
- the isolation layer 207 of the fin block 208 includes oxide material.
- the top fin layer 209 of the fin block 208 includes epitaxial monocrystalline silicon material.
- the isolation layer 207 is converted from a portion of the fin block through a separation by implantation of oxygen (SIMOX) process.
- SIMOX separation by implantation of oxygen
- the isolation layer 207 is formed using an oxygen ion beam implantation process followed by a high temperature annealing process to create a buried silicon dioxide layer in the fin block 208 .
- the isolation layer 207 electrically isolates the top fin layer 209 from the base portion 204 . Therefore, the isolation layer 207 can reduce risk of current leakage between the top fin layer and the base portion 204 of the substrate 202 .
- the substrate 202 includes the base portion 204 and the upper portion 203 disposed on the base portion 204 .
- the upper portion 203 is a dielectric layer.
- the upper portion 203 includes dielectric material, such as oxide, or the like.
- the upper portion 203 is formed through a deposition process, such as a physical vapor deposition (PVD) process or a chemical vapor deposition (CVD) process, or the like.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- the base portion 204 is a monocrystalline silicon substrate layer. In some embodiments, the base portion 204 is a silicon substrate layer. In some embodiments, the base portion 204 of the substrate 202 is a monocrystalline silicon layer. In some embodiments, the base portion 204 of the substrate 202 is a bulk silicon substrate, a ceramic substrate, a silicon on insulator substrate (SOI), or the like.
- SOI silicon on insulator substrate
- the upper portion 203 includes at least a recess 206 .
- the portion of each of the at least one fin block 208 is disposed in the at least one recess 206 .
- a plurality of recesses 206 are formed through any suitable recessing process, such as a wet etching process, a dry etching process, or the like.
- the method for manufacturing the fin structure is simpler.
- the present fin structure can be manufactured without many steps, such as a doping process, an oxidation process, or a process for depositing a protective cladding layer.
- One aspect of the present disclosure provides a method for manufacturing a fin structure, the method comprising steps of: providing a substrate; forming at least one recess in an upper portion of the substrate; forming a fin block in the at least one recess, wherein the fin block includes an isolation layer and a top fin layer over the isolation layer; and removing a portion of the substrate to expose the top fin layer.
- Another aspect of the present disclosure provides a method for manufacturing a fin structure, the method comprising steps of: forming an upper portion on a base portion; forming at least one recess in the upper portion; forming a fin block in the at least one recess; forming an isolation layer in the fin block; and removing at least a portion of the upper portion to expose at least a portion of the fin block.
- a fin structure comprising: a substrate; and at least one fin block disposed on the substrate, wherein the fin block includes an isolation layer and a top fin layer, the isolation layer is disposed on the substrate, the top fin layer is disposed on the isolation layer, at least a portion of the top fin layer is exposed, the top fin layer is an epitaxial layer, and the isolation layer is in contact with the top fin layer.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Element Separation (AREA)
Abstract
The present disclosure relates to a fin structure and a method for manufacturing the same. The fin structure includes a substrate and at least one fin block. The fin block is disposed on the substrate. The fin block includes an isolation layer and a top fin layer. The isolation layer is disposed on the substrate. The top fin layer is disposed on the isolation layer. At least a portion of the top fin layer is exposed. The top fin layer is an epitaxial layer. The isolation layer is in contact with the top fin layer.
Description
- This application claims the priority benefit of U.S. provisional application Ser. No. 62/769,911, filed on Nov. 20, 2018. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
- The present disclosure relates to a fin structure and a method for manufacturing the same, and more particularly, to a fin structure for a fin field-effect transistor (FinFET) and a method for manufacturing the same.
- Semiconductor devices are essential for many modern applications. With the advancement of electronic technology, semiconductor devices are steadily becoming smaller while providing greater functionality and including greater amounts of integrated circuits. Due to the miniaturized scale of semiconductor devices, fin structures are widely used in field-effect transistors.
- To prevent a current leakage, a conventional fin structure is provided. The fin structure includes a substrate, and a fin block extending from the substrate. The fin includes an isolation layer and a top fin layer. The isolation layer can electrically isolate the top fin layer from the substrate.
- However, a method for manufacturing a conventional fin structure includes many complicated steps and consumes large amounts of time and materials.
- The isolation layer of the fin block is formed through a doping process or an oxidation process. During the process of forming the isolation layer, a protective cladding layer is deposited around the top fin layer to prevent the top fin layer from oxidization. After the forming of the isolation layer, the protective cladding layer is removed.
- This Discussion of the Background section is provided for background information only. The statements in this Discussion of the Background are not an admission that the subject matter disclosed in this section constitutes prior art to the present disclosure, and no part of this Discussion of the Background section may be used as an admission that any part of this application, including this Discussion of the Background section, constitutes prior art to the present disclosure.
- One aspect of the present disclosure provides a method for manufacturing a fin structure. The method comprises steps of: providing a substrate; forming at least one recess in an upper portion of the substrate; forming a fin block in the at least one recess, wherein the fin block includes an isolation layer and a top fin layer over the isolation layer; and removing a portion of the substrate to expose the top fin layer.
- In some embodiments, the substrate is a monocrystalline silicon layer.
- In some embodiments, the isolation layer includes oxide material formed through a deposition process.
- In some embodiments, the top fin layer is formed through an epitaxial growth process.
- In some embodiments, the top fin layer includes epitaxial monocrystalline silicon material.
- In some embodiments, the portion of the substrate is removed by an etching process.
- In some embodiments, the isolation layer electrically isolates the top fin layer from a base portion of the substrate.
- In some embodiments, the top fin layer is formed after the forming of the isolation layer.
- Another aspect of the present disclosure provides a method for manufacturing a fin structure, the method comprising steps of: forming an upper portion on a base portion; forming at least one recess in the upper portion; forming a fin block in the at least one recess; forming an isolation layer in the fin block; and removing at least a portion of the upper portion to expose at least a portion of the fin block.
- In some embodiments, the fin block includes a top fin layer over the isolation layer, and the top fin layer is exposed after removing at least the portion of the upper portion.
- In some embodiments, the base portion is a silicon substrate layer, and the upper portion includes dielectric material formed through a deposition process.
- In some embodiments, the isolation layer includes oxide material formed through a separation by implantation of oxygen (SIMOX) process.
- In some embodiments, the upper portion is removed by an etching process.
- In some embodiments, the fin block in the at least one recess is formed through a selective epitaxial growth (SEG) process.
- In some embodiments, the isolation layer electrically isolates the top fin layer from the base portion.
- Another aspect of the present disclosure provides a fin structure, the fin structure comprising: a substrate; and at least one fin block disposed on the substrate, wherein the fin block includes an isolation layer and a top fin layer, the isolation layer is disposed on the substrate, the top fin layer is disposed on the isolation layer, at least a portion of the top fin layer is exposed, the top fin layer is an epitaxial layer, and the isolation layer is in contact with the top fin layer.
- In some embodiments, the top fin layer includes epitaxial mono crystalline silicon material, and the isolation layer is in contact with a base portion of the substrate.
- In some embodiments, the substrate further includes a base portion and an upper portion disposed on the base portion, the upper portion includes at least one recess, and a portion of each of the at least one fin block is disposed in the at least one recess.
- In some embodiments, the upper portion and the base portion are integrally formed from monocrystalline silicon material.
- In some embodiments, the upper portion is a dielectric layer, and the base portion is a monocrystalline silicon substrate layer.
- With the design of the fin structure, the method for manufacturing the fin structure is simpler. The present fin structure can be manufactured without many steps, such as a doping process, an oxidation process, or a process for depositing a protective cladding layer.
- The foregoing has outlined rather broadly the features and technical advantages of the present disclosure in order that the detailed description of the disclosure that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter and form the subject of the claims of the disclosure. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the disclosure as set forth in the appended claims.
- A more complete understanding of the present disclosure may be derived by referring to the detailed description and claims. The disclosure should also be understood to be coupled to the figures' reference numbers, which refer to similar elements throughout the description.
-
FIG. 1 is a flow diagram illustrating a method for manufacturing a fin structure in accordance with some embodiments of the present disclosure. -
FIGS. 2 to 5 are schematic cross-sectional views during stages of manufacturing a fin structure by the method ofFIG. 1 in accordance with some embodiments of the present disclosure. -
FIG. 6 is a flow diagram illustrating a method for manufacturing a fin structure in accordance with some embodiments of the present disclosure. -
FIGS. 7 to 10 are schematic cross-sectional views during stages of manufacturing a fin structure by the method ofFIG. 6 in accordance with some embodiments of the present disclosure. - Embodiments, or examples, of the disclosure illustrated in the drawings are now described using specific language. It shall be understood that no limitation of the scope of the disclosure is hereby intended. Any alteration or modification of the described embodiments, and any further applications of principles described in this document, are to be considered as normally occurring to one of ordinary skill in the art to which the disclosure relates. Reference numerals may be repeated throughout the embodiments, but this does not necessarily mean that feature(s) of one embodiment apply to another embodiment, even if they share the same reference numeral.
- References to “one embodiment,” “some embodiments,” “an embodiment,” “exemplary embodiment,” “other embodiments,” “another embodiment,” etc. indicate that the embodiment(s) of the disclosure so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in the embodiment” does not necessarily refer to the same embodiment, although it may.
- It shall be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections are not limited by these terms. Rather, these terms are merely used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present inventive concept.
- The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limited to the present inventive concept. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It shall be further understood that the terms “comprise” and “comprising,” when used in this specification, point out the presence of stated features, integers, steps, operations, elements, or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or groups thereof.
-
FIG. 1 is a flow diagram illustrating amethod 100 for manufacturing afin structure 200 in accordance with some embodiments of the present disclosure.FIGS. 2 to 5 are schematic cross-sectional views of stages of manufacturing afin structure 200 in accordance with some embodiments of the present disclosure. In some embodiments, themethod 100 includes a number of operations (102, 104, 106, 108, and 110), and the description and illustration below are not deemed as a limitation to the sequence of the operations. - As shown in
FIG. 2 , inoperation 102, asubstrate 202 is provided. In some embodiments, thesubstrate 202 is a monocrystalline silicon layer. In some embodiments, thesubstrate 202 is a bulk silicon substrate, a bulk ceramic substrate, a silicon on insulator (SOI) substrate, or the like. - In
operation 104, as shown inFIG. 2 , at least onerecess 206 is formed in anupper portion 203 of thesubstrate 202. In some embodiments, a plurality ofrecesses 206 are formed. In some embodiments, the forming of a plurality of recesses is for preparing a fin structure for a multiple-fin field-effect transistor (FET). - In some embodiments, the
recess 206 is formed in thesubstrate 202 through any suitable recessing process, such as a wet etching process, a dry etching process, or the like. - In
operation 106, as shown inFIG. 3 , anisolation layer 207 is formed in therecess 206. In some embodiments, theisolation layer 207 includes oxide material formed through any suitable deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like. - In
operation 108, as shown inFIG. 4 , atop fin layer 209 is formed over theisolation layer 207 after the forming of theisolation layer 207. Accordingly, afin block 208 is formed in the at least onerecess 206. Thefin block 208 includes theisolation layer 207 and thetop fin layer 209 over theisolation layer 207. - In some embodiments, the
top fin layer 209 includes epitaxial monocrystalline silicon material. In some embodiments, thetop fin layer 209 is formed through an epitaxial growth process. - With the
isolation layer 207 of thefin block 208 over abase portion 204 of thesubstrate 202, theisolation layer 207 electrically isolates thetop fin layer 209 from thebase portion 204 of thesubstrate 202. Therefore, theisolation layer 207 can reduce risk of current leakage. - In
operation 110, as shown inFIG. 5 , a portion of thesubstrate 202 is removed to expose at least a portion of thefin block 208. In some embodiments, a portion of theupper portion 203 is removed to expose a portion of thetop fin layer 209. In some embodiments, theupper portion 203 is removed completely to expose thetop fin layer 209 completely. - In some embodiments, the portion of the
substrate 202 is removed through any suitable etching process, such as a wet etching process, a dry etching process, or the like. - In some embodiments, a shallow trench isolation process is performed to electrically isolate the
fin structure 200 from another fin structure adjacent to thefin structure 200. - In some embodiments, a gate structure is formed over the
top fin layer 209 to obtain a fin field-effect transistor (FinFET). - Through the operations (102, 104, 106, 108 and 110), the
fin structure 200 is provided, as shown inFIG. 5 . Thefin structure 200 includes thesubstrate 202, and at least afin block 208 disposed on thesubstrate 202. - In some embodiments, the
substrate 202 is a monocrystalline silicon layer. In some embodiments, thesubstrate 202 is a bulk silicon substrate, or the like. - In some embodiments, the
fin block 208 includes theisolation layer 207 and thetop fin layer 209. Theisolation layer 207 is disposed on thesubstrate 202. - In some embodiments, the
isolation layer 207 includes oxide material formed through any suitable deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like. - The
top fin layer 209 is disposed on theisolation layer 207. At least the portion of thetop fin layer 209 is exposed. In some embodiments, thetop fin layer 209 is an epitaxial layer. In some embodiments, theisolation layer 207 is in contact with thetop fin layer 209. - In some embodiments, the
top fin layer 209 includes epitaxial monocrystalline silicon material. In some embodiments, thetop fin layer 209 is formed through an epitaxial growth process. - In some embodiments, the
upper portion 203 and thebase portion 204 are integrally formed from monocrystalline silicon material. In some embodiments, theisolation layer 207 is in contact with thebase portion 204 of thesubstrate 202 and thetop fin layer 209. - In some embodiments, the
isolation layer 207 electrically isolates thetop fin layer 209 from thebase portion 204 of thesubstrate 202. Therefore, theisolation layer 207 can reduce risk of current leakage. - In some embodiments, the
substrate 202 includes thebase portion 204 and theupper portion 203 disposed on thebase portion 204. Theupper portion 203 includes the plurality ofrecesses 206, and the portion of eachfin block 208 is disposed in the at least onerecess 206. - In some embodiments, the plurality of
recesses 206 are formed through any suitable recessing process, such as a wet etching process, a dry etching process, or the like. -
FIG. 6 is a flow diagram illustrating amethod 600 for manufacturing a fin structure in accordance with some embodiments of the present disclosure.FIGS. 7 to 10 are schematic cross-sectional views of stages of manufacturing a fin structure in accordance with some embodiments of the present disclosure. In some embodiments, themethod 600 includes a number of operations (602, 604, 606, 608, and 610), and the description and illustration below are not deemed as a limitation to the sequence of the operations. - As shown in
FIG. 7 , inoperation 602, anupper portion 203 is formed on abase portion 204. In some embodiments, asubstrate 202 includes theupper portion 203 and thebase portion 204. - In some embodiments, the
base portion 204 of thesubstrate 202 is a silicon substrate layer. In some embodiments, thebase portion 204 of thesubstrate 202 is a monocrystalline silicon layer. - In some embodiments, the
base portion 204 of thesubstrate 202 is a bulk silicon substrate, a ceramic substrate, a silicon on insulator substrate (SOI), or the like. - In some embodiments, the
upper portion 203 includes dielectric material, such as oxide, or the like. Theupper portion 203 is formed through a deposition process, such as a physical vapor deposition (PVD) process or a chemical vapor deposition (CVD) process, or the like. - As shown in
FIG. 7 , inoperation 604, at least onerecess 206 is formed in theupper portion 203 of thesubstrate 202. In some embodiments, a plurality of saidrecesses 206 are formed through any suitable recessing process, such as a wet etching process, a dry etching process, or the like. - As shown in
FIG. 8 , inoperation 606, afin block 208 is formed in the at least onerecess 206. In some embodiments, thefin block 208 in the at least onerecess 206 is formed through a selective epitaxial growth (SEG) process. In some embodiments, thefin block 208 includes epitaxial monocrystalline silicon material. - As shown in
FIG. 9 , inoperation 608, anisolation layer 207 is formed in thefin block 208. After theoperation 608, thefin block 208 includes thetop fin layer 209 over theisolation layer 207. Theisolation layer 207 includes oxide material. - In some embodiments, the
isolation layer 207 is converted from a portion of silicon material of the fin block through a separation by implantation of oxygen (SIMOX) process. In the SIMOX process, theisolation layer 207 is formed by an oxygen ion beam implantation process followed by a high temperature annealing process to create a buried silicon dioxide layer in thefin block 208. - The
isolation layer 207 electrically isolates thetop fin layer 209 from thebase portion 204. Therefore, theisolation layer 207 can reduce risk of current leakage between the top fin layer and thebase portion 204 of thesubstrate 202. - As shown in
FIG. 10 , inoperation 610, at least a portion of theupper portion 203 is removed to expose at least a portion of thefin block 208. - In some embodiments, a portion of the
upper portion 203 is removed to expose at least a portion of thetop fin layer 209. In some embodiments, theupper portion 203 is removed completely to expose thetop fin layer 209 completely. - In some embodiments, the
upper portion 203 is removed through any suitable etching process, such as a wet etching process, a dry etching process, or the like. - In some embodiments, a shallow trench isolation process is performed to electrically isolate the
fin structure 700 from another fin structure adjacent to thefin structure 700. - In some embodiments, a gate structure is formed over the
top fin layer 209 to obtain a fin field-effect transistor (FinFET). - Through the operations (602, 604, 606, 608 and 610) the
fin structure 700 is provided, as shown inFIG. 10 . Thefin structure 700 includes thesubstrate 202 and at least afin block 208 disposed on thesubstrate 202. - The
fin block 208 includes theisolation layer 207 and thetop fin layer 209. Theisolation layer 207 is disposed on thesubstrate 202. Thetop fin layer 209 is disposed on theisolation layer 207. - In some embodiments, the
top fin layer 209 of thefin block 208 includes epitaxial monocrystalline silicon material. In some embodiments, theisolation layer 207 of thefin block 208 is in contact with thebase portion 204 of thesubstrate 202 and thetop fin layer 209 of thefin block 208. - At least the portion of the
top fin layer 209 is exposed. Thetop fin layer 209 is an epitaxial layer. In some embodiments, theisolation layer 207 is in contact with thetop fin layer 209. - In some embodiments, the
isolation layer 207 of thefin block 208 includes oxide material. In some embodiments, thetop fin layer 209 of thefin block 208 includes epitaxial monocrystalline silicon material. - In some embodiments, the
isolation layer 207 is converted from a portion of the fin block through a separation by implantation of oxygen (SIMOX) process. In the SIMOX process, theisolation layer 207 is formed using an oxygen ion beam implantation process followed by a high temperature annealing process to create a buried silicon dioxide layer in thefin block 208. - The
isolation layer 207 electrically isolates thetop fin layer 209 from thebase portion 204. Therefore, theisolation layer 207 can reduce risk of current leakage between the top fin layer and thebase portion 204 of thesubstrate 202. - The
substrate 202 includes thebase portion 204 and theupper portion 203 disposed on thebase portion 204. In some embodiments, theupper portion 203 is a dielectric layer. - In some embodiments, the
upper portion 203 includes dielectric material, such as oxide, or the like. In some embodiments, theupper portion 203 is formed through a deposition process, such as a physical vapor deposition (PVD) process or a chemical vapor deposition (CVD) process, or the like. - In some embodiments, the
base portion 204 is a monocrystalline silicon substrate layer. In some embodiments, thebase portion 204 is a silicon substrate layer. In some embodiments, thebase portion 204 of thesubstrate 202 is a monocrystalline silicon layer. In some embodiments, thebase portion 204 of thesubstrate 202 is a bulk silicon substrate, a ceramic substrate, a silicon on insulator substrate (SOI), or the like. - The
upper portion 203 includes at least arecess 206. In some embodiments, the portion of each of the at least onefin block 208 is disposed in the at least onerecess 206. In some embodiments, a plurality ofrecesses 206 are formed through any suitable recessing process, such as a wet etching process, a dry etching process, or the like. - In conclusion, with the configuration of the fin structure, the method for manufacturing the fin structure is simpler. The present fin structure can be manufactured without many steps, such as a doping process, an oxidation process, or a process for depositing a protective cladding layer.
- Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
- One aspect of the present disclosure provides a method for manufacturing a fin structure, the method comprising steps of: providing a substrate; forming at least one recess in an upper portion of the substrate; forming a fin block in the at least one recess, wherein the fin block includes an isolation layer and a top fin layer over the isolation layer; and removing a portion of the substrate to expose the top fin layer.
- Another aspect of the present disclosure provides a method for manufacturing a fin structure, the method comprising steps of: forming an upper portion on a base portion; forming at least one recess in the upper portion; forming a fin block in the at least one recess; forming an isolation layer in the fin block; and removing at least a portion of the upper portion to expose at least a portion of the fin block.
- Another aspect of the present disclosure provides a fin structure, the fin structure comprising: a substrate; and at least one fin block disposed on the substrate, wherein the fin block includes an isolation layer and a top fin layer, the isolation layer is disposed on the substrate, the top fin layer is disposed on the isolation layer, at least a portion of the top fin layer is exposed, the top fin layer is an epitaxial layer, and the isolation layer is in contact with the top fin layer.
- The scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Claims (9)
1. A method for manufacturing a fin structure, comprising:
providing a substrate;
forming at least one recess in an upper portion of the substrate;
forming a fin block in the at least one recess, wherein the fin block comprises an isolation layer and a top fin layer over the isolation layer; and
removing a portion of the substrate to expose at least a portion of the fin block;
wherein the top fin layer is formed through an epitaxial growth process;
wherein the top fin layer comprises epitaxial monocrystalline silicon material.
2. The method of claim 1 , wherein the substrate is a monocrystalline silicon layer.
3. The method of claim 1 , wherein the isolation layer comprises oxide material formed through a deposition process.
4. (canceled)
5. (canceled)
6. The method of claim 1 , wherein the portion of the substrate is removed by an etching process.
7. The method of claim 1 , wherein the isolation layer electrically isolates the top fin layer from a base portion of the substrate.
8. The method of claim 1 , wherein the top fin layer is formed after the forming of the isolation layer.
9-20. (canceled)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/259,688 US10636911B1 (en) | 2018-11-20 | 2019-01-28 | Fin structure and method for manufacturing the same |
TW108110084A TWI687983B (en) | 2018-11-20 | 2019-03-22 | Fin structure and method for manufacturing the same |
CN201910389418.9A CN111199885B (en) | 2018-11-20 | 2019-05-10 | Fin structure and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862769911P | 2018-11-20 | 2018-11-20 | |
US16/259,688 US10636911B1 (en) | 2018-11-20 | 2019-01-28 | Fin structure and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US10636911B1 US10636911B1 (en) | 2020-04-28 |
US20200161468A1 true US20200161468A1 (en) | 2020-05-21 |
Family
ID=70332724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/259,688 Active US10636911B1 (en) | 2018-11-20 | 2019-01-28 | Fin structure and method for manufacturing the same |
Country Status (3)
Country | Link |
---|---|
US (1) | US10636911B1 (en) |
CN (1) | CN111199885B (en) |
TW (1) | TWI687983B (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8624326B2 (en) * | 2011-10-20 | 2014-01-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method of manufacturing same |
CN103137445B (en) * | 2011-12-05 | 2015-12-02 | 中芯国际集成电路制造(上海)有限公司 | Form the method for Finfet doping fin |
US9559181B2 (en) * | 2013-11-26 | 2017-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for FinFET device with buried sige oxide |
US9129823B2 (en) * | 2013-03-15 | 2015-09-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Silicon recess ETCH and epitaxial deposit for shallow trench isolation (STI) |
CN105448719B (en) * | 2014-07-08 | 2018-12-07 | 中芯国际集成电路制造(上海)有限公司 | The method of fin is formed in FinFET |
US9209279B1 (en) | 2014-09-12 | 2015-12-08 | Applied Materials, Inc. | Self aligned replacement fin formation |
CN107210259B (en) * | 2014-12-26 | 2020-10-27 | 英特尔公司 | High mobility nanowire fin channels formed on a silicon substrate using sacrificial sub-fins |
WO2017052601A1 (en) | 2015-09-25 | 2017-03-30 | Intel Corporation | Techniques for controlling transistor sub-fin leakage |
CN106558614B (en) * | 2015-09-30 | 2020-06-09 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
-
2019
- 2019-01-28 US US16/259,688 patent/US10636911B1/en active Active
- 2019-03-22 TW TW108110084A patent/TWI687983B/en active
- 2019-05-10 CN CN201910389418.9A patent/CN111199885B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111199885B (en) | 2023-05-16 |
TWI687983B (en) | 2020-03-11 |
CN111199885A (en) | 2020-05-26 |
TW202020946A (en) | 2020-06-01 |
US10636911B1 (en) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10103264B2 (en) | Channel strain control for nonplanar compound semiconductor devices | |
KR101683985B1 (en) | Finfet with buried insulator layer and method for forming | |
CN100461430C (en) | Semiconductor structure and its forming method | |
US10170475B2 (en) | Silicon-on-nothing transistor semiconductor structure with channel epitaxial silicon region | |
KR101208781B1 (en) | Isolated tri-gate transistor fabricated on bulk substrate | |
US8030173B2 (en) | Silicon nitride hardstop encapsulation layer for STI region | |
CN105990374B (en) | Integrated circuit and method for manufacturing transistor | |
CN103858215A (en) | Non-planar transistors and methods of fabrication thereof | |
JP2004207714A (en) | Dual-gate field effect transistor and manufacturing method therefor | |
JP2013506289A (en) | Semiconductor device having an oxygen diffusion barrier layer and method for manufacturing the same | |
US9876032B2 (en) | Method of manufacturing a device with MOS transistors | |
US10347745B2 (en) | Methods of forming bottom and top source/drain regions on a vertical transistor device | |
US20150093861A1 (en) | Method for the formation of cmos transistors | |
US9230991B2 (en) | Method to co-integrate oppositely strained semiconductor devices on a same substrate | |
CN109037047B (en) | Fabrication of semiconductor regions in electronic chips | |
US10636911B1 (en) | Fin structure and method for manufacturing the same | |
US10249729B1 (en) | Method for fabricating metal replacement gate semiconductor device using dummy gate and composite spacer structure | |
US11488868B2 (en) | FinFET structure having different channel lengths | |
US8497556B2 (en) | Semiconductor devices with active semiconductor height variation | |
US8552504B2 (en) | Semiconductor device and method for forming the same | |
JP7148440B2 (en) | semiconductor equipment | |
JP2004207726A (en) | Dual-gate field-effect transistor and manufacturing method therefor | |
CN107369648B (en) | Method for manufacturing double-gate oxide layer | |
US20200365390A1 (en) | Method for manufacturing a semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |