US20200085930A1 - Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers - Google Patents
Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers Download PDFInfo
- Publication number
- US20200085930A1 US20200085930A1 US16/681,472 US201916681472A US2020085930A1 US 20200085930 A1 US20200085930 A1 US 20200085930A1 US 201916681472 A US201916681472 A US 201916681472A US 2020085930 A1 US2020085930 A1 US 2020085930A1
- Authority
- US
- United States
- Prior art keywords
- cancer
- cells
- cell
- expression
- peptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 256
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 207
- 208000002154 non-small cell lung carcinoma Diseases 0.000 title claims description 32
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 title claims description 31
- 102000004196 processed proteins & peptides Human genes 0.000 title abstract description 129
- 238000009169 immunotherapy Methods 0.000 title abstract description 14
- 210000004027 cell Anatomy 0.000 claims abstract description 151
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 111
- 238000000034 method Methods 0.000 claims abstract description 99
- 201000011510 cancer Diseases 0.000 claims abstract description 79
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 26
- 239000002671 adjuvant Substances 0.000 claims description 22
- 210000000612 antigen-presenting cell Anatomy 0.000 claims description 21
- 230000028993 immune response Effects 0.000 claims description 20
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 claims description 19
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 17
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 claims description 15
- 108010075704 HLA-A Antigens Proteins 0.000 claims description 15
- 238000000338 in vitro Methods 0.000 claims description 14
- 108091034117 Oligonucleotide Proteins 0.000 claims description 13
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 13
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 11
- 206010033128 Ovarian cancer Diseases 0.000 claims description 11
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 11
- 230000005867 T cell response Effects 0.000 claims description 10
- 210000004443 dendritic cell Anatomy 0.000 claims description 10
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 9
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 8
- 108010002350 Interleukin-2 Proteins 0.000 claims description 7
- 102000000588 Interleukin-2 Human genes 0.000 claims description 7
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 claims description 7
- 208000014018 liver neoplasm Diseases 0.000 claims description 7
- 229950010550 resiquimod Drugs 0.000 claims description 7
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 claims description 7
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 6
- 229960004397 cyclophosphamide Drugs 0.000 claims description 6
- 229960002751 imiquimod Drugs 0.000 claims description 6
- BNRNXUUZRGQAQC-UHFFFAOYSA-N sildenafil Chemical compound CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 claims description 6
- 102000006992 Interferon-alpha Human genes 0.000 claims description 5
- 108010047761 Interferon-alpha Proteins 0.000 claims description 5
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 claims description 4
- 108010002586 Interleukin-7 Proteins 0.000 claims description 4
- 102000000704 Interleukin-7 Human genes 0.000 claims description 4
- 201000010536 head and neck cancer Diseases 0.000 claims description 4
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 4
- 230000002147 killing effect Effects 0.000 claims description 4
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 claims description 3
- 108090000467 Interferon-beta Proteins 0.000 claims description 3
- 102000015696 Interleukins Human genes 0.000 claims description 3
- 108010063738 Interleukins Proteins 0.000 claims description 3
- 239000002147 L01XE04 - Sunitinib Substances 0.000 claims description 3
- 229960000397 bevacizumab Drugs 0.000 claims description 3
- 108010074108 interleukin-21 Proteins 0.000 claims description 3
- 210000002540 macrophage Anatomy 0.000 claims description 3
- 229940115272 polyinosinic:polycytidylic acid Drugs 0.000 claims description 3
- 229960003310 sildenafil Drugs 0.000 claims description 3
- 229960001796 sunitinib Drugs 0.000 claims description 3
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 claims description 3
- 239000000277 virosome Substances 0.000 claims description 3
- 102000003996 Interferon-beta Human genes 0.000 claims description 2
- 102000013462 Interleukin-12 Human genes 0.000 claims description 2
- 108010065805 Interleukin-12 Proteins 0.000 claims description 2
- 102000003816 Interleukin-13 Human genes 0.000 claims description 2
- 108090000176 Interleukin-13 Proteins 0.000 claims description 2
- 102000003812 Interleukin-15 Human genes 0.000 claims description 2
- 108090000172 Interleukin-15 Proteins 0.000 claims description 2
- 102000013264 Interleukin-23 Human genes 0.000 claims description 2
- 108010065637 Interleukin-23 Proteins 0.000 claims description 2
- 108090000978 Interleukin-4 Proteins 0.000 claims description 2
- 102000004388 Interleukin-4 Human genes 0.000 claims description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims 2
- 229960001388 interferon-beta Drugs 0.000 claims 1
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 claims 1
- 108091008874 T cell receptors Proteins 0.000 abstract description 127
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 abstract description 127
- 108090000623 proteins and genes Proteins 0.000 abstract description 70
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 abstract description 51
- 108700018351 Major Histocompatibility Complex Proteins 0.000 abstract description 50
- 230000027455 binding Effects 0.000 abstract description 48
- 102000004169 proteins and genes Human genes 0.000 abstract description 44
- 150000007523 nucleic acids Chemical class 0.000 abstract description 34
- 102000039446 nucleic acids Human genes 0.000 abstract description 30
- 108020004707 nucleic acids Proteins 0.000 abstract description 30
- 229960005486 vaccine Drugs 0.000 abstract description 15
- 230000005975 antitumor immune response Effects 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 abstract description 6
- 239000008186 active pharmaceutical agent Substances 0.000 abstract description 3
- 230000001024 immunotherapeutic effect Effects 0.000 abstract description 3
- 230000014509 gene expression Effects 0.000 description 103
- 101001005720 Homo sapiens Melanoma-associated antigen 4 Proteins 0.000 description 81
- 102100025077 Melanoma-associated antigen 4 Human genes 0.000 description 81
- 239000000427 antigen Substances 0.000 description 69
- 108091007433 antigens Proteins 0.000 description 67
- 102000036639 antigens Human genes 0.000 description 67
- 241000282414 Homo sapiens Species 0.000 description 62
- 235000001014 amino acid Nutrition 0.000 description 51
- 229940024606 amino acid Drugs 0.000 description 48
- 150000001413 amino acids Chemical class 0.000 description 47
- 108020004414 DNA Proteins 0.000 description 43
- 235000018102 proteins Nutrition 0.000 description 42
- 210000001519 tissue Anatomy 0.000 description 42
- 229920001184 polypeptide Polymers 0.000 description 38
- 239000013598 vector Substances 0.000 description 30
- 239000013604 expression vector Substances 0.000 description 27
- 238000011282 treatment Methods 0.000 description 26
- 150000003839 salts Chemical class 0.000 description 24
- 239000000523 sample Substances 0.000 description 23
- 239000003814 drug Substances 0.000 description 20
- 239000012634 fragment Substances 0.000 description 20
- 238000006467 substitution reaction Methods 0.000 description 20
- 210000004881 tumor cell Anatomy 0.000 description 20
- 108091054437 MHC class I family Proteins 0.000 description 19
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 108091023037 Aptamer Proteins 0.000 description 16
- 102000040430 polynucleotide Human genes 0.000 description 16
- 108091033319 polynucleotide Proteins 0.000 description 16
- 239000002157 polynucleotide Substances 0.000 description 16
- 125000000539 amino acid group Chemical group 0.000 description 15
- 108091054438 MHC class II family Proteins 0.000 description 14
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 14
- 108020004999 messenger RNA Proteins 0.000 description 14
- 102000043129 MHC class I family Human genes 0.000 description 13
- 208000020816 lung neoplasm Diseases 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 12
- -1 clones Substances 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 230000008685 targeting Effects 0.000 description 12
- 201000005112 urinary bladder cancer Diseases 0.000 description 12
- 206010009944 Colon cancer Diseases 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 206010041067 Small cell lung cancer Diseases 0.000 description 11
- 239000012636 effector Substances 0.000 description 11
- 238000001727 in vivo Methods 0.000 description 11
- 208000000587 small cell lung carcinoma Diseases 0.000 description 11
- 108060003951 Immunoglobulin Proteins 0.000 description 10
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 10
- 102000015636 Oligopeptides Human genes 0.000 description 10
- 108010038807 Oligopeptides Proteins 0.000 description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000002163 immunogen Effects 0.000 description 10
- 102000018358 immunoglobulin Human genes 0.000 description 10
- 201000005202 lung cancer Diseases 0.000 description 10
- 201000001441 melanoma Diseases 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 238000011830 transgenic mouse model Methods 0.000 description 10
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 9
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 230000002018 overexpression Effects 0.000 description 9
- 239000008194 pharmaceutical composition Substances 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 8
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 8
- 208000006265 Renal cell carcinoma Diseases 0.000 description 8
- 208000005718 Stomach Neoplasms Diseases 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 238000010367 cloning Methods 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 201000004101 esophageal cancer Diseases 0.000 description 8
- 206010017758 gastric cancer Diseases 0.000 description 8
- 230000003053 immunization Effects 0.000 description 8
- 238000003364 immunohistochemistry Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 201000011549 stomach cancer Diseases 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 206010005003 Bladder cancer Diseases 0.000 description 7
- 102000043131 MHC class II family Human genes 0.000 description 7
- 241000699660 Mus musculus Species 0.000 description 7
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 210000000987 immune system Anatomy 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 208000008443 pancreatic carcinoma Diseases 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000007920 subcutaneous administration Methods 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 206010006187 Breast cancer Diseases 0.000 description 6
- 208000026310 Breast neoplasm Diseases 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 6
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 6
- 102000004127 Cytokines Human genes 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 6
- 241000701022 Cytomegalovirus Species 0.000 description 6
- 206010027476 Metastases Diseases 0.000 description 6
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 6
- 206010060862 Prostate cancer Diseases 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000000090 biomarker Substances 0.000 description 6
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 6
- 201000002528 pancreatic cancer Diseases 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 210000001550 testis Anatomy 0.000 description 6
- 238000002255 vaccination Methods 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 206010004593 Bile duct cancer Diseases 0.000 description 5
- 208000003174 Brain Neoplasms Diseases 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 5
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 5
- 101001005723 Homo sapiens Melanoma-associated antigen 8 Proteins 0.000 description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 5
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 5
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 5
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 5
- 102100025076 Melanoma-associated antigen 8 Human genes 0.000 description 5
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 5
- 208000002495 Uterine Neoplasms Diseases 0.000 description 5
- 206010047741 Vulval cancer Diseases 0.000 description 5
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 230000000259 anti-tumor effect Effects 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 208000026900 bile duct neoplasm Diseases 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 208000006990 cholangiocarcinoma Diseases 0.000 description 5
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 210000000232 gallbladder Anatomy 0.000 description 5
- 201000010175 gallbladder cancer Diseases 0.000 description 5
- 210000002443 helper t lymphocyte Anatomy 0.000 description 5
- 230000005847 immunogenicity Effects 0.000 description 5
- 238000007901 in situ hybridization Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 238000007912 intraperitoneal administration Methods 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 238000002823 phage display Methods 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 239000000439 tumor marker Substances 0.000 description 5
- 206010046766 uterine cancer Diseases 0.000 description 5
- 201000005102 vulva cancer Diseases 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 208000017604 Hodgkin disease Diseases 0.000 description 4
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 4
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 206010027459 Metastases to lymph nodes Diseases 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 101100096028 Mus musculus Smok1 gene Proteins 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 4
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 4
- 102000002689 Toll-like receptor Human genes 0.000 description 4
- 108020000411 Toll-like receptor Proteins 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 210000004602 germ cell Anatomy 0.000 description 4
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 4
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 4
- 238000004393 prognosis Methods 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 108700012359 toxins Proteins 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 241000501754 Astronotus ocellatus Species 0.000 description 3
- 210000003359 CD4-positive helper T lymphocyte Anatomy 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 3
- 108010088729 HLA-A*02:01 antigen Proteins 0.000 description 3
- 102000006354 HLA-DR Antigens Human genes 0.000 description 3
- 108010058597 HLA-DR Antigens Proteins 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 108090000526 Papain Proteins 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 208000034254 Squamous cell carcinoma of the cervix uteri Diseases 0.000 description 3
- 108700042076 T-Cell Receptor alpha Genes Proteins 0.000 description 3
- 108700042077 T-Cell Receptor beta Genes Proteins 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 208000009956 adenocarcinoma Diseases 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000002619 cancer immunotherapy Methods 0.000 description 3
- 201000006612 cervical squamous cell carcinoma Diseases 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010195 expression analysis Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 229940055729 papain Drugs 0.000 description 3
- 235000019834 papain Nutrition 0.000 description 3
- 108010011903 peptide receptors Proteins 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 210000002826 placenta Anatomy 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- DTMHTVJOHYTUHE-UHFFFAOYSA-N thiocyanogen Chemical compound N#CSSC#N DTMHTVJOHYTUHE-UHFFFAOYSA-N 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- DRHZYJAUECRAJM-DWSYSWFDSA-N (2s,3s,4s,5r,6r)-6-[[(3s,4s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-[(2s,3r,4s,5r,6r)-3-[(2s,3r,4s,5r,6s)-5-[(2s,3r,4s,5r)-4-[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-3,5-dihydroxyoxan-2-yl]oxy-3,4-dihydroxy-6-methyloxan-2-yl]oxy-5-[(3s,5s, Chemical compound O([C@H]1[C@H](O)[C@H](O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O1)O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@H]5CC(C)(C)CC[C@@]5([C@@H](C[C@@]4(C)[C@]3(C)CC[C@H]2[C@@]1(C=O)C)O)C(=O)O[C@@H]1O[C@H](C)[C@@H]([C@@H]([C@H]1O[C@H]1[C@@H]([C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@](O)(CO)CO3)O)[C@H](O)CO2)O)[C@H](C)O1)O)O)OC(=O)C[C@@H](O)C[C@H](OC(=O)C[C@@H](O)C[C@@H]([C@@H](C)CC)O[C@H]1[C@@H]([C@@H](O)[C@H](CO)O1)O)[C@@H](C)CC)C(O)=O)[C@@H]1OC[C@@H](O)[C@H](O)[C@H]1O DRHZYJAUECRAJM-DWSYSWFDSA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108060000903 Beta-catenin Proteins 0.000 description 2
- 102000015735 Beta-catenin Human genes 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 102000003952 Caspase 3 Human genes 0.000 description 2
- 108090000397 Caspase 3 Proteins 0.000 description 2
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- 102000036364 Cullin Ring E3 Ligases Human genes 0.000 description 2
- 108091007045 Cullin Ring E3 Ligases Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 206010014733 Endometrial cancer Diseases 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 108010040721 Flagellin Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 2
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 2
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 2
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 2
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 2
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 2
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 2
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 230000004570 RNA-binding Effects 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 241000713880 Spleen focus-forming virus Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- PAAZCQANMCYGAW-UHFFFAOYSA-N acetic acid;2,2,2-trifluoroacetic acid Chemical class CC(O)=O.OC(=O)C(F)(F)F PAAZCQANMCYGAW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000000735 allogeneic effect Effects 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 2
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000002771 cell marker Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 229940047120 colony stimulating factors Drugs 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 201000003914 endometrial carcinoma Diseases 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 229940124452 immunizing agent Drugs 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 239000000568 immunological adjuvant Substances 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 210000002752 melanocyte Anatomy 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 108091005601 modified peptides Proteins 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229940127557 pharmaceutical product Drugs 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 108010014186 ras Proteins Proteins 0.000 description 2
- 102000016914 ras Proteins Human genes 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 108010038379 sargramostim Proteins 0.000 description 2
- 229960002530 sargramostim Drugs 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000002626 targeted therapy Methods 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- DMQYDVBIPXAAJA-VHXPQNKSSA-N (3z)-5-[(1-ethylpiperidin-4-yl)amino]-3-[(3-fluorophenyl)-(5-methyl-1h-imidazol-2-yl)methylidene]-1h-indol-2-one Chemical compound C1CN(CC)CCC1NC1=CC=C(NC(=O)\C2=C(/C=3NC=C(C)N=3)C=3C=C(F)C=CC=3)C2=C1 DMQYDVBIPXAAJA-VHXPQNKSSA-N 0.000 description 1
- 229910019670 (NH4)H2PO4 Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- IOJUJUOXKXMJNF-UHFFFAOYSA-N 2-acetyloxybenzoic acid [3-(nitrooxymethyl)phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)OC1=CC=CC(CO[N+]([O-])=O)=C1 IOJUJUOXKXMJNF-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- NEWKHUASLBMWRE-UHFFFAOYSA-N 2-methyl-6-(phenylethynyl)pyridine Chemical compound CC1=CC=CC(C#CC=2C=CC=CC=2)=N1 NEWKHUASLBMWRE-UHFFFAOYSA-N 0.000 description 1
- 101710113902 26S proteasome non-ATPase regulatory subunit 10 Proteins 0.000 description 1
- 102100036734 26S proteasome non-ATPase regulatory subunit 10 Human genes 0.000 description 1
- HXHAJRMTJXHJJZ-UHFFFAOYSA-N 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-(4-pyrrolidin-1-ylbutylcarbamoylamino)-1,2-thiazole-4-carboxamide Chemical compound S1N=C(OCC=2C(=CC(Br)=CC=2F)F)C(C(=O)N)=C1NC(=O)NCCCCN1CCCC1 HXHAJRMTJXHJJZ-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- XXJWYDDUDKYVKI-UHFFFAOYSA-N 4-[(4-fluoro-2-methyl-1H-indol-5-yl)oxy]-6-methoxy-7-[3-(1-pyrrolidinyl)propoxy]quinazoline Chemical compound COC1=CC2=C(OC=3C(=C4C=C(C)NC4=CC=3)F)N=CN=C2C=C1OCCCN1CCCC1 XXJWYDDUDKYVKI-UHFFFAOYSA-N 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- 102210047469 A*02:01 Human genes 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102100024092 Aldo-keto reductase family 1 member C4 Human genes 0.000 description 1
- 101710117290 Aldo-keto reductase family 1 member C4 Proteins 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 108010049777 Ankyrins Proteins 0.000 description 1
- 102000008102 Ankyrins Human genes 0.000 description 1
- 241000272478 Aquila Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 108020004513 Bacterial RNA Proteins 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 201000000274 Carcinosarcoma Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241001227713 Chiron Species 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 206010062759 Congenital dyskeratosis Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- YVGGHNCTFXOJCH-UHFFFAOYSA-N DDT Chemical compound C1=CC(Cl)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(Cl)C=C1 YVGGHNCTFXOJCH-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 108091008102 DNA aptamers Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 208000005431 Endometrioid Carcinoma Diseases 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100023940 G-protein-signaling modulator 1 Human genes 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 241001663880 Gammaretrovirus Species 0.000 description 1
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 208000032320 Germ cell tumor of testis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 description 1
- 102210042925 HLA-A*02:01 Human genes 0.000 description 1
- 108010021727 HLA-A*24:02 antigen Proteins 0.000 description 1
- 108010058607 HLA-B Antigens Proteins 0.000 description 1
- 108010008553 HLA-B*07 antigen Proteins 0.000 description 1
- 108010052199 HLA-C Antigens Proteins 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000946794 Homo sapiens C-C motif chemokine 8 Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 1
- 101000904748 Homo sapiens G-protein-signaling modulator 1 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101000721751 Homo sapiens Olfactory receptor 51B4 Proteins 0.000 description 1
- 101000685956 Homo sapiens SAP domain-containing ribonucleoprotein Proteins 0.000 description 1
- 101000740205 Homo sapiens Sal-like protein 1 Proteins 0.000 description 1
- 101000740180 Homo sapiens Sal-like protein 3 Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000669460 Homo sapiens Toll-like receptor 5 Proteins 0.000 description 1
- 101000834948 Homo sapiens Tomoregulin-2 Proteins 0.000 description 1
- 101000818605 Homo sapiens Zinc finger and BTB domain-containing protein 32 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 102100030703 Interleukin-22 Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 239000003798 L01XE11 - Pazopanib Substances 0.000 description 1
- 241000134253 Lanka Species 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100039564 Leukosialin Human genes 0.000 description 1
- 229910010951 LiH2 Inorganic materials 0.000 description 1
- 101150010540 MAGEA4 gene Proteins 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 206010027458 Metastases to lung Diseases 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- GUVMFDICMFQHSZ-UHFFFAOYSA-N N-(1-aminoethenyl)-1-[4-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[hydroxy-[[3-[hydroxy-[[3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-[[[2-[[[2-[[[5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[5-(4-amino-2-oxopyrimidin-1-yl)-2-[[hydroxy-[2-(hydroxymethyl)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-2-yl]-5-methylimidazole-4-carboxamide Chemical compound CC1=C(C(=O)NC(N)=C)N=CN1C1OC(COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)CO)C(OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)O)C1 GUVMFDICMFQHSZ-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 108010084333 N-palmitoyl-S-(2,3-bis(palmitoyloxy)propyl)cysteinyl-seryl-lysyl-lysyl-lysyl-lysine Proteins 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 description 1
- 206010061534 Oesophageal squamous cell carcinoma Diseases 0.000 description 1
- 102100025107 Olfactory receptor 51B4 Human genes 0.000 description 1
- 108700006640 OspA Proteins 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 239000012648 POLY-ICLC Substances 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 101800001442 Peptide pr Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 102100023361 SAP domain-containing ribonucleoprotein Human genes 0.000 description 1
- 102100037204 Sal-like protein 1 Human genes 0.000 description 1
- 102100037191 Sal-like protein 3 Human genes 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 208000036765 Squamous cell carcinoma of the esophagus Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 239000012163 TRI reagent Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000008236 Toll-Like Receptor 7 Human genes 0.000 description 1
- 108010060825 Toll-Like Receptor 7 Proteins 0.000 description 1
- 102000008208 Toll-Like Receptor 8 Human genes 0.000 description 1
- 108010060752 Toll-Like Receptor 8 Proteins 0.000 description 1
- 102100039357 Toll-like receptor 5 Human genes 0.000 description 1
- 102100026160 Tomoregulin-2 Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- SECKRCOLJRRGGV-UHFFFAOYSA-N Vardenafil Chemical compound CCCC1=NC(C)=C(C(N=2)=O)N1NC=2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(CC)CC1 SECKRCOLJRRGGV-UHFFFAOYSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 101150084041 WT1 gene Proteins 0.000 description 1
- 241001492404 Woodchuck hepatitis virus Species 0.000 description 1
- 102100021135 Zinc finger and BTB domain-containing protein 32 Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 201000006966 adult T-cell leukemia Diseases 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229940060265 aldara Drugs 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- WLDHEUZGFKACJH-UHFFFAOYSA-K amaranth Chemical compound [Na+].[Na+].[Na+].C12=CC=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=C1N=NC1=CC=C(S([O-])(=O)=O)C2=CC=CC=C12 WLDHEUZGFKACJH-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- UKFWSNCTAHXBQN-UHFFFAOYSA-N ammonium iodide Chemical compound [NH4+].[I-] UKFWSNCTAHXBQN-UHFFFAOYSA-N 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 238000011123 anti-EGFR therapy Methods 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 1
- 230000008349 antigen-specific humoral response Effects 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 229910001620 barium bromide Inorganic materials 0.000 description 1
- NKQIMNKPSDEDMO-UHFFFAOYSA-L barium bromide Chemical compound [Br-].[Br-].[Ba+2] NKQIMNKPSDEDMO-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001638 barium iodide Inorganic materials 0.000 description 1
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Inorganic materials [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 1
- WAKZZMMCDILMEF-UHFFFAOYSA-H barium(2+);diphosphate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O WAKZZMMCDILMEF-UHFFFAOYSA-H 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 208000016842 benign thyroid gland neoplasm Diseases 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Inorganic materials [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Inorganic materials [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 1
- 229910001490 caesium perchlorate Inorganic materials 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 208000011892 carcinosarcoma of the corpus uteri Diseases 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229960002412 cediranib Drugs 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- QUPYHCHUQVNFJW-UHFFFAOYSA-M cesium;thiocyanate Chemical compound [Cs+].[S-]C#N QUPYHCHUQVNFJW-UHFFFAOYSA-M 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 201000005793 childhood medulloblastoma Diseases 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 230000009850 completed effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 229910000336 copper(I) sulfate Inorganic materials 0.000 description 1
- WIVXEZIMDUGYRW-UHFFFAOYSA-L copper(i) sulfate Chemical compound [Cu+].[Cu+].[O-]S([O-])(=O)=O WIVXEZIMDUGYRW-UHFFFAOYSA-L 0.000 description 1
- 210000000448 cultured tumor cell Anatomy 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000007402 cytotoxic response Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000004041 dendritic cell maturation Effects 0.000 description 1
- 229940029030 dendritic cell vaccine Drugs 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 230000006334 disulfide bridging Effects 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 208000009356 dyskeratosis congenita Diseases 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 229940056913 eftilagimod alfa Drugs 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 208000018463 endometrial serous adenocarcinoma Diseases 0.000 description 1
- 229940066758 endopeptidases Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 230000008472 epithelial growth Effects 0.000 description 1
- 201000005619 esophageal carcinoma Diseases 0.000 description 1
- 208000007276 esophageal squamous cell carcinoma Diseases 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 210000004475 gamma-delta t lymphocyte Anatomy 0.000 description 1
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 238000003500 gene array Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000001173 gonocyte Anatomy 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 208000019691 hematopoietic and lymphoid cell neoplasm Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000001571 immunoadjuvant effect Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940100994 interleukin-7 Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 108010028930 invariant chain Proteins 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 208000003849 large cell carcinoma Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 108010051618 macrophage stimulatory lipopeptide 2 Proteins 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 210000003794 male germ cell Anatomy 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008099 melanin synthesis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 229910000150 monocalcium phosphate Inorganic materials 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 201000003731 mucosal melanoma Diseases 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- VXAPDXVBDZRZKP-UHFFFAOYSA-N nitric acid phosphoric acid Chemical compound O[N+]([O-])=O.OP(O)(O)=O VXAPDXVBDZRZKP-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 231100001221 nontumorigenic Toxicity 0.000 description 1
- 230000005937 nuclear translocation Effects 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 102000027450 oncoproteins Human genes 0.000 description 1
- 108091008819 oncoproteins Proteins 0.000 description 1
- 229940100027 ontak Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 201000002740 oral squamous cell carcinoma Diseases 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 108700025694 p53 Genes Proteins 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 229960001972 panitumumab Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- CUIHSIWYWATEQL-UHFFFAOYSA-N pazopanib Chemical compound C1=CC2=C(C)N(C)N=C2C=C1N(C)C(N=1)=CC=NC=1NC1=CC=C(C)C(S(N)(=O)=O)=C1 CUIHSIWYWATEQL-UHFFFAOYSA-N 0.000 description 1
- 229960000639 pazopanib Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 229940023041 peptide vaccine Drugs 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 229930004090 phosphatidylinositide Natural products 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 108700002563 poly ICLC Proteins 0.000 description 1
- 229940115270 poly iclc Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Inorganic materials [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229940021993 prophylactic vaccine Drugs 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000016434 protein splicing Effects 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 230000000722 protumoral effect Effects 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000007347 radical substitution reaction Methods 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 108700042226 ras Genes Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 210000001350 reed-sternberg cell Anatomy 0.000 description 1
- 230000012385 regulation of binding Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229910000344 rubidium sulfate Inorganic materials 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 210000001646 side-population cell Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229960000714 sipuleucel-t Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- PUZPDOWCWNUUKD-ULWFUOSBSA-M sodium;fluorine-18(1-) Chemical compound [18F-].[Na+] PUZPDOWCWNUUKD-ULWFUOSBSA-M 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960000835 tadalafil Drugs 0.000 description 1
- IEHKWSGCTWLXFU-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C([C]4C=CC=CC4=N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 IEHKWSGCTWLXFU-IIBYNOLFSA-N 0.000 description 1
- 108010010186 talactoferrin alfa Proteins 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- 229960000235 temsirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 208000002918 testicular germ cell tumor Diseases 0.000 description 1
- 229940021747 therapeutic vaccine Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 206010044412 transitional cell carcinoma Diseases 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 230000002100 tumorsuppressive effect Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 208000023747 urothelial carcinoma Diseases 0.000 description 1
- 201000005290 uterine carcinosarcoma Diseases 0.000 description 1
- 239000012646 vaccine adjuvant Substances 0.000 description 1
- 229940124931 vaccine adjuvant Drugs 0.000 description 1
- 229960002381 vardenafil Drugs 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4632—T-cell receptors [TCR]; antibody T-cell receptor constructs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464484—Cancer testis antigens, e.g. SSX, BAGE, GAGE or SAGE
- A61K39/464486—MAGE
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/464838—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4748—Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70539—MHC-molecules, e.g. HLA-molecules
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2833—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0638—Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5158—Antigen-pulsed cells, e.g. T-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/572—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/80—Vaccine for a specifically defined cancer
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/32—Immunoglobulins specific features characterized by aspects of specificity or valency specific for a neo-epitope on a complex, e.g. antibody-antigen or ligand-receptor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present description relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods.
- the present description relates to the immunotherapy of cancer.
- the present description furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T-cells ex vivo and transfer into patients.
- Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
- MHC major histocompatibility complex
- the present description further relates to the use of the above peptides for the generation of specific T-cell receptors (TCRs) binding to tumor-associated antigens (TAAs) for targeting cancer cells, the generation of T-cells expressing same, and methods for treating cancers using same.
- TCRs tumor-associated antigens
- TAAs tumor-associated antigens
- the novel peptide sequences and their variants derived from HLA class I molecules of human tumor cells can be used in vaccine compositions for eliciting anti-tumor immune responses, or as targets for the development of pharmaceutically/immunologically active compounds and cells.
- Preferred is a peptide that has the amino acid sequence KVLEHVVRV (SEQ ID NO: 1).
- Non-small cell lung cancer is named according to the size of the cancer cells when observed under a microscope and has to be differentiated from small cell lung cancer (SCLC). NSCLC accounts to about 85% to 90% of all lung cancers (American Cancer Society, 2015).
- Both lung cancers are the second most common cancer in both men and women.
- Lung cancer is leading cause of cancer death, which accounts for about 25%. Thus, more people die of lung cancer than of colon, breast, and prostate cancers combined each year. Furthermore, both lung cancers account for about 13% (more than 1.8 million) of all new cancers. Lung cancer mainly occurs in older people. The average age at the time of diagnosis is about 70. Fewer than 2% of all cases are diagnosed in people younger than 45.
- NSCLC nuclear substysarcoma
- adenocarcinoma and squamous cell carcinoma are the most common types of NSCLC based on cellular morphology (Travis et al., Lung Cancer Principles and Practice, Lippincott-Raven, New York, 361-395, 1996).
- Adenocarcinomas are characterized by a more peripheral location in the lung and often have a mutation in the K-ras oncogene (Gazdar et al., Anticancer Res., 14, 261-267, 1994).
- Squamous cell carcinomas are typically more centrally located and frequently carry p53 gene mutations (Niklinska et al., Folia Histochem. Cytobiol., 39, 147-148, 2001).
- Immunotherapy of cancer represents an option of specific targeting of cancer cells while minimizing side effects. Cancer immunotherapy makes use of the existence of tumor associated antigens.
- TAAs tumor associated antigens
- Cancer-testis antigens The first TAAs ever identified that can be recognized by T-cells belong to this class, which was originally called cancer-testis (CT) antigens because of the expression of its members in histologically different human tumors and, among normal tissues, only in spermatocytes/spermatogonia of testis and, occasionally, in placenta. Since the cells of testis do not express class I and II HLA molecules, these antigens cannot be recognized by T-cells in normal tissues and can therefore be considered as immunologically tumor-specific.
- CT antigens are the MAGE family members and NY-ESO-1.
- Differentiation antigens These TAAs are shared between tumors and the normal tissue from which the tumor arose.
- TAAs Over-expressed TAAs: Genes encoding widely expressed TAAs have been detected in histologically different types of tumors as well as in many normal tissues, generally with lower expression levels.
- TAAs are Her-2/neu, survivin, telomerase, or WT1.
- Tumor-specific antigens These unique TAAs arise from mutations of normal genes (such as ⁇ -catenin, CDK4, etc.). Some of these molecular changes are associated with neoplastic transformation and/or progression. Tumor-specific antigens are generally able to induce strong immune responses without bearing the risk for autoimmune reactions against normal tissues.
- TAAs are in most cases only relevant to the exact tumor on which they were identified and are usually not shared between many individual tumors. Tumor-specificity (or -association) of a peptide may also arise if the peptide originates from a tumor- (-associated) exon in case of proteins with tumor-specific (-associated) isoforms.
- TAAs arising from abnormal post-translational modifications Such TAAs may arise from proteins which are neither specific nor overexpressed in tumors but nevertheless become tumor associated by posttranslational processes primarily active in tumors. Examples for this class arise from altered glycosylation patterns leading to novel epitopes in tumors as for MUC1 or events like protein splicing during degradation which may or may not be tumor specific.
- Oncoviral proteins are viral proteins that may play a critical role in the oncogenic process and, because they are foreign (not of human origin), they can evoke a T-cell response. Examples of such proteins are the human papilloma type 16 virus proteins, E6 and E7, which are expressed in cervical carcinoma.
- T-cell based immunotherapy targets peptide epitopes derived from tumor-associated or tumor-specific proteins, which are presented by molecules of the major histocompatibility complex (MHC).
- MHC major histocompatibility complex
- the antigens that are recognized by the tumor specific T lymphocytes, that is, the epitopes thereof, can be molecules derived from all protein classes, such as enzymes, receptors, transcription factors, etc. which are expressed and, as compared to unaltered cells of the same origin, usually up-regulated in cells of the respective tumor.
- MHC class I There are two classes of MHC-molecules, MHC class I and MHC class II.
- MHC class I molecules are composed of an alpha heavy chain and beta-2-microglobulin, MHC class II molecules of an alpha and a beta chain. Their three-dimensional conformation results in a binding groove, which is used for non-covalent interaction with peptides.
- MHC class I molecules can be found on most nucleated cells. They present peptides that result from proteolytic cleavage of predominantly endogenous proteins, defective ribosomal products (DRIPs) and larger peptides. However, peptides derived from endosomal compartments or exogenous sources are also frequently found on MHC class I molecules.
- DRIPs defective ribosomal products
- MHC class II molecules can be found predominantly on professional antigen presenting cells (APCs), and primarily present peptides of exogenous or transmembrane proteins that are taken up by APCs e.g., during endocytosis, and are subsequently processed.
- APCs professional antigen presenting cells
- TCR T-cell receptor
- CD4-positive-helper-T-cells bearing the appropriate TCR. It is well known that the TCR, the peptide and the MHC are thereby present in a stoichiometric amount of 1:1:1.
- CD4-positive helper T-cells play an important role in inducing and sustaining effective responses by CD8-positive cytotoxic T-cells.
- TAA tumor associated antigens
- T helper cells support a cytotoxic T-cell- (CTL-) friendly cytokine milieu (Mortara et al., 2006) and attract effector cells, e.g., CTLs, natural killer (NK) cells, macrophages, and granulocytes (Hwang et al., 2007).
- MHC class II molecules In the absence of inflammation, expression of MHC class II molecules is mainly restricted to cells of the immune system, especially professional antigen-presenting cells (APC), e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells.
- APC professional antigen-presenting cells
- monocytes e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells.
- monocytes e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells.
- APC professional antigen-presenting cells
- Elongated (longer) peptides of the description can function as MHC class II active epitopes.
- T-helper cells activated by MHC class II epitopes, play an important role in orchestrating the effector function of CTLs in anti-tumor immunity.
- T-helper cell epitopes that trigger a T-helper cell response of the TH1 type support effector functions of CD8-positive killer T-cells, which include cytotoxic functions directed against tumor cells displaying tumor-associated peptide/MHC complexes on their cell surfaces.
- tumor-associated T-helper cell peptide epitopes alone or in combination with other tumor-associated peptides, can serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses.
- CD4-positive T-cells are sufficient for inhibiting manifestation of tumors via inhibition of angiogenesis by secretion of interferon-gamma (IFN ⁇ ) (Beatty and Paterson, 2001; Mumberg et al., 1999). There is evidence for CD4 T-cells as direct anti-tumor effectors (Braumuller et al., 2013; Tran et al., 2014).
- IFN ⁇ interferon-gamma
- HLA class II molecules Since the constitutive expression of HLA class II molecules is usually limited to immune cells, the possibility of isolating class II peptides directly from primary tumors was previously not considered possible. However, Dengjel et al. were successful in identifying a number of MHC Class II epitopes directly from tumors (WO 2007/028574, EP 1 760 088 B1).
- CD8 and CD4 dependent Since both types of response, CD8 and CD4 dependent, contribute jointly and synergistically to the anti-tumor effect, the identification and characterization of tumor-associated antigens recognized by either CD8+ T-cells (ligand: MHC class I molecule+peptide epitope) or by CD4-positive T-helper cells (ligand: MHC class II molecule+peptide epitope) is important in the development of tumor vaccines.
- MHC-class I peptide For an MHC class I peptide to trigger (elicit) a cellular immune response, it also must bind to an MHC-molecule. This process is dependent on the allele of the MHC-molecule and specific polymorphisms of the amino acid sequence of the peptide.
- MHC-class-1-binding peptides are usually 8-12 amino acid residues in length and usually contain two conserved residues (“anchors”) in their sequence that interact with the corresponding binding groove of the MHC-molecule. In this way each MHC allele has a “binding motif” determining which peptides can bind specifically to the binding groove.
- TCR T-cell receptors
- the antigen should be expressed mainly by tumor cells and not, or in comparably small amounts, by normal healthy tissues.
- the peptide should be over-presented by tumor cells as compared to normal healthy tissues. It is furthermore desirable that the respective antigen is not only present in a type of tumor, but also in high concentrations (i.e., copy numbers of the respective peptide per cell).
- Tumor-specific and tumor-associated antigens are often derived from proteins directly involved in transformation of a normal cell to a tumor cell due to their function, e.g., in cell cycle control or suppression of apoptosis. Additionally, downstream targets of the proteins directly causative for a transformation may be up-regulated and thus may be indirectly tumor-associated. Such indirect tumor-associated antigens may also be targets of a vaccination approach (Singh-Jasuja et al., 2004).
- epitopes are present in the amino acid sequence of the antigen, in order to ensure that such a peptide (“immunogenic peptide”), being derived from a tumor associated antigen, and leads to an in vitro or in vivo T-cell-response.
- TAAs are a starting point for the development of a T-cell based therapy including but not limited to tumor vaccines.
- the methods for identifying and characterizing the TAAs are usually based on the use of T-cells that can be isolated from patients or healthy subjects, or they are based on the generation of differential transcription profiles or differential peptide expression patterns between tumors and normal tissues.
- the identification of genes over-expressed in tumor tissues or human tumor cell lines, or selectively expressed in such tissues or cell lines does not provide precise information as to the use of the antigens being transcribed from these genes in an immune therapy.
- T-cell which upon stimulation with a specific antigen can be clonally expanded and is able to execute effector functions (“effector T-cell”).
- the immunogenicity of the underlying peptides is secondary. In these cases, the presentation is the determining factor.
- TAAs In spite of significant progress in basic and clinical research concerning TAAs (Rosenbeg et al., Nature Med. 4: 321-7 (1998); Mukherji et al., Proc. Natl. Acad. Sci. USA 92: 8078-82 (1995); Hu et al., Cancer Res. 56: 2479-83 (1996)), only limited number of candidate TAAs for the treatment of cancer are available. TAAs abundantly expressed in cancer cells, and at the same time which expression is restricted to cancer cells would be promising candidates as immunotherapeutic targets. Further, identification of new TAAs inducing potent and specific antitumor immune responses is expected to encourage clinical use of peptide vaccination strategy in various types of cancer (Boon and can der Bruggen, J.
- the present description relates to a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:24 or a variant sequence thereof which is at least 65%, preferably at least 77%, and more preferably at least 85% homologous (preferably at least 75% or at least 85% identical) to SEQ ID NO:1 to SEQ ID NO:24, wherein said variant binds to MHC and/or induces T-cells cross-reacting with said peptide, or a pharmaceutically acceptable salt thereof, and wherein said peptide is not the underlying full-length polypeptide.
- the present description further relates to a peptide of the present description comprising a sequence that is selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:24 or a variant thereof, which is at least 65%, preferably at least 75%, and more preferably at least 85% homologous (preferably at least 75% or at least 85% identical) to SEQ ID NO:1 to SEQ ID NO:24, wherein said peptide or variant thereof has an overall length of between 8 and 100, preferably between 8 and 30, and most preferably of between 8 and 14 amino acids, wherein said peptide or variant binds to MHC and/or induces T-cells cross-reacting with said peptide, or a pharmaceutically acceptable salt thereof.
- MAG-003 peptide for example an isolated peptide, comprising an amino acid sequence according to the following general formula I:
- Formula I (SEQ ID NO: 5) X 1 X 2 LEHVVRX 3 wherein X 1 is selected from the amino acids K and Y, X 2 is selected from the amino acids V, L and A, and X 3 is selected from V, L, A, and I, wherein said peptide binds to an HLA class I or class II molecule and/or induces T-cells cross-reacting with said peptide, or a pharmaceutically acceptable salt thereof.
- said peptide is not the underlying full-length polypeptide.
- the present description furthermore generally relates to the peptides according to the present description for use in the treatment of proliferative diseases, such as non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- proliferative diseases such as non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- the present description furthermore relates to peptides according to the present description that have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or—in an elongated form, such as a length-variant—MHC class-II.
- MHC human major histocompatibility complex
- the present description further relates to the peptides according to the present description wherein said peptides (each) comprise, consist of, or consist essentially of an amino acid sequence according to SEQ ID NO:1 to SEQ ID NO:24.
- the present description further relates to the peptides according to the present description, wherein said peptide is modified and/or includes non-peptide bonds.
- the present description further relates to the peptides according to the present description, wherein said peptide is part of a fusion protein, in particular fused to the N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or fused to (or into the sequence of) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- a fusion protein in particular fused to the N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or fused to (or into the sequence of) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- the present description further relates to a nucleic acid, encoding the peptides according to the present description.
- the present description further relates to the nucleic acid according to the present description that is DNA, cDNA, PNA, RNA or combinations thereof.
- the present description further relates to an expression vector capable of expressing and/or expressing a nucleic acid according to the present description.
- the present description further relates to a peptide according to the present description, a nucleic acid according to the present description or an expression vector according to the present description for use in the treatment of diseases and in medicine, in particular in the treatment of cancer.
- the present description further relates to antibodies that are specific against the peptides according to the present description or complexes of said peptides according to the present description with MHC, and methods of making these.
- the present description further relates to a host cell comprising a nucleic acid according to the present description or an expression vector as described before.
- the present description further relates to the host cell according to the present description that is an antigen presenting cell, and preferably is a dendritic cell.
- the present description further relates to a method for producing a peptide according to the present description, said method comprising culturing the host cell according to the present description, and isolating the peptide from said host cell or its culture medium.
- the present description further relates to said method according to the present description, wherein the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell or artificial antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell.
- the present description further relates to the method according to the present description, wherein the antigen-presenting cell comprises an expression vector capable of expressing and/or expressing said peptide containing SEQ ID NO:1 to SEQ ID No.: 24, preferably containing SEQ ID NO:1 to SEQ ID NO:24, or a variant amino acid sequence.
- the present description further relates to activated T-cells, produced by the method according to the present description, wherein said T-cell selectively recognizes a cell which expresses a polypeptide comprising an amino acid sequence according to the present description.
- the present description further relates to a method of killing target-cells in a patient which target-cells aberrantly express a polypeptide comprising any amino acid sequence according to the present description, the method comprising administering to the patient an effective number of T-cells as produced according to the present description.
- the present description further relates to the use of any peptide as described, the nucleic acid according to the present description, the expression vector according to the present description, the cell according to the present description, the activated T lymphocyte, the T-cell receptor or the antibody or other peptide- and/or peptide-MHC-binding molecules according to the present description as a medicament or in the manufacture of a medicament.
- said medicament is active against cancer.
- said medicament is a cellular therapy, a vaccine or a protein based on a soluble TCR or antibody.
- the present description further relates to a use according to the present description, wherein said cancer cells are non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer, and preferably non-small cell lung cancer.
- said cancer cells are non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer, and preferably non-small cell lung cancer.
- the present description further relates to biomarkers based on the peptides according to the present description, herein called “targets,” that can be used in the diagnosis of cancer, preferably non-small cell lung cancer.
- the marker can be over-presentation of the peptide(s) themselves, or over-expression of the corresponding gene(s).
- the markers may also be used to predict the probability of success of a treatment, preferably an immunotherapy, and most preferred an immunotherapy targeting the same target that is identified by the biomarker.
- an antibody or soluble TCR can be used to stain sections of the tumor to detect the presence of a peptide of interest in complex with MHC.
- the antibody carries a further effector function such as an immune stimulating domain or toxin.
- the present description further relates to the use of these novel targets for the identification of TCRs that recognize at least one of said targets, and preferably the identification of said TCRs that activate T-cells.
- the present description also relates to the use of these novel targets in the context of cancer treatment.
- the present description further relates to the use of the peptides according to the invention for the production of TCRs, individual TCR subunits (alone or in combination), and subdomains thereof, in particular soluble TCR (sTCRs) and cloned TCRs, said TCRs engineered into autologous or allogeneic T-cells, and methods of making same, as well as other cells bearing said TCR or cross-reacting with said TCRs.
- sTCRs soluble TCR
- cloned TCRs said TCRs engineered into autologous or allogeneic T-cells, and methods of making same, as well as other cells bearing said TCR or cross-reacting with said TCRs.
- the present description further relates to a TCR protein, individual TCR subunits (alone or in combination), and subdomains thereof, in particular soluble TCR (sTCRs) and cloned TCRs that bind to a KVLEHVVRV (SEQ ID NO:1)-HLA-A*02 complex comprising a TCR alpha chain variable domain and a TCR beta chain variable domain.
- sTCRs soluble TCR
- KVLEHVVRV SEQ ID NO:1-HLA-A*02 complex comprising a TCR alpha chain variable domain and a TCR beta chain variable domain.
- the present description further relates to an isolated nucleic acid comprising a nucleotide sequence encoding a TCR of the present description.
- the present description further relates to a recombinant expression vector comprising a nucleic acid encoding a TCR alpha chain, beta chain, or both, as produced according to the present description.
- the present description further relates to an isolated host cell comprising the recombinant expression vector expressing the nucleic acid encoding the TCR alpha chain, beta chain, or both, of the present description.
- the present description further relates to an isolated host cell comprising the recombinant expression vector of the present description, preferably wherein the cell is a peripheral blood lymphocyte (PBL).
- PBL peripheral blood lymphocyte
- the present description further relates to an isolated PBL comprising the recombinant expression vector of the present description, wherein the PBL is a CD8+ T-cell or a CD4+ T-cell.
- the present description further relates to a population of cells comprising at least one host cell of the present description.
- the present description further relates to TCR proteins of the present description for use in the treatment of proliferative diseases, such as, non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- proliferative diseases such as, non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- Stimulation of an immune response is dependent upon the presence of antigens recognized as foreign by the host immune system.
- the discovery of the existence of tumor associated antigens has raised the possibility of using a host's immune system to intervene in tumor growth.
- Various mechanisms of harnessing both the humoral and cellular arms of the immune system are currently being explored for cancer immunotherapy.
- T-cells capable of specifically recognizing and destroying tumor cells.
- the isolation of T-cells from tumor-infiltrating cell populations or from peripheral blood suggests that such cells play an important role in natural immune defense against cancer.
- CD8-positive T-cells in particular, which recognize class I molecules of the major histocompatibility complex (MHC)-bearing peptides of usually 8 to 10 amino acid residues derived from proteins or defect ribosomal products (DRIPS) located in the cytosol, play an important role in this response.
- MHC-molecules of the human are also designated as human leukocyte-antigens (HLA).
- T-cell response means the specific proliferation and activation of effector functions induced by a peptide in vitro or in vivo.
- effector functions may be lysis of peptide-pulsed, peptide-precursor pulsed or naturally peptide-presenting target cells, secretion of cytokines, preferably Interferon-gamma, TNF-alpha, or IL-2 induced by peptide, secretion of effector molecules, preferably granzymes or perforins induced by peptide, or degranulation.
- peptide is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the peptides are preferably 9 amino acids in length, but can be as short as 8 amino acids in length, and as long as 10, 11, or 12 or longer, and in case of MHC class II peptides (elongated variants of the peptides of the description) they can be as long as 13, 14, 15, 16, 17, 18, 19 or 20 or more amino acids in length.
- the term “peptide” shall include salts of a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the salts are pharmaceutical acceptable salts of the peptides, such as, for example, the chloride or acetate (trifluoroacetate) salts. It has to be noted that the salts of the peptides according to the present description differ substantially from the peptides in their state(s) in vivo, as the peptides are not salts in vivo.
- peptide shall also include “oligopeptide”.
- oligopeptide is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the length of the oligopeptide is not critical to the description, as long as the correct epitope or epitopes are maintained therein.
- the oligopeptides are typically less than about 30 amino acid residues in length, and greater than about 15 amino acids in length.
- polypeptide designates a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids.
- the length of the polypeptide is not critical to the description as long as the correct epitopes are maintained.
- polypeptide is meant to refer to molecules containing more than about 30 amino acid residues.
- a peptide, oligopeptide, protein or polynucleotide coding for such a molecule is “immunogenic” (and thus is an “immunogen” within the present description), if it is capable of inducing an immune response.
- immunogenicity is more specifically defined as the ability to induce a T-cell response.
- an “immunogen” would be a molecule that is capable of inducing an immune response, and in the case of the present description, a molecule capable of inducing a T-cell response.
- the immunogen can be the peptide, the complex of the peptide with MHC, oligopeptide, and/or protein that is used to raise specific antibodies or TCRs against it.
- a class I T-cell “epitope” requires a short peptide that is bound to a class I MHC receptor, forming a ternary complex (MHC class I alpha chain, beta-2-microglobulin, and peptide) that can be recognized by a T-cell bearing a matching T-cell receptor binding to the MHC/peptide complex with appropriate affinity.
- Peptides binding to MHC class I molecules are typically 8-14 amino acids in length, and most typically 9 amino acids in length.
- HLA-molecules of the human are also designated human leukocyte antigens (HLA)): HLA-A, HLA-B, and HLA-C.
- HLA-A*01, HLA-A*02, and HLA-B*07 are examples of different MHC class I alleles that can be expressed from these loci.
- the MAGEA4 gene is a member of the MAGEA gene family.
- the members of this family encode proteins with 50 to 80% sequence identity to each other.
- the promoters and first exons of the MAGEA genes show considerable variability, suggesting that the existence of this gene family enables the same function to be expressed under different transcriptional controls.
- the MAGEA genes are clustered at chromosomal location Xq28. They have been implicated in some hereditary disorders, such as dyskeratosis congenita. At least four variants encoding the same protein have been found for this gene. [provided by RefSeq, July 2008]
- MAGEA4 localization has been described as cytoplasmic (Kim et al., 2015). However, MAGEA4 staining has also been detected in nuclei, with differential distribution between nucleus and cytoplasm in well-differentiated versus less differentiated cancers (Sarcevic et al., 2003).
- MAGEA4 is used as a male germ cell marker. It is not expressed in gonocytes, but expressed in pre-spermatogonia and mature germ cells (Mitchell et al., 2014).
- MAGEA4 is an oncofetal protein or cancer testis antigen. There is no clear evidence for a direct tumor-promoting effect of MAGEA4.
- overexpression of MAGEA4 promotes growth of spontaneously transformed normal oral keratinocytes by inhibiting cell cycle arrest and apoptosis (Bhan et al., 2012).
- other reports suggest a tumor-suppressive effect of MAGEA4 in vitro, since overexpression increased apoptosis and caspase-3 activity, while MAGEA4 silencing resulted in decreased caspase-3 activity (Peikert et al., 2006).
- MAGEA4 expression has been associated with lymph node metastasis in esophageal squamous cell carcinoma (Forghanifard et al., 2011), with progression to muscle-invasive cancer in bladder cancer (Bergeron et al., 2009), and with lymph node metastases in vulvar cancer (Bellati et al., 2007).
- MAGEA4 has been described in undifferentiated human embryonic stem cells as well as their differentiated derivatives, teratocarcinoma cells (Lifantseva et al., 2011).
- MAGEA4 expression has been described in a multitude of different cancer types. For details on specific cancer entities, see subsections below. Listed here is only some further information on cancer types not covered by a specific section below.
- MAGEA4 was observed in 38% of nonmuscle-invasive tumors, 48% of muscle-invasive tumors, 65% of carcinomas in situ and in 73% of lymph node metastases (Bergeron et al., 2009).
- Another study described MAGEA4 expression in bladder cancer with somewhat lower frequencies, with highest frequencies in squamous (25/55, 46%) as compared to adeno (4/15, 27%), sarcomatoid (4/14, 29%), small cell (5/20, 25%) or transitional cell (281/1,522, 19%) carcinomas (Kocher et al., 2002).
- MAGEA4 expression was detected by immunohistochemistry in 64% and by RT-PCR in 58% of cases (Sharma et al., 2006). MAGEA4 was detected by RT-PCR in 40-60% of head and neck squamous cell carcinoma samples (Cuffel et al., 2011; Soga et al., 2013). MAGEA4 expression was detected in 57% of oral squamous cell carcinoma samples (Montoro et al., 2012; Ries et al., 2005). MAGEA4 expression was not detected by immunohistochemistry in any of 70 benign and malignant thyroid tumor samples analyzed (Melo et al., 2011).
- MAGEA4 expression was only found in classic seminoma but not in non-seminomatous testicular germ cell tumors (Aubry et al., 2001; Bode et al., 2014). MAGEA4 expression was detected in 14% (5/35) of gastrointestinal stomal tumors (Perez et al., 2008).
- MAGEA4 mRNA was detected in 28% (7/25), but immunoreactivity was only observed in 4% (1/25) of samples (Oba-Shinjo et al., 2008). Another study found weak MAGEA4 mRNA in 18% (2/11) of medulloblastomas (Jacobs et al., 2008).
- MAGEA4 MAGEA4 to be expressed in 60% of adult T-cell leukemia/lymphoma samples (Nishikawa et al., 2012). Another report described much lower expression frequencies in 5% (2/38) of non-Hodgkin lymphoma samples, and 20-30% of Hodgkin disease samples. In Hodgkin lymphoma, Reed-Sternberg cells were the most strongly stained cells whereas the surrounding cells were not (Chambost et al., 2000). MAGEA4 expression was not detected in 39 multiple myeloma samples (Andrade et al., 2008).
- MAGEA4 immunoreactivity was detectable in 33% of cervical squamous cell carcinomas (20/60) (Sarcevic et al., 2003).
- MAGEA4 expression was found to be present in 12% of endometrioid adenocarcinomas, 63% of uterine papillary serous carcinomas and 91% of uterine carcinosarcomas by immunohistochemistry. Within the tumor population, the extent of MAGEA4 expression was highest in the carcinosarcomas (Resnick et al., 2002).
- MAGEA4 staining as detected by immunohistochemistry is heterogeneous, and only a fraction of positive tumors expresses MAGEA4 in more than 50% of the tumors cells (Resnick et al., 2002; Sarcevic et al., 2003).
- MAGEA4 expression In contrast to the large number of studies reporting MAGEA4 expression in different cancer types, evidence for association of MAGEA4 with outcome and prognosis is more limited. However, some reports find a correlation of MAGEA4 expression with clinical parameters. In head and neck squamous cell carcinoma, MAGEA4 expression has been correlated with poor overall survival and was an independent prognostic indicator of poor outcome (Cuffel et al., 2011). In bladder cancer, MAGEA4 expression was correlated with recurrence and progression to muscle-invasive cancer (Bergeron et al., 2009), and strong MAGEA4 staining has been associated with decreased survival (Kocher et al., 2002).
- MAGEA4 In gastrointestinal stromal tumors, expression of MAGEA4 together with other cancer testis antigens was correlated with recurrence (Perez et al., 2008), and also in vulvar cancer, MAGEA4 was more frequently detected in recurrent tumors (Bellati et al., 2007).
- MAGEA4 expression increased with advancing disease from 9% in primary tumors to 44% in distant metastases (Barrow et al., 2006). Also in vulvar cancer, MAGEA4 expression was more frequent in tumors with lymph node metastases (Bellati et al., 2007). Moreover, MAGEA4 expression was associated with high-grade tumors or advanced stage in endometrial carcinoma (Chitale et al., 2005), cervical squamous cell carcinomas (Sarcevic et al., 2003), and bladder cancer (Bergeron et al., 2009; Kocher et al., 2002).
- MAGEA4 appears to be expressed by tumor cells, there is no evidence for expression in stromal, vascular, immune or other tumor-associated cells. Moreover, MAGEA4 expression has also been detected in cultured tumor cell lines, such as gastric cancer cell lines (Li et al., 1997), esophageal carcinoma cell lines (Tanaka et al., 1997), pancreatic carcinoma cell lines (Kubuschok et al., 2004) and head and neck squamous cell carcinoma cell lines (Hartmann et al., 2015).
- MAGEA4 as therapeutic target Immunotherapy target (vaccines, adjuvants, CARs)
- MAGEA4 vaccine containing 300 ⁇ g protein subcutaneously once every 2 weeks in six doses.
- MAGEA4-specific humoral response Of 15 patients who completed one vaccination cycle, four patients showed a MAGEA4-specific humoral response, and these patients showed longer overall survival than patients without antibody response.
- CD4 and CD8T-cell responses were observed in three and six patients, respectively, and patients with induction of MAGEA4-specific IFN ⁇ -producing CD8T-cells, but not CD4T-cells, lived longer than those without induction (Saito et al., 2014).
- a phase I clinical trial investigated adoptive transfer of TCR-engineered autologous CTLs reactive towards MAGEA4 (143-151) bound to HLA-A*24:02 in esophageal cancer patients.
- Patients were given TCR-transduced lymphocytes once, without preconditioning treatment, followed by subcutaneous immunizations with MAGEA4 peptide after 2 and 4 weeks. No objective tumor regression was observed, possibly due to the lack of lymphodepleting regimen and administration of IL2 (Kageyama et al., 2015).
- mice Preclinical studies in mice had demonstrated that transferred T-cells inhibited growth of MAGEA4-expressing tumor cell lines inoculated in the mice, and that additional peptide vaccination enhanced this anti-tumor activity (Shirakura et al., 2012).
- Targeting MAGEA4 with adoptive CTL transfer is proposed as a treatment option of EBV-negative Hodgkin and non-Hodgkin lymphoma.
- Infused CTLs targeting EBV-derived peptides have been described to induce complete remissions in EBV(+) lymphoma patients. Therefore, targeting other antigens expressed by lymphoma, including MAGEA4, is being explored as a possible treatment option (Cruz et al., 2011; Gerdemann et al., 2011).
- MAG-003 i.e., KVLEHVVRV (SEQ ID NO:1), is a HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) epitope of MAGEA4 (amino acids 286-294).
- CTL cytotoxic T lymphocyte
- MAG-003 elicits peptide-specific CTLs both in vitro from HLA-A*0201-positive PBMCs and in HLA-A*0201/Kb transgenic mice.
- the induced CTLs lyse target cells in an HLA-A*0201-restricted fashion, demonstrating that MAG-003 is HLA-A*0201-restricted CTL epitope and serve as a target for therapeutic antitumoral vaccination (Jia et al. 2010), the content of which is hereby incorporated by reference in its entirety.
- the SYFPEITHI routine (Rammensee et al., 1997; Rammensee et al., 1999) predicts MAG-003 binding to A*02:01 with an absolute score of 25 and a relative score of 0.69.
- the present inventors confirmed 100% of identifications are from MAG-003 binding to A*02-positive samples.
- TAAs tumor-specific peptides
- mRNA expression profiling adds an additional level of safety in selection of peptide targets for immunotherapies.
- the ideal target peptide will be derived from a protein that is unique to the tumor and not found on normal tissues.
- RNAseq next generation sequencing
- CeGaT CeGaT
- sequencing libraries are prepared using the Illumina HiSeq v4 reagent kit according to the provider's protocol (Illumina Inc., San Diego, Calif., USA), which includes RNA fragmentation, cDNA conversion and addition of sequencing adaptors. Libraries derived from multiple samples are mixed equimolarly and sequenced on the Illumina HiSeq 2500 sequencer according to the manufacturer's instructions, generating 50 bp single end reads. Processed reads are mapped to the human genome (GRCh38) using the STAR software.
- Expression data are provided on transcript level as RPKM (Reads Per Kilobase per Million mapped reads, generated by the software Cufflinks) and on exon level (total reads, generated by the software Bedtools), based on annotations of the ensembl sequence database (Ensembl77). Exon reads are normalized for exon length and alignment size to obtain RPKM values.
- RPKM Reads Per Kilobase per Million mapped reads, generated by the software Cufflinks
- exon level total reads, generated by the software Bedtools
- Exon reads are normalized for exon length and alignment size to obtain RPKM values.
- Tables 5 to 7 show RNASeq data (expression scores) of MAG-003 expression in various cancers
- Tumor Exontumor40 Exontumor40 type tgtumor40 (27242) (317034) (593984) BRCA 0.12 0.04 0.04 0.17 CRC 0.14 0.01 0.01 0.22 HCC 2.05 1.82 1.82 1.18 OC 11.19 3.16 3.16 13.72 OSCAR 10.89 0.42 0.42 13.11 PC 2.09 1.65 1.65 0.89 pGB 0.00 0.00 0.00 0.01 pNSCLC 19.25 0.09 0.09 22.58 RCC 0.01 0.00 0.00 0.01 SCLC 10.18 4.53 4.53 33.35
- MAGEA4 expression In contrast to the large number of studies reporting MAGEA4 expression in different cancer types, evidence for association of MAGEA4 with outcome and prognosis is more limited. However, some reports find a correlation of MAGEA4 expression with clinical parameters. In head and neck squamous cell carcinoma, MAGEA4 expression has been correlated with poor overall survival and was an independent prognostic indicator of poor outcome (Cuffel et al., 2011). An inverse correlation was found between MAGE-A4 expression and patient survival in advanced stage NSCLC cancers (Yoshida et al., 2006; Shigematsu et al., 2010) and ovarian cancers (Yakirevich et al., 2003).
- MAGEA4 expression was correlated with recurrence and progression to muscle-invasive cancer (Bergeron et al., 2009), and strong MAGEA4 staining has been associated with decreased survival (Kocher et al., 2002).
- expression of MAGEA4 together with other cancer testis antigens was correlated with recurrence (Perez et al., 2008), and also in vulvar cancer, MAGEA4 was more frequently detected in recurrent tumors (Bellati et al., 2007).
- MAGEA8 In the Cancer Genome Atlas (TCGA) study of high-grade serous ovarian cancers, below median MAGEA8 expression was associated with 11.4 months increased PFS making, it was the strongest verifiable effect. High expression of MAGE A8 was associated with poorer PFS in patients with high CD3 tumors, potentially indicating an immunosuppressive role of MAGEA8 such as via activation of immunosuppressive Tregs (Eng et al., 2015).
- High-risk group and low-risk group of colon cancer patients were distinguished by eight biomarkers (ZBTB32, OR51B4, CCL8, TMEFF2, SALL3, GPSM1, MAGEA8, and SALL1) which provided reference for individual treatment (Zhang et al., 2015).
- MAGEA4 expression increased with advancing disease from 9% in primary tumors to 44% in distant metastases (Barrow et al., 2006). Also in vulvar cancer, MAGEA4 expression was more frequent in tumors with lymph node metastases (Bellati et al., 2007). Moreover, MAGEA4 expression was associated with high-grade tumors or advanced stage in endometrial carcinoma (Chitale et al., 2005), cervical squamous cell carcinomas (Sarcevic et al., 2003), and bladder cancer (Bergeron et al., 2009; Kocher et al., 2002).
- nucleotide sequence refers to a heteropolymer of deoxyribonucleotides.
- nucleotide sequence coding for a particular peptide, oligopeptide, or polypeptide may be naturally occurring or they may be synthetically constructed.
- DNA segments encoding the peptides, polypeptides, and proteins of this description are assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene that is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.
- a nucleotide coding for (or encoding) a peptide refers to a nucleotide sequence coding for the peptide including artificial (man-made) start and stop codons compatible for the biological system the sequence is to be expressed by, for example, a dendritic cell or another cell system useful for the production of TCRs.
- a nucleotide coding for (or encoding) a TCR protein refers to a nucleotide sequence coding for the TCR protein including artificial (man-made) start and stop codons compatible for the biological system the sequence is to be expressed by, for example, T-cell or another cell system useful for the production of TCRs.
- nucleic acid sequence includes both single stranded and double stranded nucleic acid.
- specific sequence refers to the single strand DNA of such sequence, the duplex of such sequence with its complement (double stranded DNA) and the complement of such sequence.
- coding region refers to that portion of a gene which either naturally or normally codes for the expression product of that gene in its natural genomic environment, i.e., the region coding in vivo for the native expression product of the gene.
- the coding region can be derived from a non-mutated (“normal”), mutated or altered gene, or can even be derived from a DNA sequence, or gene, wholly synthesized in the laboratory using methods well known to those of skill in the art of DNA synthesis.
- expression product means the polypeptide or protein that is the natural translation product of the gene and any nucleic acid sequence coding equivalents resulting from genetic code degeneracy and thus coding for the same amino acid(s).
- fragment when referring to a coding sequence, means a portion of DNA comprising less than the complete coding region, whose expression product retains essentially the same biological function or activity as the expression product of the complete coding region.
- DNA segment refers to a DNA polymer, in the form of a separate fragment or as a component of a larger DNA construct, which has been derived from DNA isolated at least once in substantially pure form, i.e., free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of the segment and its component nucleotide sequences by standard biochemical methods, for example, by using a cloning vector.
- Such segments are provided in the form of an open reading frame uninterrupted by internal non-translated sequences, or introns, which are typically present in eukaryotic genes. Sequences of non-translated DNA may be present downstream from the open reading frame, where the same do not interfere with manipulation or expression of the coding regions.
- primer means a short nucleic acid sequence that can be paired with one strand of DNA and provides a free 3′-OH end at which a DNA polymerase starts synthesis of a deoxyribonucleotide chain.
- promoter means a region of DNA involved in binding of RNA polymerase to initiate transcription.
- isolated means that the material is removed from its original environment (e.g., the natural environment, if it is naturally occurring).
- a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated.
- such polynucleotides are part of a vector and/or such polynucleotides or polypeptides are part of a composition, and still are isolated in that such vector or composition is not part of its natural environment.
- polynucleotides, and recombinant or immunogenic polypeptides, disclosed in accordance with the present description may also be in “purified” form.
- the term “purified” does not require absolute purity; rather, it is intended as a relative definition, and can include preparations that are highly purified or preparations that are only partially purified, as those terms are understood by those of skill in the relevant art.
- individual clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated.
- a claimed polypeptide which has a purity of preferably 99.999%, or at least 99.99% or 99.9%; and even desirably 99% by weight or greater is expressly encompassed.
- nucleic acids and polypeptide expression products disclosed according to the present description may be in “enriched form”.
- enriched means that the concentration of the material is at least about 2, 5, 10, 100, or 1000 times its natural concentration (for example), advantageously 0.01%, by weight, preferably at least about 0.1% by weight. Enriched preparations of about 0.5%, 1%, 5%, 10%, and 20% by weight are also contemplated.
- sequences, constructs, vectors, clones, and other materials comprising the present description can advantageously be in enriched or isolated form.
- active fragment means a fragment, usually of a peptide, polypeptide or nucleic acid sequence, that generates an immune response (i.e., has immunogenic activity) when administered, alone or optionally with a suitable adjuvant or in a vector, to an animal, such as a mammal, for example, a rabbit or a mouse, and also including a human, such immune response taking the form of stimulating a T-cell response within the recipient animal, such as a human.
- the “active fragment” may also be used to induce a T-cell response in vitro.
- portion when used in relation to polypeptides, refer to a continuous sequence of residues, such as amino acid residues, which sequence forms a subset of a larger sequence.
- the oligopeptides resulting from such treatment would represent portions, segments or fragments of the starting polypeptide.
- these terms refer to the products produced by treatment of said polynucleotides with any of the endonucleases.
- percent identity when referring to a sequence, means that a sequence is compared to a claimed or described sequence after alignment of the sequence to be compared (the “Compared Sequence”) with the described or claimed sequence (the “Reference Sequence”). The percent identity is then determined according to the following formula:
- C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence, wherein (i) each base or amino acid in the Reference Sequence that does not have a corresponding aligned base or amino acid in the Compared Sequence and (ii) each gap in the Reference Sequence and (iii) each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence, constitutes a difference and (iv) the alignment has to start at position 1 of the aligned sequences; and R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted as a base or amino acid.
- the Compared Sequence has the specified minimum percent identity to the Reference Sequence even though alignments may exist in which the herein above calculated percent identity is less than the specified percent identity.
- the present description thus provides a peptide comprising a sequence that is selected from the group of consisting of SEQ ID NO:1 to SEQ ID NO:24 or a variant thereof which is 85% homologous to SEQ ID NO:1 to SEQ ID NO:24, or a variant thereof that will induce T-cells cross-reacting with said peptide.
- the peptides of the description have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or elongated versions of said peptides to class II.
- MHC human major histocompatibility complex
- homologous refers to the degree of identity (see percent identity above) between sequences of two amino acid sequences, i.e., peptide or polypeptide sequences.
- the aforementioned “homology” is determined by comparing two sequences aligned under optimal conditions over the sequences to be compared. Such a sequence homology can be calculated by creating an alignment using, for example, the ClustalW algorithm.
- sequence analysis software more specifically, Vector NTI, GENETYX or other tools are provided by public databases.
- the inventors mean that the side chains of, for example, one or two of the amino acid residues are altered (for example by replacing them with the side chain of another naturally occurring amino acid residue or some other side chain) such that the peptide is still able to bind to an HLA molecule in substantially the same way as a peptide consisting of the given amino acid sequence consisting of SEQ ID NO:1 to SEQ ID NO:24.
- a peptide may be modified so that it at least maintains, if not improves, the ability to interact with and bind to the binding groove of a suitable MHC molecule, such as HLA-A*02 or -DR, and in that way it at least maintains, if not improves, the ability to bind to the TCR of activated T-cells.
- a TCR protein may be modified so that it at least maintains, if not improves, the ability to interact with and bind to a suitable MHC molecule/KVLEHVVRV (SEQ ID NO:1) complex, such as HLA-A*02 or -DR, and in that way it at least maintains, if not improves, the ability to activate T-cells.
- T-cells can subsequently cross-react with cells and kill cells that express a polypeptide that contains the natural amino acid sequence of the cognate peptide, such as KVLEHVVRV (SEQ ID NO:1), as defined in the aspects of the description.
- KVLEHVVRV SEQ ID NO:1
- certain positions of HLA binding peptides are typically anchor residues forming a core sequence fitting to the binding motif of the HLA receptor, which is defined by polar, electrophysical, hydrophobic and spatial properties of the polypeptide chains constituting the binding groove.
- one skilled in the art would be able to modify the amino acid sequences set forth in SEQ ID NO:1 to SEQ ID NO 24, by maintaining the known anchor residues, and would be able to determine whether such variants maintain the ability to bind MHC class I or II molecules/KVLEHVVRV (SEQ ID NO:1) complexes.
- the variants of the present description retain the ability to bind MHC class I or II molecules/KVLEHVVRV (SEQ ID NO:1) complexes.
- T-cells expressing the variants of the present description can subsequently kill cells that express a polypeptide containing the natural amino acid sequence of the cognate peptide, such as KVLEHVVRV (SEQ ID NO:1).
- the original (unmodified) peptides or TCR proteins as disclosed herein can be modified by the substitution of one or more residues at different, possibly selective, sites within the peptide chain, if not otherwise stated.
- those substitutions are located at the end of the amino acid chain of said peptide.
- those substitutions are located at variable domains of TCR alpha chain and TCR beta chain.
- Such substitutions may be of a conservative nature, for example, where one amino acid is replaced by an amino acid of similar structure and characteristics, such as where a hydrophobic amino acid is replaced by another hydrophobic amino acid. Even more conservative would be replacement of amino acids of the same or similar size and chemical nature, such as where leucine is replaced by isoleucine.
- Conservative substitutions are herein defined as exchanges within one of the following five groups: Group 1-small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, Gly); Group 2-polar, negatively charged residues and their amides (Asp, Asn, Glu, Gln); Group 3-polar, positively charged residues (His, Arg, Lys); Group 4-large, aliphatic, nonpolar residues (Met, Leu, Ile, Val, Cys); and Group 5-large, aromatic residues (Phe, Tyr, Trp).
- substitutions may involve structures other than the common L-amino acids.
- D-amino acids might be substituted for the L-amino acids commonly found in the antigenic peptides of the description and yet still be encompassed by the disclosure herein.
- non-standard amino acids i.e., other than the common naturally occurring proteinogenic amino acids
- substitutions at more than one position are found to result in a peptide with substantially equivalent or greater antigenic activity as defined below, then combinations of those substitutions will be tested to determine if the combined substitutions result in additive or synergistic effects on the antigenicity of the peptide. At most, no more than 4 positions within the peptide would be simultaneously substituted.
- a peptide consisting essentially of the amino acid sequence as indicated herein can have one or two non-anchor amino acids (see below regarding the anchor motif) exchanged without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed or is negatively affected, when compared to the non-modified peptide.
- MHC human major histocompatibility complex
- one or two amino acids can be exchanged with their conservative exchange partners (see herein below) without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed, or is negatively affected, when compared to the non-modified peptide.
- MHC human major histocompatibility complex
- the amino acid residues that do not substantially contribute to interactions with the TCR can be modified by replacement with other amino acids whose incorporation do not substantially affect T-cell reactivity and does not eliminate binding to the relevant MHC.
- the peptide of the description may be any peptide (by which term the inventors include oligopeptide or polypeptide), which includes the amino acid sequences or a portion or variant thereof as given.
- MHC class I epitopes although usually the actual epitope are residues that do not substantially affect proteolytic cleavage necessary to expose the actual epitope during processing.
- the peptides of the description can be elongated by up to four amino acids, that is 1, 2, 3 or 4 amino acids can be added to either end in any combination between 8 and 11 amino acids long, are generated by peptide processing from longer peptides or proteins that include the actual epitope. It is preferred that the residues that flank between 4:0 and 0:4. Combinations of the elongations according to the description can be found in Table 9.
- the amino acids for the elongation/extension can be the peptides of the original sequence of the protein or any other amino acid(s).
- the elongation can be used to enhance the stability or solubility of the peptides.
- the epitopes of the present description may be identical to naturally occurring tumor-associated or tumor-specific epitopes or may include epitopes that differ by no more than four residues from the reference peptide, as long as they have substantially identical antigenic activity.
- the peptide is elongated on either or both sides by more than 4 amino acids, preferably to a total length of up to 30 amino acids. This may lead to MHC class II binding peptides. Binding to MHC class II can be tested by methods known in the art.
- the present description provides peptides and variants of MHC class I epitopes, wherein the peptide or variant has an overall length of between 8 and 100, preferably between 8 and 30, and most preferred between 8 and 14, namely 8, 9, 10, 11, 12, 13, 14 amino acids, in case of the elongated class II binding peptides the length can also be 15, 16, 17, 18, 19, 20, 21 or 22 amino acids.
- the peptide or variant according to the present description will have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class I or II. Binding of a peptide or a variant to a MHC complex may be tested by methods known in the art.
- MHC human major histocompatibility complex
- the peptide concentration at which the substituted peptides achieve half the maximal increase in lysis relative to background is no more than about 1 mM, preferably no more than about 1 ⁇ M, more preferably no more than about 1 nM, and still more preferably no more than about 100 pM, and most preferably no more than about 10 pM. It is also preferred that the substituted peptide be recognized by T-cells from more than one individual, at least two, and more preferably three individuals.
- Affinity-enhancement of tumor-specific TCRs relies on the existence of a window for optimal TCR affinities.
- the existence of such a window is based on observations that TCRs specific for HLA-A2-restricted pathogens have KD values that are generally about 10-fold lower when compared to TCRs specific for HLA-A2-restricted tumor-associated self-antigens (Aleksic et al. 2012; Kunert et al. 2013). It is now known, although tumor antigens have the potential to be immunogenic, because tumors arise from the individual's own cells only mutated proteins or proteins with altered translational processing will be seen as foreign by the immune system.
- T-cells expressing TCRs that are highly reactive to these antigens will have been negatively selected within the thymus in a process known as central tolerance (Xing et al. 2012; Ruella et al. 2014; Sharpe et al. 2015), meaning that only T-cells with low-affinity TCRs for self antigens remain. Therefore, affinity of TCRs or variants of the present description to MAG-003 have been enhanced by methods well known in the art as described below.
- a “pharmaceutical composition” is a composition suitable for administration to a human being in a medical setting.
- a pharmaceutical composition is sterile and produced according to GMP guidelines.
- compositions comprise the peptides or TCR proteins either in the free form or in the form of a pharmaceutically acceptable salt (see also above).
- a pharmaceutically acceptable salt refers to a derivative of the disclosed peptides wherein the peptide is modified by making acid or base salts of the agent.
- acid salts are prepared from the free base (typically wherein the neutral form of the drug has a neutral —NH2 group) involving reaction with a suitable acid.
- Suitable acids for preparing acid salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methane sulfonic acid, ethane sulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid phosphoric acid and the like.
- preparation of basic salts of acid moieties which may be present on a peptide are prepared using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine or the like.
- Another embodiment of the present invention relates to a non-naturally occurring peptide wherein said peptide consists or consists essentially of an amino acid sequence according to SEQ ID No: 1 to SEQ ID No: 24 and has been synthetically produced (e.g. synthesized) as a pharmaceutically acceptable salt.
- Methods to synthetically produce peptides are well known in the art.
- the salts of the peptides according to the present invention differ substantially from the peptides in their state(s) in vivo, as the peptides as generated in vivo are no salts.
- the non-natural salt form of the peptide mediates the solubility of the peptide, in particular in the context of pharmaceutical compositions comprising the peptides, e.g.
- the peptide vaccines as disclosed herein.
- a sufficient and at least substantial solubility of the peptide(s) is required in order to efficiently provide the peptides to the subject to be treated.
- the salts are pharmaceutically acceptable salts of the peptides.
- salts according to the invention include alkaline and earth alkaline salts such as salts of the Hofmeister series comprising as anions PO 4 3 ⁇ , SO 4 2 ⁇ , CH 3 COO ⁇ , Cl ⁇ , Br, NO 3 ⁇ , ClO 4 ⁇ , I ⁇ , SCN ⁇ and as cations NH 4 + , Rb + , K + , Na + , Cs + , Li + , Zn 2+ , Mg 2+ , Ca 2+ , Mn 2+ , Cu 2+ and Ba 2+ .
- alkaline and earth alkaline salts such as salts of the Hofmeister series comprising as anions PO 4 3 ⁇ , SO 4 2 ⁇ , CH 3 COO ⁇ , Cl ⁇ , Br, NO 3 ⁇ , ClO 4 ⁇ , I ⁇ , SCN ⁇ and as cations NH 4 + , Rb + , K + , Na + , Cs + , Li + , Z
- Particularly salts are selected from (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 )H 2 PO 4 , (NH 4 ) 2 SO 4 , NH 4 CH 3 COO, NH 4 Cl, NH 4 Br, NH 4 NO 3 , NH 4 ClO 4 , NH 4 I, NH 4 SCN, Rb 3 PO 4 , Rb 2 HPO 4 , RbH 2 PO 4 , Rb 2 SO 4 , Rb 4 CH 3 COO, Rb 4 Cl, Rb 4 Br, Rb 4 NO 3 , Rb 4 ClO 4 , Rb 4 I, Rb 4 SCN, K 3 PO 4 , K 2 HPO 4 , KH 2 PO 4 , K 2 SO 4 , KCH 3 COO, KCl, KBr, KNO 3 , KClO 4 , KI, KSCN, Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , NaCH
- NH acetate MgCl 2 , KH 2 PO 4 , Na 2 SO 4 , KCl, NaCl, and CaCl 2
- chloride or acetate (trifluoroacetate) salts such as, for example, the chloride or acetate (trifluoroacetate) salts.
- the pharmaceutical compositions comprise the peptides or TCR proteins as salts of acetic acid (acetates), trifluoro acetates or hydrochloric acid (chlorides).
- a further aspect of the description provides a nucleic acid (for example a polynucleotide) encoding a peptide or peptide variant and a TCR protein and TCR variants of the description.
- the polynucleotide may be, for example, DNA, cDNA, PNA, RNA or combinations thereof, either single- and/or double-stranded, or native or stabilized forms of polynucleotides, such as, for example, polynucleotides with a phosphorothioate backbone and it may or may not contain introns so long as it codes for the peptide.
- a still further aspect of the description provides an expression vector capable of expressing a polypeptide according to the description.
- a variety of methods have been developed to link polynucleotides, especially DNA, to vectors for example via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.
- Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors.
- Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc. New Haven, Conn., USA.
- a desirable method of modifying the DNA encoding the polypeptide of the description employs the polymerase chain reaction as disclosed by Saiki R K, et al. (Saiki et al., 1988). This method may be used for introducing the DNA into a suitable vector, for example by engineering in suitable restriction sites, or it may be used to modify the DNA in other useful ways as is known in the art. If viral vectors are used, pox- or adenovirus vectors are preferred.
- the DNA (or in the case of retroviral vectors, RNA) may then be expressed in a suitable host to produce a polypeptide comprising the peptide or variant of the description.
- the DNA encoding the peptide or variant of the description may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the description.
- Such techniques include those disclosed, for example, in U.S. Pat. Nos. 4,440,859, 4,530,901, 4,582,800, 4,677,063, 4,678,751, 4,704,362, 4,710,463, 4,757,006, 4,766,075, and 4,810,648.
- DNA (or in the case of retroviral vectors, RNA) encoding the polypeptide constituting the compound of the description may be joined to a wide variety of other DNA sequences for introduction into an appropriate host.
- the companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.
- the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression.
- an expression vector such as a plasmid
- the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognized by the desired host, although such controls are generally available in the expression vector.
- the vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells.
- One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance.
- the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.
- Host cells that have been transformed by the recombinant DNA of the description are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.
- bacteria for example E. coli and Bacillus subtilis
- yeasts for example Saccharomyces cerevisiae
- filamentous fungi for example Aspergillus spec.
- planT-cells animal cells and insecT-cells.
- the system can be mammalian cells such as CHO cells available from the ATCC Cell Biology Collection.
- a typical mammalian cell vector plasmid for constitutive expression comprises the CMV or SV40 promoter with a suitable poly A tail and a resistance marker, such as neomycin.
- a suitable poly A tail and a resistance marker, such as neomycin.
- pSVL available from Pharmacia, Piscataway, N.J., USA.
- An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia.
- Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA.
- Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, TRP1, LEU2 and URA3.
- Plasmids pRS413-416 are Yeast Centromere plasmids (Ycps).
- CMV promoter-based vectors (for example from Sigma-Aldrich) provide transient or stable expression, cytoplasmic expression or secretion, and N-terminal or C-terminal tagging in various combinations of FLAG, 3 ⁇ FLAG, c-myc or MAT. These fusion proteins allow for detection, purification and analysis of recombinant protein. Dual-tagged fusions provide flexibility in detection.
- CMV human cytomegalovirus
- the strong human cytomegalovirus (CMV) promoter regulatory region drives constitutive protein expression levels as high as 1 mg/L in COS cells. For less potent-cell lines, protein levels are typically ⁇ 0.1 mg/L.
- the presence of the SV40 replication origin will result in high levels of DNA replication in SV40 replication permissive COS cells.
- CMV vectors for example, can contain the pMB1 (derivative of pBR322) origin for replication in bacterial cells, the b-lactamase gene for ampicillin resistance selection in bacteria, hGH polyA, and the f1 origin.
- Vectors containing the pre-pro-trypsin leader (PPT) sequence can direct the secretion of FLAG fusion proteins into the culture medium for purification using ANTI-FLAG antibodies, resins, and plates.
- Other vectors and expression systems are well known in the art for use with a variety of host cells.
- two or more peptides or peptide variants of the description are encoded and thus expressed in a successive order (similar to “beads on a string” constructs).
- the peptides or peptide variants may be linked or fused together by stretches of linker amino acids, such as for example LLLLLL, or may be linked without any additional peptide(s) between them.
- linker amino acids such as for example LLLLLL
- These constructs can also be used for cancer therapy, and may induce immune responses both involving MHC I and MHC II.
- the present description also relates to a host cell transformed with a polynucleotide vector construct of the present description.
- the host cell can be either prokaryotic or eukaryotic.
- Bacterial cells may be preferred prokaryotic host cells in some circumstances and typically are a strain of E. coli such as, for example, the E. coli strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, Md., USA, and RR1 available from the American Type Culture Collection (ATCC) of Rockville, Md., USA (No ATCC 31343).
- ATCC American Type Culture Collection
- Preferred eukaryotic host cells include yeast, insect and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic and colon cell lines.
- Yeast host cells include YPH499, YPH500 and YPH501, which are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA.
- Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650 and 293 cells which are human embryonic kidney cells.
- Preferred insect-cells are Sf9 cells which can be transfected with baculovirus expression vectors.
- An overview regarding the choice of suitable host cells for expression can be found in, for example, the textbook of Paulina Balbás and Argelia Lorence “Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols,” Part One, Second Edition, ISBN 978-1-58829-262-9, and other literature known to the person of skill.
- Transformation of appropriate cell hosts with a DNA construct of the present description is accomplished by well-known methods that typically depend on the type of vector used.
- transformation of prokaryotic host cells see, for example, Cohen et al. (Cohen et al., 1972) and (Green and Sambrook, 2012). Transformation of yeast-cells is described in Sherman et al. (Sherman et al., 1986). The method of Beggs (Beggs, 1978) is also useful.
- reagents useful in transfecting such cells for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, Md. 20877, USA. Electroporation is also useful for transforming and/or transfecting cells and is well known in the art for transforming yeasT-cell, bacterial cells, insecT-cells and vertebrate cells.
- Successfully transformed cells i.e., cells that contain a DNA construct of the present description, can be identified by well-known techniques such as PCR. Alternatively, the presence of the protein in the supernatant can be detected using antibodies.
- host cells of the description are useful in the preparation of the peptides of the description, for example bacterial, yeast and insecT-cells.
- other host cells may be useful in certain therapeutic methods.
- antigen-presenting cells such as dendritic cells, may usefully be used to express the peptides of the description such that they may be loaded into appropriate MHC molecules.
- the current description provides a host cell comprising a nucleic acid or an expression vector according to the description.
- the host cell is an antigen presenting cell, in particular a dendritic cell or antigen presenting cell.
- APCs loaded with a recombinant fusion protein containing prostatic acid phosphatase (PAP) were approved by the U.S. Food and Drug Administration (FDA) on Apr. 29, 2010, to treat asymptomatic or minimally symptomatic metastatic HRPC (Sipuleucel-T) (Rini et al., 2006; Small et al., 2006).
- a further aspect of the description provides a method of producing a peptide or its variant, the method comprising culturing a host cell and isolating the peptide from the host cell or its culture medium.
- the TCR proteins, the nucleic acid or the expression vector of the description are used in medicine.
- the peptide or its variant may be prepared for intravenous (i.v.) injection, sub-cutaneous (s.c.) injection, intradermal (i.d.) injection, intraperitoneal (i.p.) injection, intramuscular (i.m.) injection.
- Preferred methods of peptide injection include s.c., i.d., i.p., i.m., and i.v.
- Preferred methods of DNA injection include i.d., i.m., s.c., i.p. and i.v.
- Doses of e.g., between 50 ⁇ g and 1.5 mg, preferably 125 ⁇ g to 500 ⁇ g, of peptide or DNA may be given and will depend on the respective peptide or DNA. Dosages of this range were successfully used in previous trials (Walter et al., 2012).
- the polynucleotide used for active vaccination may be substantially pure, or contained in a suitable vector or delivery system.
- the nucleic acid may be DNA, cDNA, PNA, RNA or a combination thereof. Methods for designing and introducing such a nucleic acid are well known in the art. An overview is provided by e.g., Teufel et al. (Teufel et al., 2005). Polynucleotide vaccines are easy to prepare, but the mode of action of these vectors in inducing an immune response is not fully understood.
- Suitable vectors and delivery systems include viral DNA and/or RNA, such as systems based on adenovirus, vaccinia virus, retroviruses, herpes virus, adeno-associated virus or hybrids containing elements of more than one virus.
- Non-viral delivery systems include cationic lipids and cationic polymers and are well known in the art of DNA delivery. Physical delivery, such as via a “gene-gun” may also be used.
- the peptide or peptides encoded by the nucleic acid may be a fusion protein, for example with an epitope that stimulates T-cells for the respective opposite CDR as noted above.
- the medicament of the description may also include one or more adjuvants.
- adjuvants are substances that non-specifically enhance or potentiate the immune response (e.g., immune responses mediated by CD8-positive T-cells and helper-T (TH) cells to an antigen, and would thus be considered useful in the medicament of the present description.
- Suitable adjuvants include, but are not limited to, 1018 ISS, aluminum salts, AMPLIVAX®, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, flagellin or TLR5 ligands derived from flagellin, FLT3 ligand, GM-CSF, IC30, IC31, Imiquimod (ALDARA®), resiquimod, ImuFact IMP321, Interleukins as IL-2, IL-13, IL-21, Interferon-alpha or -beta, or pegylated derivatives thereof, IS Patch, ISS, ISCOMATRIX, ISCOMs, JuvImmune®, LipoVac, MALP2, MF59, monophosphoryl lipid A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, water-in-oil and oil-in-water emulsions, OK
- Adjuvants such as Freund's or GM-CSF are preferred.
- Several immunological adjuvants e.g., MF59
- cytokines may be used.
- TNF- lymphoid tissues
- IL-1 and IL-4 efficient antigen-presenting cells for T-lymphocytes
- CpG immunostimulatory oligonucleotides have also been reported to enhance the effects of adjuvants in a vaccine setting.
- CpG oligonucleotides act by activating the innate (non-adaptive) immune system via Toll-like receptors (TLR), mainly TLR9.
- TLR Toll-like receptors
- CpG triggered TLR9 activation enhances antigen-specific humoral and cellular responses to a wide variety of antigens, including peptide or protein antigens, live or killed viruses, dendritic cell vaccines, autologous cellular vaccines and polysaccharide conjugates in both prophylactic and therapeutic vaccines.
- TH1 bias induced by TLR9 stimulation is maintained even in the presence of vaccine adjuvants such as alum or incomplete Freund's adjuvant (IFA) that normally promote a TH2 bias.
- vaccine adjuvants such as alum or incomplete Freund's adjuvant (IFA) that normally promote a TH2 bias.
- CpG oligonucleotides show even greater adjuvant activity when formulated or coadministered with other adjuvants or in formulations such as microparticles, nanoparticles, lipid emulsions or similar formulations, which are especially necessary for inducing a strong response when the antigen is relatively weak.
- U.S. Pat. No. 6,406,705 B1 describes the combined use of CpG oligonucleotides, non-nucleic acid adjuvants and an antigen to induce an antigen-specific immune response.
- a CpG TLR9 antagonist is dSLIM (double Stem Loop Immunomodulator) by Mologen (Berlin, Germany) which is a preferred component of the pharmaceutical composition of the present description.
- Other TLR binding molecules such as RNA binding TLR 7, TLR 8 and/or TLR 9 may also be used.
- CpGs e.g., CpR, Idera
- dsRNA analogues such as Poly(I:C) and derivates thereof (e.g., AmpliGen®, Hiltonal®, poly-(ICLC), poly(IC-R), poly(I:C12U), non-CpG bacterial DNA or RNA as well as immunoactive small molecules and antibodies such as cyclophosphamide, sunitinib, Bevacizumab®, celebrex, NCX-4016, sildenafil, tadalafil, vardenafil, sorafenib, temozolomide, temsirolimus, XL-999, CP-547632, pazopanib, VEGF Trap, ZD2171, AZD2171, anti-CTLA4, other antibodies targeting key structures of the immune system (e.g., anti-CD40, anti-TGFbet
- Preferred adjuvants are anti-CD40, imiquimod, resiquimod, GM-CSF, cyclophosphamide, sunitinib, bevacizumab, interferon-alpha, CpG oligonucleotides and derivates, poly-(I:C) and derivates, RNA, sildenafil, and particulate formulations with PLG or virosomes.
- the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod, resiquimod, and interferon-alpha.
- colony-stimulating factors such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod, resiquimod, and interferon-alpha.
- the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod and resiquimod.
- the adjuvant is cyclophosphamide, imiquimod or resiquimod.
- Even more preferred adjuvants are Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, poly-ICLC (Hiltonal®) and anti-CD40 mAB, or combinations thereof.
- composition is used for parenteral administration, such as subcutaneous, intradermal, intramuscular or oral administration.
- parenteral administration such as subcutaneous, intradermal, intramuscular or oral administration.
- the peptides and optionally other molecules are dissolved or suspended in a pharmaceutically acceptable, preferably aqueous carrier.
- the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, lubricants, etc.
- the peptides can also be administered together with immune stimulating substances, such as cytokines.
- An extensive listing of excipients that can be used in such a composition can be, for example, taken from A. Kibbe, Handbook of Pharmaceutical Excipients (Kibbe, 2000).
- the composition can be used for a prevention, prophylaxis and/or therapy of adenomatous or cancerous diseases. Exemplary formulations can be found in, for example, EP2112253.
- the immune response triggered by the vaccine attacks the cancer in different cell-stages and different stages of development. Furthermore different cancer associated signaling pathways are attacked. This is an advantage over vaccines that address only one or few targets, which may cause the tumor to easily adapt to the attack (tumor escape). Furthermore, not all individual tumors express the same pattern of antigens. Therefore, a combination of several tumor-associated peptides ensures that every single tumor bears at least some of the targets.
- the composition is designed in such a way that each tumor is expected to express several of the antigens and cover several independent pathways necessary for tumor growth and maintenance. Thus, the vaccine can easily be used “off-the-shelf” for a larger patient population.
- a scaffold refers to a molecule that specifically binds to an (e.g., antigenic) determinant.
- a scaffold is able to direct the entity to which it is attached (e.g., a (second) antigen binding moiety) to a target site, for example to a specific type of tumor cell or tumor stroma bearing the antigenic determinant (e.g., the complex of a peptide with MHC, according to the application at hand).
- a scaffold is able to activate signaling through its target antigen, for example a T-cell receptor complex antigen.
- Scaffolds include but are not limited to antibodies and fragments thereof, antigen binding domains of an antibody, comprising an antibody heavy chain variable region and an antibody light chain variable region, binding proteins comprising at least one ankyrin repeat motif and single domain antigen binding (SDAB) molecules, aptamers, (soluble) TCRs and (modified) cells such as allogenic or autologous T-cells.
- binding assays can be performed.
- “Specific” binding means that the scaffold binds the peptide-MHC-complex of interest better than other naturally occurring peptide-MHC-complexes, to an extent that a scaffold armed with an active molecule that is able to kill a cell bearing the specific target is not able to kill another cell without the specific target but presenting other peptide-MHC complex(es). Binding to other peptide-MHC complexes is irrelevant if the peptide of the cross-reactive peptide-MHC is not naturally occurring, i.e., not derived from the human HLA-peptidome. Tests to assess target cell killing are well known in the art. They should be performed using target cells (primary cells or cell lines) with unaltered peptide-MHC presentation, or cells loaded with peptides such that naturally occurring peptide-MHC levels are reached.
- Each scaffold can comprise a labeling which provides that the bound scaffold can be detected by determining the presence or absence of a signal provided by the label.
- the scaffold can be labeled with a fluorescent dye or any other applicable cellular marker molecule.
- marker molecules are well known in the art.
- a fluorescence-labelling for example provided by a fluorescence dye, can provide a visualization of the bound aptamer by fluorescence or laser scanning microscopy or flow cytometry.
- Each scaffold can be conjugated with a second active molecule such as for example IL-21, anti-CD3, and anti-CD28.
- a second active molecule such as for example IL-21, anti-CD3, and anti-CD28.
- aptamers are short single-stranded nucleic acid molecules, which can fold into defined three-dimensional structures and recognize specific target structures. They have appeared to be suitable alternatives for developing targeted therapies. Aptamers have been shown to selectively bind to a variety of complex targets with high affinity and specificity.
- Aptamers recognizing cell surface located molecules have been identified within the past decade and provide means for developing diagnostic and therapeutic approaches. Since aptamers have been shown to possess almost no toxicity and immunogenicity they are promising candidates for biomedical applications. Indeed aptamers, for example prostate-specific membrane-antigen recognizing aptamers, have been successfully employed for targeted therapies and shown to be functional in xenograft in vivo models. Furthermore, aptamers recognizing specific tumor cell lines have been identified.
- DNA aptamers can be selected to reveal broad-spectrum recognition properties for various cancer cells, and particularly those derived from solid tumors, while non-tumorigenic and primary healthy cells are not recognized. If the identified aptamers recognize not only a specific tumor sub-type but rather interact with a series of tumors, this renders the aptamers applicable as so-called broad-spectrum diagnostics and therapeutics.
- Aptamers are useful for diagnostic and therapeutic purposes.
- at least one or more aptamers are taken up by tumor cells and thus can function as molecular vehicles for the targeted delivery of anti-cancer agents such as si RNA into tumor cells.
- Aptamers can be selected against complex targets such as cells and tissues and complexes of the peptides according to the description at hand with the MHC molecule, using the cell-SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique.
- the peptides of the present description can be used to generate and develop specific antibodies against MHC/peptide complexes. These can be used for therapy, targeting toxins or radioactive substances to the diseased tissue. Another use of these antibodies can be targeting radionuclides to the diseased tissue for imaging purposes such as PET. This use can help to detect small metastases or to determine the size and precise localization of diseased tissues.
- a method for producing a recombinant antibody specifically binding to a human major histocompatibility complex (MHC) class I or II being complexed with a HLA-restricted antigen comprising: immunizing a genetically engineered non-human mammal comprising cells expressing said human major histocompatibility complex (MHC) class I or II with a soluble form of a MHC class I or II molecule being complexed with said HLA-restricted antigen; isolating mRNA molecules from antibody producing cells of said non-human mammal; producing a phage display library displaying protein molecules encoded by said mRNA molecules; and isolating at least one phage from said phage display library, said at least one phage displaying said antibody specifically binding to said human major histocompatibility complex (MHC) class I or II being complexed with said HLA-restricted antigen.
- MHC human major histocompatibility complex
- MHC human major histocompatibility complex
- the antibody is binding with a binding affinity of below 20 nanomolar, preferably of below 10 nanomolar, to the complex, which is also regarded as “specific” in the context of the present description.
- the present description relates to a TCR protein or a variant or functional fragment thereof that specifically binds to MAG-003.
- the present description further relates to the TCR protein according to the description, wherein the TCR protein is (chemically) modified and/or includes non-peptide bonds.
- the present description further relates to a nucleic acid, encoding the TCR proteins according to the description, provided that the TCR protein is not the complete (full) human protein.
- the present description further relates to the nucleic acid according to the description that is DNA, cDNA, PNA, RNA or combinations thereof.
- the present description further relates to an expression vector capable of expressing a nucleic acid according to the present description.
- the present description further relates to a TCR protein according to the present description, a nucleic acid according to the present description or an expression vector according to the present description for use in medicine, in particular in the treatment of non-small cell lung cancer.
- the present description further relates to a host cell comprising a nucleic acid according to the description or an expression vector according to the description.
- the present description further relates to the host cell according to the present description that is a T-cell, and preferably a CD8-positive T-cell or CD4-positive T-cell.
- the present description further relates to a method of producing a TCR protein according to the present description, said method comprising incubating PBMCs from HLA-A*02-negative healthy donors with A2/MAG-003 monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- PBMCs from HLA-A*02-negative healthy donors with A2/MAG-003 monomers
- PE tetramer-phycoerythrin
- FACS fluorescence activated cell sorting
- the present description further relates to a method of producing a TCR protein according to the present description, said method comprising incubating PBMCs from HLA-A*02-negative healthy donors with A2/p286-1Y2L monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- PBMCs from HLA-A*02-negative healthy donors with A2/p286-1Y2L monomers
- PE tetramer-phycoerythrin
- FACS fluorescence activated cell sorting
- the present description further relates to a method of producing a TCR protein according to the present description, said method comprising incubating PBMCs from HLA-A*02-negative healthy donors with A2/p286-1Y2L9L monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- PBMCs from HLA-A*02-negative healthy donors with A2/p286-1Y2L9L monomers
- PE tetramer-phycoerythrin
- FACS fluorescence activated cell sorting
- the present description further relates to a method of producing a TCR protein according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCR ⁇ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with MAG-003, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- a transgenic mouse with the entire human TCR ⁇ gene loci 1.1 and 0.7 Mb
- T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency
- immunizing the mouse with MAG-003 incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells
- the present description further relates to a method of producing a TCR protein according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCR ⁇ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with p286-1Y2L, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- a transgenic mouse with the entire human TCR ⁇ gene loci 1.1 and 0.7 Mb
- T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency
- immunizing the mouse with p286-1Y2L immunizing the mouse with p286-1Y2L
- the present description further relates to a method of producing a TCR protein according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCR ⁇ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with p286-1Y2L9L, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- a transgenic mouse with the entire human TCR ⁇ gene loci 1.1 and 0.7 Mb
- T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency
- immunizing the mouse with p286-1Y2L9L incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and is
- the present description further relates to a method of killing target cells in a patient which target cells aberrantly express MAG-003, the method comprising administering to the patient an effective number of T-cells as according to the present description.
- the present description further relates to the use of any TCR protein described, a nucleic acid according to the present description, an expression vector according to the present description, a cell according to the present description, or an activated cytotoxic T lymphocyte according to the present description as a medicament or in the manufacture of a medicament.
- the present description further relates to a use according to the present description, wherein the medicament is active against cancer.
- the present description further relates to a use according to the description, wherein said cancer cells are non-small cell lung cancer cells or other solid or hematological tumor cells such as non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- non-small cell lung cancer cells or other solid or hematological tumor cells such as non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- the present description further relates to particular marker proteins and biomarkers based on the peptides according to the present description, herein called “targets” that can be used in the diagnosis and/or prognosis of non-small cell lung cancer.
- targets also relates to the use of these novel targets for cancer treatment.
- antibody or “antibodies” is used herein in a broad sense and includes both polyclonal and monoclonal antibodies.
- fragments e.g., CDRs, Fv, Fab and Fc fragments
- polymers e.g., polymers of those immunoglobulin molecules and humanized versions of immunoglobulin molecules, as long as they exhibit any of the desired properties (e.g., specific binding of a non-small cell lung cancer marker (poly)peptide, delivery of a toxin to a non-small cell lung cancer cell expressing a cancer marker gene at an increased level, and/or inhibiting the activity of a non-small cell lung cancer marker polypeptide) according to the description.
- the antibodies of the description may be purchased from commercial sources.
- the antibodies of the description may also be generated using well-known methods.
- the skilled artisan will understand that either full length non-small cell lung cancer marker polypeptides or fragments thereof may be used to generate the antibodies of the description.
- a polypeptide to be used for generating an antibody of the description may be partially or fully purified from a natural source, or may be produced using recombinant DNA techniques.
- the antibodies may be tested in ELISA assays or, Western blots, immunohistochemical staining of formalin-fixed cancers or frozen tissue sections. After their initial in vitro characterization, antibodies intended for therapeutic or in vivo diagnostic use are tested according to known clinical testing methods.
- the term “monoclonal antibody” as used herein refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e.; the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts.
- the monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired antagonistic activity (U.S. Pat. No. 4,816,567, which is hereby incorporated in its entirety).
- Monoclonal antibodies of the description may be prepared using hybridoma methods.
- a hybridoma method a mouse or other appropriate host animal is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent.
- the lymphocytes may be immunized in vitro.
- the monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567.
- DNA encoding the monoclonal antibodies of the description can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
- In vitro methods are also suitable for preparing monovalent antibodies.
- Digestion of antibodies to produce fragments thereof, particularly Fab fragments can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in WO 94/29348 and U.S. Pat. No. 4,342,566.
- Papain digestion of antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields a F(ab′)2 fragment and a pFc′ fragment.
- the antibody fragments can also include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids residues, provided the activity of the fragment is not significantly altered or impaired compared to the non-modified antibody or antibody fragment. These modifications can provide for some additional property, such as to remove/add amino acids capable of disulfide bonding, to increase its bio-longevity, to alter its secretory characteristics, etc.
- the antibody fragment must possess a bioactive property, such as binding activity, regulation of binding at the binding domain, etc.
- Functional or active regions of the antibody may be identified by mutagenesis of a specific region of the protein, followed by expression and testing of the expressed polypeptide. Such methods are readily apparent to a skilled practitioner in the art and can include site-specific mutagenesis of the nucleic acid encoding the antibody fragment.
- the antibodies of the description may further comprise humanized antibodies or human antibodies.
- Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
- Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity.
- CDR complementary determining region
- Fv framework (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences.
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
- the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- Transgenic animals e.g., mice
- mice that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production
- homozygous deletion of the antibody heavy chain joining region gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production.
- Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge.
- Human antibodies can also be produced in phage display libraries.
- Antibodies of the description are preferably administered to a subject in a pharmaceutically acceptable carrier.
- a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic.
- the pharmaceutically-acceptable carrier include saline, Ringer's solution and dextrose solution.
- the pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5.
- Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of antibody being administered.
- the antibodies can be administered to the subject, patient, or cell by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular), or by other methods such as infusion that ensure its delivery to the bloodstream in an effective form.
- the antibodies may also be administered by intratumoral or peritumoral routes, to exert local as well as systemic therapeutic effects. Local or intravenous injection is preferred.
- Effective dosages and schedules for administering the antibodies may be determined empirically, and making such determinations is within the skill in the art. Those skilled in the art will understand that the dosage of antibodies that must be administered will vary depending on, for example, the subject that will receive the antibody, the route of administration, the particular type of antibody used and other drugs being administered. A typical daily dosage of the antibody used alone might range from about 1 ( ⁇ g/kg to up to 100 mg/kg of body weight or more per day, depending on the factors mentioned above.
- the efficacy of the therapeutic antibody can be assessed in various ways well known to the skilled practitioner. For instance, the size, number, and/or distribution of cancer in a subject receiving treatment may be monitored using standard tumor imaging techniques.
- soluble T-cell receptor recognizing a specific peptide-MHC complex.
- soluble T-cell receptors can be generated from specific T-cell clones, and their affinity can be increased by mutagenesis targeting the complementarity-determining regions.
- phage display can be used (US 2010/0113300, (Liddy et al., 2012)).
- alpha and beta chain can be linked e.g., by non-native disulfide bonds, other covalent bonds (single-chain T-cell receptor), or by dimerization domains (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999).
- the T-cell receptor can be linked to toxins, drugs, cytokines (see, for example, US 2013/0115191), and domains recruiting effector cells such as an anti-CD3 domain, etc., in order to execute particular functions on target cells. In another aspect, it is expressed in T-cells used for adoptive transfer. See, for example, WO 2004/033685A1, WO 2004/074322A1, and WO 2013/057586A1, the contents of which are incorporated by reference in their entirety.
- the peptides and/or the TCRs or antibodies or other binding molecules of the present description can be used to verify a pathologist's diagnosis of a cancer based on a biopsied sample.
- the antibodies or TCRs may also be used for in vivo diagnostic assays.
- the antibody is labeled with a radionucleotide (such as 111 In, 99 Tc, 14 C, 131 I, 3 H, 32 P or 35 S) so that the tumor can be localized using immunoscintiography.
- a radionucleotide such as 111 In, 99 Tc, 14 C, 131 I, 3 H, 32 P or 35 S
- antibodies or fragments thereof bind to the extracellular domains of two or more targets of a protein selected from the group consisting of the above-mentioned proteins, and the affinity value (Kd) is less than 1 ⁇ 10 ⁇ M.
- Antibodies for diagnostic use may be labeled with probes suitable for detection by various imaging methods.
- Methods for detection of probes include, but are not limited to, fluorescence, light, confocal and electron microscopy; magnetic resonance imaging and spectroscopy; fluoroscopy, computed tomography and positron emission tomography.
- Suitable probes include, but are not limited to, fluorescein, rhodamine, eosin and other fluorophores, radioisotopes, gold, gadolinium and other lanthanides, paramagnetic iron, fluorine-18 and other positron-emitting radionuclides. Additionally, probes may be bi- or multi-functional and be detectable by more than one of the methods listed.
- the disease tissue sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin.
- the fixed or embedded section contains the sample are contacted with a labeled primary antibody and secondary antibody, wherein the antibody is used to detect the expression of the proteins in situ.
- FIG. 1 shows MAG-003 exon expression in MAGEA4 (tumor versus healthy, RNASeq data).
- FIG. 2 shows MAG-003 exon expression on MAGEA8 (tumor versus healthy, RNASeq data).
- FIG. 3 shows IFN ⁇ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein.
- SEQ ID NO:1 MAG-003 peptide
- FIG. 3 shows IFN ⁇ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein.
- FIG. 4 shows IFN ⁇ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein.
- FIG. 5 shows IFN ⁇ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein.
- SEQ ID NO:1 MAG-003 peptide
- FIG. 5 shows IFN ⁇ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein.
- FIG. 6 shows MAGEA4 expression according to example 7.
- MAGEA4 mRNA is detectable in the presented cancer specimens.
- the level of expression covers a range from considerable expression in head and neck cancer and non-small lung cancer specimens (HNSCC062T1, HNSCC064T1 and NSCLC004T1) to rather low expression in non-small lung cancer and ovarian cancer specimens (NSCLC006T1 and OC036T1).
- Allo-reactive settings can be used to circumvent self-tolerance and yield T-cells with a higher avidity when compared to T-cells derived from autologous settings, i.e., patients.
- Examples of such settings include in vitro generation of allo-HLA reactive, peptide-specific T-cells (Sadovnikova et al. 1998; Savage et al. 2004; Wilde et al. 2012), and immunization of mice transgenic for human-MHC or human TCR (Stanislawski et al. 2001; Li et al. 2010).
- PBMCs from HLA-A*02-negative healthy donors were used after obtaining informed consent.
- Recombinant biotinylated HLA-A2 class I monomers and A2 fluorescent tetramers containing MAG-003 were obtained from MBLI (Woburn, Mass.).
- PBMCs were incubated with anti-CD20SA diluted in phosphate buffered saline (PBS) for 1 hour at room temperature, washed, and incubated with the biotinylated A2/MAG-003 monomers for 30 minutes at room temperature, washed, and plated at 3 ⁇ 10 6 cells/well in 24-well plates in RPMI with 10% human AB serum.
- PBS phosphate buffered saline
- Interleukin 7 (IL-7; R&D Systems, Minneapolis, Minn.) was added on day 1 at 10 ng/mL and IL-2 (Chiron, Harefield, United Kingdom) was added at 10 U/mL on day 4.
- IL-7 Interleukin 7
- IL-2 Choiron, Harefield, United Kingdom
- PBMCs HLA-A2/MAG-003 tetramer-phycoerythrin (PE) (obtained from MBLI) for 30 minutes at 37° C., followed by anti-CD8-fluorescein isothiocyanate (FITC)/allophycocyanin (APC) for 20 minutes at 4° C., followed by fluorescence activated cell sorting (FACS)-Calibur analysis. Sorting was done with a FACS-Vantage (Becton Dickinson, Cowley, Oxford, United Kingdom).
- PE HLA-A2/MAG-003 tetramer-phycoerythrin
- FITC anti-CD8-fluorescein isothiocyanate
- API allophycocyanin
- FACS fluorescence activated cell sorting
- Sorted tetramer-positive cells were expanded in 24-well plates using, per well, 2 ⁇ 10 5 sorted cells, 2 ⁇ 10 6 irradiated A2-negative PBMCs as feeders, 2 ⁇ 10 4 CD3/CD28 beads/mL (Dynal, Oslo Norway), and IL-2 (1000 U/mL).
- the high avidity T-cells, thus obtained, were then be used to identify and isolate TCRs for amino acid/DNA sequences determination and cloning into expression vectors using methods well known in the art.
- MAG-003 were used to immunize transgenic mice with the entire human TCR ⁇ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency. (Li et al. 2010).
- To obtain high avidity T-cells incubate PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE) followed by cell sorting as described above. The high avidity T-cells, thus obtained, were then be used to identify and isolate TCRs for amino acid/DNA sequences determination and cloning into expression vectors using methods well known in the art.
- PE tetramer-phycoerythrin
- MAG-003 and its variants i.e., p286-1Y2L (having 2 amino acid substitutions, SEQ ID NO:2) and p286-1Y2L9L (having 3 amino acid substitutions, SEQ ID NO:3) exhibit potent binding affinity and stability towards HLA-A*0201 molecule.
- p286-1Y2L9L showed the capability to induce specific CTLs which, in an aspect, lyse the target cancer cells from both PBMCs of healthy donors and HLA-A2.1/Kb transgenic mice. See, for example, (Wu et al. 2011), the content of which is hereby incorporated by reference in its entirety.
- these peptides can be used in methods described in Examples 1 and 2.
- the high avidity T-cells, thus obtained, were then be used to identify and isolate TCRs for amino acid/DNA sequences determination and cloning into expression vectors using methods well known in the art.
- High avidity TCR variants can also be selected from a library of CDR mutants by yeast, phage, or T-cell display (holler et al. 2003; Li et al. 2005; Chervin et al. 2008).
- Candidate TCR variants thus, provide guidance to design mutations of the TCR's CDRs to obtain high avidity TCR variants (Robbins et al. 2008; Zoete et al. 2007).
- alpha chain variable region sequence specific oligonucleotide A1 which encodes the restriction site NdeI, an introduced methionine for efficient initiation of expression in bacteria, and an alpha chain constant region sequence specific oligonucleotide A2 which encodes the restriction site SalI are used to amplify the alpha chain variable region.
- a beta chain variable region sequence specific oligonucleotide which encodes the restriction site e.g.
- NdeI an introduced methionine for efficient initiation of expression in bacteria
- a beta chain constant region sequence specific oligonucleotide B2 which encodes the restriction site e.g. AgeI are used to amplify the beta chain variable region.
- alpha and beta variable regions were cloned into pGMT7-based expression plasmids containing either C ⁇ or C ⁇ by standard methods described in (Molecular Cloning a Laboratory Manual Third edition by Sambrook and Russell). Plasmids were sequenced using an Applied Biosystems 3730 ⁇ 1 DNA Analyzer.
- the DNA sequences encoding the TCR alpha chain cut with NdeI and SalI were ligated into pGMT7+C ⁇ vector, which was cut with NdeI and XhoI.
- the DNA sequences encoding the TCR beta chain cut with NdeI and AgeI was ligated into separate pGMT7+C ⁇ vector, which was also cut with NdeI and AgeI.
- Ligated plasmids are transformed into competent Escherichia coli strain XL1-blue cells and plated out on LB/agar plates containing 100 ⁇ g/ml ampicillin. Following incubation overnight at 37° C., single colonies are picked and grown in 10 ml LB containing 100 ⁇ g/ml ampicillin overnight at 37° C. with shaking. Cloned plasmids are purified using a Miniprep kit (Qiagen) and the insert is sequenced using an automated DNA sequencer (Lark Technologies).
- T-cells can be engineered to express high avidity TCRs (so-called TCR therapies) or protein-fusion derived chimeric antigen receptors (CARs) that have enhanced antigen specificity to MHC I/MAG-003 complex or MHC II/MAG-003 complex.
- TCR therapies protein-fusion derived chimeric antigen receptors
- CARs protein-fusion derived chimeric antigen receptors
- T-cells expressing TCRs of the present description nucleic acids encoding the tumor specific TCR-alpha and/or TCR-beta chains identified and isolated, as described in Examples 1-3, were cloned into expression vectors, such as gamma-retrovirus or lentivirus. The recombinant viruses were generated and then tested for functionality, such as antigen specificity and functional avidity. An aliquot of the final product is then used to transduce the target T-cell population (generally purified from patient PBMCs), which is expanded before infusion into the patient.
- expression vectors such as gamma-retrovirus or lentivirus.
- the recombinant viruses were generated and then tested for functionality, such as antigen specificity and functional avidity.
- An aliquot of the final product is then used to transduce the target T-cell population (generally purified from patient PBMCs), which is expanded before infusion into the patient.
- TCR chains introduced into a peripheral T-cell may compete with endogenous TCR chains for association with the CD3 complex, which is necessary for TCR surface expression. Because a high level of TCR surface expression is essential to confer appropriate sensitivity for triggering by cells expressing the target tumor antigen (Cooper et al., 2000; Labrecque et al., 2001), strategies that enhance TCR-alpha and TCR-beta gene expression levels are an important consideration in TCR gene therapy.
- strong promoters such as retroviral long terminal repeats (LTRs), cytomegalovirus (CMV), murine stem cell virus (MSCV) U3, phosphoglycerate kinase (PGK), ⁇ -actin, ubiquitin, and a simian virus 40 (SV40)/CD43 composite promoter (Cooper et al., 2004; Jones et al., 2009), elongation factor (EF)-1a (Tsuji et al., 2005) and the spleen focus-forming virus (SFFV) promoter (Joseph et al., 2008), can be used in the present description.
- LTRs retroviral long terminal repeats
- CMV cytomegalovirus
- MSCV murine stem cell virus
- PGK phosphoglycerate kinase
- ⁇ -actin ubiquitin
- SV40 simian virus 40
- SV40 simian virus 40
- EF
- TCR expression cassettes contain additional elements that can enhance transgene expression, including a central polypurine tract (cPPT), which promotes the nuclear translocation of lentiviral constructs (Follenzi et al., 2000), and the woodchuck hepatitis virus posttranscriptional regulatory element (wPRE), which increases the level of transgene expression by increasing RNA stability (Zufferey et al., 1999).
- cPPT central polypurine tract
- wPRE woodchuck hepatitis virus posttranscriptional regulatory element
- TCR-alpha and TCR-beta chains of the introduced TCR be transcribed at high levels.
- the TCR-alpha and TCR-beta chains of the present description may be cloned into bicistronic constructs in a single vector, which has been shown to be capable of overcoming this obstacle.
- TCR-alpha and TCR-beta chains are used to coordinate expression of both chains, because the TCR-alpha and TCR-beta chains are generated from a single transcript that is broken into two proteins during translation, ensuring that an equal molar ratio of TCR-alpha and TCR-beta chains are produced.
- IRS intraribosomal entry site
- TCR-alpha and TCR-beta gene sequences have been shown to significantly enhance TCR-alpha and TCR-beta gene expression (Scholten et al., 2006).
- mispairing between the introduced and endogenous TCR chains may result in the acquisition of specificities that pose a significant risk for autoimmunity.
- the formation of mixed TCR dimers may reduce the number of CD3 molecules available to form properly paired TCR complexes, and therefore can significantly decrease the functional avidity of the cells expressing the introduced TCR (Kuball et al., 2007).
- the C-terminus domain of the introduced TCR chains of the present description may be modified in order to promote interchain affinity, while decreasing the ability of the introduced chains to pair with the endogenous TCR.
- These strategies may include replacing the human TCR-alpha and TCR-beta C-terminus domains with their murine counterparts (murinized C-terminus domain); generating a second interchain disulfide bond in the C-terminus domain by introducing a second cysteine residue into both the TCR-alpha and TCR-beta chains of the introduced TCR (cysteine modification); swapping interacting residues in the TCR-alpha and TCR-beta chain C-terminus domains (“knob-in-hole”); and fusing the variable domains of the TCR-alpha and TCR-beta chains directly to CD3 ⁇ (CD3 ⁇ fusion). (Schmitt et al. 2009).
- TCR proteins that are useful in treating cancers/tumors, preferably non-small cell lung cancer that over- or exclusively present MAG-003.
- Gamma delta ( ⁇ ) T cells which are non-conventional T lymphocyte effectors implicated in the first line of defense against pathogens, can interact with and eradicate tumor cells in a MHC-independent manner through activating receptors, among others, TCR-gamma and TCR-delta chains.
- These ⁇ T cells display a preactivated phenotype that allows rapid cytokine production (IFN- ⁇ , TNF- ⁇ ) and strong cytotoxic response upon activation.
- IFN- ⁇ , TNF- ⁇ cytokine production
- T-cells have anti-tumor activity against many cancers and suggest that ⁇ T cell-mediated immunotherapy is feasible and can induce objective tumor responses.
- immobilized antigens agonistic monoclonal antibodies (mAbs), tumor-derived artificial antigen presenting cells (aAPC), or combinations of activating mAbs and aAPC have been successful in expanding gamma delta T-cells with oligoclonal or polyclonal TCR repertoires.
- immobilized major histocompatibility complex Class-I chain-related A was a stimulus for ⁇ T-cells expressing TCR ⁇ 1 isotypes, and plate-bound activating antibodies have expanded V ⁇ 1 and V ⁇ 2 cells ex vivo.
- TCR ⁇ 1, TCR ⁇ 2, and TCR ⁇ 1 neg TCR ⁇ 2 neg have been produced following co-culture on aAPC, and these subsets displayed differences in memory phenotype and reactivity to tumors in vitro and in vivo. (Deniger et al. 2014).
- ⁇ T-cells are amenable to genetic modification as evidenced by introduction of TCR-alpha and TCR-beta chains.
- Another aspect of the present description relates to production of ⁇ T-cells expressing TCR-alpha and TCR-beta that bind to MAG-003.
- ⁇ T-cells are expanded by methods described by Deniger et al. 2014, followed by transducing the recombinant viruses expressing the TCRs that bind to MAG-003 (as described in Example 3) into the expanded ⁇ T-cells. The virus-transduced ⁇ T-cells are then infused into the patient.
- the immunogenicity of MAG-003 was tested using protocols that mimic the manufacturing procedure for a pharmaceutical product. Priming of MAG-003-specific T-cells was observed for healthy donors. Generated T cells were able to kill peptide loaded target cells demonstrating their functionality. The data demonstrated that 1) MAG-003 is an immunogenic target and 2) that generated T cells against MAG-003 are functional.
- MAG-003 is a peptide with very good binding to HLA-A*02:01.
- ISH In situ hybridization
- ISH has been performed to detect MAGEA4 mRNA using the BaseScopeTM technology developed by Advanced Cell Diagnostics (ACD).
- the BaseScopeTM technology is based on the hybridization of on to four pairs of Z-shaped oligonucleotide probes to the target sequence. Signal amplification is achieved by branched DNA amplification, which is based on multiple hybridization steps of oligonucleotides, ultimately building up a branched DNA (bDNA) tree. Finally, a great number of label probes hybridize to the branches of the bDNA tree and the enhanced signal can be detected.
- the chromogenic BaseScopeTM Detection Kit includes label probes which are linked to an enzyme (alkaline phosphatase).
- Tissue pretreatment for target retrieval
- Target hybridization signal amplification and detection.
- Optimal pretreatment conditions are critical for successful target detection in FFPE tissue sections.
- the fixation process induces crosslinking of proteins, DNA and RNA in cells and tissues and thereby masks hybridization sites. Thus, to assure accessibility of the target mRNA and proper binding of the probe set, these crosslinks have to be removed prior to target hybridization.
- Tissue pretreatment includes three discrete steps: 1) Blocking of endogenous alkaline phosphatase by hydrogen peroxide treatment, 2) target retrieval by boiling in target retrieval reagent, and 3) target retrieval by protease digestion.
- tissue sections were exposed to different boiling and protease digestion times followed by hybridization with a positive and a negative control probe set.
- the optimal conditions were determined by microscopic evaluation of specific signal intensity in the positive control, unspecific background in the negative control and tissue morphology.
- Tissue pretreatment was performed according to the manufacturer's protocols.
- Pretreatment reagents are included in the BaseScopeTM reagent kits. After completion of the different pretreatment steps, target expression was assessed by hybridization of specific probe sets to the mRNA of interest with subsequent branched DNA signal amplification and chromogenic or fluorescent signal detection. All assays were performed according to the manufacturer's protocols.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- General Engineering & Computer Science (AREA)
- Oncology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Urology & Nephrology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 15/460,396, filed on Mar. 16, 2017, which claims benefit of U.S. Provisional Application Ser. No. 62/308,944, filed Mar. 16, 2016, and Great Britain Application No. 1604458.8, filed Mar. 16, 2016, the content of each of these applications is herein incorporated by reference in their entirety.
- This application also is related to PCT/EP2017/056049 filed 15 Mar. 2017, the content of which is incorporated herein by reference in its entirety.
- Pursuant to the EFS-Web legal framework and 37 CFR §§ 1.821-825 (see MPEP § 2442.03(a)), a Sequence Listing in the form of an ASCII-compliant text file (entitled “Sequence_Listing_2912919-061002_ST25.txt” created on Nov. 12, 2019, and 4,395 bytes in size) is submitted concurrently with the instant application, and the entire contents of the Sequence Listing are incorporated herein by reference.
- The present description relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present description relates to the immunotherapy of cancer. The present description furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T-cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
- The present description further relates to the use of the above peptides for the generation of specific T-cell receptors (TCRs) binding to tumor-associated antigens (TAAs) for targeting cancer cells, the generation of T-cells expressing same, and methods for treating cancers using same. The novel peptide sequences and their variants derived from HLA class I molecules of human tumor cells can be used in vaccine compositions for eliciting anti-tumor immune responses, or as targets for the development of pharmaceutically/immunologically active compounds and cells. Preferred is a peptide that has the amino acid sequence KVLEHVVRV (SEQ ID NO: 1).
- Non-small cell lung cancer (NSCLC) is named according to the size of the cancer cells when observed under a microscope and has to be differentiated from small cell lung cancer (SCLC). NSCLC accounts to about 85% to 90% of all lung cancers (American Cancer Society, 2015).
- Both lung cancers (SCLC and NSCLC) are the second most common cancer in both men and women. Lung cancer is leading cause of cancer death, which accounts for about 25%. Thus, more people die of lung cancer than of colon, breast, and prostate cancers combined each year. Furthermore, both lung cancers account for about 13% (more than 1.8 million) of all new cancers. Lung cancer mainly occurs in older people. The average age at the time of diagnosis is about 70. Fewer than 2% of all cases are diagnosed in people younger than 45.
- There are four major types of NSCLC, namely, adenocarcinoma, squamous cell carcinoma, bronchoalveolar carcinoma, and large cell carcinoma. Adenocarcinoma and squamous cell carcinoma are the most common types of NSCLC based on cellular morphology (Travis et al., Lung Cancer Principles and Practice, Lippincott-Raven, New York, 361-395, 1996). Adenocarcinomas are characterized by a more peripheral location in the lung and often have a mutation in the K-ras oncogene (Gazdar et al., Anticancer Res., 14, 261-267, 1994). Squamous cell carcinomas are typically more centrally located and frequently carry p53 gene mutations (Niklinska et al., Folia Histochem. Cytobiol., 39, 147-148, 2001).
- Many genetic alterations associated with development and progression of lung cancer have been reported, but the precise molecular mechanisms remain unclear (Sozzi, G. Eur. J. Cancer 37: 63-73 (2001)). The majority of NSCLCs are characterized by the presence of the ras mutation thereby rendering the patient relatively insensitive to treatment by known kinase inhibitors. As a result, current treatments of lung cancer are generally limited to cytotoxic drugs, surgery, and radiation therapy. Over the last decade newly developed cytotoxic agents including paclitaxel, docetaxel, gemcitabine, and vinorelbine have emerged to offer multiple therapeutic choices for patients with advanced NSCLC; however, each of the new regimens can provide only modest survival benefits compared with cisplatin-based therapies (Schiller, J. H. et al., N. Engl. J. Med. 346: 92-98 (2002); Kelly, K. et al., J. Clin. Oncol. 19: 3210-3218 (2001)). Hence, new therapeutic strategies, such as development of molecular-targeted agents, are eagerly awaited by clinicians.
- Immunotherapy of cancer represents an option of specific targeting of cancer cells while minimizing side effects. Cancer immunotherapy makes use of the existence of tumor associated antigens.
- The current classification of tumor associated antigens (TAAs) can be categorized into the following groups:
- a) Cancer-testis antigens: The first TAAs ever identified that can be recognized by T-cells belong to this class, which was originally called cancer-testis (CT) antigens because of the expression of its members in histologically different human tumors and, among normal tissues, only in spermatocytes/spermatogonia of testis and, occasionally, in placenta. Since the cells of testis do not express class I and II HLA molecules, these antigens cannot be recognized by T-cells in normal tissues and can therefore be considered as immunologically tumor-specific. Well-known examples for CT antigens are the MAGE family members and NY-ESO-1.
b) Differentiation antigens: These TAAs are shared between tumors and the normal tissue from which the tumor arose. Most of the known differentiation antigens are found in melanomas and normal melanocytes. Many of these melanocyte lineage-related proteins are involved in biosynthesis of melanin and are therefore not tumor specific but nevertheless are widely used for cancer immunotherapy. Examples include, but are not limited to, tyrosinase and Melan-A/MART-1 for melanoma or PSA for prostate cancer.
c) Over-expressed TAAs: Genes encoding widely expressed TAAs have been detected in histologically different types of tumors as well as in many normal tissues, generally with lower expression levels. It is possible that many of the epitopes processed and potentially presented by normal tissues are below the threshold level for T-cell recognition, while their over-expression in tumor cells can trigger an anticancer response by breaking previously established tolerance. Prominent examples for this class of TAAs are Her-2/neu, survivin, telomerase, or WT1.
d) Tumor-specific antigens: These unique TAAs arise from mutations of normal genes (such as β-catenin, CDK4, etc.). Some of these molecular changes are associated with neoplastic transformation and/or progression. Tumor-specific antigens are generally able to induce strong immune responses without bearing the risk for autoimmune reactions against normal tissues. On the other hand, these TAAs are in most cases only relevant to the exact tumor on which they were identified and are usually not shared between many individual tumors. Tumor-specificity (or -association) of a peptide may also arise if the peptide originates from a tumor- (-associated) exon in case of proteins with tumor-specific (-associated) isoforms.
e) TAAs arising from abnormal post-translational modifications: Such TAAs may arise from proteins which are neither specific nor overexpressed in tumors but nevertheless become tumor associated by posttranslational processes primarily active in tumors. Examples for this class arise from altered glycosylation patterns leading to novel epitopes in tumors as for MUC1 or events like protein splicing during degradation which may or may not be tumor specific.
f) Oncoviral proteins: These TAAs are viral proteins that may play a critical role in the oncogenic process and, because they are foreign (not of human origin), they can evoke a T-cell response. Examples of such proteins are thehuman papilloma type 16 virus proteins, E6 and E7, which are expressed in cervical carcinoma. - T-cell based immunotherapy targets peptide epitopes derived from tumor-associated or tumor-specific proteins, which are presented by molecules of the major histocompatibility complex (MHC). The antigens that are recognized by the tumor specific T lymphocytes, that is, the epitopes thereof, can be molecules derived from all protein classes, such as enzymes, receptors, transcription factors, etc. which are expressed and, as compared to unaltered cells of the same origin, usually up-regulated in cells of the respective tumor.
- There are two classes of MHC-molecules, MHC class I and MHC class II. MHC class I molecules are composed of an alpha heavy chain and beta-2-microglobulin, MHC class II molecules of an alpha and a beta chain. Their three-dimensional conformation results in a binding groove, which is used for non-covalent interaction with peptides. MHC class I molecules can be found on most nucleated cells. They present peptides that result from proteolytic cleavage of predominantly endogenous proteins, defective ribosomal products (DRIPs) and larger peptides. However, peptides derived from endosomal compartments or exogenous sources are also frequently found on MHC class I molecules. This non-classical way of class I presentation is referred to as cross-presentation in the literature (Brossart and Bevan, 1997; Rock et al., 1990). MHC class II molecules can be found predominantly on professional antigen presenting cells (APCs), and primarily present peptides of exogenous or transmembrane proteins that are taken up by APCs e.g., during endocytosis, and are subsequently processed.
- Complexes of peptide and MHC class I are recognized by CD8-positive T-cells bearing the appropriate T-cell receptor (TCR), whereas complexes of peptide and MHC class II molecules are recognized by CD4-positive-helper-T-cells bearing the appropriate TCR. It is well known that the TCR, the peptide and the MHC are thereby present in a stoichiometric amount of 1:1:1.
- CD4-positive helper T-cells play an important role in inducing and sustaining effective responses by CD8-positive cytotoxic T-cells. The identification of CD4-positive T-cell epitopes derived from tumor associated antigens (TAA) is of great importance for the development of pharmaceutical products for triggering anti-tumor immune responses (Gnjatic et al., 2003). At the tumor site, T helper cells, support a cytotoxic T-cell- (CTL-) friendly cytokine milieu (Mortara et al., 2006) and attract effector cells, e.g., CTLs, natural killer (NK) cells, macrophages, and granulocytes (Hwang et al., 2007).
- In the absence of inflammation, expression of MHC class II molecules is mainly restricted to cells of the immune system, especially professional antigen-presenting cells (APC), e.g., monocytes, monocyte-derived cells, macrophages, dendritic cells. In cancer patients, cells of the tumor have been found to express MHC class II molecules (Dengjel et al., 2006). Elongated (longer) peptides of the description can function as MHC class II active epitopes.
- T-helper cells, activated by MHC class II epitopes, play an important role in orchestrating the effector function of CTLs in anti-tumor immunity. T-helper cell epitopes that trigger a T-helper cell response of the TH1 type support effector functions of CD8-positive killer T-cells, which include cytotoxic functions directed against tumor cells displaying tumor-associated peptide/MHC complexes on their cell surfaces. In this way tumor-associated T-helper cell peptide epitopes, alone or in combination with other tumor-associated peptides, can serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses.
- It was shown in mammalian animal models, e.g., mice, that even in the absence of CD8-positive T lymphocytes, CD4-positive T-cells are sufficient for inhibiting manifestation of tumors via inhibition of angiogenesis by secretion of interferon-gamma (IFNγ) (Beatty and Paterson, 2001; Mumberg et al., 1999). There is evidence for CD4 T-cells as direct anti-tumor effectors (Braumuller et al., 2013; Tran et al., 2014).
- Since the constitutive expression of HLA class II molecules is usually limited to immune cells, the possibility of isolating class II peptides directly from primary tumors was previously not considered possible. However, Dengjel et al. were successful in identifying a number of MHC Class II epitopes directly from tumors (WO 2007/028574,
EP 1 760 088 B1). - Since both types of response, CD8 and CD4 dependent, contribute jointly and synergistically to the anti-tumor effect, the identification and characterization of tumor-associated antigens recognized by either CD8+ T-cells (ligand: MHC class I molecule+peptide epitope) or by CD4-positive T-helper cells (ligand: MHC class II molecule+peptide epitope) is important in the development of tumor vaccines.
- For an MHC class I peptide to trigger (elicit) a cellular immune response, it also must bind to an MHC-molecule. This process is dependent on the allele of the MHC-molecule and specific polymorphisms of the amino acid sequence of the peptide. MHC-class-1-binding peptides are usually 8-12 amino acid residues in length and usually contain two conserved residues (“anchors”) in their sequence that interact with the corresponding binding groove of the MHC-molecule. In this way each MHC allele has a “binding motif” determining which peptides can bind specifically to the binding groove.
- In the MHC class I dependent immune reaction, peptides not only have to be able to bind to certain MHC class I molecules expressed by tumor cells, they subsequently also have to be recognized by T-cells bearing specific T-cell receptors (TCR).
- For proteins to be recognized by T-lymphocytes as tumor-specific or -associated antigens, and to be used in a therapy, particular prerequisites must be fulfilled. The antigen should be expressed mainly by tumor cells and not, or in comparably small amounts, by normal healthy tissues. In a preferred embodiment, the peptide should be over-presented by tumor cells as compared to normal healthy tissues. It is furthermore desirable that the respective antigen is not only present in a type of tumor, but also in high concentrations (i.e., copy numbers of the respective peptide per cell). Tumor-specific and tumor-associated antigens are often derived from proteins directly involved in transformation of a normal cell to a tumor cell due to their function, e.g., in cell cycle control or suppression of apoptosis. Additionally, downstream targets of the proteins directly causative for a transformation may be up-regulated and thus may be indirectly tumor-associated. Such indirect tumor-associated antigens may also be targets of a vaccination approach (Singh-Jasuja et al., 2004). It is essential that epitopes are present in the amino acid sequence of the antigen, in order to ensure that such a peptide (“immunogenic peptide”), being derived from a tumor associated antigen, and leads to an in vitro or in vivo T-cell-response.
- Therefore, TAAs are a starting point for the development of a T-cell based therapy including but not limited to tumor vaccines. The methods for identifying and characterizing the TAAs are usually based on the use of T-cells that can be isolated from patients or healthy subjects, or they are based on the generation of differential transcription profiles or differential peptide expression patterns between tumors and normal tissues. However, the identification of genes over-expressed in tumor tissues or human tumor cell lines, or selectively expressed in such tissues or cell lines, does not provide precise information as to the use of the antigens being transcribed from these genes in an immune therapy. This is because only an individual subpopulation of epitopes of these antigens are suitable for such an application since a T-cell with a corresponding TCR has to be present and the immunological tolerance for this particular epitope needs to be absent or minimal. In a very preferred embodiment of the description it is therefore important to select only those over- or selectively presented peptides against which a functional and/or a proliferating T-cell can be found. Such a functional T-cell is defined as a T-cell, which upon stimulation with a specific antigen can be clonally expanded and is able to execute effector functions (“effector T-cell”).
- In case of targeting peptide-MHC by specific TCRs (e.g., soluble TCRs) and antibodies or other binding molecules (scaffolds) according to the description, the immunogenicity of the underlying peptides is secondary. In these cases, the presentation is the determining factor.
- In spite of significant progress in basic and clinical research concerning TAAs (Rosenbeg et al., Nature Med. 4: 321-7 (1998); Mukherji et al., Proc. Natl. Acad. Sci. USA 92: 8078-82 (1995); Hu et al., Cancer Res. 56: 2479-83 (1996)), only limited number of candidate TAAs for the treatment of cancer are available. TAAs abundantly expressed in cancer cells, and at the same time which expression is restricted to cancer cells would be promising candidates as immunotherapeutic targets. Further, identification of new TAAs inducing potent and specific antitumor immune responses is expected to encourage clinical use of peptide vaccination strategy in various types of cancer (Boon and can der Bruggen, J. Exp. Med. 183: 725-9 (1996); van der Bruggen et al., Science 254: 1643-7 (1991); Brichard et al., J. Exp. Med. 178: 489-95 (1993); Kawakami et al., J. Exp. Med. 180: 347-52 (1994); Shichijo et al., J. Exp. Med. 187: 277-88 (1998); Chen et al., Proc. Natl. Acad. Sci. USA 94: 1914-8 (1997); Harris, J. Natl. Cancer Inst. 88: 1442-5 (1996); Butterfield et al., Cancer Res. 59: 3134-42 (1999); Vissers et al., Cancer Res. 59: 5554-9 (1999); van der Burg et al., J Immunol 156: 3308-14 (1996); Tanaka et al., Cancer Res. 57: 4465-8 (1997); Fujie et al., Int. J. Cancer 80: 169-72 (1999); Kikuchi et al., Int. J. Cancer 81: 459-66 (1999); Oiso et al., Int. J. Cancer 81: 387-94 (1999)).
- Furthermore, although advances have been made in the development of molecular-targeting drugs for cancer therapy, the ranges of tumor types that respond as well as the effectiveness of the treatments are still very limited. Hence, it is urgent to develop new anti-cancer agents that target molecules highly specific to malignant cells and are likely to cause minimal or no adverse reactions. There is also a need to identify factors representing biomarkers for cancer in general and NSCLC in particular, leading to better diagnosis of cancer, assessment of prognosis, and prediction of treatment success.
- In an aspect, the present description relates to a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:24 or a variant sequence thereof which is at least 65%, preferably at least 77%, and more preferably at least 85% homologous (preferably at least 75% or at least 85% identical) to SEQ ID NO:1 to SEQ ID NO:24, wherein said variant binds to MHC and/or induces T-cells cross-reacting with said peptide, or a pharmaceutically acceptable salt thereof, and wherein said peptide is not the underlying full-length polypeptide.
- The present description further relates to a peptide of the present description comprising a sequence that is selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:24 or a variant thereof, which is at least 65%, preferably at least 75%, and more preferably at least 85% homologous (preferably at least 75% or at least 85% identical) to SEQ ID NO:1 to SEQ ID NO:24, wherein said peptide or variant thereof has an overall length of between 8 and 100, preferably between 8 and 30, and most preferably of between 8 and 14 amino acids, wherein said peptide or variant binds to MHC and/or induces T-cells cross-reacting with said peptide, or a pharmaceutically acceptable salt thereof.
- The following tables show peptides according to the present description, and their respective SEQ ID NOs.
-
TABLE 1 Peptides according to the present description. SEQ ID NO: Sequence 1 KVLEHVVRV 2 KVLEHVVRL 3 KVLEHVVRA 4 KVLEHVVRI 5 KLLEHVVRV 6 KLLEHVVRL 7 KLLEHVVRA 8 KLLEHVVRI 9 KALEHVVRV 10 KALEHVVRL 11 KALEHVVRA 12 KALEHVVRI 13 YLLEHVVRV 14 YLLEHVVRL 15 YLLEHVVRA 16 YLLEHVVRI 17 YALEHVVRV 18 YALEHVVRL 19 YALEHVVRA 20 YALEHVVRI 21 YVLEHVVRV 22 YVLEHVVRL 23 YVLEHVVRA 24 YVLEHVVRI - In another aspect, the present description relates to a MAG-003 peptide, for example an isolated peptide, comprising an amino acid sequence according to the following general formula I:
-
Formula I (SEQ ID NO: 5) X1X2LEHVVRX3
wherein X1 is selected from the amino acids K and Y, X2 is selected from the amino acids V, L and A, and X3 is selected from V, L, A, and I, wherein said peptide binds to an HLA class I or class II molecule and/or induces T-cells cross-reacting with said peptide, or a pharmaceutically acceptable salt thereof. In an aspect, said peptide is not the underlying full-length polypeptide. - The present description furthermore generally relates to the peptides according to the present description for use in the treatment of proliferative diseases, such as non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- Particularly preferred are the peptides—alone or in combination—according to the present description selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:24. More preferred are the peptides—alone or in combination—selected from the group consisting of SEQ ID NO:1 to SEQ ID NO:24 (see Table 1), and their uses in the immunotherapy of non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer, and preferably glioblastoma, gastric cancer, lung cancer, hepatocellular carcinoma, colorectal cancer, pancreatic cancer, esophageal cancer, ovarian cancer, and non-small cell lung cancer.
- The present description furthermore relates to peptides according to the present description that have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or—in an elongated form, such as a length-variant—MHC class-II.
- The present description further relates to the peptides according to the present description wherein said peptides (each) comprise, consist of, or consist essentially of an amino acid sequence according to SEQ ID NO:1 to SEQ ID NO:24.
- The present description further relates to the peptides according to the present description, wherein said peptide is modified and/or includes non-peptide bonds.
- The present description further relates to the peptides according to the present description, wherein said peptide is part of a fusion protein, in particular fused to the N-terminal amino acids of the HLA-DR antigen-associated invariant chain (Ii), or fused to (or into the sequence of) an antibody, such as, for example, an antibody that is specific for dendritic cells.
- The present description further relates to a nucleic acid, encoding the peptides according to the present description. The present description further relates to the nucleic acid according to the present description that is DNA, cDNA, PNA, RNA or combinations thereof.
- The present description further relates to an expression vector capable of expressing and/or expressing a nucleic acid according to the present description.
- The present description further relates to a peptide according to the present description, a nucleic acid according to the present description or an expression vector according to the present description for use in the treatment of diseases and in medicine, in particular in the treatment of cancer.
- The present description further relates to antibodies that are specific against the peptides according to the present description or complexes of said peptides according to the present description with MHC, and methods of making these.
- The present description further relates to a host cell comprising a nucleic acid according to the present description or an expression vector as described before.
- The present description further relates to the host cell according to the present description that is an antigen presenting cell, and preferably is a dendritic cell.
- The present description further relates to a method for producing a peptide according to the present description, said method comprising culturing the host cell according to the present description, and isolating the peptide from said host cell or its culture medium.
- The present description further relates to said method according to the present description, wherein the antigen is loaded onto class I or II MHC molecules expressed on the surface of a suitable antigen-presenting cell or artificial antigen-presenting cell by contacting a sufficient amount of the antigen with an antigen-presenting cell.
- The present description further relates to the method according to the present description, wherein the antigen-presenting cell comprises an expression vector capable of expressing and/or expressing said peptide containing SEQ ID NO:1 to SEQ ID No.: 24, preferably containing SEQ ID NO:1 to SEQ ID NO:24, or a variant amino acid sequence.
- The present description further relates to activated T-cells, produced by the method according to the present description, wherein said T-cell selectively recognizes a cell which expresses a polypeptide comprising an amino acid sequence according to the present description.
- The present description further relates to a method of killing target-cells in a patient which target-cells aberrantly express a polypeptide comprising any amino acid sequence according to the present description, the method comprising administering to the patient an effective number of T-cells as produced according to the present description.
- The present description further relates to the use of any peptide as described, the nucleic acid according to the present description, the expression vector according to the present description, the cell according to the present description, the activated T lymphocyte, the T-cell receptor or the antibody or other peptide- and/or peptide-MHC-binding molecules according to the present description as a medicament or in the manufacture of a medicament. Preferably, said medicament is active against cancer.
- Preferably, said medicament is a cellular therapy, a vaccine or a protein based on a soluble TCR or antibody.
- The present description further relates to a use according to the present description, wherein said cancer cells are non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer, and preferably non-small cell lung cancer.
- The present description further relates to biomarkers based on the peptides according to the present description, herein called “targets,” that can be used in the diagnosis of cancer, preferably non-small cell lung cancer. The marker can be over-presentation of the peptide(s) themselves, or over-expression of the corresponding gene(s). The markers may also be used to predict the probability of success of a treatment, preferably an immunotherapy, and most preferred an immunotherapy targeting the same target that is identified by the biomarker. For example, an antibody or soluble TCR can be used to stain sections of the tumor to detect the presence of a peptide of interest in complex with MHC. Optionally the antibody carries a further effector function such as an immune stimulating domain or toxin.
- The present description further relates to the use of these novel targets for the identification of TCRs that recognize at least one of said targets, and preferably the identification of said TCRs that activate T-cells.
- The present description also relates to the use of these novel targets in the context of cancer treatment.
- The present description further relates to the use of the peptides according to the invention for the production of TCRs, individual TCR subunits (alone or in combination), and subdomains thereof, in particular soluble TCR (sTCRs) and cloned TCRs, said TCRs engineered into autologous or allogeneic T-cells, and methods of making same, as well as other cells bearing said TCR or cross-reacting with said TCRs.
- The present description further relates to a TCR protein, individual TCR subunits (alone or in combination), and subdomains thereof, in particular soluble TCR (sTCRs) and cloned TCRs that bind to a KVLEHVVRV (SEQ ID NO:1)-HLA-A*02 complex comprising a TCR alpha chain variable domain and a TCR beta chain variable domain.
- The present description further relates to an isolated nucleic acid comprising a nucleotide sequence encoding a TCR of the present description. The present description further relates to a recombinant expression vector comprising a nucleic acid encoding a TCR alpha chain, beta chain, or both, as produced according to the present description.
- The present description further relates to an isolated host cell comprising the recombinant expression vector expressing the nucleic acid encoding the TCR alpha chain, beta chain, or both, of the present description.
- The present description further relates to an isolated host cell comprising the recombinant expression vector of the present description, preferably wherein the cell is a peripheral blood lymphocyte (PBL).
- The present description further relates to an isolated PBL comprising the recombinant expression vector of the present description, wherein the PBL is a CD8+ T-cell or a CD4+ T-cell.
- The present description further relates to a population of cells comprising at least one host cell of the present description.
- The present description further relates to TCR proteins of the present description for use in the treatment of proliferative diseases, such as, non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- Stimulation of an immune response is dependent upon the presence of antigens recognized as foreign by the host immune system. The discovery of the existence of tumor associated antigens has raised the possibility of using a host's immune system to intervene in tumor growth. Various mechanisms of harnessing both the humoral and cellular arms of the immune system are currently being explored for cancer immunotherapy.
- Specific elements of the cellular immune response are capable of specifically recognizing and destroying tumor cells. The isolation of T-cells from tumor-infiltrating cell populations or from peripheral blood suggests that such cells play an important role in natural immune defense against cancer. CD8-positive T-cells in particular, which recognize class I molecules of the major histocompatibility complex (MHC)-bearing peptides of usually 8 to 10 amino acid residues derived from proteins or defect ribosomal products (DRIPS) located in the cytosol, play an important role in this response. The MHC-molecules of the human are also designated as human leukocyte-antigens (HLA).
- The term “T-cell response” means the specific proliferation and activation of effector functions induced by a peptide in vitro or in vivo. For MHC class I restricted cytotoxic T-cells, effector functions may be lysis of peptide-pulsed, peptide-precursor pulsed or naturally peptide-presenting target cells, secretion of cytokines, preferably Interferon-gamma, TNF-alpha, or IL-2 induced by peptide, secretion of effector molecules, preferably granzymes or perforins induced by peptide, or degranulation.
- The term “peptide” is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. The peptides are preferably 9 amino acids in length, but can be as short as 8 amino acids in length, and as long as 10, 11, or 12 or longer, and in case of MHC class II peptides (elongated variants of the peptides of the description) they can be as long as 13, 14, 15, 16, 17, 18, 19 or 20 or more amino acids in length.
- Furthermore, the term “peptide” shall include salts of a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. Preferably, the salts are pharmaceutical acceptable salts of the peptides, such as, for example, the chloride or acetate (trifluoroacetate) salts. It has to be noted that the salts of the peptides according to the present description differ substantially from the peptides in their state(s) in vivo, as the peptides are not salts in vivo.
- The term “peptide” shall also include “oligopeptide”. The term “oligopeptide” is used herein to designate a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. The length of the oligopeptide is not critical to the description, as long as the correct epitope or epitopes are maintained therein. The oligopeptides are typically less than about 30 amino acid residues in length, and greater than about 15 amino acids in length.
- The term “polypeptide” designates a series of amino acid residues, connected one to the other typically by peptide bonds between the alpha-amino and carbonyl groups of the adjacent amino acids. The length of the polypeptide is not critical to the description as long as the correct epitopes are maintained. In contrast to the terms peptide or oligopeptide, the term polypeptide is meant to refer to molecules containing more than about 30 amino acid residues.
- A peptide, oligopeptide, protein or polynucleotide coding for such a molecule is “immunogenic” (and thus is an “immunogen” within the present description), if it is capable of inducing an immune response. In the case of the present description, immunogenicity is more specifically defined as the ability to induce a T-cell response. Thus, an “immunogen” would be a molecule that is capable of inducing an immune response, and in the case of the present description, a molecule capable of inducing a T-cell response. In another aspect, the immunogen can be the peptide, the complex of the peptide with MHC, oligopeptide, and/or protein that is used to raise specific antibodies or TCRs against it.
- A class I T-cell “epitope” requires a short peptide that is bound to a class I MHC receptor, forming a ternary complex (MHC class I alpha chain, beta-2-microglobulin, and peptide) that can be recognized by a T-cell bearing a matching T-cell receptor binding to the MHC/peptide complex with appropriate affinity. Peptides binding to MHC class I molecules are typically 8-14 amino acids in length, and most typically 9 amino acids in length.
- In humans there are three different genetic loci that encode MHC class I molecules (the MHC-molecules of the human are also designated human leukocyte antigens (HLA)): HLA-A, HLA-B, and HLA-C. HLA-A*01, HLA-A*02, and HLA-B*07 are examples of different MHC class I alleles that can be expressed from these loci.
-
TABLE 2 Expression frequencies F of HLA-A*02 and HLA-A*24 and the most frequent HLA-DR serotypes. Frequencies are deduced from haplotype frequencies Gf within the American population adapted from Mori et al. (Mori et al., 1997) employing the Hardy-Weinberg formula F = 1 − (1 − Gf)2. Combinations of A*02 or A*24 with certain HLA-DR alleles might be enriched or less frequent than expected from their single frequencies due to linkage disequilibrium. For details refer to Chanock et al. (Chanock et al., 2004). Calculated phenotype from allele Allele Population frequency A*02 Caucasian (North America) 49.1% A*02 African American (North America) 34.1% A*02 Asian American (North America) 43.2% A*02 Latin American (North American) 48.3% DR1 Caucasian (North America) 19.4% DR2 Caucasian (North America) 28.2% DR3 Caucasian (North America) 20.6% DR4 Caucasian (North America) 30.7% DR5 Caucasian (North America) 23.3% DR6 Caucasian (North America) 26.7% DR7 Caucasian (North America) 24.8% DR8 Caucasian (North America) 5.7% DR9 Caucasian (North America) 2.1% DR1 African (North) American 13.20% DR2 African (North) American 29.80% DR3 African (North) American 24.80% DR4 African (North) American 11.10% DR5 African (North) American 31.10% DR6 African (North) American 33.70% DR7 African (North) American 19.20% DR8 African (North) American 12.10% DR9 African (North) American 5.80% DR1 Asian (North) American 6.80% DR2 Asian (North) American 33.80% DR3 Asian (North) American 9.20% DR4 Asian (North) American 28.60% DR5 Asian (North) American 30.00% DR6 Asian (North) American 25.10% DR7 Asian (North) American 13.40% DR8 Asian (North) American 12.70% DR9 Asian (North) American 18.60% DR1 Latin (North) American 15.30% DR2 Latin (North) American 21.20% DR3 Latin (North) American 15.20% DR4 Latin (North) American 36.80% DR5 Latin (North) American 20.00% DR6 Latin (North) American 31.10% DR7 Latin (North) American 20.20% DR8 Latin (North) American 18.60% DR9 Latin (North) American 2.10% A*24 Philippines 65% A*24 Russia Nenets 61% A*24:02 Japan 59% A*24 Malaysia 58% A*24:02 Philippines 54% A*24 India 47% A*24 South Korea 40% A*24 Sri Lanka 37% A*24 China 32% A*24:02 India 29% A*24 Australia West 22% A*24 USA 22% A*24 Russia Samara 20% A*24 South America 20% A*24 Europe 18% - The MAGEA4 gene is a member of the MAGEA gene family. The members of this family encode proteins with 50 to 80% sequence identity to each other. The promoters and first exons of the MAGEA genes show considerable variability, suggesting that the existence of this gene family enables the same function to be expressed under different transcriptional controls. The MAGEA genes are clustered at chromosomal location Xq28. They have been implicated in some hereditary disorders, such as dyskeratosis congenita. At least four variants encoding the same protein have been found for this gene. [provided by RefSeq, July 2008]
- MAGEA4 localization has been described as cytoplasmic (Kim et al., 2015). However, MAGEA4 staining has also been detected in nuclei, with differential distribution between nucleus and cytoplasm in well-differentiated versus less differentiated cancers (Sarcevic et al., 2003).
- MAGEA4 is used as a male germ cell marker. It is not expressed in gonocytes, but expressed in pre-spermatogonia and mature germ cells (Mitchell et al., 2014).
- MAGEA4 is an oncofetal protein or cancer testis antigen. There is no clear evidence for a direct tumor-promoting effect of MAGEA4. One study suggests that overexpression of MAGEA4 promotes growth of spontaneously transformed normal oral keratinocytes by inhibiting cell cycle arrest and apoptosis (Bhan et al., 2012). However, other reports suggest a tumor-suppressive effect of MAGEA4 in vitro, since overexpression increased apoptosis and caspase-3 activity, while MAGEA4 silencing resulted in decreased caspase-3 activity (Peikert et al., 2006). Others reported that a C-terminal fragment of MAGEA4 has proapoptotic activity in vitro (Sakurai et al., 2004) and that it inhibits anchorage-independent growth through its interaction with the oncoprotein gankyrin (Nagao et al., 2003).
- There is sporadic evidence for an association with tumor metastasis: MAGEA4 expression has been associated with lymph node metastasis in esophageal squamous cell carcinoma (Forghanifard et al., 2011), with progression to muscle-invasive cancer in bladder cancer (Bergeron et al., 2009), and with lymph node metastases in vulvar cancer (Bellati et al., 2007).
- There is no clear evidence for association of MAGEA4 with cancer stem-like cells. However, MAGEA4 expression has been detected in side population cells from different cancer cell lines, including lung, colon, and breast (Yamada et al., 2013), as well as in Hodgkin lymphoma tumor samples (Shafer et al., 2010). Moreover, MAGEA4 has been described in undifferentiated human embryonic stem cells as well as their differentiated derivatives, teratocarcinoma cells (Lifantseva et al., 2011).
- Over-expression of MAGEA4 in cancer—MAGEA4 expression has been described in a multitude of different cancer types. For details on specific cancer entities, see subsections below. Listed here is only some further information on cancer types not covered by a specific section below.
- In primary melanoma, expression of MAGEA4 has been detected by immunohistochemistry in 10-30% of tumors and up to 44% in distant metastases (Barrow et al., 2006; Luftl et al., 2004). Primary mucosal melanomas of the head and neck showed up to 60% positivity for MAGEA4 staining (Prasad et al., 2004).
- In bladder cancer, MAGEA4 was observed in 38% of nonmuscle-invasive tumors, 48% of muscle-invasive tumors, 65% of carcinomas in situ and in 73% of lymph node metastases (Bergeron et al., 2009). Another study described MAGEA4 expression in bladder cancer with somewhat lower frequencies, with highest frequencies in squamous (25/55, 46%) as compared to adeno (4/15, 27%), sarcomatoid (4/14, 29%), small cell (5/20, 25%) or transitional cell (281/1,522, 19%) carcinomas (Kocher et al., 2002). In urothelial carcinoma, MAGEA4 expression was detected by immunohistochemistry in 64% and by RT-PCR in 58% of cases (Sharma et al., 2006). MAGEA4 was detected by RT-PCR in 40-60% of head and neck squamous cell carcinoma samples (Cuffel et al., 2011; Soga et al., 2013). MAGEA4 expression was detected in 57% of oral squamous cell carcinoma samples (Montoro et al., 2012; Ries et al., 2005). MAGEA4 expression was not detected by immunohistochemistry in any of 70 benign and malignant thyroid tumor samples analyzed (Melo et al., 2011). MAGEA4 expression was only found in classic seminoma but not in non-seminomatous testicular germ cell tumors (Aubry et al., 2001; Bode et al., 2014). MAGEA4 expression was detected in 14% (5/35) of gastrointestinal stomal tumors (Perez et al., 2008).
- In childhood medulloblastoma, MAGEA4 mRNA was detected in 28% (7/25), but immunoreactivity was only observed in 4% (1/25) of samples (Oba-Shinjo et al., 2008). Another study found weak MAGEA4 mRNA in 18% (2/11) of medulloblastomas (Jacobs et al., 2008).
- One study found MAGEA4 to be expressed in 60% of adult T-cell leukemia/lymphoma samples (Nishikawa et al., 2012). Another report described much lower expression frequencies in 5% (2/38) of non-Hodgkin lymphoma samples, and 20-30% of Hodgkin disease samples. In Hodgkin lymphoma, Reed-Sternberg cells were the most strongly stained cells whereas the surrounding cells were not (Chambost et al., 2000). MAGEA4 expression was not detected in 39 multiple myeloma samples (Andrade et al., 2008).
- MAGEA4 immunoreactivity was detectable in 33% of cervical squamous cell carcinomas (20/60) (Sarcevic et al., 2003).
- MAGEA4 expression was found to be present in 12% of endometrioid adenocarcinomas, 63% of uterine papillary serous carcinomas and 91% of uterine carcinosarcomas by immunohistochemistry. Within the tumor population, the extent of MAGEA4 expression was highest in the carcinosarcomas (Resnick et al., 2002).
- MAGEA4 staining as detected by immunohistochemistry is heterogeneous, and only a fraction of positive tumors expresses MAGEA4 in more than 50% of the tumors cells (Resnick et al., 2002; Sarcevic et al., 2003).
- In contrast to the large number of studies reporting MAGEA4 expression in different cancer types, evidence for association of MAGEA4 with outcome and prognosis is more limited. However, some reports find a correlation of MAGEA4 expression with clinical parameters. In head and neck squamous cell carcinoma, MAGEA4 expression has been correlated with poor overall survival and was an independent prognostic indicator of poor outcome (Cuffel et al., 2011). In bladder cancer, MAGEA4 expression was correlated with recurrence and progression to muscle-invasive cancer (Bergeron et al., 2009), and strong MAGEA4 staining has been associated with decreased survival (Kocher et al., 2002). In gastrointestinal stromal tumors, expression of MAGEA4 together with other cancer testis antigens was correlated with recurrence (Perez et al., 2008), and also in vulvar cancer, MAGEA4 was more frequently detected in recurrent tumors (Bellati et al., 2007).
- Evidence for association of MAGEA4 expression with advanced tumor stages is provided by some reports covering different cancer types: In malignant melanoma, MAGEA4 expression increased with advancing disease from 9% in primary tumors to 44% in distant metastases (Barrow et al., 2006). Also in vulvar cancer, MAGEA4 expression was more frequent in tumors with lymph node metastases (Bellati et al., 2007). Moreover, MAGEA4 expression was associated with high-grade tumors or advanced stage in endometrial carcinoma (Chitale et al., 2005), cervical squamous cell carcinomas (Sarcevic et al., 2003), and bladder cancer (Bergeron et al., 2009; Kocher et al., 2002).
- MAGEA4 appears to be expressed by tumor cells, there is no evidence for expression in stromal, vascular, immune or other tumor-associated cells. Moreover, MAGEA4 expression has also been detected in cultured tumor cell lines, such as gastric cancer cell lines (Li et al., 1997), esophageal carcinoma cell lines (Tanaka et al., 1997), pancreatic carcinoma cell lines (Kubuschok et al., 2004) and head and neck squamous cell carcinoma cell lines (Hartmann et al., 2015).
-
TABLE 3 MAGEA4 as general cancer target Antigen properties Evaluation Over-expression in [cancer of interest] reported in literature Over-expression in other cancers reported in literature + T-cell responses against source protein-derived targets + described Oncofetal expression pattern + Expression by cancer stem cells (−) Roles in cell cycle progression and tumor cell proliferation (−) Involvement in tumor invasion, migration and metastasis Link to cancer-associated signaling pathways1 Anti-apoptotic effects (−) Pro-angiogenic effects/Neovascularisation Over-expression linked to poor prognosis in cancer + Over-expression associated with advanced cancer stages + General cancer target Sub-cellular localization2 CY Characterization of source protein in literature (−, +, ++, +++) + Cell type association3 TU 1TGF = Transforming growth factor; PI3K = Phosphatidylinositide 3-kinases; p53 = cellular tumor antigen p53; EGFR = epithelial growth factor receptor; FGF2 = fibroblast growth factor 2; Wnt = Wnt/beta-catenin pathway (embryogenesis); Ras = Rat sarcoma proto-oncogene; NF −kB = Nuclear factor Kappa B (eukaryotic transcription factor)2CY = cyto-plasmic; 3TU = tumor cells - MAGEA4 as therapeutic target—Immunotherapy target (vaccines, adjuvants, CARs) Twenty patients with advanced esophageal, stomach or lung cancer were administered MAGEA4 vaccine containing 300 μg protein subcutaneously once every 2 weeks in six doses. Of 15 patients who completed one vaccination cycle, four patients showed a MAGEA4-specific humoral response, and these patients showed longer overall survival than patients without antibody response. CD4 and CD8T-cell responses were observed in three and six patients, respectively, and patients with induction of MAGEA4-specific IFNγ-producing CD8T-cells, but not CD4T-cells, lived longer than those without induction (Saito et al., 2014).
- There is a case report on a colon cancer patient with pulmonary metastases who was treated with the fusion peptide MAGE-A4-H/K-HELP (consisting of MAGE-A4(278-299) helper epitope fused to MAGE-A4(143-154) killer epitope by a glycine linker) together with OK432 and Montanide. The treatment induced MAGEA4-specific Th1 and CTL immune responses and MAGEA4-specific IgG. Tumor growth and carcinoembryonic antigen tumor marker were decreased in the final diagnosis (Takahashi et al., 2012).
- A phase I clinical trial investigated adoptive transfer of TCR-engineered autologous CTLs reactive towards MAGEA4 (143-151) bound to HLA-A*24:02 in esophageal cancer patients. Patients were given TCR-transduced lymphocytes once, without preconditioning treatment, followed by subcutaneous immunizations with MAGEA4 peptide after 2 and 4 weeks. No objective tumor regression was observed, possibly due to the lack of lymphodepleting regimen and administration of IL2 (Kageyama et al., 2015). Preclinical studies in mice had demonstrated that transferred T-cells inhibited growth of MAGEA4-expressing tumor cell lines inoculated in the mice, and that additional peptide vaccination enhanced this anti-tumor activity (Shirakura et al., 2012).
- Targeting MAGEA4 with adoptive CTL transfer is proposed as a treatment option of EBV-negative Hodgkin and non-Hodgkin lymphoma. Infused CTLs targeting EBV-derived peptides have been described to induce complete remissions in EBV(+) lymphoma patients. Therefore, targeting other antigens expressed by lymphoma, including MAGEA4, is being explored as a possible treatment option (Cruz et al., 2011; Gerdemann et al., 2011).
- Several studies have demonstrated the generation of MAGEA4 specific CD4(+) T-cells from healthy donors and cancer patients after incubation with autologous antigen-presenting cells pulsed with overlapping peptide pools (Cesson et al., 2011; Gerdemann et al., 2011; Ohkuri et al., 2009).
- MAG-003, i.e., KVLEHVVRV (SEQ ID NO:1), is a HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) epitope of MAGEA4 (amino acids 286-294). (Jia et al. 2010; Wu et al. 2011), the contents of which are hereby incorporated by reference in their entirety. In an aspect, MAG-003 elicits peptide-specific CTLs both in vitro from HLA-A*0201-positive PBMCs and in HLA-A*0201/Kb transgenic mice. In another aspect, the induced CTLs lyse target cells in an HLA-A*0201-restricted fashion, demonstrating that MAG-003 is HLA-A*0201-restricted CTL epitope and serve as a target for therapeutic antitumoral vaccination (Jia et al. 2010), the content of which is hereby incorporated by reference in its entirety.
- In addition, the SYFPEITHI routine (Rammensee et al., 1997; Rammensee et al., 1999) predicts MAG-003 binding to A*02:01 with an absolute score of 25 and a relative score of 0.69. The present inventors confirmed 100% of identifications are from MAG-003 binding to A*02-positive samples.
-
TABLE 4 MAG-003 presentation in normal tissues and cancers. A*02 Samples Mean intensity jScore Normal 0 of 245 — — Cancer 14 of 397 1.1e+07 0.000 HCC 1 of 16 2.9e+06 0.000 MEL 0 of 3 0.0e+00 OC 2 of 20 4.0e+07 0.000 pNSCLC 11 of 91 1.0e+07 0.000 - Over-presentation or specific presentation of TAAs on tumor cells compared to normal cells is sufficient for its usefulness in immunotherapy, and some peptides are tumor-specific despite their source protein occurring also in normal tissues. Still, mRNA expression profiling adds an additional level of safety in selection of peptide targets for immunotherapies. Especially for therapeutic options with high safety risks, such as affinity-matured TCRs, the ideal target peptide will be derived from a protein that is unique to the tumor and not found on normal tissues.
- Surgically removed tissue specimens were provided as indicated above after written informed consent had been obtained from each patient. Tumor tissue specimens were snap-frozen immediately after surgery and later homogenized with mortar and pestle under liquid nitrogen. Total RNA was prepared from these samples using TRI Reagent (Ambion, Darmstadt, Germany) followed by a cleanup with RNeasy (QIAGEN, Hilden, Germany); both methods were performed according to the manufacturer's protocol.
- Gene expression analysis of tumor and normal tissue RNA samples was performed by next generation sequencing (RNAseq) by CeGaT (Tübingen, Germany). Briefly, sequencing libraries are prepared using the Illumina HiSeq v4 reagent kit according to the provider's protocol (Illumina Inc., San Diego, Calif., USA), which includes RNA fragmentation, cDNA conversion and addition of sequencing adaptors. Libraries derived from multiple samples are mixed equimolarly and sequenced on the Illumina HiSeq 2500 sequencer according to the manufacturer's instructions, generating 50 bp single end reads. Processed reads are mapped to the human genome (GRCh38) using the STAR software. Expression data are provided on transcript level as RPKM (Reads Per Kilobase per Million mapped reads, generated by the software Cufflinks) and on exon level (total reads, generated by the software Bedtools), based on annotations of the ensembl sequence database (Ensembl77). Exon reads are normalized for exon length and alignment size to obtain RPKM values.
- Tables 5 to 7 show RNASeq data (expression scores) of MAG-003 expression in various cancers
-
TABLE 5 RNASeq Score 1Tumor exonScore exonScore exonScore type tgScore (27242) (317034) (593984) BRCA 1.57 1.23 1.23 1.51 CRC 1.65 1.00 1.00 1.76 HCC 12.10 11.98 11.97 6.15 OC 56.60 18.45 18.44 57.74 OSCAR 58.42 3.49 3.49 60.40 PC 12.10 10.78 10.77 4.74 pGB 0.88 0.95 0.95 0.74 pNSCLC 100.83 1.52 1.52 98.57 RCC 0.93 0.95 0.95 0.77 SCLC 56.41 28.32 28.30 152.27 -
TABLE 6 RNASeq Score 3Tumor exonScore exonScore exonScore type tgScore (27242) (317034) (593984) BRCA 7.48 5.11 5.11 6.01 CRC 8.35 1.05 1.05 7.90 HCC 123.03 210.33 210.30 42.22 OC 612.59 333.74 333.69 447.29 OSCAR 632.95 47.41 47.40 468.45 PC 122.95 187.07 187.05 31.15 pGB 0.31 0.18 0.18 0.25 pNSCLC 1100.05 10.26 10.25 768.23 RCC 0.78 0.18 0.18 0.43 SCLC 611.00 524.23 524.17 1190.36 -
TABLE 7 Tumor expression Tumor Exontumor40 Exontumor40 Exontumor40 type tgtumor40 (27242) (317034) (593984) BRCA 0.12 0.04 0.04 0.17 CRC 0.14 0.01 0.01 0.22 HCC 2.05 1.82 1.82 1.18 OC 11.19 3.16 3.16 13.72 OSCAR 10.89 0.42 0.42 13.11 PC 2.09 1.65 1.65 0.89 pGB 0.00 0.00 0.00 0.01 pNSCLC 19.25 0.09 0.09 22.58 RCC 0.01 0.00 0.00 0.01 SCLC 10.18 4.53 4.53 33.35 - In contrast to the large number of studies reporting MAGEA4 expression in different cancer types, evidence for association of MAGEA4 with outcome and prognosis is more limited. However, some reports find a correlation of MAGEA4 expression with clinical parameters. In head and neck squamous cell carcinoma, MAGEA4 expression has been correlated with poor overall survival and was an independent prognostic indicator of poor outcome (Cuffel et al., 2011). An inverse correlation was found between MAGE-A4 expression and patient survival in advanced stage NSCLC cancers (Yoshida et al., 2006; Shigematsu et al., 2010) and ovarian cancers (Yakirevich et al., 2003). In bladder cancer, MAGEA4 expression was correlated with recurrence and progression to muscle-invasive cancer (Bergeron et al., 2009), and strong MAGEA4 staining has been associated with decreased survival (Kocher et al., 2002). In gastrointestinal stomal tumors, expression of MAGEA4 together with other cancer testis antigens was correlated with recurrence (Perez et al., 2008), and also in vulvar cancer, MAGEA4 was more frequently detected in recurrent tumors (Bellati et al., 2007).
- In the Cancer Genome Atlas (TCGA) study of high-grade serous ovarian cancers, below median MAGEA8 expression was associated with 11.4 months increased PFS making, it was the strongest verifiable effect. High expression of MAGE A8 was associated with poorer PFS in patients with high CD3 tumors, potentially indicating an immunosuppressive role of MAGEA8 such as via activation of immunosuppressive Tregs (Eng et al., 2015).
- High-risk group and low-risk group of colon cancer patients were distinguished by eight biomarkers (ZBTB32, OR51B4, CCL8, TMEFF2, SALL3, GPSM1, MAGEA8, and SALL1) which provided reference for individual treatment (Zhang et al., 2015).
- In human squamous cell carcinomas cell line experiments MAGE-A5 and -A8 were reported as negative predictors of anti-EGFR therapy using panitumumab (Hartmann et al., 2014).
- Evidence for association of MAGEA4 expression with advanced tumor stages is provided by some reports covering different cancer types: In malignant melanoma, MAGEA4 expression increased with advancing disease from 9% in primary tumors to 44% in distant metastases (Barrow et al., 2006). Also in vulvar cancer, MAGEA4 expression was more frequent in tumors with lymph node metastases (Bellati et al., 2007). Moreover, MAGEA4 expression was associated with high-grade tumors or advanced stage in endometrial carcinoma (Chitale et al., 2005), cervical squamous cell carcinomas (Sarcevic et al., 2003), and bladder cancer (Bergeron et al., 2009; Kocher et al., 2002).
- In an embodiment, the term “nucleotide sequence” refers to a heteropolymer of deoxyribonucleotides.
- The nucleotide sequence coding for a particular peptide, oligopeptide, or polypeptide may be naturally occurring or they may be synthetically constructed. Generally, DNA segments encoding the peptides, polypeptides, and proteins of this description are assembled from cDNA fragments and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene that is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.
- As used herein the term “a nucleotide coding for (or encoding) a peptide” refers to a nucleotide sequence coding for the peptide including artificial (man-made) start and stop codons compatible for the biological system the sequence is to be expressed by, for example, a dendritic cell or another cell system useful for the production of TCRs.
- As used herein the term “a nucleotide coding for (or encoding) a TCR protein” refers to a nucleotide sequence coding for the TCR protein including artificial (man-made) start and stop codons compatible for the biological system the sequence is to be expressed by, for example, T-cell or another cell system useful for the production of TCRs.
- As used herein, reference to a nucleic acid sequence includes both single stranded and double stranded nucleic acid. Thus, for example for DNA, the specific sequence, unless the context indicates otherwise, refers to the single strand DNA of such sequence, the duplex of such sequence with its complement (double stranded DNA) and the complement of such sequence.
- The term “coding region” refers to that portion of a gene which either naturally or normally codes for the expression product of that gene in its natural genomic environment, i.e., the region coding in vivo for the native expression product of the gene.
- The coding region can be derived from a non-mutated (“normal”), mutated or altered gene, or can even be derived from a DNA sequence, or gene, wholly synthesized in the laboratory using methods well known to those of skill in the art of DNA synthesis.
- The term “expression product” means the polypeptide or protein that is the natural translation product of the gene and any nucleic acid sequence coding equivalents resulting from genetic code degeneracy and thus coding for the same amino acid(s).
- The term “fragment”, when referring to a coding sequence, means a portion of DNA comprising less than the complete coding region, whose expression product retains essentially the same biological function or activity as the expression product of the complete coding region.
- The term “DNA segment” refers to a DNA polymer, in the form of a separate fragment or as a component of a larger DNA construct, which has been derived from DNA isolated at least once in substantially pure form, i.e., free of contaminating endogenous materials and in a quantity or concentration enabling identification, manipulation, and recovery of the segment and its component nucleotide sequences by standard biochemical methods, for example, by using a cloning vector. Such segments are provided in the form of an open reading frame uninterrupted by internal non-translated sequences, or introns, which are typically present in eukaryotic genes. Sequences of non-translated DNA may be present downstream from the open reading frame, where the same do not interfere with manipulation or expression of the coding regions.
- The term “primer” means a short nucleic acid sequence that can be paired with one strand of DNA and provides a free 3′-OH end at which a DNA polymerase starts synthesis of a deoxyribonucleotide chain.
- The term “promoter” means a region of DNA involved in binding of RNA polymerase to initiate transcription.
- The term “isolated” means that the material is removed from its original environment (e.g., the natural environment, if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. In an aspect, such polynucleotides are part of a vector and/or such polynucleotides or polypeptides are part of a composition, and still are isolated in that such vector or composition is not part of its natural environment.
- The polynucleotides, and recombinant or immunogenic polypeptides, disclosed in accordance with the present description may also be in “purified” form. The term “purified” does not require absolute purity; rather, it is intended as a relative definition, and can include preparations that are highly purified or preparations that are only partially purified, as those terms are understood by those of skill in the relevant art. For example, individual clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated. Furthermore, a claimed polypeptide which has a purity of preferably 99.999%, or at least 99.99% or 99.9%; and even desirably 99% by weight or greater is expressly encompassed.
- The nucleic acids and polypeptide expression products disclosed according to the present description, as well as expression vectors containing such nucleic acids and/or such polypeptides, may be in “enriched form”. As used herein, the term “enriched” means that the concentration of the material is at least about 2, 5, 10, 100, or 1000 times its natural concentration (for example), advantageously 0.01%, by weight, preferably at least about 0.1% by weight. Enriched preparations of about 0.5%, 1%, 5%, 10%, and 20% by weight are also contemplated. The sequences, constructs, vectors, clones, and other materials comprising the present description can advantageously be in enriched or isolated form. The term “active fragment” means a fragment, usually of a peptide, polypeptide or nucleic acid sequence, that generates an immune response (i.e., has immunogenic activity) when administered, alone or optionally with a suitable adjuvant or in a vector, to an animal, such as a mammal, for example, a rabbit or a mouse, and also including a human, such immune response taking the form of stimulating a T-cell response within the recipient animal, such as a human. Alternatively, the “active fragment” may also be used to induce a T-cell response in vitro.
- As used herein, the terms “portion”, “segment” and “fragment”, when used in relation to polypeptides, refer to a continuous sequence of residues, such as amino acid residues, which sequence forms a subset of a larger sequence. For example, if a polypeptide were subjected to treatment with any of the common endopeptidases, such as trypsin or chymotrypsin, the oligopeptides resulting from such treatment would represent portions, segments or fragments of the starting polypeptide. When used in relation to polynucleotides, these terms refer to the products produced by treatment of said polynucleotides with any of the endonucleases.
- In accordance with the present description, the term “percent identity” or “percent identical”, when referring to a sequence, means that a sequence is compared to a claimed or described sequence after alignment of the sequence to be compared (the “Compared Sequence”) with the described or claimed sequence (the “Reference Sequence”). The percent identity is then determined according to the following formula:
-
percent identity=100[1−(C/R)] - wherein C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence, wherein
(i) each base or amino acid in the Reference Sequence that does not have a corresponding aligned base or amino acid in the Compared Sequence and
(ii) each gap in the Reference Sequence and
(iii) each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence, constitutes a difference and
(iv) the alignment has to start atposition 1 of the aligned sequences;
and R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted as a base or amino acid. - If an alignment exists between the Compared Sequence and the Reference Sequence for which the percent identity as calculated above is about equal to or greater than a specified minimum Percent Identity then the Compared Sequence has the specified minimum percent identity to the Reference Sequence even though alignments may exist in which the herein above calculated percent identity is less than the specified percent identity.
- As mentioned above, the present description thus provides a peptide comprising a sequence that is selected from the group of consisting of SEQ ID NO:1 to SEQ ID NO:24 or a variant thereof which is 85% homologous to SEQ ID NO:1 to SEQ ID NO:24, or a variant thereof that will induce T-cells cross-reacting with said peptide. The peptides of the description have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or elongated versions of said peptides to class II.
- In the present description, the term “homologous” refers to the degree of identity (see percent identity above) between sequences of two amino acid sequences, i.e., peptide or polypeptide sequences. The aforementioned “homology” is determined by comparing two sequences aligned under optimal conditions over the sequences to be compared. Such a sequence homology can be calculated by creating an alignment using, for example, the ClustalW algorithm. Commonly available sequence analysis software, more specifically, Vector NTI, GENETYX or other tools are provided by public databases.
- A person skilled in the art will be able to assess, whether T-cells induced by a variant of a specific peptide will be able to cross-react with the peptide itself (Appay et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997).
- By a “variant” of the given amino acid sequence the inventors mean that the side chains of, for example, one or two of the amino acid residues are altered (for example by replacing them with the side chain of another naturally occurring amino acid residue or some other side chain) such that the peptide is still able to bind to an HLA molecule in substantially the same way as a peptide consisting of the given amino acid sequence consisting of SEQ ID NO:1 to SEQ ID NO:24. For example, a peptide may be modified so that it at least maintains, if not improves, the ability to interact with and bind to the binding groove of a suitable MHC molecule, such as HLA-A*02 or -DR, and in that way it at least maintains, if not improves, the ability to bind to the TCR of activated T-cells. Similarly, a TCR protein may be modified so that it at least maintains, if not improves, the ability to interact with and bind to a suitable MHC molecule/KVLEHVVRV (SEQ ID NO:1) complex, such as HLA-A*02 or -DR, and in that way it at least maintains, if not improves, the ability to activate T-cells.
- These T-cells can subsequently cross-react with cells and kill cells that express a polypeptide that contains the natural amino acid sequence of the cognate peptide, such as KVLEHVVRV (SEQ ID NO:1), as defined in the aspects of the description. As can be derived from the scientific literature and databases (Rammensee et al., 1999; Godkin et al., 1997), certain positions of HLA binding peptides are typically anchor residues forming a core sequence fitting to the binding motif of the HLA receptor, which is defined by polar, electrophysical, hydrophobic and spatial properties of the polypeptide chains constituting the binding groove. Thus, one skilled in the art would be able to modify the amino acid sequences set forth in SEQ ID NO:1 to SEQ ID NO 24, by maintaining the known anchor residues, and would be able to determine whether such variants maintain the ability to bind MHC class I or II molecules/KVLEHVVRV (SEQ ID NO:1) complexes. The variants of the present description retain the ability to bind MHC class I or II molecules/KVLEHVVRV (SEQ ID NO:1) complexes. T-cells expressing the variants of the present description can subsequently kill cells that express a polypeptide containing the natural amino acid sequence of the cognate peptide, such as KVLEHVVRV (SEQ ID NO:1).
- The original (unmodified) peptides or TCR proteins as disclosed herein can be modified by the substitution of one or more residues at different, possibly selective, sites within the peptide chain, if not otherwise stated. Preferably those substitutions are located at the end of the amino acid chain of said peptide. For TCR proteins, preferably those substitutions are located at variable domains of TCR alpha chain and TCR beta chain. Such substitutions may be of a conservative nature, for example, where one amino acid is replaced by an amino acid of similar structure and characteristics, such as where a hydrophobic amino acid is replaced by another hydrophobic amino acid. Even more conservative would be replacement of amino acids of the same or similar size and chemical nature, such as where leucine is replaced by isoleucine. In studies of sequence variations in families of naturally occurring homologous proteins, certain amino acid substitutions are more often tolerated than others, and these are often show correlation with similarities in size, charge, polarity, and hydrophobicity between the original amino acid and its replacement, and such is the basis for defining “conservative substitutions.”
- Conservative substitutions are herein defined as exchanges within one of the following five groups: Group 1-small aliphatic, nonpolar or slightly polar residues (Ala, Ser, Thr, Pro, Gly); Group 2-polar, negatively charged residues and their amides (Asp, Asn, Glu, Gln); Group 3-polar, positively charged residues (His, Arg, Lys); Group 4-large, aliphatic, nonpolar residues (Met, Leu, Ile, Val, Cys); and Group 5-large, aromatic residues (Phe, Tyr, Trp).
- Less conservative substitutions might involve the replacement of one amino acid by another that has similar characteristics but is somewhat different in size, such as replacement of an alanine by an isoleucine residue. Highly non-conservative replacements might involve substituting an acidic amino acid for one that is polar, or even for one that is basic in character. Such “radical” substitutions cannot, however, be dismissed as potentially ineffective since chemical effects are not totally predictable and radical substitutions might well give rise to serendipitous effects not otherwise predictable from simple chemical principles.
- Of course, such substitutions may involve structures other than the common L-amino acids. Thus, D-amino acids might be substituted for the L-amino acids commonly found in the antigenic peptides of the description and yet still be encompassed by the disclosure herein. In addition, non-standard amino acids (i.e., other than the common naturally occurring proteinogenic amino acids) may also be used for substitution purposes to produce immunogens and immunogenic polypeptides according to the present description.
- If substitutions at more than one position are found to result in a peptide with substantially equivalent or greater antigenic activity as defined below, then combinations of those substitutions will be tested to determine if the combined substitutions result in additive or synergistic effects on the antigenicity of the peptide. At most, no more than 4 positions within the peptide would be simultaneously substituted.
- A peptide consisting essentially of the amino acid sequence as indicated herein can have one or two non-anchor amino acids (see below regarding the anchor motif) exchanged without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed or is negatively affected, when compared to the non-modified peptide. In another embodiment, in a peptide consisting essentially of the amino acid sequence as indicated herein, one or two amino acids can be exchanged with their conservative exchange partners (see herein below) without that the ability to bind to a molecule of the human major histocompatibility complex (MHC) class-I or —II is substantially changed, or is negatively affected, when compared to the non-modified peptide.
- The amino acid residues that do not substantially contribute to interactions with the TCR can be modified by replacement with other amino acids whose incorporation do not substantially affect T-cell reactivity and does not eliminate binding to the relevant MHC. Thus, apart from the proviso given, the peptide of the description may be any peptide (by which term the inventors include oligopeptide or polypeptide), which includes the amino acid sequences or a portion or variant thereof as given.
-
TABLE 8 Variants of the peptides of the invention Position 1 2 3 4 5 6 7 8 9 SEQ ID NOs: 1-13 K V L E H V V R V Variants Y L Y L L Y L A Y L I Y A Y A L Y A A Y A I Y Y L Y A Y I - Longer (elongated) peptides may also be suitable. It is possible that MHC class I epitopes, although usually the actual epitope are residues that do not substantially affect proteolytic cleavage necessary to expose the actual epitope during processing.
- The peptides of the description can be elongated by up to four amino acids, that is 1, 2, 3 or 4 amino acids can be added to either end in any combination between 8 and 11 amino acids long, are generated by peptide processing from longer peptides or proteins that include the actual epitope. It is preferred that the residues that flank between 4:0 and 0:4. Combinations of the elongations according to the description can be found in Table 9.
-
TABLE 9 Combinations of the elongations of peptides of the description C-terminus N- terminus 4 0 3 0 or 1 2 0 or 1 or 2 1 0 or 1 or 2 or 3 0 0 or 1 or 2 or 3 or 4 N-terminus C- terminus 4 0 3 0 or 1 2 0 or 1 or 2 1 0 or 1 or 2 or 3 0 0 or 1 or 2 or 3 or 4 - The amino acids for the elongation/extension can be the peptides of the original sequence of the protein or any other amino acid(s). The elongation can be used to enhance the stability or solubility of the peptides.
- Thus, the epitopes of the present description may be identical to naturally occurring tumor-associated or tumor-specific epitopes or may include epitopes that differ by no more than four residues from the reference peptide, as long as they have substantially identical antigenic activity.
- In an alternative embodiment, the peptide is elongated on either or both sides by more than 4 amino acids, preferably to a total length of up to 30 amino acids. This may lead to MHC class II binding peptides. Binding to MHC class II can be tested by methods known in the art.
- Accordingly, the present description provides peptides and variants of MHC class I epitopes, wherein the peptide or variant has an overall length of between 8 and 100, preferably between 8 and 30, and most preferred between 8 and 14, namely 8, 9, 10, 11, 12, 13, 14 amino acids, in case of the elongated class II binding peptides the length can also be 15, 16, 17, 18, 19, 20, 21 or 22 amino acids.
- Of course, the peptide or variant according to the present description will have the ability to bind to a molecule of the human major histocompatibility complex (MHC) class I or II. Binding of a peptide or a variant to a MHC complex may be tested by methods known in the art.
- Preferably, when the T-cells specific for a peptide according to the present description are tested against the substituted peptides, the peptide concentration at which the substituted peptides achieve half the maximal increase in lysis relative to background is no more than about 1 mM, preferably no more than about 1 μM, more preferably no more than about 1 nM, and still more preferably no more than about 100 pM, and most preferably no more than about 10 pM. It is also preferred that the substituted peptide be recognized by T-cells from more than one individual, at least two, and more preferably three individuals.
- Affinity-enhancement of tumor-specific TCRs, and its exploitation, relies on the existence of a window for optimal TCR affinities. The existence of such a window is based on observations that TCRs specific for HLA-A2-restricted pathogens have KD values that are generally about 10-fold lower when compared to TCRs specific for HLA-A2-restricted tumor-associated self-antigens (Aleksic et al. 2012; Kunert et al. 2013). It is now known, although tumor antigens have the potential to be immunogenic, because tumors arise from the individual's own cells only mutated proteins or proteins with altered translational processing will be seen as foreign by the immune system. Antigens that are upregulated or overexpressed (so called self-antigens) will not necessarily induce a functional immune response against the tumor: T-cells expressing TCRs that are highly reactive to these antigens will have been negatively selected within the thymus in a process known as central tolerance (Xing et al. 2012; Ruella et al. 2014; Sharpe et al. 2015), meaning that only T-cells with low-affinity TCRs for self antigens remain. Therefore, affinity of TCRs or variants of the present description to MAG-003 have been enhanced by methods well known in the art as described below.
- A “pharmaceutical composition” is a composition suitable for administration to a human being in a medical setting. Preferably, a pharmaceutical composition is sterile and produced according to GMP guidelines.
- The pharmaceutical compositions comprise the peptides or TCR proteins either in the free form or in the form of a pharmaceutically acceptable salt (see also above). As used herein, “a pharmaceutically acceptable salt” refers to a derivative of the disclosed peptides wherein the peptide is modified by making acid or base salts of the agent. For example, acid salts are prepared from the free base (typically wherein the neutral form of the drug has a neutral —NH2 group) involving reaction with a suitable acid. Suitable acids for preparing acid salts include both organic acids, e.g., acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methane sulfonic acid, ethane sulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid phosphoric acid and the like. Conversely, preparation of basic salts of acid moieties which may be present on a peptide are prepared using a pharmaceutically acceptable base such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, trimethylamine or the like.
- Another embodiment of the present invention relates to a non-naturally occurring peptide wherein said peptide consists or consists essentially of an amino acid sequence according to SEQ ID No: 1 to SEQ ID No: 24 and has been synthetically produced (e.g. synthesized) as a pharmaceutically acceptable salt. Methods to synthetically produce peptides are well known in the art. The salts of the peptides according to the present invention differ substantially from the peptides in their state(s) in vivo, as the peptides as generated in vivo are no salts. The non-natural salt form of the peptide mediates the solubility of the peptide, in particular in the context of pharmaceutical compositions comprising the peptides, e.g. the peptide vaccines as disclosed herein. A sufficient and at least substantial solubility of the peptide(s) is required in order to efficiently provide the peptides to the subject to be treated. Preferably, the salts are pharmaceutically acceptable salts of the peptides. These salts according to the invention include alkaline and earth alkaline salts such as salts of the Hofmeister series comprising as anions PO4 3−, SO4 2−, CH3COO−, Cl−, Br, NO3 −, ClO4 −, I−, SCN− and as cations NH4 +, Rb+, K+, Na+, Cs+, Li+, Zn2+, Mg2+, Ca2+, Mn2+, Cu2+ and Ba2+. Particularly salts are selected from (NH4)3PO4, (NH4)2HPO4, (NH4)H2PO4, (NH4)2SO4, NH4CH3COO, NH4Cl, NH4Br, NH4NO3, NH4ClO4, NH4I, NH4SCN, Rb3PO4, Rb2HPO4, RbH2PO4, Rb2SO4, Rb4CH3COO, Rb4Cl, Rb4Br, Rb4NO3, Rb4ClO4, Rb4I, Rb4SCN, K3PO4, K2HPO4, KH2PO4, K2SO4, KCH3COO, KCl, KBr, KNO3, KClO4, KI, KSCN, Na3PO4, Na2HPO4, NaH2PO4, Na2SO4, NaCH3COO, NaCl, NaBr, NaNO3, NaClO4, NaI, NaSCN, ZnCl2 Cs3PO4, Cs2HPO4, CsH2PO4, Cs2SO4, CsCH3COO, CsCl, CsBr, CsNO3, CsClO4, CsI, CsSCN, Li3PO4, Li2HPO4, LiH2PO4, Li2SO4, LiCH3COO, LiCl, LiBr, LiNO3, LiClO4, LiI, LiSCN, Cu2SO4, Mg3(PO4)2, Mg2HPO4, Mg(H2PO4)2, Mg2SO4, Mg(CH3COO)2, MgCl2, MgBr2, Mg(NO3)2, Mg(ClO4)2, MgI2, Mg(SCN)2, MnCl2, Ca3(PO4), Ca2HPO4, Ca(H2PO4)2, CaSO4, Ca(CH3COO)2, CaCl2), CaBr2, Ca(NO3)2, Ca(ClO4)2, CaI2, Ca(SCN)2, Ba3(PO4)2, Ba2HPO4, Ba(H2PO4)2, BaSO4, Ba(CH3COO)2, BaCl2, BaBr2, Ba(NO3)2, Ba(ClO4)2, BaI2, and Ba(SCN)2. Particularly preferred are NH acetate, MgCl2, KH2PO4, Na2SO4, KCl, NaCl, and CaCl2), such as, for example, the chloride or acetate (trifluoroacetate) salts.
- In an especially preferred embodiment, the pharmaceutical compositions comprise the peptides or TCR proteins as salts of acetic acid (acetates), trifluoro acetates or hydrochloric acid (chlorides).
- A further aspect of the description provides a nucleic acid (for example a polynucleotide) encoding a peptide or peptide variant and a TCR protein and TCR variants of the description. The polynucleotide may be, for example, DNA, cDNA, PNA, RNA or combinations thereof, either single- and/or double-stranded, or native or stabilized forms of polynucleotides, such as, for example, polynucleotides with a phosphorothioate backbone and it may or may not contain introns so long as it codes for the peptide. Of course, only peptides that contain naturally occurring amino acid residues joined by naturally occurring peptide bonds are encodable by a polynucleotide. A still further aspect of the description provides an expression vector capable of expressing a polypeptide according to the description.
- A variety of methods have been developed to link polynucleotides, especially DNA, to vectors for example via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.
- Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc. New Haven, Conn., USA.
- A desirable method of modifying the DNA encoding the polypeptide of the description employs the polymerase chain reaction as disclosed by Saiki R K, et al. (Saiki et al., 1988). This method may be used for introducing the DNA into a suitable vector, for example by engineering in suitable restriction sites, or it may be used to modify the DNA in other useful ways as is known in the art. If viral vectors are used, pox- or adenovirus vectors are preferred.
- The DNA (or in the case of retroviral vectors, RNA) may then be expressed in a suitable host to produce a polypeptide comprising the peptide or variant of the description. Thus, the DNA encoding the peptide or variant of the description may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the description. Such techniques include those disclosed, for example, in U.S. Pat. Nos. 4,440,859, 4,530,901, 4,582,800, 4,677,063, 4,678,751, 4,704,362, 4,710,463, 4,757,006, 4,766,075, and 4,810,648.
- The DNA (or in the case of retroviral vectors, RNA) encoding the polypeptide constituting the compound of the description may be joined to a wide variety of other DNA sequences for introduction into an appropriate host. The companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.
- Generally, the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognized by the desired host, although such controls are generally available in the expression vector. The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance.
- Alternatively, the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.
- Host cells that have been transformed by the recombinant DNA of the description are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.
- Many expression systems are known, including bacteria (for example E. coli and Bacillus subtilis), yeasts (for example Saccharomyces cerevisiae), filamentous fungi (for example Aspergillus spec.), planT-cells, animal cells and insecT-cells. Preferably, the system can be mammalian cells such as CHO cells available from the ATCC Cell Biology Collection.
- A typical mammalian cell vector plasmid for constitutive expression comprises the CMV or SV40 promoter with a suitable poly A tail and a resistance marker, such as neomycin. One example is pSVL available from Pharmacia, Piscataway, N.J., USA. An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia. Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, TRP1, LEU2 and URA3. Plasmids pRS413-416 are Yeast Centromere plasmids (Ycps). CMV promoter-based vectors (for example from Sigma-Aldrich) provide transient or stable expression, cytoplasmic expression or secretion, and N-terminal or C-terminal tagging in various combinations of FLAG, 3×FLAG, c-myc or MAT. These fusion proteins allow for detection, purification and analysis of recombinant protein. Dual-tagged fusions provide flexibility in detection.
- The strong human cytomegalovirus (CMV) promoter regulatory region drives constitutive protein expression levels as high as 1 mg/L in COS cells. For less potent-cell lines, protein levels are typically ˜0.1 mg/L. The presence of the SV40 replication origin will result in high levels of DNA replication in SV40 replication permissive COS cells. CMV vectors, for example, can contain the pMB1 (derivative of pBR322) origin for replication in bacterial cells, the b-lactamase gene for ampicillin resistance selection in bacteria, hGH polyA, and the f1 origin. Vectors containing the pre-pro-trypsin leader (PPT) sequence can direct the secretion of FLAG fusion proteins into the culture medium for purification using ANTI-FLAG antibodies, resins, and plates. Other vectors and expression systems are well known in the art for use with a variety of host cells.
- In another embodiment two or more peptides or peptide variants of the description are encoded and thus expressed in a successive order (similar to “beads on a string” constructs). In doing so, the peptides or peptide variants may be linked or fused together by stretches of linker amino acids, such as for example LLLLLL, or may be linked without any additional peptide(s) between them. These constructs can also be used for cancer therapy, and may induce immune responses both involving MHC I and MHC II.
- The present description also relates to a host cell transformed with a polynucleotide vector construct of the present description. The host cell can be either prokaryotic or eukaryotic. Bacterial cells may be preferred prokaryotic host cells in some circumstances and typically are a strain of E. coli such as, for example, the E. coli strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, Md., USA, and RR1 available from the American Type Culture Collection (ATCC) of Rockville, Md., USA (No ATCC 31343). Preferred eukaryotic host cells include yeast, insect and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic and colon cell lines. Yeast host cells include YPH499, YPH500 and YPH501, which are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA. Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650 and 293 cells which are human embryonic kidney cells. Preferred insect-cells are Sf9 cells which can be transfected with baculovirus expression vectors. An overview regarding the choice of suitable host cells for expression can be found in, for example, the textbook of Paulina Balbás and Argelia Lorence “Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols,” Part One, Second Edition, ISBN 978-1-58829-262-9, and other literature known to the person of skill.
- Transformation of appropriate cell hosts with a DNA construct of the present description is accomplished by well-known methods that typically depend on the type of vector used. With regard to transformation of prokaryotic host cells, see, for example, Cohen et al. (Cohen et al., 1972) and (Green and Sambrook, 2012). Transformation of yeast-cells is described in Sherman et al. (Sherman et al., 1986). The method of Beggs (Beggs, 1978) is also useful. With regard to vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, Md. 20877, USA. Electroporation is also useful for transforming and/or transfecting cells and is well known in the art for transforming yeasT-cell, bacterial cells, insecT-cells and vertebrate cells.
- Successfully transformed cells, i.e., cells that contain a DNA construct of the present description, can be identified by well-known techniques such as PCR. Alternatively, the presence of the protein in the supernatant can be detected using antibodies.
- It will be appreciated that certain host cells of the description are useful in the preparation of the peptides of the description, for example bacterial, yeast and insecT-cells. However, other host cells may be useful in certain therapeutic methods. For example, antigen-presenting cells, such as dendritic cells, may usefully be used to express the peptides of the description such that they may be loaded into appropriate MHC molecules. Thus, the current description provides a host cell comprising a nucleic acid or an expression vector according to the description.
- In a preferred embodiment the host cell is an antigen presenting cell, in particular a dendritic cell or antigen presenting cell. APCs loaded with a recombinant fusion protein containing prostatic acid phosphatase (PAP) were approved by the U.S. Food and Drug Administration (FDA) on Apr. 29, 2010, to treat asymptomatic or minimally symptomatic metastatic HRPC (Sipuleucel-T) (Rini et al., 2006; Small et al., 2006).
- A further aspect of the description provides a method of producing a peptide or its variant, the method comprising culturing a host cell and isolating the peptide from the host cell or its culture medium.
- In another embodiment the TCR proteins, the nucleic acid or the expression vector of the description are used in medicine. For example, the peptide or its variant may be prepared for intravenous (i.v.) injection, sub-cutaneous (s.c.) injection, intradermal (i.d.) injection, intraperitoneal (i.p.) injection, intramuscular (i.m.) injection. Preferred methods of peptide injection include s.c., i.d., i.p., i.m., and i.v. Preferred methods of DNA injection include i.d., i.m., s.c., i.p. and i.v. Doses of e.g., between 50 μg and 1.5 mg, preferably 125 μg to 500 μg, of peptide or DNA may be given and will depend on the respective peptide or DNA. Dosages of this range were successfully used in previous trials (Walter et al., 2012).
- The polynucleotide used for active vaccination may be substantially pure, or contained in a suitable vector or delivery system. The nucleic acid may be DNA, cDNA, PNA, RNA or a combination thereof. Methods for designing and introducing such a nucleic acid are well known in the art. An overview is provided by e.g., Teufel et al. (Teufel et al., 2005). Polynucleotide vaccines are easy to prepare, but the mode of action of these vectors in inducing an immune response is not fully understood. Suitable vectors and delivery systems include viral DNA and/or RNA, such as systems based on adenovirus, vaccinia virus, retroviruses, herpes virus, adeno-associated virus or hybrids containing elements of more than one virus. Non-viral delivery systems include cationic lipids and cationic polymers and are well known in the art of DNA delivery. Physical delivery, such as via a “gene-gun” may also be used. The peptide or peptides encoded by the nucleic acid may be a fusion protein, for example with an epitope that stimulates T-cells for the respective opposite CDR as noted above.
- The medicament of the description may also include one or more adjuvants. Adjuvants are substances that non-specifically enhance or potentiate the immune response (e.g., immune responses mediated by CD8-positive T-cells and helper-T (TH) cells to an antigen, and would thus be considered useful in the medicament of the present description. Suitable adjuvants include, but are not limited to, 1018 ISS, aluminum salts, AMPLIVAX®, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, flagellin or TLR5 ligands derived from flagellin, FLT3 ligand, GM-CSF, IC30, IC31, Imiquimod (ALDARA®), resiquimod, ImuFact IMP321, Interleukins as IL-2, IL-13, IL-21, Interferon-alpha or -beta, or pegylated derivatives thereof, IS Patch, ISS, ISCOMATRIX, ISCOMs, JuvImmune®, LipoVac, MALP2, MF59, monophosphoryl lipid A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, water-in-oil and oil-in-water emulsions, OK-432, OM-174, OM-197-MP-EC, ONTAK, OspA, PepTel® vector system, poly(lactid co-glycolid) [PLG]-based and dextran microparticles, talactoferrin SRL172, Virosomes and other Virus-like particles, YF-17D, VEGF trap, R848, beta-glucan, Pam3Cys, Aquila's QS21 stimulon, which is derived from saponin, mycobacterial extracts and synthetic bacterial cell wall mimics, and other proprietary adjuvants such as Ribi's Detox, Quil, or Superfos. Adjuvants such as Freund's or GM-CSF are preferred. Several immunological adjuvants (e.g., MF59) specific for dendritic cells and their preparation have been described previously (Allison and Krummel, 1995). Also cytokines may be used. Several cytokines have been directly linked to influencing dendritic cell migration to lymphoid tissues (e.g., TNF-), accelerating the maturation of dendritic cells into efficient antigen-presenting cells for T-lymphocytes (e.g., GM-CSF, IL-1 and IL-4) (U.S. Pat. No. 5,849,589, specifically incorporated herein by reference in its entirety) and acting as immunoadjuvants (e.g., IL-12, IL-15, IL-23, IL-7, IFN-alpha. IFN-beta) (Gabrilovich et al., 1996).
- CpG immunostimulatory oligonucleotides have also been reported to enhance the effects of adjuvants in a vaccine setting. Without being bound by theory, CpG oligonucleotides act by activating the innate (non-adaptive) immune system via Toll-like receptors (TLR), mainly TLR9. CpG triggered TLR9 activation enhances antigen-specific humoral and cellular responses to a wide variety of antigens, including peptide or protein antigens, live or killed viruses, dendritic cell vaccines, autologous cellular vaccines and polysaccharide conjugates in both prophylactic and therapeutic vaccines. More importantly it enhances dendritic cell maturation and differentiation, resulting in enhanced activation of TH1 cells and strong cytotoxic T-lymphocyte (CTL) generation, even in the absence of CD4 T-cell help. The TH1 bias induced by TLR9 stimulation is maintained even in the presence of vaccine adjuvants such as alum or incomplete Freund's adjuvant (IFA) that normally promote a TH2 bias. CpG oligonucleotides show even greater adjuvant activity when formulated or coadministered with other adjuvants or in formulations such as microparticles, nanoparticles, lipid emulsions or similar formulations, which are especially necessary for inducing a strong response when the antigen is relatively weak. They also accelerate the immune response and enable the antigen doses to be reduced by approximately two orders of magnitude, with comparable antibody responses to the full-dose vaccine without CpG in some experiments (Krieg, 2006). U.S. Pat. No. 6,406,705 B1 describes the combined use of CpG oligonucleotides, non-nucleic acid adjuvants and an antigen to induce an antigen-specific immune response. A CpG TLR9 antagonist is dSLIM (double Stem Loop Immunomodulator) by Mologen (Berlin, Germany) which is a preferred component of the pharmaceutical composition of the present description. Other TLR binding molecules such as RNA binding TLR 7,
TLR 8 and/or TLR 9 may also be used. - Other examples for useful adjuvants include, but are not limited to chemically modified CpGs (e.g., CpR, Idera), dsRNA analogues such as Poly(I:C) and derivates thereof (e.g., AmpliGen®, Hiltonal®, poly-(ICLC), poly(IC-R), poly(I:C12U), non-CpG bacterial DNA or RNA as well as immunoactive small molecules and antibodies such as cyclophosphamide, sunitinib, Bevacizumab®, celebrex, NCX-4016, sildenafil, tadalafil, vardenafil, sorafenib, temozolomide, temsirolimus, XL-999, CP-547632, pazopanib, VEGF Trap, ZD2171, AZD2171, anti-CTLA4, other antibodies targeting key structures of the immune system (e.g., anti-CD40, anti-TGFbeta, anti-TNFalpha receptor) and SC58175, which may act therapeutically and/or as an adjuvant. The amounts and concentrations of adjuvants and additives useful in the context of the present description can readily be determined by the skilled artisan without undue experimentation.
- Preferred adjuvants are anti-CD40, imiquimod, resiquimod, GM-CSF, cyclophosphamide, sunitinib, bevacizumab, interferon-alpha, CpG oligonucleotides and derivates, poly-(I:C) and derivates, RNA, sildenafil, and particulate formulations with PLG or virosomes.
- In a preferred embodiment, the pharmaceutical composition according to the description the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod, resiquimod, and interferon-alpha.
- In a preferred embodiment, the pharmaceutical composition according to the description the adjuvant is selected from the group consisting of colony-stimulating factors, such as Granulocyte Macrophage Colony Stimulating Factor (GM-CSF, sargramostim), cyclophosphamide, imiquimod and resiquimod. In a preferred embodiment of the pharmaceutical composition according to the description, the adjuvant is cyclophosphamide, imiquimod or resiquimod. Even more preferred adjuvants are Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, poly-ICLC (Hiltonal®) and anti-CD40 mAB, or combinations thereof.
- This composition is used for parenteral administration, such as subcutaneous, intradermal, intramuscular or oral administration. For this, the peptides and optionally other molecules are dissolved or suspended in a pharmaceutically acceptable, preferably aqueous carrier. In addition, the composition can contain excipients, such as buffers, binding agents, blasting agents, diluents, flavors, lubricants, etc. The peptides can also be administered together with immune stimulating substances, such as cytokines. An extensive listing of excipients that can be used in such a composition, can be, for example, taken from A. Kibbe, Handbook of Pharmaceutical Excipients (Kibbe, 2000). The composition can be used for a prevention, prophylaxis and/or therapy of adenomatous or cancerous diseases. Exemplary formulations can be found in, for example, EP2112253.
- It is important to realize that the immune response triggered by the vaccine according to the description attacks the cancer in different cell-stages and different stages of development. Furthermore different cancer associated signaling pathways are attacked. This is an advantage over vaccines that address only one or few targets, which may cause the tumor to easily adapt to the attack (tumor escape). Furthermore, not all individual tumors express the same pattern of antigens. Therefore, a combination of several tumor-associated peptides ensures that every single tumor bears at least some of the targets. The composition is designed in such a way that each tumor is expected to express several of the antigens and cover several independent pathways necessary for tumor growth and maintenance. Thus, the vaccine can easily be used “off-the-shelf” for a larger patient population. This means that a pre-selection of patients to be treated with the vaccine can be restricted to HLA typing, does not require any additional biomarker assessments for antigen expression, but it is still ensured that several targets are simultaneously attacked by the induced immune response, which is important for efficacy (Banchereau et al., 2001; Walter et al., 2012).
- As used herein, the term “scaffold” refers to a molecule that specifically binds to an (e.g., antigenic) determinant. In one embodiment, a scaffold is able to direct the entity to which it is attached (e.g., a (second) antigen binding moiety) to a target site, for example to a specific type of tumor cell or tumor stroma bearing the antigenic determinant (e.g., the complex of a peptide with MHC, according to the application at hand). In another embodiment a scaffold is able to activate signaling through its target antigen, for example a T-cell receptor complex antigen. Scaffolds include but are not limited to antibodies and fragments thereof, antigen binding domains of an antibody, comprising an antibody heavy chain variable region and an antibody light chain variable region, binding proteins comprising at least one ankyrin repeat motif and single domain antigen binding (SDAB) molecules, aptamers, (soluble) TCRs and (modified) cells such as allogenic or autologous T-cells. To assess whether a molecule is a scaffold binding to a target, binding assays can be performed.
- “Specific” binding means that the scaffold binds the peptide-MHC-complex of interest better than other naturally occurring peptide-MHC-complexes, to an extent that a scaffold armed with an active molecule that is able to kill a cell bearing the specific target is not able to kill another cell without the specific target but presenting other peptide-MHC complex(es). Binding to other peptide-MHC complexes is irrelevant if the peptide of the cross-reactive peptide-MHC is not naturally occurring, i.e., not derived from the human HLA-peptidome. Tests to assess target cell killing are well known in the art. They should be performed using target cells (primary cells or cell lines) with unaltered peptide-MHC presentation, or cells loaded with peptides such that naturally occurring peptide-MHC levels are reached.
- Each scaffold can comprise a labeling which provides that the bound scaffold can be detected by determining the presence or absence of a signal provided by the label. For example, the scaffold can be labeled with a fluorescent dye or any other applicable cellular marker molecule. Such marker molecules are well known in the art. For example a fluorescence-labelling, for example provided by a fluorescence dye, can provide a visualization of the bound aptamer by fluorescence or laser scanning microscopy or flow cytometry.
- Each scaffold can be conjugated with a second active molecule such as for example IL-21, anti-CD3, and anti-CD28.
- For further information on polypeptide scaffolds see for example the background section of WO 2014/071978A1 and the references cited therein.
- The present description further relates to aptamers. Aptamers (see for example WO 2014/191359 and the literature as cited therein) are short single-stranded nucleic acid molecules, which can fold into defined three-dimensional structures and recognize specific target structures. They have appeared to be suitable alternatives for developing targeted therapies. Aptamers have been shown to selectively bind to a variety of complex targets with high affinity and specificity.
- Aptamers recognizing cell surface located molecules have been identified within the past decade and provide means for developing diagnostic and therapeutic approaches. Since aptamers have been shown to possess almost no toxicity and immunogenicity they are promising candidates for biomedical applications. Indeed aptamers, for example prostate-specific membrane-antigen recognizing aptamers, have been successfully employed for targeted therapies and shown to be functional in xenograft in vivo models. Furthermore, aptamers recognizing specific tumor cell lines have been identified.
- DNA aptamers can be selected to reveal broad-spectrum recognition properties for various cancer cells, and particularly those derived from solid tumors, while non-tumorigenic and primary healthy cells are not recognized. If the identified aptamers recognize not only a specific tumor sub-type but rather interact with a series of tumors, this renders the aptamers applicable as so-called broad-spectrum diagnostics and therapeutics.
- Further, investigation of cell-binding behavior with flow cytometry showed that the aptamers revealed very good apparent affinities that are within the nanomolar range.
- Aptamers are useful for diagnostic and therapeutic purposes. In an aspect, at least one or more aptamers are taken up by tumor cells and thus can function as molecular vehicles for the targeted delivery of anti-cancer agents such as si RNA into tumor cells.
- Aptamers can be selected against complex targets such as cells and tissues and complexes of the peptides according to the description at hand with the MHC molecule, using the cell-SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique.
- The peptides of the present description can be used to generate and develop specific antibodies against MHC/peptide complexes. These can be used for therapy, targeting toxins or radioactive substances to the diseased tissue. Another use of these antibodies can be targeting radionuclides to the diseased tissue for imaging purposes such as PET. This use can help to detect small metastases or to determine the size and precise localization of diseased tissues.
- Therefore, it is a further aspect of the description to provide a method for producing a recombinant antibody specifically binding to a human major histocompatibility complex (MHC) class I or II being complexed with a HLA-restricted antigen, the method comprising: immunizing a genetically engineered non-human mammal comprising cells expressing said human major histocompatibility complex (MHC) class I or II with a soluble form of a MHC class I or II molecule being complexed with said HLA-restricted antigen; isolating mRNA molecules from antibody producing cells of said non-human mammal; producing a phage display library displaying protein molecules encoded by said mRNA molecules; and isolating at least one phage from said phage display library, said at least one phage displaying said antibody specifically binding to said human major histocompatibility complex (MHC) class I or II being complexed with said HLA-restricted antigen.
- It is a further aspect of the description to provide an antibody that specifically binds to a human major histocompatibility complex (MHC) class I or II being complexed with a HLA-restricted antigen, wherein the antibody preferably is a polyclonal antibody, monoclonal antibody, bi-specific antibody and/or a chimeric antibody.
- Respective methods for producing such antibodies and single chain class I major histocompatibility complexes, as well as other tools for the production of these antibodies are disclosed in WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752, and in publications (Cohen et al., 2003a; Cohen et al., 2003b; Denkberg et al., 2003), which for the purposes of the present description are all explicitly incorporated by reference in their entireties.
- Preferably, the antibody is binding with a binding affinity of below 20 nanomolar, preferably of below 10 nanomolar, to the complex, which is also regarded as “specific” in the context of the present description.
- The present description relates to a TCR protein or a variant or functional fragment thereof that specifically binds to MAG-003.
- The present description further relates to the TCR protein according to the description, wherein the TCR protein is (chemically) modified and/or includes non-peptide bonds.
- The present description further relates to a nucleic acid, encoding the TCR proteins according to the description, provided that the TCR protein is not the complete (full) human protein.
- The present description further relates to the nucleic acid according to the description that is DNA, cDNA, PNA, RNA or combinations thereof.
- The present description further relates to an expression vector capable of expressing a nucleic acid according to the present description.
- The present description further relates to a TCR protein according to the present description, a nucleic acid according to the present description or an expression vector according to the present description for use in medicine, in particular in the treatment of non-small cell lung cancer.
- The present description further relates to a host cell comprising a nucleic acid according to the description or an expression vector according to the description.
- The present description further relates to the host cell according to the present description that is a T-cell, and preferably a CD8-positive T-cell or CD4-positive T-cell.
- The present description further relates to a method of producing a TCR protein according to the present description, said method comprising incubating PBMCs from HLA-A*02-negative healthy donors with A2/MAG-003 monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- The present description further relates to a method of producing a TCR protein according to the present description, said method comprising incubating PBMCs from HLA-A*02-negative healthy donors with A2/p286-1Y2L monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- The present description further relates to a method of producing a TCR protein according to the present description, said method comprising incubating PBMCs from HLA-A*02-negative healthy donors with A2/p286-1Y2L9L monomers, incubating the PBMCs with tetramer-phycoerythrin (PE) and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- The present description further relates to a method of producing a TCR protein according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCRαβ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with MAG-003, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- The present description further relates to a method of producing a TCR protein according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCRαβ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with p286-1Y2L, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- The present description further relates to a method of producing a TCR protein according to the present description, said method comprising obtaining a transgenic mouse with the entire human TCRαβ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency, immunizing the mouse with p286-1Y2L9L, incubating PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE), and isolating the high avidity T-cells by fluorescence activated cell sorting (FACS)-Calibur analysis.
- The present description further relates to a method of killing target cells in a patient which target cells aberrantly express MAG-003, the method comprising administering to the patient an effective number of T-cells as according to the present description.
- The present description further relates to the use of any TCR protein described, a nucleic acid according to the present description, an expression vector according to the present description, a cell according to the present description, or an activated cytotoxic T lymphocyte according to the present description as a medicament or in the manufacture of a medicament. The present description further relates to a use according to the present description, wherein the medicament is active against cancer.
- The present description further relates to a use according to the description, wherein said cancer cells are non-small cell lung cancer cells or other solid or hematological tumor cells such as non-small cell lung cancer, small cell lung cancer, renal cell cancer, brain cancer, gastric cancer, colorectal cancer, hepatocellular cancer, pancreatic cancer, prostate cancer, leukemia, breast cancer, Merkel cell carcinoma, melanoma, ovarian cancer, urinary bladder cancer, uterine cancer, gallbladder and bile duct cancer and esophageal cancer.
- The present description further relates to particular marker proteins and biomarkers based on the peptides according to the present description, herein called “targets” that can be used in the diagnosis and/or prognosis of non-small cell lung cancer. The present description also relates to the use of these novel targets for cancer treatment.
- The term “antibody” or “antibodies” is used herein in a broad sense and includes both polyclonal and monoclonal antibodies. In addition to intact or “full” immunoglobulin molecules, also included in the term “antibodies” are fragments (e.g., CDRs, Fv, Fab and Fc fragments) or polymers of those immunoglobulin molecules and humanized versions of immunoglobulin molecules, as long as they exhibit any of the desired properties (e.g., specific binding of a non-small cell lung cancer marker (poly)peptide, delivery of a toxin to a non-small cell lung cancer cell expressing a cancer marker gene at an increased level, and/or inhibiting the activity of a non-small cell lung cancer marker polypeptide) according to the description.
- Whenever possible, the antibodies of the description may be purchased from commercial sources. The antibodies of the description may also be generated using well-known methods. The skilled artisan will understand that either full length non-small cell lung cancer marker polypeptides or fragments thereof may be used to generate the antibodies of the description. A polypeptide to be used for generating an antibody of the description may be partially or fully purified from a natural source, or may be produced using recombinant DNA techniques.
- One of skill in the art will realize that the generation of two or more different sets of monoclonal or polyclonal antibodies maximizes the likelihood of obtaining an antibody with the specificity and affinity required for its intended use (e.g., ELISA, immunohistochemistry, in vivo imaging, immunotoxin therapy). The antibodies are tested for their desired activity by known methods, in accordance with the purpose for which the antibodies are to be used (e.g., ELISA, immunohistochemistry, immunotherapy, etc.; for further guidance on the generation and testing of antibodies, see, e.g., Greenfield, 2014 (Greenfield, 2014)). For example, the antibodies may be tested in ELISA assays or, Western blots, immunohistochemical staining of formalin-fixed cancers or frozen tissue sections. After their initial in vitro characterization, antibodies intended for therapeutic or in vivo diagnostic use are tested according to known clinical testing methods.
- The term “monoclonal antibody” as used herein refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e.; the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. The monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired antagonistic activity (U.S. Pat. No. 4,816,567, which is hereby incorporated in its entirety).
- Monoclonal antibodies of the description may be prepared using hybridoma methods. In a hybridoma method, a mouse or other appropriate host animal is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro.
- The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the description can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
- In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly Fab fragments, can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in WO 94/29348 and U.S. Pat. No. 4,342,566. Papain digestion of antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields a F(ab′)2 fragment and a pFc′ fragment.
- The antibody fragments, whether attached to other sequences or not, can also include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids residues, provided the activity of the fragment is not significantly altered or impaired compared to the non-modified antibody or antibody fragment. These modifications can provide for some additional property, such as to remove/add amino acids capable of disulfide bonding, to increase its bio-longevity, to alter its secretory characteristics, etc. In any case, the antibody fragment must possess a bioactive property, such as binding activity, regulation of binding at the binding domain, etc. Functional or active regions of the antibody may be identified by mutagenesis of a specific region of the protein, followed by expression and testing of the expressed polypeptide. Such methods are readily apparent to a skilled practitioner in the art and can include site-specific mutagenesis of the nucleic acid encoding the antibody fragment.
- The antibodies of the description may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- Transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production can be employed. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. Human antibodies can also be produced in phage display libraries.
- Antibodies of the description are preferably administered to a subject in a pharmaceutically acceptable carrier. Typically, an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic. Examples of the pharmaceutically-acceptable carrier include saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5. Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of antibody being administered.
- The antibodies can be administered to the subject, patient, or cell by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular), or by other methods such as infusion that ensure its delivery to the bloodstream in an effective form. The antibodies may also be administered by intratumoral or peritumoral routes, to exert local as well as systemic therapeutic effects. Local or intravenous injection is preferred.
- Effective dosages and schedules for administering the antibodies may be determined empirically, and making such determinations is within the skill in the art. Those skilled in the art will understand that the dosage of antibodies that must be administered will vary depending on, for example, the subject that will receive the antibody, the route of administration, the particular type of antibody used and other drugs being administered. A typical daily dosage of the antibody used alone might range from about 1 (μg/kg to up to 100 mg/kg of body weight or more per day, depending on the factors mentioned above. Following administration of an antibody, preferably for treating non-small cell lung cancer, the efficacy of the therapeutic antibody can be assessed in various ways well known to the skilled practitioner. For instance, the size, number, and/or distribution of cancer in a subject receiving treatment may be monitored using standard tumor imaging techniques. A therapeutically-administered antibody that arrests tumor growth, results in tumor shrinkage, and/or prevents the development of new tumors, compared to the disease course that would occurs in the absence of antibody administration, is an efficacious antibody for treatment of cancer.
- It is a further aspect of the description to provide a method for producing a soluble T-cell receptor (sTCR) recognizing a specific peptide-MHC complex. Such soluble T-cell receptors can be generated from specific T-cell clones, and their affinity can be increased by mutagenesis targeting the complementarity-determining regions. For the purpose of T-cell receptor selection, phage display can be used (US 2010/0113300, (Liddy et al., 2012)). For the purpose of stabilization of T-cell receptors during phage display and in case of practical use as drug, alpha and beta chain can be linked e.g., by non-native disulfide bonds, other covalent bonds (single-chain T-cell receptor), or by dimerization domains (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999). The T-cell receptor can be linked to toxins, drugs, cytokines (see, for example, US 2013/0115191), and domains recruiting effector cells such as an anti-CD3 domain, etc., in order to execute particular functions on target cells. In another aspect, it is expressed in T-cells used for adoptive transfer. See, for example, WO 2004/033685A1, WO 2004/074322A1, and WO 2013/057586A1, the contents of which are incorporated by reference in their entirety.
- In addition, the peptides and/or the TCRs or antibodies or other binding molecules of the present description can be used to verify a pathologist's diagnosis of a cancer based on a biopsied sample.
- The antibodies or TCRs may also be used for in vivo diagnostic assays. Generally, the antibody is labeled with a radionucleotide (such as 111In, 99Tc, 14C, 131I, 3H, 32P or 35S) so that the tumor can be localized using immunoscintiography. In one embodiment, antibodies or fragments thereof bind to the extracellular domains of two or more targets of a protein selected from the group consisting of the above-mentioned proteins, and the affinity value (Kd) is less than 1×10 μM.
- Antibodies for diagnostic use may be labeled with probes suitable for detection by various imaging methods. Methods for detection of probes include, but are not limited to, fluorescence, light, confocal and electron microscopy; magnetic resonance imaging and spectroscopy; fluoroscopy, computed tomography and positron emission tomography. Suitable probes include, but are not limited to, fluorescein, rhodamine, eosin and other fluorophores, radioisotopes, gold, gadolinium and other lanthanides, paramagnetic iron, fluorine-18 and other positron-emitting radionuclides. Additionally, probes may be bi- or multi-functional and be detectable by more than one of the methods listed. These antibodies may be directly or indirectly labeled with said probes. Attachment of probes to the antibodies includes covalent attachment of the probe, incorporation of the probe into the antibody, and the covalent attachment of a chelating compound for binding of probe, amongst others well recognized in the art. For immunohistochemistry, the disease tissue sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin. The fixed or embedded section contains the sample are contacted with a labeled primary antibody and secondary antibody, wherein the antibody is used to detect the expression of the proteins in situ.
- The present invention will be further described in the following examples, nevertheless, without being limited thereto. For the purposes of the present invention, all references as cited herein are incorporated by reference in their entireties.
- The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
-
FIG. 1 shows MAG-003 exon expression in MAGEA4 (tumor versus healthy, RNASeq data). MAGE-003 exon expression in MAGEA4 on healthy tissues was compared to that on various solid tumors (red bars). Healthy tissue subtypes are grouped as high (dark green bars), medium (light green bars) and low risk tissues (grey bars). Each bar represents a single sample. High expression on normal tissues was only found in placenta and testis (low risk). (RPKM=reads per kilobase per million mapped reads) -
FIG. 2 shows MAG-003 exon expression on MAGEA8 (tumor versus healthy, RNASeq data). MAGEA8 exon expression on healthy tissues was compared to that on various solid tumors (red bars). Healthy tissue subtypes are grouped as high (dark green bars), medium (light green bars) and low risk tissues (grey bars). Each bar represents a single sample. High expression on normal tissues was only found in placenta (low risk). (RPKM=reads per kilobase per million mapped reads). -
FIG. 3 shows IFNγ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein. -
FIG. 4 shows IFNγ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein. -
FIG. 5 shows IFNγ release from CD8+ T-cells electroporated with alpha and beta chain RNA of MAG-003 specific TCRs after co-incubation with target cells loaded with MAG-003 peptide (SEQ ID NO:1) or various MAG-003 alanine-substitution variants at positions 1-9 of SEQ ID NO:1 as disclosed herein. -
FIG. 6 shows MAGEA4 expression according to example 7. MAGEA4 mRNA is detectable in the presented cancer specimens. The level of expression covers a range from considerable expression in head and neck cancer and non-small lung cancer specimens (HNSCC062T1, HNSCC064T1 and NSCLC004T1) to rather low expression in non-small lung cancer and ovarian cancer specimens (NSCLC006T1 and OC036T1). - Allo-reactive settings can be used to circumvent self-tolerance and yield T-cells with a higher avidity when compared to T-cells derived from autologous settings, i.e., patients. Examples of such settings include in vitro generation of allo-HLA reactive, peptide-specific T-cells (Sadovnikova et al. 1998; Savage et al. 2004; Wilde et al. 2012), and immunization of mice transgenic for human-MHC or human TCR (Stanislawski et al. 2001; Li et al. 2010).
- PBMCs from HLA-A*02-negative healthy donors were used after obtaining informed consent. Recombinant biotinylated HLA-A2 class I monomers and A2 fluorescent tetramers containing MAG-003 were obtained from MBLI (Woburn, Mass.). PBMCs were incubated with anti-CD20SA diluted in phosphate buffered saline (PBS) for 1 hour at room temperature, washed, and incubated with the biotinylated A2/MAG-003 monomers for 30 minutes at room temperature, washed, and plated at 3×106 cells/well in 24-well plates in RPMI with 10% human AB serum. Interleukin 7 (IL-7; R&D Systems, Minneapolis, Minn.) was added on
day 1 at 10 ng/mL and IL-2 (Chiron, Harefield, United Kingdom) was added at 10 U/mL onday 4. Over a 5-week period cells were restimulated weekly with fresh PBMCs, mixed with responder cells at a 1:1 ratio, and plated at 3×106/well in 24-well plates. - To obtain high avidity T-cells, incubate approximately 106 PBMCs with HLA-A2/MAG-003 tetramer-phycoerythrin (PE) (obtained from MBLI) for 30 minutes at 37° C., followed by anti-CD8-fluorescein isothiocyanate (FITC)/allophycocyanin (APC) for 20 minutes at 4° C., followed by fluorescence activated cell sorting (FACS)-Calibur analysis. Sorting was done with a FACS-Vantage (Becton Dickinson, Cowley, Oxford, United Kingdom). Sorted tetramer-positive cells were expanded in 24-well plates using, per well, 2×105 sorted cells, 2×106 irradiated A2-negative PBMCs as feeders, 2×104 CD3/CD28 beads/mL (Dynal, Oslo Norway), and IL-2 (1000 U/mL). The high avidity T-cells, thus obtained, were then be used to identify and isolate TCRs for amino acid/DNA sequences determination and cloning into expression vectors using methods well known in the art.
- MAG-003 were used to immunize transgenic mice with the entire human TCRαβ gene loci (1.1 and 0.7 Mb), whose T-cells express a diverse human TCR repertoire that compensates for mouse TCR deficiency. (Li et al. 2010). To obtain high avidity T-cells, incubate PBMCs obtained from the transgenic mice with tetramer-phycoerythrin (PE) followed by cell sorting as described above. The high avidity T-cells, thus obtained, were then be used to identify and isolate TCRs for amino acid/DNA sequences determination and cloning into expression vectors using methods well known in the art.
- In an aspect, MAG-003 and its variants, i.e., p286-1Y2L (having 2 amino acid substitutions, SEQ ID NO:2) and p286-1Y2L9L (having 3 amino acid substitutions, SEQ ID NO:3) exhibit potent binding affinity and stability towards HLA-A*0201 molecule. In particular, p286-1Y2L9L showed the capability to induce specific CTLs which, in an aspect, lyse the target cancer cells from both PBMCs of healthy donors and HLA-A2.1/Kb transgenic mice. See, for example, (Wu et al. 2011), the content of which is hereby incorporated by reference in its entirety.
- To obtain high avidity TCRs for MHC I or II/p286-1Y2L or p286-1Y2L9L complexes, these peptides can be used in methods described in Examples 1 and 2. The high avidity T-cells, thus obtained, were then be used to identify and isolate TCRs for amino acid/DNA sequences determination and cloning into expression vectors using methods well known in the art.
- High avidity TCR variants can also be selected from a library of CDR mutants by yeast, phage, or T-cell display (holler et al. 2003; Li et al. 2005; Chervin et al. 2008). Candidate TCR variants, thus, provide guidance to design mutations of the TCR's CDRs to obtain high avidity TCR variants (Robbins et al. 2008; Zoete et al. 2007).
- Methods of cloning TCRs are known in the art, for example, as described in U.S. Pat. No. 8,519,100, which is hereby incorporated by reference in its entirety for said methods. The alpha chain variable region sequence specific oligonucleotide A1 which encodes the restriction site NdeI, an introduced methionine for efficient initiation of expression in bacteria, and an alpha chain constant region sequence specific oligonucleotide A2 which encodes the restriction site SalI are used to amplify the alpha chain variable region. In the case of the beta chain, a beta chain variable region sequence specific oligonucleotide which encodes the restriction site e.g. NdeI, an introduced methionine for efficient initiation of expression in bacteria, and a beta chain constant region sequence specific oligonucleotide B2 which encodes the restriction site e.g. AgeI are used to amplify the beta chain variable region.
- The alpha and beta variable regions were cloned into pGMT7-based expression plasmids containing either Cα or Cβ by standard methods described in (Molecular Cloning a Laboratory Manual Third edition by Sambrook and Russell). Plasmids were sequenced using an Applied Biosystems 3730×1 DNA Analyzer.
- The DNA sequences encoding the TCR alpha chain cut with NdeI and SalI were ligated into pGMT7+Cα vector, which was cut with NdeI and XhoI. The DNA sequences encoding the TCR beta chain cut with NdeI and AgeI was ligated into separate pGMT7+Cβ vector, which was also cut with NdeI and AgeI. Ligated plasmids are transformed into competent Escherichia coli strain XL1-blue cells and plated out on LB/agar plates containing 100 μg/ml ampicillin. Following incubation overnight at 37° C., single colonies are picked and grown in 10 ml LB containing 100 μg/ml ampicillin overnight at 37° C. with shaking. Cloned plasmids are purified using a Miniprep kit (Qiagen) and the insert is sequenced using an automated DNA sequencer (Lark Technologies).
- T-cells can be engineered to express high avidity TCRs (so-called TCR therapies) or protein-fusion derived chimeric antigen receptors (CARs) that have enhanced antigen specificity to MHC I/MAG-003 complex or MHC II/MAG-003 complex. In an aspect, this approach overcomes some of the limitations associated with central and peripheral tolerance, and generates T-cells that will be more efficient at targeting tumors without the requirement for de novo T-cell activation in the patient.
- To obtain T-cells expressing TCRs of the present description, nucleic acids encoding the tumor specific TCR-alpha and/or TCR-beta chains identified and isolated, as described in Examples 1-3, were cloned into expression vectors, such as gamma-retrovirus or lentivirus. The recombinant viruses were generated and then tested for functionality, such as antigen specificity and functional avidity. An aliquot of the final product is then used to transduce the target T-cell population (generally purified from patient PBMCs), which is expanded before infusion into the patient.
- TCR chains introduced into a peripheral T-cell may compete with endogenous TCR chains for association with the CD3 complex, which is necessary for TCR surface expression. Because a high level of TCR surface expression is essential to confer appropriate sensitivity for triggering by cells expressing the target tumor antigen (Cooper et al., 2000; Labrecque et al., 2001), strategies that enhance TCR-alpha and TCR-beta gene expression levels are an important consideration in TCR gene therapy.
- To increase the expression of TCR of the present description, strong promoters, such as retroviral long terminal repeats (LTRs), cytomegalovirus (CMV), murine stem cell virus (MSCV) U3, phosphoglycerate kinase (PGK), β-actin, ubiquitin, and a simian virus 40 (SV40)/CD43 composite promoter (Cooper et al., 2004; Jones et al., 2009), elongation factor (EF)-1a (Tsuji et al., 2005) and the spleen focus-forming virus (SFFV) promoter (Joseph et al., 2008), can be used in the present description.
- In addition to strong promoters, many TCR expression cassettes contain additional elements that can enhance transgene expression, including a central polypurine tract (cPPT), which promotes the nuclear translocation of lentiviral constructs (Follenzi et al., 2000), and the woodchuck hepatitis virus posttranscriptional regulatory element (wPRE), which increases the level of transgene expression by increasing RNA stability (Zufferey et al., 1999).
- Achieving high-level TCR surface expression requires that both the TCR-alpha and TCR-beta chains of the introduced TCR be transcribed at high levels. To do so, the TCR-alpha and TCR-beta chains of the present description may be cloned into bicistronic constructs in a single vector, which has been shown to be capable of overcoming this obstacle. The use of a viral intraribosomal entry site (IRES) between the TCR-alpha and TCR-beta chains results in the coordinated expression of both chains, because the TCR-alpha and TCR-beta chains are generated from a single transcript that is broken into two proteins during translation, ensuring that an equal molar ratio of TCR-alpha and TCR-beta chains are produced. (Schmitt et al. 2009).
- Another modification that has proven to be beneficial for increasing TCR transgene expression is codon optimization. Redundancy in the genetic code allows some amino acids to be encoded by more than one codon, but certain codons are less “optimal” than others because of the relative availability of matching tRNAs as well as other factors (Gustafsson et al., 2004). Modifying the TCR-alpha and TCR-beta gene sequences such that each amino acid is encoded by the optimal codon for mammalian gene expression, as well as eliminating mRNA instability motifs or cryptic splice sites, has been shown to significantly enhance TCR-alpha and TCR-beta gene expression (Scholten et al., 2006).
- Furthermore, mispairing between the introduced and endogenous TCR chains may result in the acquisition of specificities that pose a significant risk for autoimmunity. For example, the formation of mixed TCR dimers may reduce the number of CD3 molecules available to form properly paired TCR complexes, and therefore can significantly decrease the functional avidity of the cells expressing the introduced TCR (Kuball et al., 2007).
- To reduce mispairing, the C-terminus domain of the introduced TCR chains of the present description may be modified in order to promote interchain affinity, while decreasing the ability of the introduced chains to pair with the endogenous TCR. These strategies may include replacing the human TCR-alpha and TCR-beta C-terminus domains with their murine counterparts (murinized C-terminus domain); generating a second interchain disulfide bond in the C-terminus domain by introducing a second cysteine residue into both the TCR-alpha and TCR-beta chains of the introduced TCR (cysteine modification); swapping interacting residues in the TCR-alpha and TCR-beta chain C-terminus domains (“knob-in-hole”); and fusing the variable domains of the TCR-alpha and TCR-beta chains directly to CD3ζ (CD3ζ fusion). (Schmitt et al. 2009).
- The present description provides TCR proteins that are useful in treating cancers/tumors, preferably non-small cell lung cancer that over- or exclusively present MAG-003.
- Gamma delta (γδ) T cells, which are non-conventional T lymphocyte effectors implicated in the first line of defense against pathogens, can interact with and eradicate tumor cells in a MHC-independent manner through activating receptors, among others, TCR-gamma and TCR-delta chains. These γδ T cells display a preactivated phenotype that allows rapid cytokine production (IFN-γ, TNF-α) and strong cytotoxic response upon activation. These T-cells have anti-tumor activity against many cancers and suggest that γδT cell-mediated immunotherapy is feasible and can induce objective tumor responses. (Braza et al. 2013).
- Recent advances using immobilized antigens, agonistic monoclonal antibodies (mAbs), tumor-derived artificial antigen presenting cells (aAPC), or combinations of activating mAbs and aAPC have been successful in expanding gamma delta T-cells with oligoclonal or polyclonal TCR repertoires. For example, immobilized major histocompatibility complex Class-I chain-related A was a stimulus for γδ T-cells expressing TCRδ1 isotypes, and plate-bound activating antibodies have expanded Vδ1 and Vδ2 cells ex vivo. Clinically sufficient quantities of TCRδ1, TCRδ2, and TCRδ1negTCRδ2neg have been produced following co-culture on aAPC, and these subsets displayed differences in memory phenotype and reactivity to tumors in vitro and in vivo. (Deniger et al. 2014).
- In addition, γδ T-cells are amenable to genetic modification as evidenced by introduction of TCR-alpha and TCR-beta chains. (Hiasa et al. 2009). Another aspect of the present description relates to production of γδ T-cells expressing TCR-alpha and TCR-beta that bind to MAG-003. To do so, γδ T-cells are expanded by methods described by Deniger et al. 2014, followed by transducing the recombinant viruses expressing the TCRs that bind to MAG-003 (as described in Example 3) into the expanded γδ T-cells. The virus-transduced γδ T-cells are then infused into the patient.
- The immunogenicity of MAG-003 was tested using protocols that mimic the manufacturing procedure for a pharmaceutical product. Priming of MAG-003-specific T-cells was observed for healthy donors. Generated T cells were able to kill peptide loaded target cells demonstrating their functionality. The data demonstrated that 1) MAG-003 is an immunogenic target and 2) that generated T cells against MAG-003 are functional.
- Additional data as generated provided evidence that MAG-003 is a peptide with very good binding to HLA-A*02:01.
- In situ hybridization (ISH) is used to detect mRNA expression directly in formalin-fixed or frozen tissue sections. Due to its high sensitivity and its spatial resolution, it is a suitable method to determine cell type specific target expression and the distribution or frequency of target expression within cancer tissue sections.
- ISH has been performed to detect MAGEA4 mRNA using the BaseScope™ technology developed by Advanced Cell Diagnostics (ACD). The BaseScope™ technology is based on the hybridization of on to four pairs of Z-shaped oligonucleotide probes to the target sequence. Signal amplification is achieved by branched DNA amplification, which is based on multiple hybridization steps of oligonucleotides, ultimately building up a branched DNA (bDNA) tree. Finally, a great number of label probes hybridize to the branches of the bDNA tree and the enhanced signal can be detected. The chromogenic BaseScope™ Detection Kit (RED) includes label probes which are linked to an enzyme (alkaline phosphatase). Signal detection depends on the enzymatic conversion of the chromogenic substrate FastRed, which additionally amplifies the original signal. BaseScope™ is a very sensitive technology, which is due to the efficient process of signal amplification, paired with the high sensitivity and the robust binding of the Z probe pairs to the target mRNA, even if it is partially crosslinked or degraded. According to ACD, binding of one single probe pair to each single mRNA molecule is enough to generate a detectable ISH signal.
- Each ISH experiment is subdivided into two methodological processes: 1) Tissue pretreatment for target retrieval, and 2) Target hybridization, signal amplification and detection. Optimal pretreatment conditions are critical for successful target detection in FFPE tissue sections. The fixation process induces crosslinking of proteins, DNA and RNA in cells and tissues and thereby masks hybridization sites. Thus, to assure accessibility of the target mRNA and proper binding of the probe set, these crosslinks have to be removed prior to target hybridization. Tissue pretreatment includes three discrete steps: 1) Blocking of endogenous alkaline phosphatase by hydrogen peroxide treatment, 2) target retrieval by boiling in target retrieval reagent, and 3) target retrieval by protease digestion. As the extent of fixation and crosslinking may vary between different FFPE blocks, the optimal target retrieval conditions have to be determined experimentally for each individual FFPE block. Therefore, tissue sections were exposed to different boiling and protease digestion times followed by hybridization with a positive and a negative control probe set. The optimal conditions were determined by microscopic evaluation of specific signal intensity in the positive control, unspecific background in the negative control and tissue morphology. Tissue pretreatment was performed according to the manufacturer's protocols. Pretreatment reagents are included in the BaseScope™ reagent kits. After completion of the different pretreatment steps, target expression was assessed by hybridization of specific probe sets to the mRNA of interest with subsequent branched DNA signal amplification and chromogenic or fluorescent signal detection. All assays were performed according to the manufacturer's protocols.
-
TABLE 10 Expression analysis Sample Tissue MAGEA4 expression HNSCC062T1 Head and neck cancer ++ HNSCC064T1 Head and neck cancer ++ NSCLC004T1 Non-small cell lung cancer ++ NSCLC006T1 Non-small cell lung cancer + OC036T1 Ovarian cancer + Overall expression level of MAGEA4 in the respective section: ± very low, + low to moderate, ++ strong, +++ very strong -
- Adair S J, Hogan K T (2009). Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol. Immunother. 58, 589-601.
- Alves P M, Levy N, Bouzourene H, Viatte S, Bricard G, Ayyoub M, Vuilleumier H, Givel J C, Halkic N, Speiser D E, Romero P, Levy F (2007). Molecular and immunological evaluation of the expression of cancer/testis gene products in human colorectal cancer. Cancer Immunol. Immunother. 56, 839-847.
- Andrade V C, Vettore A L, Felix R S, Almeida M S, Carvalho F, Oliveira J S, Chauffaille M L, Andriolo A, Caballero O L, Zago M A, Colleoni G W (2008). Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun. 8, 2.
- Aubry F, Satie A P, Rioux-Leclercq N, Rajpert-De M E, Spagnoli G C, Chomez P, De B O, Jegou B, Samson M (2001). MAGE-A4, a germ cell specific marker, is expressed differentially in testicular tumors. Cancer 92, 2778-2785.
- Bar-Haim E, Paz A, Machlenkin A, Hazzan D, Tirosh B, Carmon L, Brenner B, Vadai E, Mor O, Stein A, Lemonnier F A, Tzehoval E, Eisenbach L (2004). MAGE-A8 overexpression in transitional cell carcinoma of the bladder: identification of two tumour-associated antigen peptides. Br. J Cancer 91, 398-407.
- Barrow C, Browning J, MacGregor D, Davis I D, Sturrock S, Jungbluth A A, Cebon J (2006). Tumor antigen expression in melanoma varies according to antigen and stage.
Clin Cancer Res 12, 764-771. - Bellati F, Napoletano C, Tarquini E, Palaia I, Landi R, Manci N, Spagnoli G, Rughetti A, Panici P B, Nuti M (2007). Cancer testis antigen expression in primary and recurrent vulvar cancer: association with prognostic factors. Eur. J Cancer 43, 2621-2627.
- Bergeron A, Picard V, LaRue H, Harel F, Hovington H, Lacombe L, Fradet Y (2009). High frequency of MAGE-A4 and MAGE-A9 expression in high-risk bladder cancer. Int. J Cancer 125, 1365-1371.
- Bhan S, Chuang A, Negi S S, Glazer C A, Califano J A (2012). MAGEA4 induces growth in normal oral keratinocytes by inhibiting growth arrest and apoptosis. Oncol Rep. 28, 1498-1502.
- Bode P K, Thielken A, Brandt S, Barghorn A, Lohe B, Knuth A, Moch H (2014). Cancer testis antigen expression in testicular germ cell tumorigenesis. Mod. Pathol. 27, 899-905.
- Cabezon T, Gromova I, Gromov P, Serizawa R, Timmermans W, V, Kroman N, Celis J E, Moreira J M (2013). Proteomic profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4 as potential therapeutic target in estrogen receptor negative breast cancer. Mol. Cell Proteomics. 12, 381-394.
- Cesson V, Rivals J P, Escher A, Piotet E, Thielemans K, Posevitz V, Dojcinovic D, Monnier P, Speiser D, Bron L, Romero P (2011). MAGE-A3 and MAGE-A4 specific CD4(+) T-cells in head and neck cancer patients: detection of naturally acquired responses and identification of new epitopes. Cancer Immunol. Immunother. 60, 23-35.
- Chambost H, Van B N, Brasseur F, Godelaine D, Xerri L, Landi S J, Theate I, Plumas J, Spagnoli G C, Michel G, Coulie P G, Olive D (2000). Expression of gene MAGE-A4 in Reed-Sternberg cells. Blood 95, 3530-3533.
- Chen C H, Huang G T, Lee H S, Yang P M, Yan M D, Chen D S, Sheu J C (1999). High frequency of expression of MAGE genes in human hepatocellular carcinoma. 1999. Liver 19, 110-114.
- Chitale D A, Jungbluth A A, Marshall D S, Leitao M M, Hedvat C V, Kolb D, Spagnoli G C, Iversen K, Soslow R A (2005). Expression of cancer-testis antigens in endometrial carcinomas using a tissue microarray. Mod. Pathol. 18, 119-126.
- Coral S, Parisi G, Nicolay H J, Colizzi F, Danielli R, Fratta E, Covre A, Taverna P, Sigalotti L, Maio M (2013). Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidinecontaining demethylating dinucleotide. Cancer Immunol. Immunother. 62, 605-614.
- Cruz C R, Gerdemann U, Leen A M, Shafer J A, Ku S, Tzou B, Horton T M, Sheehan A, Copeland A, Younes A, Rooney C M, Heslop H E, Bollard C M (2011). Improving T-cell therapy for relapsed EBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin Cancer Res 17, 7058-7066.
- Cuffel C, Rivals J P, Zaugg Y, Salvi S, Seelentag W, Speiser D E, Lienard D, Monnier P, Romero P, Bron L, Rimoldi D (2011). Pattern and clinical significance of cancer-testis gene expression in head and neck squamous cell carcinoma. Int. J Cancer 128, 2625-2634.
- Daudi S, Eng K H, Mhawech-Fauceglia P, Morrison C, Miliotto A, Beck A, Matsuzaki J, Tsuji T, Groman A, Gnjatic S, Spagnoli G, Lele S, Odunsi K (2014). Expression and immune responses to MAGE antigens predict survival in epithelial ovarian cancer. PLoS. ONE. 9, e104099.
- Duffour M T, Chaux P, Lurquin C, Cornelis G, Boon T, van der Bruggen P (1999). A MAGEA4 peptide presented by HLA-A2 is recognized by cytolytic T lymphocytes. Eur. J Immunol. 29, 3329-3337.
- De P E, Arden K, Traversari C, Gaforio J J, Szikora J P, De S C, Brasseur F, van der Bruggen P, Lethe B, Lurquin C, (1994). Structure, chromosomal localization, and expression of 12 genes of the MAGE family.
Immunogenetics 40, 360-369. - Doyle J M, Gao J, Wang J, Yang M, Potts P R (2010). MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell 39, 963-974.
- Eng K H, Weir I, Tsuji T, Odunsi K (2015). Immunostimulatory/regulatory gene expression patterns in advanced ovarian cancer. Genes and Cancer.
- Forghanifard M M, Gholamin M, Farshchian M, Moaven O, Memar B, Forghani M N, Dadkhah E, Naseh H, Moghbeli M, Raeisossadati R, Abbaszadegan M R (2011). Cancer-testis gene expression profiling in esophageal squamous cell carcinoma: identification of specific tumor marker and potential targets for immunotherapy. Cancer Biol Ther. 12, 191-197.
- Gerdemann U, Katari U, Christin A S, Cruz C R, Tripic T, Rousseau A, Gottschalk S M, Savoldo B, Vera J F, Heslop H E, Brenner M K, Bollard C M, Rooney C M, Leen A M (2011). Cytotoxic T lymphocytes simultaneously targeting multiple tumor-associated antigens to treat EBV negative lymphoma. Mol. Ther. 19, 2258-2268.
- Gunda V, Cogdill A P, Bernasconi M J, Wargo J A, Parangi S (2013). Potential role of 5-aza-2′-deoxycytidine induced MAGE-A4 expression in immunotherapy for anaplastic thyroid cancer. Surgery 154, 1456-1462.
- Gure A O, Chua R, Williamson B, Gonen M, Ferrera C A, Gnjatic S, Ritter G, Simpson A J, Chen Y T, Old L J, Altorki N K (2005). Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res 11, 8055-8062.
- Hartmann S, Meyer T J, Brands R C, Haubitz I R, Linz C, Seher A, Kubler A C, Muller-Richter U D (2015). MAGE-A expression clusters and antineoplastic treatment in head and neck cancer. Int. J Mol. Med. 35, 1675-1682.
- Hasegawa H, Mori M, Haraguchi M, Ueo H, Sugimachi K, Akiyoshi T (1998). Expression spectrum of melanoma antigen-encoding gene family members in colorectal carcinoma. Arch. Pathol. Lab Med. 122, 551-554.
- Hussein Y M, Morad F E, Gameel M A, Emam W A, El Sawy W H, El Tarhouny S A, Bayomy E S, Raafat N (2012). MAGE-4 gene m-RNA and TGF in blood as potential biochemical markers for HCC in HCV-infected patients. Med. Oncol 29, 3055-3062.
- Jacobs J F, Grauer O M, Brasseur F, Hoogerbrugge P M, Wesseling P, Gidding C E, van de Rakt M W, Figdor C G, Coulie P G, de Vries I J, Adema G J (2008). Selective cancer-germ-line gene expression in pediatric brain tumors. J Neurooncol. 88, 273-280.
- Jia Z C, Ni B, Huang Z M, Tian Y, Tang J, Wang J X, Fu X L, Wu Y Z (2010). Identification of two novel HLA-A*0201-restricted CTL epitopes derived from MAGE-A4. Clin Dev. Immunol. 2010, 567594.
- Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K, Sugino S, Ueda S, Ishikawa T, Kokura S, Naota H, Ohishi K, Shiraishi T, Inoue N, Tanabe M, Kidokoro T, Yoshioka H, Tomura D, Nukaya I, Mineno J, Takesako K, Katayama N, Shiku H (2015). Adoptive Transfer of MAGE-A4 T-cell Receptor Gene-Transduced Lymphocytes in Patients with Recurrent Esophageal Cancer. Clin. Cancer Res.
- Kang J, Lee H J, Kim J, Lee J J, Maeng L S (2015). Dysregulation of X chromosome inactivation in high grade ovarian serous adenocarcinoma. PLoS. ONE. 10, e0118927.
- Kawagoe H, Yamada A, Matsumoto H, Ito M, Ushijima K, Nishida T, Yakushiji M, Itoh K (2000). Serum MAGE-4 protein in ovarian cancer patients. Gynecol. Oncol 76, 336-339.
- Kim K, Cho Y M, Park B H, Lee J L, Ro J Y, Go H, Shim J W (2015). Histological and immunohistochemical markers for progression prediction in transurethrally resected high-grade non-muscle invasive bladder cancer. Int. J Clin Exp. Pathol. 8, 743-750.
- Kobayashi T, Lonchay C, Colau D, Demotte N, Boon T, van der Bruggen P (2003). New MAGE-4 antigenic peptide recognized by cytolytic T lymphocytes on HLA-A1 tumor cells. Tissue Antigens 62, 426-432.
- Kocher T, Zheng M, Bolli M, Simon R, Forster T, Schultz-Thater E, Remmel E, Noppen C, Schmid U, Ackermann D, Mihatsch M J, Gasser T, Heberer M, Sauter G, Spagnoli G C (2002). Prognostic relevance of MAGE-A4 tumor antigen expression in transitional cell carcinoma of the urinary bladder: a tissue microarray study.
Int. J Cancer 100, 702-705. - Kubuschok B, Xie X, Jesnowski R, Preuss K D, Romeike B F, Neumann F, Regitz E, Pistorius G, Schilling M, Scheunemann P, lzbicki J R, Lohr J M, Pfreundschuh M (2004). Expression of cancer testis antigens in pancreatic carcinoma cell lines, pancreatic adenocarcinoma and chronic pancreatitis. Int. J Cancer 109, 568-575.
- Li J, Yang Y, Fujie T, Tanaka F, Mimori K, Haraguchi M, Ueo H, Mori M, Akiyoshi T (1997). Expression of the MAGE gene family in human gastric carcinoma. Anticancer Res 17, 3559-3563.
- Li M, Yuan Y H, Han Y, Liu Y X, Yan L, Wang Y, Gu J (2005). Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue. Clin Cancer Res 11, 1809-1814.
- Lifantseva N, Koltsova A, Krylova T, Yakovleva T, Poljanskaya G, Gordeeva 0 (2011). Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks. Stem Cells Int. 2011, 795239.
- Luftl M, Schuler G, Jungbluth A A (2004). Melanoma or not? Cancer testis antigens may help. Br. J Dermatol. 151, 1213-1218.
- Lin J, Lin L, Thomas D G, Greenson J K, Giordano T J, Robinson G S, Barve R A, Weishaar F A, Taylor J M, Orringer M B, Beer D G (2004). Melanoma-associated antigens in esophageal adenocarcinoma: identification of novel MAGE-A10 splice variants.
Clin Cancer Res 10, 5708-5716. - Liu W, Cheng S, Asa S L, Ezzat S (2008). The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis. Cancer Res 68, 8104-8112.
- Marcar L, Ihrig B, Hourihan J, Bray S E, Quinlan P R, Jordan L B, Thompson A M, Hupp T R, Meek D W (2015). MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4. PLoS. ONE. 10, e0127713.
- Marcar L, Maclaine N J, Hupp T R, Meek D W (2010a). Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin. Cancer Res 70, 10362-10370.
- Marcar L, Maclaine N J, Hupp T R, Meek D W (2010b). Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin. Cancer Res 70, 10362-10370.
- Melo D H, Mamede R C, Neder L, Saggioro F P, Figueiredo D L, da Silva W A J, Jungbluth A A, Zago M A (2011). Expression of MAGE-A4 and MAGE-C1 tumor-associated antigen in benign and malignant thyroid diseases. Head Neck 33, 1426-1432.
- Mischo A, Kubuschok B, Ertan K, Preuss K D, Romeike B, Regitz E, Schormann C, de B D, Wadle A, Neumann F, Schmidt W, Renner C, Pfreundschuh M (2006). Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. Int. J Cancer 118, 696-703.
- Mitchell R T, Camacho-Moll E, MacDonald J, Anderson R A, Kelnar C J, O'Donnell M, Sharpe R M, Smith L B, Grigor K M, Wallace W H, Stoop H, Wolffenbuttel K P, Donat R, Saunders P T, Looijenga L H (2014). Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Mod. Pathol. 27, 1255-1266.
- Miyahara Y, Naota H, Wang L, Hiasa A, Goto M, Watanabe M, Kitano S, Okumura S, Takemitsu T, Yuta A, Majima Y, Lemonnier F A, Boon T, Shiku H (2005). Determination of cellularly processed HLA-A2402-restricted novel CTL epitopes derived from two cancer germ line genes, MAGE-A4 and SAGE. Clin Cancer Res 11, 5581-5589.
- Montoro J R, Mamede R C, Neder S L, Saggioro F P, Figueiredo D L, Silva W A, Jr., Jungbluth A A, Spagnoli G C, Zago M A (2012). Expression of cancer-testis antigens MAGE-A4 and MAGE-C1 in oral squamous cell carcinoma. Head Neck 34, 1123-1128.
- Monte M, Simonatto M, Peche L Y, Bublik D R, Gobessi S, Pierotti M A, Rodolfo M, Schneider C (2006). MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc. Natl. Acad. Sci. U. S. A 103, 11160-11165.
- Nagao T, Higashitsuji H, Nonoguchi K, Sakurai T, Dawson S, Mayer R J, Itoh K, Fujita J (2003). MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity. J Biol Chem 278, 10668-10674.
- Naota H, Miyahara Y, Okumura S, Kuzushima K, Akatsuka Y, Hiasa A, Kitano S, Takahashi T, Yuta A, Majima Y, Shiku H (2006). Generation of peptide-specific CD8+ T-cells by phytohemagglutinin-stimulated antigen-mRNA-transduced CD4+ T-cells. J Immunol. Methods 314, 54-66.
- Nishikawa H, Maeda Y, Ishida T, Gnjatic S, Sato E, Mori F, Sugiyama D, Ito A, Fukumori Y, Utsunomiya A, Inagaki H, Old L J, Ueda R, Sakaguchi S (2012). Cancer/testis antigens are novel targets of immunotherapy for adult T-cell leukemia/lymphoma. Blood 119, 3097-3104.
- Nishimura S, Fujita M, Terata N, Tani T, Kodama M, Itoh K (1997). Expression of MAGE genes in colorectal carcinomas. Nihon Rinsho Meneki.
Gakkai Kaishi 20, 95-101. - Oba-Shinjo S M, Caballero O L, Jungbluth A A, Rosemberg S, Old L J, Simpson A J, Marie S K (2008). Cancer-testis (C T) antigen expression in medulloblastoma. Cancer Immun. 8, 7.
- Ohkuri T, Wakita D, Chamoto K, Togashi Y, Kitamura H, Nishimura T (2009). Identification of novel helper epitopes of MAGE-A4 tumor antigen: useful tool for the propagation of Th1 cells.
Br. J Cancer 100, 1135-1143. - Ottaviani S, Colau D, van der Bruggen P, van der Bruggen P (2006). A new MAGE-4 antigenic peptide recognized by cytolytic T lymphocytes on HLA-A24 carcinoma cells. Cancer Immunol. Immunother. 55, 867-872.
- Otte M, Zafrakas M, Riethdorf L, Pichlmeier U, Loning T, Janicke F, Pantel K (2001). MAGE-A gene expression pattern in primary breast cancer. Cancer Res 61, 6682-6687.
- Peikert T, Specks U, Farver C, Erzurum S C, Comhair S A (2006). Melanoma antigen A4 is expressed in non-small cell lung cancers and promotes apoptosis. Cancer Res 66, 4693-4700.
- Peng J R, Chen H S, Mou D C, Cao J, Cong X, Qin L L, Wei L, Leng X S, Wang Y, Chen W F (2005). Expression of cancer/testis (C T) antigens in Chinese hepatocellular carcinoma and its correlation with clinical parameters. Cancer Lett. 219, 223-232.
- Perez D, Herrmann T, Jungbluth A A, Samartzis P, Spagnoli G, Demartines N, Clavien P A, Marino S, Seifert B, Jaeger D (2008). Cancer testis antigen expression in gastrointestinal stromal tumors: new markers for early recurrence. Int. J Cancer 123, 1551-1555.
- Prasad M L, Jungbluth A A, Patel S G, Iversen K, Hoshaw-Woodard S, Busam K J (2004). Expression and significance of cancer testis antigens in primary mucosal melanoma of the head and neck. Head Neck 26, 1053-1057.
- Quillien V, Raoul J L, Heresbach D, Collet B, Toujas L, Brasseur F (1997). Expression of MAGE genes in esophageal squamous-cell carcinoma. Anticancer Res. 17, 387-391.
- Rammensee H G, Bachmann J, Emmerich N P, Bachor O A, Stevanovic S (1999). SYFPEITHI: database for MHC ligands and peptide motifs.
Immunogenetics 50, 213-219. - Rammensee H G, Bachmann J, Stevanovic S (1997). MHC Ligands and Peptide Motifs. (Heidelberg, Germany: Springer-Verlag).
- Resnick M B, Sabo E, Kondratev S, Kerner H, Spagnoli G C, Yakirevich E (2002). Cancer-testis antigen expression in uterine malignancies with an emphasis on carcinosarcomas and papillary serous carcinomas. Int. J Cancer 101, 190-195.
- Ries J, Schultze-Mosgau S, Neukam F, Diebel E, Wiltfang J (2005). Investigation of the expression of melanoma antigen-encoding genes (MAGE-A1 to -A6) in oral squamous cell carcinomas to determine potential targets for gene-based cancer immunotherapy. Int. J Oncol. 26, 817-824.
- Roch N, Kutup A, Vashist Y, Yekebas E, Kalinin V, Izbicki J R (2010). Coexpression of MAGE-A peptides and HLA class I molecules in hepatocellular carcinoma. Anticancer Res 30, 1617-1623.
- Saito T, Wada H, Yamasaki M, Miyata H, Nishikawa H, Sato E, Kageyama S, Shiku H, Mori M, Doki Y (2014). High expression of MAGE-A4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine 32, 5901-5907.
- Sakurai T, Itoh K, Higashitsuji H, Nagao T, Nonoguchi K, Chiba T, Fujita J (2004). A cleaved form of MAGE-A4 binds to Miz-1 and induces apoptosis in human cells. J Biol Chem 279, 15505-15514.
- Sarcevic B, Spagnoli G C, Terracciano L, Schultz-Thater E, Heberer M, Gamulin M, Krajina Z, Oresic T, Separovic R, Juretic A (2003). Expression of cancer/testis tumor associated antigens in cervical squamous cell carcinoma. Oncology 64, 443-449.
- Schirmer U, Fiegl H, Pfeifer M, Zeimet A G, Muller-Holzner E, Bode P K, Tischler V, Altevogt P (2013). Epigenetic regulation of L1CAM in endometrial carcinoma: comparison to cancer-testis (CT-X) antigens. BMC. Cancer 13, 156.
- Shafer J A, Cruz C R, Leen A M, Ku S, Lu A, Rousseau A, Heslop H E, Rooney C M, Bollard C M, Foster A E (2010). Antigen-specific cytotoxic T lymphocytes can target chemoresistant side-population tumor cells in Hodgkin lymphoma. Leuk. Lymphoma 51, 870-880.
- Sharma P, Shen Y, Wen S, Bajorin D F, Reuter V E, Old L J, Jungbluth A A (2006). Cancer-testis antigens: expression and correlation with survival in human urothelial carcinoma.
Clin Cancer Res 12, 5442-5447. - Shichijo S, Hoshino T, Koufuji K, Hayashi A, Kawamoto M, Kikuchi M, Higuchi T, Ichiki M, Oizumi K, Itoh K (1997). Detection of MAGE-4 protein in sera of lung cancer patients. Jpn. J Cancer Res 88, 414-419.
- Shigematsu Y, Hanagiri T, Shiota H, Kuroda K, Baba T, Mizukami M, So T, Ichiki Y, Yasuda M, So T, Takenoyama M, Yasumoto K (2010). Clinical significance of cancer/testis antigens expression in patients with non-small cell lung cancer. Lung Cancer 68, 105-110.
- Shirakura Y, Mizuno Y, Wang L, Imai N, Amaike C, Sato E, Ito M, Nukaya I, Mineno J, Takesako K, Ikeda H, Shiku H (2012). T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/gammacnull mice. Cancer Sci. 103, 17-25.
- Simpson A J, Caballero O L, Jungbluth A, Chen Y T, Old L J (2005). Cancer/testis antigens, gametogenesis and cancer. Nat Rev. Cancer 5, 615-625.
- Soga N, Hori Y, Yamakado K, Ikeda H, Imai N, Kageyama S, Nakase K, Yuta A, Hayashi N, Shiku H, Sugimura Y (2013). Limited expression of cancer-testis antigens in renal cell carcinoma patients. Mol.
Clin Oncol 1, 326-330. - Su C, Xu Y, Li X, Ren S, Zhao C, Hou L, Ye Z, Zhou C (2015). Predictive and prognostic effect of CD133 and cancer-testis antigens in stage Ib-IIIA non-small cell lung cancer. Int. J Clin Exp. Pathol. 8, 5509-5518.
- Takahashi N, Ohkuri T, Homma S, Ohtake J, Wakita D, Togashi Y, Kitamura H, Todo S, Nishimura T (2012). First clinical trial of cancer vaccine therapy with artificially synthesized helper/killer-hybrid epitope long peptide of MAGE-A4 cancer antigen. Cancer Sci. 103, 150-153.
- Tahara K, Mori M, Sadanaga N, Sakamoto Y, Kitano S, Makuuchi M (1999b). Expression of the MAGE gene family in human hepatocellular carcinoma 1999. Cancer 85, 1234-1240.
- Tanaka F, Mori M, Li J, Fujie T, Mimori K, Haraguchi M, Tanaka Y, Mafune K, Akiyoshi T (1997). High frequency of the expression of the MAGE gene family in human esophageal carcinoma.
Int. J Oncol 10, 1113-1117. - Tsuzurahara S, Sata M, Iwamoto O, Shichijo S, Kojiro M, Tanikawa K, Itoh K (1997). Detection of MAGE-4 protein in the sera of patients with hepatitis-C virus-associated hepatocellular carcinoma and liver cirrhosis. Jpn. J Cancer Res 88, 915-918.
- Wang M, Li J, Wang L, Chen X, Zhang Z, Yue D, Ping Y, Shi X, Huang L, Zhang T, Yang L, Zhao Y, Ma X, Li D, Fan Z, Zhao L, Tang Z, Zhai W, Zhang B, Zhang Y (2015). Combined cancer testis antigens enhanced prediction accuracy for prognosis of patients with hepatocellular carcinoma. Int. J Clin Exp. Pathol. 8, 3513-3528.
- Wilson E M (2010). Androgen receptor molecular biology and potential targets in prostate cancer. Ther. Adv. Urol. 2, 105-117.
- Wolff A C, Hammond M E, Hicks D G, Dowsett M, McShane L M, Allison K H, Allred D C, Bartlett J M, Bilous M, Fitzgibbons P, Hanna W, Jenkins R B, Mangu P B, Paik S, Perez E A, Press M F, Spears P A, Vance G H, Viale G, Hayes D F (2013). Recommendations for human epidermal
growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31, 3997-4013. - Wong P P, Yeoh C C, Ahmad A S, Chelala C, Gillett C, Speirs V, Jones J L, Hurst H C (2014). Identification of MAGEA antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene 33, 4579-4588.
- Wu Z Y, Gao Y F, Wu Y H, Liu W, Sun M, Zhai M X, Qi Y M, Ye Y (2011). Identification of a novel CD8+ T-cell epitope derived from cancer-testis antigen MAGE-4 in oesophageal carcinoma. Scand. J Immunol. 74, 561-567.
- Yakirevich E, Sabo E, Lavie O, Mazareb S, Spagnoli G C, Resnick M B (2003). Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens in serous ovarian neoplasms. Clin Cancer Res 9, 6453-6460.
- Yang B, O'Herrin S M, Wu J, Reagan-Shaw S, Ma Y, Bhat K M, Gravekamp C, Setaluri V, Peters N, Hoffmann F M, Peng H, Ivanov A V, Simpson A J, Longley B J (2007). MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 67, 9954-9962.
- Yamada R, Takahashi A, Torigoe T, Morita R, Tamura Y, Tsukahara T, Kanaseki T, Kubo T, Watarai K, Kondo T, Hirohashi Y, Sato N (2013). Preferential expression of cancer/testis genes in cancer stem-like cells: proposal of a novel sub-category, cancer/testis/stem gene. Tissue Antigens 81, 428-434.
- Yoshida N, Abe H, Ohkuri T, Wakita D, Sato M, Noguchi D, Miyamoto M, Morikawa T, Kondo S, Ikeda H, Nishimura T (2006). Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens and T-cell infiltration in non-small cell lung carcinoma and their prognostic significance. Int. J Oncol 28, 1089-1098.
- Zhang Y, Stroobant V, Russo V, Boon T, van der Bruggen P (2002). A MAGE-A4 peptide presented by HLA-B37 is recognized on human tumors by cytolytic T lymphocytes.
Tissue Antigens 60, 365-371. - Zimmermann A K, Imig J, Klar A, Renner C, Korol D, Fink D, Stadlmann S, Singer G, Knuth A, Moch H, Caduff R (2013). Expression of MAGE-C1/CT7 and selected cancer/testis antigens in ovarian borderline tumours and primary and recurrent ovarian carcinomas. Virchows Arch. 462, 565-574.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/681,472 US20200085930A1 (en) | 2016-03-16 | 2019-11-12 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US18/490,581 US20240123044A1 (en) | 2016-03-16 | 2023-10-19 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US18/533,733 US20240100137A1 (en) | 2016-03-16 | 2023-12-08 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662308944P | 2016-03-16 | 2016-03-16 | |
GB1604458.8 | 2016-03-16 | ||
GBGB1604458.8A GB201604458D0 (en) | 2016-03-16 | 2016-03-16 | Peptides and combination of peptides for use in immunotherapy against cancers |
US15/460,396 US20170296641A1 (en) | 2016-03-16 | 2017-03-16 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US16/681,472 US20200085930A1 (en) | 2016-03-16 | 2019-11-12 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/460,396 Continuation US20170296641A1 (en) | 2016-03-16 | 2017-03-16 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/490,581 Division US20240123044A1 (en) | 2016-03-16 | 2023-10-19 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US18/533,733 Continuation US20240100137A1 (en) | 2016-03-16 | 2023-12-08 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200085930A1 true US20200085930A1 (en) | 2020-03-19 |
Family
ID=55952389
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/460,396 Abandoned US20170296641A1 (en) | 2016-03-16 | 2017-03-16 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US16/681,472 Abandoned US20200085930A1 (en) | 2016-03-16 | 2019-11-12 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US18/490,581 Pending US20240123044A1 (en) | 2016-03-16 | 2023-10-19 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US18/533,733 Pending US20240100137A1 (en) | 2016-03-16 | 2023-12-08 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/460,396 Abandoned US20170296641A1 (en) | 2016-03-16 | 2017-03-16 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/490,581 Pending US20240123044A1 (en) | 2016-03-16 | 2023-10-19 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
US18/533,733 Pending US20240100137A1 (en) | 2016-03-16 | 2023-12-08 | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers |
Country Status (33)
Country | Link |
---|---|
US (4) | US20170296641A1 (en) |
EP (2) | EP4180450A1 (en) |
JP (2) | JP2019515650A (en) |
KR (2) | KR20180121530A (en) |
CN (1) | CN108779149A (en) |
AU (3) | AU2017235364B2 (en) |
BR (1) | BR112018017022A2 (en) |
CA (1) | CA3016410A1 (en) |
CL (2) | CL2018002591A1 (en) |
CO (1) | CO2018010009A2 (en) |
CR (1) | CR20180491A (en) |
DK (1) | DK3430027T5 (en) |
EA (1) | EA201891701A1 (en) |
ES (1) | ES2965011T3 (en) |
FI (1) | FI3430027T3 (en) |
GB (1) | GB201604458D0 (en) |
HR (1) | HRP20231570T1 (en) |
HU (1) | HUE064592T2 (en) |
IL (1) | IL261785A (en) |
LT (1) | LT3430027T (en) |
MA (2) | MA43719B1 (en) |
MD (1) | MD3430027T2 (en) |
MX (1) | MX2018011215A (en) |
MY (1) | MY198565A (en) |
PE (1) | PE20181824A1 (en) |
PH (1) | PH12018501865A1 (en) |
PL (1) | PL3430027T3 (en) |
PT (1) | PT3430027T (en) |
RS (1) | RS64907B1 (en) |
SG (2) | SG10202006119TA (en) |
SI (1) | SI3430027T1 (en) |
UA (1) | UA128576C2 (en) |
WO (1) | WO2017157972A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020243134A1 (en) | 2019-05-27 | 2020-12-03 | Immatics US, Inc. | Viral vectors and their use in adoptive cellular therapy |
WO2020247802A1 (en) | 2019-06-06 | 2020-12-10 | Immatics US, Inc. | Methods for manufacturing t cells by direct sorting and compositions thereof |
US11117951B2 (en) | 2016-05-25 | 2021-09-14 | Immatics Biotechnologies Gmbh | Peptides, combination of peptides as targets and for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers |
DE102021100038A1 (en) | 2020-12-31 | 2022-06-30 | Immatics US, Inc. | MODIFIED CD8 POLYPEPTIDES, COMPOSITIONS AND METHODS OF USE THEREOF |
WO2022147029A2 (en) | 2020-12-31 | 2022-07-07 | Immatics US, Inc. | Cd8 polypeptides, compositions, and methods of using thereof |
WO2022233957A1 (en) | 2021-05-05 | 2022-11-10 | Immatics Biotechnologies Gmbh | Bma031 antigen binding polypeptides |
WO2023212691A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | DOMINANT NEGATIVE TGFβ RECEPTOR POLYPEPTIDES, CD8 POLYPEPTIDES, CELLS, COMPOSITIONS, AND METHODS OF USING THEREOF |
WO2023212697A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof |
WO2023212655A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | Il-12 polypeptides, il-15 polypeptides, il-18 polypeptides, cd8 polypeptides, compositions, and methods of using thereof |
WO2023215825A1 (en) | 2022-05-05 | 2023-11-09 | Immatics US, Inc. | Methods for improving t cell efficacy |
US11840577B2 (en) | 2019-08-02 | 2023-12-12 | Immatics Biotechnologies Gmbh | Antigen binding proteins specifically binding MAGE-A |
US11897936B2 (en) | 2016-05-25 | 2024-02-13 | Immatics Biotechnologies Gmbh | Peptides, combination of peptides as targets and for use in immunotherapy |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116731156A (en) * | 2016-03-16 | 2023-09-12 | 伊玛提克斯生物技术有限公司 | Transfected T cells and T cell receptors for cancer immunotherapy |
EP3539562A1 (en) | 2018-03-12 | 2019-09-18 | Eberhard Karls Universität Tübingen Medizinische Fakultät | Immunotherapeutic peptides |
DE102018108612A1 (en) * | 2018-03-21 | 2019-09-26 | Immatics US, Inc. | METHOD FOR INCREASING PERSISTENCE OF ADOPTIVELY INFUNDED T CELLS |
WO2020136060A1 (en) * | 2018-12-28 | 2020-07-02 | F. Hoffmann-La Roche Ag | A peptide-mhc-i-antibody fusion protein for therapeutic use in a patient with amplified immune response |
EP3827840A1 (en) * | 2019-11-29 | 2021-06-02 | Academisch Ziekenhuis Leiden h.o.d.n. LUMC | Teipp peptide variant and uses thereof |
CN113667001B (en) * | 2021-03-24 | 2023-03-31 | 深圳市新靶向生物科技有限公司 | Antigenic peptide related to lung cancer driver gene mutation and application thereof |
CN113087801B (en) * | 2021-04-07 | 2022-07-05 | 深圳市核子基因科技有限公司 | Kit for jointly detecting lung cancer by using nucleic acid and antibody |
CN114230636B (en) * | 2021-11-12 | 2023-04-25 | 四川大学 | Polypeptide and application thereof, and medicine containing polypeptide |
CN115785208B (en) * | 2022-06-10 | 2024-07-12 | 河北博海生物工程开发有限公司 | Lung cancer specific molecular target 01 and application thereof |
CN115785207B (en) * | 2022-06-10 | 2024-08-30 | 河北博海生物工程开发有限公司 | Lung cancer specific molecular target 02 and application thereof |
WO2024077601A1 (en) * | 2022-10-14 | 2024-04-18 | Guangdong Tcrcure Biopharma Technology Co., Ltd. | Peptide vaccines against glioma and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110229504A1 (en) * | 2010-03-19 | 2011-09-22 | Immatics Biotechnologies Gmbh | Novel immunotherapy against several tumors including gastrointestinal and gastric cancer |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2273701A (en) * | 1999-12-13 | 2001-06-18 | Epimmune, Inc. | Hla class i a2 tumor associated antigen peptides and vaccine compositions |
ATE389668T1 (en) * | 2000-07-31 | 2008-04-15 | Greenpeptide Co Ltd | TUMOR ANTIGENS |
EP1859266A4 (en) * | 2005-02-24 | 2010-07-28 | Cemines Inc | Compositions and methods for classifying biological samples |
PL2562183T3 (en) * | 2007-07-27 | 2016-03-31 | Immatics Biotechnologies Gmbh | Novel immunogenic epitopes for immunotherapy |
HUE024541T2 (en) * | 2008-05-14 | 2016-01-28 | Immatics Biotechnologies Gmbh | Novel and powerful MHC-class II peptides derived from survivin and neurocan |
TW201008574A (en) * | 2008-08-19 | 2010-03-01 | Oncotherapy Science Inc | INHBB epitope peptides and vaccines containing the same |
WO2011066265A1 (en) * | 2009-11-25 | 2011-06-03 | Ludwig Institute For Cancer Research Ltd. | Cancer testis antigens as biomarkers in non-small cell lung cancer |
CN101870725B (en) * | 2010-06-29 | 2012-06-27 | 郑州大学 | MAGE (Melanoma Antigen Gene)-4 anti-tumor CTL (Cytotoxic T Lymphocyte) epitope peptide and application thereof |
CA2847332A1 (en) * | 2011-08-31 | 2013-03-07 | Mie University | Vaccine preparation for cancer treatment |
TWI777195B (en) * | 2013-08-05 | 2022-09-11 | 德商伊瑪提克斯生物科技有限公司 | Novel peptides, cells, and their use against several tumors, methods for production thereof and pharmaceutical composition comprising the same |
GB201319446D0 (en) * | 2013-11-04 | 2013-12-18 | Immatics Biotechnologies Gmbh | Personalized immunotherapy against several neuronal and brain tumors |
WO2015172843A1 (en) * | 2014-05-16 | 2015-11-19 | Biontech Diagnostics Gmbh | Methods and kits for the diagnosis of cancer |
JP6599450B2 (en) * | 2014-10-02 | 2019-10-30 | アメリカ合衆国 | Method for isolating T cells having antigen specificity for a cancer specific mutation |
CN105219714A (en) * | 2015-10-20 | 2016-01-06 | 上海隆耀生物科技有限公司 | A kind of test kit for activating lung cancer specific immune response |
CN116731156A (en) * | 2016-03-16 | 2023-09-12 | 伊玛提克斯生物技术有限公司 | Transfected T cells and T cell receptors for cancer immunotherapy |
-
2016
- 2016-03-16 GB GBGB1604458.8A patent/GB201604458D0/en not_active Ceased
-
2017
- 2017-03-15 PT PT177109048T patent/PT3430027T/en unknown
- 2017-03-15 CN CN201780017499.9A patent/CN108779149A/en active Pending
- 2017-03-15 MA MA43719A patent/MA43719B1/en unknown
- 2017-03-15 PL PL17710904.8T patent/PL3430027T3/en unknown
- 2017-03-15 CA CA3016410A patent/CA3016410A1/en active Pending
- 2017-03-15 DK DK17710904.8T patent/DK3430027T5/en active
- 2017-03-15 SG SG10202006119TA patent/SG10202006119TA/en unknown
- 2017-03-15 MA MA43327A patent/MA43327A1/en unknown
- 2017-03-15 EA EA201891701A patent/EA201891701A1/en unknown
- 2017-03-15 UA UAA201808859A patent/UA128576C2/en unknown
- 2017-03-15 CR CR20180491A patent/CR20180491A/en unknown
- 2017-03-15 EP EP22201204.9A patent/EP4180450A1/en active Pending
- 2017-03-15 HU HUE17710904A patent/HUE064592T2/en unknown
- 2017-03-15 JP JP2018547374A patent/JP2019515650A/en active Pending
- 2017-03-15 ES ES17710904T patent/ES2965011T3/en active Active
- 2017-03-15 PE PE2018001795A patent/PE20181824A1/en unknown
- 2017-03-15 KR KR1020187026097A patent/KR20180121530A/en not_active Application Discontinuation
- 2017-03-15 SI SI201731451T patent/SI3430027T1/en unknown
- 2017-03-15 AU AU2017235364A patent/AU2017235364B2/en not_active Expired - Fee Related
- 2017-03-15 SG SG11201806905UA patent/SG11201806905UA/en unknown
- 2017-03-15 MX MX2018011215A patent/MX2018011215A/en unknown
- 2017-03-15 KR KR1020227043762A patent/KR20230004914A/en not_active Application Discontinuation
- 2017-03-15 MD MDE20190100T patent/MD3430027T2/en unknown
- 2017-03-15 WO PCT/EP2017/056049 patent/WO2017157972A1/en active Application Filing
- 2017-03-15 FI FIEP17710904.8T patent/FI3430027T3/en active
- 2017-03-15 MY MYPI2018703090A patent/MY198565A/en unknown
- 2017-03-15 LT LTEPPCT/EP2017/056049T patent/LT3430027T/en unknown
- 2017-03-15 RS RS20231154A patent/RS64907B1/en unknown
- 2017-03-15 BR BR112018017022A patent/BR112018017022A2/en unknown
- 2017-03-15 HR HRP20231570TT patent/HRP20231570T1/en unknown
- 2017-03-15 EP EP17710904.8A patent/EP3430027B1/en active Active
- 2017-03-16 US US15/460,396 patent/US20170296641A1/en not_active Abandoned
-
2018
- 2018-09-03 PH PH12018501865A patent/PH12018501865A1/en unknown
- 2018-09-11 CL CL2018002591A patent/CL2018002591A1/en unknown
- 2018-09-15 IL IL261785A patent/IL261785A/en unknown
- 2018-09-21 CO CONC2018/0010009A patent/CO2018010009A2/en unknown
-
2019
- 2019-11-12 US US16/681,472 patent/US20200085930A1/en not_active Abandoned
-
2022
- 2022-04-06 AU AU2022202307A patent/AU2022202307B2/en active Active
- 2022-12-15 AU AU2022287621A patent/AU2022287621B2/en active Active
-
2023
- 2023-01-12 JP JP2023003167A patent/JP2023055722A/en active Pending
- 2023-05-10 CL CL2023001346A patent/CL2023001346A1/en unknown
- 2023-10-19 US US18/490,581 patent/US20240123044A1/en active Pending
- 2023-12-08 US US18/533,733 patent/US20240100137A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110229504A1 (en) * | 2010-03-19 | 2011-09-22 | Immatics Biotechnologies Gmbh | Novel immunotherapy against several tumors including gastrointestinal and gastric cancer |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11117951B2 (en) | 2016-05-25 | 2021-09-14 | Immatics Biotechnologies Gmbh | Peptides, combination of peptides as targets and for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers |
US11897935B2 (en) | 2016-05-25 | 2024-02-13 | Immatics Biotechnologies Gmbh | Peptides, combination of peptides as targets and for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers |
US11897936B2 (en) | 2016-05-25 | 2024-02-13 | Immatics Biotechnologies Gmbh | Peptides, combination of peptides as targets and for use in immunotherapy |
WO2020243134A1 (en) | 2019-05-27 | 2020-12-03 | Immatics US, Inc. | Viral vectors and their use in adoptive cellular therapy |
WO2020247802A1 (en) | 2019-06-06 | 2020-12-10 | Immatics US, Inc. | Methods for manufacturing t cells by direct sorting and compositions thereof |
US11840577B2 (en) | 2019-08-02 | 2023-12-12 | Immatics Biotechnologies Gmbh | Antigen binding proteins specifically binding MAGE-A |
DE102021100038A1 (en) | 2020-12-31 | 2022-06-30 | Immatics US, Inc. | MODIFIED CD8 POLYPEPTIDES, COMPOSITIONS AND METHODS OF USE THEREOF |
WO2022147029A2 (en) | 2020-12-31 | 2022-07-07 | Immatics US, Inc. | Cd8 polypeptides, compositions, and methods of using thereof |
WO2022233957A1 (en) | 2021-05-05 | 2022-11-10 | Immatics Biotechnologies Gmbh | Bma031 antigen binding polypeptides |
WO2023212691A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | DOMINANT NEGATIVE TGFβ RECEPTOR POLYPEPTIDES, CD8 POLYPEPTIDES, CELLS, COMPOSITIONS, AND METHODS OF USING THEREOF |
WO2023212655A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | Il-12 polypeptides, il-15 polypeptides, il-18 polypeptides, cd8 polypeptides, compositions, and methods of using thereof |
WO2023212697A1 (en) | 2022-04-28 | 2023-11-02 | Immatics US, Inc. | Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof |
WO2023215825A1 (en) | 2022-05-05 | 2023-11-09 | Immatics US, Inc. | Methods for improving t cell efficacy |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240100137A1 (en) | Peptides and combination of peptides for use in immunotherapy against non-small cell lung cancer and other cancers | |
US10364282B2 (en) | Peptides and combination of peptides for use in immunotherapy against esophageal cancer and other cancers | |
US20240285738A1 (en) | Novel peptides and combination of peptides for use in immunotherapy against cll and other cancers | |
US11608370B2 (en) | Peptides and combination of peptides for use in immunotherapy against esophageal cancer and other cancers | |
US20230201321A1 (en) | Peptides and combination of peptides for use in immunotherapy against cancers | |
US9901629B2 (en) | Immunotherapy against melanoma and other cancers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IMMATICS BIOTECHNOLOGIES GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEINSCHENK, TONI;SCHOOR, OLIVER;MAHR, ANDREA;SIGNING DATES FROM 20170411 TO 20170419;REEL/FRAME:050990/0641 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |