US20200062181A1 - Immersive display - Google Patents

Immersive display Download PDF

Info

Publication number
US20200062181A1
US20200062181A1 US16/673,861 US201916673861A US2020062181A1 US 20200062181 A1 US20200062181 A1 US 20200062181A1 US 201916673861 A US201916673861 A US 201916673861A US 2020062181 A1 US2020062181 A1 US 2020062181A1
Authority
US
United States
Prior art keywords
display
images
user
immersive
immersive display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/673,861
Inventor
Brian Shuster
Gregory A. Piccionelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utherverse Digital Inc
Original Assignee
Utherverse Digital Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utherverse Digital Inc filed Critical Utherverse Digital Inc
Priority to US16/673,861 priority Critical patent/US20200062181A1/en
Publication of US20200062181A1 publication Critical patent/US20200062181A1/en
Priority to US17/174,807 priority patent/US20210162925A1/en
Priority to US17/981,240 priority patent/US20230059458A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • B60K35/22
    • B60K35/28
    • B60K35/29
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • B60K2360/173
    • B60K2360/176
    • B60K2360/182
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2370/00Details of arrangements or adaptations of instruments specially adapted for vehicles, not covered by groups B60K35/00, B60K37/00
    • B60K2370/15Output devices or features thereof
    • B60K2370/152Displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2370/00Details of arrangements or adaptations of instruments specially adapted for vehicles, not covered by groups B60K35/00, B60K37/00
    • B60K2370/16Type of information
    • B60K2370/173Reversing assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2370/00Details of arrangements or adaptations of instruments specially adapted for vehicles, not covered by groups B60K35/00, B60K37/00
    • B60K2370/16Type of information
    • B60K2370/176Camera images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2370/00Details of arrangements or adaptations of instruments specially adapted for vehicles, not covered by groups B60K35/00, B60K37/00
    • B60K2370/18Information management
    • B60K2370/182Distributing information between displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/806Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for aiding parking

Definitions

  • the present disclosure relates to immersive displays such as three-dimensional (3D) displays for displaying virtual or augmented reality environments.
  • immersive displays such as three-dimensional (3D) displays for displaying virtual or augmented reality environments.
  • Immersive displays are becoming increasingly popular for the purpose of playing games in a virtual reality environment. These immersive displays may also be utilized for applications other than gaming, including, for example, augmented reality applications.
  • the virtual world or augmented-reality is currently commonly perceived by the user based on two images, with each of the two images displayed close to a respective one of the user's eyes.
  • Such displays are often head-mounted and in many cases block out some or all of the real environment around the user in order to immerse the user, for example, in the virtual world. Thus, these displays may obstruct or block the user's vision of his or her surroundings.
  • the virtual world or augmented-reality is perceived by the user based on images displayed very close to the user's eyes.
  • a method of controlling an immersive display includes obtaining first images of environment in a first region in front of the immersive display, obtaining second images of environment in a second region outside the first region, which second region is not in front of the immersive display, displaying the first images of the environment on a first area of at least one display of the immersive display to provide a field of view of the environment in front of the immersive display, and displaying the second images of the environment in the second region on a second area of the at least one display to provide images outside the field of view of the environment in front of the immersive display.
  • the first area is delineated from the second area.
  • an immersive display includes a body, at least one display on the inside of the body for displaying images in front of a user's eyes, and a processor coupled to the display.
  • the processor is operable to obtain first images of environment in a first region in front of the immersive display, obtain second images of environment in a second region outside the first region, which second region is not in front of the immersive display, display the first images of the environment on a first area of at least one display of the immersive display to provide a field of view of the environment in front of the immersive display, and display the second images of the environment in the second region on a second area of the at least one display to provide images outside the field of view of the environment in front of the immersive display.
  • the first area is delineated from the second area.
  • FIG. 1 is a system for providing a multi-user virtual event
  • FIG. 2 is a simplified block diagram of an example of an immersive display of the system of FIG. 1 ;
  • FIG. 3 is a flowchart illustrating an example of a method of controlling the display of information on an immersive display.
  • the following describes an immersive display and a method of controlling the immersive display.
  • the method includes obtaining first images of environment in a first region in front of the immersive display, obtaining second images of the environment in a second region outside the first region, which second region is not in front of the immersive display, displaying the first images of the environment on a first area of at least one display of the immersive display to provide a field of view of the environment in front of the immersive display, and displaying the second images of the environment in the second region on a second area of the at least one display to provide images outside the field of view of the environment in front of the immersive display.
  • the first area is delineated from the second area.
  • FIG. 1 A system 100 for providing a multi-user virtual event is illustrated in FIG. 1 .
  • the system includes servers 102 that are coupled to a network 104 or networks, which includes the internet and may optionally include a cellular network through which several client devices, nodes, or terminals may be connected.
  • a network 104 or networks which includes the internet and may optionally include a cellular network through which several client devices, nodes, or terminals may be connected.
  • five client devices are coupled to the network 104 , including desktop computers 106 , 108 , 110 , a laptop computer 112 which is coupled to the network wirelessly through a modem 114 , and a smartphone 116 .
  • the servers 102 store and execute software or firmware and communicate and cooperate with software and firmware on the client devices 106 , 108 , 110 , 112 , 116 via the network.
  • the software and firmware on the client devices 106 , 108 , 110 , 112 , 116 also communicate and cooperate with software and firmware on respective immersive
  • the servers 102 utilizing the software or firmware, provide the virtual environment, which may be a three-dimensional virtual environment.
  • the environment may be any suitable environment for a game, a social network or interaction site, a meeting environment, such as a boardroom or meeting room, a classroom, a conference room or any other room or other scene.
  • the virtual environment provided is dependent on the application and may be dependent on any other suitable factor such as the number of participants.
  • the servers 102 also manage authorization of users via client devices to facilitate participation in the virtual environment by avatars representing the users.
  • avatars enter the virtual environment to take part in or attend an event such as a game, a social network event or interaction, a meeting, class, conference or other event.
  • the images may be provided to the client devices 106 , 108 , 110 , 112 , 116 for display utilizing the immersive displays, which may be, for example, head-mounted displays worn by the users.
  • FIG. 2 A simplified block diagram of an example of an immersive display 200 is shown in FIG. 2 .
  • the immersive display 200 includes multiple components, such as a main processor 202 that controls the overall operation of the immersive display 200 .
  • the immersive display is head mounted.
  • the immersive display may be incorporated into a helmet, such as a bicycle helmet, skateboard helmet, motorcycle helmet, ski or snowboard helmet, or any other suitable helmet.
  • a helmet such as a bicycle helmet, skateboard helmet, motorcycle helmet, ski or snowboard helmet, or any other suitable helmet.
  • the helmet earphones or headphones integrated into the helmet in addition to or in place of a speaker.
  • the main processor 202 interacts with other components of the immersive display 200 , including, for example, a temporary storage device 204 , a memory 206 , a display device 208 , a speaker 210 , an auxiliary input/output (I/O) subsystem 212 , external cameras 214 , one or more internal cameras 216 , one or more microphones 218 , an orientation/movement sensor 220 , one or more proximity sensors 222 , a communication subsystem 224 , short-range communications 226 , a power source 228 , and, optionally, other subsystems 230 .
  • a temporary storage device 204 a temporary storage device 204 , a memory 206 , a display device 208 , a speaker 210 , an auxiliary input/output (I/O) subsystem 212 , external cameras 214 , one or more internal cameras 216 , one or more microphones 218 , an orientation/movement sensor 220 , one or more proximity sensors 222 ,
  • the temporary storage device 204 may be, for example, Random Access Memory (RAM) that stores data that is processed by the main processor 202 .
  • RAM Random Access Memory
  • the memory 204 such as flash memory, is utilized for persistent storage.
  • the immersive display 200 provides video output through the display 208 , which includes an interface, a controller and at least one display.
  • the immersive display may include a pair of displays to display images.
  • the images displayed in this example include a respective image in front of each one of the user's eyes such that a right side image is displayed in front of a user's right eye and a left side image is displayed in front of a user's left eye.
  • output is provided via the speaker 210 or other audio output such as headphones or earphones.
  • the auxiliary input/output (I/O) subsystem 212 includes an interface through which, for example, a USB controller or other peripheral device may be connected.
  • the Input to the immersive display may be provided via external sensors or input devices such as the external cameras 214 mounted on the body of the immersive display 200 .
  • the external cameras 214 may include multiple cameras to obtain images extending around the user, i.e., 360° around the user.
  • the external cameras 214 may also include cameras to obtain images in an upward direction from the user, and in a downward direction from the user.
  • Each of the cameras includes the functional components for operation of the camera, including the lens, the image sensor, and, optionally, a light sensor and light source, such as infrared light emitting diodes (LEDs).
  • LEDs infrared light emitting diodes
  • the cameras provide images of the user's environment or surroundings.
  • the cameras may be one or more of visual light cameras, 3D sensing cameras, light field cameras, forward looking infrared cameras, near infrared cameras, ultraviolet cameras, or other imaging devices.
  • the one or more internal cameras 216 may be mounted on an inside of the body of the immersive display and includes the functional components for operation of each internal camera, including the lens, the image sensor, and a light source, which may be a light source in the non-visible spectrum, such as infrared LEDs. Although the interior of the immersive display 200 may be dark because exterior light is blocked out or partially blocked out, the light source provides sufficient light for use of the internal camera 216 .
  • the one or more microphones may also be mounted in the body of the immersive display 200 to provide input by converting audible information to electrical signals, which may be processed by the main processor 202 and may be transmitted to another electronic device to which the immersive display 200 is coupled.
  • the immersive display may be coupled to a smart-phone, a laptop computer, a tablet, a desktop computer, a game device, and any other suitable electronic device.
  • the main processor 202 also receives signals from the orientation/movement sensor 220 , which is coupled to the body of the immersive display 200 .
  • the orientation/movement sensor may be, for example, an accelerometer, a gyro sensor, or any other suitable sensor or combination of sensors that is or are utilized to detect direction of movement, direction of gravitational forces, and reaction forces so as to determine, for example, the orientation of the immersive display 200 and the movement of the immersive display 200 .
  • the one or more proximity sensors may provide additional input to the main processor 202 to detect the presence of objects that are near or proximal to the sensor and thus to the user when the immersive display 200 is in use.
  • the proximity sensors 222 may be any suitable proximity sensors such as a capacitive or photoelectric proximity sensor.
  • the communication subsystem 224 receives signals from another electronic device such as the client devices 106 , 108 , 110 , 112 , 116 shown in FIG. 1 , and sends signals to the other electronic device to which the immersive display is coupled.
  • the signals from the microphone 218 or signals from the external cameras 216 or from the internal camera 216 may be sent via the communication subsystem 224 .
  • the communication subsystem 224 is also responsible for receiving signals from the other electronic device for processing by the main processor 202 to cause images, which may include video, to be displayed on the display 208 and for audio to be output through the speaker 210 .
  • the immersive display 200 optionally includes short-range communications 226 to perform various communication functions.
  • the immersive display 200 may include BLUETOOTH® or infrared (IR) communications capability, for example, for communicating with a peripheral device or accessory.
  • IR infrared
  • the power source 228 may be one or more rechargeable batteries or a port to an external power supply to power the immersive display 200 .
  • main processor 202 The systems and subsystems that interact with the main processor 202 and are described herein are provided as examples only. Other subsystems 230 may also interact with the main processor 202 .
  • the main processor 202 may be operable to track eye motion.
  • eye motion the user's pupils may be tracked when the immersive display 200 is in use.
  • the eye motion tracking may also facilitate determination of what a user is looking at, for example, by triangulation to determine depth of an object or image that a user is looking at.
  • the internal camera 216 may identify or track changes in muscles or muscle motion around at least one of the user's eyes to identify movement of the eye, or may track changes in shape of a lens of an eye or changes in shape of the lens of each eye to identify a focal distance, facilitating identification of the depth of focus of a user.
  • variable focal optical elements such as the SUPERFOCUSTM glasses may be utilized and controlled digitally to create a more realistic blur effect. Areas that are set to be blurred may be rendered with fewer pixels.
  • the direction that the user is looking may be identified.
  • the direction may be, for example, an angle or angles, such as angular offset or offsets from straight ahead.
  • the direction is identified and the images displayed utilizing the display 208 may be changed or adjusted based on the direction.
  • the main processor 202 is also operable to analyze the images from the internal camera to track or identify a change in facial expression.
  • the main processor 202 may utilize primary facial feature tracking by tracking features such as lips, nose, and eyes. Alternatively, or in addition, movement of parts of the face may be tracked.
  • the main processor 202 may transmit facial expression data or an identification of the expression to the other electronic device to which the immersive display 200 is coupled via the communication subsystem 222 .
  • the main processor 202 is also operable to receive the image data from the external cameras and to transmit the data to the other electronic device, along with metadata for at least key frames for identifying the image data such that the images can be stitched together to provide images of the user's surroundings.
  • the images from each of the cameras can be stitched together to obtain images of the user's entire surroundings.
  • FIG. 3 A flowchart illustrating a method of controlling an immersive display is shown in FIG. 3 .
  • the method may be carried out by software executed, for example, by the main processor 202 of the immersive display 200 , by one or more of the client devices 106 , 108 , 110 , 112 , 116 , or by any combination of the immersive display 200 , a client device and one or more of the servers 102 . Coding of software for carrying out such a method is within the scope of a person of ordinary skill in the art given the present description.
  • the method may contain additional or fewer processes than shown and/or described, and may be performed in a different order.
  • Computer-readable code executable by at least one processor to perform the method may be stored in a computer-readable medium, such as a non-transitory computer-readable medium.
  • Images are obtained at 302 , for example, by processing images from the external cameras 214 of the immersive display 200 .
  • the images are images of the environment that is generally in front of the immersive display 200 .
  • the environment that is generally in front of the immersive display 200 includes images of a peripheral area.
  • the images may include images of the environment extending about 180°.
  • the images may be generally centered on the immersive display 200 or may be centered on a direction that the user is looking or direction of gaze, as determined utilizing the internal camera 216 , for example by eye motion tracking or facial feature tracking.
  • the images obtained may include images for displaying a right side image in front of a right eye and a left side image in front of a left eye of a user of the immersive display 200 to provide a virtual 3-D image for the user.
  • Images of the environment that is not in front of the immersive display, for example, behind the immersive display 200 or to the left or right side of the immersive display 200 are also obtained at 304 .
  • the images may include images of the environment extending about 180° around a back side or rear of the immersive display 200 .
  • images extending 360° around the immersive display 200 are obtained.
  • the images may be obtained by processing images from external cameras 214 that are directed to the rear or to sides of the immersive display 200 .
  • the images may be communicated from another electronic device.
  • images may be obtained utilizing cameras, such as a rearview camera, in a vehicle.
  • the vehicle may be in communication with a respective client device 106 , 108 , 110 , 112 , 114 , or may communicate directly with the immersive display 200 , for example, by BLUETOOTH® communication to send images to the client device or immersive display 200 .
  • the images obtained at 302 and the images obtained at 304 need not be obtained in separate steps. These images may be obtained together, for example by obtaining panoramic views or may be obtained utilizing a 360° camera.
  • the images of the environment that is generally in front of the immersive display 200 are displayed on a first area of the display 208 .
  • the environment is displayed in a first area on each of the display screens.
  • the images are displayed on the display 208 to provide the user with a generally full field of view of the environment generally in front of the immersive display 200 .
  • the view may be a full field of view based on the orientation of the immersive display 200 or based on the direction in which the user is looking.
  • the images of the environment that is not in front of the immersive display are also displayed on the display 208 .
  • the images are displayed to provide a view of the environment that is generally outside the full field of view of the environment in front of the immersive display 200 .
  • the images may be images that are behind the user.
  • the images are displayed in a second area of the display 208 to provide a view of areas that, in the absence of the immersive display 200 , would be out of the field of view of the user.
  • the two areas of the display 208 therefore may display images of the environment extending a complete 360° around the immersive display 200 and therefore around the user.
  • the images are displayed in a second area of the display 208 that is delineated from the first area.
  • the images may be displayed on an image of a rearview mirror, to delineate the images of the environment that is generally in front of the immersive display 200 from the images of the environment that is generally to the rear of the immersive display 200 .
  • the images may also or alternatively be displayed, for example, on an image of a sideview mirror or mirrors.
  • the images may be delineated utilizing delineation lines or borders between the images, or utilizing any other suitable technique to facilitate identification of the images as images of the environment that is generally to the rear of the immersive display 200 .
  • the images displayed in the second area are displayed in response to a user looking in a particular direction.
  • eye tracking or facial tracking may be utilized to determine when a user glances upwardly and, in response to determining that the user glances upwardly, the images may be displayed to provide a view of the environment generally to the rear of the immersive display.
  • the images may also or alternatively be displayed in response to the user glancing to the left or right.
  • the images are not displayed until the user glances toward the delineated area or areas.
  • the images may also be displayed in response to detecting or determining that the vehicle is put in reverse gear, when an object, such as another vehicle is detected in a blind spot, or is detected on one side of a vehicle.
  • the external cameras may also be utilized to detect movement, for example, in an area outside the field of view and the images may be displayed in the delineated area based on the detected movement, for example, or based on proximity of detected movement.
  • the different areas may be displayed utilizing different attributes.
  • the first area in which the displayed images are processed images of the environment generally in front of the immersive display 200 , is displayed utilizing first display attributes.
  • the second area in which processed images from the rear of the immersive display are displayed, is displayed utilizing second display attributes.
  • the two areas may be displayed at different resolutions and different refresh rates.
  • the images in the second area may be displayed at lower resolution and a lower refresh rate.
  • the method illustrated in FIG. 3 is continuous such that the images are continuously updated on the display 208 of the immersive display 200 to display the environment generally in real time or close to real time.
  • data from multiple virtual or real world sources may be aggregated on the display 208 , against a single background.
  • the depth of field for objects from a first source is narrowed and placed behind a similarly narrowed depth of field for objects from a second source.
  • Data from more than two sources may be aggregated.
  • a field may be used as a background object.
  • images from the game or the virtual environment may be displayed within a perceived depth of field of, for example, from 10 centimeters to 3 meters.
  • Images from the real world or augmented reality may be displayed at a perceived depth of field of, for example, from 4 meters to infinity.
  • the images of the environment that are obtained, for example, from the external cameras 214 are displayed in two areas of the display, which areas are delineated from each other, at a perceived depth of field of from 4 meters to infinity.
  • virtual reality or augmented reality is integrated with images of the actual or real environment by, for example, making part of or the entire perceived closest image semi-transparent.
  • a game or virtual environment may be displayed at 50% opacity with an altered and/or slightly or fully flattened depth of field, for example, perceived as from 30 centimeters inches to 3 meters.
  • the actual or real environment may be displayed with an altered and/or slightly or fully flattened depth of field, perceived as from 3.1 meters to infinity.
  • user eye movements may be tracked and utilized to alter the opacity of a portion of the image or images from one source, to invert the foreground and background images, to change the perceived depth or amount of flattening, to make images from one source have negligible depth of field allowing a fuller depth of field in the images from the other source without overlapping, or any suitable combination thereof.
  • images from a virtual environment are displayed on the display 208 of the immersive display 200 at a perceived depth of greater than 3 meters, for example.
  • images are obtained at 302 , for example, by processing images from the external cameras 214 of the immersive display 200 .
  • the images are images of the environment in front of and generally centered on the immersive display.
  • the images include a peripheral area to provide a generally full field of view for the user.
  • Images from behind the immersive display 200 are also obtained at 304 utilizing external cameras 214 .
  • the images of the environment that is generally in front of the immersive display 200 are displayed on a first area of the display 208 , at a depth of up to 3 meters and with an opacity of 50% to provide the user with a generally full field of view of the environment generally in front of the immersive display 200 while facilitating viewing the virtual environment.
  • the images that are from the rear of the immersive display 200 are displayed above the images from the front of the immersive display 200 and separated by a black line to delineate the images.
  • Images are obtained at 302 , for example, by processing images from the external cameras 214 of the immersive display 200 .
  • the images are images of the environment in front of and generally centered on the immersive display.
  • the images include a peripheral area to provide a generally full field of view for the user.
  • Images from behind the car are processed from images received from a rear view camera of the car in communication with the immersive display 200 , for example, via a client device to which the immersive display 200 is coupled.
  • the images of the environment that is generally in front of the immersive display 200 are displayed on a first area of the display 208 to provide a view through the windshield of the car and through a driver side window and a passenger side window of the car.
  • the images that are processed from the rear view camera are displayed on an image of a rear view mirror.
  • the immersive display 200 is integrated into a helmet to provide protection for the user and is worn, for example, while the user is cycling. Images are obtained at 302 , for example, by processing images from the external cameras 214 of the immersive display 200 .
  • the images are images of the environment in front of and generally centered on the immersive display.
  • the images include a peripheral area to provide a generally full field of view for the user.
  • Images from behind the immersive display 200 are also obtained at 304 utilizing external cameras 214 .
  • the images of the environment that is generally in front of the immersive display 200 are displayed on a first area of the display 208 .
  • the images that are from the rear of the immersive display 200 are displayed above a horizon line of the road and are separated, for example, by a line to delineate the images.
  • the views from behind may include a full view of areas not normally visible to the user when looking forward.
  • the images displayed at 208 provide the user with images of the environment behind and to the sides of the immersive display 200 , without requiring the user to turn around or adjust their head position or orientation.
  • views of areas of the environment that are toward a back or rear of the immersive display 200 are displayed in addition to a field of view toward the front of the immersive display 200 .
  • areas that are not visible to the user without the use of the virtual display 200 are displayed and are discernible from the images taken from the front of the immersive display 200 .
  • the images from areas other than in front of the immersive display 200 can be viewed by moving one's eyes and without requiring the user to turn around or adjust their head position or orientation.

Abstract

A method of operating an immersive display includes obtaining first images of environment in a first region in front of the immersive display, obtaining second images of environment in a second region outside the first region, which second region is not in front of the immersive display, displaying the first images of the environment on a first area of at least one display of the immersive display to provide a field of view of the environment in front of the immersive display, and displaying the second images of the environment in the second region on a second area of the at least one display to provide images outside the field of view of the environment in front of the immersive display. The first area is delineated from the second area.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority to and is a continuation of U.S. application Ser. No. 15/206,100, filed Jul. 8, 2016 (U.S. Pat. No. 10,464,482, to be issued on Nov. 5, 2019), which claims priority to U.S. provisional application Ser. No. 62/195,201, filed Jul. 21, 2015, which applications are specifically incorporated herein, in their entirety, by reference.
  • FIELD OF TECHNOLOGY
  • The present disclosure relates to immersive displays such as three-dimensional (3D) displays for displaying virtual or augmented reality environments.
  • BACKGROUND
  • Immersive displays are becoming increasingly popular for the purpose of playing games in a virtual reality environment. These immersive displays may also be utilized for applications other than gaming, including, for example, augmented reality applications. The virtual world or augmented-reality is currently commonly perceived by the user based on two images, with each of the two images displayed close to a respective one of the user's eyes.
  • Such displays are often head-mounted and in many cases block out some or all of the real environment around the user in order to immerse the user, for example, in the virtual world. Thus, these displays may obstruct or block the user's vision of his or her surroundings. The virtual world or augmented-reality is perceived by the user based on images displayed very close to the user's eyes.
  • Improvements in immersive displays and applications or uses of such immersive displays are desirable.
  • SUMMARY
  • According to one aspect, a method of controlling an immersive display is provided. The method includes obtaining first images of environment in a first region in front of the immersive display, obtaining second images of environment in a second region outside the first region, which second region is not in front of the immersive display, displaying the first images of the environment on a first area of at least one display of the immersive display to provide a field of view of the environment in front of the immersive display, and displaying the second images of the environment in the second region on a second area of the at least one display to provide images outside the field of view of the environment in front of the immersive display. The first area is delineated from the second area.
  • According to another aspect, an immersive display is provided. The immersive display includes a body, at least one display on the inside of the body for displaying images in front of a user's eyes, and a processor coupled to the display. The processor is operable to obtain first images of environment in a first region in front of the immersive display, obtain second images of environment in a second region outside the first region, which second region is not in front of the immersive display, display the first images of the environment on a first area of at least one display of the immersive display to provide a field of view of the environment in front of the immersive display, and display the second images of the environment in the second region on a second area of the at least one display to provide images outside the field of view of the environment in front of the immersive display. The first area is delineated from the second area.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present disclosure will now be described, by way of example only, with reference to the attached Figures, in which:
  • FIG. 1 is a system for providing a multi-user virtual event;
  • FIG. 2 is a simplified block diagram of an example of an immersive display of the system of FIG. 1; and
  • FIG. 3 is a flowchart illustrating an example of a method of controlling the display of information on an immersive display.
  • DETAILED DESCRIPTION
  • For simplicity and clarity of illustration, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. Numerous details are set forth to provide an understanding of the examples described herein. The examples may be practiced without these details. In other instances, well-known methods, procedures, and components are not described in detail to avoid obscuring the examples described. The description is not to be considered as limited to the scope of the examples described herein.
  • The following describes an immersive display and a method of controlling the immersive display. The method includes obtaining first images of environment in a first region in front of the immersive display, obtaining second images of the environment in a second region outside the first region, which second region is not in front of the immersive display, displaying the first images of the environment on a first area of at least one display of the immersive display to provide a field of view of the environment in front of the immersive display, and displaying the second images of the environment in the second region on a second area of the at least one display to provide images outside the field of view of the environment in front of the immersive display. The first area is delineated from the second area.
  • A system 100 for providing a multi-user virtual event is illustrated in FIG. 1. The system includes servers 102 that are coupled to a network 104 or networks, which includes the internet and may optionally include a cellular network through which several client devices, nodes, or terminals may be connected. In the example of FIG. 1, five client devices are coupled to the network 104, including desktop computers 106, 108, 110, a laptop computer 112 which is coupled to the network wirelessly through a modem 114, and a smartphone 116. The servers 102 store and execute software or firmware and communicate and cooperate with software and firmware on the client devices 106, 108, 110, 112, 116 via the network. The software and firmware on the client devices 106, 108, 110, 112, 116 also communicate and cooperate with software and firmware on respective immersive displays that may be worn by the users.
  • The servers 102, utilizing the software or firmware, provide the virtual environment, which may be a three-dimensional virtual environment. The environment may be any suitable environment for a game, a social network or interaction site, a meeting environment, such as a boardroom or meeting room, a classroom, a conference room or any other room or other scene. The virtual environment provided is dependent on the application and may be dependent on any other suitable factor such as the number of participants.
  • The servers 102 also manage authorization of users via client devices to facilitate participation in the virtual environment by avatars representing the users. The avatars enter the virtual environment to take part in or attend an event such as a game, a social network event or interaction, a meeting, class, conference or other event.
  • The images, including virtual images and a virtual environment, may be provided to the client devices 106, 108, 110, 112, 116 for display utilizing the immersive displays, which may be, for example, head-mounted displays worn by the users.
  • A simplified block diagram of an example of an immersive display 200 is shown in FIG. 2. The immersive display 200 includes multiple components, such as a main processor 202 that controls the overall operation of the immersive display 200. The immersive display is head mounted.
  • Optionally, the immersive display may be incorporated into a helmet, such as a bicycle helmet, skateboard helmet, motorcycle helmet, ski or snowboard helmet, or any other suitable helmet. Optionally, the helmet earphones or headphones integrated into the helmet in addition to or in place of a speaker.
  • The main processor 202 interacts with other components of the immersive display 200, including, for example, a temporary storage device 204, a memory 206, a display device 208, a speaker 210, an auxiliary input/output (I/O) subsystem 212, external cameras 214, one or more internal cameras 216, one or more microphones 218, an orientation/movement sensor 220, one or more proximity sensors 222, a communication subsystem 224, short-range communications 226, a power source 228, and, optionally, other subsystems 230.
  • The temporary storage device 204 may be, for example, Random Access Memory (RAM) that stores data that is processed by the main processor 202. The memory 204, such as flash memory, is utilized for persistent storage.
  • The immersive display 200 provides video output through the display 208, which includes an interface, a controller and at least one display. For example, the immersive display may include a pair of displays to display images. The images displayed in this example include a respective image in front of each one of the user's eyes such that a right side image is displayed in front of a user's right eye and a left side image is displayed in front of a user's left eye. In addition to the display 208, output is provided via the speaker 210 or other audio output such as headphones or earphones. The auxiliary input/output (I/O) subsystem 212 includes an interface through which, for example, a USB controller or other peripheral device may be connected.
  • Input to the immersive display may be provided via external sensors or input devices such as the external cameras 214 mounted on the body of the immersive display 200. The external cameras 214 may include multiple cameras to obtain images extending around the user, i.e., 360° around the user. The external cameras 214 may also include cameras to obtain images in an upward direction from the user, and in a downward direction from the user. Each of the cameras includes the functional components for operation of the camera, including the lens, the image sensor, and, optionally, a light sensor and light source, such as infrared light emitting diodes (LEDs). Thus, the cameras provide images of the user's environment or surroundings. The cameras may be one or more of visual light cameras, 3D sensing cameras, light field cameras, forward looking infrared cameras, near infrared cameras, ultraviolet cameras, or other imaging devices.
  • The terms upward and downward are utilized herein to generally describe direction of view of the external cameras 214 relative to the user when the immersive display is worn by the user and the user is in an upright position, and such terms are not otherwise limiting.
  • The one or more internal cameras 216, referred to herein as the internal camera 216, may be mounted on an inside of the body of the immersive display and includes the functional components for operation of each internal camera, including the lens, the image sensor, and a light source, which may be a light source in the non-visible spectrum, such as infrared LEDs. Although the interior of the immersive display 200 may be dark because exterior light is blocked out or partially blocked out, the light source provides sufficient light for use of the internal camera 216.
  • The one or more microphones, referred to herein as the microphone 218, may also be mounted in the body of the immersive display 200 to provide input by converting audible information to electrical signals, which may be processed by the main processor 202 and may be transmitted to another electronic device to which the immersive display 200 is coupled. For example, the immersive display may be coupled to a smart-phone, a laptop computer, a tablet, a desktop computer, a game device, and any other suitable electronic device.
  • The main processor 202 also receives signals from the orientation/movement sensor 220, which is coupled to the body of the immersive display 200. The orientation/movement sensor may be, for example, an accelerometer, a gyro sensor, or any other suitable sensor or combination of sensors that is or are utilized to detect direction of movement, direction of gravitational forces, and reaction forces so as to determine, for example, the orientation of the immersive display 200 and the movement of the immersive display 200.
  • The one or more proximity sensors, referred to herein as the proximity sensors 222, may provide additional input to the main processor 202 to detect the presence of objects that are near or proximal to the sensor and thus to the user when the immersive display 200 is in use. The proximity sensors 222 may be any suitable proximity sensors such as a capacitive or photoelectric proximity sensor.
  • The communication subsystem 224 receives signals from another electronic device such as the client devices 106, 108, 110, 112, 116 shown in FIG. 1, and sends signals to the other electronic device to which the immersive display is coupled. Thus, for example, the signals from the microphone 218 or signals from the external cameras 216 or from the internal camera 216 may be sent via the communication subsystem 224. The communication subsystem 224 is also responsible for receiving signals from the other electronic device for processing by the main processor 202 to cause images, which may include video, to be displayed on the display 208 and for audio to be output through the speaker 210.
  • The immersive display 200 optionally includes short-range communications 226 to perform various communication functions. For example, the immersive display 200 may include BLUETOOTH® or infrared (IR) communications capability, for example, for communicating with a peripheral device or accessory.
  • The power source 228 may be one or more rechargeable batteries or a port to an external power supply to power the immersive display 200.
  • The systems and subsystems that interact with the main processor 202 and are described herein are provided as examples only. Other subsystems 230 may also interact with the main processor 202.
  • Utilizing the images from the internal camera 216, the main processor 202 may be operable to track eye motion. To track eye motion, the user's pupils may be tracked when the immersive display 200 is in use. The eye motion tracking may also facilitate determination of what a user is looking at, for example, by triangulation to determine depth of an object or image that a user is looking at. Alternatively, the internal camera 216 may identify or track changes in muscles or muscle motion around at least one of the user's eyes to identify movement of the eye, or may track changes in shape of a lens of an eye or changes in shape of the lens of each eye to identify a focal distance, facilitating identification of the depth of focus of a user.
  • In one aspect, variable focal optical elements, such as the SUPERFOCUS™ glasses may be utilized and controlled digitally to create a more realistic blur effect. Areas that are set to be blurred may be rendered with fewer pixels.
  • Based on the eye motion tracking, the direction that the user is looking may be identified. The direction may be, for example, an angle or angles, such as angular offset or offsets from straight ahead. Thus, when a user glances upwardly, downwardly, or to either side, the direction is identified and the images displayed utilizing the display 208 may be changed or adjusted based on the direction.
  • The main processor 202 is also operable to analyze the images from the internal camera to track or identify a change in facial expression. For example, the main processor 202 may utilize primary facial feature tracking by tracking features such as lips, nose, and eyes. Alternatively, or in addition, movement of parts of the face may be tracked. The main processor 202 may transmit facial expression data or an identification of the expression to the other electronic device to which the immersive display 200 is coupled via the communication subsystem 222.
  • The main processor 202 is also operable to receive the image data from the external cameras and to transmit the data to the other electronic device, along with metadata for at least key frames for identifying the image data such that the images can be stitched together to provide images of the user's surroundings. Thus, the images from each of the cameras can be stitched together to obtain images of the user's entire surroundings.
  • A flowchart illustrating a method of controlling an immersive display is shown in FIG. 3. The method may be carried out by software executed, for example, by the main processor 202 of the immersive display 200, by one or more of the client devices 106, 108, 110, 112, 116, or by any combination of the immersive display 200, a client device and one or more of the servers 102. Coding of software for carrying out such a method is within the scope of a person of ordinary skill in the art given the present description. The method may contain additional or fewer processes than shown and/or described, and may be performed in a different order. Computer-readable code executable by at least one processor to perform the method may be stored in a computer-readable medium, such as a non-transitory computer-readable medium.
  • Images are obtained at 302, for example, by processing images from the external cameras 214 of the immersive display 200. The images are images of the environment that is generally in front of the immersive display 200. The environment that is generally in front of the immersive display 200 includes images of a peripheral area. The images may include images of the environment extending about 180°. The images may be generally centered on the immersive display 200 or may be centered on a direction that the user is looking or direction of gaze, as determined utilizing the internal camera 216, for example by eye motion tracking or facial feature tracking.
  • The images obtained may include images for displaying a right side image in front of a right eye and a left side image in front of a left eye of a user of the immersive display 200 to provide a virtual 3-D image for the user.
  • Images of the environment that is not in front of the immersive display, for example, behind the immersive display 200 or to the left or right side of the immersive display 200, are also obtained at 304. The images may include images of the environment extending about 180° around a back side or rear of the immersive display 200. Thus, with the images of the environment extending about 180° around a front of the immersive display, images extending 360° around the immersive display 200 are obtained. The images may be obtained by processing images from external cameras 214 that are directed to the rear or to sides of the immersive display 200. Alternatively, the images may be communicated from another electronic device. According to one example, images may be obtained utilizing cameras, such as a rearview camera, in a vehicle. The vehicle may be in communication with a respective client device 106, 108, 110, 112, 114, or may communicate directly with the immersive display 200, for example, by BLUETOOTH® communication to send images to the client device or immersive display 200.
  • The images obtained at 302 and the images obtained at 304 need not be obtained in separate steps. These images may be obtained together, for example by obtaining panoramic views or may be obtained utilizing a 360° camera.
  • At 306, the images of the environment that is generally in front of the immersive display 200, are displayed on a first area of the display 208. Thus, for a display 208 that includes two display screens, each disposed in front of and very close to a respective eye of a user, the environment is displayed in a first area on each of the display screens. The images are displayed on the display 208 to provide the user with a generally full field of view of the environment generally in front of the immersive display 200. The view may be a full field of view based on the orientation of the immersive display 200 or based on the direction in which the user is looking.
  • At 308, the images of the environment that is not in front of the immersive display, for example, behind the immersive display 200 or to the left or right side of the immersive display 200, are also displayed on the display 208. The images are displayed to provide a view of the environment that is generally outside the full field of view of the environment in front of the immersive display 200. For example, the images may be images that are behind the user. The images are displayed in a second area of the display 208 to provide a view of areas that, in the absence of the immersive display 200, would be out of the field of view of the user. The two areas of the display 208 therefore may display images of the environment extending a complete 360° around the immersive display 200 and therefore around the user.
  • The images are displayed in a second area of the display 208 that is delineated from the first area. For example, the images may be displayed on an image of a rearview mirror, to delineate the images of the environment that is generally in front of the immersive display 200 from the images of the environment that is generally to the rear of the immersive display 200. The images may also or alternatively be displayed, for example, on an image of a sideview mirror or mirrors. Alternatively, the images may be delineated utilizing delineation lines or borders between the images, or utilizing any other suitable technique to facilitate identification of the images as images of the environment that is generally to the rear of the immersive display 200.
  • Optionally, the images displayed in the second area are displayed in response to a user looking in a particular direction. For example, eye tracking or facial tracking may be utilized to determine when a user glances upwardly and, in response to determining that the user glances upwardly, the images may be displayed to provide a view of the environment generally to the rear of the immersive display. The images may also or alternatively be displayed in response to the user glancing to the left or right. Thus, the images are not displayed until the user glances toward the delineated area or areas.
  • In the example of use of the immersive display in communication with a processor of a vehicle, the images may also be displayed in response to detecting or determining that the vehicle is put in reverse gear, when an object, such as another vehicle is detected in a blind spot, or is detected on one side of a vehicle.
  • The external cameras may also be utilized to detect movement, for example, in an area outside the field of view and the images may be displayed in the delineated area based on the detected movement, for example, or based on proximity of detected movement.
  • Optionally, the different areas may be displayed utilizing different attributes. For example, the first area, in which the displayed images are processed images of the environment generally in front of the immersive display 200, is displayed utilizing first display attributes. The second area, in which processed images from the rear of the immersive display are displayed, is displayed utilizing second display attributes. For example, the two areas may be displayed at different resolutions and different refresh rates. Thus, the images in the second area may be displayed at lower resolution and a lower refresh rate.
  • The method illustrated in FIG. 3 is continuous such that the images are continuously updated on the display 208 of the immersive display 200 to display the environment generally in real time or close to real time.
  • Optionally, data from multiple virtual or real world sources may be aggregated on the display 208, against a single background. For example, the depth of field for objects from a first source is narrowed and placed behind a similarly narrowed depth of field for objects from a second source. Data from more than two sources may be aggregated. In one example, a field may be used as a background object. In the example of a virtual reality game or a virtual environment, images from the game or the virtual environment may be displayed within a perceived depth of field of, for example, from 10 centimeters to 3 meters. Images from the real world or augmented reality may be displayed at a perceived depth of field of, for example, from 4 meters to infinity. Thus, in this example, the images of the environment that are obtained, for example, from the external cameras 214, are displayed in two areas of the display, which areas are delineated from each other, at a perceived depth of field of from 4 meters to infinity.
  • In one implementation, virtual reality or augmented reality is integrated with images of the actual or real environment by, for example, making part of or the entire perceived closest image semi-transparent.
  • In another implementation, a game or virtual environment may be displayed at 50% opacity with an altered and/or slightly or fully flattened depth of field, for example, perceived as from 30 centimeters inches to 3 meters. The actual or real environment may be displayed with an altered and/or slightly or fully flattened depth of field, perceived as from 3.1 meters to infinity. Optionally, user eye movements may be tracked and utilized to alter the opacity of a portion of the image or images from one source, to invert the foreground and background images, to change the perceived depth or amount of flattening, to make images from one source have negligible depth of field allowing a fuller depth of field in the images from the other source without overlapping, or any suitable combination thereof.
  • According to one example of the method of controlling the immersive display 200, images from a virtual environment are displayed on the display 208 of the immersive display 200 at a perceived depth of greater than 3 meters, for example.
  • In addition, images are obtained at 302, for example, by processing images from the external cameras 214 of the immersive display 200. The images are images of the environment in front of and generally centered on the immersive display. The images include a peripheral area to provide a generally full field of view for the user. Images from behind the immersive display 200 are also obtained at 304 utilizing external cameras 214.
  • At 306, the images of the environment that is generally in front of the immersive display 200, are displayed on a first area of the display 208, at a depth of up to 3 meters and with an opacity of 50% to provide the user with a generally full field of view of the environment generally in front of the immersive display 200 while facilitating viewing the virtual environment. At 308, the images that are from the rear of the immersive display 200 are displayed above the images from the front of the immersive display 200 and separated by a black line to delineate the images.
  • According to another example of the method of controlling the immersive display 200, only real world images are displayed for the purpose of driving, for example a car. Images are obtained at 302, for example, by processing images from the external cameras 214 of the immersive display 200. The images are images of the environment in front of and generally centered on the immersive display. The images include a peripheral area to provide a generally full field of view for the user. Images from behind the car are processed from images received from a rear view camera of the car in communication with the immersive display 200, for example, via a client device to which the immersive display 200 is coupled.
  • At 306, the images of the environment that is generally in front of the immersive display 200 are displayed on a first area of the display 208 to provide a view through the windshield of the car and through a driver side window and a passenger side window of the car. At 308, the images that are processed from the rear view camera are displayed on an image of a rear view mirror.
  • According to yet another example of the method of controlling the immersive display 200, the immersive display 200 is integrated into a helmet to provide protection for the user and is worn, for example, while the user is cycling. Images are obtained at 302, for example, by processing images from the external cameras 214 of the immersive display 200. The images are images of the environment in front of and generally centered on the immersive display. The images include a peripheral area to provide a generally full field of view for the user. Images from behind the immersive display 200 are also obtained at 304 utilizing external cameras 214.
  • At 306, the images of the environment that is generally in front of the immersive display 200, are displayed on a first area of the display 208. At 308, the images that are from the rear of the immersive display 200 are displayed above a horizon line of the road and are separated, for example, by a line to delineate the images. The views from behind may include a full view of areas not normally visible to the user when looking forward. Thus, the images displayed at 208 provide the user with images of the environment behind and to the sides of the immersive display 200, without requiring the user to turn around or adjust their head position or orientation.
  • Advantageously, views of areas of the environment that are toward a back or rear of the immersive display 200, such as areas directly behind as well as areas behind and to the sides of the immersive display 200, are displayed in addition to a field of view toward the front of the immersive display 200. Thus, areas that are not visible to the user without the use of the virtual display 200, are displayed and are discernible from the images taken from the front of the immersive display 200. The images from areas other than in front of the immersive display 200 can be viewed by moving one's eyes and without requiring the user to turn around or adjust their head position or orientation.
  • The described embodiments are to be considered as illustrative and not restrictive. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole. All changes that come with meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (20)

What is claimed is:
1. An immersive display, comprising:
a body;
at least one display inside of the body for displaying images to a user of the immersive display;
a processor coupled to the display and operable to:
obtain first images for display on the immersive display, where first images are obtained by one or more of one or more cameras, using one or more images from a library of images, or generated by software;
obtain second images for display from one or more second cameras, where the one or more second cameras capture, at least in part, a region not in front of the immersive display;
display first images in a first area corresponding to the front of the immersive display; and
display second images in a second area corresponding to the front of the immersive display.
2. The immersive display of claim 1, where the first images are obtained, at least in part, by using one or more cameras.
3. The display of claim 1, where the first images are obtained, at least in part, by using one or more images from a library of images.
4. The display of claim 1, where the first images of obtained, at least in part, by using images generated by software.
5. The display of claim 1, where a location of the second area corresponds to a location of things imaged in the second images and shown in the second area.
6. The display of claim 1, where a location of the second area corresponds to an area substantially horizontally adjacent to the first area.
7. The display of claim 1, where a location of the second area corresponds to an area substantially vertically adjacent to the first area.
8. The display of claim 2, where the one or more cameras image an area substantially in front of the immersive display.
9. The display of claim 8, where the second area is above a horizon line of the first area.
10. An immersive display, comprising:
a body;
at least one display inside of the body for displaying images to a user of the display;
a processor coupled to the display and operable to:
display first images of a virtual environment, the virtual environment comprising avatars, at least one of which corresponds to a user of the virtual environment;
obtain second images for display from one or more second cameras, where the one or more second cameras capture, at least in part, a region not in front of the immersive display;
display the second images on the immersive display at a location without reference to a correspondence between the location and the region captured by the one or more second cameras.
11. The display of claim 10, where a direction of the user's eyes is monitored, and placement of the second images changes based on one or more eye movements.
12. The display of claim 10, where a focal point of the user's eyes is monitored, and placement of the second images changes is based on one or more changes to the focal point.
13. The display of claim 10, where the second images are displayed above a horizon line of the first images.
14. An immersive display, comprising:
a body;
at least one display inside of the body for displaying images to a user of the display;
a processor coupled to the display and operable to:
generate tracking data from one or both of a direction the user's eyes are pointing and a focal point of the user's eyes;
based at least in part on changes to the tracking data, change content of the images displayed on the immersive display;
where the change is accomplished, at least in part, without any additional input from the user, where such additional input is one or more of intentional, generated by monitoring the user, or the movement of the immersive display or the user.
15. The display of claim 14, where the tracking data includes at least changes to the direction the user's eyes are pointing.
16. The display of claim 15, where the change is accomplished solely based on the tracking data.
17. The display of claim 14, where the tracking data includes at least changes to the focal point of the user's eyes;
18. The display of claim 17, where the change is accomplished solely based on the tracking data.
19. The display of claim 14, where the change is accomplished in full without any additional input from the user.
20. The display of claim 14, where movement of the display is used in conjunction with the tracking data to change the content of the images displayed on the immersive display.
US16/673,861 2015-07-21 2019-11-04 Immersive display Abandoned US20200062181A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/673,861 US20200062181A1 (en) 2015-07-21 2019-11-04 Immersive display
US17/174,807 US20210162925A1 (en) 2015-07-21 2021-02-12 Immersive display
US17/981,240 US20230059458A1 (en) 2015-07-21 2022-11-04 Immersive displays

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562195201P 2015-07-21 2015-07-21
US15/206,100 US10464482B2 (en) 2015-07-21 2016-07-08 Immersive displays
US16/673,861 US20200062181A1 (en) 2015-07-21 2019-11-04 Immersive display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/206,100 Continuation US10464482B2 (en) 2015-07-21 2016-07-08 Immersive displays

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/174,807 Continuation US20210162925A1 (en) 2015-07-21 2021-02-12 Immersive display

Publications (1)

Publication Number Publication Date
US20200062181A1 true US20200062181A1 (en) 2020-02-27

Family

ID=57837823

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/206,100 Active US10464482B2 (en) 2015-07-21 2016-07-08 Immersive displays
US16/673,861 Abandoned US20200062181A1 (en) 2015-07-21 2019-11-04 Immersive display
US17/174,807 Abandoned US20210162925A1 (en) 2015-07-21 2021-02-12 Immersive display
US17/981,240 Pending US20230059458A1 (en) 2015-07-21 2022-11-04 Immersive displays

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/206,100 Active US10464482B2 (en) 2015-07-21 2016-07-08 Immersive displays

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/174,807 Abandoned US20210162925A1 (en) 2015-07-21 2021-02-12 Immersive display
US17/981,240 Pending US20230059458A1 (en) 2015-07-21 2022-11-04 Immersive displays

Country Status (1)

Country Link
US (4) US10464482B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT14754U3 (en) * 2013-06-18 2016-10-15 Kolotov Alexandr Alexandrovich Helmet for motorcyclists and people who do extreme activities
WO2017200279A1 (en) * 2016-05-17 2017-11-23 Samsung Electronics Co., Ltd. Method and apparatus for facilitating interaction with virtual reality equipment
US11288873B1 (en) * 2019-05-21 2022-03-29 Apple Inc. Blur prediction for head mounted devices
US11568640B2 (en) 2019-09-30 2023-01-31 Lenovo (Singapore) Pte. Ltd. Techniques for providing vibrations at headset
US11144759B1 (en) * 2020-05-12 2021-10-12 Lenovo (Singapore) Pte. Ltd. Presentation of graphical objects on display based on input from rear-facing camera

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154277A1 (en) * 2010-12-17 2012-06-21 Avi Bar-Zeev Optimized focal area for augmented reality displays
US20120154557A1 (en) * 2010-12-16 2012-06-21 Katie Stone Perez Comprehension and intent-based content for augmented reality displays
US20140253694A1 (en) * 2013-03-11 2014-09-11 Sony Corporation Processing video signals based on user focus on a particular portion of a video display

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456262B1 (en) * 2000-05-09 2002-09-24 Intel Corporation Microdisplay with eye gaze detection
US20070019311A1 (en) * 2005-07-22 2007-01-25 Doron Precision Systems, Inc. Semi-interactive driving simulator with multiple simulated mirror images and method of preparing images for use in simulator
US9584710B2 (en) * 2008-02-28 2017-02-28 Avigilon Analytics Corporation Intelligent high resolution video system
US20100201508A1 (en) * 2009-02-12 2010-08-12 Gm Global Technology Operations, Inc. Cross traffic alert system for a vehicle, and related alert display method
TWI421624B (en) * 2011-04-01 2014-01-01 Ind Tech Res Inst Adaptive surrounding view monitoring apparatus and method thereof
US9897805B2 (en) * 2013-06-07 2018-02-20 Sony Interactive Entertainment Inc. Image rendering responsive to user actions in head mounted display
CN103879352A (en) * 2012-12-22 2014-06-25 鸿富锦精密工业(深圳)有限公司 Car parking assistant system and car parking assistant method
US20150317956A1 (en) * 2014-04-30 2015-11-05 International Business Machines Corporation Head mounted display utilizing compressed imagery in the visual periphery
US9547365B2 (en) * 2014-09-15 2017-01-17 Google Inc. Managing information display
US9690374B2 (en) * 2015-04-27 2017-06-27 Google Inc. Virtual/augmented reality transition system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154557A1 (en) * 2010-12-16 2012-06-21 Katie Stone Perez Comprehension and intent-based content for augmented reality displays
US20120154277A1 (en) * 2010-12-17 2012-06-21 Avi Bar-Zeev Optimized focal area for augmented reality displays
US20140253694A1 (en) * 2013-03-11 2014-09-11 Sony Corporation Processing video signals based on user focus on a particular portion of a video display

Also Published As

Publication number Publication date
US20210162925A1 (en) 2021-06-03
US10464482B2 (en) 2019-11-05
US20170024933A1 (en) 2017-01-26
US20230059458A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
US20210162925A1 (en) Immersive display
US20230141039A1 (en) Immersive displays
US20220345677A1 (en) Immersive display and method of operating immersive display for real-world object alert
JP7143443B2 (en) Shared environment for vehicle occupants and remote users
CN107223223B (en) Control method and system for first-view-angle flight of unmanned aerial vehicle and intelligent glasses
CN104781873B (en) Image display device, method for displaying image, mobile device, image display system
EP3287837B1 (en) Head-mountable display system
US20180246331A1 (en) Helmet-mounted display, visual field calibration method thereof, and mixed reality display system
US20160187970A1 (en) Head-mountable apparatus and system
US11575877B2 (en) Utilizing dual cameras for continuous camera capture
CN110998666B (en) Information processing device, information processing method, and program
CN106168855B (en) Portable MR glasses, mobile phone and MR glasses system
KR20150026201A (en) A digital device and method of controlling the same
US11743447B2 (en) Gaze tracking apparatus and systems
US11507184B2 (en) Gaze tracking apparatus and systems
JP6649010B2 (en) Information processing device
EP3673348B1 (en) Data processing device, method and non-transitory machine-readable medium for detecting motion of the data processing device
US20190089899A1 (en) Image processing device
US20230316810A1 (en) Three-dimensional (3d) facial feature tracking for autostereoscopic telepresence systems
US11386614B2 (en) Shading images in three-dimensional content system
US20230403386A1 (en) Image display within a three-dimensional environment
JP2022040819A (en) Image processing device and image processing method
WO2018096315A1 (en) Virtual reality
CN116941239A (en) Image display within a three-dimensional environment

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION