US20200039302A1 - Electronic unit for measuring operating parameters of a vehicle wheel - Google Patents

Electronic unit for measuring operating parameters of a vehicle wheel Download PDF

Info

Publication number
US20200039302A1
US20200039302A1 US16/339,134 US201716339134A US2020039302A1 US 20200039302 A1 US20200039302 A1 US 20200039302A1 US 201716339134 A US201716339134 A US 201716339134A US 2020039302 A1 US2020039302 A1 US 2020039302A1
Authority
US
United States
Prior art keywords
electronic
rim
inflation valve
electronic unit
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/339,134
Other versions
US10549586B1 (en
Inventor
Jérémy Mieyan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Continental Automotive France SAS
Original Assignee
Continental Automotive GmbH
Continental Automotive France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH, Continental Automotive France SAS filed Critical Continental Automotive GmbH
Assigned to CONTINENTAL AUTOMOTIVE FRANCE, CONTINENTAL AUTOMOTIVE GMBH reassignment CONTINENTAL AUTOMOTIVE FRANCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIEYAN, Jérémy
Application granted granted Critical
Publication of US10549586B1 publication Critical patent/US10549586B1/en
Publication of US20200039302A1 publication Critical patent/US20200039302A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0491Constructional details of means for attaching the control device
    • B60C23/0494Valve stem attachments positioned inside the tyre chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0491Constructional details of means for attaching the control device
    • B60C23/0498Constructional details of means for attaching the control device for rim attachments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C29/00Arrangements of tyre-inflating valves to tyres or rims; Accessories for tyre-inflating valves, not otherwise provided for
    • B60C29/02Connection to rims

Definitions

  • the present invention relates to an electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic casing and an inflation valve for securing said electronic casing to a wheel rim.
  • Motor vehicles are increasingly being fitted with systems for monitoring and/or measuring parameters, comprising sensors mounted on said vehicle.
  • monitoring systems that comprise electronic casings mounted on each of the wheels of vehicles, these being dedicated to measuring parameters, such as pressure and/or temperature of the tires with which these wheels are fitted, and intended to inform the driver of any abnormal variation in the measured parameter.
  • One of the current solutions most commonly used for attaching the electronic casings to the wheel rims is to make electronic units each made up of an electronic casing and of an inflation valve assembled with said electronic casing, that allows the latter to be secured to the rim of the wheel.
  • each electronic casing then conventionally comprises an external “eyelet”, and each inflation valve comprises a body intended to extend through the eyelet and through an orifice made in the rim, and an assembly head separated from the body by a shoulder that constitutes a face via which the eyelet and said inflation valve are immobilized against said rim.
  • electronic units In order to ensure this contact between the electronic casing and the bottom of the rim′, electronic units have been proposed that comprise an electronic casing and a valve that are configured in such a way as to be able to adapt to the angular orientation between the electronic casing and the valve so that said electronic casing can be pressed firmly against the bottom of the rim, regardless of the profile and dimensions of said rim, before the electronic unit is fixed to the rim.
  • the electronic casing and the valve of the electronic unit comprise connecting elements of complementing shapes so as to generate a pivot connection.
  • the valve is then inserted into the valve hole provided in the rim, then the electronic casing is rotated about the pivot connection.
  • the angular orientation obtained in order to achieve contact between the electronic casing and the bottom of the rim is then blocked in position by friction as a nut is tightened, allowing the electronic unit to be fixed rigidly to the rim.
  • document FR 2 907 048 incorporated herein by reference, describes an electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic casing and an inflation valve for securing said electronic casing to a wheel rim, comprising a body intended to extend through an orifice formed in the rim, and an assembly head separated from the body by a shoulder that constitutes a face via which said inflation valve is immobilized against said rim.
  • the electronic casing comprises an exterior wall defining a lateral housing for the inflation valve assembly head, delimited by a metal plate made as one piece with said electronic casing, against which the immobilizing face of said assembly head bears, and provided with a cutout for the passage of the body of said inflation valve.
  • the operator when mounting the electronic unit on the rim, the operator therefore has to orient the electronic casing with respect to the valve until he achieves contact between the casing and the bottom of the rim, and keep said casing in contact with the rim while tightening the nut, something which is a complicated maneuver which does not make it possible to guarantee the desired contact.
  • this solution proves expensive because, in addition to the high price of the inflation valves, which are generally all-metal, it entails the production of ancillary components (nuts, seals, . . . ) which are especially designed to ensure this angularly adaptable connection.
  • An aspect of the present invention proposes an electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic module casing and an inflation valve, that seeks to alleviate these disadvantages and has the key objective of providing an electronic unit capable of withstanding significant loadings, notably during the operations of fitting a tire on the rim of the wheel of the vehicle and removing same therefrom.
  • an electronic unit for measuring operating parameters of a vehicle wheel comprises:
  • the electronic unit according to an aspect of the invention affords several beneficial advantages.
  • several beneficial advantages In particular:
  • the inflation valve is an inflation valve of the “snap-in” type, comprising:
  • the inflation valve is an inflation valve of the “clamp-in” type, comprising:
  • the electronic unit according to an aspect of the invention offers the beneficial advantage, because of its special connection between the electronic casing and the inflation valve, of being adaptable to suit rigid valves of the “clamp-in” type just as easily as to suit flexible valves of the “snap-in” type.
  • the spring-effect elastic means consists of a spring.
  • the spring works in compression.
  • the spring works in tension.
  • the spring-effect elastic means consists of an elastomer ring.
  • the elastomer ring is formed by overmolding the pivoting insert.
  • the means of assembling the sleeve of the electronic casing and the insert of the valve body consists of a screw.
  • FIG. 1 is a view of schematic nature of a first exemplary embodiment of an aspect of the invention.
  • FIG. 2 is a view of schematic nature depicting a conceptual view illustrating the interference-fit mounting of the first embodiment of the electronic unit according to an aspect of the invention mounted on a wheel rim.
  • FIG. 3 is a view of a schematic nature of the electronic unit according to the first embodiment mounted on a wheel rim.
  • FIG. 4 is a view of schematic nature of a second exemplary embodiment of the electronic unit according to an aspect of the invention.
  • An aspect of the present invention relates to an electronic unit for measuring operating parameters of a vehicle wheel.
  • this electronic unit is made up of an electronic casing 1 designed to be mounted inside the casing of a tire, and of an inflation valve 2 for securing this to the rim J of the wheel fitted with this tire.
  • the inflation valve 2 comprises a valve body 3 pierced axially with a cylindrical longitudinal bore 3 a.
  • this valve body 3 is also subdivided, longitudinally, into a trunk 4 which, at its proximal end, has an abutment head 5 delimited by a frontal face 5 a and a rear abutment face 5 b .
  • This rear face 5 b intended to be brought into contact with the rim 3 as the valve body 3 passes through a hole provided for this purpose in the rim, may have an annular groove able to accept a seal 6 .
  • the distal end of the valve trunk 4 is equipped with a screw thread intended for screwing a protective cap on in the continuation of said trunk 4 of the valve body 3 .
  • the electronic casing 1 of the electronic unit is for its part made up of a hollow casing intended to house the control “electronics” of the electronic unit according to an aspect of the invention.
  • the electronic casing 1 is for example produced by molding in plastic.
  • securing elements provide attachment of said electronic casing 1 and said inflation valve 2 .
  • These securing elements comprise:
  • the insert 7 for example made of metal, is mounted at the proximal end of the inflation valve 2 , on the frontal face 5 a of the abutment head 5 .
  • the connection between the insert 7 and the inflation valve 2 is a connection of the ball-joint type, allowing relative angular movement between the insert 7 and the inflation valve 2 .
  • This insert 7 is provided with an axial bore 7 a positioned in the continuation of the bore 3 a of the valve body 3 and with lateral orifices 7 b thus allowing the flow of inflation air to pass into the tire.
  • the sleeve 8 is secured to the electronic casing 1 and is designed to be mounted with the ability to slide around the insert 7 .
  • the sleeve 8 may also form an integral part of the electronic casing 1 .
  • the means 9 of assembling the sleeve 8 of the electronic casing 1 and the insert 7 consists for example of a screw. In that way, the electronic casing 1 , via its sleeve 8 , and the inflation valve 2 , via the insert 7 , are securely attached.
  • the spring-effect elastic means consists of a spring 10 .
  • This spring is fixed, on the one hand, to the frontal face 5 a of the abutment head 5 of the inflation valve 2 intended to be positioned facing the electronic casing 1 and, on the other hand, to the pivoting insert 7 .
  • These fixings of the spring 10 are achieved by any means known per se.
  • This spring 10 may work either in compression or in tension.
  • the spring-effect elastic means consists of an elastomer ring 11 fixed to the inflation valve 2 by any means known per se.
  • the spring-effect component thus formed is created for example by overmolding the insert 7 in rubber in the form of the ring 11 directly on the frontal face 5 a of the abutment head 5 of the inflation valve 2 .
  • the overmolding of the insert 7 with the ring 11 is performed during a distinct step before being fixed on the frontal face 5 a of the abutment head 5 of the inflation valve 2 , for example by adhesive bonding.
  • the pair 7 - 10 or 7 - 11 created by the insert 7 and the spring-effect elastic means 10 or 11 provides a predetermined angular orientation a between the electronic casing 1 (notably its longitudinal axis A-A determined by the sleeve 8 secured to the insert 7 via the screw 9 ) and the inflation valve 2 (notably the axis B-B of its valve body 3 ) at the ball-joint connection between the pivoting insert 7 and the abutment head 5 when said spring-effect elastic means 10 , 11 is in the rest position.
  • This predetermined angular orientation a is such that the electronic casing 1 is an interference fit.
  • the angular orientation between the electronic casing 1 and the inflation valve 2 is such that, as the electronic unit according to an aspect of the invention is mounted on a rim J, the spring-effect elastic means 10 , 11 of the means of attaching the electronic casing 1 and the inflation valve 2 always allows automatic contact of said electronic casing 1 against the bottom of the rim 3 , without human intervention, the spring-effect elastic means 10 , 11 then always being subjected to a stress loading that deforms it away from its rest position.
  • the spring-effect elastic means 10 , 11 allows freedom of relative pivoting between the electronic casing 1 and the inflation valve 2 such that the electronic measurement unit according to an aspect of the invention is adapted to suit all shapes and dimensional characteristics of rim.
  • the annular seal 6 is positioned around the trunk 4 of the valve body 3 against the rear face 5 b of the abutment head 5 so that it can be compressed between the rim J and the abutment head 5 after said valve body 3 has been inserted in a bore formed in the conventional way in said rim.
  • This annular seal may be (at least partially) contained in a groove (not depicted) created in the rear face 5 b of the abutment head 5 .
  • the spring-effect component thus makes it possible automatically to adjust the inclination of the electronic casing 1 according to the angle defined by the profile of the rim J, so as to keep said electronic casing pressed firmly against the bottom of the rim J, and thus limit the stress loadings experienced as a tire is being fitted onto or removed from said rim.
  • the inflation valve 2 described and illustrated is an inflation valve of the “clamp-in” type, comprising:
  • the electronic unit affords the beneficial advantage of being able to be adapted to any type of inflation valve.
  • the inflation valve 2 is an inflation valve of the “snap-in” type.
  • a “snap-in” valve comprises:

Abstract

An electronic unit for measuring operating parameters of a vehicle wheel, including an electronic casing; an inflation valve; and elements for attaching the electronic casing and the inflation valve. The elements for attaching the electronic casing and the inflation valve include an insert provided with an axial bore and mounted with the ability to pivot in the continuation of the body of the inflation valve; a sleeve secured to the electronic casing, designed to be mounted with the ability to slide around the insert, a way of assembling the sleeve of the electronic casing and the insert of the valve body; and a spring-effect elastic.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is the U.S. National Phase application of PCT International Application No. PCT/FR2017/053013, filed Nov. 3, 2017, which claims priority to French Patent Application No. 1660706, filed Nov. 4, 2016, the contents of such applications being incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates to an electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic casing and an inflation valve for securing said electronic casing to a wheel rim.
  • BACKGROUND OF THE INVENTION
  • Motor vehicles are increasingly being fitted with systems for monitoring and/or measuring parameters, comprising sensors mounted on said vehicle.
  • By way of example of such systems, mention may be made of the monitoring systems that comprise electronic casings mounted on each of the wheels of vehicles, these being dedicated to measuring parameters, such as pressure and/or temperature of the tires with which these wheels are fitted, and intended to inform the driver of any abnormal variation in the measured parameter.
  • One of the current solutions most commonly used for attaching the electronic casings to the wheel rims is to make electronic units each made up of an electronic casing and of an inflation valve assembled with said electronic casing, that allows the latter to be secured to the rim of the wheel.
  • In addition, each electronic casing then conventionally comprises an external “eyelet”, and each inflation valve comprises a body intended to extend through the eyelet and through an orifice made in the rim, and an assembly head separated from the body by a shoulder that constitutes a face via which the eyelet and said inflation valve are immobilized against said rim.
  • Such a design makes it possible to obtain a tightening torque that is capable of correctly retaining the electronic casings in spite of the significant loadings (centrifugal force, vibrations, accelerations . . . ) to which these casings are subjected.
  • However, during the operations of mounting the tire on the rim of the wheel of the vehicle and removing it therefrom, the tire passes over the electronic casing and the rigid connection between the valve and the electronic casing breaks under the stress loadings applied by said tire.
  • As a result, it is necessary to be able to press the electronic casing firmly against the bottom of the rim so as to create contact between said casing and said rim so as to be able to withstand the forces applied by the tire during the operations of fitting same on and removing same from the rim, and thereby avoid breaking the electronic unit at the rigid connection between the electronic casing and the valve.
  • In order to ensure this contact between the electronic casing and the bottom of the rim′, electronic units have been proposed that comprise an electronic casing and a valve that are configured in such a way as to be able to adapt to the angular orientation between the electronic casing and the valve so that said electronic casing can be pressed firmly against the bottom of the rim, regardless of the profile and dimensions of said rim, before the electronic unit is fixed to the rim.
  • In general, in order to achieve this orientable angular connection, the electronic casing and the valve of the electronic unit comprise connecting elements of complementing shapes so as to generate a pivot connection. The valve is then inserted into the valve hole provided in the rim, then the electronic casing is rotated about the pivot connection. The angular orientation obtained in order to achieve contact between the electronic casing and the bottom of the rim is then blocked in position by friction as a nut is tightened, allowing the electronic unit to be fixed rigidly to the rim.
  • For example, document FR 2 907 048, incorporated herein by reference, describes an electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic casing and an inflation valve for securing said electronic casing to a wheel rim, comprising a body intended to extend through an orifice formed in the rim, and an assembly head separated from the body by a shoulder that constitutes a face via which said inflation valve is immobilized against said rim. The electronic casing comprises an exterior wall defining a lateral housing for the inflation valve assembly head, delimited by a metal plate made as one piece with said electronic casing, against which the immobilizing face of said assembly head bears, and provided with a cutout for the passage of the body of said inflation valve.
  • The metal plate and the immobilizing face of the assembly head have cylindrical contacting faces, allowing the inclination of the electronic casing with respect to the longitudinal axis of the inflation valve to be adjusted before the latter is immobilized against the rim. Such an articulation makes it possible to adjust the position of the electronic casings to suit the profiles of the rims, notably with a view to keeping said electronic casings in contact with the bottom of the rim and thereby to limiting the loadings experienced.
  • However, this solution has a number of disadvantages.
  • Specifically, when mounting the electronic unit on the rim, the operator therefore has to orient the electronic casing with respect to the valve until he achieves contact between the casing and the bottom of the rim, and keep said casing in contact with the rim while tightening the nut, something which is a complicated maneuver which does not make it possible to guarantee the desired contact.
  • In addition, this solution proves expensive because, in addition to the high price of the inflation valves, which are generally all-metal, it entails the production of ancillary components (nuts, seals, . . . ) which are especially designed to ensure this angularly adaptable connection.
  • SUMMARY OF THE INVENTION
  • An aspect of the present invention proposes an electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic module casing and an inflation valve, that seeks to alleviate these disadvantages and has the key objective of providing an electronic unit capable of withstanding significant loadings, notably during the operations of fitting a tire on the rim of the wheel of the vehicle and removing same therefrom.
  • According to an aspect of the invention, an electronic unit for measuring operating parameters of a vehicle wheel, comprises:
      • an electronic casing configured to house the control electronics of the electronic measurement unit;
      • an inflation valve configured to allow said electronic measurement unit to be fixed, to a rim of a wheel of a vehicle; and
      • elements for attaching the electronic casing and the inflation valve;
        this electronic unit being notable in that the elements for attaching the electronic casing and the inflation valve comprise:
      • an insert provided with an axial bore and with lateral orifices, which is mounted with the ability to pivot in the continuation of the body of the inflation valve;
      • a sleeve secured to the electronic casing, designed to be mounted with the ability to slide around the insert,
      • a means of assembling the sleeve of the electronic casing and the insert of the valve body;
      • a spring-effect elastic element configured to:
        • ensure a predetermined angular orientation between the electronic casing and the inflation valve when said elastic means is at rest:
        • allow relative angular movement between said electronic casing and said inflation valve when a stress loading is applied to said electronic unit;
        • provide return to the predetermined angular orientation between said electronic casing and said inflation valve when no stress loading is applied to said electronic unit.
  • The electronic unit according to an aspect of the invention affords several beneficial advantages. In particular:
      • the elastic means of the means for attaching the electronic casing and the inflation valve allow automatic contact between said electronic casing and the bottom of the rim, without human intervention, as the electronic unit is mounted on the rim;
      • it adapts to all shapes and dimensional characteristics of rim.
  • According to one exemplary embodiment, the inflation valve is an inflation valve of the “snap-in” type, comprising:
      • a valve body made of an elastomer material, provided with a longitudinal axial bore and intended to extend through an orifice made in the rim, said valve body being made up of an elastically deformable trunk and of an abutment head for butting against the rim, which head is separated from the trunk by a neck designed to become positioned in an airtight manner in the orifice made in said rim,
      • and a hollow tubular core made of a rigid material, housing a shut-off mechanism and of dimensions suited to being housed in the bore of the valve body and to extending on each side in the continuation of said valve body, said tubular core being made up of two longitudinal portions arranged with respect to one another and relative to the valve body in such a way as to allow the trunk elastic deformation suited to allowing the inflation valve to be mounted through the orifice in the rim,
  • According to one exemplary embodiment, the inflation valve is an inflation valve of the “clamp-in” type, comprising:
      • a valve body made of a metallic material, provided with a longitudinal axial bore and intended to extend through an orifice made in the rim, said valve body comprising an abutment head for butting against the rim, which head is separated from the trunk by a seal allowing the valve body to be positioned in an airtight manner in the orifice made in said rim,
      • and a clamping nut allowing the inflation valve to be fixed in the orifice formed in said rim.
  • The electronic unit according to an aspect of the invention offers the beneficial advantage, because of its special connection between the electronic casing and the inflation valve, of being adaptable to suit rigid valves of the “clamp-in” type just as easily as to suit flexible valves of the “snap-in” type.
  • According to one advantageous exemplary embodiment, the spring-effect elastic means consists of a spring.
  • According to one advantageous exemplary embodiment, the spring is fixed, on the one hand, to the frontal face of the abutment head of the inflation valve that is positioned facing the electronic casing and, on the other hand, to the pivoting insert.
  • According to one preferred exemplary embodiment, the spring works in compression.
  • According to another exemplary embodiment, the spring works in tension.
  • According to one preferred and advantageous exemplary embodiment, the spring-effect elastic means consists of an elastomer ring.
  • According to one advantageous exemplary embodiment, the elastomer ring is formed by overmolding the pivoting insert.
  • According to one advantageous exemplary embodiment, the means of assembling the sleeve of the electronic casing and the insert of the valve body consists of a screw.
  • This feature affords rigid assembly between the electronic casing and the inflation valve.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages of aspects of the present invention will become apparent from the following description, provided by way of non-limiting example with reference to the appended drawings, in which:
  • FIG. 1 is a view of schematic nature of a first exemplary embodiment of an aspect of the invention.
  • FIG. 2 is a view of schematic nature depicting a conceptual view illustrating the interference-fit mounting of the first embodiment of the electronic unit according to an aspect of the invention mounted on a wheel rim.
  • FIG. 3 is a view of a schematic nature of the electronic unit according to the first embodiment mounted on a wheel rim.
  • FIG. 4 is a view of schematic nature of a second exemplary embodiment of the electronic unit according to an aspect of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In this description, the terms “distal” and “proximal” are used with reference to the position of the elements that make up the electronic unit according to an aspect of the invention when this unit is mounted on the rim of a wheel of a vehicle, the term “proximal” referring to elements closest to the tire, so that the term “distal” then refers to that which is furthest from the tire.
  • An aspect of the present invention relates to an electronic unit for measuring operating parameters of a vehicle wheel.
  • As is known per se, this electronic unit is made up of an electronic casing 1 designed to be mounted inside the casing of a tire, and of an inflation valve 2 for securing this to the rim J of the wheel fitted with this tire.
  • In the first place, the inflation valve 2 comprises a valve body 3 pierced axially with a cylindrical longitudinal bore 3 a.
  • In the conventional way, this valve body 3 is also subdivided, longitudinally, into a trunk 4 which, at its proximal end, has an abutment head 5 delimited by a frontal face 5 a and a rear abutment face 5 b. This rear face 5 b, intended to be brought into contact with the rim 3 as the valve body 3 passes through a hole provided for this purpose in the rim, may have an annular groove able to accept a seal 6.
  • The distal end of the valve trunk 4 is equipped with a screw thread intended for screwing a protective cap on in the continuation of said trunk 4 of the valve body 3.
  • The electronic casing 1 of the electronic unit is for its part made up of a hollow casing intended to house the control “electronics” of the electronic unit according to an aspect of the invention. The electronic casing 1 is for example produced by molding in plastic.
  • Elements referred to as securing elements provide attachment of said electronic casing 1 and said inflation valve 2. These securing elements comprise:
      • an insert 7;
      • a sleeve 8;
      • a means 9 of assembling the sleeve 4 and the insert 3;
      • a spring-effect elastic means 10, 11.
  • The insert 7, for example made of metal, is mounted at the proximal end of the inflation valve 2, on the frontal face 5 a of the abutment head 5. The connection between the insert 7 and the inflation valve 2 is a connection of the ball-joint type, allowing relative angular movement between the insert 7 and the inflation valve 2. This insert 7 is provided with an axial bore 7 a positioned in the continuation of the bore 3 a of the valve body 3 and with lateral orifices 7 b thus allowing the flow of inflation air to pass into the tire.
  • The sleeve 8 is secured to the electronic casing 1 and is designed to be mounted with the ability to slide around the insert 7. The sleeve 8 may also form an integral part of the electronic casing 1.
  • The means 9 of assembling the sleeve 8 of the electronic casing 1 and the insert 7 consists for example of a screw. In that way, the electronic casing 1, via its sleeve 8, and the inflation valve 2, via the insert 7, are securely attached.
  • According to one first exemplary embodiment, illustrated in FIGS. 1 to 3, the spring-effect elastic means consists of a spring 10. This spring is fixed, on the one hand, to the frontal face 5 a of the abutment head 5 of the inflation valve 2 intended to be positioned facing the electronic casing 1 and, on the other hand, to the pivoting insert 7. These fixings of the spring 10 are achieved by any means known per se. This spring 10 may work either in compression or in tension.
  • In the embodiment illustrated in FIG. 4, the spring-effect elastic means consists of an elastomer ring 11 fixed to the inflation valve 2 by any means known per se. According to a first embodiment, the spring-effect component thus formed is created for example by overmolding the insert 7 in rubber in the form of the ring 11 directly on the frontal face 5 a of the abutment head 5 of the inflation valve 2. According to another embodiment, the overmolding of the insert 7 with the ring 11 is performed during a distinct step before being fixed on the frontal face 5 a of the abutment head 5 of the inflation valve 2, for example by adhesive bonding.
  • The pair 7-10 or 7-11 created by the insert 7 and the spring-effect elastic means 10 or 11 provides a predetermined angular orientation a between the electronic casing 1 (notably its longitudinal axis A-A determined by the sleeve 8 secured to the insert 7 via the screw 9) and the inflation valve 2 (notably the axis B-B of its valve body 3) at the ball-joint connection between the pivoting insert 7 and the abutment head 5 when said spring-effect elastic means 10, 11 is in the rest position.
  • This predetermined angular orientation a is such that the electronic casing 1 is an interference fit. As the conceptual view illustrated in FIG. 2 shows, that means that when the spring-effect elastic means 10, 11 is at rest, the angular orientation between the electronic casing 1 and the inflation valve 2 is such that, as the electronic unit according to an aspect of the invention is mounted on a rim J, the spring-effect elastic means 10, 11 of the means of attaching the electronic casing 1 and the inflation valve 2 always allows automatic contact of said electronic casing 1 against the bottom of the rim 3, without human intervention, the spring-effect elastic means 10, 11 then always being subjected to a stress loading that deforms it away from its rest position.
  • The spring-effect elastic means 10, 11 allows freedom of relative pivoting between the electronic casing 1 and the inflation valve 2 such that the electronic measurement unit according to an aspect of the invention is adapted to suit all shapes and dimensional characteristics of rim.
  • When a stress loading is applied the electronic unit according to an aspect of the invention, this results in a relative angular movement between the electronic casing 1 and the inflation valve 2 at the pivot connection between the insert 7 and the abutment head 5. The spring effect of the spring-effect elastic means 10, 11 then ensures return to the predetermined angular orientation a between said electronic casing 1 and said inflation valve 2 when no stress loading is applied to the electronic unit according to an aspect of the invention.
  • Thus, when the vehicle moves, the electronic casing 1, subjected to the action of centrifugal force, may lift so that it is no longer in contact with the bottom of the rim J. Thus, when the vehicle stops, the spring-effect elastic means 7-10 or 7-11 allows the electronic casing 1 to be brought back to bear against the bottom of the rim J. In that way, during the operations of fitting or removing the tire (which are operations during which the vehicle is quite obviously stationary), there is no risk of ripping out the electronic casing 1 of the electronic measurement unit according to an aspect of the invention as the latter is properly securely pressed against the bottom of the rim J.
  • In order to mount the electronic unit on a rim J, the annular seal 6 is positioned around the trunk 4 of the valve body 3 against the rear face 5 b of the abutment head 5 so that it can be compressed between the rim J and the abutment head 5 after said valve body 3 has been inserted in a bore formed in the conventional way in said rim. This annular seal may be (at least partially) contained in a groove (not depicted) created in the rear face 5 b of the abutment head 5.
  • The spring-effect component thus makes it possible automatically to adjust the inclination of the electronic casing 1 according to the angle defined by the profile of the rim J, so as to keep said electronic casing pressed firmly against the bottom of the rim J, and thus limit the stress loadings experienced as a tire is being fitted onto or removed from said rim.
  • Finally, the immobilizing of the electronic unit on the rim J is afforded by means of a (metal) nut 12 screwed onto a threaded portion (not depicted) of the valve body 3.
  • In the above description, the inflation valve 2 described and illustrated is an inflation valve of the “clamp-in” type, comprising:
      • the valve body 3 is made of a metallic material, provided with a longitudinal axial bore 3 a and intended to extend through an orifice made in the rim J, said valve body 3 comprising an abutment head 5 for butting against the rim 3, which head is separated from the trunk 4 by a seal 6 allowing the valve body 3 to be positioned in an airtight manner in the orifice made in said rim J,
      • and a clamping nut 12 allowing the inflation valve 2 to be fixed in the orifice formed in said rim J.
  • However, the electronic unit according to an aspect of the invention affords the beneficial advantage of being able to be adapted to any type of inflation valve. Hence, according to one exemplary embodiment which has not been illustrated, the inflation valve 2 is an inflation valve of the “snap-in” type.
  • In the conventional way, a “snap-in” valve comprises:
      • a valve body made of an elastomer material, provided with a longitudinal axial bore and intended to extend through an orifice made in the rim, said valve body being made up of an elastically deformable trunk and of an abutment head for butting against the rim, which head is separated from the trunk by a neck designed to become positioned in an airtight manner in the orifice made in said rim,
      • and a hollow tubular core made of a rigid material, housing a shut-off mechanism and of dimensions suited to being housed in the bore of the valve body and to extending on each side in the continuation of said valve body, said tubular core being made up of two longitudinal portions arranged with respect to one another and relative to the valve body in such a way as to allow the trunk elastic deformation suited to allowing the inflation valve to be mounted through the orifice in the rim, thus not requiring any nut as is required for the “clamp-in” valve.

Claims (12)

1. An electronic unit for measuring operating parameters of a vehicle wheel, comprising:
an electronic casing configured to house control electronics of the electronic measurement unit;
an inflation valve configured to allow said electronic measurement unit to be fixed to a rim of a wheel of a vehicle; and
elements for attaching the electronic casing and the inflation valve;
wherein the elements for attaching the electronic casing and the inflation valve comprise:
an insert provided with an axial bore and with lateral orifices, which is mounted with the ability to pivot in a continuation of the body of the inflation valve;
a sleeve secured to the electronic casing, designed to be mounted with the ability to slide around the insert,
a means of assembling the sleeve of the electronic casing and the insert of the valve body;
a spring-effect elastic means configured to:
ensure a predetermined angular orientation between the electronic casing and the inflation valve when said elastic means is at rest:
allow relative angular movement between said electronic casing and said inflation valve when a stress loading is applied to said electronic unit; and
provide return to the predetermined angular orientation between said electronic casing and said inflation valve when no stress loading is applied to said electronic unit.
2. The electronic unit as claimed in claim 1, wherein the inflation valve is an inflation valve of the “snap-in” type, comprising:
a valve body made of an elastomer material, provided with a longitudinal axial bore and intended to extend through an orifice made in the rim, said valve body being made up of an elastically deformable trunk and of an abutment head for butting against the rim, which head is separated from the trunk by a neck designed to become positioned in an airtight manner in the orifice made in said rim,
and a hollow tubular core made of a rigid material, housing a shut-off mechanism and of dimensions suited to being housed in the bore of the valve body and to extending on each side in the continuation of said valve body, said tubular core being made up of two longitudinal portions arranged with respect to one another and relative to the valve body in such a way as to allow the trunk elastic deformation suited to allowing the inflation valve to be mounted through the orifice in the rim,
3. The electronic unit as claimed in claim 1, wherein the inflation valve is an inflation valve of the “clamp-in” type, comprising:
a valve body made of a metallic material, provided with a longitudinal axial bore and intended to extend through an orifice made in the rim, said valve body comprising an abutment head for butting against the rim, which head is separated from the trunk by a seal allowing the valve body to be positioned in an airtight manner in the orifice made in said rim,
and a clamping nut allowing the inflation valve to be fixed in the orifice formed in said rim.
4. The electronic unit as claimed in claim 1, wherein the spring-effect elastic means comprises a spring.
5. The electronic unit as claimed in claim 4, wherein the spring is fixed, on the one hand, to the frontal face of the abutment head of the inflation valve that is positioned facing the electronic casing and, on the other hand, to the pivoting insert.
6. The electronic unit as claimed in claim 4, wherein the spring works in compression.
7. The electronic unit as claimed in claim 4, wherein the spring works in tension.
8. The electronic unit as claimed in claim 1, wherein the spring-effect elastic means comprises an elastomer ring.
9. The electronic unit as claimed in claim 8, wherein the elastomer ring is formed by overmolding the pivoting insert.
10. The electronic unit as claimed in claim 1, wherein the means of assembling the sleeve of the electronic casing and the insert of the valve body comprises a screw.
11. The electronic unit as claimed in claim 5, wherein the spring works in compression.
12. The electronic unit as claimed in claim 5 wherein the spring works in tension.
US16/339,134 2016-11-04 2017-11-03 Electronic unit for measuring operating parameters of a vehicle wheel Active US10549586B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1660706 2016-11-04
FR1660706A FR3058360B1 (en) 2016-11-04 2016-11-04 ELECTRONIC UNIT FOR MEASURING OPERATING PARAMETERS OF A VEHICLE WHEEL
PCT/FR2017/053013 WO2018083424A1 (en) 2016-11-04 2017-11-03 Electronic unit for measuring operating parameters of a vehicle wheel

Publications (2)

Publication Number Publication Date
US10549586B1 US10549586B1 (en) 2020-02-04
US20200039302A1 true US20200039302A1 (en) 2020-02-06

Family

ID=57485802

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/339,134 Active US10549586B1 (en) 2016-11-04 2017-11-03 Electronic unit for measuring operating parameters of a vehicle wheel

Country Status (4)

Country Link
US (1) US10549586B1 (en)
CN (1) CN109906155B (en)
FR (1) FR3058360B1 (en)
WO (1) WO2018083424A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11760138B2 (en) 2021-09-23 2023-09-19 Wonder S.P.A. Tire inflation valve equipped with adjusting system for a TPMS sensor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085478B1 (en) * 2018-09-04 2021-09-10 Continental Automotive France ARTICULATED MEASUREMENT SENSOR
GB2580387B (en) * 2019-01-09 2021-08-25 Continental Automotive Gmbh Adapter, tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim
WO2020114792A1 (en) * 2018-12-05 2020-06-11 Continental Automotive Gmbh Adapter, tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim
CN112537176B (en) 2019-09-20 2022-12-20 大陆汽车有限公司 Adapter, valve stem, tire parameter monitoring system and method for mounting a tire parameter monitoring system on a rim
GB2589142B (en) * 2019-11-25 2022-03-23 Continental Automotive Gmbh Adapter, valve stem, tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim
EP3865319B1 (en) * 2020-02-14 2023-04-05 Continental Automotive Technologies GmbH Valve system, tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim of a vehicle
IT202000013402A1 (en) * 2020-06-05 2021-12-05 Wonder S P A TIRE INFLATION VALVE EQUIPPED WITH ADJUSTMENT SYSTEM FOR A TPMS SENSOR

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255916A (en) * 2003-02-24 2004-09-16 Pacific Ind Co Ltd Mounting structure of transmitter for tire condition monitoring device
FR2876322B1 (en) * 2004-10-12 2006-12-01 Ldl Technology Soc Par Actions MOUNTING FIXATION ON A RIM OF A DETECTION HOUSING ESPECIALLY OF THE TIRE PRESSURE
US7516653B2 (en) * 2005-11-08 2009-04-14 Trw Automotive U.S. Llc Tire pressure monitoring apparatus
US8803680B2 (en) * 2006-06-21 2014-08-12 Trw Automotive U.S. Llc Tire pressure monitoring apparatus
FR2907048B1 (en) 2006-10-16 2014-05-02 Siemens Vdo Automotive ELECTRONIC UNIT FOR MEASURING OPERATING PARAMETERS OF A VEHICLE WHEEL.
FR2918315B1 (en) * 2007-07-06 2009-08-28 Siemens Vdo Automotive Sas ELECTRONIC MEASURING UNIT FOR THE PARAMETERS OF OPERATION OF A VEHICLE WHEEL, COMPRISING AN ELECTRONIC HOUSING AND A "SNAP IN" INFLATION VALVE
FR2954733B1 (en) * 2009-12-28 2012-03-02 Continental Automotive France ELECTRONIC MEASURING UNIT FOR PARAMETERS FOR OPERATING A VEHICLE WHEEL, COMPRISING AN ELECTRONIC HOUSING AND AN INFLATION VALVE
CN103282655B (en) * 2010-06-21 2016-08-24 伊夸莱尔系统公司 The rotary air connector with centre valve for tire inflation system
FR2978378B1 (en) * 2011-07-28 2013-09-06 Continental Automotive France ELECTRONIC MEASURING UNIT FOR PARAMETERS FOR OPERATING A VEHICLE WHEEL, COMPRISING AN ELECTRONIC HOUSING AND AN INFLATION VALVE
DE102014114366A1 (en) * 2014-10-02 2016-04-07 Huf Hülsbeck & Fürst Gmbh & Co. Kg Tire monitoring system for a vehicle
CN104354546A (en) * 2014-10-20 2015-02-18 中山市六源通电子科技有限公司 Built-in sensor with angle-adjustable air tap
CN205086613U (en) * 2015-10-12 2016-03-16 铁将军汽车电子有限公司 Tyre pressure meter
DE202016101336U1 (en) 2016-03-10 2016-03-31 Huf Hülsbeck & Fürst Gmbh & Co. Kg Tire pressure monitoring system for a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11760138B2 (en) 2021-09-23 2023-09-19 Wonder S.P.A. Tire inflation valve equipped with adjusting system for a TPMS sensor

Also Published As

Publication number Publication date
CN109906155A (en) 2019-06-18
WO2018083424A1 (en) 2018-05-11
FR3058360B1 (en) 2019-06-28
FR3058360A1 (en) 2018-05-11
US10549586B1 (en) 2020-02-04
CN109906155B (en) 2021-03-23

Similar Documents

Publication Publication Date Title
US10549586B1 (en) Electronic unit for measuring operating parameters of a vehicle wheel
KR101137813B1 (en) Tire Pressure Monitoring System and Tire Pressure Sensor thereof
US7587935B2 (en) Electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic box and an inflation valve of the snap-in type
US5011321A (en) Ball joint for stabilizer
US6568259B2 (en) Transmitter for tire condition monitoring apparatus
US7886589B2 (en) Electronic unit for measuring operating parameters of a vehicle wheel
US8839667B2 (en) Electronic unit for measuring the operation parameters of a vehicle wheel including an electronic housing and an inflation valve
US9744819B2 (en) Metal valve of the clamp-in type for inflating tyres associable with a TPMS transducer
JP2008094208A (en) Tire valve unit
US9884526B2 (en) Electronic unit for measuring working parameters of a vehicle wheel
WO2020114792A1 (en) Adapter, tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim
US10940723B2 (en) Electronic unit for measuring operating parameters of a vehicle wheel, comprising an electronic casing and an inflation valve of elastically deformable type
US4718639A (en) Tire valve bodies
US20030217595A1 (en) Remote tire pressure monitoring system with plastic thin-walled valve cap and method of installing the monitoring system
US11046127B2 (en) Tire condition detecting device, clamp-in valve, and tire valve unit
CN113263875B (en) Valve system, tire parameter monitoring system and method of mounting a tire parameter monitoring system to a rim of a vehicle
US20220379668A1 (en) Hub Covering for a Tyre Filling Device of a Vehicle
US11760138B2 (en) Tire inflation valve equipped with adjusting system for a TPMS sensor
EP3858645A1 (en) Tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim of a vehicle
GB2580387A (en) Adapter, tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim
EP4311696A1 (en) Tire inflation valve and related valve-sensor assembly
US11970029B2 (en) Adapter, tyre parameter monitoring system and method for mounting a tyre parameter monitoring system onto a wheel rim
EP3272559A1 (en) Reinforced valve group for inflating tyres
WO2018003021A1 (en) Holding structure for tire air pressure detecting device
US20080184786A1 (en) Wheel sensor with valve

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CONTINENTAL AUTOMOTIVE FRANCE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIEYAN, JEREMY;REEL/FRAME:050614/0574

Effective date: 20191001

Owner name: CONTINENTAL AUTOMOTIVE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIEYAN, JEREMY;REEL/FRAME:050614/0574

Effective date: 20191001

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4