US20200023431A1 - Shape memory alloy coating using additive manufacturing - Google Patents

Shape memory alloy coating using additive manufacturing Download PDF

Info

Publication number
US20200023431A1
US20200023431A1 US16/041,604 US201816041604A US2020023431A1 US 20200023431 A1 US20200023431 A1 US 20200023431A1 US 201816041604 A US201816041604 A US 201816041604A US 2020023431 A1 US2020023431 A1 US 2020023431A1
Authority
US
United States
Prior art keywords
substrate
pitting
gear
pitting resistant
outer coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/041,604
Inventor
Steven Poteet
Diana Giulietti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Priority to US16/041,604 priority Critical patent/US20200023431A1/en
Assigned to HAMILTON SUNDSTRAND CORPORATION reassignment HAMILTON SUNDSTRAND CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIULIETTI, Diana, POTEET, Steven
Priority to EP19187421.3A priority patent/EP3597917A1/en
Publication of US20200023431A1 publication Critical patent/US20200023431A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • B22F1/025
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/088Elements in the toothed wheels or the carter for relieving the pressure of fluid imprisoned in the zones of engagement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • B22F3/1055
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0049Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/30Coating alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/10Manufacture by removing material
    • F04C2230/103Manufacture by removing material using lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to additive manufacturing, more specifically to shape memory materials (e.g., NiTi).
  • shape memory materials e.g., NiTi
  • Alloys specifically shape memory alloys (SMA) have been identified as superior candidates towards cavitation erosion, however, they are expensive and difficult to manufacture. SMA coatings could be applied to the substrate material, but they suffer from a knockdown in performance compared to the bulk alloy and interface issues with the substrate.
  • SMA shape memory alloys
  • a gear pump can include at least one gear having a plurality of gear teeth. At least the plurality of gear teeth can be additively manufactured and can include a substrate and a pitting resistant outer coating additively manufactured on the substrate and configured to prevent pitting due to cavitation.
  • the substrate can include a substrate material and the pitting resistant outer coating includes a pitting resistant material different than the substrate material.
  • the pitting resistant outer coating defines an outer surface layer of the gear teeth.
  • the pitting resistant outer coating can include a mixture section that includes a composition having a mixture of the substrate material and the pitting resistant material additively manufactured together.
  • the mixture section can be a gradient, for example, or any other suitable constant or variable mixture.
  • the gradient can include an increasing concentration of the pitting resistant material toward the outer surface layer from the substrate.
  • the outer surface layer defined by the pitting resistant outer coating may only include pitting resistant material.
  • the outer surface layer can be about 20 microns thick or more, for example, or any other suitable thickness.
  • the gradient can be about 50 microns thick or more.
  • the pitting resistant material can include a shape memory alloy.
  • the shape memory alloy can be or include NiTi (Nitinol).
  • the substrate material can be steel.
  • a method can include additively manufacturing a pitting resistant outer coating on a substrate that is made of a substrate material to form a gear for a gear pump.
  • Additively manufacturing can include adding a powder of a pitting resistant material to a powder of the substrate material during additive manufacturing, and successively increasing a concentration of the pitting resistant material in successive additive layers to create a gradient extending from the substrate toward an outer surface layer of the pitting resistant outer coating.
  • Increasing the concentration can include increasing the concentration to pure pitting resistant material after creating the gradient to create the outer surface layer.
  • the pitting resistant material can be or include NiT or any other suitable material.
  • the substrate material can be steel.
  • FIG. 1 is a cross-sectional schematic view of an embodiment of a gear pump in accordance with this disclosure
  • FIG. 2 is a partial cross-sectional view of an embodiment of a gear in accordance with this disclosure, e.g., as shown in FIG. 1 ;
  • FIG. 3 is a cross-sectional, isolated view of an embodiment of an embodiment of a gear tooth of the gear of FIG. 2 ;
  • FIG. 4 is a cross-sectional view of the gear tooth of FIG. 3 , taken along line 4 - 4 .
  • FIG. 1 an illustrative view of an embodiment of a gear pump in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 100 .
  • FIGS. 2-4 Other embodiments and/or aspects of this disclosure are shown in FIGS. 2-4 .
  • the systems and methods described herein can be used to increase lifetime of gears in a gear pump, for example, and reducing the cost of such higher lifetime parts.
  • a gear pump 100 can include at least one gear 101 having a plurality of gear teeth 103 .
  • at least the plurality of gear teeth 103 of the gear 101 can be additively manufactured and can include a substrate 105 and a pitting resistant outer coating 107 additively manufactured on the substrate 105 .
  • the pitting resistant outer coating 107 can be configured to prevent pitting due to cavitation in the gear pump (e.g., from gas formation).
  • the substrate 105 can include a substrate material and the pitting resistant outer coating 107 includes a pitting resistant material different than the substrate material.
  • the pitting resistant outer coating 107 defines an outer surface layer 109 of the gear teeth 103 .
  • the pitting resistant outer coating 107 can include a mixture section 111 that includes a composition having a mixture of the substrate material and the pitting resistant material 105 additively manufactured together.
  • the mixture section 111 can be a gradient (e.g., as shown in FIG. 4 ), for example, or any other suitable constant or variable mixture.
  • the gradient can include an increasing concentration of the pitting resistant material toward the outer surface layer 109 from the substrate 105 .
  • the outer surface layer defined by the pitting resistant outer coating 107 may only include a pure pitting resistant material as shown, or any other suitable composition.
  • the outer surface layer can be about 20 microns thick of pure pitting resistant material, for example, or any other suitable thickness.
  • a final ten additive layers may be pure pitting resistant material in certain embodiments.
  • the outer surface layer 109 may also be the mixture layer 111 such that no layer having pure pitting resistant material is included.
  • the mixture layer 111 and/or the gradient can be about 50 microns thick or more.
  • the mixture layer 111 and/or the gradient may be any suitable size (e.g., less than the outer surface layer 109 thickness).
  • the mixture layer 111 may be only 1, 2, 3, 4, or 5 additive layers thick, or any other suitable number of additive layers.
  • One having ordinary skill in the art knows the thickness of an additive layer based on the method and machine used for additive manufacturing, and the number of additive layers may change as a function of the thickness thereof.
  • the mixture layer 111 may only be about 1 to about 2 microns thick.
  • the pitting resistant material of the coating 107 can include a shape memory alloy.
  • the shape memory alloy can be or include NiTi (Nitinol).
  • the substrate material of the substrate 105 (and/or used in the mixture layer 111 ) can be steel, for example, or any other suitable material.
  • the outer surface coating 107 can be applied to any suitable portion(s) of the gear 101 (e.g., the forward and back faces of gear teeth 103 and/or the sides of teeth 103 ), or to the entirety of the gear 101 .
  • only the gear teeth 103 or one or more portions thereof may include the outer surface coating 107 .
  • only a forward face (a side facing the direction of motion) or a rear face (the opposite side of the forward face) of the gear teeth 103 can include the outer surface coating 107 .
  • the outer surface coating 107 may be non-uniform in thickness as a function of location on the gear teeth 103 (e.g., to provide greater resistance at known cavitation damage spots).
  • a method can include additively manufacturing a pitting resistant outer coating 107 on a substrate 105 that is made of a substrate material to form a gear 103 for a gear pump 100 .
  • Additively manufacturing can include adding a powder of a pitting resistant material to a powder of the substrate material during additive manufacturing, and successively increasing a concentration of the pitting resistant material in successive additive layers to create a gradient extending from the substrate toward an outer surface layer of the pitting resistant outer coating.
  • Increasing the concentration can include increasing the concentration to pure pitting resistant material after creating the gradient to create the outer surface layer.
  • the pitting resistant material can be or include NiT or any other suitable material and the substrate material can be steel, and/or any other suitable materials. Any suitable additive manufacturing method is contemplated herein (e.g., direct energy deposition or any other suitable similar method, could use powder or wire filament).
  • Embodiments eliminate a stark interface between a substrate material and a pitting resistant coating to make the material more homogeneous.
  • Embodiments of gradient additive manufacturing using direct energy deposition provides a method of building a part mostly of a low cost material, e.g., an alloy such as steel, while building the outer most layers (e.g., about 5 to about 10 additive layers) out of a different material, e.g., such as a shape memory alloy (i.e. NiTi).
  • a shape memory alloy i.e. NiTi
  • Embodiments can keep costs to a minimum but allow the part to function as if it were mostly made of the shape memory bulk alloy.
  • the first selected material can be used to build the bulk of the part, and the system would be switched to accommodate a second selected material (in this case, NiTi), e.g., in the final steps of the build process.
  • Nitinol is a shape memory alloy (SMA) that is very wear resistant, hard, and elastic. Nitinol can be beneficial towards high energy uses such as pumps that experience cavitation to absorb shockwaves that impact the surface. For example, the maximum recoverable strain these materials can hold without permanent damage is up to about 8% for some alloys, compared to a maximum strain of about 0.5% for conventional steels. Embodiments provide at least an order of magnitude greater cavitation resistance. As described above, only outer surface layers and sides of the teeth may be NiTi in certain embodiments, and the rest of gear (e.g., the part that sits in bearings) can be a cheaper material, e.g., steel. For example, less than of the 10% additive build can use NiTi for performance, and greater than 90% of the additive build can use a low cost material.
  • SMA shape memory alloy
  • Cavitation (bubbles formed by depressurized fuel, for example) causes implosive forces on teeth which erodes the material. Cavitation on nitrided CPM10V steel causes severe pitting of gear teeth. Cavitation is caused by micro-implosions on the surface of a material at forces up to 1000 MPa. This causes extreme wear and premature part replacement.
  • Embodiments reduce the cavitation rate of gear pumps and thereby significantly increase the lifetime of the part reducing costs to the organization. In certain embodiments, by manufacturing mostly from steel, the benefits of SMA can still be achieved while avoiding the costs traditionally met when manufacturing from a SMA alone. Using the AM process to create a gradient between the cheaper base material and the SMA coating can eliminates any issues of interface failures as well. Embodiments reduce wear degradation due to film interface issues.
  • any numerical values disclosed herein can be exact values or can be values within a range. Further, any terms of approximation (e.g., “about”, “approximately”, “around”) used in this disclosure can mean the stated value within a range. For example, in certain embodiments, the range can be within (plus or minus) 20%, or within 10%, or within 5%, or within 2%, or within any other suitable percentage or number as appreciated by those having ordinary skill in the art (e.g., for known tolerance limits or error ranges).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

A gear pump can include at least one gear having a plurality of gear teeth. At least the plurality of gear teeth can be additively manufactured and can include a substrate and a pitting resistant outer coating additively manufactured on the substrate and configured to prevent pitting due to cavitation. The substrate can include a substrate material and the pitting resistant outer coating includes a pitting resistant material different than the substrate material. The pitting resistant outer coating defines an outer surface layer of the gear teeth.

Description

    BACKGROUND 1. Field
  • The present disclosure relates to additive manufacturing, more specifically to shape memory materials (e.g., NiTi).
  • 2. Description of Related Art
  • Parts in extreme conditions may be subject to degradation of the material used, such as cavitation of steel gears in a fuel pump. Alloys, specifically shape memory alloys (SMA), have been identified as superior candidates towards cavitation erosion, however, they are expensive and difficult to manufacture. SMA coatings could be applied to the substrate material, but they suffer from a knockdown in performance compared to the bulk alloy and interface issues with the substrate.
  • Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved parts utilizing shape memory alloys. The present disclosure provides a solution for this need.
  • SUMMARY
  • A gear pump can include at least one gear having a plurality of gear teeth. At least the plurality of gear teeth can be additively manufactured and can include a substrate and a pitting resistant outer coating additively manufactured on the substrate and configured to prevent pitting due to cavitation. The substrate can include a substrate material and the pitting resistant outer coating includes a pitting resistant material different than the substrate material. The pitting resistant outer coating defines an outer surface layer of the gear teeth.
  • The pitting resistant outer coating can include a mixture section that includes a composition having a mixture of the substrate material and the pitting resistant material additively manufactured together. The mixture section can be a gradient, for example, or any other suitable constant or variable mixture. The gradient can include an increasing concentration of the pitting resistant material toward the outer surface layer from the substrate.
  • In certain embodiments, the outer surface layer defined by the pitting resistant outer coating may only include pitting resistant material. The outer surface layer can be about 20 microns thick or more, for example, or any other suitable thickness. In certain embodiments, the gradient can be about 50 microns thick or more.
  • The pitting resistant material can include a shape memory alloy. For example, the shape memory alloy can be or include NiTi (Nitinol). The substrate material can be steel.
  • In accordance with at least one aspect of this disclosure, a method can include additively manufacturing a pitting resistant outer coating on a substrate that is made of a substrate material to form a gear for a gear pump. Additively manufacturing can include adding a powder of a pitting resistant material to a powder of the substrate material during additive manufacturing, and successively increasing a concentration of the pitting resistant material in successive additive layers to create a gradient extending from the substrate toward an outer surface layer of the pitting resistant outer coating.
  • Increasing the concentration can include increasing the concentration to pure pitting resistant material after creating the gradient to create the outer surface layer. The pitting resistant material can be or include NiT or any other suitable material. The substrate material can be steel.
  • These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description taken in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
  • FIG. 1 is a cross-sectional schematic view of an embodiment of a gear pump in accordance with this disclosure;
  • FIG. 2 is a partial cross-sectional view of an embodiment of a gear in accordance with this disclosure, e.g., as shown in FIG. 1;
  • FIG. 3 is a cross-sectional, isolated view of an embodiment of an embodiment of a gear tooth of the gear of FIG. 2;
  • FIG. 4 is a cross-sectional view of the gear tooth of FIG. 3, taken along line 4-4.
  • DETAILED DESCRIPTION
  • Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, an illustrative view of an embodiment of a gear pump in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 100. Other embodiments and/or aspects of this disclosure are shown in FIGS. 2-4. The systems and methods described herein can be used to increase lifetime of gears in a gear pump, for example, and reducing the cost of such higher lifetime parts.
  • Referring to FIG. 1, a gear pump 100 can include at least one gear 101 having a plurality of gear teeth 103. Referring to FIGS. 2 and 3, at least the plurality of gear teeth 103 of the gear 101 can be additively manufactured and can include a substrate 105 and a pitting resistant outer coating 107 additively manufactured on the substrate 105. The pitting resistant outer coating 107 can be configured to prevent pitting due to cavitation in the gear pump (e.g., from gas formation). The substrate 105 can include a substrate material and the pitting resistant outer coating 107 includes a pitting resistant material different than the substrate material. The pitting resistant outer coating 107 defines an outer surface layer 109 of the gear teeth 103.
  • The pitting resistant outer coating 107 can include a mixture section 111 that includes a composition having a mixture of the substrate material and the pitting resistant material 105 additively manufactured together. The mixture section 111 can be a gradient (e.g., as shown in FIG. 4), for example, or any other suitable constant or variable mixture. The gradient can include an increasing concentration of the pitting resistant material toward the outer surface layer 109 from the substrate 105.
  • In certain embodiments, the outer surface layer defined by the pitting resistant outer coating 107 may only include a pure pitting resistant material as shown, or any other suitable composition. The outer surface layer can be about 20 microns thick of pure pitting resistant material, for example, or any other suitable thickness. For example, a final ten additive layers may be pure pitting resistant material in certain embodiments. It is contemplated that the outer surface layer 109 may also be the mixture layer 111 such that no layer having pure pitting resistant material is included.
  • In certain embodiments, the mixture layer 111 and/or the gradient can be about 50 microns thick or more. However, it is contemplated that the mixture layer 111 and/or the gradient may be any suitable size (e.g., less than the outer surface layer 109 thickness). For example, the mixture layer 111 may be only 1, 2, 3, 4, or 5 additive layers thick, or any other suitable number of additive layers. One having ordinary skill in the art knows the thickness of an additive layer based on the method and machine used for additive manufacturing, and the number of additive layers may change as a function of the thickness thereof. For example, the mixture layer 111 may only be about 1 to about 2 microns thick.
  • The pitting resistant material of the coating 107 can include a shape memory alloy. For example, the shape memory alloy can be or include NiTi (Nitinol). The substrate material of the substrate 105 (and/or used in the mixture layer 111) can be steel, for example, or any other suitable material.
  • It is contemplated that the outer surface coating 107 can be applied to any suitable portion(s) of the gear 101 (e.g., the forward and back faces of gear teeth 103 and/or the sides of teeth 103), or to the entirety of the gear 101. In certain embodiments, only the gear teeth 103 or one or more portions thereof may include the outer surface coating 107. In certain embodiments, only a forward face (a side facing the direction of motion) or a rear face (the opposite side of the forward face) of the gear teeth 103 can include the outer surface coating 107. It is contemplated that the outer surface coating 107 may be non-uniform in thickness as a function of location on the gear teeth 103 (e.g., to provide greater resistance at known cavitation damage spots).
  • In accordance with at least one aspect of this disclosure, a method can include additively manufacturing a pitting resistant outer coating 107 on a substrate 105 that is made of a substrate material to form a gear 103 for a gear pump 100. Additively manufacturing can include adding a powder of a pitting resistant material to a powder of the substrate material during additive manufacturing, and successively increasing a concentration of the pitting resistant material in successive additive layers to create a gradient extending from the substrate toward an outer surface layer of the pitting resistant outer coating.
  • Increasing the concentration can include increasing the concentration to pure pitting resistant material after creating the gradient to create the outer surface layer. As described above, the pitting resistant material can be or include NiT or any other suitable material and the substrate material can be steel, and/or any other suitable materials. Any suitable additive manufacturing method is contemplated herein (e.g., direct energy deposition or any other suitable similar method, could use powder or wire filament).
  • Embodiments eliminate a stark interface between a substrate material and a pitting resistant coating to make the material more homogeneous. Embodiments of gradient additive manufacturing using direct energy deposition provides a method of building a part mostly of a low cost material, e.g., an alloy such as steel, while building the outer most layers (e.g., about 5 to about 10 additive layers) out of a different material, e.g., such as a shape memory alloy (i.e. NiTi). Embodiments can keep costs to a minimum but allow the part to function as if it were mostly made of the shape memory bulk alloy. The first selected material can be used to build the bulk of the part, and the system would be switched to accommodate a second selected material (in this case, NiTi), e.g., in the final steps of the build process.
  • Nitinol (NiTi) is a shape memory alloy (SMA) that is very wear resistant, hard, and elastic. Nitinol can be beneficial towards high energy uses such as pumps that experience cavitation to absorb shockwaves that impact the surface. For example, the maximum recoverable strain these materials can hold without permanent damage is up to about 8% for some alloys, compared to a maximum strain of about 0.5% for conventional steels. Embodiments provide at least an order of magnitude greater cavitation resistance. As described above, only outer surface layers and sides of the teeth may be be NiTi in certain embodiments, and the rest of gear (e.g., the part that sits in bearings) can be a cheaper material, e.g., steel. For example, less than of the 10% additive build can use NiTi for performance, and greater than 90% of the additive build can use a low cost material.
  • Cavitation (bubbles formed by depressurized fuel, for example) causes implosive forces on teeth which erodes the material. Cavitation on nitrided CPM10V steel causes severe pitting of gear teeth. Cavitation is caused by micro-implosions on the surface of a material at forces up to 1000 MPa. This causes extreme wear and premature part replacement. Embodiments reduce the cavitation rate of gear pumps and thereby significantly increase the lifetime of the part reducing costs to the organization. In certain embodiments, by manufacturing mostly from steel, the benefits of SMA can still be achieved while avoiding the costs traditionally met when manufacturing from a SMA alone. Using the AM process to create a gradient between the cheaper base material and the SMA coating can eliminates any issues of interface failures as well. Embodiments reduce wear degradation due to film interface issues.
  • Any suitable combination(s) of any disclosed embodiments and/or any suitable portion(s) thereof are contemplated herein as appreciated by those having ordinary skill in the art.
  • Those having ordinary skill in the art understand that any numerical values disclosed herein can be exact values or can be values within a range. Further, any terms of approximation (e.g., “about”, “approximately”, “around”) used in this disclosure can mean the stated value within a range. For example, in certain embodiments, the range can be within (plus or minus) 20%, or within 10%, or within 5%, or within 2%, or within any other suitable percentage or number as appreciated by those having ordinary skill in the art (e.g., for known tolerance limits or error ranges).
  • The embodiments of the present disclosure, as described above and shown in the drawings, provide for improvement in the art to which they pertain. While the subject disclosure includes reference to certain embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the spirit and scope of the subject disclosure.

Claims (20)

What is claimed is:
1. A gear pump, comprising:
at least one gear having a plurality of gear teeth, at least the plurality of gear teeth being additively manufactured and comprising:
a substrate; and
a pitting resistant outer coating additively manufactured on the substrate and configured to prevent pitting due to cavitation,
wherein the substrate includes a substrate material and the pitting resistant outer coating includes a pitting resistant material different than the substrate material, wherein the pitting resistant outer coating defines an outer surface layer of the gear teeth.
2. The gear pump of claim 1, wherein the pitting resistant outer coating further comprises a mixture section that includes a composition having a mixture of the substrate material and the pitting resistant material additively manufactured together.
3. The gear pump of claim 2, wherein the mixture section is a gradient.
4. The gear pump of claim 3, wherein the gradient includes an increasing concentration of the pitting resistant material toward the outer surface layer from the substrate.
5. The gear pump of claim 4, wherein at least the outer surface layer defined by the pitting resistant outer coating only includes pitting resistant material.
6. The gear pump of claim 5, wherein the outer surface layer is about 20 microns thick or more.
7. The gear pump of claim 6, wherein the gradient is about 50 microns thick or more.
8. The gear pump of claim 1, wherein the pitting resistant material includes a shape memory alloy.
9. The gear pump of claim 8, wherein the shape memory alloy includes NiTi.
10. The gear pump of claim 9, wherein the substrate material is steel.
11. A method, comprising:
additively manufacturing a pitting resistant outer coating on a substrate that is made of a substrate material to form a gear for a gear pump.
12. The method of claim 11, wherein additively manufacturing includes adding a powder of a pitting resistant material to a powder of the substrate material during additive manufacturing, and successively increasing a concentration of the pitting resistant material in successive additive layers to create a gradient extending from the substrate toward an outer surface layer of the pitting resistant outer coating.
13. The method of claim 12, wherein increasing the concentration includes increasing the concentration to pure pitting resistant material after creating the gradient to create the outer surface layer.
14. The method of claim 12, wherein the pitting resistant material is NiTi.
15. The method of claim 12, wherein the substrate material is steel.
16. A gear for a gear pump, comprising:
a plurality of gear teeth, at least the plurality of gear teeth being additively manufactured and comprising:
a substrate; and
a pitting resistant outer coating additively manufactured on the substrate and configured to prevent pitting due to cavitation,
wherein the substrate includes a substrate material and the pitting resistant outer coating includes a pitting resistant material different than the substrate material, wherein the pitting resistant outer coating defines an outer surface layer of the gear teeth.
17. The gear of claim 16, wherein the pitting resistant outer coating further comprises a mixture section that includes a composition having a mixture of the substrate material and the pitting resistant material additively manufactured together.
18. The gear of claim 17, wherein the mixture section is a gradient.
19. The gear of claim 18, wherein the gradient includes an increasing concentration of the pitting resistant material toward the outer surface layer from the substrate.
20. The gear of claim 19, wherein at least the outer surface layer defined by the pitting resistant outer coating only includes pitting resistant material.
US16/041,604 2018-07-20 2018-07-20 Shape memory alloy coating using additive manufacturing Abandoned US20200023431A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/041,604 US20200023431A1 (en) 2018-07-20 2018-07-20 Shape memory alloy coating using additive manufacturing
EP19187421.3A EP3597917A1 (en) 2018-07-20 2019-07-19 Shape memory alloy coating using additive manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/041,604 US20200023431A1 (en) 2018-07-20 2018-07-20 Shape memory alloy coating using additive manufacturing

Publications (1)

Publication Number Publication Date
US20200023431A1 true US20200023431A1 (en) 2020-01-23

Family

ID=67438252

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/041,604 Abandoned US20200023431A1 (en) 2018-07-20 2018-07-20 Shape memory alloy coating using additive manufacturing

Country Status (2)

Country Link
US (1) US20200023431A1 (en)
EP (1) EP3597917A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996804A (en) * 2021-10-21 2022-02-01 昆明理工大学 Preparation method of partitioned gradient component gear
US11344981B1 (en) * 2020-11-23 2022-05-31 Caterpillar Inc. Method for remanufacturing internal spline components and splined connection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207409A1 (en) * 2010-05-31 2013-08-15 Siemens Aktiengesellschaft Bogie shaft for a railway vehicle having a stone guard and method for producing same
US20160237978A1 (en) * 2013-09-30 2016-08-18 Eaton Corporation Gear Pump for Hydroelectric Power Generation
US20170261087A1 (en) * 2016-03-11 2017-09-14 Deere & Company Composite gears and methods of manufacturing such gears

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293361A (en) * 1985-10-18 1987-04-28 Toyota Motor Corp Manufacture of surface hardened gear made of cast iron
US10443597B2 (en) * 2016-01-12 2019-10-15 Hamilton Sundstrand Corporation Gears and gear pumps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207409A1 (en) * 2010-05-31 2013-08-15 Siemens Aktiengesellschaft Bogie shaft for a railway vehicle having a stone guard and method for producing same
US20160237978A1 (en) * 2013-09-30 2016-08-18 Eaton Corporation Gear Pump for Hydroelectric Power Generation
US20170261087A1 (en) * 2016-03-11 2017-09-14 Deere & Company Composite gears and methods of manufacturing such gears

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11344981B1 (en) * 2020-11-23 2022-05-31 Caterpillar Inc. Method for remanufacturing internal spline components and splined connection
CN113996804A (en) * 2021-10-21 2022-02-01 昆明理工大学 Preparation method of partitioned gradient component gear

Also Published As

Publication number Publication date
EP3597917A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
EP3597917A1 (en) Shape memory alloy coating using additive manufacturing
KR100600075B1 (en) Friction bearing having intermediate layer, notably binding layer, made of an alloy on aluminium basis
US7572521B2 (en) Aluminum alloy for surfaces which are subjected to extreme stresses due to friction
US9435376B2 (en) Multi-layered plain bearing
JP6454234B2 (en) Multi-layer covering structure of plain bearing and manufacturing method thereof
JP5460585B2 (en) Sliding member manufacturing method, sliding member and sliding member base material
JP2008540839A (en) Sliding bearing composite material, use and manufacturing method
EP2833008B1 (en) Sliding member
US10830357B2 (en) Single crystal grain structure seals and method of forming
WO2012147780A1 (en) Sliding material, alloy for bearing, and multilayer metal material for bearing
JP6389052B2 (en) Erosion resistant coating system and treatment method thereof
GB2404228A (en) A layered bearing member
US7153591B2 (en) Sliding member
EP3051157B1 (en) Sliding member
US20180298496A1 (en) Corrosion and fatigue resistant coating for a non-line-of-sight (nlos) process
US9650585B2 (en) Nanocomposite solid lubricant coating
CN108026632B (en) Plain bearing element
EP3572623A1 (en) Dual alloy turbine blade manufactured by metal spray additive manufacturing
JP2006336674A (en) Direct supporting connecting rod and method of manufacturing the same
GB2491798A (en) Aluminum alloy bearing
CN202274191U (en) Valve and valve rod thereof
US20200025195A1 (en) Cavitation resistant gear driven fuel pump
EP0638652B1 (en) Process for hardening metal workpieces
JP2014184521A (en) Surface-coated cemented carbide cutting tool
JP2007524045A (en) Rolling bearing with nickel-phosphorus coating

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAMILTON SUNDSTRAND CORPORATION, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POTEET, STEVEN;GIULIETTI, DIANA;SIGNING DATES FROM 20180702 TO 20180703;REEL/FRAME:046474/0883

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION