US20200017543A1 - Nucleophilic catalysts for oxime linkage - Google Patents

Nucleophilic catalysts for oxime linkage Download PDF

Info

Publication number
US20200017543A1
US20200017543A1 US16/532,212 US201916532212A US2020017543A1 US 20200017543 A1 US20200017543 A1 US 20200017543A1 US 201916532212 A US201916532212 A US 201916532212A US 2020017543 A1 US2020017543 A1 US 2020017543A1
Authority
US
United States
Prior art keywords
protein
growth factor
factor
receptor
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/532,212
Inventor
Stefan Haider
Andreas Ivens
Hanspeter Rottensteiner
Jürgen Siekmann
Peter Turecek
Oliver Zoechling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Baxalta GmbH
Baxalta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/843,542 external-priority patent/US8637640B2/en
Application filed by Baxalta GmbH, Baxalta Inc filed Critical Baxalta GmbH
Priority to US16/532,212 priority Critical patent/US20200017543A1/en
Assigned to BAXTER HEALTHCARE S.A., BAXTER INTERNATIONAL INC. reassignment BAXTER HEALTHCARE S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROTTENSTEINER, HANSPETER, TURECEK, PETER, IVENS, ANDREAS, HAIDER, STEFAN, SIEKMANN, JUERGEN, ZOECHLING, OLIVER
Assigned to Baxalta GmbH, BAXALTA INCORPORATED reassignment Baxalta GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAXTER INTERNATIONAL INC.
Assigned to Baxalta GmbH, BAXALTA INCORPORATED reassignment Baxalta GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAXTER HEALTHCARE SA
Publication of US20200017543A1 publication Critical patent/US20200017543A1/en
Assigned to TAKEDA PHARMACEUTICAL COMPANY LIMITED reassignment TAKEDA PHARMACEUTICAL COMPANY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Baxalta GmbH, BAXALTA INCORPORATED
Priority to US17/168,695 priority patent/US20210163527A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)

Definitions

  • the present invention relates to materials and methods for conjugating a water soluble polymer to a protein.
  • the preparation of conjugates by forming a covalent linkage between the water soluble polymer and the therapeutic protein can be carried out by a variety of chemical methods.
  • PEGylation of polypeptide drugs protects them in circulation and improves their pharmacodynamic and pharmacokinetic profiles (Harris and Chess, Nat Rev Drug Discov. 2003; 2:214-21).
  • the PEGylation process attaches repeating units of ethylene glycol (polyethylene glycol (PEG)) to a polypeptide drug.
  • PEG molecules have a large hydrodynamic volume (5-10 times the size of globular proteins), are highly water soluble and hydrated, non-toxic, non-immunogenic and rapidly cleared from the body.
  • PEGylation of molecules can lead to increased resistance of drugs to enzymatic degradation, increased half-life in vivo, reduced dosing frequency, decreased immunogenicity, increased physical and thermal stability, increased solubility, increased liquid stability, and reduced aggregation.
  • the first PEGylated drugs were approved by the FDA in the early 1990s. Since then, the FDA has approved several PEGylated drugs for oral, injectable, and topical administration.
  • PSA Polysialic acid
  • CA colominic acid
  • PSA acid is biodegradable.
  • the polymer can be coupled to the aldehyde groups of the carbohydrate by use of reagents containing, for example, an active hydrazide group (Wilchek M and Bayer E A, Methods Enzymol 1987; 138:429-42).
  • reagents containing, for example, an active hydrazide group Wang M and Bayer E A, Methods Enzymol 1987; 138:429-412.
  • a more recent technology is the use of reagents containing aminooxy groups which react with aldehydes to form oxime linkages (WO 96/40662, WO2008/025856).
  • nucelophilic catalysts are also described in Dirksen, A., et al., J Am Chem Soc., 128:15602-3 (2006); Dirksen, A., et al., Angew chem. Int Ed., 45:7581-4 (2006); Kohler, J. J., ChemBioChem., 10:2147-50 (2009); Giuseppone, N., et al., J Am Chem Soc., 127:5528-39 (2005); and Thygesen, M. B., et al., J Org Chem., 75:1752-5 (2010).
  • aniline catalysis can accelerate the oxime ligation allowing short reaction times and the use of low concentrations of the aminooxy reagent
  • aniline has toxic properties that must be considered when, for example, the conjugated therapeutic protein to form the basis of a pharmaceutical.
  • aniline has been shown to induce methemoglobinemia (Harrison, J. H., and Jollow, D. J., Molecular Pharmacology, 32(3) 423-431, 1987).
  • Long-term dietary treatment of rats has been shown to induce tumors in the spleen (Goodman, D G., et al., J Natl Cancer Inst., 73(1):265-73, 1984).
  • In vitro studies have also shown that aniline has the potential to induce chromosome mutations and has the potentially genotoxic activity (Bombhard E. M. et Herbold B, Critical Reviews in Toxicology 35, 783-835, 2005).
  • the present invention provides materials and methods for conjugating polymers to proteins that improves the protein's pharmacodynamic and/or pharmacokinetic properties while minimizing the costs associated with the various reagents and the health risks to the patient recipients when the conjugation reaction is catalyzed by a nucleophilic catalyst.
  • alternative catalysts to substitute for aniline are provided.
  • a method of conjugating a water soluble polymer to an oxidized carbohydrate moiety of a therapeutic protein comprising contacting the oxidized carbohydrate moiety with an activated water soluble polymer under conditions that allow conjugation; said water soluble polymer containing an active aminooxy group and is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorph
  • a method of conjugating a water soluble polymer to an oxidized carbohydrate moiety of a therapeutic protein comprising contacting the oxidized carbohydrate moiety with an activated water soluble polymer under conditions that allow conjugation; said therapeutic protein selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XIII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF), ADAMTS 13 protease, IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF, granulocyte colony stimulating factor (G-
  • an aforementioned method wherein a solution comprising an initial concentration of the therapeutic protein between about 0.3 mg/ml and about 3.0 mg/ml is adjusted to a pH value between about 5.0 and about 8.0 prior to contacting with the activated water soluble polymer.
  • the term “about” means a value above or below a stated value. In various embodiments, the term “about” includes the stated value plus or minus 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10% of the stated value.
  • an aforementioned method is provided wherein the initial concentration of the therapeutic protein is about 1.0 mg/ml and the pH is about 6.0. In a related embodiment, the initial concentration of the therapeutic protein is about 0.75 mg/ml and the pH is about 6.0. In still another related embodiment, the initial concentration of the therapeutic protein is about 1.25 mg/ml and the pH is about 6.0.
  • an aforementioned method wherein the therapeutic protein is contacted by a desired excess concentration of activated water soluble polymer, wherein the excess concentration is between about 1-molar and about 300-molar excess. In another embodiment, the excess concentration is about 50-fold molar excess.
  • an aforementioned method wherein the therapeutic protein is incubated with the activated water soluble polymer under conditions comprising a time period between about 0.5 hours and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring.
  • the conditions comprise a time period of about 120 minutes, a temperature of about 22° C., the absence of light; and with stirring.
  • stirring is meant to include stirring at various speeds and intensities (e.g., gentle stirring) by commonly used laboratory or manufacturing equipment and products.
  • an aforementioned method wherein the nucleophilic catalyst is added in an amount to result in a final concentration between about 1.0 mM and about 50 mM nucleophilic catalyst, under conditions comprising a time period between about 0.1 minutes and about 30 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring.
  • the final concentration of the nucleophilic catalyst is about 10 mM, and the conditions comprise a time period of up to about 15 minutes, a temperature of about 22° C., the absence of light; and with stirring.
  • an aforementioned method wherein the oxidizing agent is added in an amount to result in a final concentration between about 50 ⁇ M and about 1000 ⁇ M oxidizing agent, under conditions comprising a time period between about 0.1 minutes and 120 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring.
  • the final concentration of oxidizing agent is about 400 ⁇ M, and the conditions comprise a time period of about 10 minutes, a temperature of about 22° C., the absence of light and with stirring.
  • an aforementioned method wherein the conjugating the water soluble polymer to the oxidized carbohydrate moiety of the therapeutic protein is stopped by the addition of a quenching agent selected from the group consisting of L-cysteine, methionine, glutathione, glycerol, sodium meta bisulfate (Na2S2O5), tryptophane, tyrosine, histidine or derivatives thereof, kresol, imidazol, and combinations thereof; wherein the quenching agent is added in an amount to result in a final concentration between about 1 mM and about 100 mM quenching agent, under conditions comprising a time period between about 5 minutes and about 120 minutes; a temperature between about 2° C.
  • a quenching agent selected from the group consisting of L-cysteine, methionine, glutathione, glycerol, sodium meta bisulfate (Na2S2O5), tryptophane, tyrosine, histidine or derivatives
  • the quenching agent is L-cysteine.
  • the L-cysteine is added to result in a final concentration of about 10 mM and the conditions comprise a time period of about 60 minutes, a temperature of about 22° C., the absence of light and with stirring.
  • an aforementioned method comprising: a) a first step comprising adjusting the pH value of a solution comprising the therapeutic protein to a pH value between about 5.0 and about 8.0, wherein the therapeutic protein concentration is between about 0.3 mg/ml and about 3.0 mg/ml; b) a second step comprising oxidizing one or more carbohydrates on the therapeutic protein, wherein the oxidizing agent is added to the solution in the first step to result in a final concentration between about 50 ⁇ M and about 1000 ⁇ M, under conditions comprising a time period between about 0.1 minutes and about 120 minutes; a temperature between about 2° C.
  • a third step comprising contacting the therapeutic protein with a desired excess concentration of activated water soluble polymer, wherein the excess concentration is between about 1-molar excess and about 300-molar excess, under conditions comprising a time period between about 0.5 hours and about 24 hours, a temperature between about 2° C.
  • a fourth step comprising adding a nucleophilic catalyst to the solution of the third step, wherein the nucleophilic catalyst is added to result in a final concentration between about 1 mM and about 50 mM, under conditions comprising a time period between about 0.1 minutes and about 30 minutes; a temperature between about 2° C.
  • a fifth step wherein the therapeutic protein is incubated with the activated water soluble polymer and nucleophilic catalyst under conditions that allow conjugation of the activated water-soluble polymer to one or more oxidized carbohydrates on the therapeutic protein, said conditions comprising a time period between about 0.5 hours and about 24 hours, a temperature between about 2° C.
  • a sixth step wherein the conjugating the water soluble polymer to the one or more oxidized carbohydrates of the therapeutic protein in the fifth step is stopped by the addition of a quenching agent selected from the group consisting of L-cysteine, methionine, glutathione, glycerol, Na2S205 (sodium meta bisulfite), tryptophane, tyrosine, histidine or derivatives thereof, kresol, imidazol, and combinations thereof; wherein the quenching agent is added to result in a final concentration of about 1 mM and about 100 mM, under conditions comprising a time period between about 5 minutes and about 120 minutes; a temperature between about 2° C.
  • a quenching agent selected from the group consisting of L-cysteine, methionine, glutathione, glycerol, Na2S205 (sodium meta bisulfite), tryptophane, tyrosine, histidine or derivatives thereof, kresol,
  • the initial concentration of the therapeutic protein in the first step is about 1 mg/ml and the pH is about 6.0; wherein the final concentration of oxidizing agent in the second step is about 400 ⁇ M, and the conditions in the fifth step comprise a time period of about 10 minutes, a temperature of about 22° C., the absence of light and with stirring; wherein the excess concentration in the third step is about 50 molar excess; wherein the conditions in the third step comprise a time period of about 15 minutes, a temperature of about 22° C., the absence of light and with stirring; wherein the final concentration of the nucleophilic catalyst in the fourth step is about 10 mM, and the conditions in the fourth step comprise a time period of about 15 minutes, a temperature of about 22° C., the absence of light and with stirring; wherein the conditions of incubating the therapeutic protein with the activated water soluble polymer and nucleophilic catalyst in the fifth step comprise a time period of about
  • the water soluble polymer is PSA.
  • the PSA is comprised of about 10-300 sialic acid units.
  • the water soluble polymer is PEG.
  • the water soluble polymer is HES.
  • the water soluble polymer is HAS.
  • an aforementioned method is provided wherein the therapeutic protein is FIX.
  • the therapeutic protein is FVIIa.
  • the therapeutic protein is FVIII.
  • an aforementioned method is provided wherein the oxidizing agent is sodium periodate (NaIO4).
  • an aforementioned method is provided wherein the oxidized carbohydrate moiety of the therapeutic protein is located in the activation peptide of the blood coagulation protein.
  • an aforementioned method wherein PSA is prepared by reacting an activated aminooxy linker with oxidized PSA; wherein the aminooxy linker is selected from the group consisting of:
  • the PSA is oxidized by incubation with a oxidizing agent to form a terminal aldehyde group at the non-reducing end of the PSA.
  • the aminooxy linker is 3-oxa-pentane-1,5-dioxyamine.
  • an aforementioned method is provided wherein the oxidizing agent is NaIO4.
  • an aforementioned method is provided wherein the nucleophilic catalyst is provided at a concentration between about 1 mM and about 50 mM.
  • the nucleophilic catalyst is m-toluidine.
  • the m-toluidine is present in the conjugation reaction at a concentration of about 10 mM.
  • an aforementioned method further comprising the step of reducing an oxime linkage in the conjugated therapeutic protein by incubating the conjugated therapeutic protein in a buffer comprising a reducing compound selected from the group consisting of sodium cyanoborohydride (NaCNBH3), ascorbic acid (vitamin C) and NaBH3.
  • a reducing compound selected from the group consisting of sodium cyanoborohydride (NaCNBH3), ascorbic acid (vitamin C) and NaBH3.
  • the reducing compound is sodium cyanoborohydride (NaCNBH3).
  • an aforementioned method is provided further comprising the step of purifying the conjugated therapeutic protein.
  • the conjugated therapeutic protein is purified by a method selected from the group consisting of chromatography, filtration and precipitation.
  • the chromatography is selected from the group consisting of Hydrophobic Interaction Chromatography (HIC), Ion Exchange chromatography (IEC), Size exclusion chromatography (SEC), Affinity chromatography, and Reversed-phase chromatography.
  • HIC Hydrophobic Interaction Chromatography
  • IEC Ion Exchange chromatography
  • SEC Size exclusion chromatography
  • Affinity chromatography Affinity chromatography
  • Reversed-phase chromatography Reversed-phase chromatography.
  • an anti-chaotropic salt is used in a chromotagraphy loading step and in a chromatography washing step.
  • the chromatography takes place in a column.
  • the column comprises a chromatography resin selected from the group consisting of Phenyl-Sepharose FF and Butyl-Sepharose FF.
  • the resin is present in the column at a bed height of between about 5 cm and about 20 cm. In one embodiment, the bed height is about 10 cm.
  • an aforementioned method comprising one or more washing steps wherein flow direction is set to up-flow and wherein the flow rate is between about 0.2 cm/min and about 6.7 cm/min.
  • the term “down-flow” refers to a flow direction from the top of the chromatographic column to the bottom of the chromatographic column (normal flow direction/standard mode).
  • the term “up-flow” refers to a flow direction from the bottom to the top of the column (reversed flow direction). In one embodiment, the flow rate is about 2 cm/min.
  • an aforementioned method comprising one or more elution steps wherein flow direction is set to down-flow and wherein the flow rate is between about 0.1 cm/min and about 6.7 cm/min. In a related embodiment, the flow rate is about 1 cm/min.
  • an aforementioned method comprising concentrating the conjugated therapeutic protein by ultra-/diafiltration (UF/DF).
  • the final concentration of therapeutic protein is between about 0.5 and about 3 mg/ml.
  • the therapeutic protein comprises between about 5 and about 11 water-soluble polymer moieties. In another embodiment, the therapeutic protein comprises between about 1 and about 3 water-soluble polymers.
  • an aforementioned method wherein the conjugated therapeutic protein is purified using chromatography; wherein an anti-chaotropic salt is used for a loading step and for a washing step; the method comprising one or more washing steps wherein flow direction is set to up-flow and wherein the flow rate is between about 0.2 cm/min and about 6.7 cm/min and one or more elution steps wherein flow direction is set to down-flow and wherein the flow rate is between about 0.2 cm/min andabout 6.7 cm/min; further comprising concentrating the conjugated therapeutic protein by ultra-/diafiltration (UF/DF).
  • the chromatography is hydrophobic interaction chromatography (HIC); wherein the one or more washing steps flow rate is about 2 cm/min; and wherein the one or more elution steps flow rate is about 1 cm/min.
  • a modified therapeutic protein produced by any of the aforementioned methods is provided.
  • a method of forming an oxime linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active aminooxy group comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming an oxime linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an active aminooxy group in the presence of a nuclephilic catalyst under conditions allowing formation of said oxime linkage; wherein said water soluble polymer containing an active aminooxy group is selected from the group consisting polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (
  • a method of forming an oxime linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active aminooxy group comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidinzing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming an oxime linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an an active aminooxy group in the presence of a nuclephilic catalyst under conditions allowing formation of said oxime linkage; wherein the therapeutic protein is selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV),
  • a method of forming a hydrazone linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active hydrazide group comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidinzing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming a hydrazone linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an an active hydrazide group in the presence of a nuclephilic catalyst under conditions allowing formation of said hydrazone linkage; wherein said water soluble polymer containing an active hydrazide group is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick
  • a method of forming a hydrazone linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active hydrazide group comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidinzing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming a hydrazone linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an an active hydrazide group in the presence of a nuclephilic catalyst under conditions allowing formation of said hydrazone linkage; wherein the therapeutic protein is selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF),
  • an aforementioned method wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C.
  • activated water-soluble polymer refers, in one embodiment, to a water-soluble polymer containing an aldehyde group.
  • an aforementioned method wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: a) incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C.
  • step b) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step a) with a reducing agent under conditions that allow the formation of a stable alkoxamine linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring; and c) purifying the water soluble polymer containing an active aminooxy group by a method selected from the group consisting of chromatography, filtration and precipitation.
  • an aforementioned method wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: a) incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C.
  • step b) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step a) with a nucleophilic catalyst under conditions comprising a time period between 1 minute and 24 hours; a temperature between 2° C. and 37° C.; in the presence or absence of light; and with or without stirring; and c) purifying the water soluble polymer containing an active aminooxy group by a method selected from the group consisting of chromatography, filtration and precipitation.
  • an aforementioned method wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: a) incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C.
  • step a) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step a) with a nucleophilic catalyst under conditions comprising a time period between 1 minute and 24 hours; a temperature between 2° C.
  • step b) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step b) with a reducing agent under conditions that allow the formation of a stable alkoxamine linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring; and d) purifying the water soluble polymer containing an active aminooxy group by a method selected from the group consisting of chromatography, filtration and precipitation.
  • an aforementioned method is provided wherein the oxidized water soluble polymer is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polys
  • an aforementioned method is provided wherein the oxidizing agent is NaIO4.
  • aminooxy linker is selected from the group consisting of:
  • an aforementioned method is provided wherein the reducing agent is selected from the group consisting of sodium cyanoborohydride (NaCNBH3), ascorbic acid (vitamin C) and NaBH3.
  • the reducing agent is sodium cyanoborohydride (NaCNBH3).
  • nucleophilic catalyst is selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • the nucleophilic catalyst is m-toluidine.
  • nucleophilic catalyst is added in an amount to result in a final concentration between about 1.0 mM and about 50 mM nucleophilic catalyst.
  • an aforementioned method is provided further comprising concentrating the conjugated therapeutic protein by ultra-/diafiltration (UF/DF).
  • UF/DF ultra-/diafiltration
  • a method of conjugating a water soluble polymer to an oxidized carbohydrate moiety of a blood coagulation protein comprising contacting the oxidized carbohydrate moiety with an activated water soluble polymer under conditions that allow conjugation;
  • said blood coagulation protein selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease or a biologically active fragment, derivative or variant thereof;
  • said water soluble polymer containing an active aminooxy group is selected from the group consisting of polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammonium
  • said carbohydrate moiety oxidized by incubation with a buffer comprising an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); wherein an oxime linkage is formed between the oxidized carbohydrate moiety and the active aminooxy group on the water soluble polymer.
  • a buffer comprising an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); wherein an oxime linkage is formed between the oxidized carbohydrate moiety and the active aminooxy group on the water soluble polymer.
  • FIG. 1 shows the primary structure of coagulation Factor IX (SEQ ID NO: 1).
  • FIG. 2 shows the coupling of oxidized rFIX to aminooxy-PSA.
  • FIG. 3 shows the synthesis of the water soluble di-aminoxy linkers 3-oxa-pentane-1,5-dioxyamine and 3,6,9-trioxa-undecane-1,11-dioxyamine.
  • FIG. 4 shows the preparation of aminooxy-PSA.
  • FIG. 5 shows the visualization of PSA-FIX conjugates prepared in the presence of different catalysts by SDS PAGE.
  • a) Comparison of aniline with m-toluidine using different concentrations b) Comparison of aniline with o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, p-aminobenzamide and sulfanilic acid; c) Comparison of aniline and m-toluidine with o-anisidine and m-anisidine.
  • FIG. 6 shows percent of polysialylation with various nucleophilic catalysts.
  • polymeric compounds such as polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxy
  • the properties of the resulting conjugates generally strongly depend on the structure and the size of the polymer.
  • polymers with a defined and narrow size distribution are usually preferred in the art.
  • Synthetic polymers like PEG can be manufactured easily with a narrow size distribution, while PSA can be purified in such a manner that results in a final PSA preparation with a narrow size distribution.
  • PEGylation reagents with defined polymer chains and narrow size distribution are on the market and commercially available for a reasonable price.
  • a soluble polymer such as through polysialylation
  • FIX blood coagulation protein
  • other coagulation proteins e.g., VWF, FVIIa (see, e.g., US 2008/0221032A1, incorporated herein by reference) and FVIII).
  • polypeptides and polynucleotides are exemplified by the following therapeutic proteins: enzymes, antigens, antibodies, receptors, blood coagulation proteins, growth factors, hormones, and ligands.
  • the therapeutic protein is a blood coagulation protein such as Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) or ADAMTS 13 protease.
  • FIX Factor IX
  • FVIII Factor VIIa
  • VWF Von Willebrand Factor
  • FV Factor FV
  • FX Factor X
  • FXI Factor XI
  • FXIII Factor XII
  • thrombin FII
  • a therapeutic protein according to the invention is a glycoprotein or, in various embodiments, a protein that is not naturally glycosylated in vivo (i.e., a protein that does not contain a natural glycosylation site or a protein that is not glycosylated in a host cell prior to purification).
  • the therapeutic protein is immunoglobulins, cytokines such IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, IFN-gamma, IFN-omega, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-31, IL-32 alpha, IL-33, thrombopoietin (TPO), angiopoietins, for example Ang-1, Ang-2,
  • the therapeutic protin is alpha-, beta-, and gamma-interferons, colony stimulating factors including granulocyte colony stimulating factors, fibroblast growth factors, platelet derived growth factors, phospholipase-activating protein (PUP), insulin, plant proteins such as lectins and ricins, tumor necrosis factors and related alleles, soluble forms of tumor necrosis factor receptors, interleukin receptors and soluble forms of interleukin receptors, growth factors such as tissue growth factors, such as TGF ⁇ s or TGF ⁇ s and epidermal growth factors, hormones, somatomedins, pigmentary hormones, hypothalamic releasing factors, antidiuretic hormones, prolactin, chorionic gonadotropin, follicle-stimulating hormone, thyroid-stimulating hormone, tissue plasminogen activator, and immunoglobulins such as IgG, IgE, IgM, IgA, and IgD, a gal
  • exon SCR short consensus repeat Adiponectin receptor protein 2 PIKR2786 Inhibin beta C chain S100 calcium binding protein A7-like 3 Brorin GTWW5826 (LP5085 protein) Semaphorin-3C KTIS8219 (HCG2020043) Heparan sulfate glucosamine 3-O- Hyaluronan and proteoglycan link sulfotransferase 2 protein 4 Leptin receptor overlapping transcript- Micronovel like 1 SPARC-like protein 1 SAMK3000 Fibulin-7 VFLL3057 Protein HEG homolog 1 CVWG5837 Fibrinogen C domain-containing VGSA5840 protein 1 Phospholipase A1 member A GHPS3125 Basic salivary proline-rich protein 2 GRTR3118spermatogenesis-associated protein 6 PAMP6501 Sushi repeat-containing protein SRPX2 LTLL9335 Twisted gastrulation protein homolog 1 VCEW9374 Torsin-1B AHPA9419 Protein Wnt
  • therapeutic proteins should not be considered to be exclusive. Rather, as is apparent from the disclosure provided herein, the methods of the invention are applicable to any protein wherein attachment of a water soluble polymer is desired according to the invention. For example, therapeutic proteins are described in US 2007/0026485, incorporated herein by reference in its entirety.
  • the starting material of the present invention is a blood coagulation protein, which can be derived from human plasma, or produced by recombinant engineering techniques, as described in patents U.S. Pat. Nos. 4,757,006; 5,733,873; 5,198,349; 5,250,421; 5,919,766; and EP 306 968.
  • Therapeutic polypeptides such as blood coagulation proteins including Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease are rapidly degraded by proteolytic enzymes and neutralized by antibodies. This reduces their half-life and circulation time, thereby limiting their therapeutic effectiveness. Relatively high doses and frequent administration are necessary to reach and sustain the desired therapeutic or prophylactic effect of these coagulation proteins. As a consequence, adequate dose regulation is difficult to obtain and the need of frequent intravenous administrations imposes restrictions on the patient's way of living.
  • blood coagulation proteins including, but not limited to, Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI, Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease are contemplated by the invention.
  • blood coagulation protein refers to any Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease which exhibits biological activity that is associated with that particular native blood coagulation protein.
  • FIX Factor IX
  • FVIII Factor VIIa
  • VWF Von Willebrand Factor
  • FV Factor FV
  • FX Factor X
  • FXII Factor XII
  • thrombin FII
  • the blood coagulation cascade is divided into three distinct segments: the intrinsic, extrinsic, and common pathways (Schenone et al., Curr Opin Hematol. 2004; 11:272-7).
  • the cascade involves a series of serine protease enzymes (zymogens) and protein cofactors. When required, an inactive zymogen precursor is converted into the active form, which consequently converts the next enzyme in the cascade.
  • the intrinsic pathway requires the clotting factors VIII, IX, X, XI, and XII. Initiation of the intrinsic pathway occurs when prekallikrein, high-molecular-weight kininogen, factor XI (FXI) and factor XII (FXII) are exposed to a negatively charged surface. Also required are calcium ions and phospholipids secreted from platelets.
  • the extrinsic pathway is initiated when the vascular lumen of blood vessels is damaged.
  • the membrane glycoprotein tissue factor is exposed and then binds to circulating factor VII (FVII) and to small preexisting amounts of its activated form FVIIa. This binding facilitates full conversion of FVII to FVIIa and subsequently, in the presence of calcium and phospholipids, the conversion of factor IX (FIX) to factor IXa (FIXa) and factor X (FX) to factor Xa (FXa).
  • FVIIa The association of FVIIa with tissue factor enhances the proteolytic activity by bringing the binding sites of FVII for the substrate (FIX and FX) into closer proximity and by inducing a conformational change, which enhances the enzymatic activity of FVIIa.
  • FX Factor XIIIa
  • FVIIa Conversion of FVII to FVIIa is also catalyzed by a number of proteases, including thrombin, FIXa, FXa, factor XIa (FXIa), and factor XIIa (FXIIa).
  • tissue factor pathway inhibitor targets FVIIa/tissue factor/FXa product complex.
  • FVII also known as stable factor or proconvertin
  • FVII is a vitamin K-dependent serine protease glycoprotein with a pivotal role in hemostasis and coagulation (Eigenbrot, Curr Protein Pept Sci. 2002; 3:287-99).
  • FVII is synthesized in the liver and secreted as a single-chain glycoprotein of 48 kD.
  • FVII shares with all vitamin K-dependent serine protease glycoproteins a similar protein domain structure consisting of an amino-terminal gamma-carboxyglutamic acid (Gla) domain with 9-12 residues responsible for the interaction of the protein with lipid membranes, a carboxy-terminal serine protease domain (catalytic domain), and two epidermal growth factor-like domains containing a calcium ion binding site that mediates interaction with tissue factor.
  • Gamma-glutamyl carboxylase catalyzes carboxylation of Gla residues in the amino-terminal portion of the molecule.
  • the carboxylase is dependent on a reduced form of vitamin K for its action, which is oxidized to the epoxide form.
  • Vitamin K epoxide reductase is required to convert the epoxide form of vitamin K back to the reduced form.
  • the major proportion of FVII circulates in plasma in zymogen form, and activation of this form results in cleavage of the peptide bond between arginine 152 and isoleucine 153.
  • the resulting activated FVIIa consists of a NH2-derived light chain (20 kD) and a COOH terminal-derived heavy chain (30 kD) linked via a single disulfide bond (Cys 135 to Cys 262).
  • the light chain contains the membrane-binding Gla domain, while the heavy chain contains the catalytic domain.
  • the plasma concentration of FVII determined by genetic and environmental factors is about 0.5 mg/mL (Pinotti et al., Blood. 2000; 95:3423-8). Different FVII genotypes can result in several-fold differences in mean FVII levels. Plasma FVII levels are elevated during pregnancy in healthy females and also increase with age and are higher in females and in persons with hypertriglyceridemia. FVII has the shortest half-life of all procoagulant factors (3-6 h). The mean plasma concentration of FVIIa is 3.6 ng/mL in healthy individuals and the circulating half-life of FVIIa is relatively long (2.5 h) compared with other coagulation factors.
  • Hereditary FVII deficiency is a rare autosomal recessive bleeding disorder with a prevalence estimated to be 1 case per 500,000 persons in the general population (Acharya et al., J Thromb Haemost. 2004; 2248-56). Acquired FVII deficiency from inhibitors is also very rare. Cases have also been reported with the deficiency occurring in association with drugs such as cephalosporins, penicillins, and oral anticoagulants. Furthermore, acquired FVII deficiency has been reported to occur spontaneously or with other conditions, such as myeloma, sepsis, aplastic anemia, with interleukin-2 and antithymocyte globulin therapy.
  • Reference polynucleotide and polypeptide sequences include, e.g., GenBank Accession Nos. J02933 for the genomic sequence, M13232 for the cDNA (Hagen et al. PNAS 1986; 83: 2412-6), and P08709 for the polypeptide sequence (references incorporated herein in their entireties).
  • GenBank Accession Nos. J02933 for the genomic sequence
  • M13232 for the cDNA Hagen et al. PNAS 1986; 83: 2412-6
  • P08709 for the polypeptide sequence
  • FIX is a vitamin K-dependent plasma protein that participates in the intrinsic pathway of blood coagulation by converting FX to its active form in the presence of calcium ions, phospholipids and FVIIIa.
  • the predominant catalytic capability of FIX is as a serine protease with specificity for a particular arginine-isoleucine bond within FX.
  • Activation of FIX occurs by FXIa which causes excision of the activation peptide from FIX to produce an activated FIX molecule comprising two chains held by one or more disulphide bonds. Defects in FIX are the cause of recessive X-linked hemophilia B.
  • Hemophilia A and B are inherited diseases characterized by deficiencies in FVIII and FIX polypeptides, respectively.
  • the underlying cause of the deficiencies is frequently the result of mutations in FVIII and FIX genes, both of which are located on the X chromosome.
  • Traditional therapy for hemophilias often involves intravenous administration of pooled plasma or semi-purified coagulation proteins from normal individuals. These preparations can be contaminated by pathogenic agents or viruses, such as infectious prions, HIV, parvovirus, hepatitis A, and hepatitis C. Hence, there is an urgent need for therapeutic agents that do not require the use of human serum.
  • the level of the decrease in FIX activity is directly proportional to the severity of hemophilia B.
  • the current treatment of hemophilia B consists of the replacement of the missing protein by plasma-derived or recombinant FIX (so-called FIX substitution or replacement treatment or therapy).
  • Polynucleotide and polypeptide sequences of FIX can be found for example in the UniProtKB/Swiss-Prot Accession No. P00740, U.S. Pat. No. 6,531,298 and in FIG. 1 (SEQ ID NO: 1).
  • Coagulation factor VIII (FVIII) circulates in plasma at a very low concentration and is bound non-covalently to Von Willebrand factor (VWF). During hemostasis, FVIII is separated from VWF and acts as a cofactor for activated factor IX (FIXa)-mediated FX activation by enhancing the rate of activation in the presence of calcium and phospholipids or cellular membranes.
  • VWF Von Willebrand factor
  • FVIII is synthesized as a single-chain precursor of approximately 270-330 kD with the domain structure A1-A2-B-A3-C1-C2.
  • FVIII is composed of a heavy chain (A1-A2-B) and a light chain (A3-C1-C2).
  • the molecular mass of the light chain is 80 kD whereas, due to proteolysis within the B domain, the heavy chain is in the range of 90-220 kD.
  • FVIII is also synthesized as a recombinant protein for therapeutic use in bleeding disorders.
  • Various in vitro assays have been devised to determine the potential efficacy of recombinant FVIII (rFVIII) as a therapeutic medicine. These assays mimic the in vivo effects of endogenous FVIII.
  • In vitro thrombin treatment of FVIII results in a rapid increase and subsequent decrease in its procoagulant activity, as measured by in vitro assays. This activation and inactivation coincides with specific limited proteolysis both in the heavy and the light chains, which alter the availability of different binding epitopes in FVIII, e.g. allowing FVIII to dissociate from VWF and bind to a phospholipid surface or altering the binding ability to certain monoclonal antibodies.
  • the lack or dysfunction of FVIII is associated with the most frequent bleeding disorder, hemophilia A.
  • the treatment of choice for the management of hemophilia A is replacement therapy with plasma derived or rFVIII concentrates. Patients with severe hemophilia A with FVIII levels below 1%, are generally on prophylactic therapy with the aim of keeping FVIII above 1% between doses. Taking into account the average half-lives of the various FVIII products in the circulation, this result can usually be achieved by giving FVIII two to three times a week.
  • Reference polynucleotide and polypeptide sequences include, e.g., UniProtKB/Swiss-Prot P00451 (FA8 HUMAN); Gitschier J et al., Characterization of the human Factor VIII gene, Nature, 312(5992): 326-30 (1984); Vehar G H et al., Structure of human Factor VIII, Nature, 312(5992):337-42 (1984); Thompson A R. Structure and Function of the Factor VIII gene and protein, Semin Thromb Hemost, 2003:29; 11-29 (2002).
  • Von Willebrand factor is a glycoprotein circulating in plasma as a series of multimers ranging in size from about 500 to 20,000 kD.
  • Multimeric forms of VWF are composed of 250 kD polypeptide subunits linked together by disulfide bonds. VWF mediates initial platelet adhesion to the sub-endothelium of the damaged vessel wall. Only the larger multimers exhibit hemostatic activity. It is assumed that endothelial cells secrete large polymeric forms of VWF and those forms of VWF which have a low molecular weight (low molecular weight VWF) arise from proteolytic cleavage.
  • the multimers having large molecular masses are stored in the Weibel-Pallade bodies of endothelial cells and liberated upon stimulation.
  • VWF is synthesized by endothelial cells and megakaryocytes as prepro-VWF that consists to a large extent of repeated domains.
  • pro-VWF dimerizes through disulfide linkages at its C-terminal region.
  • the dimers serve as protomers for multimerization, which is governed by disulfide linkages between the free end termini.
  • the assembly to multimers is followed by the proteolytic removal of the propeptide sequence (Leyte et al., Biochem. J. 274 (1991), 257-261).
  • the primary translation product predicted from the cloned cDNA of VWF is a 2813-residue precursor polypeptide (prepro-VWF).
  • the prepro-VWF consists of a 22 amino acid signal peptide and a 741 amino acid propeptide, with the mature VWF comprising 2050 amino acids (Ruggeri Z. A., and Ware, J., FASEB J., 308-316 (1993).
  • VWD type 3 is the most severe form, in which VWF is completely missing, and VWD type 1 relates to a quantitative loss of VWF and its phenotype can be very mild.
  • VWD type 2 relates to qualitative defects of VWF and can be as severe as VWD type 3.
  • VWD type 2 has many sub forms, some being associated with the loss or the decrease of high molecular weight multimers.
  • Von Willebrand disease type 2a (VWD-2A) is characterized by a loss of both intermediate and large multimers.
  • VWD-2B is characterized by a loss of highest-molecular-weight multimers.
  • Other diseases and disorders related to VWF are known in the art.
  • polynucleotide and amino acid sequences of prepro-VWF are available at GenBank Accession Nos. NM_000552 and NP_000543, respectively.
  • the starting material of the present invention is a protein or polypeptide.
  • therapeutic protein refers to any therapeutic protein molecule which exhibits biological activity that is associated with the therapeutic protein.
  • the therapeutic protein molecule is a full-length protein.
  • Therapeutic protein molecules contemplated include full-length proteins, precursors of full length proteins, biologically active subunits or fragments of full length proteins, as well as biologically active derivatives and variants of any of these forms of therapeutic proteins.
  • therapeutic protein include those that (1) have an amino acid sequence that has greater than about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% or greater amino acid sequence identity, over a region of at least about 25, about 50, about 100, about 200, about 300, about 400, or more amino acids, to a polypeptide encoded by a referenced nucleic acid or an amino acid sequence described herein; and/or (2) specifically bind to antibodies, e.g., polyclonal or monoclonal antibodies, generated against an immunogen comprising a referenced amino acid sequence as described herein, an immunogenic fragment thereof, and/or a conservatively modified variant thereof
  • the term “recombinant therapeutic protein” includes any therapeutic protein obtained via recombinant DNA technology. In certain embodiments, the term encompasses proteins as described herein.
  • endogenous therapeutic protein includes a therapeutic protein which originates from the mammal intended to receive treatment.
  • the term also includes therapeutic protein transcribed from a transgene or any other foreign DNA present in said mammal.
  • exogenous therapeutic protein includes a blood coagulation protein which does not originate from the mammal intended to receive treatment.
  • plasma-derived blood coagulation protein or “plasmatic” includes all forms of the protein found in blood obtained from a mammal having the property participating in the coagulation pathway.
  • biologically active derivative or “biologically active variant” includes any derivative or variant of a molecule having substantially the same functional and/or biological properties of said molecule, such as binding properties, and/or the same structural basis, such as a peptidic backbone or a basic polymeric unit.
  • an “analog,” such as a “variant” or a “derivative,” is a compound substantially similar in structure and having the same biological activity, albeit in certain instances to a differing degree, to a naturally-occurring molecule.
  • a polypeptide variant refers to a polypeptide sharing substantially similar structure and having the same biological activity as a reference polypeptide.
  • Variants or analogs differ in the composition of their amino acid sequences compared to the naturally-occurring polypeptide from which the analog is derived, based on one or more mutations involving (i) deletion of one or more amino acid residues at one or more termini of the polypeptide and/or one or more internal regions of the naturally-occurring polypeptide sequence (e.g., fragments), (ii) insertion or addition of one or more amino acids at one or more termini (typically an “addition” or “fusion”) of the polypeptide and/or one or more internal regions (typically an “insertion”) of the naturally-occurring polypeptide sequence or (iii) substitution of one or more amino acids for other amino acids in the naturally-occurring polypeptide sequence.
  • a “derivative” is a type of analog and refers to a polypeptide sharing the same or substantially similar structure as a reference polypeptide that has been modified, e.g., chemically.
  • a variant polypeptide is a type of analog polypeptide and includes insertion variants, wherein one or more amino acid residues are added to a therapeutic protein amino acid sequence of the invention. Insertions may be located at either or both termini of the protein, and/or may be positioned within internal regions of the therapeutic protein amino acid sequence. Insertion variants, with additional residues at either or both termini, include for example, fusion proteins and proteins including amino acid tags or other amino acid labels.
  • the blood coagulation protein molecule optionally contains an N-terminal Met, especially when the molecule is expressed recombinantly in a bacterial cell such as E. coli.
  • one or more amino acid residues in a therapeutic protein polypeptide as described herein are removed.
  • Deletions can be effected at one or both termini of the therapeutic protein polypeptide, and/or with removal of one or more residues within the therapeutic protein amino acid sequence.
  • Deletion variants therefore, include fragments of a therapeutic protein polypeptide sequence.
  • substitution variants one or more amino acid residues of a therapeutic protein polypeptide are removed and replaced with alternative residues.
  • the substitutions are conservative in nature and conservative substitutions of this type are well known in the art.
  • the invention embraces substitutions that are also non-conservative. Exemplary conservative substitutions are described in Lehninger, [Biochemistry, 2nd Edition; Worth Publishers, Inc., New York (1975), pp. 71-77] and are set out immediately below.
  • Nucleic acids encoding a therapeutic protein of the invention include, for example and without limitation, genes, pre-mRNAs, mRNAs, cDNAs, polymorphic variants, alleles, synthetic and naturally-occurring mutants.
  • Polynucleotides encoding a therapeutic protein of the invention also include, without limitation, those that (1) specifically hybridize under stringent hybridization conditions to a nucleic acid encoding a referenced amino acid sequence as described herein, and conservatively modified variants thereof; (2) have a nucleic acid sequence that has greater than about 95%, about 96%, about 97%, about 98%, about 99%, or higher nucleotide sequence identity, over a region of at least about 25, about 50, about 100, about 150, about 200, about 250, about 500, about 1000, or more nucleotides (up to the full length sequence of 1218 nucleotides of the mature protein), to a reference nucleic acid sequence as described herein.
  • Exemplary “stringent hybridization” conditions include hybridization at 42° C. in 50% formamide, 5 ⁇ SSC, 20 mM Na.PO4, pH 6.8; and washing in 1 ⁇ SSC at 55° C. for 30 minutes. It is understood that variation in these exemplary conditions can be made based on the length and GC nucleotide content of the sequences to be hybridized. Formulas standard in the art are appropriate for determining appropriate hybridization conditions. See Sambrook et al., Molecular Cloning: A Laboratory Manual (Second ed., Cold Spring Harbor Laboratory Press, 1989) ⁇ 9.47-9.51.
  • a “naturally-occurring” polynucleotide or polypeptide sequence is typically derived from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or any mammal.
  • the nucleic acids and proteins of the invention can be recombinant molecules (e.g., heterologous and encoding the wild type sequence or a variant thereof, or non-naturally occurring).
  • Production of a therapeutic protein includes any method known in the art for (i) the production of recombinant DNA by genetic engineering, (ii) introducing recombinant DNA into prokaryotic or eukaryotic cells by, for example and without limitation, transfection, electroporation or microinjection, (iii) cultivating said transformed cells, (iv) expressing therapeutic protein, e.g. constitutively or upon induction, and (v) isolating said blood coagulation protein, e.g. from the culture medium or by harvesting the transformed cells, in order to obtain purified therapeutic protein.
  • the therapeutic protein is produced by expression in a suitable prokaryotic or eukaryotic host system characterized by producing a pharmacologically acceptable blood coagulation protein molecule.
  • suitable prokaryotic or eukaryotic host system characterized by producing a pharmacologically acceptable blood coagulation protein molecule.
  • eukaryotic cells are mammalian cells, such as CHO, COS, HEK 293, BHK, SK-Hep, and HepG2.
  • vectors are used for the preparation of the therapeutic protein and are selected from eukaryotic and prokaryotic expression vectors.
  • vectors for prokaryotic expression include plasmids such as, and without limitation, pRSET, pET, and pBAD, wherein the promoters used in prokaryotic expression vectors include one or more of, and without limitation, lac, trc, trp, recA, or araBAD.
  • vectors for eukaryotic expression include: (i) for expression in yeast, vectors such as, and without limitation, pAO, pPIC, pYES, or pMET, using promoters such as, and without limitation, AOX1, GAP, GAL1, or AUG1; (ii) for expression in insect cells, vectors such as and without limitation, pMT, pAc5, pIB, pMIB, or pBAC, using promoters such as and without limitation PH, p10, MT, Ac5, OpIE2, gp64, or polh, and (iii) for expression in mammalian cells, vectors such as and without limitation pSVL, pCMV, pRc/RSV, pcDNA3, or pBPV, and vectors derived from, in one aspect, viral systems such as and without limitation vaccinia virus, adeno-associated viruses, herpes viruses, or retroviruses, using promoters such as and without limitation C
  • a conjugated therapeutic protein of the present invention may be administered by injection, such as intravenous, intramuscular, or intraperitoneal injection.
  • compositions comprising a conjugated therapeutic protein of the present invention to human or test animals
  • the compositions comprise one or more pharmaceutically acceptable carriers.
  • pharmaceutically acceptable carriers include any and all clinically useful solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like, including those agents disclosed above.
  • “effective amount” includes a dose suitable for treating a disease or disorder or ameliorating a symptom of a disease or disorder. In one embodiment, “effective amount” includes a dose suitable for treating a mammal having a bleeding disorder as described herein.
  • compositions may be administered orally, topically, transdermally, parenterally, by inhalation spray, vaginally, rectally, or by intracranial injection.
  • parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intracisternal injection, or infusion techniques. Administration by intravenous, intradermal, intramuscular, intramammary, intraperitoneal, intrathecal, retrobulbar, intrapulmonary injection and or surgical implantation at a particular site is contemplated as well.
  • compositions are essentially free of pyrogens, as well as other impurities that could be harmful to the recipient.
  • Single or multiple administrations of the compositions can be carried out with the dose levels and pattern being selected by the treating physician.
  • the appropriate dosage will depend on the type of disease to be treated, as described above, the severity and course of the disease, whether drug is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the drug, and the discretion of the attending physician.
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of a conjugated therapeutic protein as defined herein.
  • the pharmaceutical composition may further comprise a pharmaceutically acceptable carrier, diluent, salt, buffer, or excipient.
  • the pharmaceutical composition can be used for treating the above-defined bleeding disorders.
  • the pharmaceutical composition of the invention may be a solution or a lyophilized product. Solutions of the pharmaceutical composition may be subjected to any suitable lyophilization process.
  • kits which comprise a composition of the invention packaged in a manner which facilitates its use for administration to subjects.
  • a kit includes a compound or composition described herein (e.g., a composition comprising a conjugated therapeutic protein), packaged in a container such as a sealed bottle or vessel, with a label affixed to the container or included in the package that describes use of the compound or composition in practicing the method.
  • the kit contains a first container having a composition comprising a conjugated therapeutic protein and a second container having a physiologically acceptable reconstitution solution for the composition in the first container.
  • the compound or composition is packaged in a unit dosage form.
  • the kit may further include a device suitable for administering the composition according to a specific route of administration.
  • the kit contains a label that describes use of the therapeutic protein or peptide composition.
  • a therapeutic protein derivative i.e., a conjugated therapeutic protein
  • a water-soluble polymer including, but not limited to, polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG) polyoxazoline, poly acryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-
  • PEG polyethylene glycol
  • the water soluble polymer is consisting of sialic acid molecule having a molecular weight range of 350 to 120,000, 500 to 100,000, 1000 to 80,000, 1500 to 60,000, 2,000 to 45,000 Da, 3,000 to 35,000 Da, and 5,000 to 25,000 Da.
  • the coupling of the water soluble polymer can be carried out by direct coupling to the protein or via linker molecules.
  • a chemical linker is MBPH (4-[4-N-Maleimidophenyl]butyric acid hydrazide) containing a carbohydrate-selective hydrazide and a sulfhydryl-reactive maleimide group (Chamow et al., J Biol Chem 1992; 267:15916-22).
  • MBPH 4-[4-N-Maleimidophenyl]butyric acid hydrazide
  • Other exemplary and preferred linkers are described below.
  • the derivative retains the full functional activity of native therapeutic protein products, and provides an extended half-life in vivo, as compared to native therapeutic protein products. In another embodiment, the derivative retains at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44.
  • the biological activities of the derivative and native blood coagulation protein are determined by the ratios of chromogenic activity to blood coagulation factor antigen value (blood coagulation factor:Chr:blood coagulation factor:Ag).
  • the half-life of the construct is decreased or increased 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, or 10-fold relative to the in vivo half-life of native therapeutic protein.
  • PSAs consist of polymers (generally homopolymers) of N-acetylneuraminic acid.
  • the secondary amino group normally bears an acetyl group, but it may instead bear a glycolyl group.
  • Possible substituents on the hydroxyl groups include acetyl, lactyl, ethyl, sulfate, and phosphate groups.
  • PSAs and mPSAs generally comprise linear polymers consisting essentially of N-acetylneuraminic acid moieties linked by 2,8- or 2,9-glycosidic linkages or combinations of these (e.g. alternating 2,8- and 2,9-linkages).
  • the glycosidic linkages are ⁇ -2,8.
  • Such PSAs and mPSAs are conveniently derived from colominic acids, and are referred to herein as “CAs” and “mCAs”.
  • Typical PSAs and mPSAs comprise at least 2, preferably at least 5, more preferably at least 10 and most preferably at least 20 N-acetylneuraminic acid moieties.
  • PSAs and CAs may comprise from 2 to 300 N-acetylneuraminic acid moieties, preferably from 5 to 200 N-acetylneuraminic acid moieties, or most preferably from 10 to 100 N-acetylneuraminic acid moieties.
  • PSAs and CAs preferably are essentially free of sugar moieties other than N-acetylneuraminic acid.
  • PSAs and CAs preferably comprise at least 90%, more preferably at least 95% and most preferably at least 98% N-acetylneuraminic acid moieties.
  • PSAs and CAs comprise moieties other than N-acetylneuraminic acid (as, for example in mPSAS and mCAs) these are preferably located at one or both of the ends of the polymer chain.
  • Such “other” moieties may, for example, be moieties derived from terminal N-acetylneuraminic acid moieties by oxidation or reduction.
  • WO-A-0187922 describes such mPSAs and mCAs in which the non-reducing terminal N-acetylneuraminic acid unit is converted to an aldehyde group by reaction with sodium periodate.
  • WO 2005/016974 describes such mPSAs and mCAs in which the reducing terminal N-acetylneuraminic acid unit is subjected to reduction to reductively open the ring at the reducing terminal N-acetylneuraminic acid unit, whereby a vicinal diol group is formed, followed by oxidation to convert the vicinal diol group to an aldehyde group.
  • Sialic acid rich glycoproteins bind selectin in humans and other organisms. They play an important role in human influenza infections. E.g., sialic acid can hide mannose antigens on the surface of host cells or bacteria from mannose-binding lectin. This prevents activation of complement. Sialic acids also hide the penultimate galactose residue thus preventing rapid clearance of the glycoprotein by the galactose receptor on the hepatic parenchymal cells.
  • Colominic acids are homopolymers of N-acetylneuraminic acid (NANA) with ⁇ (2 ⁇ 8) ketosidic linkage, and are produced, inter alia, by particular strains of Escherichia coli possessing K1 antigen. Colominic acids have many physiological functions. They are important as a raw material for drugs and cosmetics.
  • sialic acid moieties includes sialic acid monomers or polymers (“polysaccharides”) which are soluble in an aqueous solution or suspension and have little or no negative impact, such as side effects, to mammals upon administration of the PSA-blood coagulation protein conjugate in a pharmaceutically effective amount.
  • the polymers are characterized, in one aspect, as having 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, or 500 sialic acid units. In certain aspects, different sialic acid units are combined in a chain.
  • the sialic acid portion of the polysaccharide compound is highly hydrophilic, and in another embodiment the entire compound is highly hydrophilic. Hydrophilicity is conferred primarily by the pendant carboxyl groups of the sialic acid units, as well as the hydroxyl groups.
  • the saccharide unit may contain other functional groups, such as, amine, hydroxyl or sulphate groups, or combinations thereof. These groups may be present on naturally-occurring saccharide compounds, or introduced into derivative polysaccharide compounds.
  • the naturally occurring polymer PSA is available as a polydisperse preparation showing a broad size distribution (e.g. Sigma C-5762) and high polydispersity (PD). Because the polysaccharides are usually produced in bacteria carrying the inherent risk of copurifying endotoxins, the purification of long sialic acid polymer chains may raise the probability of increased endotoxin content. Short PSA molecules with 1-4 sialic acid units can also be synthetically prepared (Kang S H et al., Chem Commun. 2000; 227-8; Ress D K and Linhardt R J, Current Organic Synthesis. 2004; 1:31-46), thus minimizing the risk of high endotoxin levels.
  • Polysaccharide compounds of particular use for the invention are, in one aspect, those produced by bacteria. Some of these naturally-occurring polysaccharides are known as glycolipids. In one embodiment, the polysaccharide compounds are substantially free of terminal galactose units.
  • therapeutic proteins are conjugated to a water soluble polymer by any of a variety of chemical methods (Roberts J M et al., Advan Drug Delivery Rev 2002; 54:459-76).
  • a therapeutic protein is modified by the conjugation of PEG to free amino groups of the protein using N-hydroxysuccinimide (NHS) esters.
  • NHS N-hydroxysuccinimide
  • the water soluble polymer for example PEG, is coupled to free SH groups using maleimide chemistry or the coupling of PEG hydrazides or PEG amines to carbohydrate moieties of the therapeutic protein after prior oxidation.
  • the conjugation is in one aspect performed by direct coupling (or coupling via linker systems) of the water soluble polymer to a therapeutic protein under formation of stable bonds.
  • degradable, releasable or hydrolysable linker systems are used in certain aspects the present invention (Tsubery et al. J Biol Chem 2004; 279:38118-24/Greenwald et al., J Med Chem 1999; 42:3657-67/Zhao et al., Bioconj Chem 2006; 17:341-51/WO2006/138572A2/U.S. Pat. No. 7,259,224B2/U.S. Pat. No. 7,060,259B2).
  • a therapeutic protein is modified via lysine residues by use of polyethylene glycol derivatives containing an active N-hydroxysuccinimide ester (NHS) such as succinimidyl succinate, succinimidyl glutarate or succinimidyl propionate.
  • NPS active N-hydroxysuccinimide ester
  • these derivatives react with the lysine residues of the therapeutic protein under mild conditions by forming a stable amide bond.
  • the chain length of the PEG derivative is 5,000 Da.
  • Other PEG derivatives with chain lengths of 500 to 2,000 Da, 2,000 to 5,000 Da, greater than 5,000 up to 10,000 Da or greater than 10,000 up to 20,000 Da, or greater than 20,000 up to 150,000 Da are used in various embodiments, including linear and branched structures.
  • PEGylation of amino groups are, without limitation, the chemical conjugation with PEG carbonates by forming urethane bonds, or the reaction with aldehydes or ketones by reductive amination forming secondary amide bonds.
  • a therapeutic protein molecule is chemically modified using PEG derivatives that are commercially available. These PEG derivatives in alternative aspects have linear or branched structures. Examples of PEG-derivatives containing NHS groups are listed below.
  • PEG derivatives are non-limiting examples of those commercially available from Nektar Therapeutics (Huntsville, Ala.; see www.nektar.com/PEG reagent catalog; Nektar Advanced PEGylation, price list 2005-2006):
  • PEG derivatives are commercially available from NOF Corporation (Tokyo, Japan; see www.nof.co.jp/english: Catalogue 2005)
  • propane derivatives show a glycerol backbone with a 1,2 substitution pattern.
  • branched PEG derivatives based on glycerol structures with 1,3 substitution or other branched structures described in US2003/0143596A1 are also contemplated.
  • PEG derivatives with degradable (for example, hydrolysable) linkers as described by Tsubery et al. (J Biol Chem 2004; 279:38118-24) and Shechter et al. (WO04089280A3) are also contemplated.
  • the PEGylated therapeutic protein of this invention exhibits functional activity, combined with an extended half-life in vivo.
  • the PEGylated rFVIII, FVIIa, FIX, or other blood coagulation factor seems to be more resistant against thrombin inactivation.
  • HAS Hydroxyalkyl Starch
  • HES Hydroxylethyl Starch
  • a therapeutic protein molecule is chemically modified using hydroxyalkyl starch (HAS) or hydroxylethyl starch (HES) or derivatives thereof.
  • HAS hydroxyalkyl starch
  • HES hydroxylethyl starch
  • HES is a derivative of naturally occurring amylopectin and is degraded by alpha-amylase in the body.
  • HES is a substituted derivative of the carbohydrate polymer amylopectin, which is present in corn starch at a concentration of up to 95% by weight.
  • HES exhibits advantageous biological properties and is used as a blood volume replacement agent and in hemodilution therapy in the clinics (Sommermeyer et al., 1987, Whypharmazie, 8 (8), 271-278; and Weidler et al., 1991, Arzneim.-Forschung/Drug Res. g 419 494-498).
  • Amylopectin consists of glucose moieties, wherein in the main chain alpha-1,4-glycosidic bonds are present and at the branching sites alpha-1, 6-glycosidic bonds are found.
  • the physical-chemical properties of this molecule are mainly determined by the type of glycosidic bonds. Due to the nicked alpha-1,4-glycosidic bond, helical structures with about six glucose-monomers per turn are produced.
  • the physico-chemical as well as the biochemical properties of the polymer can be modified via substitution.
  • the introduction of a hydroxyethyl group can be achieved via alkaline hydroxyethylation.
  • HAS refers to a starch derivative which has been substituted by at least one hydroxyalkyl group. Therefore, the term hydroxyalkyl starch is not limited to compounds where the terminal carbohydrate moiety comprises hydroxyalkyl groups R1, R2, and/or R3, but also refers to compounds in which at least one hydroxy group present anywhere, either in the terminal carbohydrate moiety and/or in the remaining part of the starch molecule, HAS′, is substituted by a hydroxyalkyl group R1, R2, or R3.
  • the alkyl group may be a linear or branched alkyl group which may be suitably substituted.
  • the hydroxyalkyl group contains 1 to 10 carbon atoms, more preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, and even more preferably 2-4 carbon atoms.
  • “Hydroxyalkyl starch” therefore preferably comprises hydroxyethyl starch, hydroxypropyl starch and hydroxybutyl starch, wherein hydroxyethyl starch and hydroxypropyl starch are particularly preferred.
  • Hydroxyalkyl starch comprising two or more different hydroxyalkyl groups is also comprised in the present invention.
  • the at least one hydroxyalkyl group comprised in HAS may contain two or more hydroxy groups.
  • the at least one hydroxyalkyl group comprised HAS contains one hydroxy group.
  • HAS also includes derivatives wherein the alkyl group is mono- or polysubstituted.
  • the alkyl group is substituted with a halogen, especially fluorine, or with an aryl group, provided that the HAS remains soluble in water.
  • the terminal hydroxy group a of hydroxyalkyl group may be esterified or etherified.
  • HAS derivatives are described in WO/2004/024776, which is incorporated by reference in its entirety.
  • a therapeutic protein may be covalently linked to the polysaccharide compounds by any of various techniques known to those of skill in the art.
  • sialic acid moieties are bound to a therapeutic protein, e.g., FIX, FVIII, FVIIa or VWF, for example by the method described in U.S. Pat. No. 4,356,170, which is herein incorporated by reference.
  • Exemplary techniques include linkage through a peptide bond between a carboxyl group on one of either the blood coagulation protein or polysaccharide and an amine group of the blood coagulation protein or polysaccharide, or an ester linkage between a carboxyl group of the blood coagulation protein or polysaccharide and a hydroxyl group of the therapeutic protein or polysaccharide.
  • Another linkage by which the therapeutic protein is covalently bonded to the polysaccharide compound is via a Schiff base, between a free amino group on the blood coagulation protein being reacted with an aldehyde group formed at the non-reducing end of the polysaccharide by periodate oxidation (Jennings H J and Lugowski C, J Immunol. 1981; 127:1011-8; Fernandes A I and Gregoriadis G, Biochim Biophys Acta. 1997; 1341; 26-34).
  • the generated Schiff base is in one aspect stabilized by specific reduction with NaCNBH3 to form a secondary amine.
  • An alternative approach is the generation of terminal free amino groups in the PSA by reductive amination with NH4C1 after prior oxidation.
  • Bifunctional reagents can be used for linking two amino or two hydroxyl groups.
  • PSA containing an amino group is coupled to amino groups of the protein with reagents like BS3 (Bis(sulfosuccinimidyl)suberate/Pierce, Rockford, Ill.).
  • reagents like BS3 (Bis(sulfosuccinimidyl)suberate/Pierce, Rockford, Ill.).
  • heterobifunctional cross linking reagents like Sulfo-EMCS (N- ⁇ -Maleimidocaproyloxy) sulfosuccinimide ester/Pierce) is used for instance to link amine and thiol groups.
  • a PSA hydrazide is prepared and coupled to the carbohydrate moiety of the protein after prior oxidation and generation of aldehyde functions.
  • a free amine group of the therapeutic protein reacts with the 1-carboxyl group of the sialic acid residue to form a peptidyl bond or an ester linkage is formed between the 1-carboxylic acid group and a hydroxyl or other suitable active group on a blood coagulation protein.
  • a carboxyl group forms a peptide linkage with deacetylated 5-amino group
  • an aldehyde group of a molecule of a therapeutic protein forms a Schiff base with the N-deacetylated 5-amino group of a sialic acid residue.
  • the polysaccharide compound is associated in a non-covalent manner with a therapeutic protein.
  • the polysaccharide compound and the pharmaceutically active compound are in one aspect linked via hydrophobic interactions.
  • Other non-covalent associations include electrostatic interactions, with oppositely charged ions attracting each other.
  • the therapeutic protein is linked to or associated with the polysaccharide compound in stoichiometric amounts (e.g., 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:7, 1:8, 1:9, or 1:10, etc.).
  • 1-6, 7-12 or 13-20 polysaccharides are linked to the blood coagulation protein.
  • 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more polysaccharides are linked to the blood coagulation protein.
  • the therapeutic protein is modified to introduce glycosylation sites (i.e., sites other than the native glycosylation sites). Such modification may be accomplished using standard molecular biological techniques known in the art.
  • the therapeutic protein prior to conjugation to a water soluble polymer via one or more carbohydrate moieties, may be glycosylated in vivo or in vitro. These glycosylated sites can serve as targets for conjugation of the proteins with water soluble polymers (US Patent Application No. 20090028822, US Patent Application No. 2009/0093399, US Patent Application No. 2009/0081188, US Patent Application No. 2007/0254836, US Patent Application No. 2006/0111279, and DeFrees S. et al., Glycobiology, 2006, 16, 9, 833-43).
  • a protein that is not naturally glycoslyated in vivo e.g., a protein that is not a glycoprotein
  • the reaction of hydroxylamine or hydroxylamine derivatives with aldehydes (e.g., on a carbohydrate moiety following oxidation by sodium periodate) to form an oxime group is applied to the preparation of conjugates of blood coagulation protein.
  • a glycoprotein e.g., a therapeutic protein according to the present invention
  • a oxidizing agent such as sodium periodate (NaIO4) (Rothfus J A et Smith E L., J Biol Chem 1963, 238, 1402-10; and Van Lenten L and Ashwell G., J Biol Chem 1971, 246, 1889-94).
  • the periodate oxidation of glycoproteins is based on the classical Malaprade reaction described in 1928, the oxidation of vicinal diols with periodate to form an active aldehyde group (Malaprade L., Analytical application, Bull Soc Chim France, 1928, 43, 683-96). Additional examples for such an oxidizing agent are lead tetraacetate (Pb(OAc)4), manganese acetate (MnO(Ac)3), cobalt acetate (Co(OAc)2), thallium acetate (TlOAc), cerium sulfate (Ce(SO4)2) (U.S. Pat. No.
  • oxidizing agent a mild oxidizing compound which is capable of oxidizing vicinal diols in carbohydrates, thereby generating active aldehyde groups under physiological reaction conditions is meant.
  • the second step is the coupling of the polymer containing an aminooxy group to the oxidized carbohydrate moiety to form an oxime linkage.
  • this step can be carried out in the presence of catalytic amounts of the nucleophilic catalyst aniline or aniline derivatives (Dirksen A et Dawson P E, Bioconjugate Chem. 2008; Zeng Y et al., Nature Methods 2009; 6:207-9).
  • the aniline catalysis dramatically accelerates the oxime ligation allowing the use of very low concentrations of the reagents.
  • the oxime linkage is stabilized by reduction with NaCNBH3 to form an alkoxyamine linkage ( FIG. 2 ). Additional catalysts are described below.
  • EP 1681303A1 HASylated erythropoietin
  • WO 2005/014024 conjugates of a polymer and a protein linked by an oxime linking group
  • WO96/40662 aminooxy-containing linker compounds and their application in conjugates
  • WO 2008/025856 Modified proteins
  • Kubler-Kielb J et Kubler-Kielb J et.
  • the water soluble polymer which is linked according to the aminooxy technology described herein to an oxidized carbohydrate moiety of a therapeutic protein include, but are not limited to polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG) polyoxazoline, poly acryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene
  • PEG polyethylene glycol
  • PSA polysialic acid
  • carbohydrate polysacchari
  • the conjugation of water soluble polymers to therapeutic proteins can be catalyzed by aniline.
  • Aniline strongly catalyzes aqueous reactions of aldehydes and ketones with amines to form stable imines such as hydrazones and oximes.
  • the following diagram compares an uncatalyzed versus the aniline-catalyzed oxime ligation reaction (Kohler J J, ChemBioChem 2009; 10:2147-50):
  • aniline derivatives as alternative oxime ligation catalysts.
  • aniline derivatives include, but are not limited to, o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • m-toluidine (aka meta-toluidine, m-methylaniline, 3-methylaniline, or 3-amino-1-methylbenzene) is used to catalyze the conjugation reactions described herein.
  • M-toluidine and aniline have similar physical properties and essentially the same pKa value (m-toluidine: pKa 4.73, aniline: pKa 4.63).
  • the nucleophilic catalysts of the invention are useful for oxime ligation (e.g, using aminooxy linkage) or hydrazone formation (e.g., using hydrazide chemistry).
  • the nucleophilic catalyst is provided in the conjugation reaction at a concentration of of 0.1, 0.2, 0.3, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, or 50 mM.
  • the nucleophilic catalyst is provided between 1 to 10 mM.
  • the pH range of conjugation reaction is 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5. In one embodiment, the pH is between 5.5 to 6.5.
  • purification of a protein that has been incubated with an oxidizing agent and/or a therapeutic protein that has been conjugated with a water soluble polymer according to the present disclosure is desired.
  • Numerous purification techniques are known in the art and include, without limitation, chromatographic methods such as ion-exchange chromatography, hydrophobic interaction chromatography, size exclusion chromatography and affinity chromatography or combinations thereof, filtration methods, and precipitation methods (Guide to Protein Purification, Meth. Enzymology Vol 463 (edited by Burgess R R and Guider M P), 2 nd edition, Academic Press 2009).
  • 3-oxa-pentane-1,5 dioxyamine was synthesized according to Botyryn et al (Tetrahedron 1997; 53:5485-92) in a two step organic synthesis as outlined in Example 1.
  • the Dichloromethane layer was dried over Na 2 SO 4 and then evaporated to dryness under reduced pressure and dried in high vacuum to give 64.5 g of 3-oxapentane-1,5-dioxy-endo-2′,3′-dicarboxydiimidenorbornene as a white-yellow solid (intermediate 1).
  • the crude product was further purified by column chromatography (Silicagel 60; isocratic elution with Dichloromethane/Methanol mixture, 9/1) to yield 11.7 g of the pure final product 3-oxa-pentane-1,5-dioxyamine.
  • UF/DF ultrafiltration/diafiltration procedure
  • the reaction mixture was diluted with 110 ml Buffer A and loaded onto the DEAE column pre-equilibrated with Buffer A at a flow rate of 1 cm/min. Then the column was washed with 20 CV Buffer B (20 mM Hepes, pH 6.0) to remove free 3-oxa-pentane-1,5-dioxyamine and cyanide at a flow rate of 2 cm/min.
  • the aminooxy-PSA reagent was then eluted with a step gradient consisting of 67% Buffer B and 43% Buffer C (20 mM Hepes, 1M NaCl, pH 7.5).
  • the eluate was concentrated by UF/DF using a 5 kD membrane made of polyether sulfone (50 cm 2 , Millipore).
  • the final diafiltration step was performed against Buffer D (20 mM Hepes, 90 mM NaCl, pH 7.4).
  • the preparation was analytically characterized by measuring total PSA (Resorcinol assay) and total aminooxy groups (TNBS assay) to determine the degree of modification. Furthermore the polydispersity as well as free 3-oxa-pentane-1,5-dioxyamine and cyanide was determined.
  • the aminooxy-PSA reagent was the eluted with a step gradient consisting of 67% Buffer B and 43% Buffer C (20 mM Hepes, 1 M NaCl, pH 7.5).
  • the eluate was concentrated by UF/DF using a 5 kD membrane made of polyether sulfone (50 cm 2 , Millipore).
  • the final diafiltration step was performed against Buffer D (20 mM Hepes, 90 mM NaCl, pH 7.4).
  • the preparation was analytically characterized by measuring total PSA (Resorcinol assay) and total aminooxy groups (TNBS assay) to determine the degree of modification. Furthermore the polydispersity as well as free 3-oxa-pentane-1,5-dioxyamine was determined.
  • the reaction mixture is diluted with 50 ml Buffer A and loaded onto the DEAE column pre-equilibrated with Buffer A at a flow rate of 1 cm/min. Then the column is washed with 20CV Buffer B (20 mM Hepes, pH 6.0) to remove free 3-oxa-pentane-1,5-dioxyamine and cyanide at a flow rate of 2 cm/min.
  • the aminooxy-PSA reagent is the eluted with a step gradient consisting of 67% Buffer B and 43% Buffer C (20 mM Hepes, 1 M NaCl, pH 7.5).
  • the eluate is concentrated by UF/DF using a 5 kD membrane made of polyether sulfone (50 cm 2 , Millipore).
  • the final diafiltration step is performed against Buffer D (20 mM Hepes, 90 mM NaCl, pH 7.4).
  • the preparation is analytically characterized by measuring total PSA (Resorcinol assay) and total aminooxy groups (TNBS assay) to determine the degree of modification. Furthermore the polydispersity as well as free 3-oxa-pentane-1,5-dioxyamine is determined.
  • An Aminooxy-PSA reagent was prepared according to the Examples 4-8. After diafiltration, the product was frozen at ⁇ 80° C. and lyophilized. After lyophilization the reagent was dissolved in the appropriate volume of water and used for preparation of PSA-protein conjugates via carbohydrate modification.
  • rFIX was incubated with sodium periodate, aminooxy-PSA reagent under standardized conditions (1 mg/ml rFIX in 20 mM L-histidine, 150 mM NaCl, 5 mM CaCl 2 ), pH 6.0, 5-fold molar aminooxy-PSA reagent excess, 100 ⁇ M NaIO 4 ) using different nucleophilic catalysts (aniline, m-toluidine, o-anisidine, m-anisidine, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, p-aminobenzamide, sulfanilic acid/standard concentration: 10 mM) The reaction was carried out for 2 hrs in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of aqueous cysteine solution with a final concentration of 1 mM.
  • nucleophilic catalysts aniline, m-toluidine,
  • the coupling efficiency was determined by SDS-PAGE using an Invitrogen X-cell mini system. Samples were spiked with lithium dodecyl sulfate (LDS) buffer and denatured for 10 min at 70° C. Then the samples were applied on 3-8% TRIS-acetate gels and ran at 150 V for 60 min. Subsequently the gels were stained with Coomassie.
  • LDS lithium dodecyl sulfate
  • samples were characterized by use of a SEC-HPLC system using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77).
  • the retentate (8.8 ml), containing oxidized rFIX was mixed with 2.46 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) was added to give a 5-fold molar reagent excess. This mixture was incubated for 2.5 h at RT in the dark under gentle stirring.
  • the free rFIX was removed by means of anion exchange chromatography (AEC).
  • the reaction mixture was diluted with 15 ml Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A.
  • the column was then eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5).
  • Buffer B 50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5.
  • Free rFIX elutes at a conductivity between 12-25 mS/cm and the conjugate between 27-45 mS/cm.
  • the conductivity of the conjugate containing fractions was subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5M NaCl, 5 mM CaCl2, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free aminooxy-PSA reagent was washed out within 5 CV Buffer D. Subsequently the conjugate is eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4).
  • Buffer C 50 mM Hepes, 5M NaCl, 5 mM CaCl2, pH 6.9
  • the conjugate containing fractions were concentrated by UF/DF using Vivaspin 15R 10 kD centrifugal filtrator.
  • the final diafiltration step was performed against histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2.
  • the preparation was analytically characterized by measuring total protein (Bradford) and FIX chromogenic activity.
  • the PSA-rFIX conjugate showed a specific activity of >50% in comparison to native rFIX is determined.
  • rFIX 12.3 mg rFIX is dissolved in in L-histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2) to get a final protein concentration of 1 mg rFIX/ml.
  • a 5 mM aqueous sodium periodate solution is added to get a final concentration of 100 ⁇ M and the reaction mixture is incubated for 1 hour in the dark at 4° C. under gentle stirring at pH 6.0 and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution (or other quenching reagents) to get a final concentration of 10 mM.
  • the mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the free rFIX is removed by means of anion exchange chromatography (AEC).
  • AEC anion exchange chromatography
  • the reaction mixture is diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5).
  • Free rFIX is eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between between 27-45 mS/cm in the conjugate fraction.
  • the conductivity of the conjugate containing fraction is subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9 or by use of anti-chaotropic salts e.g.
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore).
  • the final diafiltration step is performed against L-histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2.
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and FIX chromogenic- and clotting activity. For the PSA-rFIX conjugate a specific activity of >50% in comparison to native rFIX is determined.
  • the free rFIX was removed by means of anion exchange chromatography (AEC).
  • the reaction mixture was diluted with 20 ml Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFIX eluted at a conductivity between 12-25 mS/cm and the conjugate between 27-45 mS/cm.
  • the conductivity of the conjugate containing fractions was subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free aminooxy-PSA reagent was washed out within 5 CV Buffer D. Subsequently, the conjugate was eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4).
  • Buffer C 50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9
  • the conjugate containing fractions were concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore).
  • the final diafiltration step was performed against histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2.
  • the preparation was analytically characterized by measuring total protein (Bradford) and FIX chromogenic activity. For the PSA-rFIX conjugate a specific activity of >50% in comparison to native rFIX was determined.
  • the conjugate was additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It was shown that the preparation contains no free FIX.
  • the conjugate consisted of 57% mono-polysialylated and 31% di-polysialylated and 12% tri-polysialyated product.
  • rFIX 25.4 mg rFIX was dissolved in L-histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2) to get a final protein concentration of 2 mg rFIX/ml. Subsequently an 5 mM aqueous sodium periodate solution was added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PSA reagent with a MW of 20 kD (described above) was added to give a 5-fold molar reagent excess.
  • the free rFIX was removed by means of ion exchange chromatography (IEC).
  • the reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5).
  • Buffer A 50 mM Hepes, 5 mM CaCl2, pH 7.5
  • Free rFIX was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction.
  • the conductivity of the conjugate containing fraction was subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g.
  • the final diafiltration step was performed against L-histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2.
  • the preparation was analytically characterized by measuring total protein (Bradford and BCA procedure) and FIX chromogenic- and clotting activity.
  • For the PSA-rFIX conjugate a specific activity of >50% in comparison to native rFIX was determined.
  • the conjugate was additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It was shown that the preparation contains no free FIX.
  • the conjugate consisted of 57% mono-polysialylated and 31% di-polysialylated and 12% tri-polysialyated product.
  • reaction buffer 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 was added to give a final concentration of 200 ⁇ M.
  • the oxidation was carried at RT for 30 min in the dark under gentle shaking.
  • the reaction was quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution was subjected to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which was equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl 2 ), pH 7.0).
  • the column was equilibrated with 5 CV Buffer A. Then the oxidized rFVIII was eluted with Buffer B (20 mM Hepes, 5 mM CaCl 2 ), 1M NaCl, pH 7.0). The rFVIII containing fractions were collected. The protein content was determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl. Then a 50-fold molar excess of a aminooxy-PSA reagent with a MW of 20 kD (described above) was added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction was performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy-PSA reagent was removed by means of HIC.
  • the conductivity of the reaction mixture was raised to 130 mS/cm by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the conjugate was eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl 2 ).
  • the PSA-rFVIII containing fractions were collected and subjected to UF/DF by use of a 30 kD membrane made of regenerated cellulose (88 cm 2 , Millipore).
  • the preparation was analytically characterized by measuring total protein (Coomassie, Bradford) and FVIII chromogenic activity.
  • the PSA-rFVIII conjugate showed a specific activity of >70% in comparison to native rFVIII was determined.
  • recombinant factor VIII derived from the ADVATE process in Hepes buffer (50 mM HEPES, ⁇ 350 mM sodium chloride, 5 mM calcium chloride, 0.1% Polysorbate 80, pH 7.4) is dissolved in reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 ⁇ M.
  • Hepes buffer 50 mM HEPES, ⁇ 350 mM sodium chloride, 5 mM calcium chloride, 0.1% Polysorbate 80, pH 7.4
  • reaction buffer 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized rFVIII is further purified by anion exchange chromatography on EMD TMAE (M) (Merck).
  • the mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl 2 ), pH 6.5) to give a conductivity of 5 ms/cm.
  • Buffer A (20 mM Hepes, 5 mM CaCl 2 ), pH 6.5
  • This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min.
  • This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl 2 ), 1.0 M NaCl, pH 7.0).
  • the oxidized rFVIII is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B.
  • the elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • the obtained PSA-rFVIII conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • HIC Hydrophobic Interaction Chromatography
  • the reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution. This mixture is loaded onto the HIC column at flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified PSA-rFVIII conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min.
  • washing buffer 2 50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9
  • 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5
  • the elution of the PSA-rFVIII conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within ⁇ 4 CV.
  • the post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 30 kD (88 cm 2 , Millipore).
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein, FVIII chromogenic activity and determination of the polysialyation degree by measuring the PSA content (resorcinol assay). For the conjugate obtained a specific activity >50% and a PSA degree >5.0 is calculated.
  • reaction buffer 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • a protein concentration of 1 mg/ml 50 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) was added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction was performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction was quenched with cysteine for 60 min at RT (final concentration: 10 mM).
  • the conductivity of the reaction mixture was raised to 130 mS/cm by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently, the conjugate was eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn
  • PSA-rFVIII containing fractions were collected and subjected to UF/DF by use of a 30 kD membrane made of regenerated cellulose (88 cm 2 , Millipore).
  • the preparation was analytically characterized by measuring total protein (Bradford) and FVIII chromogenic activity.
  • For the PSA-rFVIII conjugate a specific activity of >70% in comparison to native rFVIII was determined.
  • aminooxy-polysialic acid (PSA-ONH2) reagent was added in a 50-fold molar excess to this rFVIII solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) was added within 15 minutes to get a final concentration of 10 mM. Finally, a 40 mM aqueous sodium periodate solution was added to give a concentration of 400 ⁇ M.
  • the obtained PSA-rFVIII conjugate was purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • HIC Hydrophobic Interaction Chromatography
  • the reaction mixture was spiked with ammonium acetate by addition of of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture was mixed with 1 volume of the ammonium acetate containing buffer system and the pH value was corrected to pH 6.9 by drop wise addition of an 0.5 N aqueous NaOH solution. This mixture was loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • washing buffer 1 50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9 in upflow mode at a flow rate of 2 cm/min.
  • elution of purified rFVIII conjugate was performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min.
  • the elution of the PSA-rFVIII conjugate was monitored at UV 280 nm and the eluate containing the conjugate was collected within ⁇ 4 CV.
  • the post elution step was performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • the purified conjugate was concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 30 kD (88 cm2, Millipore).
  • the conjugates prepared by use of this procedure were analytically characterized by measuring total protein, FVIII chromogenic activity and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 14.7 mg rFVIII is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). Then 296 ⁇ l of an aqueous sodium periodate solution (5 mM) is added and the reaction mixture is incubated for 1 h in the dark at 4° C.
  • the PEG-rFVIII conjugate is purified by ion-exchange chromatography on Q Sepharose FF.
  • 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2.
  • the conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a 30 kD membrane (50 cm2, Millipore).
  • the preparation is analytically characterized by measuring total protein (Coomassie, Bradford) and FVIII chromogenic activity. It is expected that the PEG-rFVIII conjugate will demonstrate a specific activity of >70% in comparison to native rFVIII was determined.
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • a starting weight or concentration of rFVIII is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 ⁇ M.
  • T temperature
  • the oxidized rFVIII is further purified by anion exchange chromatography on EMD TMAE (M) (Merck).
  • the mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 ms/cm.
  • Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 ms/cm.
  • This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min.
  • This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2, 1.0 M NaCl, pH 7.0).
  • the oxidized rFVIII is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B.
  • the elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFVIII within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-rFVIII conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • HIC Hydrophobic Interaction Chromatography
  • the reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9.
  • Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution.
  • This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIII conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min.
  • washing buffer 2 50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9
  • 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5
  • the elution of the PEG-rFVIII conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within ⁇ 4 CV.
  • the post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 30 kD (Millipore).
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 7.84 mg rFVIII, dissolved in 6 ml Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) are mixed with 314 ⁇ l of an aqueous sodium periodate solution (10 mM), and 1.57 ml of an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • PEG-rFVIII conjugate is purified by ion-exchange chromatography on Q-Sepharose FF.
  • 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl 2 ).
  • the conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl 2 ) and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a 30 kD membrane (88 cm 2 , Millipore).
  • the analytical characterization of the conjugate by FVIII chromogenic assay and determination of total protein shows a specific activity of >60% compared to the rFVIII starting material.
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of rFVIII is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg rFVIII/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the free rFVIII is removed by means of ion exchange chromatography (IEC).
  • the reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5).
  • Buffer A 50 mM Hepes, 5 mM CaCl2, pH 7.5
  • Free rFVIII was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction.
  • the conductivity of the conjugate containing fraction is subsequently raised with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g.
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore).
  • the final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • the oxidized rFVIIa is further purified by anion exchange chromatography on EMD TMAE (M) (Merck).
  • the mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl 2 ), pH 6.5) to give a conductivity of 5 ms/cm.
  • Buffer A (20 mM Hepes, 5 mM CaCl 2 ), pH 6.5
  • This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min.
  • This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl 2 ), 1.0 M NaCl, pH 7.0).
  • the oxidized rFVIIa is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B.
  • the elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • the aminooxy-polysialic acid (PSA-ONH 2 ) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFVIIa within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-rFVIIa conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • HIC Hydrophobic Interaction Chromatography
  • the reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9.
  • Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution.
  • This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIIa conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min.
  • washing buffer 2 50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9
  • 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5
  • the elution of the PSA-rFVIIa conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within ⁇ 4 CV.
  • the post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIIa from the main product.
  • the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (e.g. 10 kD MWCO, 88 cm 2 , Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting weight or concentration of rFVIIa is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous NaOH solution.
  • a reaction buffer 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH 2 ) reagent is added in a 50-fold molar excess to this rFVIIa solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 150 ⁇ M.
  • the obtained PSA-rFVIIa conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • HIC Hydrophobic Interaction Chromatography
  • the reaction mixture is spiked with ammonium acetate by addition of of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9.
  • Two volumes of the reaction mixture is mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of an 0.5 N aqueous NaOH solution.
  • This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIIa conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min.
  • washing buffer 2 50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9
  • 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5
  • the elution of the PSA-rFVIIa conjugate is monitored at UV 280 nm and the eluate containing the conjugate was collected within ⁇ 4 CV.
  • the post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • rFIX is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • a starting weight or concentration of rFIX is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 ⁇ M.
  • T temperature
  • the oxidized rFVIII is further purified by anion exchange chromatography on EMD TMAE (M) (Merck).
  • the mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 mS/cm.
  • Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 mS/cm.
  • This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min.
  • This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2, 1.0 M NaCl, pH 7.0).
  • the oxidized rFIX is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B.
  • the elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFIX within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-rFIX conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • HIC Hydrophobic Interaction Chromatography
  • the reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9.
  • Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution.
  • This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFIX conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min.
  • washing buffer 2 50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9
  • 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5
  • the elution of the PEG-rFIX conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within ⁇ 4 CV.
  • the post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFIX from the main product.
  • the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 10 kD (88 cm2, Millipore).
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • rFIX is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of rFIX is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg rFIX/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the free rFIX is removed by means of ion exchange chromatography (IEC).
  • the reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5).
  • Buffer A 50 mM Hepes, 5 mM CaCl2, pH 7.5
  • Free rFIX was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction.
  • the conductivity of the conjugate containing fraction is subsequently raised with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g.
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • rFVIIa is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • a starting weight or concentration of rFVIIa is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous NaOH solution.
  • a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 50 ⁇ M.
  • T temperature
  • the oxidized rFVIIa is further purified by anion exchange chromatography on EMD TMAE (M) (Merck).
  • the mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 mS/cm.
  • Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 mS/cm.
  • This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min.
  • This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2, 1.0 M NaCl, pH 7.0).
  • the oxidized rFVIIa is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B.
  • the elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFVIIa within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-rFVIIa conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • HIC Hydrophobic Interaction Chromatography
  • the reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9.
  • Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution.
  • This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIIa conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min.
  • washing buffer 2 50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9
  • 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5
  • the elution of the PEG-rFVIIa conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within ⁇ 4 CV.
  • the post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIIa from the main product.
  • the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 10 kD (Millipore).
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • rFVIIa is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of rFVIIa is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg rFVIIa/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the free rFVIIa is removed by means of ion exchange chromatography (IEC).
  • the reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5).
  • Buffer A 50 mM Hepes, 5 mM CaCl2, pH 7.5
  • Free rFVIIa was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction.
  • the conductivity of the conjugate containing fraction is subsequently raised with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g.
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • rFIX 8.2 mg rFIX is dissolved in 4.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). Then 82 ⁇ l of an aqueous sodium periodate solution (5 mM) is added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 4 ⁇ l of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 6 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a solution of 1 mg rFIX in 0.65 ml sodium phosphate buffer, pH 6.0 containing a 5-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) was prepared. Then 333 ⁇ l of an aqueous o-amino benzoic acid solution (30 mM) was added as nucleophilic catalyst to give a final concentration of 10 mM. Subsequently 20 ⁇ l of an aqueous solution of NaIO4 (5 mM) was added yielding in a final concentration of 100 ⁇ M.
  • the coupling process was performed for 2 hours in the dark under gentle shaking at room temperature and quenched for 15 min at room temperature by the addition of 1 ⁇ l of aqueous cysteine solution (1 M).
  • the further purification of the conjugate is carried out as described herein.
  • a starting concentration of erythropoietin (EPO) is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl 2 ), pH 7.0).
  • Buffer A (20 mM Hepes, 5 mM CaCl 2 ), pH 7.0
  • the column is equilibrated with 5 CV Buffer A.
  • the oxidized EPO is eluted with Buffer B (20 mM Hepes, 5 mM CaCl 2 ), 1M NaCl, pH 7.0).
  • the EPO containing fractions are collected.
  • the protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • a 50-fold molar excess of a aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy-PSA reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl 2 ).
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • PSA-EPO containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (MWCO 10 kD, 50 cm 2 , Millipore).
  • MWCO 10 kD regenerated cellulose
  • Millipore membrane made of regenerated cellulose
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • EPO 10 mg EPO is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 ⁇ l of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 ⁇ l of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate (approx. 7 ml), containing oxidized EPO, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • the free EPO is removed by means of anion exchange chromatography (AEC).
  • AEC anion exchange chromatography
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 7.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 7.5
  • the conductivity of the conjugate containing fractions is subsequently raised to ⁇ 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 7.4).
  • Buffer C 50 mM Hepes, 5 M NaCl, pH 6.9
  • Buffer D 50 mM Hepes, 3 M NaCl, pH 6.9
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • For the PSA-EPO conjugate a specific activity of >50% in comparison to native EPO is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized EPO is further purified by ion exchange chromatography.
  • the oxidized EPO containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized EPO within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-EPO conjugate is further purified by ion exchange chromatography.
  • the PSA-EPO conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • EPO Erythropoietin
  • reaction buffer 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the PSA-EPO containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (MWCO 10 kD, 88 cm2, Millipore).
  • MWCO 10 kD, 88 cm2, Millipore regenerated cellulose
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows. 10 mg EPO is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 ⁇ l of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently, the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 ⁇ l of 1 M aqueous cysteine solution.
  • the free EPO is removed by means of anion exchange chromatography (AEC).
  • AEC anion exchange chromatography
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 7.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 7.5
  • the conductivity of the conjugate containing fractions is subsequently raised to ⁇ 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 7.4).
  • Buffer C 50 mM Hepes, 5 M NaCl, pH 6.9
  • Buffer D 50 mM Hepes, 3 M NaCl, pH 6.9
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • For the PSA-EPO conjugate a specific activity of >50% in comparison to native EPO is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • EPO is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this EPO solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained PSA-EPO conjugate is purified by ion-exchange chromatography.
  • the PSA-EPO containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (MWCO 10 kD, 88 cm2, Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting concentration of angiopoietin-2 (Ang-2) is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts, or, in the alternative, subjected to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0).
  • Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0).
  • the column is equilibrated with 5 CV Buffer A.
  • the oxidized Ang-2 is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0).
  • the Ang-2 containing fractions are collected.
  • the protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • the PSA-Ang-2-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • Angiopoietin-2 (Ang-2) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at R.T.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-Ang-2 conjugate-containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized Ang-2 is further purified by ion exchange chromatography.
  • the oxidized Ang-2 containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Ang-2 within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-Ang-2 conjugate is further purified by ion-exchange chromatography
  • the PSA-Ang-2 conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Angiopoietin-2 (Ang-2) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50 fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the PSA Ang-2-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • Angiopoietin-2 (Ang-2) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography.
  • PSA Ang-2-containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Ang-2 is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this Ang-2 solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained PSA-Ang-2 conjugate is purified by ion-exchange chromatography.
  • the PSA-Ang-2 containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • vascular endothelial growth factor vascular endothelial growth factor (VEGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized VEGF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The VEGF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M NaOH.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • PSA-VEGF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • Vascular endothelial growth factor (VEGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-VEGF-containing fractions of the eluate are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized VEGF is further purified by ion exchange chromatography.
  • the oxidized VEGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized VEGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-VEGF conjugate is further purified by ion exchange chromatography.
  • the PSA-VEGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • vascular endothelial growth factor is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the PSA-VEGF containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • Vascular endothelial growth factor (VEGF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography.
  • the PSA-VEGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • VEGF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this VEGF solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained VEGF-conjugate is purified by ion-exchange chromatography.
  • the PSA-VEGF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting concentration of epidermal growth factor (EGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at R.T.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized EGF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The EGF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • the PSA-EGF containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • Epidermal growth factor (EGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at R.T.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-EGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized EGF is further purified by ion exchange chromatography.
  • the oxidized EGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized EGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-EGF conjugate is further purified by ion exchange chromatography.
  • the PSA-EGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Epidermal growth factor is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • PSA-EGF containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • Epidermal growth factor (EGF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography.
  • the conjugate containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • EGF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this EGF-solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained EGF-conjugate is purified by ion-exchange chromatography.
  • the PSA-EGF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting concentration of nerve growth factor (NGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized NGF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The NGF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • the PSA-NGF containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • Nerve growth factor (NGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-NGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized NGF is further purified by ion exchange chromatography.
  • the oxidized NGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized NGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-NGF conjugate is further purified by ion exchange chromatography.
  • the PSA-NGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Nerve growth factor is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the PSA NGF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • Nerve growth factor (NGF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. Then the PSA-NGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • NGF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this NGF-solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained NGF-conjugate is purified by ion-exchange chromatography.
  • the PSA-NGF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • HGH human growth hormone
  • a starting concentration of human growth hormone (HGH) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized HGH is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The HGH containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • the PSA-HGH containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • HGH human growth hormone
  • HGH is glycosylated in vitro according to methods known in the art.
  • HGH is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-HGH containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • HGH human growth hormone
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized HGH is further purified by ion exchange chromatography.
  • the oxidized HGH containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized HGH within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-HGH conjugate is further purified by ion exchange chromatography.
  • the PSA-HGH conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • HGH human growth hormone
  • HGH Human growth hormone
  • reaction buffer 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • m-toluidine as a nucleophilic catalyst (10 mM final concentration)
  • NaIO4 final concentration: 400 ⁇ M
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the PSA HGH-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • HGH human growth hormone
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • protein concentration 1 mg/ml.
  • a 50 fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. Then the PSA-HGH-containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • HGH human growth hormone
  • HGH is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this HGH-solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained HGH-conjugate is purified by ion-exchange chromatography.
  • the PSA-HGH containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting concentration of tumor necrosis factor-alpha (TNF-alpha) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized TNF-alpha is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The TNF-alpha containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • PSA-TNF-alpha-containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows. Tumor necrosis factor-alpha (TNF-alpha) is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 ⁇ M. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-TNF-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized TNF-alpha is further purified by ion exchange chromatography.
  • the oxidized TNF-alpha containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized TNF-alpha within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-TNF-alpha conjugate is further purified by ion exchange chromatography.
  • the PSA-TNF-alpha conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Tumor necrosis factor-alpha (TNF-alpha) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • the PSA-TNF-alpha-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows. Tumor necrosis factor-alpha (TNF-alpha) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucle
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). and the conjugate is purified by ion exchange chromatography.
  • the PSA-TNF-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • TNF-alpha is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this TNF-alpha-solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained TNF-alpha conjugate is purified by ion-exchange chromatography.
  • the PSA-TNF-alpha containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site.
  • insulin is glycosylated in vitro according to methods known in the art.
  • a starting concentration of insulin is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized insulin is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The insulin containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • PSA-insulin containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site.
  • insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-insulin containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized insulin is further purified by ion exchange chromatography.
  • the oxidized insulin containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized insulin within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-insulin conjugate is further purified by ion exchange chromatography.
  • the PSA-insulin conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the PSA-insulin containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows. As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography.
  • PSA-insulin containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this insulin-solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained insulin conjugate is purified by ion-exchange chromatography.
  • the PSA-insulin containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting concentration of interferon-alpha is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized interferon-alpha is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The interferon-alpha containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • PSA-interferon-alpha containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows. Interferon-alpha is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 ⁇ M. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion-exchange chromatography.
  • the PSA-interferon-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized interferon-alpha is further purified by ion exchange chromatography.
  • the oxidized interferon-alpha containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized interferon-gamma within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-interferon-alpha conjugate is further purified by ion exchange chromatography.
  • the PSA-interferon-alpha conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • Interferon-alpha is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • PSA-interferon-alpha containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows. Interferon-alpha is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration)
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography.
  • the PSA-interferon-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Interferon-alpha is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this interferon-alpha solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained interferon-alpha conjugate is purified by ion-exchange chromatography.
  • the PSA-interferon-alpha containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • the retentate (approx. 7 ml), containing oxidized interferon-gamma, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • the free Interferon-gamma is removed by means of cation exchange chromatography (CEC).
  • CEC cation exchange chromatography
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free interferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 6.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 6.5
  • the conductivity of the conjugate containing fractions is subsequently raised to ⁇ 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9).
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSA-Interferon-gamma conjugate a specific activity of >50% in comparison to native Interferon-gamma is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Interferon gamma.
  • interferon-gamma 10 mg interferon-gamma is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 ⁇ l of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 ⁇ l of 1 M aqueous cysteine solution.
  • the free interferon gamma is removed by means of cation exchange chromatography (CEC).
  • CEC cation exchange chromatography
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free interferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 6.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 6.5
  • the conductivity of the conjugate containing fractions is subsequently raised to ⁇ 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9).
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSAinterferon-gamma conjugate a specific activity of >50% in comparison to native interferon-gamma is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free interferon-gamma.
  • interferon-gamma 10 mg interferon-gamma is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 ⁇ l of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 ⁇ l of 1 M aqueous cysteine solution.
  • the free interferon gamma is removed by means of cation exchange chromatography (CEC).
  • CEC cation exchange chromatography
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free interferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 6.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 6.5
  • the conductivity of the conjugate containing fractions is subsequently raised to ⁇ 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9).
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSAinterferon-gamma conjugate a specific activity of >50% in comparison to native interferon-gamma is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free interferon-gamma.
  • Interferon-gamma is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this interferon-gamma solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained interferon-gamma conjugate is purified by ion-exchange chromatography.
  • the PSA-interferon-gamma containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • G-CSF granulocyte-colony stimulating factor
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized G-CSF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The G-CSF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • PSA-G-CSF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • Granulocyte-colony stimulating factor (G-CSF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography.
  • the PSA-G-CSF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized G-CSF is further purified by ion exchange chromatography.
  • the oxidized G-CSF containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized G-CSF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-G-CSF conjugate is further purified by ion exchange chromatography.
  • the PSA-G-CSF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • G-CSF Granulocyte-colony stimulating factor
  • reaction buffer 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • the PSA-G-CSF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • Granulocyte-colony stimulating factor (G-CSF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography.
  • the PSA-G-CSF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • G-CSF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this G-CSF solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained G-CSF conjugate is purified by ion-exchange chromatography.
  • the PSA-G-CSF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting concentration of Humira is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized Humira is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The Humira containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • the PSA-Humira containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • Humira is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of ion exchange chromatography
  • the PSA-Humira containing fractions of the elutae are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized Humira is further purified by ion exchange chromatography.
  • the oxidized Humira containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Humira within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PSA-Humira conjugate is further purified by ion exchange chromatography.
  • the PSA-Humira conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Humira is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • PSA-Humira containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • Humira is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography.
  • the PSA-Humira containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Humira is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this Humira solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained Humira-conjugate is purified by ion-exchange chromatography.
  • the PSA-Humira containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • a starting concentration of Prolia is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • NaIO4 is added to give a final concentration of 200 ⁇ M.
  • the oxidation is carried at RT for 30 min in the dark under gentle shaking.
  • the reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • the solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized Prolia is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The Prolia containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature.
  • the excess of aminooxy reagent is removed by means of HIC.
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • the PSA-Prolia containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore).
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows. 10 mg Prolia is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 ⁇ l of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 ⁇ l of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate (approx. 7 ml), containing oxidized Prolia, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • the free Prolia is removed by means of cation exchange chromatography (CEC).
  • CEC cation exchange chromatography
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free Prolia is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 6.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 6.5
  • the conductivity of the conjugate containing fractions is subsequently raised to ⁇ 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9).
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • For the PSA-Prolia conjugate a specific activity of >50% in comparison to native Prolia is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Prolia.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized Prolia is further purified by ion exchange chromatography.
  • the oxidized Prolia containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Prolia within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained Prolia conjugate is further purified by ion exchange chromatography.
  • the Prolia conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Prolia is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml.
  • a 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 ⁇ M).
  • the coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM).
  • the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5.
  • a buffer containing ammonium acetate 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9
  • Phenyl Sepharose FF GE Healthcare, Fairfield, Conn.
  • PSA Prolia-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore).
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows. 10 mg Prolia is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 ⁇ l of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5 fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 ⁇ l of 1 M aqueous cysteine solution.
  • the free Prolia is removed by means of cation exchange chromatography (CEC).
  • CEC cation exchange chromatography
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free Prolia is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 6.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 6.5
  • the conductivity of the conjugate containing fractions is subsequently raised to ⁇ 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9).
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm 2 , cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSA-Prolia conjugate a specific activity of >50% in comparison to native Prolia is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Prolia.
  • Prolia is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • aminooxy-polysialic acid (PSA-ONH 2 ) reagent is added in a 50-fold molar excess to this Prolia-solution within a maximum time period (t) of 15 minutes under gentle stirring.
  • an aqueous m-toluidine solution 50 mM is added within 15 minutes to get a final concentration of 10 mM.
  • a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 ⁇ M.
  • the obtained Prolia conjugate is purified by ion-exchange chromatography.
  • the PSA-Prolia containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Polysialylation reactions performed in the presence of alternative nucleophilic catalysts like m-toluidine or o-aminobenzoic acid as described herein may be extended to other therapeutic proteins.
  • alternative nucleophilic catalysts like m-toluidine or o-aminobenzoic acid as described herein may be extended to other therapeutic proteins.
  • the above polysialylation or PEGylation reactions as described herein with PSA aminooxy or PEG aminooxy reagents is repeated with therapeutic proteins such as those proteins described herein.
  • EPO Erythropoietin
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EPO is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 ⁇ l of a 1 M aqueous cysteine solution.
  • the mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate containing oxidized EPO is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature.
  • aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-EPO conjugate is purified by ion-exchange chromatography (e.g. on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl 2 ). The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl 2 ) and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows. EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 10 mg EPO is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 ⁇ l of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 ⁇ l of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate (approx. 7 ml), containing oxidized EPO, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • the PEG-EPO conjugate is purified by ion-exchange chromatography on Q Sepharose FF.
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 7.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 7.5
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity biological activity according to methods known in the art. For the PEG-EPO conjugate a specific activity of >50% in comparison to native EPO is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized EPO is further purified by ion exchange chromatography.
  • the oxidized EPO containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized EPO within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-EPO conjugate is further purified by ion exchange chromatography.
  • the PEG-EPO conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EPO is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-EPO conjugate is purified by ion-exchange chromatography on Q Sepharose FF.
  • 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2.
  • the conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • 10 mg EPO is dissolved in ⁇ 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 ⁇ l of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added.
  • aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 ⁇ l of 1 M aqueous cysteine solution.
  • the PEG-EPO conjugate is purified by ion-exchange chromatography on Q Sepharose FF.
  • the reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B.
  • Buffer A 50 mM Hepes, pH 7.5
  • Buffer B 50 mM Hepes, 1 M NaCl, pH 7.5
  • the conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • For the PEG-EPO conjugate a specific activity of >50% in comparison to native EPO is determined.
  • the conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of EPO is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg EPO/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the PEG-EPO conjugate is purified by means of ion exchange chromatography (IEC).
  • IEC ion exchange chromatography
  • the conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm 2 , cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl 2 ), pH 7.5).
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • Ang-2 is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 ⁇ l of a 1 M aqueous cysteine solution.
  • the mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate containing oxidized Ang-2 is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-Ang-2 conjugate is purified by ion-exchange chromatography (e.g. on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • Ang-2 is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C.
  • the retentate containing oxidized Ang-2 is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-Ang-2 conjugate is purified by ion-exchange chromatography.
  • the conjugate containing fraction of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane.
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the oxidized Ang-2 is further purified by ion exchange chromatography.
  • the oxidized Ang-2 containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Ang-2 within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-Ang-2 conjugate is further purified by ion exchange chromatography.
  • the PEG-Ang-2 conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • Ang-2 is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-Ang-2 conjugate is purified by ion-exchange chromatography on Q Sepharose FF.
  • 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2.
  • the conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • Ang-2 is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • PEG-Ang-2 conjugate is purified by ion-exchange chromatography
  • the conjugate containing reactions of the eluate are collected and then subjected to UF/DF.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of Ang-2 is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg Ang-2/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the PEG-Ang-2 conjugate is purified by means of ion exchange chromatography (IEC).
  • IEC ion exchange chromatography
  • the conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • the free Ang-2 is removed by means of ion exchange chromatography (IEC).
  • IEC ion exchange chromatography
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • VEGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 ⁇ l of a 1 M aqueous cysteine solution.
  • the mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate containing oxidized VEGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-VEGF conjugate is purified by ion-exchange chromatography (e.g., on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • VEGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C.
  • the retentate containing oxidized VEGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-VEGF conjugate is purified by ion-exchange chromatography
  • the conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane.
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • VEGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 ⁇ M.
  • T temperature
  • the oxidized VEGF is further purified by ion exchange chromatography.
  • the oxidized VEGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized VEGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-VEGF conjugate is further purified by ion exchange chromatography.
  • the PEG-VEGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • VEGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-VEGF conjugate is purified by ion-exchange chromatography on Q Sepharose FF.
  • 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2.
  • the conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 3 is carried out as follows.
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • VEGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-VEGF conjugate is purified by ion-exchange chromatography.
  • the conjugate conjugate fractions of the eluate are collected and then subjected to UF/DF.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of VEGF is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg VEGF/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the PEG-VEGF conjugate is purified by means of ion exchange chromatography (IEC).
  • IEC ion exchange chromatography
  • the conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 ⁇ l of a 1 M aqueous cysteine solution.
  • the mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate containing oxidized EGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-EGF conjugate is purified by ion-exchange chromatography (e.g., on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C.
  • the retentate containing oxidized EGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-EGF conjugate is purified by ion-exchange chromatography.
  • the conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane.
  • the preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 ⁇ M.
  • the oxidized EGF is further purified by ion exchange chromatography.
  • the oxidized EGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized NGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-EGF conjugate is further purified by ion exchange chromatography.
  • the PEG-EGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-EGF conjugate is purified by ion-exchange chromatography on Q-Sepharose FF.
  • 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2.
  • the conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-EGF conjugate is purified by ion-exchange chromatography.
  • the conjugate containing fractions of the eluate are collected and then subjected to UF/DF.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of EGF is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg EGF/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the PEG-EGF conjugate is purified by means of ion exchange chromatography (IEC).
  • IEC ion exchange chromatography
  • the conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • NGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 ⁇ l of a 1 M aqueous cysteine solution.
  • the mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate containing oxidized NGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature.
  • Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-NGF conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 1 is carried out as follows.
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • NGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C.
  • the retentate containing oxidized NGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature.
  • Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • the PEG-NGF conjugate is purified by ion-exchange chromatography (The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • NGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/ ⁇ 0.25 mg/ml.
  • reaction buffer e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0
  • the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution.
  • a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 ⁇ M.
  • the oxidized NGF is further purified by ion exchange chromatography.
  • the oxidized NGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized NGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM.
  • the obtained PEG-NGF conjugate is further purified by ion exchange chromatography.
  • the PEG-NGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • UF/DF ultra-/diafiltration
  • the conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • NGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-NGF conjugate is purified by ion-exchange chromatography on Q Sepharose FF.
  • 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2.
  • the conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • NGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM).
  • the aminooxy reagent is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 ⁇ l of aqueous cysteine solution (1 M).
  • the PEG-NGF conjugate is purified by ion-exchange chromatography.
  • the conjugate containing fractions are collected and then subjected to UF/DF.
  • the preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • a linear 20 kD PEGylation reagent containing an aminooxy group is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • An initial concentration or weight of NGF is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg NGF/ml.
  • an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 ⁇ M, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes.
  • the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess.
  • the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • the PEG-NGF conjugate is purified by means of ion exchange chromatography (IEC).
  • IEC ion exchange chromatography
  • the conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore).
  • the final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • the preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • HGH human growth hormone
  • HGH is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group.
  • An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • HGH is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2).
  • An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 ⁇ l of a 1 M aqueous cysteine solution.
  • the mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • the retentate containing oxidized HGH is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature.
  • Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Water Supply & Treatment (AREA)
  • Zoology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

The invention relates to materials and methods of conjugating a water soluble polymer to an oxidized carbohydrate moiety of a therapeutic protein comprising contacting the oxidized carbohydrate moiety with an activated water soluble polymer under conditions that allow conjugation. More specifically, the present invention relates to the aforementioned materials and methods wherein the water soluble polymer contains an active aminooxy group and wherein an oxime or hydrazone linkage is formed between the oxidized carbohydrate moiety and the active aminooxy group on the water soluble polymer, and wherein the conjugation is carried out in the presence of a nucleophilic catalyst.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. patent application Ser. No. 15/281,616, filed Sep. 30, 2016, which is a continuation application of U.S. patent application Ser. No. 14/136,233, filed Dec. 20, 2013, now U.S. Pat. No. 9,492,555, which is a continuation application of U.S. patent application Ser. No. 13/194,038, filed Jul. 29, 2011, now U.S. Pat. No. 8,642,737, which claims benefit to U.S. Provisional No. 61/369,186, filed Jul. 30, 2010, and is a Continuation-In-Part of U.S. patent application Ser. No. 12/843,542, filed Jul. 26, 2010, now U.S. Pat. No. 8,637,640, which claims benefit of to U.S. Provisional No. 61/347,136, filed May 21, 2010 and U.S. Provisional No. 61/228,828, filed Jul. 27, 2009, all of which are incorporated herein by reference in its entirety.
  • REFERENCE TO A SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, is named “SEQUENCE LISTING” and is 4,096 kilobytes in size.
  • FIELD OF THE INVENTION
  • The present invention relates to materials and methods for conjugating a water soluble polymer to a protein.
  • BACKGROUND OF THE INVENTION
  • The preparation of conjugates by forming a covalent linkage between the water soluble polymer and the therapeutic protein can be carried out by a variety of chemical methods. PEGylation of polypeptide drugs protects them in circulation and improves their pharmacodynamic and pharmacokinetic profiles (Harris and Chess, Nat Rev Drug Discov. 2003; 2:214-21). The PEGylation process attaches repeating units of ethylene glycol (polyethylene glycol (PEG)) to a polypeptide drug. PEG molecules have a large hydrodynamic volume (5-10 times the size of globular proteins), are highly water soluble and hydrated, non-toxic, non-immunogenic and rapidly cleared from the body. PEGylation of molecules can lead to increased resistance of drugs to enzymatic degradation, increased half-life in vivo, reduced dosing frequency, decreased immunogenicity, increased physical and thermal stability, increased solubility, increased liquid stability, and reduced aggregation. The first PEGylated drugs were approved by the FDA in the early 1990s. Since then, the FDA has approved several PEGylated drugs for oral, injectable, and topical administration.
  • Polysialic acid (PSA), also referred to as colominic acid (CA), is a naturally occurring polysaccharide. It is a homopolymer of N-acetylneuraminic acid with α(2→8) ketosidic linkage and contains vicinal diol groups at its non-reducing end. It is negatively charged and a natural constituent of the human body. It can easily be produced from bacteria in large quantities and with pre-determined physical characteristics (U.S. Pat. No. 5,846,951). Because the bacterially-produced PSA is chemically and immunologically identical to PSA produced in the human body, bacterial PSA is non-immunogenic, even when coupled to proteins. Unlike some polymers, PSA acid is biodegradable. Covalent coupling of colominic acid to catalase and asparaginase has been shown to increase enzyme stability in the presence of proteolytic enzymes or blood plasma. Comparative studies in vivo with polysialylated and unmodified asparaginase revealed that polysialylation increased the half-life of the enzyme (Fernandes and Gregoriadis, Int J Pharm. 2001; 217:215-24).
  • Coupling of PEG-derivatives to peptides or proteins is reviewed by Roberts et al. (Adv Drug Deliv Rev 2002; 54:459-76). One approach for coupling water soluble polymers to therapeutic proteins is the conjugation of the polymers via the carbohydrate moieties of the protein. Vicinal hydroxyl (OH) groups of carbohydrates in proteins can be easily oxidized with sodium periodate (NaIO4) to form active aldehyde groups (Rothfus et Smith, J Biol Chem 1963; 238:1402-10; van Lenten et Ashwell, J Biol Chem 1971; 246:1889-94). Subsequently the polymer can be coupled to the aldehyde groups of the carbohydrate by use of reagents containing, for example, an active hydrazide group (Wilchek M and Bayer E A, Methods Enzymol 1987; 138:429-42). A more recent technology is the use of reagents containing aminooxy groups which react with aldehydes to form oxime linkages (WO 96/40662, WO2008/025856).
  • Additional examples describing conjugation of a water soluble polymer to a therapeutic protein are described in WO 06/071801 which teaches the oxidation of carbohydrate moieties in Von Willebrand factor and subsequent coupling to PEG using hydrazide chemistry; US Publication No. 2009/0076237 which teaches the oxidation of rFVIII and subsequent coupling to PEG and other water soluble polymers (e.g. PSA, HES, dextran) using hydrazide chemistry; WO 2008/025856 which teaches oxidation of different coagulation factors, e.g. rFIX, FVIII and FVIIa and subsequent coupling to e.g., PEG, using aminooxy chemistry by forming an oxime linkage; and U.S. Pat. No. 5,621,039 which teaches the oxidation of FIX and subsequent coupling to PEG using hydrazide chemistry.
  • Recently, an improved method was described comprising mild periodate oxidation of sialic acids to generate aldehydes followed by reaction with an aminooxy group containing reagent in the presence of catalytic amounts of aniline (Dirksen A., and Dawson P E, Bioconjugate Chem. 2008; 19, 2543-8; and Zeng Y et al., Nature Methods 2009; 6:207-9). The aniline catalysis dramatically accelerates the oxime ligation, allowing the use of very low concentrations of the reagent. The use of nucelophilic catalysts are also described in Dirksen, A., et al., J Am Chem Soc., 128:15602-3 (2006); Dirksen, A., et al., Angew chem. Int Ed., 45:7581-4 (2006); Kohler, J. J., ChemBioChem., 10:2147-50 (2009); Giuseppone, N., et al., J Am Chem Soc., 127:5528-39 (2005); and Thygesen, M. B., et al., J Org Chem., 75:1752-5 (2010).
  • Although aniline catalysis can accelerate the oxime ligation allowing short reaction times and the use of low concentrations of the aminooxy reagent, aniline has toxic properties that must be considered when, for example, the conjugated therapeutic protein to form the basis of a pharmaceutical. For example, aniline has been shown to induce methemoglobinemia (Harrison, J. H., and Jollow, D. J., Molecular Pharmacology, 32(3) 423-431, 1987). Long-term dietary treatment of rats has been shown to induce tumors in the spleen (Goodman, D G., et al., J Natl Cancer Inst., 73(1):265-73, 1984). In vitro studies have also shown that aniline has the potential to induce chromosome mutations and has the potentially genotoxic activity (Bombhard E. M. et Herbold B, Critical Reviews in Toxicology 35, 783-835, 2005).
  • Considering the potentially dangerous properties of aniline and notwithstanding the methods available of conjugating water soluble polymers to therapeutic proteins, there remains a need to develop materials and methods for conjugating water soluble polymers to proteins that improves the protein's pharmacodynamic and/or pharmacokinetic properties while minimizing the costs associated with the various reagents and minimizing the health risks to the patient recipient.
  • SUMMARY OF THE INVENTION
  • The present invention provides materials and methods for conjugating polymers to proteins that improves the protein's pharmacodynamic and/or pharmacokinetic properties while minimizing the costs associated with the various reagents and the health risks to the patient recipients when the conjugation reaction is catalyzed by a nucleophilic catalyst. In various embodiments of the invention, alternative catalysts to substitute for aniline are provided.
  • In one embodiment, a method of conjugating a water soluble polymer to an oxidized carbohydrate moiety of a therapeutic protein is provided comprising contacting the oxidized carbohydrate moiety with an activated water soluble polymer under conditions that allow conjugation; said water soluble polymer containing an active aminooxy group and is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC); and said carbohydrate moiety oxidized by incubation with a buffer comprising an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); wherein an oxime linkage is formed between the oxidized carbohydrate moiety and the active aminooxy group on the water soluble polymer; and wherein said oxime linkage formation is catalyzed by a nucleophilic catalyst selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • In another embodiment, a method of conjugating a water soluble polymer to an oxidized carbohydrate moiety of a therapeutic protein is provided comprising contacting the oxidized carbohydrate moiety with an activated water soluble polymer under conditions that allow conjugation; said therapeutic protein selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF), ADAMTS 13 protease, IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, IFN-gamma, IFN-omega, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-31, IL-32 alpha, IL-33, thrombopoietin (TPO), Ang-1, Ang-2, Ang-4, Ang-Y, angiopoietin-like polypeptide 1 (ANGPTL1), angiopoietin-like polypeptide 2 (ANGPTL2), angiopoietin-like polypeptide 3 (ANGPTL3), angiopoietin-like polypeptide 4 (ANGPTL4), angiopoietin-like polypeptide 5 (ANGPTL5), angiopoietin-like polypeptide 6 (ANGPTL6), angiopoietin-like polypeptide 7 (ANGPTL7), vitronectin, vascular endothelial growth factor (VEGF), angiogenin, activin A, activin B, activin C, bone morphogenic protein-1, bone morphogenic protein-2, bone morphogenic protein-3, bone morphogenic protein-4, bone morphogenic protein-5, bone morphogenic protein-6, bone morphogenic protein-7, bone morphogenic protein-8, bone morphogenic protein-9, bone morphogenic protein-10, bone morphogenic protein-11, bone morphogenic protein-12, bone morphogenic protein-13, bone morphogenic protein-14, bone morphogenic protein-15, bone morphogenic protein receptor IA, bone morphogenic protein receptor IB, bone morphogenic protein receptor II, brain derived neurotrophic factor, cardiotrophin-1, ciliary neutrophic factor, ciliary neutrophic factor receptor, cripto, cryptic, cytokine-induced neutrophil chemotactic factor 1, cytokine-induced neutrophil, chemotactic factor 2α, cytokine-induced neutrophil chemotactic factor 2β,β endothelial cell growth factor, endothelin 1, epidermal growth factor, epigen, epiregulin, epithelial-derived neutrophil attractant, fibroblast growth factor 4, fibroblast growth factor 5, fibroblast growth factor 6, fibroblast growth factor 7, fibroblast growth factor 8, fibroblast growth factor 8b, fibroblast growth factor 8c, fibroblast growth factor 9, fibroblast growth factor 10, fibroblast growth factor 11, fibroblast growth factor 12, fibroblast growth factor 13, fibroblast growth factor 16, fibroblast growth factor 17, fibroblast growth factor 19, fibroblast growth factor 20, fibroblast growth factor 21, fibroblast growth factor acidic, fibroblast growth factor basic, glial cell line-derived neutrophic factor receptor α1, glial cell line-derived neutrophic factor receptor α2, growth related protein, growth related protein α, growth related protein β, growth related protein γ, heparin binding epidermal growth factor, hepatocyte growth factor, hepatocyte growth factor receptor, hepatoma-derived growth factor, insulin-like growth factor I, insulin-like growth factor receptor, insulin-like growth factor II, insulin-like growth factor binding protein, keratinocyte growth factor, leukemia inhibitory factor, leukemia inhibitory factor receptor α, nerve growth factor nerve growth factor receptor, neuropoietin, neurotrophin-3, neurotrophin-4, oncostatin M (OSM), placenta growth factor, placenta growth factor 2, platelet-derived endothelial cell growth factor, platelet derived growth factor, platelet derived growth factor A chain, platelet derived growth factor AA, platelet derived growth factor AB, platelet derived growth factor B chain, platelet derived growth factor BB, platelet derived growth factor receptor α, platelet derived growth factor receptor β, pre-B cell growth stimulating factor, stem cell factor (SCF), stem cell factor receptor, TNF, TNF0, TNF1, TNF2, transforming growth factor α, transforming growth factor (3, transforming growth factor β1, transforming growth factor β1.2, transforming growth factor β2, transforming growth factor β3, transforming growth factor β5, latent transforming growth factor β1, transforming growth factor β binding protein I, transforming growth factor β binding protein II, transforming growth factor β binding protein III, thymic stromal lymphopoietin (TSLP), tumor necrosis factor receptor type I, tumor necrosis factor receptor type II, urokinase-type plasminogen activator receptor, phospholipase-activating protein (PUP), insulin, lectin ricin, prolactin, chorionic gonadotropin, follicle-stimulating hormone, thyroid-stimulating hormone, tissue plasminogen activator, IgG, IgE, IgM, IgA, and IgD, α-galactosidase, β-galactosidase, DNAse, fetuin, leutinizing hormone, estrogen, insulin, albumin, lipoproteins, fetoprotein, transferrin, thrombopoietin, urokinase, integrin, thrombin, leptin, Humira (adalimumab), Prolia (denosumab), Enbrel (etanercept), a protein in Table 1, or a biologically active fragment, derivative or variant thereof; said water soluble polymer containing an active aminooxy group and is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC); and said carbohydrate moiety oxidized by incubation with a buffer comprising an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); wherein an oxime linkage is formed between the oxidized carbohydrate moiety and the active aminooxy group on the water soluble polymer; and wherein in said oxime linkage formation is catalyzed by a nucleophilic catalyst selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • In still another embodiment, an aforementioned method is provided wherein a solution comprising an initial concentration of the therapeutic protein between about 0.3 mg/ml and about 3.0 mg/ml is adjusted to a pH value between about 5.0 and about 8.0 prior to contacting with the activated water soluble polymer.
  • As used herein, the term “about” means a value above or below a stated value. In various embodiments, the term “about” includes the stated value plus or minus 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10% of the stated value.
  • In yet another embodiment, an aforementioned method is provided wherein the initial concentration of the therapeutic protein is about 1.0 mg/ml and the pH is about 6.0. In a related embodiment, the initial concentration of the therapeutic protein is about 0.75 mg/ml and the pH is about 6.0. In still another related embodiment, the initial concentration of the therapeutic protein is about 1.25 mg/ml and the pH is about 6.0.
  • In another embodiment, an aforementioned method is provided wherein the therapeutic protein is contacted by a desired excess concentration of activated water soluble polymer, wherein the excess concentration is between about 1-molar and about 300-molar excess. In another embodiment, the excess concentration is about 50-fold molar excess.
  • In still another embodiment, an aforementioned method is provided wherein the therapeutic protein is incubated with the activated water soluble polymer under conditions comprising a time period between about 0.5 hours and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring. In another embodiment, the conditions comprise a time period of about 120 minutes, a temperature of about 22° C., the absence of light; and with stirring. As used herein, the term “stirring” is meant to include stirring at various speeds and intensities (e.g., gentle stirring) by commonly used laboratory or manufacturing equipment and products.
  • In another embodiment, an aforementioned method is provided wherein the nucleophilic catalyst is added in an amount to result in a final concentration between about 1.0 mM and about 50 mM nucleophilic catalyst, under conditions comprising a time period between about 0.1 minutes and about 30 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring. In another embodiment, the final concentration of the nucleophilic catalyst is about 10 mM, and the conditions comprise a time period of up to about 15 minutes, a temperature of about 22° C., the absence of light; and with stirring.
  • In still another embodiment, an aforementioned method is provided wherein the oxidizing agent is added in an amount to result in a final concentration between about 50 μM and about 1000 μM oxidizing agent, under conditions comprising a time period between about 0.1 minutes and 120 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring. In another embodiment, the final concentration of oxidizing agent is about 400 μM, and the conditions comprise a time period of about 10 minutes, a temperature of about 22° C., the absence of light and with stirring.
  • In yet another embodiment, an aforementioned method is provided wherein the conjugating the water soluble polymer to the oxidized carbohydrate moiety of the therapeutic protein is stopped by the addition of a quenching agent selected from the group consisting of L-cysteine, methionine, glutathione, glycerol, sodium meta bisulfate (Na2S2O5), tryptophane, tyrosine, histidine or derivatives thereof, kresol, imidazol, and combinations thereof; wherein the quenching agent is added in an amount to result in a final concentration between about 1 mM and about 100 mM quenching agent, under conditions comprising a time period between about 5 minutes and about 120 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring. In another embodiment, the quenching agent is L-cysteine. In still another embodiment, the L-cysteine is added to result in a final concentration of about 10 mM and the conditions comprise a time period of about 60 minutes, a temperature of about 22° C., the absence of light and with stirring.
  • In another embodiment, an aforementioned method is provided comprising: a) a first step comprising adjusting the pH value of a solution comprising the therapeutic protein to a pH value between about 5.0 and about 8.0, wherein the therapeutic protein concentration is between about 0.3 mg/ml and about 3.0 mg/ml; b) a second step comprising oxidizing one or more carbohydrates on the therapeutic protein, wherein the oxidizing agent is added to the solution in the first step to result in a final concentration between about 50 μM and about 1000 μM, under conditions comprising a time period between about 0.1 minutes and about 120 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring; c) a third step comprising contacting the therapeutic protein with a desired excess concentration of activated water soluble polymer, wherein the excess concentration is between about 1-molar excess and about 300-molar excess, under conditions comprising a time period between about 0.5 hours and about 24 hours, a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring; d) a fourth step comprising adding a nucleophilic catalyst to the solution of the third step, wherein the nucleophilic catalyst is added to result in a final concentration between about 1 mM and about 50 mM, under conditions comprising a time period between about 0.1 minutes and about 30 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring; e) a fifth step wherein the therapeutic protein is incubated with the activated water soluble polymer and nucleophilic catalyst under conditions that allow conjugation of the activated water-soluble polymer to one or more oxidized carbohydrates on the therapeutic protein, said conditions comprising a time period between about 0.5 hours and about 24 hours, a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring; and f) a sixth step wherein the conjugating the water soluble polymer to the one or more oxidized carbohydrates of the therapeutic protein in the fifth step is stopped by the addition of a quenching agent selected from the group consisting of L-cysteine, methionine, glutathione, glycerol, Na2S205 (sodium meta bisulfite), tryptophane, tyrosine, histidine or derivatives thereof, kresol, imidazol, and combinations thereof; wherein the quenching agent is added to result in a final concentration of about 1 mM and about 100 mM, under conditions comprising a time period between about 5 minutes and about 120 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring. In another embodiment, the initial concentration of the therapeutic protein in the first step is about 1 mg/ml and the pH is about 6.0; wherein the final concentration of oxidizing agent in the second step is about 400 μM, and the conditions in the fifth step comprise a time period of about 10 minutes, a temperature of about 22° C., the absence of light and with stirring; wherein the excess concentration in the third step is about 50 molar excess; wherein the conditions in the third step comprise a time period of about 15 minutes, a temperature of about 22° C., the absence of light and with stirring; wherein the final concentration of the nucleophilic catalyst in the fourth step is about 10 mM, and the conditions in the fourth step comprise a time period of about 15 minutes, a temperature of about 22° C., the absence of light and with stirring; wherein the conditions of incubating the therapeutic protein with the activated water soluble polymer and nucleophilic catalyst in the fifth step comprise a time period of about 2 hours; a temperature of about 22° C.; the absence of light; and with stirring; and wherein the quenching agent in the sixth step is L-cysteine; and wherein the L-cysteine is added to result in a final concentration of about 10 mM and the conditions in the sixth step comprise a time period of about 60 minutes, a temperature of about 22° C., the absence of light and with stirring.
  • In another embodiment, an aforementioned method is provided wherein the water soluble polymer is PSA. In another embodiment the PSA is comprised of about 10-300 sialic acid units. In another embodiment, the water soluble polymer is PEG. In another embodiment, the water soluble polymer is HES. In still another embodiment, the water soluble polymer is HAS.
  • In still another embodiment, an aforementioned method is provided wherein the therapeutic protein is FIX. In another embodiment, the therapeutic protein is FVIIa. In another embodiment, the therapeutic protein is FVIII.
  • In yet another embodiment, an aforementioned method is provided wherein the oxidizing agent is sodium periodate (NaIO4).
  • In another embodiment, an aforementioned method is provided wherein the oxidized carbohydrate moiety of the therapeutic protein is located in the activation peptide of the blood coagulation protein.
  • In one embodiment, an aforementioned method is provided wherein PSA is prepared by reacting an activated aminooxy linker with oxidized PSA; wherein the aminooxy linker is selected from the group consisting of:
      • a) a 3-oxa-pentane-1,5-dioxyamine linker of the formula:
  • Figure US20200017543A1-20200116-C00001
      • b) a 3,6,9-trioxa-undecane-1,11-dioxyamine linker of the formula:
  • Figure US20200017543A1-20200116-C00002
  • and
      • c) a 3,6,9,12,15-penatoxa-heptadecane-1,17-dioxyamine linker of the formula:
  • Figure US20200017543A1-20200116-C00003
  • wherein the PSA is oxidized by incubation with a oxidizing agent to form a terminal aldehyde group at the non-reducing end of the PSA. In a related embodiment, the aminooxy linker is 3-oxa-pentane-1,5-dioxyamine.
  • In still another embodiment, an aforementioned method is provided wherein the oxidizing agent is NaIO4.
  • In another embodiment, an aforementioned method is provided wherein the nucleophilic catalyst is provided at a concentration between about 1 mM and about 50 mM. In one embodiment, the nucleophilic catalyst is m-toluidine. In still another embodiment, the m-toluidine is present in the conjugation reaction at a concentration of about 10 mM.
  • In yet another embodiment, an aforementioned method is provided further comprising the step of reducing an oxime linkage in the conjugated therapeutic protein by incubating the conjugated therapeutic protein in a buffer comprising a reducing compound selected from the group consisting of sodium cyanoborohydride (NaCNBH3), ascorbic acid (vitamin C) and NaBH3. In one embodiment, the reducing compound is sodium cyanoborohydride (NaCNBH3).
  • In still another embodiment, an aforementioned method is provided further comprising the step of purifying the conjugated therapeutic protein. In another embodiment, the conjugated therapeutic protein is purified by a method selected from the group consisting of chromatography, filtration and precipitation. In another embodiment, the chromatography is selected from the group consisting of Hydrophobic Interaction Chromatography (HIC), Ion Exchange chromatography (IEC), Size exclusion chromatography (SEC), Affinity chromatography, and Reversed-phase chromatography. In still another embodiment, an anti-chaotropic salt is used in a chromotagraphy loading step and in a chromatography washing step. In yet another embodiment, the chromatography takes place in a column. In another embodiment, the column comprises a chromatography resin selected from the group consisting of Phenyl-Sepharose FF and Butyl-Sepharose FF. In another embodiment, the resin is present in the column at a bed height of between about 5 cm and about 20 cm. In one embodiment, the bed height is about 10 cm.
  • In another embodiment, an aforementioned method is provided comprising one or more washing steps wherein flow direction is set to up-flow and wherein the flow rate is between about 0.2 cm/min and about 6.7 cm/min. As used herein, the term “down-flow” refers to a flow direction from the top of the chromatographic column to the bottom of the chromatographic column (normal flow direction/standard mode). As used herein, the term “up-flow” refers to a flow direction from the bottom to the top of the column (reversed flow direction). In one embodiment, the flow rate is about 2 cm/min.
  • In another embodiment, an aforementioned method is provided comprising one or more elution steps wherein flow direction is set to down-flow and wherein the flow rate is between about 0.1 cm/min and about 6.7 cm/min. In a related embodiment, the flow rate is about 1 cm/min.
  • In still another embodiment, an aforementioned method is provided comprising concentrating the conjugated therapeutic protein by ultra-/diafiltration (UF/DF). In another embodiment, the final concentration of therapeutic protein is between about 0.5 and about 3 mg/ml.
  • In another embodiment, an aforementioned method is provided wherein the therapeutic protein comprises between about 5 and about 11 water-soluble polymer moieties. In another embodiment, the therapeutic protein comprises between about 1 and about 3 water-soluble polymers.
  • In still another embodiment, an aforementioned method is provided wherein the conjugated therapeutic protein is purified using chromatography; wherein an anti-chaotropic salt is used for a loading step and for a washing step; the method comprising one or more washing steps wherein flow direction is set to up-flow and wherein the flow rate is between about 0.2 cm/min and about 6.7 cm/min and one or more elution steps wherein flow direction is set to down-flow and wherein the flow rate is between about 0.2 cm/min andabout 6.7 cm/min; further comprising concentrating the conjugated therapeutic protein by ultra-/diafiltration (UF/DF). In another embodiment, the chromatography is hydrophobic interaction chromatography (HIC); wherein the one or more washing steps flow rate is about 2 cm/min; and wherein the one or more elution steps flow rate is about 1 cm/min.
  • In another embodiment, a modified therapeutic protein produced by any of the aforementioned methods is provided.
  • In still another embodiment, a method of forming an oxime linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active aminooxy group is provided comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming an oxime linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an active aminooxy group in the presence of a nuclephilic catalyst under conditions allowing formation of said oxime linkage; wherein said water soluble polymer containing an active aminooxy group is selected from the group consisting polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC); wherein the nucleophilic catalyst is selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • In yet another embodiment, a method of forming an oxime linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active aminooxy group is provided comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidinzing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming an oxime linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an an active aminooxy group in the presence of a nuclephilic catalyst under conditions allowing formation of said oxime linkage; wherein the therapeutic protein is selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF), ADAMTS 13 protease, IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, IFN-gamma, IFN-omega, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-31, IL-32 alpha, IL-33, thrombopoietin (TPO), Ang-1, Ang-2, Ang-4, Ang-Y, angiopoietin-like polypeptide 1 (ANGPTL1), angiopoietin-like polypeptide 2 (ANGPTL2), angiopoietin-like polypeptide 3 (ANGPTL3), angiopoietin-like polypeptide 4 (ANGPTL4), angiopoietin-like polypeptide 5 (ANGPTL5), angiopoietin-like polypeptide 6 (ANGPTL6), angiopoietin-like polypeptide 7 (ANGPTL7), vitronectin, vascular endothelial growth factor (VEGF), angiogenin, activin A, activin B, activin C, bone morphogenic protein-1, bone morphogenic protein-2, bone morphogenic protein-3, bone morphogenic protein-4, bone morphogenic protein-5, bone morphogenic protein-6, bone morphogenic protein-7, bone morphogenic protein-8, bone morphogenic protein-9, bone morphogenic protein-10, bone morphogenic protein-11, bone morphogenic protein-12, bone morphogenic protein-13, bone morphogenic protein-14, bone morphogenic protein-15, bone morphogenic protein receptor IA, bone morphogenic protein receptor IB, bone morphogenic protein receptor II, brain derived neurotrophic factor, cardiotrophin-1, ciliary neutrophic factor, ciliary neutrophic factor receptor, cripto, cryptic, cytokine-induced neutrophil chemotactic factor 1, cytokine-induced neutrophil, chemotactic factor 2a, cytokine-induced neutrophil chemotactic factor 2β,β endothelial cell growth factor, endothelin 1, epidermal growth factor, epigen, epiregulin, epithelial-derived neutrophil attractant, fibroblast growth factor 4, fibroblast growth factor 5, fibroblast growth factor 6, fibroblast growth factor 7, fibroblast growth factor 8, fibroblast growth factor 8b, fibroblast growth factor 8c, fibroblast growth factor 9, fibroblast growth factor 10, fibroblast growth factor 11, fibroblast growth factor 12, fibroblast growth factor 13, fibroblast growth factor 16, fibroblast growth factor 17, fibroblast growth factor 19, fibroblast growth factor 20, fibroblast growth factor 21, fibroblast growth factor acidic, fibroblast growth factor basic, glial cell line-derived neutrophic factor receptor α1, glial cell line-derived neutrophic factor receptor α2, growth related protein, growth related protein α, growth related protein β, growth related protein γ, heparin binding epidermal growth factor, hepatocyte growth factor, hepatocyte growth factor receptor, hepatoma-derived growth factor, insulin-like growth factor I, insulin-like growth factor receptor, insulin-like growth factor II, insulin-like growth factor binding protein, keratinocyte growth factor, leukemia inhibitory factor, leukemia inhibitory factor receptor α, nerve growth factor nerve growth factor receptor, neuropoietin, neurotrophin-3, neurotrophin-4, oncostatin M (OSM), placenta growth factor, placenta growth factor 2, platelet-derived endothelial cell growth factor, platelet derived growth factor, platelet derived growth factor A chain, platelet derived growth factor AA, platelet derived growth factor AB, platelet derived growth factor B chain, platelet derived growth factor BB, platelet derived growth factor receptor α, platelet derived growth factor receptor β, pre-B cell growth stimulating factor, stem cell factor (SCF), stem cell factor receptor, TNF, TNF0, TNF1, TNF2, transforming growth factor α, transforming growth factor β, transforming growth factor β1, transforming growth factor β1.2, transforming growth factor β2, transforming growth factor β3, transforming growth factor β5, latent transforming growth factor β1, transforming growth factor β binding protein I, transforming growth factor β binding protein II, transforming growth factor β binding protein III, thymic stromal lymphopoietin (TSLP), tumor necrosis factor receptor type I, tumor necrosis factor receptor type II, urokinase-type plasminogen activator receptor, phospholipase-activating protein (PUP), insulin, lectin ricin, prolactin, chorionic gonadotropin, follicle-stimulating hormone, thyroid-stimulating hormone, tissue plasminogen activator, IgG, IgE, IgM, IgA, and IgD, α-galactosidase, β-galactosidase, DNAse, fetuin, leutinizing hormone, estrogen, insulin, albumin, lipoproteins, fetoprotein, transferrin, thrombopoietin, urokinase, integrin, thrombin, leptin, Humira (adalimumab), Prolia (denosumab), Enbrel (etanercept), a protein from Table 1, or a biologically active fragment, derivative or variant thereof; wherein said water soluble polymer containing an active aminooxy group is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC); wherein the nucleophilic catalyst is selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • In yet another embodiment, a method of forming a hydrazone linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active hydrazide group is provided comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidinzing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming a hydrazone linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an an active hydrazide group in the presence of a nuclephilic catalyst under conditions allowing formation of said hydrazone linkage; wherein said water soluble polymer containing an active hydrazide group is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC); wherein the nucleophilic catalyst is selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • In another embodiment, a method of forming a hydrazone linkage between an oxidized carbohydrate moiety on a therapeutic protein and an activated water soluble polymer containing an active hydrazide group comprising the steps of: a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidinzing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and b) forming a hydrazone linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an an active hydrazide group in the presence of a nuclephilic catalyst under conditions allowing formation of said hydrazone linkage; wherein the therapeutic protein is selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF), ADAMTS 13 protease, IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, IFN-gamma, IFN-omega, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-31, IL-32 alpha, IL-33, thrombopoietin (TPO), Ang-1, Ang-2, Ang-4, Ang-Y, angiopoietin-like polypeptide 1 (ANGPTL1), angiopoietin-like polypeptide 2 (ANGPTL2), angiopoietin-like polypeptide 3 (ANGPTL3), angiopoietin-like polypeptide 4 (ANGPTL4), angiopoietin-like polypeptide 5 (ANGPTL5), angiopoietin-like polypeptide 6 (ANGPTL6), angiopoietin-like polypeptide 7 (ANGPTL7), vitronectin, vascular endothelial growth factor (VEGF), angiogenin, activin A, activin B, activin C, bone morphogenic protein-1, bone morphogenic protein-2, bone morphogenic protein-3, bone morphogenic protein-4, bone morphogenic protein-5, bone morphogenic protein-6, bone morphogenic protein-7, bone morphogenic protein-8, bone morphogenic protein-9, bone morphogenic protein-10, bone morphogenic protein-11, bone morphogenic protein-12, bone morphogenic protein-13, bone morphogenic protein-14, bone morphogenic protein-15, bone morphogenic protein receptor IA, bone morphogenic protein receptor IB, bone morphogenic protein receptor II, brain derived neurotrophic factor, cardiotrophin-1, ciliary neutrophic factor, ciliary neutrophic factor receptor, cripto, cryptic, cytokine-induced neutrophil chemotactic factor 1, cytokine-induced neutrophil, chemotactic factor 2a, cytokine-induced neutrophil chemotactic factor 2β,β endothelial cell growth factor, endothelin 1, epidermal growth factor, epigen, epiregulin, epithelial-derived neutrophil attractant, fibroblast growth factor 4, fibroblast growth factor 5, fibroblast growth factor 6, fibroblast growth factor 7, fibroblast growth factor 8, fibroblast growth factor 8b, fibroblast growth factor 8c, fibroblast growth factor 9, fibroblast growth factor 10, fibroblast growth factor 11, fibroblast growth factor 12, fibroblast growth factor 13, fibroblast growth factor 16, fibroblast growth factor 17, fibroblast growth factor 19, fibroblast growth factor 20, fibroblast growth factor 21, fibroblast growth factor acidic, fibroblast growth factor basic, glial cell line-derived neutrophic factor receptor α1, glial cell line-derived neutrophic factor receptor α2, growth related protein, growth related protein α, growth related protein β, growth related protein γ, heparin binding epidermal growth factor, hepatocyte growth factor, hepatocyte growth factor receptor, hepatoma-derived growth factor, insulin-like growth factor I, insulin-like growth factor receptor, insulin-like growth factor II, insulin-like growth factor binding protein, keratinocyte growth factor, leukemia inhibitory factor, leukemia inhibitory factor receptor α, nerve growth factor nerve growth factor receptor, neuropoietin, neurotrophin-3, neurotrophin-4, oncostatin M (OSM), placenta growth factor, placenta growth factor 2, platelet-derived endothelial cell growth factor, platelet derived growth factor, platelet derived growth factor A chain, platelet derived growth factor AA, platelet derived growth factor AB, platelet derived growth factor B chain, platelet derived growth factor BB, platelet derived growth factor receptor α, platelet derived growth factor receptor β, pre-B cell growth stimulating factor, stem cell factor (SCF), stem cell factor receptor, TNF, TNF0, TNF1, TNF2, transforming growth factor α, transforming growth factor β, transforming growth factor β1, transforming growth factor β1.2, transforming growth factor β2, transforming growth factor β3, transforming growth factor β5, latent transforming growth factor β1, transforming growth factor β binding protein I, transforming growth factor β binding protein II, transforming growth factor β binding protein III, thymic stromal lymphopoietin (TSLP), tumor necrosis factor receptor type I, tumor necrosis factor receptor type II, urokinase-type plasminogen activator receptor, phospholipase-activating protein (PUP), insulin, lectin ricin, prolactin, chorionic gonadotropin, follicle-stimulating hormone, thyroid-stimulating hormone, tissue plasminogen activator, IgG, IgE, IgM, IgA, and IgD, α-galactosidase, β-galactosidase, DNAse, fetuin, leutinizing hormone, estrogen, insulin, albumin, lipoproteins, fetoprotein, transferrin, thrombopoietin, urokinase, integrin, thrombin, leptin, Humira (adalimumab), Prolia (denosumab), Enbrel (etanercept), a protein from Table 1, or a biologically active fragment, derivative or variant thereof; wherein said water soluble polymer containing an active hydrazide group is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC); wherein the nucleophilic catalyst is selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • In another embodiment, an aforementioned method is provided wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring; thereby forming a water soluble polymer containing an active aminooxy group; and b) purifying the water soluble polymer containing an active aminooxy group by a method selected from the group consisting of chromatography, filtration and precipitation. The term “activated water-soluble polymer” refers, in one embodiment, to a water-soluble polymer containing an aldehyde group.
  • In yet another embodiment, an aforementioned method is provided wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: a) incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring; thereby forming a water soluble polymer containing an active aminooxy group; b) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step a) with a reducing agent under conditions that allow the formation of a stable alkoxamine linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring; and c) purifying the water soluble polymer containing an active aminooxy group by a method selected from the group consisting of chromatography, filtration and precipitation.
  • In still another embodiment, an aforementioned method is provided wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: a) incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring; thereby forming a water soluble polymer containing an active aminooxy group; b) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step a) with a nucleophilic catalyst under conditions comprising a time period between 1 minute and 24 hours; a temperature between 2° C. and 37° C.; in the presence or absence of light; and with or without stirring; and c) purifying the water soluble polymer containing an active aminooxy group by a method selected from the group consisting of chromatography, filtration and precipitation.
  • In yet another embodiment, an aforementioned method is provided wherein the water soluble polymer containing an active aminooxy group is prepared by a method comprising: a) incubating a solution comprising an oxidized water-soluble polymer with an activated aminooxy linker comprising an active aminooxy group under conditions that allow the formation of a stable oxime linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light, and with or without stirring; thereby forming a water soluble polymer containing an active aminooxy group; b) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step a) with a nucleophilic catalyst under conditions comprising a time period between 1 minute and 24 hours; a temperature between 2° C. and 37° C.; in the presence or absence of light; and with or without stirring; c) incubating a solution comprising the water soluble polymer containing an active aminooxy group of step b) with a reducing agent under conditions that allow the formation of a stable alkoxamine linkage between the oxidized water-soluble polymer and the activated aminooxy linker, said conditions comprising a time period between about 1 minute and about 24 hours; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring; and d) purifying the water soluble polymer containing an active aminooxy group by a method selected from the group consisting of chromatography, filtration and precipitation.
  • In another embodiment, an aforementioned method is provided wherein the oxidized water soluble polymer is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC), and wherein said water-soluble polymer is oxidized by incubation with a oxidizing agent to form a terminal aldehyde group at the non-reducing end of the water-soluble polymer. In one embodiment, the water-soluble polymer is PSA.
  • In another embodiment, an aforementioned method is provided wherein the oxidizing agent is NaIO4.
  • In still another embodiment, an aforementioned method is provided wherein the aminooxy linker is selected from the group consisting of:
      • a) a 3-oxa-pentane-1,5-dioxyamine linker of the formula:
  • Figure US20200017543A1-20200116-C00004
      • b) a 3,6,9-trioxa-undecane-1,11-dioxyamine linker of the formula:
  • Figure US20200017543A1-20200116-C00005
  • and
      • c) a 3,6,9,12,15-penatoxa-heptadecane-1,17-dioxyamine linker of the formula:
  • Figure US20200017543A1-20200116-C00006
  • In yet another embodiment, an aforementioned method is provided wherein the reducing agent is selected from the group consisting of sodium cyanoborohydride (NaCNBH3), ascorbic acid (vitamin C) and NaBH3. In one embodiment, the reducing agent is sodium cyanoborohydride (NaCNBH3).
  • In another embodiment, an aforementioned method is provided wherein the nucleophilic catalyst is selected from the group consisting of o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine. In one embodiment, the nucleophilic catalyst is m-toluidine. In another embodiment, the nucleophilic catalyst is added in an amount to result in a final concentration between about 1.0 mM and about 50 mM nucleophilic catalyst.
  • In another embodiment, an aforementioned method is provided further comprising concentrating the conjugated therapeutic protein by ultra-/diafiltration (UF/DF).
  • In another embodiment, a method of conjugating a water soluble polymer to an oxidized carbohydrate moiety of a blood coagulation protein is provided comprising contacting the oxidized carbohydrate moiety with an activated water soluble polymer under conditions that allow conjugation;
  • said blood coagulation protein selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease or a biologically active fragment, derivative or variant thereof;
  • said water soluble polymer containing an active aminooxy group and is selected from the group consisting of polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC); and
  • said carbohydrate moiety oxidized by incubation with a buffer comprising an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); wherein an oxime linkage is formed between the oxidized carbohydrate moiety and the active aminooxy group on the water soluble polymer.
  • FIGURES
  • FIG. 1 shows the primary structure of coagulation Factor IX (SEQ ID NO: 1).
  • FIG. 2 shows the coupling of oxidized rFIX to aminooxy-PSA.
  • FIG. 3 shows the synthesis of the water soluble di-aminoxy linkers 3-oxa-pentane-1,5-dioxyamine and 3,6,9-trioxa-undecane-1,11-dioxyamine.
  • FIG. 4 shows the preparation of aminooxy-PSA.
  • FIG. 5 shows the visualization of PSA-FIX conjugates prepared in the presence of different catalysts by SDS PAGE. a) Comparison of aniline with m-toluidine using different concentrations; b) Comparison of aniline with o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, p-aminobenzamide and sulfanilic acid; c) Comparison of aniline and m-toluidine with o-anisidine and m-anisidine.
  • FIG. 6 shows percent of polysialylation with various nucleophilic catalysts.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The pharmacological and immunological properties of therapeutic proteins can be improved by chemical modification and conjugation with polymeric compounds such as polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC). The properties of the resulting conjugates generally strongly depend on the structure and the size of the polymer. Thus, polymers with a defined and narrow size distribution are usually preferred in the art. Synthetic polymers like PEG can be manufactured easily with a narrow size distribution, while PSA can be purified in such a manner that results in a final PSA preparation with a narrow size distribution. In addition PEGylation reagents with defined polymer chains and narrow size distribution are on the market and commercially available for a reasonable price.
  • The addition of a soluble polymer, such as through polysialylation, is one approach to improve the properties of therapeutic proteins such as the blood coagulation protein FIX, as well as other coagulation proteins (e.g., VWF, FVIIa (see, e.g., US 2008/0221032A1, incorporated herein by reference) and FVIII).
  • Therapeutic Proteins
  • In certain embodiments of the invention, the aforementioned polypeptides and polynucleotides are exemplified by the following therapeutic proteins: enzymes, antigens, antibodies, receptors, blood coagulation proteins, growth factors, hormones, and ligands. In certain embodiments, the therapeutic protein is a blood coagulation protein such as Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) or ADAMTS 13 protease. In one embodiment, a therapeutic protein according to the invention is a glycoprotein or, in various embodiments, a protein that is not naturally glycosylated in vivo (i.e., a protein that does not contain a natural glycosylation site or a protein that is not glycosylated in a host cell prior to purification).
  • In certain embodiments, the therapeutic protein is immunoglobulins, cytokines such IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, IFN-gamma, IFN-omega, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-31, IL-32 alpha, IL-33, thrombopoietin (TPO), angiopoietins, for example Ang-1, Ang-2, Ang-4, Ang-Y, the human angiopoietin-like polypeptides ANGPTL1 through 7, vitronectin, vascular endothelial growth factor (VEGF), angiogenin, activin A, activin B, activin C, bone morphogenic protein-1, bone morphogenic protein-2, bone morphogenic protein-3, bone morphogenic protein-4, bone morphogenic protein-5, bone morphogenic protein-6, bone morphogenic protein-7, bone morphogenic protein-8, bone morphogenic protein-9, bone morphogenic protein-10, bone morphogenic protein-11, bone morphogenic protein-12, bone morphogenic protein-13, bone morphogenic protein-14, bone morphogenic protein-15, bone morphogenic protein receptor IA, bone morphogenic protein receptor IB, bone morphogenic protein receptor II, brain derived neurotrophic factor, cardiotrophin-1, ciliary neutrophic factor, ciliary neutrophic factor receptor, cripto, cryptic, cytokine-induced neutrophil chemotactic factor 1, cytokine-induced neutrophil, chemotactic factor 2a, cytokine-induced neutrophil chemotactic factor 2β,β endothelial cell growth factor, endothelin 1, epidermal growth factor, epigen, epiregulin, epithelial-derived neutrophil attractant, fibroblast growth factor 4, fibroblast growth factor 5, fibroblast growth factor 6, fibroblast growth factor 7, fibroblast growth factor 8, fibroblast growth factor 8b, fibroblast growth factor 8c, fibroblast growth factor 9, fibroblast growth factor 10, fibroblast growth factor 11, fibroblast growth factor 12, fibroblast growth factor 13, fibroblast growth factor 16, fibroblast growth factor 17, fibroblast growth factor 19, fibroblast growth factor 20, fibroblast growth factor 21, fibroblast growth factor acidic, fibroblast growth factor basic, glial cell line-derived neutrophic factor receptor α1, glial cell line-derived neutrophic factor receptor α2, growth related protein, growth related protein α, growth related protein β, growth related protein γ, heparin binding epidermal growth factor, hepatocyte growth factor, hepatocyte growth factor receptor, hepatoma-derived growth factor, insulin-like growth factor I, insulin-like growth factor receptor, insulin-like growth factor II, insulin-like growth factor binding protein, keratinocyte growth factor, leukemia inhibitory factor, leukemia inhibitory factor receptor α, nerve growth factor nerve growth factor receptor, neuropoietin, neurotrophin-3, neurotrophin-4, oncostatin M (OSM), placenta growth factor, placenta growth factor 2, platelet-derived endothelial cell growth factor, platelet derived growth factor, platelet derived growth factor A chain, platelet derived growth factor AA, platelet derived growth factor AB, platelet derived growth factor B chain, platelet derived growth factor BB, platelet derived growth factor receptor α, platelet derived growth factor receptor 13, pre-B cell growth stimulating factor, stem cell factor (SCF), stem cell factor receptor, TNF, including TNF0, TNF1, TNF2, transforming growth factor α, transforming growth factor 13, transforming growth factor 131, transforming growth factor 131.2, transforming growth factor β2, transforming growth factor β3, transforming growth factor β5, latent transforming growth factor β1, transforming growth factor β binding protein I, transforming growth factor β binding protein II, transforming growth factor β binding protein III, thymic stromal lymphopoietin (TSLP), tumor necrosis factor receptor type I, tumor necrosis factor receptor type II, urokinase-type plasminogen activator receptor, vascular endothelial growth factor, and chimeric proteins and biologically or immunologically active fragments thereof.
  • In certain embodiments, the therapeutic protin is alpha-, beta-, and gamma-interferons, colony stimulating factors including granulocyte colony stimulating factors, fibroblast growth factors, platelet derived growth factors, phospholipase-activating protein (PUP), insulin, plant proteins such as lectins and ricins, tumor necrosis factors and related alleles, soluble forms of tumor necrosis factor receptors, interleukin receptors and soluble forms of interleukin receptors, growth factors such as tissue growth factors, such as TGFαs or TGFβs and epidermal growth factors, hormones, somatomedins, pigmentary hormones, hypothalamic releasing factors, antidiuretic hormones, prolactin, chorionic gonadotropin, follicle-stimulating hormone, thyroid-stimulating hormone, tissue plasminogen activator, and immunoglobulins such as IgG, IgE, IgM, IgA, and IgD, a galactosidase, α-galactosidase, β-galactosidase, DNAse, fetuin, leutinizing hormone, estrogen, corticosteroids, insulin, albumin, lipoproteins, fetoprotein, transferrin, thrombopoietin, urokinase, DNase, integrins, thrombin, hematopoietic growth actors, leptin, glycosidases, Humira (adalimumab), Prolia (denosumab), Enbrel (etanercept), and fragments thereof, or any fusion proteins comprising any of the above mentioned proteins or fragments thereof. In addition to the aforementioned proteins, the following Table 1 provides therapeutic proteins contemplated by the present invention:
  • TABLE 1
    Follicular dendritic cell secreted peptide Angiotensin-converting enzyme
    Dermokine Antithrombin-III
    Secreted frizzled-related protein 1 Apolipoprotein B-100
    Ectodysplasin-A Apolipoprotein D
    Secreted frizzled-related protein 2 Apolipoprotein E
    Resistin Beta-1,4-galactosyltransferase 1
    Osteopontin Bone morphogenetic protein 7
    Secreted frizzled-related protein 5 Complement C1q subcomponent subunit B
    Secreted frizzled-related protein 4 C4b-binding protein alpha chain
    Secreted phosphoprotein 24 Calreticulin
    Glypican-6 Corticosteroid-binding globulin
    Secreted frizzled-related protein 3 Carboxypeptidase A1
    C-C motif chemokine 4 Carboxypeptidase A2
    Melanocyte protein Pmel 17 Eotaxin
    Secreted Ly-6/uPAR-related protein 1 C-C motif chemokine 13
    Beta-microseminoprotein C-C motif chemokine 18
    Glypican-4 C-C motif chemokine 20
    Tumor necrosis factor ligand superfamily Triggering receptor expressed on myeloid
    member 15 cells 2
    Resistin-like beta C-C motif chemokine 2
    Tumor necrosis factor ligand superfamily Transforming growth factor-beta-induced
    member 12 protein ig-h3
    SPARC CD40 ligand
    Glypican-5 Corneodesmosin
    Anterior gradient protein 2 homolog Complement factor D
    Protein canopy homolog 2 Chromogranin-A
    Glypican-1 Collagen alpha-1(I) chain
    von Willebrand factor A domain-containing Disintegrin and metalloproteinase domain-
    protein 2 containing protein 18
    WNT1-inducible-signaling pathway Cysteine-rich secretory protein LCCL
    protein 1 domain-containing 1
    C-C motif chemokine 1 Collagen alpha-4(IV) chain
    SPARC-related modular calcium-binding Keratinocyte differentiation-associated
    protein 2 protein
    C-type lectin domain family 11 member A Complement C4-B
    Secreted Ly-6/uPAR-related protein 2 Collagen alpha-2(V) chain
    Glypican-3 Complement C5
    Secreted and transmembrane protein 1 Collagen alpha-1(VII) chain
    Testis-expressed sequence 264 protein Complement component C7
    Glypican-2 Complement component C8 beta chain
    Serine protease 23 Complement component C8 gamma chain
    39S ribosomal protein L55, mitochondrial Collagen alpha-1(XV) chain
    Protein NipSnap homolog 3A Collagen alpha-1(XVI) chain
    Fibronectin Collagen alpha-1(XVIII) chain
    Neudesin Collagen alpha-1(XIX) chain
    Fibroblast growth factor receptor 2 Cartilage oligomeric matrix protein
    Carbonic anhydrase 6 C-reactive protein
    Deleted in malignant brain tumors 1 protein Granulocyte colony-stimulating factor
    SPARC-related modular calcium-binding Granulocyte-macrophage colony-
    protein 1 stimulating factor
    Amyloid beta A4 protein Protein CYR61
    Tumor necrosis factor receptor superfamily Complement component receptor 1-like
    member 6 protein
    Gamma-aminobutyric acid type B receptor Stem cell growth factor; lymphocyte
    subunit 1 secreted C-type lectin
    Pro-neuregulin-1, membrane-bound CMP-N-acetylneuraminate-beta-
    isoform galactosamide-alpha-2,3-sialyltransferase
    Glycoprotein hormone alpha-2 Dipeptidyl peptidase 4
    Membrane metallo-endopeptidase-like 1 Dentin sialophosphoprotein
    Fc receptor-like A Endothelin-1
    C-C motif chemokine 4-like Ephrin-B1
    Epithelial discoidin domain-containing Epidermis-specific serine protease-like
    receptor 1 protein
    Mucin-1 EMILIN-1
    Vascular endothelial growth factor A Endoplasmin
    Fibulin-1 Ephrin type-A receptor 3
    Prolactin receptor Ephrin type-B receptor 6
    Proprotein convertase subtilisin/kexin Glycosyltransferase 1 domain-containing
    type 6 protein 1
    CD209 antigen Coagulation factor X
    Collagen alpha-2(XI) chain Coagulation factor VIII
    Granulocyte-macrophage colony- Complement C1q tumor necrosis factor-
    stimulating factor receptor subunit alpha related protein 7
    Elastin Fibrillin-2
    Interleukin-15 receptor subunit alpha Alpha-2-HS-glycoprotein
    Midkine Fibroblast growth factor 10
    Integrin alpha-7 Fibrinogen alpha chain
    Mucin-4 Fibrinogen beta chain
    Peptidyl-glycine alpha-amidating Long palate, lung and nasal epithelium
    monooxygenase carcinoma-associated protein 1
    Apolipoprotein A-I Gastrin
    Proteoglycan 4 Glycoprotein hormones alpha chain
    Tumor necrosis factor receptor superfamily N-acetylglucosamine-1-
    member 25 phosphotransferase subunits alpha/beta
    Attractin Granzyme A
    Prostate-associated microseminoprotein Hepatocyte growth factor-like protein
    Alpha-amylase 1 Insulin-like growth factor-binding protein 1
    Brain-derived neurotrophic factor Insulin-like growth factor-binding protein 2
    C-type lectin domain family 4 member M Insulin-like growth factor-binding protein 4
    Granulocyte colony-stimulating factor Tumor necrosis factor receptor superfamily
    receptor member 10D
    Insulin-like growth factor II Interferon alpha-1/13
    Carcinoembryonic antigen-related cell Interferon-induced helicase C domain-
    adhesion molecule 1 containing protein 1
    C-type lectin domain family 7 member A Interferon alpha-2
    CMRF35-like molecule 1 Interferon beta
    Choline transporter-like protein 4 Interferon gamma
    Pulmonary surfactant-associated protein A1 Insulin-like growth factor IB
    Spermine oxidase Indian hedgehog protein
    CMP-N-acetylneuraminate-beta-1,4- Neural cell adhesion molecule
    galactoside alpha-2,3-sialyltransferase L1-like protein
    Kallikrein-8 Interleukin-13
    Tissue-type plasminogen activator Interleukin-2
    Peroxisomal N(1)-acetyl- Chymotrypsin-like elastase family
    spermine/spermidine oxidase member 2A
    Probable palmitoyltransferase ZDHHC4 Inhibin beta A chain
    Cholesteryl ester transfer protein Pancreatic secretory trypsin inhibitor
    HLA class I histocompatibility antigen, A-2 Tumor necrosis factor receptor superfamily
    alpha chain member 21
    Collagen alpha-1(II) chain Inter-alpha-trypsin inhibitor heavy chain H1
    Pro-interleukin-16 Inter-alpha-trypsin inhibitor heavy chain H2
    Leptin receptor Inter-alpha-trypsin inhibitor heavy chain H3
    Decorin Prostate-specific antigen
    Stromal cell-derived factor 1 Kallikrein-4
    Tenascin Plasma kallikrein
    Disintegrin and metalloproteinase domain- Calcium-activated chloride channel
    containing protein 12 regulator 4
    A disintegrin and metalloproteinase with Bactericidal/permeability-increasing
    thrombospondin motifs 13 protein-like 1
    T-cell surface glycoprotein CD3 alpha chain Leptin
    EGFR-coamplified and overexpressed A disintegrin and metalloproteinase with
    protein thrombospondin motifs 4
    Autophagy-related protein 16-1 Hepatic triacylglycerol lipase
    Breast cancer anti-estrogen resistance Lymphocyte antigen 6 complex locus
    protein 3 protein G6c
    Cadherin-23 Eosinophil lysophospholipase
    Macrophage colony-stimulating factor 1 Lutropin subunit beta
    Folate receptor alpha Microfibrillar-associated protein 1
    Low-density lipoprotein receptor-related Mesencephalic astrocyte-derived
    protein 8 neurotrophic factor
    E3 ubiquitin-protein ligase LRSAM1 Matrix Gla protein
    Neural cell adhesion molecule 1 72 kDa type IV collagenase
    Neuroligin-4, X-linked Stromelysin-1
    Netrin-G1 Neutrophil collagenase
    GPI transamidase component PIG-T Mesothelin
    Kit ligand Mucin-5AC
    Seizure 6-like protein Mucin-6
    SLAM family member 7 Norrin
    Tumor necrosis factor Oxytocin-neurophysin 1
    Uromodulin Beta-nerve growth factor
    Tumor necrosis factor ligand superfamily Tumor necrosis factor ligand superfamily
    member 13 member 18
    Protein CREG1 Neurotrophin-3
    EGF-like domain-containing protein 8 Platelet-derived growth factor subunit A
    Aminoacyl tRNA synthetase complex- Phosphopantothenoylcysteine
    interacting multifunctional protein 1 decarboxylase
    ADAMTS-like protein 4 Plasminogen activator inhibitor 1
    Coagulation factor XI Plasminogen activator inhibitor 2
    Interleukin-22 receptor subunit alpha-2 Procollagen C-endopeptidase enhancer 1
    Deformed epidermal autoregulatory factor 1 Transmembrane and ubiquitin-like domain-
    homolog containing protein 2
    Prostaglandin-H2 D-isomerase Protein disulfide-isomerase
    Alpha-1-antitrypsin Pigment epithelium-derived factor
    Alpha-1-antichymotrypsin Pepsin A
    Acyl-CoA-binding protein Gastricsin
    Complement factor B Sonic hedgehog protein
    Choriogonadotropin subunit beta Peptidoglycan recognition protein I-alpha
    Versican core protein Biglycan
    Epidermal growth factor receptor Prolactin-inducible protein
    Ecto-NOX disulfide-thiol exchanger 2 Platelet factor 4
    Hyaluronidase-1 Plasminogen
    Interleukin-1 receptor antagonist protein Serum paraoxonase/arylesterase 1
    Interleukin-6 receptor subunit beta Alkaline phosphatase, placental type
    Interleukin-1 receptor-like 1 Peptidyl-prolyl cis-trans isomerase B
    Insulin Bone marrow proteoglycan
    Glycodelin Basic salivary proline-rich protein 1
    Parathyroid hormone-related protein Pulmonary surfactant-associated protein C
    Nurim Parathyroid hormone
    Prolyl 4-hydroxylase subunit alpha-2 Serum amyloid P-component
    CD276 antigen Secretogranin-1
    Cysteine-rich with EGF-like domain Basement membrane-specific heparan
    protein 1 sulfate proteoglycan core protein
    CUB and sushi domain-containing protein 1 Antileukoproteinase
    Ficolin-2 Stabilin-1
    Fc receptor-like protein 5 Extracellular superoxide dismutase [Cu—Zn]
    Protein GPR89 Somatotropin
    Junctional adhesion molecule A Serpin B5
    Leucine-rich repeat-containing protein 8A Spondin-1
    Multiple inositol polyphosphate Structural maintenance of chromosomes
    phosphatase 1 protein 3
    Neuropilin-1 Syntaxin-1A
    Plexin-A4 Tetranectin
    Plexin-B1 Transforming growth factor beta-1
    Periostin Thyroglobulin
    Protein RIC-3 Metalloproteinase inhibitor 1
    SLIT and NTRK-like protein 2 Metalloproteinase inhibitor 2
    Sulfatase-modifying factor 1 Metalloproteinase inhibitor 3
    Sulfatase-modifying factor 2 Urokinase-type plasminogen activator
    Transmembrane protease, serine 6 Lactotransferrin
    Lymphotoxin-alpha Trypsin-1
    Tumor necrosis factor receptor superfamily Submaxillary gland androgen-regulated
    member 10B protein 3B
    Urokinase plasminogen activator surface Tumor necrosis factor receptor superfamily
    receptor member 1A
    V-set domain-containing T-cell activation Vascular endothelial growth factor
    inhibitor 1 receptor 1
    Glucagon Vitamin D-binding protein
    N-acetylmuramoyl-L-alanine amidase Vitronectin
    Sulfhydryl oxidase 1 von Willebrand factor
    Dehydrogenase/reductase SDR family Lymphocyte antigen 6 complex locus
    member 4 protein G5c
    Interleukin-18-binding protein Zinc-alpha-2-glycoprotein
    Kin of IRRE-like protein 2 Uncharacterized protein C14orf93
    Myeloid-associated differentiation marker Retinoschisin
    Chordin Alpha-1,3-mannosyltransferase ALG2
    1-acyl-sn-glycerol-3-phosphate C-type lectin domain family 11, member A,
    acyltransferase gamma isoform CRA_b
    Advanced glycosylation end product- Major facilitator superfamily domain-
    specific receptor containing protein 7
    NLR family CARD domain-containing Leucine-rich repeat transmembrane
    protein 4 neuronal protein 1
    Pro-neuregulin-2, membrane-bound NADH dehydrogenase [ubiquinone] 1 beta
    isoform subcomplex subunit 11, mitochondrial
    Sperm-associated antigen 11A UPF0546 membrane protein C1orf91
    Oocyte-secreted protein 1 homolog Carbonic anhydrase-related protein 10
    Serum albumin Cholecystokinin
    Cochlin Codanin-1
    Plasma protease C1 inhibitor Uncharacterized protein C6orf89
    Interleukin-7 receptor subunit alpha Chondroitin sulfate glucuronyltransferase
    Inter-alpha-trypsin inhibitor heavy chain H5 Chitinase domain-containing protein 1
    Platelet-derived growth factor D Transmembrane protein C9orf7
    Protein S100-A7 CMRF35-like molecule 9
    Sialic acid-binding Ig-like lectin 10 Cytochrome P450 2S1
    Tubulointerstitial nephritis antigen-like Crumbs protein homolog 3
    Tumor necrosis factor ligand superfamily Dehydrogenase/reductase SDR family
    member 13B member 7
    Long-chain-fatty-acid--CoA ligase 5 Protein ENED
    Claudin-14 Complement factor H-related protein 4
    Leucine-rich repeat-containing protein 20 Leucine-rich repeat LGI family member 3
    Interleukin-1 family member 7 Gliomedin
    Lymphocyte antigen 6 complex locus Glycerophosphodiester phosphodiesterase
    protein G5b domain-containing protein 5
    Acetylcholinesterase Probable G-protein coupled receptor 113
    Amelogenin, X isoform Probable G-protein coupled receptor 114
    Angiogenin Glycerol-3-phosphate acyltransferase 4
    Anthrax toxin receptor 2 Gremlin-1
    Annexin A2 Potassium channel subfamily K member 17
    Apolipoprotein C-III KDEL motif-containing protein 2
    Apolipoprotein L1 Layilin
    Complement C1q subcomponent subunit A Leucine-rich repeat-containing protein 8B
    Complement C1q subcomponent subunit C Leucine-rich repeat-containing protein 8D
    Calcitonin Sialic acid-binding Ig-like lectin 6
    Soluble calcium-activated nucleotidase 1 Pregnancy-specific beta-1-glycoprotein 2
    C-C motif chemokine 15 Ly6/PLAUR domain-containing protein 1
    CD97 antigen ( Ly6/PLAUR domain-containing protein 5
    Contactin-4 MLN64 N-terminal domain homolog
    Complement C2 Macrophage migration inhibitory factor
    Collagen alpha-6(IV) chain 2-acylglycerol O-acyltransferase 3
    Collagen alpha-2(VI) chain Mitochondrial carrier homolog 1
    Collagen alpha-1(XI) chain Apolipoprotein L6
    Crumbs homolog 1 Protocadherin alpha-6
    Cystatin-C Protocadherin gamma-A12
    Neutrophil defensin 1 Voltage-gated hydrogen channel 1
    Endothelin-3 All-trans-retinol 13,14-reductase
    Low affinity immunoglobulin epsilon Regulator of microtubule dynamics
    Fc receptor protein 2
    Fibroblast growth factor receptor 3 R-spondin-4
    Fibroblast growth factor receptor 4 Long-chain fatty acid transport protein 3
    Growth arrest-specific protein 6 Vesicle-trafficking protein SEC22c
    Growth hormone receptor Claudin-1
    Bifunctional UDP-N-acetylglucosamine 2- Leucine-rich repeats and immunoglobulin-
    epimerase/N-acetylmannosamine kinase like domains protein 3
    Immunoglobulin superfamily member 8 SLAM family member 9
    Interleukin-4 receptor alpha chain Transthyretin
    Kallikrein-14 Serine/threonine-protein kinase 32B
    Kallikrein-6 Platelet-derived growth factor subunit B
    Laminin subunit beta-3 Noggin
    Leucyl-cystinyl aminopeptidase Tryptase alpha-1
    Mannan-binding lectin serine protease 1 Tetratricopeptide repeat protein 14
    Mannan-binding lectin serine protease 2 XTP3-transactivated gene B protein
    Neutrophil gelatinase-associated lipocalin Palmitoyltransferase ZDHHC15
    Neuropeptide Y Zona pellucida sperm-binding protein 3
    Aggrecan core protein Leucine-rich repeat-containing protein 39
    Pulmonary surfactant-associated protein B Pancreatic triacylglycerol lipase
    Poliovirus receptor-related protein 1 Transmembrane protein 139
    Renin Leukemia inhibitory factor
    Ribonuclease pancreatic Galectin-1
    Semenogelin-1 C-C motif chemokine 21
    Signaling lymphocytic activation molecule CD5 antigen-like
    Tissue factor pathway inhibitor Carbohydrate sulfotransferase 9
    Usherin Lipopolysaccharide-binding protein
    Fibroblast growth factor 23 Cysteine-rich motor neuron 1 protein
    Interleukin-23 subunit alpha Connective tissue growth factor
    Epididymal secretory protein E1 Protein eyes shut homolog
    ADAMTS-like protein 1 Mucin-like protein 1
    Chemokine-like factor Fibroblast growth factor 19
    EGF-like domain-containing protein 7 Follistatin-related protein 3
    Tectonic-1 Hedgehog-interacting protein
    Transmembrane protein 25 Interleukin-17 receptor B
    UDP-GalNAc: beta-1,3-N- FXYD domain-containing ion transport
    acetylgalactosaminyltransferase 1 regulator 5
    Interleukin-15 (IL-15) Endothelial lipase
    Multiple epidermal growth factor-like EGF-containing fibulin-like extracellular
    domains 11 matrix protein 2
    Mucin and cadherin-like protein Otoraplin
    Ribonuclease 4 Group 3 secretory phospholipase A2
    SH2 domain-containing protein 3C Group XV phospholipase A2
    CMP-N-acetylneuraminate-beta- Tumor necrosis factor ligand superfamily
    galactosamide-alpha-2,3-sialyltransferase member 14
    Transmembrane protein 9 Plexin-A2
    WAP four-disulfide core domain protein 2 Papilin
    Adenosine A3 receptor Prokineticin-1
    Gamma-secretase subunit APH-1A Ribonuclease 7
    Basigin Kunitz-type protease inhibitor 1
    Baculoviral IAP repeat-containing protein 7 Spondin-2
    Calumenin Testican-2
    Alpha-S1-casein Inactive serine protease PAMR1
    Cyclin-L1 Torsin-2A
    Complement factor H Vasohibin-1
    Chorionic somatomammotropin hormone Vasorin
    Coxsackievirus and adenovirus receptor Xylosyltransferase 1
    Ectonucleotide Ectonucleotide
    pyrophosphatase/phosphodiesterase family pyrophosphatase/phosphodiesterase family
    member 2 member 6
    ERO1-like protein alpha Oncostatin-M
    Coagulation factor IX Derlin-1
    Low affinity immunoglobulin gamma Fc HERV-FRD_6p24.1 provirus ancestral Env
    region receptor III-B polyprotein
    Ficolin-3 Prostasin
    Fc receptor-like protein 2 Transmembrane protease, serine 11E
    Leucine-rich repeat transmembrane protein HLA class I histocompatibility antigen,
    FLRT3 Cw-16 alpha chain
    Gelsolin Wnt inhibitory factor 1
    Granulysin C-type natriuretic peptide
    Transmembrane glycoprotein NMB Angiopoietin-2
    Granulins Deoxyribonuclease gamma
    Heparanase Carboxypeptidase A5
    Ig mu chain C region C-C motif chemokine 14
    Interleukin-1 alpha Interleukin-5
    Interleukin-31 receptor A Interleukin-10
    Junctional adhesion molecule B C-X-C motif chemokine 2
    Lipocalin-1 C-X-C motif chemokine 5
    Leucine-rich repeat-containing G-protein A disintegrin and metalloproteinase with
    coupled receptor 6 thrombospondin motifs 6
    Latent-transforming growth factor beta- Polypeptide
    binding protein 1 N-acetylgalactosaminyltransferase 1
    Matrilin-3 Fibulin-2
    Myelin protein zero-like protein 1 Ficolin-1
    Neurobeachin-like protein 2 SL cytokine
    Nicastrin Follistatin
    ADP-ribose pyrophosphatase, FRAS1-related extracellular matrix
    mitochondrial protein 1
    Protocadherin-15 Enamelin
    Placenta growth factor Hyaluronan and proteoglycan link protein 1
    Protein O-linked-mannose beta-1,2-N- Leukocyte immunoglobulin-like receptor
    acetylglucosaminyltransferase 1 subfamily A member 3
    Probable hydrolase PNKD Interleukin-17F
    Pleiotrophin Interleukin-1 receptor accessory protein
    Poliovirus receptor Serine protease inhibitor Kazal-type 5
    Reticulon-4 receptor Kallikrein-15
    Serum amyloid A protein Interferon alpha-14
    Sex hormone-binding globulin Pregnancy-specific beta-1-glycoprotein 4
    SLAM family member 6 Collagenase 3
    Sarcolemmal membrane-associated protein Matrix metalloproteinase-16
    Sushi, von Willebrand factor type A, EGF Pituitary adenylate cyclase-activating
    and pentraxin domain-containing protein 1 polypeptide
    Thyroxine-binding globulin Prokineticin-2
    Transmembrane and coiled-coil domain- Latent-transforming growth factor beta-
    containing protein 1 binding protein 3
    Transmembrane protease, serine 3 Somatoliberin
    Tumor necrosis factor receptor superfamily Thrombospondin type-1 domain-containing
    member 10C protein 1
    Tumor necrosis factor receptor superfamily Angiogenic factor with G patch and FHA
    member 11B domains 1
    Serotransferrin TGF-beta receptor type III
    Tryptase beta-2 Thyrotropin subunit beta
    Protein YIPF5 Uncharacterized protein C19orf36
    Vesicle-associated membrane protein- Complement C1q tumor necrosis
    associated protein B/C factor-related protein 2
    cDNA, FLJ96669, highly similar to Homo Ectonucleotide
    sapiens secreted protein, acidic, cysteine- pyrophosphatase/phosphodiesterase family
    rich (osteonectin)(SPARC), mRNA member 5
    cDNA FLJ77519, highly similar to Homo Polypeptide N-
    sapiens secreted frizzled related protein acetylgalactosaminyltransferase-like
    mRNA protein 2
    T-cell differentiation antigen CD6 Slit homolog 1 protein
    Pikachurin Growth hormone variant
    Fibrinogen-like protein 1 Angiopoietin-related protein 3
    Interleukin-32 Angiopoietin-related protein 7
    Matrilin-4 Ecto-ADP-ribosyltransferase 5
    Sperm-associated antigen 11B Carbonic anhydrase-related protein 11
    Coagulation factor XII Probable ribonuclease 11
    Hepcidin Probable carboxypeptidase X1
    Klotho Protein FAM3D
    Serglycin C-X-C motif chemokine 14
    Tomoregulin-2 Beta-defensin 127
    Chordin-like protein 2 Beta-defensin 129
    Tumor necrosis factor receptor superfamily Cysteine-rich secretory protein LCCL
    member 6B domain-containing 2
    UPF0414 transmembrane protein C20orf30 Fibroblast growth factor 21
    C-type lectin domain family 4 member C Plasma alpha-L-fucosidase
    UPF0317 protein C14orf159, mitochondrial Gastrokine-1
    Netrin-G2 Gastrokine-2
    Metalloreductase STEAP2 Glutathione peroxidase 7
    Sushi domain-containing protein 4 HHIP-like protein 1
    Protein YIF1B Interferon kappa
    Apolipoprotein M Apolipoprotein C-I
    C4b-binding protein beta chain Procollagen C-endopeptidase enhancer 2
    T-cell surface glycoprotein CD8 beta chain Left-right determination factor 1
    C-C motif chemokine 3-like 1 Leucine-rich repeat LGI family member 4
    Fibroblast growth factor 8 BRCA1-A complex subunit Abraxas
    Sialomucin core protein 24 Leucine zipper protein 2
    Programmed cell death 1 ligand 2 Neurexophilin-3
    Secreted and transmembrane 1 Osteomodulin
    Complement C1q tumor necrosis factor- Kazal-type serine protease inhibitor
    related protein 6 domain-containing protein 1
    EGF-like module-containing mucin-like Sperm acrosome membrane-associated
    hormone receptor-like 3 protein 3
    Noelin-3 Secretoglobin family 3A member 1
    Odorant-binding protein 2b Tsukushin
    Urotensin-2 Claudin-2 (SP82)
    Vitrin Complement factor H-related protein 2
    WNT1-inducible-signaling pathway Immunoglobulin superfamily containing
    protein 3 leucine-rich repeat protein
    cDNA FLJ75759, highly similar to Homo Leucine-rich repeat and immunoglobulin-
    sapiens follistatin-like 3 (secreted like domain-containing nogo receptor-
    glycoprotein) (FSTL3), mRNA interacting protein 1
    Angiotensin-converting enzyme 2 Kin of IRRE-like protein 3
    Adiponectin Hematopoietic cell signal transducer
    Angiopoietin-related protein 4 Follitropin subunit beta
    Apolipoprotein A-V Melanoma inhibitory activity protein 3
    Asporin Leucine-rich repeat-containing protein 4
    Bactericidal permeability-increasing protein Zinc transporter 5
    CUB domain-containing protein 1 Leucine-rich repeat neuronal protein 1
    Cartilage intermediate layer protein 1 Apical endosomal glycoprotein
    Beta-Ala-His dipeptidase Serum amyloid A-4 protein
    Collagen alpha-1(V) chain Probetacellulin
    Collagen alpha-1(XXV) chain Beta-1,4-galactosyltransferase 7
    Estradiol 17-beta-dehydrogenase 11 3-hydroxybutyrate dehydrogenase type 2
    DnaJ homolog subfamily C member 10 C1GALT1-specific chaperone 1
    EGF-like domain-containing protein 6 Beta-casein
    Coagulation factor XIII A chain Kappa-casein
    Glucose-6-phosphate isomerase Transmembrane protein C2orf18
    Appetite-regulating hormone Carboxypeptidase N catalytic chain
    Interleukin-12 subunit beta CD320 antigen
    Interleukin-22 Chondroitin sulfate synthase 1
    lntelectin-1 Chondroitin sulfate synthase 2
    Leucine-rich glioma-inactivated protein 1 CMRF35-like molecule 7
    Lymphocyte antigen 96 Protein canopy homolog 3
    Matrilysin Short-chain dehydrogenase/reductase 3
    Mucin-20 Delta-like protein 4
    Proprotein convertase subtilisin/kexin Delta and Notch-like epidermal growth
    type 9 factor-related receptor
    Peptidoglycan recognition protein Dolichol kinase
    Interferon-induced 17 kDa protein Endothelin-converting enzyme-like 1
    Protein Wnt-4 Integral membrane protein 2B
    Allograft inflammatory factor 1-like Insulin-like growth factor-binding protein 5
    Armadillo repeat-containing X-linked Endothelial cell-selective adhesion
    protein 3 molecule
    Chondroitin sulfate N- Signal peptide, CUB and EGF-like domain-
    acetylgalactosaminyltransferase 1 containing protein 1
    Chitotriosidase-1 Complement factor H-related protein 3
    Claudin domain-containing protein 1 Prorelaxin H1
    Erlin-2 Follistatin-related protein 1
    Glycosyltransferase 8 domain-containing Globoside alpha-1,3-N-
    protein 1 acetylgalactosaminyltransferase 1
    Golgi membrane protein 1 Gamma-glutamyl hydrolase
    Probable G-protein coupled receptor 125 Cadherin-24
    Interleukin-20 receptor alpha chain Glycerol-3-phosphate acyltransferase 3
    Galectin-7 G-protein coupled receptor 56
    NKG2D ligand 4 Hyaluronan-binding protein 2
    L-amino-acid oxidase Proheparin-binding EGF-like growth factor
    Prolyl 3-hydroxylase 1 Histidine-rich glycoprotein
    GPI ethanolamine phosphate transferase 2 Carbohydrate sulfotransferase 14
    GPI ethanolamine phosphate transferase 3 Interleukin-20 receptor beta chain
    Calcium-binding mitochondrial carrier Ectonucleotide
    protein SCaMC-2 (Small calcium-binding pyrophosphatase/phosphodiesterase
    mitochondrial carrier protein 2) family member 3
    Pulmonary surfactant-associated protein A2 Insulin-like growth factor-binding protein 7
    Splicing factor, arginine/serine-rich 16 Kallistatin
    Alpha-N-acetylgalactosaminide alpha-2,6- Fibronectin type III domain-containing
    sialyltransferase 6 protein 3B
    Single Ig IL-1-related receptor Leukemia inhibitory factor receptor
    Tectonic-3 Lin-7 homolog B
    Tumor necrosis factor ligand superfamily Thioredoxin-related transmembrane
    member 11 protein 1
    Tumor necrosis factor receptor superfamily Disintegrin and metalloproteinase domain-
    member 19 containing protein 32
    Palmitoyltransferase ZDHHC9 Ly6/PLAUR domain-containing protein 3
    Fibulin-5 C-type lectin domain family 14 member A
    Protein Z-dependent protease inhibitor Protein cornichon homolog
    Alpha-2-macroglobulin Protein FAM151A
    Agouti-related protein FK506-binding protein 14
    Pancreatic alpha-amylase Neuropilin and tolloid-like protein 2
    Natriuretic peptides B Protocadherin beta-13
    Atrial natriuretic factor Prenylcysteine oxidase 1
    Neutral ceramidase Peflin
    Beta-2-microglobulin Peptidyl-prolyl cis-trans isomerase-like 1
    Bone morphogenetic protein 4 Prostate stem cell antigen
    Biotinidase Protein patched homolog 2
    Scavenger receptor cysteine-rich type 1 Chitobiosyldiphosphodolichol beta-
    protein M130 mannosyltransferase
    Carboxypeptidase B2 Protein sel-1 homolog 1
    Carboxypeptidase Z ProSAAS
    C-C motif chemokine 5 Sialic acid-binding Ig-like lectin 9
    C-C motif chemokine 7 SLIT and NTRK-like protein 1
    C-C motif chemokine 8 Statherin
    CD59 glycoprotein Testisin
    Complement factor I Transmembrane channel-like protein 5
    Clusterin Transmembrane protease, serine 4
    Collagen alpha-2(I) chain Metastasis-suppressor KiSS-1
    Collagen alpha-1(III) chain Islet amyloid polypeptide
    Collagen alpha-1(IV) chain Trem-like transcript 2 protein
    Collagen alpha-3(IV) chain Thioredoxin domain-containing protein 12
    Collagen alpha-5(IV) chain Vascular endothelial growth factor B
    Collagen alpha-3(VI) chain Vascular endothelial growth factor C
    Complement component C6 Reticulocalbin-3
    Collagen alpha-1(IX) chain Fibrillin-1
    Collagen alpha-1(X) chain Protein FAM3A
    Collagen alpha-1(XVII) chain Protein G7c
    Collagen alpha-1(XXI) chain Neuropilin and tolloid-like protein 1
    Coatomer subunit alpha Pregnancy-specific beta-1-glycoprotein 11
    Complement receptor type 1 Serpin B4
    Cystatin-SN ADAM DEC1
    Deoxyribonuclease-1 ADP-dependent glucokinase
    Extracellular matrix protein 1 Alpha-amylase 2B
    Low affinity immunoglobulin gamma UDP-GlcNAc: betaGal beta-1,3-N-
    Fc region receptor III-A acetylglucosaminyltransferase 3
    Alpha-fetoprotein Calcitonin gene-related peptide 2
    Heparin-binding growth factor 2 Carboxypeptidase E
    Fibrinogen gamma chain Cardiotrophin-like cytokine factor 1
    Growth/differentiation factor 5 Collagen alpha-2(VIII) chain
    Glial cell line-derived neurotrophic factor Crumbs homolog 2
    Insulin-like growth factor-binding protein 3 Dentin matrix acidic phosphoprotein 1
    Insulin-like growth factor IA Down syndrome cell adhesion molecule
    Ig gamma-1 chain C region Immunoglobulin superfamily member 1
    Ig gamma-2 chain C region Interleukin-4
    Ig gamma-3 chain C region Interleukin-6 receptor subunit alpha
    Insulin-like 3 Interleukin-24
    Inter-alpha-trypsin inhibitor heavy chain Ladinin-1
    UPF0378 protein KIAA0100 Lipase member I
    Kininogen-1 Pancreatic lipase-related protein 1
    Laminin subunit alpha-2 Leucine-rich alpha-2-glycoprotein
    Laminin subunit alpha-4 Matrix-remodeling-associated protein 5
    Laminin subunit beta-1 Netrin-4
    Protein-lysine 6-oxidase Hepatocyte growth factor receptor
    Multimerin-1 C-C motif chemokine 22
    Vasopressin-neurophysin 2-copeptin Nyctalopin
    Nidogen-1 Osteocalcin
    Phospholipase A2, Basic salivary proline-rich protein 3
    Perforin-1 Pregnancy-specific beta-1-glycoprotein 10
    Phosphatidylinositol-glycan-specific Leucine-rich repeat transmembrane protein
    phospholipase D FLRT2
    Fibrocystin R-spondin-3
    Phospholipid transfer protein Sialoadhesin
    Prostatic acid phosphatase Trypsin-3
    Vitamin K-dependent protein Z Dipeptidase 2
    Salivary acidic proline-rich Collagen and calcium-binding EGF
    phosphoprotein 1/2 domain-containing protein 1
    Pregnancy zone protein Germ cell-specific gene 1-like protein
    Prorelaxin H2 Leucine-rich repeat-containing protein 31
    Semaphorin-4D Apolipoprotein O
    Slit homolog 2 protein Dystroglycan
    Alpha-tectorin Neutrophil defensin 4
    Tenascin-X Amphoterin-induced protein 3
    Trefoil factor 3 Gamma-secretase subunit APH-1B
    Transferrin receptor protein 1 Apolipoprotein C-IV
    Protransforming growth factor alpha Arylsulfatase G
    Transforming growth factor beta-2 Glia-activating factor
    Tumor necrosis factor ligand superfamily Caspase recruitment domain-containing
    member 6 protein 18
    Tumor necrosis factor receptor superfamily Heparan sulfate glucosamine 3-O-
    member 1B sulfotransferase 3A1
    Tumor necrosis factor receptor superfamily Thyrotropin-releasing hormone-degrading
    member 5 ectoenzyme
    Thrombopoietin Guanylin
    VIP peptides Choline transporter-like protein 3
    Acidic mammalian chitinase 17-beta-hydroxysteroid dehydrogenase 14
    Cysteine-rich secretory protein 2 Immunoglobulin lambda-like polypeptide 1
    Haptoglobin-related protein DnaJ homolog subfamily B member 14
    C-C motif chemokine 26 F-box only protein 8
    Collectin-11 Fibroleukin
    Cysteine-rich with EGF-like domain Methionine-R-sulfoxide reductase B3,
    protein 2 mitochondrial
    C-X-C motif chemokine 16 Leucine-rich repeat LGI family member 2
    Fibroblast growth factor-binding protein 1 Vesicle transport protein GOT1B
    Interleukin-1 family member 5 Integral membrane protein GPR177
    Interleukin-1 family member 9 Probable G-protein coupled receptor 78
    Kallikrein-5 HEPACAM family member 2
    Matrilin-2 Interleukin-27 receptor subunit alpha
    Cell surface glycoprotein CD200 receptor 1 Proenkephalin-A
    Lysophosphatidic acid phosphatase type 6 Integrin alpha-10
    Nucleotide exchange factor SIL1 KIEL motif-containing protein 1
    Thrombospondin type-1 domain-containing Leukocyte immunoglobulin-like receptor
    protein 4 subfamily A member 5
    WNT1-inducible-signaling pathway protein Leucine-rich repeat and fibronectin type-III
    2 domain-containing protein 3
    Bromodomain-containing protein 9 Uteroglobin
    CD99 antigen-like protein 2 Netrin-G1 ligand
    Uncharacterized protein C1orf159 Pannexin-1
    Carbohydrate sulfotransferase 12 Protocadherin-12
    Probable serine carboxypeptidase CPVL Protocadherin alpha-10
    Mucin-3A Protocadherin beta-10
    CUB and zona pellucida-like domain- Osteopetrosis-associated transmembrane
    containing protein 1 protein 1
    Polypeptide N- Beta-galactoside alpha-2,6-
    acetylgalactosaminyltransferase 14 sialyltransferase 1
    Galectin-9 GPI transamidase component PIG-S
    Leucine-rich repeat-containing protein 17 Proline-rich transmembrane protein 3
    Leucine-rich repeat neuronal protein 2 Sulfhydryl oxidase 2
    Bifunctional heparan sulfate N- A disintegrin and metalloproteinase with
    deacetylase/N-sulfotransferase 3 thrombospondin motifs 16
    Tuftelin SH2 domain-containing protein 3A
    Brain mitochondrial carrier protein SHC-transforming protein 4
    Signal peptide, CUB and EGF-like domain- Disintegrin and metalloproteinase domain-
    containing protein 3 containing protein 23
    14-3-3 protein sigma Transducin beta-like protein 2
    Alpha-1-acid glycoprotein 1 Tudor domain-containing protein 10
    Alpha-1-acid glycoprotein 2 Transmembrane 9 superfamily member 3
    von Willebrand factor A domain-containing Von Willebrand factor D and EGF domain-
    protein 1 containing protein
    Disintegrin and metalloproteinase domain- A disintegrin and metalloproteinase with
    containing protein 9 thrombospondin motifs 17
    Angiotensinogen Transmembrane channel-like protein 2
    Apolipoprotein A-II (Apo-AII) (ApoA-II) Pregnancy-specific beta-1-glycoprotein 3
    Apolipoprotein A-IV (Apo-AIV) (ApoA-IV) Tenomodulin
    Apolipoprotein C-II (Apo-CII) (ApoC-II) Tetraspanin-6
    Beta-2-glycoprotein 1 Thioredoxin domain-containing protein 5
    Apoptosis-related protein 3 Vascular endothelial growth factor D
    Beta-secretase 2 Pregnancy-specific beta-1-glycoprotein 9
    Histo-blood group ABO system transferase Semaphorin-3F
    Cathepsin L2 Acid phosphatase-like protein 2
    C-C motif chemokine 3 Apolipoprotein O-like
    C-type lectin domain family 1 member B Beta-defensin 119
    Calcium-activated chloride channel A disintegrin and metalloproteinase with
    regulator 1 thrombospondin motifs 12
    Chymase Protein FAM131A
    Collagen alpha-1(VI) chain Protein FAM3B
    Complement component C8 alpha chain Beta-galactosidase-1-like protein
    Complement component C9 Lysozyme g-like protein 1
    Glucose-fructose oxidoreductase domain- Inter-alpha-trypsin inhibitor heavy chain
    containing protein 2 H5-like protein
    DnaJ homolog subfamily B member 11 Sperm acrosome-associated protein 5
    Ectonucleotide Leucine-rich repeat and immunoglobulin-
    pyrophosphatase/phosphodiesterase family like domain-containing nogo receptor-
    member 7 interacting protein 2
    Endoplasmic reticulum aminopeptidase 1 Surfactant-associated protein 2
    Receptor tyrosine-protein kinase erbB-3 Adiponectin receptor protein 1
    Endoplasmic reticulum resident protein Multiple epidermal growth factor-like
    ERp44 domains 6
    IgGFc-binding protein Neuroendocrine protein 7B2
    Complement factor H-related protein 1 Alpha-1B-glycoprotein
    Polypeptide N- WAP, kazal, immunoglobulin, kunitz and
    acetylgalactosaminyltransferase 2 NTR domain-containing protein 2
    Hemopexin Arylacetamide deacetylase-like 1
    Hepatocyte growth factor activator Histatin-3
    Major histocompatibility complex class I- Pro-neuregulin-3, membrane-bound
    related gene protein isoform
    Insulin-like growth factor-binding protein 6 Agouti-signaling protein
    Ig delta chain C region Claudin-8
    Interleukin-1 beta UPF0454 protein C12orf49
    Low-density lipoprotein receptor-related von Willebrand factor A domain-containing
    protein 10 protein 5B1
    Junctional adhesion molecule C Cadherin-6
    Uncharacterized protein KIAA0319 Cathelicidin antimicrobial peptide
    Laminin subunit alpha-5 Laminin subunit gamma-1
    Fibronectin type III domain-containing Dehydrogenase/reductase SDR family
    protein 4 member 7B
    Lipoprotein lipase C-C motif chemokine 16
    Interstitial collagenase C-C motif chemokine 24
    Matrix metalloproteinase-9 HEAT repeat-containing protein C7orf27
    Mucin-16 Collagen alpha-2(IX) chain
    Mucin-2 Collagen alpha-3(IX) chain
    Mucin-5B Colipase
    Myocilin Collagen alpha-1(XXVII) chain
    Oxidized low-density lipoprotein receptor 1 Carboxypeptidase N subunit 2
    Prostate tumor overexpressed gene 1 Leucine-rich repeat transmembrane
    protein neuronal protein 4
    Receptor-interacting serine/threonine- Collagen triple helix repeat-containing
    protein kinase 2 protein 1
    Equilibrative nucleoside transporter 3 Endothelin-2
    Selenoprotein P Fibromodulin
    Pulmonary surfactant-associated protein D Fc receptor-like B
    Stimulated by retinoic acid gene 6 protein Zinc finger RAD18 domain-containing
    homolog protein C1orf124
    Trefoil factor 1 Growth/differentiation factor 15
    Tissue factor pathway inhibitor 2 Glia-derived nexin
    Prothrombin Progonadoliberin-1
    Toll-like receptor 9 Granzyme K
    Intercellular adhesion molecule 4 Interferon alpha-17
    Interleukin-19 Interferon alpha-21
    lsthmin-2 Interferon alpha-8
    Kin of IRRE-like protein 1 Interferon omega-1
    Kallikrein-10 Early placenta insulin-like peptide
    Latent-transforming growth factor beta- EGF, latrophilin and seven transmembrane
    binding protein 4 domain-containing protein 1
    Paired immunoglobulin-like type 2 receptor Fibronectin type 3 and ankyrin repeat
    alpha domains protein 1
    Regenerating islet-derived protein 3 alpha Lysyl oxidase homolog 4
    E3 ubiquitin-protein ligase RNF5 Lumican
    Protachykinin-1 Adropin
    Secreted frizzled-related protein 1, isoform Leucine-rich repeat transmembrane protein
    CRA_a FLRT1
    Plasminogen-related protein B Nucleobindin-2
    Probable palmitoyltransferase ZDHHC16 Phospholipase A2
    Angiopoietin-related protein 1 Proenkephalin-B
    UPF0510 protein C19orf63 Peptidoglycan recognition protein I-beta
    Scavenger receptor cysteine-rich type 1 Immunoglobulin superfamily containing
    protein M160 leucine-rich repeat protein 2
    ER degradation-enhancing alpha- V-set and immunoglobulin domain-
    mannosidase-like 2 containing protein 2
    Beta-galactosidase-1-like protein 2 Peptide YY
    Interleukin-17 receptor E Retinol-binding protein 3
    Interleukin-20 Atherin
    Interleukin-25 Translocation protein SEC63 homolog
    PDZ domain-containing protein 11 Transforming growth factor beta-3
    Relaxin-3 Protein Wnt-10b
    Retinoid-inducible serine carboxypeptidase Renalase
    Short palate, lung and nasal epithelium Proprotein convertase subtilisin/kexin
    carcinoma-associated protein 2 type 4
    WAP four-disulfide core domain protein 5 Carboxypeptidase A4
    Platelet-derived growth factor C Olfactomedin-4
    Disintegrin and metalloproteinase domain- Insulin-like growth factor-binding protein
    containing protein 33 complex acid labile chain
    BSD domain-containing protein 1 Amelogenin, Y isoform
    Cell adhesion molecule 3 Arylsulfatase F
    CDC45-related protein Choriogonadotropin subunit beta variant 2
    Chondrolectin Beta-defensin 104
    Diacylglycerol O-acyltransferase 2 Beta-defensin 105
    3-keto-steroid reductase Beta-defensin 107
    Interleukin-17 receptor C Protein WFDC11
    Interleukin-17 receptor D WAP four-disulfide core domain protein 6
    Integrator complex subunit 1 Epigen
    Junctional adhesion molecule-like Protein FAM19A5
    E3 ubiquitin-protein ligase LNX Claudin-6
    Leucine-rich repeat transmembrane Carcinoembryonic antigen-related cell
    neuronal protein 3 adhesion molecule 19
    Methionine adenosyltransferase 2 A disintegrin and metalloproteinase with
    subunit beta thrombospondin motifs 1
    Podocalyxin-like protein 2 Protein COQ10 A, mitochondrial
    Prominin-2 Uncharacterized protein C19orf41
    Plexin domain-containing protein 2 Uncharacterized protein C21orf63
    Roundabout homolog 4 Protein delta homolog 2
    Lactosylceramide alpha-2,3- Cocaine- and amphetamine-regulated
    sialyltransferase transcript protein
    SID1 transmembrane family member 2 Lipoma HMGIC fusion partner-like 1 protein
    Sushi domain-containing protein 1 Leucine-rich repeat-containing protein 18
    Serine/threonine-protein kinase TAO2 Leucine-rich repeat-containing protein 25
    Transmembrane protease, serine 2 Leucine-rich repeat-containing protein 3B
    UDP-glucuronic acid decarboxylase 1 Leucine-rich repeat-containing protein 3
    Uncharacterized protein C10orf58 Ly6/PLAUR domain-containing protein 4
    Thioredoxin-related transmembrane Vitamin K epoxide reductase complex
    protein 2 subunit 1
    CMP-N-acetylneuraminate-beta- A disintegrin and metalloproteinase with
    galactosamide-alpha-2,3-sialyltransferase thrombospondin motifs 20
    Putative uncharacterized protein Putative uncharacterized protein
    ENSP00000380674 ENSP00000381830
    Transmembrane protein 119 Cat eye syndrome critical region protein 1
    Transmembrane protein 98 Testis-expressed protein 101
    Pre-B lymphocyte protein 3 Xylosyltransferase 2
    Putative uncharacterized protein C14orf144 Protein FAM20A
    Membrane-bound transcription factor site-1 Transmembrane and immunoglobulin
    protease domain-containing protein 1
    Ficolin (Collagen/fibrinogen domain Putative killer cell immunoglobulin-like
    containing) 3 (Hakata antigen) (NL3) receptor-like protein KIR3DX1 (Leukocyte
    (Ficolin (Collagen/fibrinogen domain receptor cluster member 12)
    containing) 3 (Hakata antigen), isoform
    CRA_b)
    Interleukin-1 family member 6 Herstatin
    Prostate and testis expressed protein 2 Leucine-rich repeat-containing protein 28
    Group XIIA secretory phospholipase A2 LRRN4 C-terminal-like protein
    Collagen alpha-3(V) chain Ly6/PLAUR domain-containing protein 2
    Alpha-2-macroglobulin-like protein 1 Transmembrane protein 81
    Dermatopontin Myelin protein zero-like protein 3
    Cartilage-associated protein Protein notum homolog
    Desert hedgehog protein UDP-glucuronosyltransferase 3A2
    Extracellular matrix protein 2 Protocadherin alpha-1
    Gastric intrinsic factor Phospholipase D4
    Interleukin-33 Retinol dehydrogenase 10
    Bone morphogenetic protein 2 Sialic acid-binding Ig-like lectin 14
    Bone morphogenetic protein 6 Transmembrane protein 161A
    Uncharacterized protein KIAA0564 Transmembrane protein 161B
    Cerberus Transmembrane protein 182
    Carbohydrate sulfotransferase 8 Protein FAM24B
    Contactin-associated protein-like 3 Transmembrane protein 52
    Group XIIB secretory phospholipase A2- Major facilitator superfamily domain-
    like protein containing protein 4
    Corticoliberin UDP-glucuronosyltransferase 2A3
    A disintegrin and metalloproteinase with Odontogenic ameloblast-associated
    thrombospondin motifs 19 protein
    UPF0556 protein C19orf10 Neurosecretory protein VGF
    C-X-C motif chemokine 3 Secreted phosphoprotein 2, 24 kDa
    Cystatin-M Protein FAM150B
    Defensin-5 Growth/differentiation factor 9
    Defensin-6 Clusterin-like protein 1
    A disintegrin and metalloproteinase with Transmembrane and immunoglobulin
    thrombospondin motifs 18 domain-containing protein 2
    A disintegrin and metalloproteinase with C-type lectin domain-containing protein
    thrombospondin motifs 3 UNQ5810/PRO19627
    Dickkopf-related protein 4 Epididymal-specific lipocalin-10
    A disintegrin and metalloproteinase with A disintegrin and metalloproteinase with
    thrombospondin motifs 5 thrombospondin motifs 8
    Mammalian ependymin-related protein 1 Epididymal-specific lipocalin-8
    Fibrillin-3 Basic proline-rich peptide P-E
    Fetuin-B Putative uncharacterized protein C10orf99
    Fibroblast growth factor 6 Uncharacterized protein C17orf77
    Keratinocyte growth factor Arylacetamide deacetylase-like 2
    Growth/differentiation factor 8 Epididymal-specific lipocalin-12
    Gastric inhibitory polypeptide B melanoma antigen 2
    Glycoprotein hormone beta-5 B melanoma antigen 3
    Granzyme M Bovine seminal plasma protein homolog 1
    Gastrin-releasing peptide Complement C1q-like protein 3
    Serine protease HTRA1 UPF0565 protein C2orf69
    Interferon alpha-4 UPF0669 protein C6orf120
    Interferon alpha-5 Colipase-like protein C6orf127
    Interferon alpha-7 Uncharacterized protein C7orf69
    A disintegrin and metalloproteinase with Platelet-derived growth factor receptor-like
    thrombospondin motifs 7 protein
    Immunoglobulin superfamily member 10 Chondroadherin-like protein
    Protease-associated domain-containing Putative uncharacterized protein
    protein of 21 kDa UNQ6490/PRO21339
    Abhydrolase domain-containing protein Putative uncharacterized protein
    FAM108A1 UNQ6493/PRO21345
    A disintegrin and metalloproteinase with Putative uncharacterized protein
    thrombospondin motifs 9 UNQ5815/PRO19632
    Interleukin-9 receptor Cystatin-A
    Interleukin-9 Peptidase inhibitor R3HDML
    Inhibin beta B chain Cystatin-9
    Serine protease inhibitor Kazal-type 2 DAN domain family member 5
    BMP-binding endothelial regulator Insulin-like growth factor-binding protein-
    protein like 1
    Keratinocyte-associated protein 2 Epididymal sperm-binding protein 1
    Laminin subunit alpha-1 Elafin
    Leukocyte cell-derived chemotaxin-2 Protein FAM55A
    Gastric triacylglycerol lipase Growth/differentiation factor 6
    Leucine-rich repeat and calponin Glucose-fructose oxidoreductase domain-
    homology domain-containing protein 3 containing protein 1
    Pancreatic lipase-related protein 2 Erythropoietin
    Epididymis-specific alpha-mannosidase Glutathione peroxidase 6
    Fibronectin type III domain-containing Uncharacterized protein
    protein 7 UNQ511/PRO1026
    Microfibrillar-associated protein 5 Beta-defensin 128
    Muellerian-inhibiting factor Interleukin-31
    Matrix metalloproteinase-21 Interleukin-34
    Matrix metalloproteinase-17 Plasma kallikrein-like protein 4
    Matrix metalloproteinase-20 Epididymal-specific lipocalin-9
    N-acetylglucosamine-1- cDNA FLJ60957, highly similar to
    phosphotransferase subunit gamma Secreted frizzled-related protein 4
    Multimerin-2 Lipase member M
    Promotilin CLECSF12
    FRAS1-related extracellular matrix Putative inactive group IIC secretory
    protein 3 phospholipase A2
    Protein kinase C-binding protein NELL1 Serine protease MPN2
    Protein kinase C-binding protein NELL2 Netrin-5
    Neurotrypsin NHL repeat-containing protein 3
    Neuroserpin Olfactomedin-like protein 2B
    Nidogen-2 Ovochymase-2
    Abhydrolase domain-containing protein Putative uncharacterized protein
    FAM108B1 UNQ3029/PRO9830
    Neurotrophin-4 Ovochymase-1
    Epididymal secretory glutathione Putative pregnancy-specific beta-1-
    peroxidase glycoprotein 7
    Group 10 secretory phospholipase A2 Ovostatin homolog 2
    Group IID secretory phospholipase A2 Orexigenic neuropeptide QRFP
    Lactoperoxidase Lymphocyte antigen 6K
    p53 apoptosis effector related to PMP-22 Prostate and testis expressed protein 1
    Placenta-specific protein 1 Putative phospholipase B-like 1
    Tuberoinfundibular peptide of Putative uncharacterized protein
    39 residues FLJ42147
    Prolargin Otogelin
    Secretogranin-2 Ribonuclease 8
    Endonuclease domain-containing 1 Nuclear pore complex-interacting protein-
    protein like 2
    Semaphorin-3B Proactivator polypeptide-like 1
    Somatostatin Protein spinster homolog 2
    Dehydrogenase/reductase SDR family von Willebrand factor C domain-
    member 4-like 2 containing protein 2-like
    Transcobalamin-1 Urotensin-2B
    Trefoil factor 2 Tetraspanin-18
    Testican-1 UPF0514 membrane protein FAM159A
    Serum paraoxonase/lactonase 3 Latherin
    Tolloid-like protein 2 Methyltransferase-like protein 7B
    Trypsin-2 Protein TEX261
    RING finger and SPRY domain- Alkylated DNA repair protein alkB
    containing protein 1 homolog 7
    Calcium-binding and coiled-coil domain- Transmembrane emp24 domain-
    containing protein 1 containing protein 6
    Protein Wnt-2 XK-related protein 5
    Ectonucleoside triphosphate Putative V-set and immunoglobulin
    diphosphohydrolase 8 domain-containing protein 7
    Protein Wnt-8b Insulin growth factor-like family member 3
    UDP-GlcNAc: betaGal beta-1,3-N- Nuclear pore complex-interacting protein-
    acetylglucosaminyltransferase 4 like 1
    EMI domain-containing protein 1 Secreted phosphoprotein 1
    Uncharacterized protein C6orf15 Collagen alpha-5(VI) chain
    Collectin-10 B melanoma antigen 5
    Long-chain-fatty-acid--CoA ligase WAP four-disulfide core domain protein
    ACSBG2 10A
    Oncoprotein-induced transcript 3 protein UPF0369 protein C6orf57
    Peptidase inhibitor 15 Putative uncharacterized protein C10orf31
    Proline-rich acidic protein 1 Putative uncharacterized protein C11orf45
    Urocortin Uncharacterized protein C12orf28
    Trypsin-X3 (EC 3.4.21.4) Uncharacterized protein C17orf67
    HHIP-like protein 2 Beta-defensin 121
    Fractalkine Beta-defensin 130
    Protein Wnt-11 Histidine triad nucleotide-binding protein 2
    Protein Wnt-7a Apelin
    FCH and double SH3 domains protein 1 Placenta-specific protein 9
    Hepatoma-derived growth factor-related Hepatocellular carcinoma-associated
    protein 2 protein TD26
    Interleukin-12 subunit alpha Persephin
    UPF0577 protein KIAA1324 Regulated endocrine-specific protein 18
    Complement C1q tumor necrosis factor- Complement C1q tumor necrosis factor-
    related protein 9 related protein 8
    Mucin-17 Bone morphogenetic protein 8A
    Lysosomal protein NCU-G1 Protein WFDC13
    Prolyl 4-hydroxylase subunit alpha-3 Protein Wnt-8a
    Peptidyl-prolyl cis-trans isomerase Ig-like domain-containing protein
    SDCCAG10 ENSP00000270642
    Peptidase inhibitor 16 Abhydrolase domain-containing protein 15
    Poliovirus receptor-related protein 4 Ribonuclease-like protein 9
    Solute carrier family 22 member 15 Uncharacterized protein C2orf66
    GPI inositol-deacylase Uncharacterized protein C17orf99
    Transmembrane protein 43 Protein FAM150A
    Angiopoietin-related protein 2 Placenta-specific 1-like protein
    Angiopoietin-related protein 6 Uncharacterized protein C18orf20
    Arylsulfatase K Beta-defensin 110
    Augurin Neuritin-like protein
    Brain-specific serine protease 4 Histidine-rich carboxyl terminus protein 1
    DBH-like monooxygenase protein 1 C-type lectin domain family 2 member A
    Uncharacterized protein C1orf56 Leucine-rich repeat-containing protein 70
    Cerebellin-3 Serpin A13
    Cerebellin-4 BTB/POZ domain-containing protein 17
    Colipase-like protein C6orf126 Uncharacterized protein C12orf53
    Uncharacterized protein C11orf83 C-type lectin domain family 9 member A
    Uncharacterized protein C16orf89 Complement C1q-like protein 4
    Carboxypeptidase-like protein X2 CMRF35-like molecule 4
    Cystatin-9-like Protein FAM151B
    Dehydrogenase/reductase SDR family Abhydrolase domain-containing protein
    member 13 FAM108A2/A3
    Beta-defensin 123 Osteocrin
    Beta-defensin 132 Transmembrane protease, serine 11E2
    Cytokine-like protein 1 Transmembrane protein 14E
    Dickkopf-related protein 2 Transmembrane protein 207
    Dickkopf-like protein 1 TOMM20-like protein 1
    Epididymal secretory protein E3-beta Uncharacterized protein C3orf41
    EGF-like repeat and discoidin I-like Submaxillary gland androgen-regulated
    domain-containing protein 3 protein 3A
    Protein FAM55D B melanoma antigen 1
    Fibroblast growth factor 17 Inactive carboxylesterase 4
    Fibroblast growth factor 22 Four-jointed box protein 1
    Fibroblast growth factor-binding protein 2 Protein HSN2
    Growth/differentiation factor 3 Humanin
    GLIPR1-like protein 1 Kielin/chordin-like protein
    Serine protease inhibitor Kazal-type 6 UPF0624 protein C6orf186
    Interleukin-17B Putative neurofibromin 1-like protein 4/6
    Interleukin-17C Peroxidasin-like protein
    Interleukin-17D SCO-spondin
    Hyaluronan and proteoglycan link Putative uncharacterized protein
    protein 3 UNQ9165/PRO28630
    Vitelline membrane outer layer protein 1 Calcium-activated chloride channel
    homolog regulator family member 3
    Choriogonadotropin subunit beta Probable serine protease
    variant 1 UNQ9391/PRO34284
    Lysozyme-like protein 1 Uncharacterized protein C4orf26
    Matrix metalloproteinase-28 Uncharacterized protein C4orf40
    Nephronectin Uncharacterized protein C5orf55
    WAP four-disulfide core domain Putative macrophage-stimulating protein
    protein 12 MSTP9
    Olfactomedin-like protein 1 Uncharacterized protein C15orf61
    Olfactomedin-like protein 2A Chymotrypsinogen B2
    Serine protease 27 Beta-defensin 108A
    Secretoglobin family 3A member 2 Beta-defensin 111
    A disintegrin and metalloproteinase with Putative V-set and immunoglobulin
    thrombospondin motifs 2 domain-containing protein 6
    Disintegrin and metalloproteinase Serine protease inhibitor Kazal-type
    domain-containing protein 28 5-like 3
    Bactericidal/permeability-increasing Putative serine protease inhibitor Kazal-
    protein-like 2 type 5-like 2
    Acid sphingomyelinase-like Dehydrogenase/reductase SDR family
    phosphodiesterase 3b member 7C
    Serine protease inhibitor Kazal-type 7 Beta-defensin 131
    Neurexophilin-4 Beta-defensin 134
    Protein Wnt-9b Beta-defensin 136
    Zymogen granule protein 16 homolog B Beta-defensin 116
    Semaphorin-3D Protein FAM132A
    Apolipoprotein L4 Protein FAM132B
    Transmembrane protease, serine 11D Beta-defensin 115
    Scrapie-responsive protein 1 Beta-defensin 114
    Putative annexin A2-like protein Serine protease inhibitor Kazal-type 9
    Bone morphogenetic protein 10 Lipase member N
    Secretogranin-3 Pancreatic lipase-related protein 3
    Complement C1q tumor necrosis factor- Testis, prostate and placenta-expressed
    related protein 4 protein
    Uncharacterized protein C1orf54 Neuromedin-S
    Carboxypeptidase A6 Neuropeptide S
    C-C motif chemokine 19 Neuronal pentraxin-like protein C16orf38
    C-C motif chemokine 25 Otolin-1
    Chymotrypsin-like elastase family Iron/zinc purple acid phosphatase-like
    member 2B protein
    Protein CEI Ovostatin homolog 1
    Uncharacterized protein C6orf1 Plasminogen-related protein A
    Uncharacterized protein C7orf34 Polyserase-3
    Keratinocyte-associated protein 3 Putative peptide YY-2
    Uncharacterized protein C9orf47 Putative peptide YY-3
    Collagen alpha-1(VIII) chain Ribonuclease-like protein 10
    Uncharacterized protein C18orf54 Ribonuclease-like protein 12
    Cystatin-like 1 Ribonuclease-like protein 13
    C2 domain-containing protein 2 Serpin A11
    DDRGK domain-containing protein 1 Kunitz-type protease inhibitor 4
    Protein FAM55C Meteorin-like protein
    Collagen alpha-1(XXVI) chain Putative testis serine protease 2
    Protein FAM19A2 Beta-defensin 112
    Protein FAM5B Uncharacterized protein FLJ37543
    Fibroblast growth factor 5 Protein FAM24A
    Probable serine protease HTRA3 Secreted frizzled-related protein 4
    Interleukin-1 family member 8 Complement C1q-like protein 2
    Serine protease inhibitor Kazal-type 4 Putative uncharacterized protein C17orf69
    Otospiralin Putative cystatin-13
    Liver-expressed antimicrobial peptide 2 Beta-defensin 109
    Lysyl oxidase homolog 1 Beta-defensin 113
    Lysyl oxidase homolog 2 Beta-defensin 135
    Long palate, lung and nasal epithelium Peptidase S1 domain-containing protein
    carcinoma-associated protein 4 LOC136242
    Lysozyme g-like protein 2 Growth/differentiation factor 7
    Endomucin IgA-inducing protein homolog
    Neuropeptide B Putative lipocalin 1-like protein 1
    Kinesin-like protein KIF7 Putative serine protease 29
    Leukocyte-associated immunoglobulin- Putative scavenger receptor cysteine-rich
    like receptor 2 domain-containing protein LOC619207
    Calcium-dependent phospholipase A2 Secretoglobin-like protein
    Proapoptotic caspase adapter protein Putative stereocilin-like protein
    Integrin beta-like protein 1 Insulin growth factor-like family member 2
    Tolloid-like protein 1 KIR2DL4
    Kunitz-type protease inhibitor 3 Putative zinc-alpha-2-glycoprotein-like 1
    Protein TMEM155 Insulin growth factor-like family member 4
    Prosalusin Uncharacterized protein C2orf72
    Protein amnionless Replication initiation-like protein
    Protein WFDC10B Prostate and testis expressed protein 3
    WAP four-disulfide core domain protein 8 B melanoma antigen 4
    Protein Wnt-5b Putative uncharacterized protein C1orf191
    Protein Wnt-7b Beta-defensin 108B-like
    Zona pellucida-binding protein 2 Uncharacterized protein FLJ90687
    SH3 domain-binding protein 5-like Secreted frizzled-related protein 2
    Adipocyte adhesion molecule Basic proline-rich peptide IB-1
    Uncharacterized protein C12orf59 Fibroblast growth factor 16
    Apolipoprotein A-I-binding protein Serine protease inhibitor Kazal-type 8
    Claudin-17 Uncharacterized protein KIAA0495
    Inactive caspase-12 Platelet basic protein-like 2
    Uncharacterized protein C7orf58 Serpin E3
    Collagen alpha-1(XXVIII) chain CR1 receptor
    Dentin matrix protein 4 Secreted phosphoprotein 1
    Uncharacterized protein C16orf48 Stress induced secreted protein 1
    Carboxylesterase 3 Protein Wnt
    Protein FAM20B Protein Wnt (Fragment)
    GPN-loop GTPase 3 Putative serine protease LOC138652
    GRAM domain-containing protein 1B TOM1
    Phosphatidylinositol glycan anchor Putative uncharacterized protein
    biosynthesis class U protein FLJ46089
    Interleukin-27 subunit alpha Putative uncharacterized protein C1orf134
    Pro-neuregulin-4, membrane-bound UDP-GlcNAc: betaGal beta-1,3-N-
    isoform acetylglucosaminyltransferase 9
    Leucine-rich repeat neuronal protein 3 Uncharacterized protein C11orf44
    NMDA receptor-regulated protein 2 Uncharacterized protein C12orf73
    NADH-cytochrome b5 reductase 1 Putative cystatin-9-like 2
    Parkinson disease 7 domain-containing Putative abhydrolase domain-containing
    protein 1 protein FAM108A5
    FK506-binding protein 11 Beta-defensin 133
    C-type lectin domain family 12 member B Fibrosin-1
    Solute carrier family 35 member F5 Probable folate receptor delta
    Sialic acid-binding Ig-like lectin 12 RPE-spondin
    Protein FAM19A3 NPIP-like protein ENSP00000346774
    WD repeat-containing protein 82 Putative testis-specific prion protein
    Adipocyte enhancer-binding protein 1 Proline-rich protein 1
    ADAMTS-like protein 3 Putative uncharacterized protein FP248
    Coiled-coil domain-containing protein 80 UPF0670 protein C8orf55
    Ecto-NOX disulfide-thiol exchanger 1 Putative zinc-alpha-2-glycoprotein-like 2
    Neuronal growth regulator 1 SPARC protein
    Interphotoreceptor matrix proteoglycan 1 Otopetrin-1
    cDNA FLJ36603 fis, clone cDNA FLJ55667, highly similar to
    TRACH2015180, highly similar to Secreted protein acidic and rich in
    Secreted frizzled-related protein 2 cysteine
    Lipase member H Lipase member K
    Mucin-19 (MUC-19) C-type lectin domain family 18 member C
    Psoriasis susceptibility 1 candidate gene Putative uncharacterized protein
    2 protein UNQ6125/PRO20090
    Integral membrane protein 2A Complement C3
    Vesicle transport protein SFT2B Collagen alpha-2(IV) chain
    von Willebrand factor A domain- Uncharacterized protein
    containing protein 3A UNQ6126/PRO20091
    Protein shisa-2 homolog Serpin-like protein HMSD
    Signal peptidase complex subunit 3 Prostate and testis expressed protein 4
    CD164 sialomucin-like 2 protein Collagen alpha-1(XXII) chain
    Cadherin-16 Putative uncharacterized protein C13orf28
    Cadherin-19 Cystatin-S
    Cerebellin-2 R-spondin-1
    Transmembrane protein C3orf1 C8orf2
    Sperm equatorial segment protein 1 Odorant-binding protein 2a
    Uncharacterized protein C6orf72 Opiorphin
    Uncharacterized protein C11orf24 Kidney androgen-regulated protein
    Acyl-CoA synthetase family member 2, Putative uncharacterized protein
    mitochondrial UNQ5830/PRO19650/PRO19816
    Probable UDP-sugar transporter protein Putative uncharacterized protein
    SLC35A5 UNQ6975/PRO21958
    C-type lectin domain family 1 member A Tachykinin-3
    C-type lectin domain family 3 member A Secreted phosphoprotein 1
    C-type lectin domain family 4 member E Sclerostin
    C-type lectin domain family 4 member G ADAMTS-like protein 2
    Probable cation-transporting Scavenger receptor cysteine-rich domain-
    ATPase 13A4 containing protein LOC284297
    UPF0480 protein C15orf24 Tryptase beta-1
    Zona pellucida sperm-binding protein 4 Tryptase delta
    Endoplasmic reticulum resident protein Putative cat eye syndrome critical region
    ERp27 protein 9
    Transmembrane protein C16orf54 Plexin domain-containing protein 1
    Cytochrome P450 4F12 MC51L-53L-54L homolog (Fragment)
    Cytochrome P450 4X1 COBW-like placental protein (Fragment)
    Cytochrome P450 4Z1 Cytokine receptor-like factor 2
    Protein CREG2 Beta-defensin 103
    DnaJ homolog subfamily B member 9 Beta-defensin 106
    Dipeptidase 3 Hyaluronidase-3
    Membrane protein FAM174A Interleukin-28 receptor alpha chain
    Thioredoxin domain-containing Glycosyltransferase 54 domain-containing
    protein 15 protein
    Protein FAM19A4 Chordin-like protein 1
    Adenosine monophosphate-protein Putative uncharacterized protein
    transferase FICD UNQ9370/PRO34162
    Prenylcysteine oxidase-like Netrin receptor UNC5B
    Phytanoyl-CoA hydroxylase-interacting Fibroblast growth factor receptor FGFR-1
    protein-like secreted form protein (Fragment)
    FXYD domain-containing ion transport Uncharacterized protein
    regulator 4 ENSP00000244321
    Growth/differentiation factor 11 ECE2
    Cerebral dopamine neurotrophic factor EPA6
    GPN-loop GTPase 2 Putative soluble interleukin 18 receptor 1
    Growth hormone-inducible Putative abhydrolase domain-containing
    transmembrane protein protein FAM108A6
    Glycerophosphodiester Putative V-set and immunoglobulin
    phosphodiesterase domain-containing domain-containing-like protein
    protein 2 ENSP00000303034
    WAP, kazal, immunoglobulin, kunitz and B cell maturation antigen transcript variant
    NTR domain-containing protein 1 4 (Tumor necrosis factor receptor
    superfamily member 17)
    KDEL motif-containing protein 1 UPF0672 protein C3orf58
    Adipophilin Methylthioribose-1-phosphate isomerase
    Lactase-like protein 17-beta hydroxysteroid dehydrogenase 13
    Chondromodulin-1 Aminopeptidase B
    Collagen alpha-6(VI) chain Dermcidin
    Leucine-rich repeat-containing protein 33 Meteorin
    MANSC domain-containing protein 1 Methyltransferase-like protein 7A
    Lipocalin-15 NL3
    Arylsulfatase I N-acetyltransferase 15
    Mesoderm development candidate 2 Ephrin-A4
    Dickkopf-related protein 1 Protein Plunc
    Podocan Kallikrein-11
    Fibronectin type III domain-containing WNT1 induced secreted protein 1 splice
    protein 1 variant x (Fragment)
    Neurotrimin Interleukin-1 family member 10
    Olfactory receptor 10W1 PLA2G2D
    Protein PARM-1 Proteoglycan 3
    PDZ domain-containing protein 2 Insulin-like peptide INSL5
    Proepiregulin Olfactomedin-like protein 3
    Polycystic kidney disease protein 1-like 1 Extracellular glycoprotein lacritin
    WLPL514 Retinol dehydrogenase 13
    Matrix metalloproteinase-26 Neutrophil defensin 3
    RELT-like protein 2 GLGQ5807
    Solute carrier family 35 member E3 TUFT1
    Zinc transporter ZIP9 DRLV8200
    Noelin-2 IDLW5808
    Seizure 6-like protein 2 UBAP2
    Semaphorin-3A C1q/TNF-related protein 8
    Semaphorin-4C KIR2DL4 (Fragment)
    Abhydrolase domain-containing protein Chemokine-like factor super family 2
    14A transcript variant 2
    Ankyrin repeat domain-containing Keratinocytes associated transmembrane
    protein 36 protein 1
    Protein shisa-4 GKGM353
    Neuromedin-U MATL2963
    Nodal homolog NINP6167
    Synaptogyrin-2 POM121-like
    Brain-specific angiogenesis inhibitor 1- RTFV9368 (SLE-dependent
    associated protein 2-like protein 2 upregulation 1)
    Coiled-coil domain-containing Leucine-rich repeat and immunoglobulin-
    protein 104 like domain-containing nogo receptor-
    interacting protein 4
    Transmembrane 4 L6 family member 20 KCNQ2
    Transmembrane protein 107 ELCV5929
    Transmembrane protein 143 KVVM3106
    Transmembrane protein 178 ISPF6484
    Transmembrane protein 205 LKHP9428
    Transmembrane protein 41A VNFT9373
    Transmembrane protein 50A ACAH3104
    Transmembrane protein 50B RVLA1944
    Interleukin-28B Wpep3002
    Neuronal pentraxin-2 ZDHHC11
    Collectrin AGLW2560
    Transmembrane protein 92 TSSP3028
    Transmembrane protein 95 RFVG5814
    Transmembrane protein 9B SHSS3124
    Probable carboxypeptidase PM20D1 MMP19
    Tetraspanin-12 GSQS6193
    Tetraspanin-13 VGPW2523
    Tetraspanin-15 LMNE6487
    UPF0513 transmembrane protein ALLA2487
    Mitochondrial uncoupling protein 4 GALI1870
    Polyserase-2 FRSS1829
    Probable palmitoyltransferase ZDHHC24 MRSS6228
    Zona pellucida sperm-binding protein 1 GRPR5811
    Zona pellucida sperm-binding protein 2 AVLL5809
    Conserved oligomeric Golgi complex CR1 C3b/C4b receptor SCR9 (or 16) C-
    subunit 7 term. exon SCR = short consensus repeat
    Adiponectin receptor protein 2 PIKR2786
    Inhibin beta C chain S100 calcium binding protein A7-like 3
    Brorin GTWW5826 (LP5085 protein)
    Semaphorin-3C KTIS8219 (HCG2020043)
    Heparan sulfate glucosamine 3-O- Hyaluronan and proteoglycan link
    sulfotransferase 2 protein 4
    Leptin receptor overlapping transcript- Micronovel
    like 1
    SPARC-like protein 1 SAMK3000
    Fibulin-7 VFLL3057
    Protein HEG homolog 1 CVWG5837
    Fibrinogen C domain-containing VGSA5840
    protein 1
    Phospholipase A1 member A GHPS3125
    Basic salivary proline-rich protein 2 GRTR3118
    Spermatogenesis-associated protein 6 PAMP6501
    Sushi repeat-containing protein SRPX2 LTLL9335
    Twisted gastrulation protein homolog 1 VCEW9374
    Torsin-1B AHPA9419
    Protein Wnt-5a MDHV1887
    Acrosin-binding protein HSAL5836
    C-type lectin domain family 18 member B LHLC1946
    Lysosomal-associated transmembrane Long palate, lung and nasal epithelium
    protein 4A carcinoma-associated protein 3 (Ligand-
    binding protein RYA3)
    Semaphorin-3E LPPA601
    Ameloblastin PINK1
    Major facilitator superfamily domain- SERH2790
    containing protein 5
    Angiopoietin-1 FLFF9364
    Angiopoietin-4 APELIN
    Multiple epidermal growth factor-like GLSH6409
    domains 9
    Acid sphingomyelinase-like SFVP2550
    phosphodiesterase 3a
    ADAMTS-like protein 5 RRLF9220
    Spexin PTML5838
    Putative trypsin-6 VLGN1945
    Proto-oncogene protein Wnt-1 AVPC1948
    Bone morphogenetic protein 3b AWQG2491
    Bone morphogenetic protein 5 PSVL6168
    Bone morphogenetic protein 8B LCII3035
    Protein FAM26D PPRR6495
    C1q-related factor RLSC6348
    WAP four-disulfide core domain protein 1 CSRP2BP
    Cerebellin-1 GLLV3061
    Carboxypeptidase O GWSI6489
    Myelin protein zero-like protein 2 cDNA FLJ53955, highly similar to
    (Epithelial V-like antigen 1) Secreted frizzled-related protein 4
    Serine protease 1-like protein 1 PPIF
    Coiled-coil domain-containing protein 70 VSSW1971
    C-C motif chemokine 28 KLIA6249
    Uncharacterized protein C4orf29 ALLW1950
    CUB domain-containing protein 2 GVEI466
    Trem-like transcript 4 protein ESFI5812
    Uncharacterized protein C6orf58 GNNC2999
    Chondroadherin AAGG6488
    Cartilage intermediate layer protein 2 HHSL751
    Uncharacterized protein C10orf25 Beta-defensin 108B
    Isthmin-1 Beta-defensin 118
    Cystatin-8 Beta-defensin 124
    Cardiotrophin-1 (CT-1) Beta-defensin 125
    Chymotrypsinogen B Beta-defensin 126
    C-X-C motif chemokine 9 Deoxyribonuclease-1-like 2
    C-X-C motif chemokine 13 Stanniocalcin-2
    EMILIN-3 Endothelial cell-specific molecule 1
    Secretagogin Carboxylesterase 7
    Epididymal secretory protein E3-alpha Protein NOV homolog
    Epiphycan UPF0528 protein FAM172A
    Protein FAM5C Interleukin-27 subunit beta
    Fibroblast growth factor 20 Protein FAM3C
    Fibroblast growth factor-binding protein 3 Stromal cell-derived factor 2-like protein 1
    Transmembrane protein 204 Butyrophilin subfamily 1 member A1
    Phosphatidylethanolamine-binding Keratinocyte-associated transmembrane
    protein 4 protein 2
    Coagulation factor V Immunoglobulin alpha Fc receptor
    Coagulation factor VII EMILIN-2
    Pro-MCH Ephrin type-A receptor 10
    Folate receptor gamma Exostosin-like 2
    Mucin-7 Follistatin-related protein 4
    Galanin-like peptide Follistatin-related protein 5
    Hemicentin-1 Transmembrane protein 66
    Interleukin-6 Growth/differentiation factor 2
    Embryonic growth/differentiation factor 1 GDNF family receptor alpha-4
    Interleukin-8 Ig gamma-4 chain C region
    Gremlin-2 Lymphocyte antigen 86
    Stromelysin-2 Inhibin beta E chain
    Probable G-protein coupled receptor 171 GRAM domain-containing protein 1C
    Pappalysin-2 Interferon alpha-10
    Microfibril-associated glycoprotein 4 Interferon alpha-16
    Neuromedin-B Interferon alpha-6
    Mimecan Immunoglobulin superfamily member 21
    Matrix metalloproteinase-19 Agrin
    Interleukin-11 Prolactin
    Interleukin-17A Kelch-like protein 11
    Interleukin-18 Protein Wnt-16
    Interleukin-26 Properdin
    Interleukin-28A Kallikrein-13
    Transmembrane emp24 domain- 1-acyl-sn-glycerol-3-phosphate
    containing protein 3 acyltransferase delta
    Interleukin-29 Kallikrein-9
    Insulin-like peptide INSL6 Vitamin K-dependent protein S
    Protein Wnt-2b Butyrophilin-like protein 8
    Pregnancy-specific beta-1-glycoprotein 1 Laminin subunit beta-4
    Sperm acrosome membrane-associated Lymphatic vessel endothelial hyaluronic
    protein 4 acid receptor 1
    Laminin subunit gamma-3 Cystatin-SA
    Lysyl oxidase homolog 3 Transmembrane protein 59
    Neurotensin/neuromedin N Apolipoprotein(a)-like protein 2
    MAM domain-containing protein 2 Lysozyme-like protein 2
    Microfibrillar-associated protein 2 Lysozyme-like protein 4
    Melanoma inhibitory activity protein 2 Reelin
    Matrix metalloproteinase-24 Retinol-binding protein 4
    Matrix metalloproteinase-25 Carbonic anhydrase 14
    Netrin-1 Tubulointerstitial nephritis antigen
    Netrin-3 Neuropeptide W
    Alpha-N-acetylgalactosaminide alpha- Alpha-1,3-mannosyl-glycoprotein 4-beta-
    2,6-sialyltransferase 1 N-acetylglucosaminyltransferase B
    Alpha-N-acetylgalactosaminide alpha- Transmembrane emp24 domain-
    2,6-sialyltransferase 3 containing protein 5
    Melanoma-derived growth regulatory Complement C1q tumor necrosis factor-
    protein related protein 3
    FMRFamide-related peptides Podocan-like protein 1
    Otoconin-90 Pregnancy-specific beta-1-glycoprotein 5
    Neurturin Keratocan
    Neurexophilin-1 Group IIE secretory phospholipase A2
    Neurexophilin-2 Left-right determination factor 2
    Platelet factor 4 variant NKG2D ligand 2
    Nociceptin Macrophage metalloelastase
    V-set and transmembrane domain- Triggering receptor expressed on myeloid
    containing protein 1 cells 1
    Proline-rich protein 4 Cytokine receptor-like factor 1
    Prolactin-releasing peptide Secretin
    Serine protease 33 Stromal cell-derived factor 2
    Pregnancy-specific beta-1-glycoprotein 8 Lysozyme-like protein 6
    Retbindin Serpin A9
    FMRFamide-related peptides Sclerostin domain-containing protein 1
    Ribonuclease K6 Lysocardiolipin acyltransferase 1
    Ribonuclease T2 Plasma glutamate carboxypeptidase
    Repetin Slit homolog 3 protein
    Complement C1r subcomponent-like C3 and PZP-like alpha-2-macroglobulin
    protein domain-containing protein 8
    Uncharacterized glycosyltransferase Retinoic acid receptor responder
    AER61 protein 2
    Semaphorin-3G Cartilage acidic protein 1
    Secretoglobin family 1C member 1 Stanniocalcin-1
    Secretoglobin family 1D member 1 Beta-tectorin
    Secretoglobin family 1D member 2 Post-GPI attachment to proteins factor 3
    Serpin A12 Germ cell-specific gene 1 protein
    Serpin I2 Interleukin-21 receptor
    von Willebrand factor C and EGF V-set and immunoglobulin domain-
    domain-containing protein containing protein 4
    A disintegrin and metalloproteinase with Scavenger receptor cysteine-rich domain-
    thrombospondin motifs 15 containing group B protein
    Sodium channel subunit beta-2 Prothyroliberin
    Metalloproteinase inhibitor 4 Semaphorin-4A
    T-cell immunomodulatory protein
    A disintegrin and metalloproteinase with Tumor necrosis factor receptor
    thrombospondin motifs 10 superfamily member 27
    Thymic stromal lymphopoietin Toll-like receptor 7
    Transmembrane protein 130
    Unique cartilage matrix-associated Thioredoxin domain-containing
    protein protein 16
    Urocortin-2 Alpha-2-antiplasmin
    Urocortin-3 ( WAP four-disulfide core domain protein 3
    Protein AMBP Protein WFDC9
    Complement C1q tumor necrosis factor- A disintegrin and metalloproteinase with
    related protein 9-like thrombospondin motifs 14
    Growth inhibition and differentiation- Adipocyte plasma membrane-associated
    related protein 88 protein
    Protein Wnt-10a Peroxidasin homolog
    Protein Wnt-3a Progressive ankylosis protein homolog
    Proto-oncogene protein Wnt-3 Chitinase-3-like protein 1
    Protein Wnt-6 UPF0672 protein CXorf36
    Protein Wnt-9a Arylsulfatase J
    Cytokine SCM-1 beta Cortistatin
    Zymogen granule membrane protein 16 Ceruloplasmin
    Zona pellucida-binding protein 1 Angiopoietin-related protein 5
    Anterior gradient protein 3 homolog Coiled-coil domain-containing protein 126
    Amelotin CD177 antigen
    Uncharacterized protein C5orf46 Protein canopy homolog 4
    Uncharacterized aarF domain-containing Fibronectin type-III domain-containing
    protein kinase 1 protein C4orf31
    Draxin Protein FAM180A
    Fibroblast growth factor 18 Platelet basic protein
    C-X-C motif chemokine 11 Interferon epsilon
    Ly6/PLAUR domain-containing protein 6 lntelectin-2
    Chymotrypsin-like elastase family Alpha-1,3-mannosyl-glycoprotein 4-beta-
    member 1 N-acetylglucosaminyltransferase A
    Erythropoietin receptor Matrix extracellular phosphoglycoprotein
    MAM domain-containing cDNA FLJ77863, highly similar to Homo
    glycosylphosphatidylinositol anchor sapiens secreted and transmembrane 1
    protein 2 (SECTM1), mRNA
    Matrix metalloproteinase-27 Epididymal-specific lipocalin-6
    Inactive serine protease 35 Afamin
    Coiled-coil domain-containing Probable cation-transporting ATPase
    protein 134 13A5
    Suprabasin Glutathione peroxidase 3
    Secretoglobin family 1D member 4 Claudin-18
    V-set and transmembrane domain- Putative killer cell immunoglobulin-like
    containing protein 2A receptor like protein KIR3DP1
    ADM Secretory phospholipase A2 receptor
    Uncharacterized protein C2orf82 Haptoglobin
    Insulin growth factor-like family Carcinoembryonic antigen-related cell
    member 1 adhesion molecule 20
    Cadherin-like protein 29 Bone morphogenetic protein 3
    Bone morphogenetic protein 15 Bone marrow stromal antigen 2
    Plasma serine protease inhibitor Cytochrome P450 20A1
    Carcinoembryonic antigen-related cell Bactericidal/permeability-increasing
    adhesion molecule 21 protein-like 3
    Alpha-lactalbumin Protein dpy-19 homolog 2
    Sister chromatid cohesion protein DCC1 Group IIF secretory phospholipase A2
    Galectin-3-binding protein Carboxypeptidase B
    Dynein heavy chain domain-containing Glycosyltransferase 8 domain-containing
    protein 1 protein 2
    C-C motif chemokine 17 Protein FAM19A1
    Fatty acyl-CoA reductase 1 GDNF family receptor alpha-like
    Fin bud initiation factor homolog Probable glutathione peroxidase 8
    Polymeric immunoglobulin receptor Cystatin-D
    Prion-like protein doppel Cystatin-F
    C-X-C motif chemokine 6 Platelet-activating factor acetylhydrolase
    C-X-C motif chemokine 10 Pappalysin-1
    Beta-defensin 1 Solute carrier family 22 member 12
    Hyaluronan and proteoglycan link Chorionic somatomammotropin hormone-
    protein 2 like 1
    Disintegrin and metalloproteinase Regulator of microtubule dynamics
    domain-containing protein 30 protein 3
    Suppressor of fused homolog Retinol dehydrogenase 14
    Folate receptor beta Galanin
    Extracellular sulfatase Sulf-2 Transcobalamin-2
    Tumor necrosis factor receptor Catechol-O-methyltransferase domain-
    superfamily member 14 containing protein 1
    Artemin Tripeptidyl-peptidase 1
    Collagen alpha-1(XII) chain Trem-like transcript 1 protein
    Collagen alpha-1(XIV) chain Guanylate cyclase activator 2B
    Beta-defensin 2 Inducible T-cell costimulator
    Interleukin-21
    Interleukin-3
    Interleukin-7 Notch homolog 2 N-terminal-like protein
    Inhibin alpha chain Laminin subunit beta-2
    Laminin subunit alpha-3 Neuropilin-2
    Dehydrogenase/reductase SDR family EGF-containing fibulin-like extracellular
    member on chromosome X matrix protein 1
    FXYD domain-containing ion transport Receptor-type tyrosine-protein
    regulator 6 phosphatase kappa
    Serine incorporator 2 Regenerating islet-derived protein 4
    Stromelysin-3 Tachykinin-4
    Secreted phosphoprotein 1 Matrix metalloproteinase-23
    Serine beta-lactamase-like protein Complement C1q tumor necrosis factor-
    LACTB, mitochondrial related protein 5
    Galectin-3 Opticin
    Pancreatic prohormone Pre-small/secreted glycoprotein
    Pregnancy-specific beta-1-glycoprotein 6 Pentraxin-related protein PTX3
    Dickkopf-related protein 3 Carboxylesterase 8
    Dehydrogenase/reductase SDR family Thioredoxin-related transmembrane
    member 11 protein 4
    Regenerating islet-derived protein 3 Major facilitator superfamily domain-
    gamma containing protein 2
    RING finger protein 43 Kallikrein-12
    Semenogelin-2 Brevican core protein
    Mucin-15 Porimin
    Bone sialoprotein 2 Torsin-1A
    Lymphotactin C-C motif chemokine 23
    Growth-regulated alpha protein Testican-3
    R-spondin-2 Basic salivary proline-rich protein 4
    Transmembrane and coiled-coil domain- Tumor necrosis factor receptor
    containing protein 3 superfamily member 18
    VEGF co-regulated chemokine 1 Brother of CDO
    ADM2 Beta-1,4-galactosyltransferase 4
    Hydroxysteroid 11-beta-dehydrogenase Dehydrogenase/reductase SDR family
    1-like protein member 9
    Delta-like protein 1 Eppin
    Ephrin-A1 Otoancorin
    Fibroblast growth factor receptor-like 1 Tenascin-R
    GDNF family receptor alpha-3 Growth factor
    Platelet receptor Gi24 Protein TSPEAR
    Progonadoliberin-2 Hephaestin
    Kallikrein-7 Butyrophilin-like protein 3
    Apolipoprotein F Butyrophilin-like protein 9
    Protein CASC4 Laminin subunit gamma-2
    VIP36-like protein Protein LMBR1L
    Magnesium transporter protein 1 Mucin-21
    Amiloride-sensitive amine oxidase Endoplasmic reticulum mannosyl-
    [copper-containing] oligosaccharide 1,2-alpha-mannosidase
    DNA damage-regulated autophagy Pancreatic secretory granule membrane
    modulator protein 2 major glycoprotein GP2
    Transmembrane protein C17orf87 Semaphorin-4B
    Complement factor H-related protein 5 Semaphorin-5B
    FK506-binding protein 7 Epsilon-sarcoglycan
    Serine incorporator 1 Guanylate-binding protein 5
    Transmembrane and ubiquitin-like Ectonucleoside triphosphate
    domain-containing protein 1 diphosphohydrolase 6
    Protein ERGIC-53-like Serpin B3
    Toll-like receptor 10 Protein RMD5 homolog B
    Toll-like receptor 8 Scavenger receptor class A member 5
    Selenoprotein T Semaphorin-6B
    Sialic acid-binding Ig-like lectin 11 Transmembrane protein 108
    Sorting nexin-24 Sushi domain-containing protein 3
    Complement C1q tumor necrosis factor- Latent-transforming growth factor beta-
    related protein 1 binding protein 2
    Putative uncharacterized protein Putative uncharacterized protein
    UNQ6494/PRO21346 UNQ6190/PRO20217
    Secreted and transmembrane 1 precusor Secreted and transmembrane 1 precusor
    variant variant
    C-type lectin domain family 18 member A Collagen alpha-1(XX) chain
    Cysteine-rich secretory protein 3 Netrin receptor UNC5D
    Complement C4-A Mucin-13
    Putative uncharacterized protein ATP-dependent metalloprotease YME1L1
    PRO2829
    Calcium-activated chloride channel Proprotein convertase subtilisin/kexin
    regulator 2 type 5
    Neuroblastoma suppressor of
    tumorigenicity 1
  • The therapeutic proteins provided herein should not be considered to be exclusive. Rather, as is apparent from the disclosure provided herein, the methods of the invention are applicable to any protein wherein attachment of a water soluble polymer is desired according to the invention. For example, therapeutic proteins are described in US 2007/0026485, incorporated herein by reference in its entirety.
  • Blood Coagulation Proteins
  • In one aspect, the starting material of the present invention is a blood coagulation protein, which can be derived from human plasma, or produced by recombinant engineering techniques, as described in patents U.S. Pat. Nos. 4,757,006; 5,733,873; 5,198,349; 5,250,421; 5,919,766; and EP 306 968.
  • Therapeutic polypeptides such as blood coagulation proteins including Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease are rapidly degraded by proteolytic enzymes and neutralized by antibodies. This reduces their half-life and circulation time, thereby limiting their therapeutic effectiveness. Relatively high doses and frequent administration are necessary to reach and sustain the desired therapeutic or prophylactic effect of these coagulation proteins. As a consequence, adequate dose regulation is difficult to obtain and the need of frequent intravenous administrations imposes restrictions on the patient's way of living.
  • As described herein, blood coagulation proteins including, but not limited to, Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XI, Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease are contemplated by the invention. As used herein, the term “blood coagulation protein” refers to any Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor FV (FV), Factor X (FX), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF) and ADAMTS 13 protease which exhibits biological activity that is associated with that particular native blood coagulation protein.
  • The blood coagulation cascade is divided into three distinct segments: the intrinsic, extrinsic, and common pathways (Schenone et al., Curr Opin Hematol. 2004; 11:272-7). The cascade involves a series of serine protease enzymes (zymogens) and protein cofactors. When required, an inactive zymogen precursor is converted into the active form, which consequently converts the next enzyme in the cascade.
  • The intrinsic pathway requires the clotting factors VIII, IX, X, XI, and XII. Initiation of the intrinsic pathway occurs when prekallikrein, high-molecular-weight kininogen, factor XI (FXI) and factor XII (FXII) are exposed to a negatively charged surface. Also required are calcium ions and phospholipids secreted from platelets.
  • The extrinsic pathway is initiated when the vascular lumen of blood vessels is damaged. The membrane glycoprotein tissue factor is exposed and then binds to circulating factor VII (FVII) and to small preexisting amounts of its activated form FVIIa. This binding facilitates full conversion of FVII to FVIIa and subsequently, in the presence of calcium and phospholipids, the conversion of factor IX (FIX) to factor IXa (FIXa) and factor X (FX) to factor Xa (FXa). The association of FVIIa with tissue factor enhances the proteolytic activity by bringing the binding sites of FVII for the substrate (FIX and FX) into closer proximity and by inducing a conformational change, which enhances the enzymatic activity of FVIIa.
  • The activation of FX is the common point of the two pathways. Along with phospholipid and calcium, factors Va (FVa) and Xa convert prothrombin to thrombin (prothrombinase complex), which then cleaves fibrinogen to form fibrin monomers. The monomers polymerize to form fibrin strands. Factor XIIIa (FXIIIa) covalently bonds these strands to one another to form a rigid mesh.
  • Conversion of FVII to FVIIa is also catalyzed by a number of proteases, including thrombin, FIXa, FXa, factor XIa (FXIa), and factor XIIa (FXIIa). For inhibition of the early phase of the cascade, tissue factor pathway inhibitor targets FVIIa/tissue factor/FXa product complex.
  • Factor VIIa
  • FVII (also known as stable factor or proconvertin) is a vitamin K-dependent serine protease glycoprotein with a pivotal role in hemostasis and coagulation (Eigenbrot, Curr Protein Pept Sci. 2002; 3:287-99).
  • FVII is synthesized in the liver and secreted as a single-chain glycoprotein of 48 kD. FVII shares with all vitamin K-dependent serine protease glycoproteins a similar protein domain structure consisting of an amino-terminal gamma-carboxyglutamic acid (Gla) domain with 9-12 residues responsible for the interaction of the protein with lipid membranes, a carboxy-terminal serine protease domain (catalytic domain), and two epidermal growth factor-like domains containing a calcium ion binding site that mediates interaction with tissue factor. Gamma-glutamyl carboxylase catalyzes carboxylation of Gla residues in the amino-terminal portion of the molecule. The carboxylase is dependent on a reduced form of vitamin K for its action, which is oxidized to the epoxide form. Vitamin K epoxide reductase is required to convert the epoxide form of vitamin K back to the reduced form.
  • The major proportion of FVII circulates in plasma in zymogen form, and activation of this form results in cleavage of the peptide bond between arginine 152 and isoleucine 153. The resulting activated FVIIa consists of a NH2-derived light chain (20 kD) and a COOH terminal-derived heavy chain (30 kD) linked via a single disulfide bond (Cys 135 to Cys 262). The light chain contains the membrane-binding Gla domain, while the heavy chain contains the catalytic domain.
  • The plasma concentration of FVII determined by genetic and environmental factors is about 0.5 mg/mL (Pinotti et al., Blood. 2000; 95:3423-8). Different FVII genotypes can result in several-fold differences in mean FVII levels. Plasma FVII levels are elevated during pregnancy in healthy females and also increase with age and are higher in females and in persons with hypertriglyceridemia. FVII has the shortest half-life of all procoagulant factors (3-6 h). The mean plasma concentration of FVIIa is 3.6 ng/mL in healthy individuals and the circulating half-life of FVIIa is relatively long (2.5 h) compared with other coagulation factors.
  • Hereditary FVII deficiency is a rare autosomal recessive bleeding disorder with a prevalence estimated to be 1 case per 500,000 persons in the general population (Acharya et al., J Thromb Haemost. 2004; 2248-56). Acquired FVII deficiency from inhibitors is also very rare. Cases have also been reported with the deficiency occurring in association with drugs such as cephalosporins, penicillins, and oral anticoagulants. Furthermore, acquired FVII deficiency has been reported to occur spontaneously or with other conditions, such as myeloma, sepsis, aplastic anemia, with interleukin-2 and antithymocyte globulin therapy.
  • Reference polynucleotide and polypeptide sequences include, e.g., GenBank Accession Nos. J02933 for the genomic sequence, M13232 for the cDNA (Hagen et al. PNAS 1986; 83: 2412-6), and P08709 for the polypeptide sequence (references incorporated herein in their entireties). A variety of polymorphisms of FVII have been described, for example see Sabater-Lleal et al. (Hum Genet. 2006; 118:741-51) (reference incorporated herein in its entirety).
  • Factor IX
  • FIX is a vitamin K-dependent plasma protein that participates in the intrinsic pathway of blood coagulation by converting FX to its active form in the presence of calcium ions, phospholipids and FVIIIa. The predominant catalytic capability of FIX is as a serine protease with specificity for a particular arginine-isoleucine bond within FX. Activation of FIX occurs by FXIa which causes excision of the activation peptide from FIX to produce an activated FIX molecule comprising two chains held by one or more disulphide bonds. Defects in FIX are the cause of recessive X-linked hemophilia B.
  • Hemophilia A and B are inherited diseases characterized by deficiencies in FVIII and FIX polypeptides, respectively. The underlying cause of the deficiencies is frequently the result of mutations in FVIII and FIX genes, both of which are located on the X chromosome. Traditional therapy for hemophilias often involves intravenous administration of pooled plasma or semi-purified coagulation proteins from normal individuals. These preparations can be contaminated by pathogenic agents or viruses, such as infectious prions, HIV, parvovirus, hepatitis A, and hepatitis C. Hence, there is an urgent need for therapeutic agents that do not require the use of human serum.
  • The level of the decrease in FIX activity is directly proportional to the severity of hemophilia B. The current treatment of hemophilia B consists of the replacement of the missing protein by plasma-derived or recombinant FIX (so-called FIX substitution or replacement treatment or therapy).
  • Polynucleotide and polypeptide sequences of FIX can be found for example in the UniProtKB/Swiss-Prot Accession No. P00740, U.S. Pat. No. 6,531,298 and in FIG. 1 (SEQ ID NO: 1).
  • Factor VIII
  • Coagulation factor VIII (FVIII) circulates in plasma at a very low concentration and is bound non-covalently to Von Willebrand factor (VWF). During hemostasis, FVIII is separated from VWF and acts as a cofactor for activated factor IX (FIXa)-mediated FX activation by enhancing the rate of activation in the presence of calcium and phospholipids or cellular membranes.
  • FVIII is synthesized as a single-chain precursor of approximately 270-330 kD with the domain structure A1-A2-B-A3-C1-C2. When purified from plasma (e.g., “plasma-derived” or “plasmatic”), FVIII is composed of a heavy chain (A1-A2-B) and a light chain (A3-C1-C2). The molecular mass of the light chain is 80 kD whereas, due to proteolysis within the B domain, the heavy chain is in the range of 90-220 kD.
  • FVIII is also synthesized as a recombinant protein for therapeutic use in bleeding disorders. Various in vitro assays have been devised to determine the potential efficacy of recombinant FVIII (rFVIII) as a therapeutic medicine. These assays mimic the in vivo effects of endogenous FVIII. In vitro thrombin treatment of FVIII results in a rapid increase and subsequent decrease in its procoagulant activity, as measured by in vitro assays. This activation and inactivation coincides with specific limited proteolysis both in the heavy and the light chains, which alter the availability of different binding epitopes in FVIII, e.g. allowing FVIII to dissociate from VWF and bind to a phospholipid surface or altering the binding ability to certain monoclonal antibodies.
  • The lack or dysfunction of FVIII is associated with the most frequent bleeding disorder, hemophilia A. The treatment of choice for the management of hemophilia A is replacement therapy with plasma derived or rFVIII concentrates. Patients with severe hemophilia A with FVIII levels below 1%, are generally on prophylactic therapy with the aim of keeping FVIII above 1% between doses. Taking into account the average half-lives of the various FVIII products in the circulation, this result can usually be achieved by giving FVIII two to three times a week.
  • Reference polynucleotide and polypeptide sequences include, e.g., UniProtKB/Swiss-Prot P00451 (FA8 HUMAN); Gitschier J et al., Characterization of the human Factor VIII gene, Nature, 312(5992): 326-30 (1984); Vehar G H et al., Structure of human Factor VIII, Nature, 312(5992):337-42 (1984); Thompson A R. Structure and Function of the Factor VIII gene and protein, Semin Thromb Hemost, 2003:29; 11-29 (2002).
  • Von Willebrand Factor
  • Von Willebrand factor (VWF) is a glycoprotein circulating in plasma as a series of multimers ranging in size from about 500 to 20,000 kD. Multimeric forms of VWF are composed of 250 kD polypeptide subunits linked together by disulfide bonds. VWF mediates initial platelet adhesion to the sub-endothelium of the damaged vessel wall. Only the larger multimers exhibit hemostatic activity. It is assumed that endothelial cells secrete large polymeric forms of VWF and those forms of VWF which have a low molecular weight (low molecular weight VWF) arise from proteolytic cleavage. The multimers having large molecular masses are stored in the Weibel-Pallade bodies of endothelial cells and liberated upon stimulation.
  • VWF is synthesized by endothelial cells and megakaryocytes as prepro-VWF that consists to a large extent of repeated domains. Upon cleavage of the signal peptide, pro-VWF dimerizes through disulfide linkages at its C-terminal region. The dimers serve as protomers for multimerization, which is governed by disulfide linkages between the free end termini. The assembly to multimers is followed by the proteolytic removal of the propeptide sequence (Leyte et al., Biochem. J. 274 (1991), 257-261).
  • The primary translation product predicted from the cloned cDNA of VWF is a 2813-residue precursor polypeptide (prepro-VWF). The prepro-VWF consists of a 22 amino acid signal peptide and a 741 amino acid propeptide, with the mature VWF comprising 2050 amino acids (Ruggeri Z. A., and Ware, J., FASEB J., 308-316 (1993).
  • Defects in VWF are causal to Von Willebrand disease (VWD), which is characterized by a more or less pronounced bleeding phenotype. VWD type 3 is the most severe form, in which VWF is completely missing, and VWD type 1 relates to a quantitative loss of VWF and its phenotype can be very mild. VWD type 2 relates to qualitative defects of VWF and can be as severe as VWD type 3. VWD type 2 has many sub forms, some being associated with the loss or the decrease of high molecular weight multimers. Von Willebrand disease type 2a (VWD-2A) is characterized by a loss of both intermediate and large multimers. VWD-2B is characterized by a loss of highest-molecular-weight multimers. Other diseases and disorders related to VWF are known in the art.
  • The polynucleotide and amino acid sequences of prepro-VWF are available at GenBank Accession Nos. NM_000552 and NP_000543, respectively.
  • Other blood coagulation proteins according to the present invention are described in the art, e.g. Mann K G, Thromb Haemost, 1999; 82:165-74.
  • A. Polypeptides
  • In one aspect, the starting material of the present invention is a protein or polypeptide. As described herein, the term therapeutic protein refers to any therapeutic protein molecule which exhibits biological activity that is associated with the therapeutic protein. In one embodiment of the invention, the therapeutic protein molecule is a full-length protein.
  • Therapeutic protein molecules contemplated include full-length proteins, precursors of full length proteins, biologically active subunits or fragments of full length proteins, as well as biologically active derivatives and variants of any of these forms of therapeutic proteins. Thus, therapeutic protein include those that (1) have an amino acid sequence that has greater than about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% or greater amino acid sequence identity, over a region of at least about 25, about 50, about 100, about 200, about 300, about 400, or more amino acids, to a polypeptide encoded by a referenced nucleic acid or an amino acid sequence described herein; and/or (2) specifically bind to antibodies, e.g., polyclonal or monoclonal antibodies, generated against an immunogen comprising a referenced amino acid sequence as described herein, an immunogenic fragment thereof, and/or a conservatively modified variant thereof.
  • According to the present invention, the term “recombinant therapeutic protein” includes any therapeutic protein obtained via recombinant DNA technology. In certain embodiments, the term encompasses proteins as described herein.
  • As used herein, “endogenous therapeutic protein” includes a therapeutic protein which originates from the mammal intended to receive treatment. The term also includes therapeutic protein transcribed from a transgene or any other foreign DNA present in said mammal. As used herein, “exogenous therapeutic protein” includes a blood coagulation protein which does not originate from the mammal intended to receive treatment.
  • As used herein, “plasma-derived blood coagulation protein” or “plasmatic” includes all forms of the protein found in blood obtained from a mammal having the property participating in the coagulation pathway.
  • As used herein “biologically active derivative” or “biologically active variant” includes any derivative or variant of a molecule having substantially the same functional and/or biological properties of said molecule, such as binding properties, and/or the same structural basis, such as a peptidic backbone or a basic polymeric unit.
  • An “analog,” such as a “variant” or a “derivative,” is a compound substantially similar in structure and having the same biological activity, albeit in certain instances to a differing degree, to a naturally-occurring molecule. For example, a polypeptide variant refers to a polypeptide sharing substantially similar structure and having the same biological activity as a reference polypeptide. Variants or analogs differ in the composition of their amino acid sequences compared to the naturally-occurring polypeptide from which the analog is derived, based on one or more mutations involving (i) deletion of one or more amino acid residues at one or more termini of the polypeptide and/or one or more internal regions of the naturally-occurring polypeptide sequence (e.g., fragments), (ii) insertion or addition of one or more amino acids at one or more termini (typically an “addition” or “fusion”) of the polypeptide and/or one or more internal regions (typically an “insertion”) of the naturally-occurring polypeptide sequence or (iii) substitution of one or more amino acids for other amino acids in the naturally-occurring polypeptide sequence. By way of example, a “derivative” is a type of analog and refers to a polypeptide sharing the same or substantially similar structure as a reference polypeptide that has been modified, e.g., chemically.
  • A variant polypeptide is a type of analog polypeptide and includes insertion variants, wherein one or more amino acid residues are added to a therapeutic protein amino acid sequence of the invention. Insertions may be located at either or both termini of the protein, and/or may be positioned within internal regions of the therapeutic protein amino acid sequence. Insertion variants, with additional residues at either or both termini, include for example, fusion proteins and proteins including amino acid tags or other amino acid labels. In one aspect, the blood coagulation protein molecule optionally contains an N-terminal Met, especially when the molecule is expressed recombinantly in a bacterial cell such as E. coli.
  • In deletion variants, one or more amino acid residues in a therapeutic protein polypeptide as described herein are removed. Deletions can be effected at one or both termini of the therapeutic protein polypeptide, and/or with removal of one or more residues within the therapeutic protein amino acid sequence. Deletion variants, therefore, include fragments of a therapeutic protein polypeptide sequence.
  • In substitution variants, one or more amino acid residues of a therapeutic protein polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature and conservative substitutions of this type are well known in the art. Alternatively, the invention embraces substitutions that are also non-conservative. Exemplary conservative substitutions are described in Lehninger, [Biochemistry, 2nd Edition; Worth Publishers, Inc., New York (1975), pp. 71-77] and are set out immediately below.
  • Conservative Substitutions
  • SIDE CHAIN
    CHARACTERISTIC AMINO ACID
    Non-polar (hydrophobic):
    A. Aliphatic A L I V P
    B. Aromatic F W
    C. Sulfur-containing M
    D. Borderline G
    Uncharged-polar:
    A. Hydroxyl S T Y
    B. Amides N Q
    C. Sulfhydryl C
    D. Borderline G
    Positively charged (basic) K R H
    Negatively charged (acidic) D E
  • Alternatively, exemplary conservative substitutions are set out immediately below.
  • Conservative Substitutions II
  • EXEMPLARY
    ORIGINAL RESIDUE SUBSTITUTION
    Ala (A) Val, Leu, Ile
    Arg (R) Lys, Gln, Asn
    Asn (N) Gln, His, Lys, Arg
    Asp (D) Glu
    Cys (C) Ser
    Gln (Q) Asn
    Glu (E) Asp
    His (H) Asn, Gln, Lys, Arg
    Ile (I) Leu, Val, Met, Ala, Phe,
    Leu (L) Ile, Val, Met, Ala, Phe
    Lys (K) Arg, Gln, Asn
    Met (M) Leu, Phe, Ile
    Phe (F) Leu, Val, Ile, Ala
    Pro (P) Gly
    Ser (S) Thr
    Thr (T) Ser
    Trp (W) Tyr
    Tyr (Y) Trp, Phe, Thr, Ser
    Val (V) Ile, Leu, Met, Phe, Ala
  • B. Polynucleotides
  • Nucleic acids encoding a therapeutic protein of the invention include, for example and without limitation, genes, pre-mRNAs, mRNAs, cDNAs, polymorphic variants, alleles, synthetic and naturally-occurring mutants.
  • Polynucleotides encoding a therapeutic protein of the invention also include, without limitation, those that (1) specifically hybridize under stringent hybridization conditions to a nucleic acid encoding a referenced amino acid sequence as described herein, and conservatively modified variants thereof; (2) have a nucleic acid sequence that has greater than about 95%, about 96%, about 97%, about 98%, about 99%, or higher nucleotide sequence identity, over a region of at least about 25, about 50, about 100, about 150, about 200, about 250, about 500, about 1000, or more nucleotides (up to the full length sequence of 1218 nucleotides of the mature protein), to a reference nucleic acid sequence as described herein. Exemplary “stringent hybridization” conditions include hybridization at 42° C. in 50% formamide, 5×SSC, 20 mM Na.PO4, pH 6.8; and washing in 1×SSC at 55° C. for 30 minutes. It is understood that variation in these exemplary conditions can be made based on the length and GC nucleotide content of the sequences to be hybridized. Formulas standard in the art are appropriate for determining appropriate hybridization conditions. See Sambrook et al., Molecular Cloning: A Laboratory Manual (Second ed., Cold Spring Harbor Laboratory Press, 1989) §§ 9.47-9.51.
  • A “naturally-occurring” polynucleotide or polypeptide sequence is typically derived from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or any mammal. The nucleic acids and proteins of the invention can be recombinant molecules (e.g., heterologous and encoding the wild type sequence or a variant thereof, or non-naturally occurring).
  • C. Production of Therapeutic Proteins
  • Production of a therapeutic protein includes any method known in the art for (i) the production of recombinant DNA by genetic engineering, (ii) introducing recombinant DNA into prokaryotic or eukaryotic cells by, for example and without limitation, transfection, electroporation or microinjection, (iii) cultivating said transformed cells, (iv) expressing therapeutic protein, e.g. constitutively or upon induction, and (v) isolating said blood coagulation protein, e.g. from the culture medium or by harvesting the transformed cells, in order to obtain purified therapeutic protein.
  • In other aspects, the therapeutic protein is produced by expression in a suitable prokaryotic or eukaryotic host system characterized by producing a pharmacologically acceptable blood coagulation protein molecule. Examples of eukaryotic cells are mammalian cells, such as CHO, COS, HEK 293, BHK, SK-Hep, and HepG2.
  • A wide variety of vectors are used for the preparation of the therapeutic protein and are selected from eukaryotic and prokaryotic expression vectors. Examples of vectors for prokaryotic expression include plasmids such as, and without limitation, pRSET, pET, and pBAD, wherein the promoters used in prokaryotic expression vectors include one or more of, and without limitation, lac, trc, trp, recA, or araBAD. Examples of vectors for eukaryotic expression include: (i) for expression in yeast, vectors such as, and without limitation, pAO, pPIC, pYES, or pMET, using promoters such as, and without limitation, AOX1, GAP, GAL1, or AUG1; (ii) for expression in insect cells, vectors such as and without limitation, pMT, pAc5, pIB, pMIB, or pBAC, using promoters such as and without limitation PH, p10, MT, Ac5, OpIE2, gp64, or polh, and (iii) for expression in mammalian cells, vectors such as and without limitation pSVL, pCMV, pRc/RSV, pcDNA3, or pBPV, and vectors derived from, in one aspect, viral systems such as and without limitation vaccinia virus, adeno-associated viruses, herpes viruses, or retroviruses, using promoters such as and without limitation CMV, SV40, EF-1, UbC, RSV, ADV, BPV, and β-actin.
  • D. Administration
  • In one embodiment a conjugated therapeutic protein of the present invention may be administered by injection, such as intravenous, intramuscular, or intraperitoneal injection.
  • To administer compositions comprising a conjugated therapeutic protein of the present invention to human or test animals, in one aspect, the compositions comprise one or more pharmaceutically acceptable carriers. The terms “pharmaceutically” or “pharmacologically acceptable” refer to molecular entities and compositions that are stable, inhibit protein degradation such as aggregation and cleavage products, and in addition do not produce allergic, or other adverse reactions when administered using routes well-known in the art, as described below. “Pharmaceutically acceptable carriers” include any and all clinically useful solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like, including those agents disclosed above.
  • As used herein, “effective amount” includes a dose suitable for treating a disease or disorder or ameliorating a symptom of a disease or disorder. In one embodiment, “effective amount” includes a dose suitable for treating a mammal having a bleeding disorder as described herein.
  • The compositions may be administered orally, topically, transdermally, parenterally, by inhalation spray, vaginally, rectally, or by intracranial injection. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intracisternal injection, or infusion techniques. Administration by intravenous, intradermal, intramuscular, intramammary, intraperitoneal, intrathecal, retrobulbar, intrapulmonary injection and or surgical implantation at a particular site is contemplated as well. Generally, compositions are essentially free of pyrogens, as well as other impurities that could be harmful to the recipient.
  • Single or multiple administrations of the compositions can be carried out with the dose levels and pattern being selected by the treating physician. For the prevention or treatment of disease, the appropriate dosage will depend on the type of disease to be treated, as described above, the severity and course of the disease, whether drug is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the drug, and the discretion of the attending physician.
  • The present invention also relates to a pharmaceutical composition comprising an effective amount of a conjugated therapeutic protein as defined herein. The pharmaceutical composition may further comprise a pharmaceutically acceptable carrier, diluent, salt, buffer, or excipient. The pharmaceutical composition can be used for treating the above-defined bleeding disorders. The pharmaceutical composition of the invention may be a solution or a lyophilized product. Solutions of the pharmaceutical composition may be subjected to any suitable lyophilization process.
  • As an additional aspect, the invention includes kits which comprise a composition of the invention packaged in a manner which facilitates its use for administration to subjects. In one embodiment, such a kit includes a compound or composition described herein (e.g., a composition comprising a conjugated therapeutic protein), packaged in a container such as a sealed bottle or vessel, with a label affixed to the container or included in the package that describes use of the compound or composition in practicing the method. In one embodiment, the kit contains a first container having a composition comprising a conjugated therapeutic protein and a second container having a physiologically acceptable reconstitution solution for the composition in the first container. In one aspect, the compound or composition is packaged in a unit dosage form. The kit may further include a device suitable for administering the composition according to a specific route of administration. Preferably, the kit contains a label that describes use of the therapeutic protein or peptide composition.
  • Water Soluble Polymers
  • In one aspect, a therapeutic protein derivative (i.e., a conjugated therapeutic protein) molecule provided is bound to a water-soluble polymer including, but not limited to, polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG) polyoxazoline, poly acryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC). In one embodiment of the invention, the water soluble polymer is consisting of sialic acid molecule having a molecular weight range of 350 to 120,000, 500 to 100,000, 1000 to 80,000, 1500 to 60,000, 2,000 to 45,000 Da, 3,000 to 35,000 Da, and 5,000 to 25,000 Da. The coupling of the water soluble polymer can be carried out by direct coupling to the protein or via linker molecules. One example of a chemical linker is MBPH (4-[4-N-Maleimidophenyl]butyric acid hydrazide) containing a carbohydrate-selective hydrazide and a sulfhydryl-reactive maleimide group (Chamow et al., J Biol Chem 1992; 267:15916-22). Other exemplary and preferred linkers are described below.
  • In one embodiment, the derivative retains the full functional activity of native therapeutic protein products, and provides an extended half-life in vivo, as compared to native therapeutic protein products. In another embodiment, the derivative retains at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44. 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, or 150 percent (%) biological activity relative to native blood coagulation protein. In a related aspect, the biological activities of the derivative and native blood coagulation protein are determined by the ratios of chromogenic activity to blood coagulation factor antigen value (blood coagulation factor:Chr:blood coagulation factor:Ag). In still another embodiment of the invention, the half-life of the construct is decreased or increased 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, or 10-fold relative to the in vivo half-life of native therapeutic protein.
  • A. Sialic Acid and PSA
  • PSAs consist of polymers (generally homopolymers) of N-acetylneuraminic acid. The secondary amino group normally bears an acetyl group, but it may instead bear a glycolyl group. Possible substituents on the hydroxyl groups include acetyl, lactyl, ethyl, sulfate, and phosphate groups.
  • Figure US20200017543A1-20200116-C00007
  • Structure of Sialic Acid (N-Acetylneuraminic Acid)
  • PSAs and mPSAs generally comprise linear polymers consisting essentially of N-acetylneuraminic acid moieties linked by 2,8- or 2,9-glycosidic linkages or combinations of these (e.g. alternating 2,8- and 2,9-linkages). In particularly preferred PSAs and mPSAs, the glycosidic linkages are α-2,8. Such PSAs and mPSAs are conveniently derived from colominic acids, and are referred to herein as “CAs” and “mCAs”. Typical PSAs and mPSAs comprise at least 2, preferably at least 5, more preferably at least 10 and most preferably at least 20 N-acetylneuraminic acid moieties. Thus, they may comprise from 2 to 300 N-acetylneuraminic acid moieties, preferably from 5 to 200 N-acetylneuraminic acid moieties, or most preferably from 10 to 100 N-acetylneuraminic acid moieties. PSAs and CAs preferably are essentially free of sugar moieties other than N-acetylneuraminic acid. Thus PSAs and CAs preferably comprise at least 90%, more preferably at least 95% and most preferably at least 98% N-acetylneuraminic acid moieties.
  • Where PSAs and CAs comprise moieties other than N-acetylneuraminic acid (as, for example in mPSAS and mCAs) these are preferably located at one or both of the ends of the polymer chain. Such “other” moieties may, for example, be moieties derived from terminal N-acetylneuraminic acid moieties by oxidation or reduction.
  • For example, WO-A-0187922 describes such mPSAs and mCAs in which the non-reducing terminal N-acetylneuraminic acid unit is converted to an aldehyde group by reaction with sodium periodate. Additionally, WO 2005/016974 describes such mPSAs and mCAs in which the reducing terminal N-acetylneuraminic acid unit is subjected to reduction to reductively open the ring at the reducing terminal N-acetylneuraminic acid unit, whereby a vicinal diol group is formed, followed by oxidation to convert the vicinal diol group to an aldehyde group.
  • Sialic acid rich glycoproteins bind selectin in humans and other organisms. They play an important role in human influenza infections. E.g., sialic acid can hide mannose antigens on the surface of host cells or bacteria from mannose-binding lectin. This prevents activation of complement. Sialic acids also hide the penultimate galactose residue thus preventing rapid clearance of the glycoprotein by the galactose receptor on the hepatic parenchymal cells.
  • Figure US20200017543A1-20200116-C00008
  • Structure of Colominic Acid (Homopolymer of N-Acetylneuraminic Acid)
  • Colominic acids (a sub-class of PSAs) are homopolymers of N-acetylneuraminic acid (NANA) with α (2→8) ketosidic linkage, and are produced, inter alia, by particular strains of Escherichia coli possessing K1 antigen. Colominic acids have many physiological functions. They are important as a raw material for drugs and cosmetics.
  • Comparative studies in vivo with polysialylated and unmodified asparaginase revealed that polysialylation increased the half-life of the enzyme (Fernandes and Gregoriadis, Biochimica Biophysica Acta 1341: 26-34, 1997).
  • As used herein, “sialic acid moieties” includes sialic acid monomers or polymers (“polysaccharides”) which are soluble in an aqueous solution or suspension and have little or no negative impact, such as side effects, to mammals upon administration of the PSA-blood coagulation protein conjugate in a pharmaceutically effective amount. The polymers are characterized, in one aspect, as having 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, or 500 sialic acid units. In certain aspects, different sialic acid units are combined in a chain.
  • In one embodiment of the invention, the sialic acid portion of the polysaccharide compound is highly hydrophilic, and in another embodiment the entire compound is highly hydrophilic. Hydrophilicity is conferred primarily by the pendant carboxyl groups of the sialic acid units, as well as the hydroxyl groups. The saccharide unit may contain other functional groups, such as, amine, hydroxyl or sulphate groups, or combinations thereof. These groups may be present on naturally-occurring saccharide compounds, or introduced into derivative polysaccharide compounds.
  • The naturally occurring polymer PSA is available as a polydisperse preparation showing a broad size distribution (e.g. Sigma C-5762) and high polydispersity (PD). Because the polysaccharides are usually produced in bacteria carrying the inherent risk of copurifying endotoxins, the purification of long sialic acid polymer chains may raise the probability of increased endotoxin content. Short PSA molecules with 1-4 sialic acid units can also be synthetically prepared (Kang S H et al., Chem Commun. 2000; 227-8; Ress D K and Linhardt R J, Current Organic Synthesis. 2004; 1:31-46), thus minimizing the risk of high endotoxin levels. However PSA preparations with a narrow size distribution and low polydispersity, which are also endotoxin-free, can now be manufactured. Polysaccharide compounds of particular use for the invention are, in one aspect, those produced by bacteria. Some of these naturally-occurring polysaccharides are known as glycolipids. In one embodiment, the polysaccharide compounds are substantially free of terminal galactose units.
  • B. Polyethylene Glycol (PEG) and Pegylation
  • In certain aspects, therapeutic proteins are conjugated to a water soluble polymer by any of a variety of chemical methods (Roberts J M et al., Advan Drug Delivery Rev 2002; 54:459-76). For example, in one embodiment a therapeutic protein is modified by the conjugation of PEG to free amino groups of the protein using N-hydroxysuccinimide (NHS) esters. In another embodiment the water soluble polymer, for example PEG, is coupled to free SH groups using maleimide chemistry or the coupling of PEG hydrazides or PEG amines to carbohydrate moieties of the therapeutic protein after prior oxidation.
  • The conjugation is in one aspect performed by direct coupling (or coupling via linker systems) of the water soluble polymer to a therapeutic protein under formation of stable bonds. In addition degradable, releasable or hydrolysable linker systems are used in certain aspects the present invention (Tsubery et al. J Biol Chem 2004; 279:38118-24/Greenwald et al., J Med Chem 1999; 42:3657-67/Zhao et al., Bioconj Chem 2006; 17:341-51/WO2006/138572A2/U.S. Pat. No. 7,259,224B2/U.S. Pat. No. 7,060,259B2).
  • In one embodiment of the invention, a therapeutic protein is modified via lysine residues by use of polyethylene glycol derivatives containing an active N-hydroxysuccinimide ester (NHS) such as succinimidyl succinate, succinimidyl glutarate or succinimidyl propionate. These derivatives react with the lysine residues of the therapeutic protein under mild conditions by forming a stable amide bond. In one embodiment of the invention, the chain length of the PEG derivative is 5,000 Da. Other PEG derivatives with chain lengths of 500 to 2,000 Da, 2,000 to 5,000 Da, greater than 5,000 up to 10,000 Da or greater than 10,000 up to 20,000 Da, or greater than 20,000 up to 150,000 Da are used in various embodiments, including linear and branched structures.
  • Alternative methods for the PEGylation of amino groups are, without limitation, the chemical conjugation with PEG carbonates by forming urethane bonds, or the reaction with aldehydes or ketones by reductive amination forming secondary amide bonds.
  • In one embodiment of the present invention a therapeutic protein molecule is chemically modified using PEG derivatives that are commercially available. These PEG derivatives in alternative aspects have linear or branched structures. Examples of PEG-derivatives containing NHS groups are listed below.
  • The following PEG derivatives are non-limiting examples of those commercially available from Nektar Therapeutics (Huntsville, Ala.; see www.nektar.com/PEG reagent catalog; Nektar Advanced PEGylation, price list 2005-2006):
  • Figure US20200017543A1-20200116-C00009
  • Figure US20200017543A1-20200116-C00010
  • This reagent with branched structure is described in more detail by Kozlowski et al. (BioDrugs 2001; 5:419-29).
  • Other non-limiting examples of PEG derivatives are commercially available from NOF Corporation (Tokyo, Japan; see www.nof.co.jp/english: Catalogue 2005)
  • Figure US20200017543A1-20200116-C00011
  • Structures of Branched PEG-Derivatives (NOF Corp.):
  • Figure US20200017543A1-20200116-C00012
  • These propane derivatives show a glycerol backbone with a 1,2 substitution pattern. In the present invention branched PEG derivatives based on glycerol structures with 1,3 substitution or other branched structures described in US2003/0143596A1 are also contemplated.
  • PEG derivatives with degradable (for example, hydrolysable) linkers as described by Tsubery et al. (J Biol Chem 2004; 279:38118-24) and Shechter et al. (WO04089280A3) are also contemplated.
  • Surprisingly, the PEGylated therapeutic protein of this invention exhibits functional activity, combined with an extended half-life in vivo. In addition the PEGylated rFVIII, FVIIa, FIX, or other blood coagulation factor seems to be more resistant against thrombin inactivation.
  • C. Hydroxyalkyl Starch (HAS) and Hydroxylethyl Starch (HES)
  • In various embodiments of the present invention, a therapeutic protein molecule is chemically modified using hydroxyalkyl starch (HAS) or hydroxylethyl starch (HES) or derivatives thereof.
  • HES is a derivative of naturally occurring amylopectin and is degraded by alpha-amylase in the body. HES is a substituted derivative of the carbohydrate polymer amylopectin, which is present in corn starch at a concentration of up to 95% by weight. HES exhibits advantageous biological properties and is used as a blood volume replacement agent and in hemodilution therapy in the clinics (Sommermeyer et al., 1987, Krankenhauspharmazie, 8 (8), 271-278; and Weidler et al., 1991, Arzneim.-Forschung/Drug Res. g 419 494-498).
  • Amylopectin consists of glucose moieties, wherein in the main chain alpha-1,4-glycosidic bonds are present and at the branching sites alpha-1, 6-glycosidic bonds are found. The physical-chemical properties of this molecule are mainly determined by the type of glycosidic bonds. Due to the nicked alpha-1,4-glycosidic bond, helical structures with about six glucose-monomers per turn are produced. The physico-chemical as well as the biochemical properties of the polymer can be modified via substitution. The introduction of a hydroxyethyl group can be achieved via alkaline hydroxyethylation. By adapting the reaction conditions it is possible to exploit the different reactivity of the respective hydroxy group in the unsubstituted glucose monomer with respect to a hydroxyethylation. Owing to this fact, the skilled person is able to influence the substitution pattern to a limited extent.
  • HAS refers to a starch derivative which has been substituted by at least one hydroxyalkyl group. Therefore, the term hydroxyalkyl starch is not limited to compounds where the terminal carbohydrate moiety comprises hydroxyalkyl groups R1, R2, and/or R3, but also refers to compounds in which at least one hydroxy group present anywhere, either in the terminal carbohydrate moiety and/or in the remaining part of the starch molecule, HAS′, is substituted by a hydroxyalkyl group R1, R2, or R3.
  • Figure US20200017543A1-20200116-C00013
  • The alkyl group may be a linear or branched alkyl group which may be suitably substituted. Preferably, the hydroxyalkyl group contains 1 to 10 carbon atoms, more preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, and even more preferably 2-4 carbon atoms. “Hydroxyalkyl starch” therefore preferably comprises hydroxyethyl starch, hydroxypropyl starch and hydroxybutyl starch, wherein hydroxyethyl starch and hydroxypropyl starch are particularly preferred.
  • Hydroxyalkyl starch comprising two or more different hydroxyalkyl groups is also comprised in the present invention. The at least one hydroxyalkyl group comprised in HAS may contain two or more hydroxy groups. According to one embodiment, the at least one hydroxyalkyl group comprised HAS contains one hydroxy group.
  • The term HAS also includes derivatives wherein the alkyl group is mono- or polysubstituted. In one embodiment, the alkyl group is substituted with a halogen, especially fluorine, or with an aryl group, provided that the HAS remains soluble in water. Furthermore, the terminal hydroxy group a of hydroxyalkyl group may be esterified or etherified. HAS derivatives are described in WO/2004/024776, which is incorporated by reference in its entirety.
  • D. Methods of Attachment
  • A therapeutic protein may be covalently linked to the polysaccharide compounds by any of various techniques known to those of skill in the art. In various aspects of the invention, sialic acid moieties are bound to a therapeutic protein, e.g., FIX, FVIII, FVIIa or VWF, for example by the method described in U.S. Pat. No. 4,356,170, which is herein incorporated by reference.
  • Other techniques for coupling PSA to polypeptides are also known and contemplated by the invention. For example, US Publication No. 2007/0282096 describes conjugating an amine or hydrazide derivative of, e.g., PSA, to proteins. In addition, US Publication No. 2007/0191597 describes PSA derivatives containing an aldehyde group for reaction with substrates (e.g., proteins) at the reducing end. These references are incorporated by reference in their entireties.
  • Various methods are disclosed at column 7, line 15, through column 8, line 5 of U.S. Pat. No. 5,846,951 (incorporated by reference in its entirety). Exemplary techniques include linkage through a peptide bond between a carboxyl group on one of either the blood coagulation protein or polysaccharide and an amine group of the blood coagulation protein or polysaccharide, or an ester linkage between a carboxyl group of the blood coagulation protein or polysaccharide and a hydroxyl group of the therapeutic protein or polysaccharide. Another linkage by which the therapeutic protein is covalently bonded to the polysaccharide compound is via a Schiff base, between a free amino group on the blood coagulation protein being reacted with an aldehyde group formed at the non-reducing end of the polysaccharide by periodate oxidation (Jennings H J and Lugowski C, J Immunol. 1981; 127:1011-8; Fernandes A I and Gregoriadis G, Biochim Biophys Acta. 1997; 1341; 26-34). The generated Schiff base is in one aspect stabilized by specific reduction with NaCNBH3 to form a secondary amine. An alternative approach is the generation of terminal free amino groups in the PSA by reductive amination with NH4C1 after prior oxidation. Bifunctional reagents can be used for linking two amino or two hydroxyl groups. For example, PSA containing an amino group is coupled to amino groups of the protein with reagents like BS3 (Bis(sulfosuccinimidyl)suberate/Pierce, Rockford, Ill.). In addition heterobifunctional cross linking reagents like Sulfo-EMCS (N-ε-Maleimidocaproyloxy) sulfosuccinimide ester/Pierce) is used for instance to link amine and thiol groups.
  • In another approach, a PSA hydrazide is prepared and coupled to the carbohydrate moiety of the protein after prior oxidation and generation of aldehyde functions.
  • As described above, a free amine group of the therapeutic protein reacts with the 1-carboxyl group of the sialic acid residue to form a peptidyl bond or an ester linkage is formed between the 1-carboxylic acid group and a hydroxyl or other suitable active group on a blood coagulation protein. Alternatively, a carboxyl group forms a peptide linkage with deacetylated 5-amino group, or an aldehyde group of a molecule of a therapeutic protein forms a Schiff base with the N-deacetylated 5-amino group of a sialic acid residue.
  • Alternatively, the polysaccharide compound is associated in a non-covalent manner with a therapeutic protein. For example, the polysaccharide compound and the pharmaceutically active compound are in one aspect linked via hydrophobic interactions. Other non-covalent associations include electrostatic interactions, with oppositely charged ions attracting each other.
  • In various embodiments, the therapeutic protein is linked to or associated with the polysaccharide compound in stoichiometric amounts (e.g., 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:7, 1:8, 1:9, or 1:10, etc.). In various embodiments, 1-6, 7-12 or 13-20 polysaccharides are linked to the blood coagulation protein. In still other embodiments, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more polysaccharides are linked to the blood coagulation protein.
  • In various embodiments, the therapeutic protein is modified to introduce glycosylation sites (i.e., sites other than the native glycosylation sites). Such modification may be accomplished using standard molecular biological techniques known in the art. Moreover, the therapeutic protein, prior to conjugation to a water soluble polymer via one or more carbohydrate moieties, may be glycosylated in vivo or in vitro. These glycosylated sites can serve as targets for conjugation of the proteins with water soluble polymers (US Patent Application No. 20090028822, US Patent Application No. 2009/0093399, US Patent Application No. 2009/0081188, US Patent Application No. 2007/0254836, US Patent Application No. 2006/0111279, and DeFrees S. et al., Glycobiology, 2006, 16, 9, 833-43). For example, a protein that is not naturally glycoslyated in vivo (e.g., a protein that is not a glycoprotein) may be modified as described above.
  • E. Aminooxy Linkage
  • In one embodiment of the invention, the reaction of hydroxylamine or hydroxylamine derivatives with aldehydes (e.g., on a carbohydrate moiety following oxidation by sodium periodate) to form an oxime group is applied to the preparation of conjugates of blood coagulation protein. For example, a glycoprotein (e.g., a therapeutic protein according to the present invention) is first oxidized with a oxidizing agent such as sodium periodate (NaIO4) (Rothfus J A et Smith E L., J Biol Chem 1963, 238, 1402-10; and Van Lenten L and Ashwell G., J Biol Chem 1971, 246, 1889-94). The periodate oxidation of glycoproteins is based on the classical Malaprade reaction described in 1928, the oxidation of vicinal diols with periodate to form an active aldehyde group (Malaprade L., Analytical application, Bull Soc Chim France, 1928, 43, 683-96). Additional examples for such an oxidizing agent are lead tetraacetate (Pb(OAc)4), manganese acetate (MnO(Ac)3), cobalt acetate (Co(OAc)2), thallium acetate (TlOAc), cerium sulfate (Ce(SO4)2) (U.S. Pat. No. 4,367,309) or potassium perruthenate (KRuO4) (Marko et al., J Am Chem Soc 1997, 119, 12661-2). By “oxidizing agent” a mild oxidizing compound which is capable of oxidizing vicinal diols in carbohydrates, thereby generating active aldehyde groups under physiological reaction conditions is meant.
  • The second step is the coupling of the polymer containing an aminooxy group to the oxidized carbohydrate moiety to form an oxime linkage. In one embodiment of the invention, this step can be carried out in the presence of catalytic amounts of the nucleophilic catalyst aniline or aniline derivatives (Dirksen A et Dawson P E, Bioconjugate Chem. 2008; Zeng Y et al., Nature Methods 2009; 6:207-9). The aniline catalysis dramatically accelerates the oxime ligation allowing the use of very low concentrations of the reagents. In another embodiment of the invention the oxime linkage is stabilized by reduction with NaCNBH3 to form an alkoxyamine linkage (FIG. 2). Additional catalysts are described below.
  • Additional information on aminooxy technology can be found in the following references, each of which is incorporated in their entireties: EP 1681303A1 (HASylated erythropoietin); WO 2005/014024 (conjugates of a polymer and a protein linked by an oxime linking group); WO96/40662 (aminooxy-containing linker compounds and their application in conjugates); WO 2008/025856 (Modified proteins); Peri F et al., Tetrahedron 1998, 54, 12269-78; Kubler-Kielb J et. Pozsgay V., J Org Chem 2005, 70, 6887-90; Lees A et al., Vaccine 2006, 24(6), 716-29; and Heredia K L et al., Macromoecules 2007, 40(14), 4772-9.
  • In various embodiments of the invention, the water soluble polymer which is linked according to the aminooxy technology described herein to an oxidized carbohydrate moiety of a therapeutic protein (e.g., FVIII, FVIIa, or FIX) include, but are not limited to polyethylene glycol (PEG), branched PEG, polysialic acid (PSA), carbohydrate, polysaccharides, pullulane, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, starch, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG) polyoxazoline, poly acryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyoxazoline, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, poly(l-hydroxymethylethylene hydroxymethylformal) (PHF), 2-methacryloyloxy-2′-ethyltrimethylammoniumphosphate (MPC).
  • Nucleophilic Catalysts
  • As described herein, the conjugation of water soluble polymers to therapeutic proteins can be catalyzed by aniline. Aniline strongly catalyzes aqueous reactions of aldehydes and ketones with amines to form stable imines such as hydrazones and oximes. The following diagram compares an uncatalyzed versus the aniline-catalyzed oxime ligation reaction (Kohler J J, ChemBioChem 2009; 10:2147-50):
  • Figure US20200017543A1-20200116-C00014
  • However, considering the numerous health risks associated with aniline, alternative catalysts are desirable. The present invention provides aniline derivatives as alternative oxime ligation catalysts. Such aniline derivatives include, but are not limited to, o-amino benzoic acid, m-amino benzoic acid, p-amino benzoic acid, sulfanilic acid, o-aminobenzamide, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, and p-anisidine.
  • In one embodiment of the invention, m-toluidine (aka meta-toluidine, m-methylaniline, 3-methylaniline, or 3-amino-1-methylbenzene) is used to catalyze the conjugation reactions described herein. M-toluidine and aniline have similar physical properties and essentially the same pKa value (m-toluidine: pKa 4.73, aniline: pKa 4.63).
  • The nucleophilic catalysts of the invention are useful for oxime ligation (e.g, using aminooxy linkage) or hydrazone formation (e.g., using hydrazide chemistry). In various embodiments of the invention, the nucleophilic catalyst is provided in the conjugation reaction at a concentration of of 0.1, 0.2, 0.3, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, or 50 mM. In one embodiment, the nucleophilic catalyst is provided between 1 to 10 mM. In various embodiments of the invention, the pH range of conjugation reaction is 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5. In one embodiment, the pH is between 5.5 to 6.5.
  • Purification of Conjugated Proteins
  • In various embodiments, purification of a protein that has been incubated with an oxidizing agent and/or a therapeutic protein that has been conjugated with a water soluble polymer according to the present disclosure, is desired. Numerous purification techniques are known in the art and include, without limitation, chromatographic methods such as ion-exchange chromatography, hydrophobic interaction chromatography, size exclusion chromatography and affinity chromatography or combinations thereof, filtration methods, and precipitation methods (Guide to Protein Purification, Meth. Enzymology Vol 463 (edited by Burgess R R and Deutscher M P), 2nd edition, Academic Press 2009).
  • The following examples are not intended to be limiting but only exemplary of specific embodiments of the invention.
  • EXAMPLES Example 1 Preparation of the Homobifunctional Linker NH2[OCH2CH2]2ONH2
  • The homobifunctional linker NH2[OCH2CH2]2ONH2
  • Figure US20200017543A1-20200116-C00015
  • (3-oxa-pentane-1,5-dioxyamine) containing two active aminooxy groups was synthesized according to Boturyn et al. (Tetrahedron 1997; 53:5485-92) in a two step organic reaction employing a modified Gabriel-Synthesis of primary amines (FIG. 3). In the first step, one molecule of 2,2-chlorodiethylether was reacted with two molecules of Endo-N-hydroxy-5-norbornene-2,3-dicarboximide in dimethylformamide (DMF). The desired homobifunctional product was prepared from the resulting intermediate by hydrazinolysis in ethanol.
  • Example 2 Preparation of the Homobifunctional Linker NH2[OCH2CH2]4ONH2
  • The Homobifunctional Linker NH2[OCH2CH2]4ONH2
  • Figure US20200017543A1-20200116-C00016
  • (3,6,9-trioxa-undecane-1,11-dioxyamine) containing two active aminooxy groups was synthesized according to Boturyn et al. (Tetrahedron 1997; 53:5485-92) in a two step organic reaction employing a modified Gabriel-Synthesis of primary amines (FIG. 3). In the first step one molecule of Bis-(2-(2-chlorethoxy)-ethyl)-ether was reacted with two molecules of Endo-N-hydroxy-5-norbornene-2,3-dicarboximide in DMF. The desired homobifunctional product was prepared from the resulting intermediate by hydrazinolysis in ethanol.
  • Example 3 Preparation of the Homobifunctional Linker NH2[OCH2CH2]6ONH2
  • The Homobifunctional Linker NH2[OCH2CH2]6ONH2
  • Figure US20200017543A1-20200116-C00017
  • (3,6,9,12,15-penatoxa-heptadecane-1,17-dioxyamine) containing two active aminooxy groups was synthesized according to Boturyn et al. (Tetrahedron 1997; 53:5485-92) in a two step organic reaction employing a modified Gabriel-Synthesis of primary amines. In the first step one molecule of hexaethylene glycol dichloride was reacted with two molecules of Endo-N-hydroxy-5-norbornene-2,3-dicarboximide in DMF. The desired homobifunctional product was prepared from the resulting intermediate by hydrazinolysis in ethanol.
  • Example 4 Detailed Synthesis of the Aminooxy-PSA Reagent
  • 3-oxa-pentane-1,5 dioxyamine was synthesized according to Botyryn et al (Tetrahedron 1997; 53:5485-92) in a two step organic synthesis as outlined in Example 1.
  • Step 1:
  • To a solution of Endo-N-hydroxy-5-norbonene-2,3-dicarboxiimide (59.0 g; 1.00 eq) in 700 ml anhydrous N,N-dimetylformamide anhydrous K2CO3 (45.51 g; 1.00 eq) and 2,2-dichlorodiethylether (15.84 ml; 0.41 eq) were added. The reaction mixture was stirred for 22 h at 50° C. The mixture was evaporated to dryness under reduced pressure. The residue was suspended in 2 L dichloromethane and extracted two times with saturated aqueous NaCl-solution (each 1 L). The Dichloromethane layer was dried over Na2SO4 and then evaporated to dryness under reduced pressure and dried in high vacuum to give 64.5 g of 3-oxapentane-1,5-dioxy-endo-2′,3′-dicarboxydiimidenorbornene as a white-yellow solid (intermediate 1).
  • Step 2:
  • To a solution of intermediate 1 (64.25 g; 1.00 eq) in 800 ml anhydrous Ethanol, 31.0 ml Hydrazine hydrate (4.26 eq) were added. The reaction mixture was then refluxed for 2 hrs. The mixture was concentrated to the half of the starting volume by evaporating the solvent under reduced pressure. The occurring precipitate was filtered off. The remaining ethanol layer was evaporated to dryness under reduced pressure. The residue containing the crude product 3-oxa-pentane-1,5-dioxyamine was dried in vacuum to yield 46.3 g. The crude product was further purified by column chromatography (Silicagel 60; isocratic elution with Dichloromethane/Methanol mixture, 9/1) to yield 11.7 g of the pure final product 3-oxa-pentane-1,5-dioxyamine.
  • Example 5 Preparation of Aminooxy-PSA
  • 1000 mg of oxidized PSA (MW=20 kD) obtained from the Serum Institute of India (Pune, India) was dissolved in 16 ml 50 mM phospate buffer pH 6.0. Then 170 mg 3-oxa-pentane-1,5-dioxyamine was given to the reaction mixture. After shaking for 2 hrs at RT 78.5 mg sodium cyanoborohydride was added and the reaction was performed for 18 hours over night. The reaction mixture was then subjected to a ultrafiltration/diafiltration procedure (UF/DF) using a membrane with a 5 kD cut-off made of regenerated cellulose (50 cm2, Millipore).
  • Example 6 Preparation of Aminooxy-PSA Employing a Chromatographic Purification Step
  • 1290 mg of oxidized PSA (MW=20 kD) obtained from the Serum Institute of India (Pune, India) was dissolved in 25 ml 50 mM phosphate buffer pH 6.0 (Buffer A). Then 209 mg 3-oxa-pentane-1,5-dioxyamine was given to the reaction mixture. After shaking for 1 h at RT 101 mg sodium cyanoborohydride was added and the reaction was performed for 3 hours. Then the mixture was then subjected to a weak anion exchange chromatography step employing a Fractogel EMD DEAE 650-M chromatography gel (column dimension: XK26/135). The reaction mixture was diluted with 110 ml Buffer A and loaded onto the DEAE column pre-equilibrated with Buffer A at a flow rate of 1 cm/min. Then the column was washed with 20 CV Buffer B (20 mM Hepes, pH 6.0) to remove free 3-oxa-pentane-1,5-dioxyamine and cyanide at a flow rate of 2 cm/min. The aminooxy-PSA reagent was then eluted with a step gradient consisting of 67% Buffer B and 43% Buffer C (20 mM Hepes, 1M NaCl, pH 7.5). The eluate was concentrated by UF/DF using a 5 kD membrane made of polyether sulfone (50 cm2, Millipore). The final diafiltration step was performed against Buffer D (20 mM Hepes, 90 mM NaCl, pH 7.4). The preparation was analytically characterized by measuring total PSA (Resorcinol assay) and total aminooxy groups (TNBS assay) to determine the degree of modification. Furthermore the polydispersity as well as free 3-oxa-pentane-1,5-dioxyamine and cyanide was determined.
  • Example 7 Preparation of Aminooxy-PSA without a Reduction Step
  • 573 mg of oxidized PSA (MW=20 kD) obtained from the Serum Institute of India (Pune, India) was dissolved in 11.3 ml 50 mM phosphate buffer pH 6.0 (Buffer A). Then 94 mg 3-oxa-pentane-1,5-dioxyamine was given to the reaction mixture. After shaking for 5 h at RT the mixture was then subjected to a weak anion exchange chromatography step employing a Fractogel EMD DEAE 650-M chromatography gel (column dimension: XK16/105). The reaction mixture was diluted with 50 ml Buffer A and loaded onto the DEAE column pre-equilibrated with Buffer A at a flow rate of 1 cm/min. Then the column was washed with 20 CV Buffer B (20 mM Hepes, pH 6.0) to remove free 3-oxa-pentane-1,5-dioxyamine and cyanide at a flow rate of 2 cm/min. The aminooxy-PSA reagent was the eluted with a step gradient consisting of 67% Buffer B and 43% Buffer C (20 mM Hepes, 1 M NaCl, pH 7.5). The eluate was concentrated by UF/DF using a 5 kD membrane made of polyether sulfone (50 cm2, Millipore). The final diafiltration step was performed against Buffer D (20 mM Hepes, 90 mM NaCl, pH 7.4). The preparation was analytically characterized by measuring total PSA (Resorcinol assay) and total aminooxy groups (TNBS assay) to determine the degree of modification. Furthermore the polydispersity as well as free 3-oxa-pentane-1,5-dioxyamine was determined.
  • Example 8 Preparation of Aminooxy-PSA without a Reduction Step in the Presence of the Nucleophilic Catalyst m-Toluidine
  • 573 mg of oxidized PSA (MW=20 kD) obtained from the Serum Institute of India (Pune, India) is dissolved in 9 ml 50 mM phosphate buffer pH 6.0 (Buffer A). Then 94 mg 3-oxa-pentane-1,5-dioxyamine is given to this solution. Subsequently 2.3 ml of a 50 mM m-toluidine stock solution are added to this reaction mixture. After shaking for 2 h at RT the mixture is then subjected to a weak anion exchange chromatography step employing a Fractogel EMD DEAE 650-M chromatography gel (column dimension: XK16/105). The reaction mixture is diluted with 50 ml Buffer A and loaded onto the DEAE column pre-equilibrated with Buffer A at a flow rate of 1 cm/min. Then the column is washed with 20CV Buffer B (20 mM Hepes, pH 6.0) to remove free 3-oxa-pentane-1,5-dioxyamine and cyanide at a flow rate of 2 cm/min. The aminooxy-PSA reagent is the eluted with a step gradient consisting of 67% Buffer B and 43% Buffer C (20 mM Hepes, 1 M NaCl, pH 7.5). The eluate is concentrated by UF/DF using a 5 kD membrane made of polyether sulfone (50 cm2, Millipore). The final diafiltration step is performed against Buffer D (20 mM Hepes, 90 mM NaCl, pH 7.4). The preparation is analytically characterized by measuring total PSA (Resorcinol assay) and total aminooxy groups (TNBS assay) to determine the degree of modification. Furthermore the polydispersity as well as free 3-oxa-pentane-1,5-dioxyamine is determined.
  • Example 9 Preparation of Aminooxy-PSA Reagent
  • An Aminooxy-PSA reagent was prepared according to the Examples 4-8. After diafiltration, the product was frozen at −80° C. and lyophilized. After lyophilization the reagent was dissolved in the appropriate volume of water and used for preparation of PSA-protein conjugates via carbohydrate modification.
  • Example 10 Evaluation of the Efficacy of Different Alternative Nucleophilic Catalysts
  • rFIX was incubated with sodium periodate, aminooxy-PSA reagent under standardized conditions (1 mg/ml rFIX in 20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2), pH 6.0, 5-fold molar aminooxy-PSA reagent excess, 100 μM NaIO4) using different nucleophilic catalysts (aniline, m-toluidine, o-anisidine, m-anisidine, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, p-aminobenzamide, sulfanilic acid/standard concentration: 10 mM) The reaction was carried out for 2 hrs in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of aqueous cysteine solution with a final concentration of 1 mM.
  • The coupling efficiency was determined by SDS-PAGE using an Invitrogen X-cell mini system. Samples were spiked with lithium dodecyl sulfate (LDS) buffer and denatured for 10 min at 70° C. Then the samples were applied on 3-8% TRIS-acetate gels and ran at 150 V for 60 min. Subsequently the gels were stained with Coomassie.
  • In addition the samples were characterized by use of a SEC-HPLC system using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77).
  • 50 μl of samples were injected undiluted and eluted isocratically with a 0.22 μm filtered solution of 20 mM NaH2PO4, 50 mM Na2SO4, pH 6.1 at a flow rate of 0.5 ml/min. The elution pattern was recorded at 280 nm.
  • The results are summarized in FIGS. 5A-C and 6 (SDS PAGE) and Table 2 (SEC-HPLC results). The catalytic effect of the different preparations is demonstrated. It is shown that the use of m-toluidine leads to equivalent results as obtained with aniline.
  • TABLE 2
    di-PSAylated mono- free
    nucleophilic catalysts rFIX PSAylated rFIX rFIX
    no catalyst 4.5% 24.9% 70.6%
    10 mM aniline 47.7% 33.6% 18.7%
    10 mM m-toluidine 31.4% 40.8% 27.8%
    10 mM o-aminobenzioc acid 30.9% 38.5% 30.6%
    10 mM m-aminobenzioc acid 27.6% 38.0% 34.4%
    10 mM p-aminobenzioc acid 18.1% 39.3% 42.6%
    10 mM o-aminobenzamide 15.9% 38.4% 45.7%
    10 mM sulfanilic acid 11.8% 35.8% 52.4%
  • Example 11 Polysialylation of rFIX Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • 12.3 mg rFIX was dissolved in 6.1 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). 254 μl of an aqueous sodium periodate solution (5 mM) was then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 6.5 μl of a 1 M aqueous cysteine solution. The mixture was subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (8.8 ml), containing oxidized rFIX was mixed with 2.46 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) was added to give a 5-fold molar reagent excess. This mixture was incubated for 2.5 h at RT in the dark under gentle stirring.
  • The free rFIX was removed by means of anion exchange chromatography (AEC). The reaction mixture was diluted with 15 ml Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. The column was then eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFIX elutes at a conductivity between 12-25 mS/cm and the conjugate between 27-45 mS/cm. The conductivity of the conjugate containing fractions was subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5M NaCl, 5 mM CaCl2, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free aminooxy-PSA reagent was washed out within 5 CV Buffer D. Subsequently the conjugate is eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4). The conjugate containing fractions were concentrated by UF/DF using Vivaspin 15R 10 kD centrifugal filtrator. The final diafiltration step was performed against histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2. The preparation was analytically characterized by measuring total protein (Bradford) and FIX chromogenic activity. The PSA-rFIX conjugate showed a specific activity of >50% in comparison to native rFIX is determined.
  • Method 2:
  • 12.3 mg rFIX is dissolved in in L-histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2) to get a final protein concentration of 1 mg rFIX/ml. A 5 mM aqueous sodium periodate solution is added to get a final concentration of 100 μM and the reaction mixture is incubated for 1 hour in the dark at 4° C. under gentle stirring at pH 6.0 and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution (or other quenching reagents) to get a final concentration of 10 mM. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The obtained retentate (8.8 ml), containing oxidized rFIX, is mixed with an aqueous m-toluidine solution (50 mM) to give a final concentration of 10 mM and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture was incubated at pH 6.0 for 2.5 hours at room temperature; 0.5 hours to 18 hours at +4° C.) in the dark under gentle stirring.
  • The free rFIX is removed by means of anion exchange chromatography (AEC). The reaction mixture is diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFIX is eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between between 27-45 mS/cm in the conjugate fraction. The conductivity of the conjugate containing fraction is subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9 or by use of anti-chaotropic salts e.g. ammonium sulphate, ammonium acetate etc.) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn. or comparable HIC media) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free aminooxy-PSA reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step is performed against L-histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2. The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and FIX chromogenic- and clotting activity. For the PSA-rFIX conjugate a specific activity of >50% in comparison to native rFIX is determined.
  • Method 3:
  • 25.4 mg rFIX was dissolved in 18.7 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). 531 μl of an aqueous sodium periodate solution (5 mM) and 5.07 ml of an aqueous m-toluidine solution (50 mM) were then added. Subsequently, the aminooxy-PSA reagent with a MW of 20 kD (described above) was added to give a 5-fold molar reagent excess. The mixture was incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 25 μl of 1 M aqueous cysteine solution.
  • The free rFIX was removed by means of anion exchange chromatography (AEC). The reaction mixture was diluted with 20 ml Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFIX eluted at a conductivity between 12-25 mS/cm and the conjugate between 27-45 mS/cm. The conductivity of the conjugate containing fractions was subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free aminooxy-PSA reagent was washed out within 5 CV Buffer D. Subsequently, the conjugate was eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4). The conjugate containing fractions were concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step was performed against histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2. The preparation was analytically characterized by measuring total protein (Bradford) and FIX chromogenic activity. For the PSA-rFIX conjugate a specific activity of >50% in comparison to native rFIX was determined. The conjugate was additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It was shown that the preparation contains no free FIX. The conjugate consisted of 57% mono-polysialylated and 31% di-polysialylated and 12% tri-polysialyated product.
  • Method 4:
  • 25.4 mg rFIX was dissolved in L-histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2) to get a final protein concentration of 2 mg rFIX/ml. Subsequently an 5 mM aqueous sodium periodate solution was added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PSA reagent with a MW of 20 kD (described above) was added to give a 5-fold molar reagent excess. After correction of the pH to 6.0 the mixture was incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The free rFIX was removed by means of ion exchange chromatography (IEC). The reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFIX was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction. The conductivity of the conjugate containing fraction was subsequently raised to 190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g. ammonium acetate) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.; or comparable HIC media) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free aminooxy-PSA reagent was washed out within 5 CV Buffer D. Subsequently the conjugate was eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4). The conjugate containing fractions were concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step was performed against L-histidine buffer, pH 7.2 containing 150 mM NaCl and 5 mM CaCl2. The preparation was analytically characterized by measuring total protein (Bradford and BCA procedure) and FIX chromogenic- and clotting activity. For the PSA-rFIX conjugate a specific activity of >50% in comparison to native rFIX was determined. The conjugate was additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It was shown that the preparation contains no free FIX. The conjugate consisted of 57% mono-polysialylated and 31% di-polysialylated and 12% tri-polysialyated product.
  • Example 12 Polysialylation of rFVIII Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • 50 mg rFVIII was transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 was added to give a final concentration of 200 μM. The oxidation was carried at RT for 30 min in the dark under gentle shaking. Then the reaction was quenched with cysteine (final concentration: 10 mM) for 60 min at RT. The solution was subjected to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which was equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2), pH 7.0). The column was equilibrated with 5 CV Buffer A. Then the oxidized rFVIII was eluted with Buffer B (20 mM Hepes, 5 mM CaCl2), 1M NaCl, pH 7.0). The rFVIII containing fractions were collected. The protein content was determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl. Then a 50-fold molar excess of a aminooxy-PSA reagent with a MW of 20 kD (described above) was added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction was performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy-PSA reagent was removed by means of HIC. The conductivity of the reaction mixture was raised to 130 mS/cm by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate was eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2). Finally, the PSA-rFVIII containing fractions were collected and subjected to UF/DF by use of a 30 kD membrane made of regenerated cellulose (88 cm2, Millipore). The preparation was analytically characterized by measuring total protein (Coomassie, Bradford) and FVIII chromogenic activity. The PSA-rFVIII conjugate showed a specific activity of >70% in comparison to native rFVIII was determined.
  • Method 2:
  • 58 mg of recombinant factor VIII (rFVIII) derived from the ADVATE process in Hepes buffer (50 mM HEPES, ˜350 mM sodium chloride, 5 mM calcium chloride, 0.1% Polysorbate 80, pH 7.4) is dissolved in reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized rFVIII is further purified by anion exchange chromatography on EMD TMAE (M) (Merck). The mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2), pH 6.5) to give a conductivity of 5 ms/cm. This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min. This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2), 1.0 M NaCl, pH 7.0). Then the oxidized rFVIII is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B. The elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFVIII within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PSA-rFVIII conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • The reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution. This mixture is loaded onto the HIC column at flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • For removal of reaction by-products and anti-chaotropic salt a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified PSA-rFVIII conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min. The elution of the PSA-rFVIII conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within <4 CV. The post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • Finally the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 30 kD (88 cm2, Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein, FVIII chromogenic activity and determination of the polysialyation degree by measuring the PSA content (resorcinol assay). For the conjugate obtained a specific activity >50% and a PSA degree >5.0 is calculated.
  • Method 3:
  • 50 mg rFVIII was transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) was added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM) and NaIO4 (final concentration: 400 μM). The coupling reaction was performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction was quenched with cysteine for 60 min at RT (final concentration: 10 mM). Then the conductivity of the reaction mixture was raised to 130 mS/cm by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently, the conjugate was eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA-rFVIII containing fractions were collected and subjected to UF/DF by use of a 30 kD membrane made of regenerated cellulose (88 cm2, Millipore). The preparation was analytically characterized by measuring total protein (Bradford) and FVIII chromogenic activity. For the PSA-rFVIII conjugate a specific activity of >70% in comparison to native rFVIII was determined.
  • Method 4:
  • 50 mg recombinant factor VIII (rFVIII) derived from the ADVATE process in 50 mM Hepes buffer (50 mM HEPES, ˜350 mM sodium chloride, 5 mM calcium chloride, 0.1% Polysorbate 80, pH 7.4) was dissolved in reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution was corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent was added in a 50-fold molar excess to this rFVIII solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) was added within 15 minutes to get a final concentration of 10 mM. Finally, a 40 mM aqueous sodium periodate solution was added to give a concentration of 400 μM.
  • The reaction mixture was incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction was stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained PSA-rFVIII conjugate was purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • The reaction mixture was spiked with ammonium acetate by addition of of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture was mixed with 1 volume of the ammonium acetate containing buffer system and the pH value was corrected to pH 6.9 by drop wise addition of an 0.5 N aqueous NaOH solution. This mixture was loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • For removal of reaction by-products and anti-chaotropic salt a second washing step was performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIII conjugate was performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min. The elution of the PSA-rFVIII conjugate was monitored at UV 280 nm and the eluate containing the conjugate was collected within <4 CV. The post elution step was performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • Finally, the purified conjugate was concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 30 kD (88 cm2, Millipore).
  • The conjugates prepared by use of this procedure were analytically characterized by measuring total protein, FVIII chromogenic activity and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
      • Analytical data (mean of 6 consecutive batches):
      • Process yield (Bradford): 58.9%
      • Process yield (FVIII chrom.): 46.4%
      • Specific activity: (FVIII chrom./mg protein): 4148 IU/mg
      • Specific activity (% of starting material): 79.9%
      • PSA degree (mol/mol): 8.1
    Example 13 PEGylation of r FVIII Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 14.7 mg rFVIII is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). Then 296 μl of an aqueous sodium periodate solution (5 mM) is added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture was subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (10.9 ml), containing oxidized rFVIII, is mixed with 2.94 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PEG reagent with a MW of 20 kD is added to give a 5-fold molar reagent excess. This mixture was incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-rFVIII conjugate is purified by ion-exchange chromatography on Q Sepharose FF. 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a 30 kD membrane (50 cm2, Millipore). The preparation is analytically characterized by measuring total protein (Coomassie, Bradford) and FVIII chromogenic activity. It is expected that the PEG-rFVIII conjugate will demonstrate a specific activity of >70% in comparison to native rFVIII was determined.
  • Method 2:
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). A starting weight or concentration of rFVIII is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized rFVIII is further purified by anion exchange chromatography on EMD TMAE (M) (Merck). The mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 ms/cm. This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min. This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2, 1.0 M NaCl, pH 7.0). Then the oxidized rFVIII is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B. The elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • Subsequently, the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFVIII within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-rFVIII conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • The reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution. This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • For removal of reaction by-products and anti-chaotropic salt a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIII conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min. The elution of the PEG-rFVIII conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within <4 CV. The post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • Finally, the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 30 kD (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 7.84 mg rFVIII, dissolved in 6 ml Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) are mixed with 314 μl of an aqueous sodium periodate solution (10 mM), and 1.57 ml of an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally the PEG-rFVIII conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2). The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2) and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a 30 kD membrane (88 cm2, Millipore). The analytical characterization of the conjugate by FVIII chromogenic assay and determination of total protein (Bradford) shows a specific activity of >60% compared to the rFVIII starting material.
  • Method 4:
  • rFVIII is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of rFVIII is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg rFVIII/ml. Subsequently, an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The free rFVIII is removed by means of ion exchange chromatography (IEC). The reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFVIII was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction. The conductivity of the conjugate containing fraction is subsequently raised with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g. ammonium acetate, ammonium sulphate etc.) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.; or comparable HIC media) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free PEG-reagent was washed out within 5 CV Buffer D. Subsequently, the conjugate was eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 14 Polysialylation of rFVIIa Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration or weight of recombinant factor VIIa (rFVIIa) is transferred or dissolved in reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous NaOH solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 50 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized rFVIIa is further purified by anion exchange chromatography on EMD TMAE (M) (Merck). The mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2), pH 6.5) to give a conductivity of 5 ms/cm. This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min. This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2), 1.0 M NaCl, pH 7.0). Then the oxidized rFVIIa is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B. The elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFVIIa within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PSA-rFVIIa conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • The reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution. This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • For removal of reaction by-products and anti-chaotropic salt a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIIa conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min. The elution of the PSA-rFVIIa conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within <4 CV. The post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIIa from the main product.
  • Finally, the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (e.g. 10 kD MWCO, 88 cm2, Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 2:
  • A starting weight or concentration of rFVIIa is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous NaOH solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this rFVIIa solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 150 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained PSA-rFVIIa conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • The reaction mixture is spiked with ammonium acetate by addition of of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture is mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of an 0.5 N aqueous NaOH solution. This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • For removal of reaction by-products and anti-chaotropic salt a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIIa conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min. The elution of the PSA-rFVIIa conjugate is monitored at UV 280 nm and the eluate containing the conjugate was collected within <4 CV. The post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIII from the main product.
  • Finally, the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 15 PEGylation of rFIX Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • rFIX is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). A starting weight or concentration of rFIX is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized rFVIII is further purified by anion exchange chromatography on EMD TMAE (M) (Merck). The mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 mS/cm. This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min. This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2, 1.0 M NaCl, pH 7.0). Then the oxidized rFIX is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B. The elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • Subsequently, the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFIX within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-rFIX conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • The reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution. This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • For removal of reaction by-products and anti-chaotropic salt a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFIX conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min. The elution of the PEG-rFIX conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within <4 CV. The post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFIX from the main product.
  • Finally, the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 10 kD (88 cm2, Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 2:
  • rFIX is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of rFIX is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg rFIX/ml. Subsequently, an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The free rFIX is removed by means of ion exchange chromatography (IEC). The reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFIX was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction. The conductivity of the conjugate containing fraction is subsequently raised with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g. ammonium acetate, etc) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.; or comparable HIC media) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free aminooxy-PEG reagent was washed out within 5 CV Buffer D. Subsequently, the conjugate was eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 16 PEGylation of rFVIIa Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • rFVIIa is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). A starting weight or concentration of rFVIIa is dissolved in or transferred to a reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous NaOH solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 50 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized rFVIIa is further purified by anion exchange chromatography on EMD TMAE (M) (Merck). The mixture is diluted with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 6.5) to give a conductivity of 5 mS/cm. This solution is loaded onto the IEX column (bed height: 5.4 cm) with a column volume of 10 ml using a flow rate of 1.5 cm/min. This column is subsequently washed (flow rate: 1.5 cm/min) with 5 CV of a 92:8 mixture (w/w) of Buffer A and Buffer B (20 mM Hepes, 5 mM CaCl2, 1.0 M NaCl, pH 7.0). Then the oxidized rFVIIa is eluted with a 50:50 (w/w) mixture of Buffer A and Buffer B followed by a postelution step with 5 CV of Buffer B. The elution steps are carried out by use of a flow rate of 1.0 cm/min.
  • Subsequently, the aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized rFVIIa within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-rFVIIa conjugate is purified by Hydrophobic Interaction Chromatography (HIC) using a Phenyl Sepharose FF low sub resin (GE Healthcare) packed into a column manufactured by GE Healthcare with a bed height (h) of 15 cm and a resulting column volume (CV) of 81 ml.
  • The reaction mixture is spiked with ammonium acetate by addition of 50 mM Hepes buffer, containing 350 mM sodium chloride, 8 M ammonium acetate, 5 mM calcium chloride, pH 6.9. Two volumes of the reaction mixture are mixed with 1 volume of the ammonium acetate containing buffer system and the pH value is corrected to pH 6.9 by drop wise addition of a 0.5 N aqueous NaOH solution. This mixture is loaded onto the HIC column using a flow rate of 1 cm/min followed by a washing step using >3 CV equilibration buffer (50 mM Hepes, 350 mM sodium chloride, 2.5 M ammonium acetate, 5 mM calcium chloride, pH 6.9).
  • For removal of reaction by-products and anti-chaotropic salt a second washing step is performed with >5CV washing buffer 1 (50 mM Hepes, 3 M sodium chloride, 5 mM calcium chloride, pH 6.9) in upflow mode at a flow rate of 2 cm/min. Then elution of purified rFVIIa conjugate is performed in down flow mode using a step gradient of 40% washing buffer 2 (50 mM Hepes, 1.5 M sodium chloride, 5 mM calcium chloride, pH 6.9) and 60% elution buffer (20 mM Hepes, 5 mM calcium chloride, pH 7.5) at a flow rate of 1 cm/min. The elution of the PEG-rFVIIa conjugate is monitored at UV 280 nm and the eluate containing the conjugate is collected within <4 CV. The post elution step is performed with >3 CV elution buffer under the same conditions to separate minor and/or non modified rFVIIa from the main product.
  • Finally, the purified conjugate is concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with a molecular weight cut off 10 kD (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 2:
  • rFVIIa is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of rFVIIa is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg rFVIIa/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The free rFVIIa is removed by means of ion exchange chromatography (IEC). The reaction mixture was diluted with appropriate amounts of Buffer A (50 mM Hepes, 5 mM CaCl2, pH 7.5) to correct the solutions conductivity and pH value prior to load onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column was eluted with Buffer B (50 mM Hepes, 1 M NaCl, 5 mM CaCl2, pH 7.5). Free rFVIIa was eluted by a step gradient using 25% of Buffer B, which results in a conductivity between 12-25 mS/cm in the obtained fraction and the conjugate using a step gradient of 50% Buffer B, which results in a conductivity between 27-45 mS/cm in the conjugate fraction. The conductivity of the conjugate containing fraction is subsequently raised with Buffer C (50 mM Hepes, 5 M NaCl, 5 mM CaCl2, pH 6.9; by use of anti-chaotropic salts e.g. ammonium acetate) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.; or comparable HIC media) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, 5 mM CaCl2, pH 6.9). Free PEG-reagent was washed out within 5 CV Buffer D. Subsequently the conjugate was eluted with 100% Buffer E (50 mM Hepes, 5 mM CaCl2, pH 7.4). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 17 Polysialylation of rFIX in the Presence of o-Amino Benzoic Acid Method 1:
  • 8.2 mg rFIX is dissolved in 4.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). Then 82 μl of an aqueous sodium periodate solution (5 mM) is added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 4 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 6 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (6.5 ml), containing oxidized rFIX, is mixed with 1.64 ml of an aqueous o-amino benzoic acid (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture was incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • The further purification of the conjugate is carried out as described herein.
  • Method 2:
  • A solution of 1 mg rFIX in 0.65 ml sodium phosphate buffer, pH 6.0 containing a 5-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) was prepared. Then 333 μl of an aqueous o-amino benzoic acid solution (30 mM) was added as nucleophilic catalyst to give a final concentration of 10 mM. Subsequently 20 μl of an aqueous solution of NaIO4 (5 mM) was added yielding in a final concentration of 100 μM. The coupling process was performed for 2 hours in the dark under gentle shaking at room temperature and quenched for 15 min at room temperature by the addition of 1 μl of aqueous cysteine solution (1 M). The further purification of the conjugate is carried out as described herein.
  • Example 18 Polysialylation of EPO Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of erythropoietin (EPO) is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2), pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized EPO is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2), 1M NaCl, pH 7.0). The EPO containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • A 50-fold molar excess of a aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy-PSA reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2). Finally the PSA-EPO containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (MWCO 10 kD, 50 cm2, Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows.
  • 10 mg EPO is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 μl of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (approx. 7 ml), containing oxidized EPO, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • The free EPO is removed by means of anion exchange chromatography (AEC). The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conductivity of the conjugate containing fractions is subsequently raised to ˜190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 7.4). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSA-EPO conjugate a specific activity of >50% in comparison to native EPO is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • Method 2:
  • EPO is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized EPO is further purified by ion exchange chromatography. The oxidized EPO containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized EPO within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-EPO conjugate is further purified by ion exchange chromatography. The PSA-EPO conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Erythropoietin (EPO) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50 fold molar excess of a aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA-EPO containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (MWCO 10 kD, 88 cm2, Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. 10 mg EPO is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 μl of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently, the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 μl of 1 M aqueous cysteine solution.
  • The free EPO is removed by means of anion exchange chromatography (AEC). The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conductivity of the conjugate containing fractions is subsequently raised to ˜190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 7.4). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSA-EPO conjugate a specific activity of >50% in comparison to native EPO is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • Method 4:
  • EPO is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this EPO solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained PSA-EPO conjugate is purified by ion-exchange chromatography. The PSA-EPO containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (MWCO 10 kD, 88 cm2, Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 19 Polysialylation of Ang-2 Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of angiopoietin-2 (Ang-2) is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts, or, in the alternative, subjected to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized Ang-2 is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The Ang-2 containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally, the PSA-Ang-2-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Angiopoietin-2 (Ang-2) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at R.T.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-Ang-2 conjugate-containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • Ang-2 is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized Ang-2 is further purified by ion exchange chromatography. The oxidized Ang-2 containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Ang-2 within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-Ang-2 conjugate is further purified by ion-exchange chromatography
  • The PSA-Ang-2 conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Angiopoietin-2 (Ang-2) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50 fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA Ang-2-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Angiopoietin-2 (Ang-2) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. PSA Ang-2-containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • Ang-2 is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this Ang-2 solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained PSA-Ang-2 conjugate is purified by ion-exchange chromatography. The PSA-Ang-2 containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 20 Polysialylation of VEGF Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of vascular endothelial growth factor (VEGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized VEGF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The VEGF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M NaOH.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally the PSA-VEGF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Vascular endothelial growth factor (VEGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-VEGF-containing fractions of the eluate are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • VEGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized VEGF is further purified by ion exchange chromatography. The oxidized VEGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized VEGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-VEGF conjugate is further purified by ion exchange chromatography. The PSA-VEGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Vascular endothelial growth factor (VEGF) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA-VEGF containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Vascular endothelial growth factor (VEGF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. The PSA-VEGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • VEGF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this VEGF solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained VEGF-conjugate is purified by ion-exchange chromatography. The PSA-VEGF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 21 Polysialylation of EGF Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of epidermal growth factor (EGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at R.T.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized EGF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The EGF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally, the PSA-EGF containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Epidermal growth factor (EGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at R.T.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-EGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • EGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized EGF is further purified by ion exchange chromatography. The oxidized EGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized EGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-EGF conjugate is further purified by ion exchange chromatography. The PSA-EGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Epidermal growth factor (EGF) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally the PSA-EGF containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Epidermal growth factor (EGF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. The conjugate containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • EGF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this EGF-solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained EGF-conjugate is purified by ion-exchange chromatography. The PSA-EGF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 22 Polysialylation of NGF Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of nerve growth factor (NGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized NGF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The NGF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally, the PSA-NGF containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Nerve growth factor (NGF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-NGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • NGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized NGF is further purified by ion exchange chromatography. The oxidized NGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized NGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-NGF conjugate is further purified by ion exchange chromatography. The PSA-NGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Nerve growth factor (NGF) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA NGF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Nerve growth factor (NGF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. Then the PSA-NGF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • NGF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this NGF-solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained NGF-conjugate is purified by ion-exchange chromatography. The PSA-NGF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 23 Polysialylation of HGH Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • A starting concentration of human growth hormone (HGH) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized HGH is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The HGH containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally, the PSA-HGH containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art. HGH is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-HGH containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • HGH is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized HGH is further purified by ion exchange chromatography. The oxidized HGH containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized HGH within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-HGH conjugate is further purified by ion exchange chromatography. The PSA-HGH conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • Human growth hormone (HGH) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50 fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA HGH-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art. HGH is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50 fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. Then the PSA-HGH-containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • HGH is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this HGH-solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained HGH-conjugate is purified by ion-exchange chromatography. The PSA-HGH containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 24 Polysialylation of TNF-Alpha Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst
  • A starting concentration of tumor necrosis factor-alpha (TNF-alpha) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized TNF-alpha is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The TNF-alpha containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally the PSA-TNF-alpha-containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Tumor necrosis factor-alpha (TNF-alpha) is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-TNF-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • TNF-alpha is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized TNF-alpha is further purified by ion exchange chromatography. The oxidized TNF-alpha containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized TNF-alpha within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-TNF-alpha conjugate is further purified by ion exchange chromatography. The PSA-TNF-alpha conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Tumor necrosis factor-alpha (TNF-alpha) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally the PSA-TNF-alpha-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Tumor necrosis factor-alpha (TNF-alpha) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). and the conjugate is purified by ion exchange chromatography. The PSA-TNF-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • TNF-alpha is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this TNF-alpha-solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained TNF-alpha conjugate is purified by ion-exchange chromatography. The PSA-TNF-alpha containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 25 Polysialylation of Insulin Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art. A starting concentration of insulin is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized insulin is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The insulin containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally the PSA-insulin containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art. Insulin is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-insulin containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized insulin is further purified by ion exchange chromatography. The oxidized insulin containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized insulin within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-insulin conjugate is further purified by ion exchange chromatography. The PSA-insulin conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA-insulin containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. PSA-insulin containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this insulin-solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained insulin conjugate is purified by ion-exchange chromatography. The PSA-insulin containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 26 Polysialylation of Interferon-Alpha Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of interferon-alpha is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized interferon-alpha is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The interferon-alpha containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally the PSA-interferon-alpha containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Interferon-alpha is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion-exchange chromatography. The PSA-interferon-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • Interferon-alpha is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized interferon-alpha is further purified by ion exchange chromatography. The oxidized interferon-alpha containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized interferon-gamma within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-interferon-alpha conjugate is further purified by ion exchange chromatography. The PSA-interferon-alpha conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • Method 3:
  • Interferon-alpha is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of a PSA aminooxy reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA-interferon-alpha containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Interferon-alpha is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. The PSA-interferon-alpha containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • Interferon-alpha is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this interferon-alpha solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally, a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained interferon-alpha conjugate is purified by ion-exchange chromatography. The PSA-interferon-alpha containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 27 Polysialylation of Interferon-Gamma Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • 10 mg interferon-gamma is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 μl of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (approx. 7 ml), containing oxidized interferon-gamma, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • The free Interferon-gamma is removed by means of cation exchange chromatography (CEC). The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free interferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conductivity of the conjugate containing fractions is subsequently raised to ˜190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSA-Interferon-gamma conjugate a specific activity of >50% in comparison to native Interferon-gamma is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Interferon gamma.
  • Method 2:
  • 10 mg interferon-gamma is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 μl of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 μl of 1 M aqueous cysteine solution.
  • The free interferon gamma is removed by means of cation exchange chromatography (CEC). The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free interferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conductivity of the conjugate containing fractions is subsequently raised to ˜190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSAinterferon-gamma conjugate a specific activity of >50% in comparison to native interferon-gamma is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free interferon-gamma.
  • Method 3:
  • 10 mg interferon-gamma is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 μl of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 μl of 1 M aqueous cysteine solution.
  • The free interferon gamma is removed by means of cation exchange chromatography (CEC). The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free interferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conductivity of the conjugate containing fractions is subsequently raised to ˜190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSAinterferon-gamma conjugate a specific activity of >50% in comparison to native interferon-gamma is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free interferon-gamma.
  • Method 4:
  • Interferon-gamma is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this interferon-gamma solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally, a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained interferon-gamma conjugate is purified by ion-exchange chromatography. The PSA-interferon-gamma containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 28 Polysialylation of G-CSF Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of granulocyte-colony stimulating factor (G-CSF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized G-CSF is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1 M NaCl, pH 7.0). The G-CSF containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently, the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally the PSA-G-CSF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Granulocyte-colony stimulating factor (G-CSF) is transferred into a reaction buffer (e.g., 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography. The PSA-G-CSF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • G-CSF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized G-CSF is further purified by ion exchange chromatography. The oxidized G-CSF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized G-CSF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-G-CSF conjugate is further purified by ion exchange chromatography. The PSA-G-CSF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Granulocyte-colony stimulating factor (G-CSF) is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally, the PSA-G-CSF-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Granulocyte-colony stimulating factor (G-CSF) is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. The PSA-G-CSF containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • G-CSF is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this G-CSF solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally, a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained G-CSF conjugate is purified by ion-exchange chromatography. The PSA-G-CSF containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 29 Polysialylation of Humira Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of Humira is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized Humira is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The Humira containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally, the PSA-Humira containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Humira is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of ion exchange chromatography The PSA-Humira containing fractions of the elutae are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • Humira is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized Humira is further purified by ion exchange chromatography. The oxidized Humira containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Humira within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained PSA-Humira conjugate is further purified by ion exchange chromatography. The PSA-Humira conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Humira is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally the PSA-Humira containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Humira is transferred into reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM) and the conjugate is purified by ion exchange chromatography. The PSA-Humira containing fractions of the eluate are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • Humira is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently, the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this Humira solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained Humira-conjugate is purified by ion-exchange chromatography. The PSA-Humira containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 30 Polysialylation of Prolia Using Aminooxy-PSA and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • A starting concentration of Prolia is transferred into a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. To this solution, NaIO4 is added to give a final concentration of 200 μM. The oxidation is carried at RT for 30 min in the dark under gentle shaking. The reaction is then quenched with cysteine (final concentration: 10 mM) for 60 min at RT.
  • The solution is next subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof or, in the alternative, to an IEX column with a volume of 20 ml (Merck EMD TMAE (M)) which is equilibrated with Buffer A (20 mM Hepes, 5 mM CaCl2, pH 7.0). The column is equilibrated with 5 CV Buffer A. The oxidized Prolia is eluted with Buffer B (20 mM Hepes, 5 mM CaCl2, 1M NaCl, pH 7.0). The Prolia containing fractions are collected. The protein content is determined (Coomassie, Bradford) and adjusted to 1 mg/ml with reaction buffer and adjusted to pH 6.0 by dropwise addition of 0.5 M HCl.
  • A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (final concentration: 10 mM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. The excess of aminooxy reagent is removed by means of HIC. The conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with 80 ml Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes buffer pH 7.5 containing 5 mM CaCl2. Finally, the PSA-Prolia containing fractions are collected and subjected to UF/DF by use of a a membrane made of regenerated cellulose (Millipore). The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. 10 mg Prolia is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 μl of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (approx. 7 ml), containing oxidized Prolia, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • The free Prolia is removed by means of cation exchange chromatography (CEC). The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free Prolia is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conductivity of the conjugate containing fractions is subsequently raised to ˜190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently, the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD, Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSA-Prolia conjugate a specific activity of >50% in comparison to native Prolia is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Prolia.
  • Method 2:
  • Prolia is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized Prolia is further purified by ion exchange chromatography. The oxidized Prolia containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Prolia within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. at pH 6.0 in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking (protein concentration: 1 mg/ml).
  • The obtained Prolia conjugate is further purified by ion exchange chromatography. The Prolia conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure is analytically characterized by measuring total protein, biological activity, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Method 3:
  • Prolia is transferred into reaction buffer (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and diluted to obtain a protein concentration of 1 mg/ml. A 50-fold molar excess of aminooxy-PSA reagent with a MW of 20 kD (described above) is added followed by m-toluidine as a nucleophilic catalyst (10 mM final concentration) and NaIO4 (final concentration: 400 μM). The coupling reaction is performed for 2 hours in the dark under gentle shaking at room temperature. Subsequently, the reaction is quenched with cysteine for 60 min at RT (cysteine concentration: 10 mM). Then the conductivity of the reaction mixture is adjusted by adding a buffer containing ammonium acetate (50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, 8 M ammonium acetate, pH 6.9) and loaded onto a column filled with Phenyl Sepharose FF (GE Healthcare, Fairfield, Conn.) pre-equilibrated with 50 mM Hepes, 2.5 M ammonium acetate, 350 mM sodium chloride, 5 mM calcium chloride, 0.01% Tween 80, pH 6.9. Subsequently the conjugate is eluted with 50 mM Hepes, 5 mM calcium chloride, pH 7.5. Finally the PSA Prolia-containing fractions are collected and subjected to UF/DF by use of a membrane made of regenerated cellulose (Millipore). The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. 10 mg Prolia is dissolved in 8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 μl of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently the aminooxy-PSA reagent with a MW of 20 kD (described above) is added to give a 5 fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 μl of 1 M aqueous cysteine solution.
  • The free Prolia is removed by means of cation exchange chromatography (CEC). The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free Prolia is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conductivity of the conjugate containing fractions is subsequently raised to ˜190 mS/cm with Buffer C (50 mM Hepes, 5 M NaCl, pH 6.9) and loaded onto a 20 ml HiPrep Butyl FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer D (50 mM Hepes, 3 M NaCl, pH 6.9). Free PSA-reagent is washed out within 5 CV Buffer D. Subsequently the conjugate is eluted with 100% Buffer E (50 mM Hepes, pH 6.9). The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PSA-Prolia conjugate a specific activity of >50% in comparison to native Prolia is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Prolia.
  • Method 4:
  • Prolia is dissolved in or transferred to a reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution.
  • Subsequently the aminooxy-polysialic acid (PSA-ONH2) reagent is added in a 50-fold molar excess to this Prolia-solution within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. Finally a 40 mM aqueous sodium periodate solution is added to give a concentration of 400 μM.
  • The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking. Then the reaction is stopped by the addition of an aqueous L-cysteine solution (1 M) to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The obtained Prolia conjugate is purified by ion-exchange chromatography. The PSA-Prolia containing fractions of the eluate are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose (Millipore).
  • The conjugates prepared by use of this procedure are analytically characterized by measuring total protein, biological activity according to methods known in the art, and determination of the polysialyation degree by measuring the PSA content (resorcinol assay).
  • Example 31 Polysialylation of Other Therapeutic Proteins
  • Polysialylation reactions performed in the presence of alternative nucleophilic catalysts like m-toluidine or o-aminobenzoic acid as described herein may be extended to other therapeutic proteins. For example, in various aspects of the invention, the above polysialylation or PEGylation reactions as described herein with PSA aminooxy or PEG aminooxy reagents is repeated with therapeutic proteins such as those proteins described herein.
  • Example 32 PEGylation of EPO Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • Erythropoietin (EPO) is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EPO is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized EPO is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-EPO conjugate is purified by ion-exchange chromatography (e.g. on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2). The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2) and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 10 mg EPO is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 μl of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (approx. 7 ml), containing oxidized EPO, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • Finally, the PEG-EPO conjugate is purified by ion-exchange chromatography on Q Sepharose FF. The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity biological activity according to methods known in the art. For the PEG-EPO conjugate a specific activity of >50% in comparison to native EPO is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • Method 2:
  • EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • EPO is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized EPO is further purified by ion exchange chromatography. The oxidized EPO containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized EPO within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-EPO conjugate is further purified by ion exchange chromatography. The PEG-EPO conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EPO is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-EPO conjugate is purified by ion-exchange chromatography on Q Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 10 mg EPO is dissolved in ˜8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 μl of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently, the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 μl of 1 M aqueous cysteine solution.
  • Finally, the PEG-EPO conjugate is purified by ion-exchange chromatography on Q Sepharose FF. The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 7.5) and loaded onto a 20 ml HiPrep QFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 7.5). Free EPO is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 7.2 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PEG-EPO conjugate a specific activity of >50% in comparison to native EPO is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free EPO.
  • Method 4:
  • EPO is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of EPO is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg EPO/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-EPO conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2), pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 33 PEGylation of Ang-2 Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Ang-2 is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized Ang-2 is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-Ang-2 conjugate is purified by ion-exchange chromatography (e.g. on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Ang-2 is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized Ang-2 is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-Ang-2 conjugate is purified by ion-exchange chromatography. The conjugate containing fraction of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan).
  • Ang-2 is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized Ang-2 is further purified by ion exchange chromatography. The oxidized Ang-2 containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Ang-2 within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-Ang-2 conjugate is further purified by ion exchange chromatography. The PEG-Ang-2 conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Ang-2 is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-Ang-2 conjugate is purified by ion-exchange chromatography on Q Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Ang-2 is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally the PEG-Ang-2 conjugate is purified by ion-exchange chromatography The conjugate containing reactions of the eluate are collected and then subjected to UF/DF. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • Ang-2 is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of Ang-2 is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg Ang-2/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-Ang-2 conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Subsequently, the free Ang-2 is removed by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF.
  • Example 34 PEGylation of VEGF Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). VEGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized VEGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-VEGF conjugate is purified by ion-exchange chromatography (e.g., on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). VEGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized VEGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-VEGF conjugate is purified by ion-exchange chromatography The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). VEGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized VEGF is further purified by ion exchange chromatography. The oxidized VEGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized VEGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-VEGF conjugate is further purified by ion exchange chromatography. The PEG-VEGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). VEGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-VEGF conjugate is purified by ion-exchange chromatography on Q Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). VEGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-VEGF conjugate is purified by ion-exchange chromatography. The conjugate conjugate fractions of the eluate are collected and then subjected to UF/DF. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • VEGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of VEGF is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg VEGF/ml. Subsequently, an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-VEGF conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 35 PEGylation of EGF Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized EGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-EGF conjugate is purified by ion-exchange chromatography (e.g., on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized EGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-EGF conjugate is purified by ion-exchange chromatography. The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized EGF is further purified by ion exchange chromatography. The oxidized EGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized NGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-EGF conjugate is further purified by ion exchange chromatography. The PEG-EGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-EGF conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-EGF conjugate is purified by ion-exchange chromatography. The conjugate containing fractions of the eluate are collected and then subjected to UF/DF. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • EGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of EGF is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg EGF/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-EGF conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 36 PEGylation of NGF Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). NGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized NGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-NGF conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). NGF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized NGF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-NGF conjugate is purified by ion-exchange chromatography (The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). NGF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized NGF is further purified by ion exchange chromatography. The oxidized NGF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized NGF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-NGF conjugate is further purified by ion exchange chromatography. The PEG-NGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). NGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-NGF conjugate is purified by ion-exchange chromatography on Q Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). NGF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-NGF conjugate is purified by ion-exchange chromatography. The conjugate containing fractions are collected and then subjected to UF/DF. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • NGF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of NGF is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg NGF/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-NGF conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 37 PEGylation of HGH Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • HGH is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). HGH is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized HGH is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-HGH conjugate is purified by ion-exchange chromatography (e.g., on Q Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • HGH is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). HGH is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized HGH is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-HGH conjugate is purified by ion-exchange chromatography (The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • HGH is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). HGH is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized HGH is further purified by ion exchange chromatography. The oxidized HGH containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized HGH within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-HGH conjugate is further purified by ion exchange chromatography. The PEG-NGF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • HGH is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). HGH is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-HGH conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art. HGH is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). HGH is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-HGH conjugate is purified by ion-exchange chromatography. The conjugate containing fractions are collected and then subjected to UF/DF. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • As described herein, the amino acid sequence of human growth hormone (HGH) is first modified to incorporate at least one glycosylation site. Following purification, HGH is glycosylated in vitro according to methods known in the art.
  • HGH is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of HGH is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg HGH/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-HGH conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 38 PEGylation of TNF-Alpha Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • TNF-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). TNF-alpha is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized TNF-alpha is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-TNF-alpha conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. TNF-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). TNF-alpha is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized TNF-alpha is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 mm at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-TNF-alpha conjugate is purified by ion-exchange chromatography. The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • TNF-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). TNF-alpha is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized TNF-alpha is further purified by ion exchange chromatography. The oxidized TNF-alpha containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized TNF alpha within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-TNF-alpha conjugate is further purified by ion exchange chromatography. The PEG-TNF-alpha conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • TNF-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). TNF-alpha is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-TNF-alpha conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. TNF-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). TNF-alpha is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-TNF-alpha conjugate is purified by ion-exchange chromatography. The conjugate containing fractions are collected and then subjected to UF/DF. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • TNF-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of TNF-alpha is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg TNF-alpha/ml. Subsequently, an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-TNF-alpha conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 39 PEGylation of Insulin Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art. Insulin is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Insulin is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized insulin is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-insulin conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art. Insulin is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Insulin is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized insulin is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-insulin conjugate is purified by ion-exchange chromatography. The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Insulin is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized insulin is further purified by ion exchange chromatography. The oxidized insulin containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized insulin within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-insulin conjugate is further purified by ion exchange chromatography. The PEG-insulin conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Insulin is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-insulin conjugate is purified by ion-exchange chromatography on Q Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art. Insulin is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Insulin is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the insulin-conjugate is purified by ion-exchange chromatography. The conjugate containing fractions are collected and then subjected to UF/DF. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • As described herein, the amino acid sequence of insulin is first modified to incorporate at least one glycosylation site. Following purification, insulin is glycosylated in vitro according to methods known in the art.
  • Insulin is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of insulin is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg insulin/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-insulin conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 40 PEGylation of Interferon-Alpha Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • Interferon-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Interferon-alpha is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized interferon-alpha is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-interferon-alpha conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Interferon-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Interferon-alpha is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized interferon-alpha is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-interferon-alpha conjugate is purified by ion-exchange chromatography The conjugate containing freactions are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • Interferon-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Interferon-alpha is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized interferon-alpha is further purified by ion exchange chromatography. The oxidized interferon-alpha containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized interferon-alpha within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-interferon-alpha conjugate is further purified by ion exchange chromatography. The PEG-interferon alpha conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • Interferon-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Interferon-alpha is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-interferon-alpha conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Interferon-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Interferon-alpha is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-interferon-alpha conjugate is purified by ion-exchange chromatography. The conjugate containing fractions are collected and then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • Interferon-alpha is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of interferon-alpha is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg interferon-alpha/ml. Subsequently, an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-interferon-alpha conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 41 PEGylation of Interferon-Gamma Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • Interferon-gamma is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 10 mg Interferon-gamma is dissolved in 5 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 μl of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (approx. 7 ml), containing oxidized interferon-gamma, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • Finally, the PEG-interferon-gamma conjugate is purified by ion-exchange chromatography on SP Sepharose FF. The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free interferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PEG-interferon-gamma conjugate a specific activity of >50% in comparison to native Interferon gamma is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Interferon-gamma.
  • Method 2:
  • Interferon-gamma is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Interferon-gamma is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5 N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized interferon-gamma is further purified by ion exchange chromatography. The oxidized interferon-gamma containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized interferon-gamma within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-interferon-gamma conjugate is further purified by ion exchange chromatography. The PEG-interferon-gamma conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • The conjugate prepared by use of this procedure are analytically characterized by measuring total protein and biological activity according to methods known in the art.
  • Method 3:
  • Interferon-gamma is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 10 mg interferon-gamma is dissolved in ˜8 ml histidine-buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 μl of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 μl of 1 M aqueous cysteine solution.
  • Finally the PEG-interferon-gamma conjugate is purified by ion-exchange chromatography on SP-Sepharose FF. The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SP FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free intergferon-gamma is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according according to methods known in the art. For the PEG-interferon-gamma conjugate a specific activity of >50% in comparison to native interferon-gamma is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free interferon-gamma.
  • Method 4:
  • Interferon-gamma is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of interferon-gamma is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg interferon-gamma/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The PEG-interferon-gamma conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 42 PEGylation of G-CSF Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • G-CSF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). G-CSF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized G-CSF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-G-CSF conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. G-CSF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). G-CSF is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized G-CSF is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-G-CSF conjugate is purified by ion-exchange chromatography (The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • G-CSF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). G-CSF is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized G-CSF is further purified by ion exchange chromatography. The oxidized G-CSF containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized G-CSF within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-G-CSF conjugate is further purified by ion exchange chromatography. The PEG-G-CSF conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • Method 3:
  • G-CSF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). G-CSF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-G-CSF conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. G-CSF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). G-CSF is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-G-CSF conjugate is purified by ion-exchange chromatography. The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • G-CSF is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of G-CSF is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg G-CSF/ml. Subsequently, an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The G-CSF conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 43 PEGylation of Humira Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • Humira is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Humira is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized Humira is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-Humira conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Humira is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Humira is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized Humira is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-Humira conjugate is purified by ion-exchange chromatography. The conjugate containing fractions of the eluate are collected and then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • Method 2:
  • Humira is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Humira is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution. Subsequently a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized Humira is further purified by ion exchange chromatography. The oxidized Humira containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Humira within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-Humira conjugate is further purified by ion exchange chromatography. The PEG-Humira conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • Method 3:
  • Humira is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Humira is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently, the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-Humira conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows. Humira is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Humira is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-Humira conjugate is purified by ion-exchange chromatography. The conjugate containing fractions are collected and then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • Method 4:
  • Humira is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of Humira is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg Humira/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of a 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The Humira conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 44 PEGylation of Prolia Using an Aminooxy-PEG Reagent and m-Toluidine as a Nucleophilic Catalyst Method 1:
  • Prolia is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Prolia is dissolved in 7.0 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl, 5 mM CaCl2). An aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 7.5 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate containing oxidized Prolia is next mixed with an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Aminooxy-PEG reagent with a MW of 20 kD is then added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at room temperature in the dark under gentle stirring.
  • Finally, the PEG-Prolia conjugate is purified by ion-exchange chromatography (e.g., on Q-Sepharose FF). For example, 1.5 mg protein/ml gel is loaded on the column equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using an appropriate MW cutoff membrane. The preparation is next analytically characterized by measuring total protein (Coomassie, Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 1 is carried out as follows. Prolia is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 10 mg rFIX is dissolved in 5 ml histidine-buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 100 μl of an aqueous sodium periodate solution (5 mM) is then added and the reaction mixture is incubated for 1 h in the dark at 4° C. under gentle stirring and quenched for 15 min at room temperature by the addition of 50 μl of a 1 M aqueous cysteine solution. The mixture is subsequently subjected to UF/DF employing Vivaspin 15R 10 kD centrifugal filtrators to remove excess periodate, quencher and the byproducts thereof.
  • The retentate (approx. 7 ml), containing oxidized Prolia, is mixed with 2 ml of an aqueous m-toluidine solution (50 mM) and incubated for 30 min at room temperature. Then aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. This mixture is incubated for 2.5 h at RT in the dark under gentle stirring.
  • Finally the PEG-Prolia conjugate is purified by ion-exchange chromatography on SP Sepharose FF. The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SP FF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free Prolia is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PEG-Prolia conjugate a specific activity of >50% in comparison to native Prolia is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Prolia.
  • Method 2:
  • Prolia is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). Prolia is transferred or dissolved in reaction buffer (e.g. 50 mM Hepes, 350 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 1.0+/−0.25 mg/ml. Then the pH of the solution is corrected to 6.0 by drop wise addition of a 0.5N aqueous HCl solution. Subsequently, a 40 mM aqueous sodium periodate solution is added within 10 minutes to give a concentration of 200 μM. The oxidation reaction is carried out for 30+/−5 min at a temperature (T) of T=+22+/−2° C. Then the reaction is stopped by addition of an aqueous L-cysteine solution (1 M) within 15 minutes at T=+22+/−2° C. to give a final concentration of 10 mM in the reaction mixture and incubation for 60+/−5 min.
  • The oxidized Prolia is further purified by ion exchange chromatography. The oxidized Humira containing fractions of the eluate are collected and used for the conjugation reaction.
  • The aminooxy-PEG reagent with a MW of 20 kD reagent is added in a 50-fold molar excess to the eluate containing the purified oxidized Prolia within a maximum time period (t) of 15 minutes under gentle stirring. Then an aqueous m-toluidine solution (50 mM) is added within 15 minutes to get a final concentration of 10 mM. The reaction mixture is incubated for 120+/−10 min. in the dark at a temperature (T) of T=+22+/−2° C. under gentle shaking.
  • The obtained PEG-Prolia conjugate is further purified by ion exchange chromatography. The PEG-Prolia conjugate containing fractions are collected and concentrated by ultra-/diafiltration (UF/DF) using a membrane made of regenerated cellulose with an appropriate molecular weight cut off (Millipore).
  • Method 3:
  • Prolia is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). EPO is dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) and mixed with an aqueous sodium periodate solution (10 mM), and an aqueous m-toluidine solution (50 mM). Subsequently the aminooxy reagent is added to give a 20-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 8 μl of aqueous cysteine solution (1 M).
  • Finally, the PEG-Prolia conjugate is purified by ion-exchange chromatography on Q-Sepharose FF. 1.5 mg protein/ml gel is loaded on the column pre equilibrated with 50 mM Hepes buffer, pH 7.4 containing 5 mM CaCl2. The conjugate is eluted with 50 mM Hepes buffer containing 5 mM CaCl2 and 500 mM sodium chloride, pH 7.4 and is then subjected to UF/DF using a membrane. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art.
  • In an alternative embodiment, Method 3 is carried out as follows.
  • Prolia is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). 10 mg Prolia is dissolved in ˜8 ml histidine buffer, pH 6.0 (20 mM L-histidine, 150 mM NaCl). 200 μl of an aqueous sodium periodate solution (5 mM) and 2 ml of an aqueous m-toluidine solution (50 mM) are then added. Subsequently, the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 5-fold molar reagent excess. The mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of 100 μl of 1 M aqueous cysteine solution.
  • Finally the PEG-Prolia conjugate is purified by ion-exchange chromatography on SP-Sepharose FF. The reaction mixture is diluted with 20 ml Buffer A (50 mM Hepes, pH 6.5) and loaded onto a 20 ml HiPrep SPFF 16/10 column (GE Healthcare, Fairfield, Conn.) pre-equilibrated with Buffer A. Then the column is eluted with Buffer B (50 mM Hepes, 1 M NaCl, pH 6.5). Free Prolia is eluted by washing the column with 25% Buffer B and the conjugate at 50% Buffer B. The conjugate containing fractions are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against histidine buffer, pH 6.9 containing 150 mM NaCl. The preparation is analytically characterized by measuring total protein (Bradford) and biological activity according to methods known in the art. For the PEG-Prolia conjugate a specific activity of >50% in comparison to native Prolia is determined. The conjugate is additionally analytically characterized by Size Exclusion HPLC using a Agilent 1200 HPLC system equipped with a Shodex KW 803 column under conditions as previously described (Kolarich et al, Transfusion 2006; 46:1959-77). It is shown that the preparation contains no free Prolia.
  • Method 4:
  • Prolia is PEGylated by use of a linear 20 kD PEGylation reagent containing an aminooxy group. An example of this type of reagent is the Sunbright® CA series from NOF (NOF Corp., Tokyo, Japan). An initial concentration or weight of Humira is transferred or dissolved in Hepes buffer (50 mM Hepes, 150 mM sodium chloride, 5 mM calcium chloride, pH 6.0) to get a final protein concentration of 2 mg Prolia/ml. Subsequently an 5 mM aqueous sodium periodate solution is added within 15 minutes to give a final concentration of 100 μM, followed by addition of an 50 mM aqueous m-toluidine solution to get a final concentration of 10 mM within a time period of 30 minutes. Then the aminooxy-PEG reagent with a MW of 20 kD (described above) is added to give a 20-fold molar reagent excess. After correction of the pH to 6.0 the mixture is incubated for 2 h in the dark at room temperature under gentle stirring and quenched for 15 min at room temperature by the addition of an 1 M aqueous L-cysteine solution to give a final concentration of 10 mM.
  • The Prolia conjugate is purified by means of ion exchange chromatography (IEC). The conjugate containing fractions of the eluate are concentrated by UF/DF using a 10 kD membrane made of regenerated cellulose (88 cm2, cut-off 10 kD/Millipore). The final diafiltration step is performed against Hepes buffer (50 mM Hepes, 5 mM CaCl2, pH 7.5).
  • The preparation is analytically characterized by measuring total protein (Bradford and BCA procedure) and biological activity according to known methods.
  • Example 45 PEGylation of a Therapeutic Protein Using Branched PEG
  • PEGylation of a therapeutic protein of the invention may be extended to a branched or linear PEGylation reagent, which is made of an aldehyde and a suitable linker containing an active aminooxy group.

Claims (10)

1.-72. (canceled)
73. A modified therapeutic protein comprising an activated water soluble polymer conjugated to an oxidized carbohydrate moiety on a therapeutic protein through forming a hydrazone linkage,
wherein said activated water soluble polymer contains an active hydrazide group and is selected from the group consisting of polyethylene glycol (PEG), branched PEG, PolyPEG® (Warwick Effect Polymers; Coventry, UK), polysialic acid (PSA), starch, hydroxyalkyl starch (HAS), hydroxylethyl starch (HES), carbohydrate, polysaccharides, pullulan, chitosan, hyaluronic acid, chondroitin sulfate, dermatan sulfate, dextran, carboxymethyl-dextran, polyalkylene oxide (PAO), polyalkylene glycol (PAG), polypropylene glycol (PPG), polyoxazoline, polyacryloylmorpholine, polyvinyl alcohol (PVA), polycarboxylate, polyvinylpyrrolidone, polyphosphazene, polyethylene-co-maleic acid anhydride, polystyrene-co-maleic acid anhydride, and poly(l-hydroxymethylethylene hydroxymethylformal) (PHF);
wherein the modified therapeutic protein is prepared by a method comprising the steps of:
a) oxidizing a carbohydrate moiety on a therapeutic protein by incubating said protein with an oxidizing agent selected from the group consisting of sodium periodate (NaIO4), lead tetraacetate (Pb(OAc)4) and potassium perruthenate (KRuO4); and
b) forming a hydrazone linkage between the oxidized carbohydrate moiety of the therapeutic protein and the activated water soluble polymer containing an active hydrazide group in the presence of a nucleophilic catalyst under conditions allowing formation of said hydrazone linkage; and
wherein the nucleophilic catalyst is m-toluidine.
74. The modified therapeutic protein of claim 73, wherein the therapeutic protein is selected from the group consisting of Factor IX (FIX), Factor VIII (FVIII), Factor VIIa (FVIIa), Von Willebrand Factor (VWF), Factor V (FV), Factor X (FX), Factor XI (FXI), Factor XII (FXII), thrombin (FII), protein C, protein S, tPA, PAI-1, tissue factor (TF), ADAMTS 13 protease, IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, human growth hormone (HGH), tumor necrosis factor-alpha (TNF-alpha), colony stimulating factor-1 (CSF-1), M-CSF, SCF, GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, IFN-gamma, IFN-omega, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-31, IL-32 alpha, IL-33, thrombopoietin (TPO), Ang-1, Ang-2, Ang-4, Ang-Y, angiopoietin-like polypeptide 1 (ANGPTL1), angiopoietin-like polypeptide 2 (ANGPTL2), angiopoietin-like polypeptide 3 (ANGPTL3), angiopoietin-like polypeptide 4 (ANGPTL4), angiopoietin-like polypeptide 5 (ANGPTL5), angiopoietin-like polypeptide 6 (ANGPTL6), angiopoietin-like polypeptide 7 (ANGPTL7), vitronectin, vascular endothelial growth factor (VEGF), angiogenin, activin A, activin B, activin C, bone morphogenic protein-1, bone morphogenic protein-2, bone morphogenic protein-3, bone morphogenic protein-4, bone morphogenic protein-5, bone morphogenic protein-6, bone morphogenic protein-7, bone morphogenic protein-8, bone morphogenic protein-9, bone morphogenic protein-10, bone morphogenic protein-11, bone morphogenic protein-12, bone morphogenic protein-13, bone morphogenic protein-14, bone morphogenic protein-15, bone morphogenic protein receptor IA, bone morphogenic protein receptor IB, bone morphogenic protein receptor II, brain derived neurotrophic factor, cardiotrophin-1, ciliary neurotrophic factor, ciliary neurotrophic factor receptor, cripto, cryptic, cytokine-induced neutrophil chemotactic factor 1, cytokine-induced neutrophil chemotactic factor 2α, cytokine-induced neutrophil chemotactic factor 2β, β endothelial cell growth factor, endothelin 1, epidermal growth factor, epigen, epiregulin, epithelial-derived neutrophil attractant, fibroblast growth factor 4, fibroblast growth factor 5, fibroblast growth factor 6, fibroblast growth factor 7, fibroblast growth factor 8, fibroblast growth factor 8b, fibroblast growth factor 8c, fibroblast growth factor 9, fibroblast growth factor 10, fibroblast growth factor 11, fibroblast growth factor 12, fibroblast growth factor 13, fibroblast growth factor 16, fibroblast growth factor 17, fibroblast growth factor 19, fibroblast growth factor 20, fibroblast growth factor 21, fibroblast growth factor acidic, fibroblast growth factor basic, glial cell line-derived neurotrophic factor receptor α1, glial cell line-derived neurotrophic factor receptor α2, growth related protein, growth related protein α, growth related protein α, growth related protein γ, heparin binding epidermal growth factor, hepatocyte growth factor, hepatocyte growth factor receptor, hepatoma-derived growth factor, insulin-like growth factor I, insulin-like growth factor receptor, insulin-like growth factor II, insulin-like growth factor binding protein, keratinocyte growth factor, leukemia inhibitory factor, leukemia inhibitory factor receptor α, nerve growth factor, nerve growth factor receptor, neuropoietin, neurotrophin-3, neurotrophin-4, oncostatin M (OSM), placenta growth factor, placenta growth factor 2, platelet-derived endothelial cell growth factor, platelet derived growth factor, platelet derived growth factor A chain, platelet derived growth factor AA, platelet derived growth factor AB, platelet derived growth factor B chain, platelet derived growth factor BB, platelet derived growth factor receptor α, platelet derived growth factor receptor 13, pre-B cell growth stimulating factor, stem cell factor (SCF), stem cell factor receptor, TNF, TNF0, TNF1, TNF2, transforming growth factor α, transforming growth factor β, transforming growth factor β1, transforming growth factor β1.2, transforming growth factor β2, transforming growth factor β3, transforming growth factor β5, latent transforming growth factor β1, transforming growth factor β binding protein I, transforming growth factor β binding protein II, transforming growth factor β binding protein III, thymic stromal lymphopoietin (TSLP), tumor necrosis factor receptor type I, tumor necrosis factor receptor type II, urokinase-type plasminogen activator receptor, phospholipase-activating protein (PUP), insulin, lectin, ricin, prolactin, chorionic gonadotropin, follicle-stimulating hormone, thyroid-stimulating hormone, tissue plasminogen activator, IgG, IgE, IgM, IgA, and IgD, α-galactosidase, β-galactosidase, DNAse, fetuin, luteinizing hormone, estrogen, albumin, lipoproteins, fetoprotein, transferrin, thrombopoietin, urokinase, integrin, thrombin, leptin, Humira (adalimumab), Prolia (denosumab), Enbrel (etanercept), a protein in Table 1, or a biologically active fragment, derivative or variant thereof.
75. The modified therapeutic protein of claim 74, wherein the therapeutic protein has biological activity of a blood coagulation protein.
76. The modified therapeutic protein of claim 75, wherein the blood cogulation protein is selected from the group consisting of FVIIa, FVIII and FIX.
77. The modified therapeutic protein of claim 73, wherein the water soluble polymer is PEG or PSA.
78. The modified therapeutic protein of claim 73, wherein the oxidizing agent is sodium periodate (NaIO4) and is added in an amount to result in a final concentration between about 50 μM and about 1000 μM under conditions comprising a time period between about 0.1 minutes and 120 minutes; a temperature between about 2° C. and about 37° C.; in the presence or absence of light; and with or without stirring.
79. The modified therapeutic protein of claim 73, wherein the m-toluidine is provided at a concentration between 1 mM and about 50 mM.
80. The modified therapeutic protein of claim 74, wherein the therapeutic protein has biological activity of FVIIa, FVIII or FIX;
wherein the water soluble polymer is PEG or PSA;
wherein the oxidizing agent is sodium periodate (NaIO4) and is added in an amount to result in a final concentration between about 50 μM and about 1000 μM; and
wherein the m-toluidine is provided at a concentration between 1 mM and about 50 mM.
81. The modified therapeutic protein of claim 80, wherein the oxidizing agent is sodium periodate (NaIO4) and is added in an amount to result in a final concentration of 400 μM; and wherein the m-toluidine is provided at a concentration of 10 mM.
US16/532,212 2009-07-27 2019-08-05 Nucleophilic catalysts for oxime linkage Abandoned US20200017543A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/532,212 US20200017543A1 (en) 2009-07-27 2019-08-05 Nucleophilic catalysts for oxime linkage
US17/168,695 US20210163527A1 (en) 2009-07-27 2021-02-05 Nucleophilic catalysts for oxime linkage

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US22882809P 2009-07-27 2009-07-27
US34713610P 2010-05-21 2010-05-21
US12/843,542 US8637640B2 (en) 2009-07-27 2010-07-26 Blood coagulation protein conjugates
US36918610P 2010-07-30 2010-07-30
US13/194,038 US8642737B2 (en) 2010-07-26 2011-07-29 Nucleophilic catalysts for oxime linkage
US14/136,233 US9492555B2 (en) 2009-07-27 2013-12-20 Nucleophilic catalysts for oxime linkage
US15/281,616 US10414793B2 (en) 2009-07-27 2016-09-30 Nucleophilic catalysts for oxime linkage
US16/532,212 US20200017543A1 (en) 2009-07-27 2019-08-05 Nucleophilic catalysts for oxime linkage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/281,616 Continuation US10414793B2 (en) 2009-07-27 2016-09-30 Nucleophilic catalysts for oxime linkage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/168,695 Continuation US20210163527A1 (en) 2009-07-27 2021-02-05 Nucleophilic catalysts for oxime linkage

Publications (1)

Publication Number Publication Date
US20200017543A1 true US20200017543A1 (en) 2020-01-16

Family

ID=45556599

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/194,038 Active US8642737B2 (en) 2009-07-27 2011-07-29 Nucleophilic catalysts for oxime linkage
US14/136,233 Active US9492555B2 (en) 2009-07-27 2013-12-20 Nucleophilic catalysts for oxime linkage
US15/281,616 Active US10414793B2 (en) 2009-07-27 2016-09-30 Nucleophilic catalysts for oxime linkage
US16/532,212 Abandoned US20200017543A1 (en) 2009-07-27 2019-08-05 Nucleophilic catalysts for oxime linkage
US17/168,695 Pending US20210163527A1 (en) 2009-07-27 2021-02-05 Nucleophilic catalysts for oxime linkage

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/194,038 Active US8642737B2 (en) 2009-07-27 2011-07-29 Nucleophilic catalysts for oxime linkage
US14/136,233 Active US9492555B2 (en) 2009-07-27 2013-12-20 Nucleophilic catalysts for oxime linkage
US15/281,616 Active US10414793B2 (en) 2009-07-27 2016-09-30 Nucleophilic catalysts for oxime linkage

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/168,695 Pending US20210163527A1 (en) 2009-07-27 2021-02-05 Nucleophilic catalysts for oxime linkage

Country Status (1)

Country Link
US (5) US8642737B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767526B2 (en) 2019-01-23 2023-09-26 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
US11845989B2 (en) 2019-01-23 2023-12-19 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
US11865134B2 (en) 2021-02-26 2024-01-09 Regeneron Pharmaceuticals, Inc. Treatment of inflammation with glucocorticoids and angiopoietin-like 7 (ANGPTL7) inhibitors

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645860B2 (en) 2006-03-31 2010-01-12 Baxter Healthcare S.A. Factor VIII polymer conjugates
US8809501B2 (en) * 2009-07-27 2014-08-19 Baxter International Inc. Nucleophilic catalysts for oxime linkage
US9765118B2 (en) * 2010-10-15 2017-09-19 Korea Research Institute Of Bioscience And Biotechnology Pharmaceutical composition for cancer prevention and treatment containing peptide originated from C12orf59 protein as an active ingredient
WO2012159084A1 (en) 2011-05-18 2012-11-22 Baxter International, Inc. Modification-dependent activity assays
EP3412314A1 (en) 2011-05-27 2018-12-12 Baxalta GmbH Therapeutic proteins conjugated to polysialic acid and methods of preparing same
US9452138B2 (en) * 2012-12-28 2016-09-27 Abbott Cardiovascular Systems Inc. Delivery of biologic therapeutics
AU2016362606A1 (en) * 2015-12-03 2018-06-28 Takeda Pharmaceutical Company Limited Factor VIII with extended half-life and reduced ligand-binding properties
EP3477305A1 (en) 2017-10-25 2019-05-01 Universität Heidelberg Delta-like ligand 1 for diagnosing severe infections
CN115551530A (en) 2019-08-27 2022-12-30 通尼克斯制药有限公司 Modified TFF2 polypeptides
CN112129946A (en) * 2020-08-16 2020-12-25 陆修委 Preparation method and application of sugar-free chain type inert protein sealant

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) * 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4970300A (en) 1985-02-01 1990-11-13 New York University Modified factor VIII
US5250421A (en) 1986-01-03 1993-10-05 Genetics Institute, Inc. Method for producing factor VIII:C-type proteins
US5198349A (en) 1986-01-03 1993-03-30 Genetics Institute, Inc. Method for producing factor VIII:C and analogs
JPH0387173A (en) 1987-09-10 1991-04-11 Teijin Ltd Preparation of human active natural type factor viii c and transformant using the same
US5153265A (en) 1988-01-20 1992-10-06 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
US4966999A (en) 1988-06-07 1990-10-30 Cytogen Corporation Radiohalogenated compounds for site specific labeling
US5122614A (en) * 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
SE465222C5 (en) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab A recombinant human factor VIII derivative and process for its preparation
SE466754B (en) 1990-09-13 1992-03-30 Berol Nobel Ab COVALENT BINDING POLYMERS TO HYDROPHILIC SURFACES
CA2073511A1 (en) 1990-11-14 1992-05-29 Matthew R. Callstrom Conjugates of poly(vinylsaccharide) with proteins for the stabilization of proteins
EP0576589A4 (en) 1991-03-18 1994-07-27 Enzon Inc Hydrazine containing conjugates of polypeptides and glycopolypeptides with polymers
US6037452A (en) * 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
AU5098193A (en) 1992-09-01 1994-03-29 Berlex Laboratories, Inc. Glycolation of glycosylated macromolecules
CA2124690C (en) 1992-10-02 2007-09-11 Thomas Osterberg Composition comprising coagulation factor viii formulation, process for its preparation and use of a surfactant as stabilizer
NZ250375A (en) 1992-12-09 1995-07-26 Ortho Pharma Corp Peg hydrazone and peg oxime linkage forming reagents and protein derivatives
US5298643A (en) * 1992-12-22 1994-03-29 Enzon, Inc. Aryl imidate activated polyalkylene oxides
WO1994015625A1 (en) * 1993-01-15 1994-07-21 Enzon, Inc. Factor viii - polymeric conjugates
AU7097094A (en) 1993-06-01 1994-12-20 Enzon, Inc. Carbohydrate-modified polymer conjugates with erythropoietic activity
US5621039A (en) 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
SE504074C2 (en) 1993-07-05 1996-11-04 Pharmacia Ab Protein preparation for subcutaneous, intramuscular or intradermal administration
EP0788375A2 (en) 1994-11-09 1997-08-13 Robin Ewart Offord Functionalized polymers for site-specific attachment
WO1996040662A2 (en) 1995-06-07 1996-12-19 Cellpro, Incorporated Aminooxy-containing linker compounds and their application in conjugates
WO1996040731A1 (en) 1995-06-07 1996-12-19 Mount Sinai School Of Medicine Of The City University Of New York Pegylated modified proteins
SE9503380D0 (en) 1995-09-29 1995-09-29 Pharmacia Ab Protein derivatives
WO1998048837A1 (en) 1997-04-30 1998-11-05 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US6183738B1 (en) 1997-05-12 2001-02-06 Phoenix Pharamacologics, Inc. Modified arginine deiminase
WO1998055607A2 (en) 1997-06-04 1998-12-10 Oxford Biomedica (Uk) Limited Tumor targeted vector
ATE309350T1 (en) 1997-12-03 2005-11-15 Roche Diagnostics Gmbh METHOD FOR PRODUCING POLYPEPTIDES WITH SUITABLE GLYCOSYLATION
US5985263A (en) 1997-12-19 1999-11-16 Enzon, Inc. Substantially pure histidine-linked protein polymer conjugates
JP2002528562A (en) 1998-08-28 2002-09-03 グリフォン サイエンシーズ Polyamide chain with small variation in length, method for producing the chain, and complex of the chain and protein
DK1121156T3 (en) 1998-10-16 2006-06-06 Biogen Idec Inc Polymer conjugates of interferon-beta-1a and their use
DE19852729A1 (en) 1998-11-16 2000-05-18 Werner Reutter Recombinant glycoproteins, processes for their preparation, medicaments containing them and their use
DK2130554T3 (en) 1999-02-22 2012-12-03 Univ Connecticut Albumin-free factor VIII preparations
US6531122B1 (en) 1999-08-27 2003-03-11 Maxygen Aps Interferon-β variants and conjugates
CN1309423C (en) 1999-11-12 2007-04-11 马克西根控股公司 Interferon gamma conjugates
WO2001058935A2 (en) 2000-02-11 2001-08-16 Maxygen Aps FACTOR VII OR VIIa-LIKE MOLECULES
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
AU2001256148A1 (en) 2000-05-03 2001-11-12 Novo-Nordisk A/S Subcutaneous administration of coagulation factor vii
AU2001254624A1 (en) 2000-05-03 2001-11-12 Novo-Nordisk A/S Human coagulation factor vii variants
EP1292337A2 (en) 2000-06-08 2003-03-19 La Jolla Pharmaceutical Multivalent platform molecules comprising high molecular weight polyethylene oxide
US6423826B1 (en) 2000-06-30 2002-07-23 Regents Of The University Of Minnesota High molecular weight derivatives of vitamin K-dependent polypeptides
US7118737B2 (en) 2000-09-08 2006-10-10 Amylin Pharmaceuticals, Inc. Polymer-modified synthetic proteins
AU2001287550B2 (en) 2000-09-13 2007-03-22 Novo Nordisk Health Care Ag Human coagulation factor VII variants
WO2002029083A2 (en) 2000-10-02 2002-04-11 Novo Nordisk A/S Industrial-scale serum-free production of recombinant proteins in mammalian cells
BR0208203A (en) 2001-03-22 2005-04-19 Novo Nordisk Healthcare Ag Factor vii polypeptide, factor vii derivative, composition, pharmaceutical composition, polynucleotide construction, eukaryotic host cell, transgenic animal, transgenic plant, and methods for producing factor vii polypeptide and a factor vii derivative, use of a derivative of vii, methods for treating bleeding episodes or bleeding disorders in a patient or for enhancing the normal hemostatic system and inhibiting thrombus formation in a patient
US6613554B2 (en) 2001-03-26 2003-09-02 Applera Corporation Isolated human enzyme, nucleic acid molecules encoding human enzyme, and uses thereof
US6913915B2 (en) 2001-08-02 2005-07-05 Phoenix Pharmacologics, Inc. PEG-modified uricase
CN101724075B (en) 2001-10-10 2014-04-30 诺和诺德公司 Remodeling and glycoconjugation of peptides
US7795210B2 (en) 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7157277B2 (en) 2001-11-28 2007-01-02 Neose Technologies, Inc. Factor VIII remodeling and glycoconjugation of Factor VIII
US7026440B2 (en) 2001-11-07 2006-04-11 Nektar Therapeutics Al, Corporation Branched polymers and their conjugates
CA2468230A1 (en) 2001-11-28 2003-06-05 Neose Technologies, Inc. Glycopeptide remodeling using amidases
AU2002351199A1 (en) 2001-11-28 2003-06-10 Neose Technologies, Inc. Glycoprotein remodeling using endoglycanases
JP4634145B2 (en) 2002-06-21 2011-02-16 ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト Pegylated Factor VII glycoform
US7122189B2 (en) 2002-08-13 2006-10-17 Enzon, Inc. Releasable polymeric conjugates based on aliphatic biodegradable linkers
US7087229B2 (en) 2003-05-30 2006-08-08 Enzon Pharmaceuticals, Inc. Releasable polymeric conjugates based on aliphatic biodegradable linkers
KR101174510B1 (en) 2002-09-11 2012-08-16 프레제니우스 카비 도이치란트 게엠베하 HASylated polypeptide especially HASylated erythropoietin
US20040062748A1 (en) 2002-09-30 2004-04-01 Mountain View Pharmaceuticals, Inc. Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof
ATE399185T1 (en) 2002-12-31 2008-07-15 Nektar Therapeutics Al Corp MALEIC ACID AMIDE POLYMER DERIVATIVES AND THEIR BIOCONJUGATES
KR101025143B1 (en) 2002-12-31 2011-04-01 넥타르 테라퓨틱스 Hydrolytically stable maleimide-terminated polymers
CN102139114A (en) 2003-02-26 2011-08-03 尼克塔治疗公司 Polymer factor VIII moiety conjugates
WO2004089280A2 (en) 2003-04-08 2004-10-21 Yeda Research And Development Co. Ltd. Reversible pegylated drugs
WO2005014035A2 (en) 2003-08-08 2005-02-17 Novo Nordisk Health Care Ag Use of galactose oxidase for selective chemical conjugation of protractor molecules to proteins of therapeutic interest
WO2005014024A2 (en) 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of a polymer and a protein linked by an oxime linking group
WO2005014655A2 (en) 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
BRPI0417341A (en) 2003-12-03 2007-04-17 Neose Technologies Inc glyceguiled factor ix
NZ548123A (en) 2004-01-08 2010-05-28 Novo Nordisk As O-linked glycosylation of peptides
US20090292110A1 (en) 2004-07-23 2009-11-26 Defrees Shawn Enzymatic modification of glycopeptides
EP1778838A2 (en) 2004-08-02 2007-05-02 Novo Nordisk Health Care AG Conjugation of fvii
WO2006016168A2 (en) 2004-08-12 2006-02-16 Lipoxen Technologies Limited Sialic acid derivatives
PT2371856T (en) 2004-11-12 2022-08-12 Bayer Healthcare Llc Site-directed modification of fviii
EP1835938B1 (en) 2004-12-27 2013-08-07 Baxter International Inc. Polymer-von willebrand factor-conjugates
WO2006074279A1 (en) 2005-01-06 2006-07-13 Neose Technologies, Inc. Glycoconjugation using saccharyl fragments
JP5216580B2 (en) 2005-05-25 2013-06-19 ノヴォ ノルディスク アー/エス Glycopegylated factor IX
JP5335422B2 (en) 2005-06-17 2013-11-06 ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト Selective reduction and derivatization of engineered proteins containing at least one unnatural cysteine
US20070105755A1 (en) 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
US20090017007A1 (en) 2005-08-26 2009-01-15 Maxygen Holdings Ltd. Liquid factor vii composition
BRPI0620316A2 (en) 2005-12-21 2011-11-08 Wyeth Corp Low viscosity protein formulations and their uses
US7645860B2 (en) 2006-03-31 2010-01-12 Baxter Healthcare S.A. Factor VIII polymer conjugates
US7683158B2 (en) 2006-03-31 2010-03-23 Baxter International Inc. Pegylated factor VIII
WO2007140282A1 (en) 2006-05-24 2007-12-06 Peg Biosciences Peg linker compounds and biologically active conjugates thereof
US7939632B2 (en) 2006-06-14 2011-05-10 Csl Behring Gmbh Proteolytically cleavable fusion proteins with high molar specific activity
ES2565180T3 (en) 2006-07-13 2016-04-01 Serum Institute Of India Ltd, Process for the preparation of high purity polysalic acid
EP2041167B1 (en) 2006-07-25 2010-05-12 Lipoxen Technologies Limited Derivatisation of granulocyte colony-stimulating factor
WO2008025856A2 (en) 2006-09-01 2008-03-06 Novo Nordisk Health Care Ag Modified glycoproteins
US20100075375A1 (en) 2006-10-03 2010-03-25 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
WO2008074032A1 (en) 2006-12-15 2008-06-19 Baxter International Inc. Factor viia- (poly) sialic acid conjugate having prolonged in vivo half-life
EP2099475B1 (en) 2007-01-03 2016-08-24 Novo Nordisk Health Care AG Subcutaneous administration of coagulation factor viia-related polypeptides
WO2008119815A1 (en) 2007-04-02 2008-10-09 Novo Nordisk A/S Subcutaneous administration of coagulation factor ix
BRPI0813772A2 (en) 2007-06-26 2014-12-30 Baxter Int COMPOUND, PROCESS FOR PREPARING A COMPOUND, AND, CONJUGATED
CA2690440A1 (en) 2007-07-03 2009-01-08 Children's Hospital & Research Center At Oakland Oligosialic acid derivatives, methods of manufacture, and immunological uses
US20100239517A1 (en) 2007-10-09 2010-09-23 Stephen Brocchini Novel conjugated proteins and peptides
JP5647899B2 (en) 2008-01-08 2015-01-07 ラツィオファルム ゲーエムベーハーratiopharm GmbH Glycoconjugation of polypeptides using oligosaccharyltransferase
CA2715465C (en) 2008-02-27 2017-03-21 Novo Nordisk A/S Conjugated factor viii molecules
KR20110016440A (en) 2008-04-24 2011-02-17 셀틱 파르마 피이지 엘티디. Factor ix conjugates with extended half-lives
WO2009141418A1 (en) 2008-05-23 2009-11-26 Novo Nordisk A/S Formulations of peg-functionalised serine proteases with high concentrations of an aromatic preservative
WO2009141433A1 (en) 2008-05-23 2009-11-26 Novo Nordisk Health Care Ag Low viscosity compositions comprising a pegylated gla-domain containing protein
MX2010013219A (en) 2008-06-04 2011-04-11 Bayer Healthcare Llc Fviii muteins for treatment of von willebrand disease.
ES2536882T3 (en) 2008-07-21 2015-05-29 Polytherics Limited New reagents and method of conjugation of biological molecules
CA2740793A1 (en) 2008-11-03 2010-06-03 Haiyan Jiang Method for the treatment of hemophilia
EP2387413A4 (en) 2009-01-19 2015-12-23 Bayer Healthcare Llc Protein conjugate having an endopeptidase-cleavable bioprotective moiety
ES2401965T3 (en) 2009-02-19 2013-04-25 Novo Nordisk A/S Modification of Factor VIII
WO2010100430A1 (en) 2009-03-04 2010-09-10 Polytherics Limited Conjugated proteins and peptides
WO2010120365A2 (en) 2009-04-16 2010-10-21 Wu Nian Protein-carrier conjugates
GB0908393D0 (en) 2009-05-15 2009-06-24 Almac Sciences Scotland Ltd Labelling method
DK2459224T3 (en) 2009-07-27 2016-07-25 Baxalta GmbH Blodstørkningsproteinkonjugater
NZ597600A (en) 2009-07-27 2014-05-30 Lipoxen Technologies Ltd Glycopolysialylation of non-blood coagulation proteins
KR20120060209A (en) 2009-07-31 2012-06-11 바이엘 헬스케어 엘엘씨 Modified factor ix polypeptides and uses thereof
DE102009028526A1 (en) 2009-08-13 2011-02-24 Leibniz-Institut Für Polymerforschung Dresden E.V. Process for the modification and functionalization of saccharides
CA2775287A1 (en) 2009-09-25 2011-03-31 Vybion, Inc. Polypeptide modification
WO2011064247A1 (en) 2009-11-24 2011-06-03 Novo Nordisk Health Care Ag Method of purifying pegylated proteins
CN102770449B (en) 2010-02-16 2016-02-24 诺沃—诺迪斯克有限公司 The Factor VlII molecule that the VWF with reduction combines
GB201007357D0 (en) 2010-04-30 2010-06-16 Leverton Licence Holdings Ltd Conjugated factor VIII
GB201007356D0 (en) 2010-04-30 2010-06-16 Leverton Licence Holdings Ltd Conjugated factor VIIa
KR102172133B1 (en) 2010-07-30 2020-11-02 박스알타 인코퍼레이티드 Nucleophilic catalysts for oxime linkage
US20130331554A1 (en) 2010-11-15 2013-12-12 Biogen Idec Inc. Enrichment and concentration of select product isoforms by overloaded bind and elute chromatography
EP3513804B1 (en) 2011-07-08 2022-03-23 Bioverativ Therapeutics Inc. Factor viii chimeric and hybrid polypeptides, and methods of use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767526B2 (en) 2019-01-23 2023-09-26 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
US11845989B2 (en) 2019-01-23 2023-12-19 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
US11865134B2 (en) 2021-02-26 2024-01-09 Regeneron Pharmaceuticals, Inc. Treatment of inflammation with glucocorticoids and angiopoietin-like 7 (ANGPTL7) inhibitors

Also Published As

Publication number Publication date
US9492555B2 (en) 2016-11-15
US8642737B2 (en) 2014-02-04
US10414793B2 (en) 2019-09-17
US20140121351A1 (en) 2014-05-01
US20170240590A1 (en) 2017-08-24
US20120035344A1 (en) 2012-02-09
US20210163527A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US20210163527A1 (en) Nucleophilic catalysts for oxime linkage
US11564992B2 (en) Nucleophilic catalysts for oxime linkage
US8945897B2 (en) Materials and methods for conjugating a water soluble fatty acid derivative to a protein
EP2598172B1 (en) Nucleophilic catalysts for oxime linkage
EP2849795B1 (en) Methods for preparing therapeutic protein-polymer conjugates
US20130310546A1 (en) Nucleophilic catalysts for oxime linkage and use of nmr analyses of the same
AU2017276255B2 (en) Nucleophilic Catalysts for Oxime Linkage
EA044273B1 (en) METHOD FOR CONJUGATION OF WATER-SOLUBLE POLYMER WITH THERAPEUTIC PROTEIN

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAXTER INTERNATIONAL INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAIDER, STEFAN;IVENS, ANDREAS;ROTTENSTEINER, HANSPETER;AND OTHERS;SIGNING DATES FROM 20110812 TO 20110816;REEL/FRAME:049962/0737

Owner name: BAXTER HEALTHCARE S.A., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAIDER, STEFAN;IVENS, ANDREAS;ROTTENSTEINER, HANSPETER;AND OTHERS;SIGNING DATES FROM 20110812 TO 20110816;REEL/FRAME:049962/0737

Owner name: BAXALTA GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:049965/0159

Effective date: 20150811

Owner name: BAXALTA INCORPORATED, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER INTERNATIONAL INC.;REEL/FRAME:049965/0159

Effective date: 20150811

AS Assignment

Owner name: BAXALTA GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER HEALTHCARE SA;REEL/FRAME:049969/0351

Effective date: 20150811

Owner name: BAXALTA INCORPORATED, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAXTER HEALTHCARE SA;REEL/FRAME:049969/0351

Effective date: 20150811

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: TAKEDA PHARMACEUTICAL COMPANY LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAXALTA GMBH;BAXALTA INCORPORATED;REEL/FRAME:055189/0238

Effective date: 20201205

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION