US20200017500A9 - Novel co-crystals - Google Patents

Novel co-crystals Download PDF

Info

Publication number
US20200017500A9
US20200017500A9 US16/090,152 US201716090152A US2020017500A9 US 20200017500 A9 US20200017500 A9 US 20200017500A9 US 201716090152 A US201716090152 A US 201716090152A US 2020017500 A9 US2020017500 A9 US 2020017500A9
Authority
US
United States
Prior art keywords
crystal
iti
free base
isonicotinamide
nicotinamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/090,152
Other versions
US20190112310A1 (en
US11014925B2 (en
Inventor
Peng Li
Edwin Aret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intra Cellular Therapies Inc
Original Assignee
Intra Cellular Therapies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intra Cellular Therapies Inc filed Critical Intra Cellular Therapies Inc
Priority to US16/090,152 priority Critical patent/US11014925B2/en
Publication of US20190112310A1 publication Critical patent/US20190112310A1/en
Publication of US20200017500A9 publication Critical patent/US20200017500A9/en
Application granted granted Critical
Publication of US11014925B2 publication Critical patent/US11014925B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/16Peri-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • This disclosure relates to certain novel co-crystal forms of a substituted heterocycle fused gamma-carboline together with nicotinamide or isonicotinamide, the manufacture of such co-crystals, pharmaceutical compositions thereof, and use thereof, e.g., in the treatment of diseases or abnormal conditions involving or mediated by the 5-HT 2A receptor, serotonin transporter (SERT), and/or dopamine D 1 /D 2 receptor signaling pathways.
  • SERT serotonin transporter
  • ITI-007 is currently in clinical trials, i.a., for treatment of schizophrenia. While ITI-007 is a promising drug, its production and formulation present challenges.
  • ITI-007 In free base form, ITI-007 is an oily, sticky solid, with poor solubility, not only in water but also in many organic solvents. Making salts of the compound has proven to be unusually difficult.
  • a hydrochloride salt form of ITI-007 was disclosed in U.S. Pat. No. 7,183,282, but this salt is hygroscopic and shows poor stability.
  • a toluenesulfonic acid addition salt (tosylate) of ITI-007 was finally identified and described in WO 2009/114181.
  • the disclosure thus provides novel co-crystal forms of ITI-007 and nicotinamide and of ITI-007 and isonicotinamide, which co-crystals are especially advantageous for use in the preparation of galenic formulations, together with methods of making and using the same.
  • FIG. 1 depicts an X-ray powder diffraction pattern for an ITI-007 free base isonicotinamide co-crystal.
  • FIG. 2 depicts an X-ray powder diffraction pattern for an ITI-007 free base nicotinamide co-crystal.
  • FIG. 3 depicts X-ray powder diffraction patterns for ITI-007 free base nicotinamide co-crystals and nicotinamide reference.
  • FIG. 4A and 4B depict over-layed X-ray powder diffraction patterns for scale-up batches of ITI-007 free base isonicotinamide co-crystals.
  • FIG. 5 depicts over-layed X-ray powder diffraction patterns for solids from solubility determination study.
  • Pattern (1) is the third batch co-crystal;
  • pattern (2) is isonicotinamide reference;
  • Patterns (3) to (10) are the solids obtained from solubility studies: (3) dichloromethane, (4) methyl t-butyl ether; (5) acetone; (6) ethyl acetate; (7) ethanol; (8) acetonitrile; (9) toluene; (10) acetic acid (degradation).
  • the invention provides 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) free base in the form of a co-crystal (Co-crystal 1).
  • the invention therefore provides the following:
  • the invention provides a process (Process 1) for the production of Co-crystal 1, comprising
  • the invention provides a method of purifying 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) in free or salt form, comprising combining crude ITI-007 with a second compound selected from nicotinamide and isonicotinamide, in the presence of a solvent, e.g, comprising methanol, removing the solvent and recovering the Co-crystal thus formed, e.g., in accordance with Process 1, and optionally converting the Co-crystal back to ITI-007 free base or to a desired salt form.
  • a solvent e.g, comprising methanol
  • the invention provides the use of a compound selected from nicotinamide and isonicotinamide in a method of isolating and/or purifying ITI-007.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, as active ingredient, in combination or association with a pharmaceutically acceptable diluent or carrier.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, as active ingredient, in combination or association with a pharmaceutically acceptable diluent or carrier, wherein the Co-crystal 1 is predominantly, or is entirely or substantially entirely, in dry crystalline form.
  • Co-crystal 1, e.g., any of Co-crystal 1.1-1.20 are found to be relatively insoluble. While the free base is poorly soluble, it does not form crystals and is difficult to formulate. Salt forms are quite soluble, but may provide undesirably fast dissolution in extended release formulations.
  • the invention provides a pharmaceutical composition for extended release of ITI-007, comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, as active ingredient, in combination or association with a pharmaceutically acceptable diluent or carrier, e.g., wherein the pharmaceutical composition is in the form of an injectable depot for extended release.
  • the invention provides Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, or a pharmaceutical composition comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, for use in treating a disease or abnormal condition involving or mediated by the 5-HT 2A receptor, serotonin transporter (SERT), and/or dopamine D 1 /D 2 receptor signaling pathways, e.g., a disorder selected from obesity, anorexia, bulemia, depression, anxiety, psychosis, schizophrenia, migraine, obsessive-compulsive disorder, sexual disorders, depression, schizophrenia, migraine, attention deficit disorder, attention deficit hyperactivity disorder, obsessive-compulsive disorder, sleep disorders, conditions associated with cephalic pain, social phobias, or dementia.
  • the invention provides a method for the prophylaxis or treatment of a human suffering from a disease or abnormal condition involving or mediated by the 5-HT 2A receptor, serotonin transporter (SERT), and/or dopamine Di/D2 receptor signaling pathways, e.g., a disorder selected from obesity, anorexia, bulemia, depression, anxiety, psychosis, schizophrenia, migraine, obsessive-compulsive disorder, sexual disorders, depression, schizophrenia, migraine, attention deficit disorder, attention deficit hyperactivity disorder, obsessive-compulsive disorder, sleep disorders, conditions associated with cephalic pain, social phobias, or dementia, comprising administering to a patient in need thereof a therapeutically effective amount of any of Co-crystal 1-1.20.
  • the standard sample holder (0.1 mm cavity in (510) silicon wafer) has a minimal contribution to the background signal. Measurement conditions: scan range 5-45° 2 ⁇ , sample rotation 5 rpm, 0.5 s/step, 0.010°/step, 3.0 mm detector slit; and all measuring conditions are logged in the instrument control file. As system suitability, corundum sample A26-B26-S (NIST standard) is measured daily.
  • the software used for data collection is Diffrac.Commander v2.0.26. Data analysis is done using Diffrac.Eva v1.4. No background correction or smoothing is applied to the patterns.
  • TGA thermogravimetry
  • DSC differential scanning calorimetry
  • TGA/DSC studies are performed using a Mettler Toledo TGA/DSC1 Stare System, equipment #1547, auto-sampler equipped, using pin-holed A1-crucibles of 40 ⁇ l. Measurement conditions: 5 min 30.0° C., 30.0-350.0° C. with 10° C./min., N2 flow of 40 ml/min.
  • the software used for instrument control and data analysis is STARe v12.10.
  • DSC Differential scanning calorimetry
  • Polarized light microscopy The microscopy studies are performed using an AxioVert 35M, equipped with an AxioCamERc 5s, equipment #1612. The microscope is equipped with four lenses: Zeiss A-Plan 5 ⁇ /0.12, Zeiss A-Plan 10 ⁇ /0.25, LD A-Plan 20 ⁇ /0.30 and Achros TIGMAT 32 ⁇ /0.40. Data collection and evaluation is performed using Carl Zeiss Zen AxioVision Blue Edition Lite 2011 v1.0.0.0 software. A small amount of sample is loaded on an object glass and carefully spread until a thin layer is obtained.
  • Dynamic Vapour Sorption The Dynamic Vapour Sorption studies are performed using a Surface Measurement Systems Ltd. DVS-1 No Video, equipment #2126. The sample is loaded into a balance pan, typically 20-30 mg, and equilibrated at 0% RH. After the material was dried, the RH is increased with 10% per step for 1 hour per increment, ending at 95% RH. After completion of the sorption cycle, the sample was dried using the same method.
  • the software used for data collection is DVSWin v3.01 No Video. Data analysis is performed using DVS Standard Analysis Suite v6.3.0 (Standard).
  • Capillary Melting Point The capillary melting point is determined on a Büchi Melting Point B-545, equipment #000011, conform USP guidelines.
  • X-ray fluorescence The X-ray fluorescence studies are performed using a Bruker AXS S2 RANGER, equipment #2006. Using an end-window X-ray tube with Palladium anode and an ultra-thin Beryllium window (75 ⁇ m) for superior light element analysis. As detector the Xflash V5 detector with Cr, Ti, Al, Ta collimator (energy resolution ⁇ 129 eV FWHM at 100000 cps Mnk ⁇ ) is used.
  • the S2 Ranger is equipped with an autosampler with integrated 28 position X-Y automatic sample changer with exchangeable tray, which allows maximum sample diameter of 40 mm. Samples are mounted in steel rings of 51.5 mm diameter for automatic operation.
  • Measurement conditions disposable liquid cups (35 mm inner diameter, 40 mm outer diameter) with polypropylene foil 5 ⁇ m. As system suitability check a copper disk is measured daily and a glass disk, containing several elements, is measured weekly.
  • the software used for data collection is S2 Ranger Control Software V4.1.0. Data analysis is performed using SPECTRA EDX V2.4.3 evaluation software. No background correction or smoothing is applied to the patterns.
  • FT-IR Fourier transform infrared spectroscopy
  • TGA-IR Thermogravimetric analysis
  • TGA-IR Thermogravimetric analysis
  • the off-gassing materials are directed through a transfer line to a gas cell, where the infrared light interacts with the gases.
  • the temperature ramp and first derivative weight loss information from the TGA is shown as a Gram-Schmidt (GS) profile; the GS profile essentially shows the total change in the IR signal relative to the initial state. In most cases, the GS and the derivative weight loss will be similar in shape, although the intensity of the two can differ.
  • GS Gram-Schmidt
  • the GS and the derivative weight loss will be similar in shape, although the intensity of the two can differ.
  • the TGA studies are performed using a Mettler Toledo TGA/DSC1 STARe System with a 34-position auto sampler, equipment #1547.
  • the samples are made using Al crucibles (100 ⁇ l; pierced). Typically 20-50 mg of sample is loaded into a pre-weighed Al crucible and is kept at 30° C. for 5 minutes after which it is heated at 10° C./min from 30° C. to 350° C. A nitrogen purge of 40 ml/min is maintained over the sample.
  • the TGA-IR module of the Nicolet iS50 is coupled to the TGA/DSC1. The IR studies were performed using a Thermo Scientific Nicolet iS50, equipment # 2357. Experiment setup of the collected series, the profile Gram-Schmidt is used number of scans 10 with a resolution of 4.
  • the software OMNIC version 9.2 is used for data collection and evaluation.
  • High performance liquid chromatography HPLC: The high performance liquid chromatography analyses are performed on LC.-31, equipped with an Agilent 1100 series G1322A degasser equipment #1894, an Agilent 1100 series G1311A quaternary pump equipment #1895, an Agilent 1100 series G1313A ALS equipment #1896, an Agilent 1100 series G1318A column equipment #1897 and an Agilent 1100 series G1314A VWD equipment #1898/LC.-34, equipped with an Agilent 1200 series G1379B degasser equipment #2254, an Agilent 1100 series G1311A quaternary pump equipment #2255, Agilent 1100 series G1367A WPALS equipment #1656, an Agilent 1100 series G1316A column equipment #2257 and an Agilent 1100 series G1315B DAD equipment #2258.
  • HPLC High performance liquid chromatography
  • Solubility of free base in various solvents is evaluated, and based on the results of the solubility range, suitable solvents are selected for the co-crystal screen.
  • Co-crystal formation is based on hydrogen bonding and stacking of the molecules, meaning the co-former selection is based on active groups. Grinding is a method to form co-crystals, however the free base itself is an oil/sticky solid and therefore not suitable for this method.
  • the free base and counter ion are added to a solution in a certain ratio to give the chance to form a co-crystal, similar to salt formation. We found the best method is to add a saturated solution of the co-former to that of the free base to find an optimal ratio for co-crystal formation.
  • Isonicotinamide forms a possible co-crystal with ITI-007 free base by slurrying the mixture in methanol and ethyl acetate, appearing as a red/brown and yellow solid respectively.
  • HPLC and 1 H-NMR analyses confirm both of the free base and the co-former to be present. Using isonicotinamide in ethyl acetate, however, does not result in a co-crystal and, no endothermic event is present in the TGA/DSC analysis.
  • the free base-isonicotinamide co-crystal is also analyzed by DVS, DSC./TGA and HPLC.
  • the results are summarized in Table 2.
  • TGA shows three different mass losses, 2.4% in a temperature range of 40° C.-140° C., 12.4% in a temperature range of 150° C.-240° C. and 49.33% , decomposition, in a temperature range of 250° C.-330° C.
  • Analysis of the HPLC data shows both the free base (70 area %) and isonicotinamide (24%) to be present.
  • Obtained crystals are isolated and are also analyzed by XRPD.
  • XRPD patterns for the material obtained from methanol, dichloromethane, methyl t-butyl ether, acetone, ethyl acetate, ethanol, acetonitrile and toluene all show a common new XPRD pattern with the dominant peak offset from the original co-crystal major peak.
  • These XPRD patterns are shown in overlay in FIG. 5 , and they suggest the formation of an additional co-crystal form or a co-crystal polymorph.
  • the use of water or n-heptane in the solubility study results in no interaction with the original co-crystal, while the use of acetic acid results in immediate degradation.
  • TGA-DSC analysis of the other slurry experiments using nicotinamide does not show any melting events, meaning the experiments conducted in acetonitrile or ethyl acetate do not form a co-crystal.
  • This experiment is repeated at a gram scale.
  • ITI-007 free base and nicotinamide are each dissolved in methanol.
  • the obtained solutions were added in a 1:1 ratio to a vial.
  • the mixture is stirred at room temperature for 2 hours, but no precipitation is observed.
  • the solution is evaporated under vacuum to give a brown sticky solid. XRPD analysis of this brown sticky solid shows this to be nicotinamide itself.
  • Co-crystals are also attempted using a cooling crystallization method.
  • 25 mg of ITI-007 free base and 8.6 mg of nicotinamide co-former are combined in 200 ⁇ L of solvent and heated to 50° C. The mixtures are kept at 50° C. for one hour, then cooled to 5° C. at a rate of 5° C. per hour.
  • the results show that when methanol, ethanol, isopropanol or 2-butanol is used, the ITI-007 free base and nicotinamide both dissolve to yield a solution which remains a solution on cooling.
  • the solids obtained from isopropanol and 2-butanol evaporation are analyzed by XRPD and show peaks corresponding to nicotinamide.
  • the solids obtained from methanol and ethanol evaporation are analyzed by XPRD and are shown to be consistent with the formation of a co-crystal.
  • XRPD Spectra are shown in FIG. 3 as CC1 (cooling), obtained from methanol, and CC2 (cooling), obtained from ethanol. Nicotinamide reference crystal is shown for comparison.

Abstract

The disclosure provides new, stable, pharmaceutically acceptable co-crystal forms of 1-(4-fluoro-phenyl)-4-((6bR, 10aS)-3-methyl-2,3,6b,9, 10, 10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de[quinoxalin-8-yl)-butan-1-one, together with methods of making and using them, and pharmaceutical compositions comprising them.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to and the benefit of U.S. Provisional Application Ser. No. 62/314,339, filed on Mar. 28, 2016, the contents of which are hereby incorporated by reference in its entirety.
  • FIELD
  • This disclosure relates to certain novel co-crystal forms of a substituted heterocycle fused gamma-carboline together with nicotinamide or isonicotinamide, the manufacture of such co-crystals, pharmaceutical compositions thereof, and use thereof, e.g., in the treatment of diseases or abnormal conditions involving or mediated by the 5-HT2A receptor, serotonin transporter (SERT), and/or dopamine D1/D2 receptor signaling pathways.
  • BACKGROUND
  • 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (sometimes referred to as 4-((6bR,10aS)-3-methyl-2,3 ,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)-1-(4-fluorophenyl)-1-butanone, or as ITI-007), has the following structure:
  • Figure US20200017500A9-20200116-C00001
  • ITI-007 is a potent 5-HT2A receptor ligand (Ki=0.5 nM) with strong affinity for dopamine (DA) D2 receptors (Ki=32 nM) and the serotonin transporter (SERT) (Ki=62 nM) but negligible binding to receptors (e.g., H1 histaminergic, 5-HT2C, and muscarinic) associated with cognitive and metabolic side effects of antipsychotic drugs. ITI-007 is currently in clinical trials, i.a., for treatment of schizophrenia. While ITI-007 is a promising drug, its production and formulation present challenges. In free base form, ITI-007 is an oily, sticky solid, with poor solubility, not only in water but also in many organic solvents. Making salts of the compound has proven to be unusually difficult. A hydrochloride salt form of ITI-007 was disclosed in U.S. Pat. No. 7,183,282, but this salt is hygroscopic and shows poor stability. A toluenesulfonic acid addition salt (tosylate) of ITI-007 was finally identified and described in WO 2009/114181.
  • There is a need for alternative stable, pharmaceutically acceptable solid forms of ITI-007, which can be readily incorporated into galenic formulations.
  • SUMMARY
  • Given the difficulties involved in making salts of ITI-007, it was decided to explore whether the compound was capable of forming co-crystals. An extensive co-crystal screen was undertaken, using 24 potential co-crystal formers and a variety of solvents and crystallization conditions. Two different ITI-007 free base co-crystals were discovered, with nicotinamide and with isonicotinamide. Both co-crystals were obtained by slurry experiments in methanol.
  • The disclosure thus provides novel co-crystal forms of ITI-007 and nicotinamide and of ITI-007 and isonicotinamide, which co-crystals are especially advantageous for use in the preparation of galenic formulations, together with methods of making and using the same.
  • Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
  • FIG. 1 depicts an X-ray powder diffraction pattern for an ITI-007 free base isonicotinamide co-crystal.
  • FIG. 2 depicts an X-ray powder diffraction pattern for an ITI-007 free base nicotinamide co-crystal.
  • FIG. 3 depicts X-ray powder diffraction patterns for ITI-007 free base nicotinamide co-crystals and nicotinamide reference.
  • FIG. 4A and 4B depict over-layed X-ray powder diffraction patterns for scale-up batches of ITI-007 free base isonicotinamide co-crystals.
  • FIG. 5 depicts over-layed X-ray powder diffraction patterns for solids from solubility determination study. Pattern (1) is the third batch co-crystal; pattern (2) is isonicotinamide reference; Patterns (3) to (10) are the solids obtained from solubility studies: (3) dichloromethane, (4) methyl t-butyl ether; (5) acetone; (6) ethyl acetate; (7) ethanol; (8) acetonitrile; (9) toluene; (10) acetic acid (degradation).
  • DETAILED DESCRIPTION
  • The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
  • As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by referenced in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
  • Unless otherwise specified, all percentages and amounts expressed herein and elsewhere in the specification should be understood to refer to percentages by weight. The amounts given are based on the active weight of the material.
  • In a first embodiment, the invention provides 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) free base in the form of a co-crystal (Co-crystal 1). The invention therefore provides the following:
      • 1.1. Co-crystal 1 wherein the co-crystal is between ITI-007 and a second compound selected from nicotinamide and isonicotinamide.
      • 1.2. Co-crystal 1 or 1.1 in dry crystalline form.
      • 1.3. Co-crystal 1.2 in a homogeneous crystal form, free or substantially free of other forms, e.g., free or substantially free, e.g., less than 10 wt. %, preferably less than about 5 wt. %, more preferably less than about 2 wt. %, still preferably less than about 1 wt. %, still preferably less than about 0.1%, most preferably less than about 0.01 wt. % of amorphous forms.
      • 1.4. Any foregoing Co-crystal when crystallized from a mixture of ITI-007 in free base form and a second compound selected from nicotinamide and isonicotinamide, e.g. in an organic solvent, e.g., comprising methanol or ethanol, which solvent is removed to provide the co-crystal; e.g., wherein the ITI-007 and the second compound are in a molar ratio of about 1:1, and the solvent is methanol or ethanol.
      • 1.5. Co-crystal 1.4, wherein the second compound is nicotinamide, and the Co-crystal is crystallized from methanol.
      • 1.6. Co-crystal 1.4, wherein the second compound is nicotinamide, and the Co-crystal is crystallized from ethanol.
      • 1.7. Co-crystal 1.4, wherein the second compound is isonicotinamide, and the Co-crystal is crystallized from methanol.
      • 1.8. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal.
      • 1.9. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal wherein a DSC analysis shows an endothermic event at about 150° C.; e.g. wherein a DSC./TGA analysis shows an endothermic event at Tonset=136.7° C., Tpeak=149.5° C. and ΔE=-38.1 J/g.
      • 1.10. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal having an X-ray powder diffraction pattern corresponding to the d-spacing and/or angle (2-theta) values of the following table, for example at least five, or at least six, or at least seven, or at least eight of said values, e.g., taking into account potential variations due to sample purity and instrument variation, for example 2θ shifts due to variation in X-ray wavelength, e.g., wherein the X-ray powder diffraction pattern is generated using an X-ray diffractometer with a copper anode and a nickel filter, e.g., comprising at least those peaks having a relative intensity of at least 0.1, e.g., comprising at least peaks 5 and 6:
  • XRPD peak list of the ITI-007 free base-isonicotinamide co-crystal
    # Angle d Value Rel. Intensity
    1 7.894514 11.19002 0.00066558
    2 11.5064 7.684276 0.03429963
    3 15.68352 5.645802 0.000495557
    4 20.83351 4.26035 0.002273225
    5 23.08702 3.849343 1
    6 23.54637 3.775279 0.1108958
    7 25.62448 3.473625 0.000299336
    8 31.55525 2.83298 0.000438692
    9 34.91977 2.567342 0.001780752
    10 36.72755 2.445016 0.00088104
      • 1.11. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal having an X-ray powder diffraction pattern corresponding to FIG. 1 or FIG. 4, e.g., taking into account potential variations due to sample purity and instrument variation, for example 2θ shifts due to variation in X-ray wavelength, e.g., an X-ray powder diffraction pattern having the peak list shown in Table 1, Table 3 or Table 4, generated using an X-ray diffractometer with a copper anode and a nickel filter.
      • 1.12. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal having an X-ray powder diffraction pattern having at least 5, or at least 6, or at least 7, or at least 8, peaks having angle (2-theta) values selected from the group consisting of about 7.89, 11.51, 15.68, 20.83, 23.09, 23.55, 25.62, 31.56, 34.92, and 36.73, taking into account potential variations due to sample purity and instrument variation, wherein the X-ray powder diffraction pattern is generated using an X-ray diffractometer with a copper anode and a nickel filter.
      • 1.13. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal having an X-ray powder diffraction pattern having at least 5, or at least 6, or at least 7, or at least 8, peaks having d-spacing values selected from the group consisting of about 11.19, 7.68, 5.65, 4.26, 3.85, 3.78, 3.48, 2.83, 2.57, and 2.45, taking into account potential variations due to sample purity and instrument variation, wherein the X-ray powder diffraction pattern is generated using an X-ray diffractometer with a copper anode and a nickel filter.
      • 1.14. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal having an X-ray powder diffraction pattern having at least 5, or at least 6, or at least 7, or at least 8, peaks having angle (2-theta) values and/or d-spacing values as provided in 1.12 and 1.13.
      • 1.15. Any foregoing Co-crystal which is an ITI-007 free base-isonicotinamide co-crystal having an X-ray powder diffraction powder having relative angle (2-theta) values as provided in the table of embodiment 1.10, wherein the values are shifted by up to +/−0.2 degrees, e.g., wherein the values are substantially uniformly shifted by up to +/−0.2 degrees.
      • 1.16. Any foregoing Co-crystal which is an ITI-007 free base-nicotinamide co-crystal.
      • 1.17. Any foregoing Co-crystal which is an ITI-007 free base-nicotinamide co-crystal wherein a DSC analysis shows an endothermic event at about 150° C.
      • 1.18. Any foregoing Co-crystal which is an ITI-007 free base-nicotinamide co-crystal having an X-ray powder diffraction pattern corresponding to the upper pattern in FIG. 2, e.g., taking into account potential variations due to sample purity and instrument variation, for example 2θ shifts due to variation in X-ray wavelength, e.g., an X-ray powder diffraction pattern corresponding to the upper pattern in FIG. 2 generated using an X-ray diffractometer with a copper anode and a nickel filter.
      • 1.19. Any foregoing Co-crystal wherein the ITI-007 is deuterated, e.g., wherein the deuterium:protium ratio at one or more specified positions in the molecule is significantly higher, e.g., at least 2×, for example at least 10× higher, than the natural isotope ratios or the isotope ratios at other positions in the molecule at ; for example, any foregoing form of Co-crystal 1 wherein the —CH2— adjacent to the methylated nitrogen moiety and/or adjacent to the carbonyl moiety of ITI-007 is deuterated, e.g., is in the form of —CHD- or -CD2- at levels which are significantly higher than the natural deuterium:protium isotope ratio or the deuterium:protium isotope ratio at other positions in the molecule, and/or wherein the methyl group is deuterated, e.g., is CD3-, e.g., at levels which are significantly higher than the natural deuterium:protium isotope ratio or the deuterium:protium isotope ratio at other positions in the molecule, e.g., as described in WO 2015/154025, the contents of which are incorporated herein by reference.
      • 1.20. Any foregoing form of Co-crystal 1 exhibiting any combination of characteristics as described in 1.1-1.19.
  • In another embodiment, the invention provides a process (Process 1) for the production of Co-crystal 1, comprising
      • (a) combining 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) free base with a second compound selected from nicotinamide and isonicotinamide, e.g., together with an organic solvent, e.g., comprising methanol; e.g., wherein the ITI-007 and the second compound are in a molar ratio of about 1:1, and the solvent is methanol; and
      • (b) removing the solvent and recovering the Co-crystal thus formed, e.g., recovering a Co-crystal according to any of Co-crystal 1-1.20 above.
  • In another embodiment, the invention provides a method of purifying 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) in free or salt form, comprising combining crude ITI-007 with a second compound selected from nicotinamide and isonicotinamide, in the presence of a solvent, e.g, comprising methanol, removing the solvent and recovering the Co-crystal thus formed, e.g., in accordance with Process 1, and optionally converting the Co-crystal back to ITI-007 free base or to a desired salt form.
  • In another embodiment, the invention provides the use of a compound selected from nicotinamide and isonicotinamide in a method of isolating and/or purifying ITI-007.
  • In another embodiment, the invention provides a pharmaceutical composition comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, as active ingredient, in combination or association with a pharmaceutically acceptable diluent or carrier.
  • In another embodiment, the invention provides a pharmaceutical composition comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, as active ingredient, in combination or association with a pharmaceutically acceptable diluent or carrier, wherein the Co-crystal 1 is predominantly, or is entirely or substantially entirely, in dry crystalline form.
  • Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, are found to be relatively insoluble. While the free base is poorly soluble, it does not form crystals and is difficult to formulate. Salt forms are quite soluble, but may provide undesirably fast dissolution in extended release formulations. In a particular embodiment, therefore, the invention provides a pharmaceutical composition for extended release of ITI-007, comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, as active ingredient, in combination or association with a pharmaceutically acceptable diluent or carrier, e.g., wherein the pharmaceutical composition is in the form of an injectable depot for extended release.
  • In another embodiment, the invention provides Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, or a pharmaceutical composition comprising Co-crystal 1, e.g., any of Co-crystal 1.1-1.20, for use in treating a disease or abnormal condition involving or mediated by the 5-HT2A receptor, serotonin transporter (SERT), and/or dopamine D1/D2 receptor signaling pathways, e.g., a disorder selected from obesity, anorexia, bulemia, depression, anxiety, psychosis, schizophrenia, migraine, obsessive-compulsive disorder, sexual disorders, depression, schizophrenia, migraine, attention deficit disorder, attention deficit hyperactivity disorder, obsessive-compulsive disorder, sleep disorders, conditions associated with cephalic pain, social phobias, or dementia.
  • In another embodiment, the invention provides a method for the prophylaxis or treatment of a human suffering from a disease or abnormal condition involving or mediated by the 5-HT2A receptor, serotonin transporter (SERT), and/or dopamine Di/D2 receptor signaling pathways, e.g., a disorder selected from obesity, anorexia, bulemia, depression, anxiety, psychosis, schizophrenia, migraine, obsessive-compulsive disorder, sexual disorders, depression, schizophrenia, migraine, attention deficit disorder, attention deficit hyperactivity disorder, obsessive-compulsive disorder, sleep disorders, conditions associated with cephalic pain, social phobias, or dementia, comprising administering to a patient in need thereof a therapeutically effective amount of any of Co-crystal 1-1.20.
  • EXAMPLES
  • The following equipment and methods are used to isolate and characterize the exemplified co-crystal forms:
  • X-ray powder diffraction (XRPD): The X-ray powder diffraction studies are performed using a Bruker AXS D2 PHASER in Bragg-Brentano configuration, equipment #1549/#2353. The equipment uses a Cu anode at 30 kV, 10 mA; sample stage standard rotating; monochromatization by a Kβ-filter (0.5% Ni). Slits: fixed divergence slits 1.0 mm (=0.61°), primary axial Soller slit 2.5°, secondary axial Soller slit 2.5°. Detector: Linear detector LYNXEYE with receiving slit 5° detector opening. The standard sample holder (0.1 mm cavity in (510) silicon wafer) has a minimal contribution to the background signal. Measurement conditions: scan range 5-45° 2θ, sample rotation 5 rpm, 0.5 s/step, 0.010°/step, 3.0 mm detector slit; and all measuring conditions are logged in the instrument control file. As system suitability, corundum sample A26-B26-S (NIST standard) is measured daily. The software used for data collection is Diffrac.Commander v2.0.26. Data analysis is done using Diffrac.Eva v1.4. No background correction or smoothing is applied to the patterns.
  • Simultaneous thermogravimetry (TGA) and differential scanning calorimetry (DSC) or TGA/DSC analysis: The TGA/DSC studies are performed using a Mettler Toledo TGA/DSC1 Stare System, equipment #1547, auto-sampler equipped, using pin-holed A1-crucibles of 40 μl. Measurement conditions: 5 min 30.0° C., 30.0-350.0° C. with 10° C./min., N2 flow of 40 ml/min. The software used for instrument control and data analysis is STARe v12.10.
  • Differential scanning calorimetry (DSC): The DSC studies are performed using a Mettler Toledo DSC1 STARe System, equipment #1564. The samples are made using Al crucibles (40 μl; pierced). Typically 1-8 mg of sample is loaded onto a pre-weighed A1 crucible and is kept at 30° C. for 5 minutes, after which it is heated at 10° C./min from 30° C. to 350° C. and kept at 350° C. for 1 minute. A nitrogen purge of 40 ml/min is maintained over the sample. As system suitability check Indium and Zinc are used as references. The software used for data collection and evaluation is STARe Software v12.10 build 5937. No corrections are applied to the thermogram.
  • Polarized light microscopy (PLM): The microscopy studies are performed using an AxioVert 35M, equipped with an AxioCamERc 5s, equipment #1612. The microscope is equipped with four lenses: Zeiss A-Plan 5×/0.12, Zeiss A-Plan 10×/0.25, LD A-Plan 20×/0.30 and Achros TIGMAT 32×/0.40. Data collection and evaluation is performed using Carl Zeiss Zen AxioVision Blue Edition Lite 2011 v1.0.0.0 software. A small amount of sample is loaded on an object glass and carefully spread until a thin layer is obtained.
  • Dynamic Vapour Sorption (DVS): The Dynamic Vapour Sorption studies are performed using a Surface Measurement Systems Ltd. DVS-1 No Video, equipment #2126. The sample is loaded into a balance pan, typically 20-30 mg, and equilibrated at 0% RH. After the material was dried, the RH is increased with 10% per step for 1 hour per increment, ending at 95% RH. After completion of the sorption cycle, the sample was dried using the same method. The software used for data collection is DVSWin v3.01 No Video. Data analysis is performed using DVS Standard Analysis Suite v6.3.0 (Standard).
  • Particle size distribution (PSD): The particle size distribution studies are performed using a Malvern Instruments Mastersizer, equipment #1712. The Mastersizer uses a 300RF lens range of 0.05 μm-900 mm. Polydisperse is used as analysis model. Measurement conditions: before each sample measurement a background measurement is performed, the background scan time is 12 seconds (12000 snaps). Each sample is dispersed in Multipar G, refractive index of 1.42. The obscuration range on sample dispersion is between 10%-30%. Each sample is measured 6 times at t=0 and t=30 minutes and the measurement scan time is 10 seconds (10000 snaps). The targeted stirring speed of the sample dispersion unit is 2000±10 rpm. Data collection and evaluation is performed using Mastersizer S Version 2.19 software.
  • Capillary Melting Point: The capillary melting point is determined on a Büchi Melting Point B-545, equipment #000011, conform USP guidelines.
  • X-ray fluorescence (XRF): The X-ray fluorescence studies are performed using a Bruker AXS S2 RANGER, equipment #2006. Using an end-window X-ray tube with Palladium anode and an ultra-thin Beryllium window (75 μm) for superior light element analysis. As detector the Xflash V5 detector with Cr, Ti, Al, Ta collimator (energy resolution <129 eV FWHM at 100000 cps Mnkα) is used. The S2 Ranger is equipped with an autosampler with integrated 28 position X-Y automatic sample changer with exchangeable tray, which allows maximum sample diameter of 40 mm. Samples are mounted in steel rings of 51.5 mm diameter for automatic operation. Measurement conditions: disposable liquid cups (35 mm inner diameter, 40 mm outer diameter) with polypropylene foil 5 μm. As system suitability check a copper disk is measured daily and a glass disk, containing several elements, is measured weekly. The software used for data collection is S2 Ranger Control Software V4.1.0. Data analysis is performed using SPECTRA EDX V2.4.3 evaluation software. No background correction or smoothing is applied to the patterns.
  • Fourier transform infrared spectroscopy (FT-IR): The FT-IR studies are performed using a Thermo Scientific Nicolet iS50, equipment # 2357. An attenuated total reflectance (ATR) technique was used with a beam splitter of KBr. Experiment setup of the collected sample is used number of scans 16 with a resolution of 4from 400 cm−1 to 4000 cm−1. The software OMNIC version 9.2 is used for data collection and evaluation.
  • Thermogravimetric analysis (TGA) with infrared spectroscopy (TGA-IR): In TGA-IR, the off-gassing materials are directed through a transfer line to a gas cell, where the infrared light interacts with the gases. The temperature ramp and first derivative weight loss information from the TGA is shown as a Gram-Schmidt (GS) profile; the GS profile essentially shows the total change in the IR signal relative to the initial state. In most cases, the GS and the derivative weight loss will be similar in shape, although the intensity of the two can differ. For this experiment are two devices coupled to each other. The TGA studies are performed using a Mettler Toledo TGA/DSC1 STARe System with a 34-position auto sampler, equipment #1547. The samples are made using Al crucibles (100 μl; pierced). Typically 20-50 mg of sample is loaded into a pre-weighed Al crucible and is kept at 30° C. for 5 minutes after which it is heated at 10° C./min from 30° C. to 350° C. A nitrogen purge of 40 ml/min is maintained over the sample. The TGA-IR module of the Nicolet iS50 is coupled to the TGA/DSC1. The IR studies were performed using a Thermo Scientific Nicolet iS50, equipment # 2357. Experiment setup of the collected series, the profile Gram-Schmidt is used number of scans 10 with a resolution of 4. The software OMNIC version 9.2 is used for data collection and evaluation.
  • High performance liquid chromatography (HPLC): The high performance liquid chromatography analyses are performed on LC.-31, equipped with an Agilent 1100 series G1322A degasser equipment #1894, an Agilent 1100 series G1311A quaternary pump equipment #1895, an Agilent 1100 series G1313A ALS equipment #1896, an Agilent 1100 series G1318A column equipment #1897 and an Agilent 1100 series G1314A VWD equipment #1898/LC.-34, equipped with an Agilent 1200 series G1379B degasser equipment #2254, an Agilent 1100 series G1311A quaternary pump equipment #2255, Agilent 1100 series G1367A WPALS equipment #1656, an Agilent 1100 series G1316A column equipment #2257 and an Agilent 1100 series G1315B DAD equipment #2258. Data is collected and evaluated using Agilent ChemStation for LC systems Rev. B.04.02[96]. Solutions are prepared as follows: Mobile phase A: Add 800 ml of MilliQ water to a 1L volumetric flask. Add 1 ml of TFA and homogenize. Fill up to the mark with MilliQ; Mobile phase B: Add 800 ml of Acetonitrile to a 1L volumetric flask. Add 1 ml of TFA and homogenize. Fill up to the mark with Acetonitrile; Diluent: 50/50 MeOH/ACN.
  • Example 1 Co-Crystal Screen
  • Solubility of free base in various solvents is evaluated, and based on the results of the solubility range, suitable solvents are selected for the co-crystal screen. Co-crystal formation is based on hydrogen bonding and stacking of the molecules, meaning the co-former selection is based on active groups. Grinding is a method to form co-crystals, however the free base itself is an oil/sticky solid and therefore not suitable for this method. The free base and counter ion are added to a solution in a certain ratio to give the chance to form a co-crystal, similar to salt formation. We found the best method is to add a saturated solution of the co-former to that of the free base to find an optimal ratio for co-crystal formation.
  • Three different experiments are performed with each of 26 candidate co-formers, which include sugar alcohols, amino acids, and other compounds identified as having potential to for co-crystals; adding solutions stepwise, slurry experiments and cooling crystallization experiments. The free base and co-former are dissolved prior to adding to each other. Co-formers are added in a 1:1, 2:1 and 1:2 ratio to the free base. All experiments are performed using four different solvents, methanol, acetonitrile, ethyl acetate and toluene. All solids are characterized by XRPD. Two different ITI-007 free base co-crystals formed, with nicotinamide and with isonicotinamide. Both co-crystals were obtained by slurry experiments in methanol.
  • Example 2 Isonicotinamide Co-Crystal
  • Isonicotinamide forms a possible co-crystal with ITI-007 free base by slurrying the mixture in methanol and ethyl acetate, appearing as a red/brown and yellow solid respectively. TGA-DSC analysis of the experiment using isonicotinamide in methanol results in two endothermic events, Tpeak=145° C. and Tpeak=185° C. Both endothermic events do not correspond to the free base or the co-former, which means ITI-007 free base-isonicotinamide co-crystal is formed. HPLC and 1H-NMR analyses confirm both of the free base and the co-former to be present. Using isonicotinamide in ethyl acetate, however, does not result in a co-crystal and, no endothermic event is present in the TGA/DSC analysis.
  • The slurry experiment in methanol is repeated at a gram scale. First, ITI-007 free base and isonicotinamide are each dissolved in methanol. Subsequently, the obtained solutions are mixed in a 1:1 ratio and the resulting mixture is stirred at room temperature for 2 hours. The mixture remains a clear solution, which is evaporated under vacuum to give a brown sticky solid. XRPD analysis shows the brown sticky solid to be crystalline, as shown in FIG. 1, ITI-007 free base-isonicotinamide co-crystal has formed. The corresponding peak list is showing in Table 1. The XRPD shows clustered peaks which is likely due to preferred orientation.
  • TABLE 1
    XRPD peak list of ITI-007 free base-isonicotinamide
    co-crystal (Cu anode, Ni filter)
    # Angle d Value Rel. Intensity
    1 7.894514 11.19002 0.00066558
    2 11.5064 7.684276 0.03429963
    3 15.68352 5.645802 0.000495557
    4 20.83351 4.26035 0.002273225
    5 23.08702 3.849343 1
    6 23.54637 3.775279 0.1108958
    7 25.62448 3.473625 0.000299336
    8 31.55525 2.83298 0.000438692
    9 34.91977 2.567342 0.001780752
    10 36.72755 2.445016 0.00088104
  • The free base-isonicotinamide co-crystal is also analyzed by DVS, DSC./TGA and HPLC. The results are summarized in Table 2. DSC./TGA analysis shows one endothermic event at Tonset=136.7° C., Tpeak=149.5° C. and ΔE=−38.1 J/g. TGA shows three different mass losses, 2.4% in a temperature range of 40° C.-140° C., 12.4% in a temperature range of 150° C.-240° C. and 49.33% , decomposition, in a temperature range of 250° C.-330° C. Analysis of the HPLC data shows both the free base (70 area %) and isonicotinamide (24%) to be present. Analysis of the 1H-NMR data shows the free base and isonicotinamide to be present, no shifts are observed, meaning a co-crystal has been formed. FT-IR confirms the chemical structure. Analysis of the DVS data shows a long drying curve for the co-crystal. Only 0.2% mass uptake can be observed at 95 RH %, indicating the co-crystal is not hygroscopic.
  • TABLE 2
    Analytical results scale-up of the FP-212
    free base-isonicotinamide co-crystal
    HPLC
    Mass purity
    Hygroscopicity DSC loss (area
    Solvent Appearance (%) (Tpeak ° C.) (%) %)
    Methanol Brown sticky 0.2 150 2 95*
    solid 12
    49
    *Free base & co-former
  • In second and third experiments employing substantially similar conditions for co-crystal formation, each at a 1-gram scale, second batch and third batches of ITI-007 free base-isonicotinamide co-crystal are obtained having the XPRD Peak list shown in Tables 3 and 4, and the XPRD patterns shown in overlay in FIGS. 4A and 4B (zoom-in). The two XRPD images show similar characteristics, but with signals shifted slightly. The total number of counts on the third batch is lower than for the second batch, which suggests that the third batch might be less crystalline. Analytical results for these co-crystals are as shown in Table 5. DSC, TGA and IR are also similar, although the third batch shows slightly higher hygroscopicity. 1H-NMR measurements are substantially the same between the two samples.
  • TABLE 3
    XRPD peak list of ITI-007 free base-isonicotinamide
    co-crystal (Cu anode, Ni filter)
    # Angle d Value Rel. Intensity
    1 7.963882 11.0927 0.002458
    2 11.65348 7.587623 0.013524
    3 11.78524 7.503086 0.017218
    4 15.72311 5.631677 0.004795
    5 22.50592 3.947402 0.009079
    6 23.22379 3.826982 0.569613
    7 23.37663 3.802305 1
    8 23.53861 3.776506 0.608281
    9 28.64521 3.113816 0.004175
    10 31.57043 2.831653 0.004148
    11 35.14606 2.551328 0.004628
    12 36.78199 2.441522 0.002748
  • TABLE 4
    XRPD peak list of ITI-007 free base-isonicotinamide
    co-crystal (Cu anode, Ni filter)
    # Angle d Value Rel. Intensity
    1 10.01664 8.823558 0.002930797
    2 11.30988 7.817352 0.009636792
    3 11.55688 7.650827 0.01243575
    4 14.6707 6.033215 0.007486716
    5 18.59368 4.768201 0.01767226
    6 20.89626 4.247697 0.01881626
    7 22.01591 4.034141 0.02451535
    8 22.29845 3.983659 0.03924818
    9 22.75855 3.904153 0.5554008
    10 23.01218 3.861693 0.6624928
    11 23.14237 3.840262 1
    12 23.35175 3.806301 0.2673292
    13 23.77056 3.740178 0.05490891
    14 25.32314 3.514273 0.0251736
    15 25.5077 3.489263 0.01991081
    16 25.65148 3.47003 0.01780625
    17 28.32257 3.148551 0.007050483
    18 28.45931 3.133733 0.01060648
    19 28.88088 3.088941 0.01418584
    20 29.81001 2.994745 0.007920966
    21 29.99828 2.976378 0.006387871
    22 31.99688 2.794879 0.008947632
    23 32.12895 2.783691 0.01130965
    24 32.37051 2.763468 0.007447935
    25 36.45062 2.462954 0.01525544
    26 36.66513 2.449035 0.01064236
  • TABLE 5
    Analytical results of second and third scale-ups of
    the ITI-007 free base-isonicotinamide co-crystal
    Mass 1H-
    loss NMR
    (%) Ratio
    Hygro- DSC (prior (free
    scopicity (Tpeak melt base/co- IR
    Batch XRPD (%) ° C.) event) former) (comparison %)
    2 Clus- 0.2 150 2.27 1:1 84% free base
    tered 14% co-former
    peaks
    3 Clus- 0.9 149 1.68 1:1 86% free base
    tered 18% co-former
    peaks
  • Using the third batch of ITI-007 free base-isonicotinamide co-crystal, solubility studies are performed using the shake flask method. About 10 mg of co-crystal is weighed into a vial and solvent is added stepwise. As some solvents are added, crystallization is observed. The use of methanol, acetone or ethanol results in dissolution of the co-crystal to yield a solution. Subsequent evaporation produces solids which are analyzed by XPRD. In contrast, the use of dichloromethane, methyl t-butyl ether, ethyl acetate, acetonitrile or toluene results in the immediate formation of crystals as the solvent is added. Obtained crystals are isolated and are also analyzed by XRPD. XRPD patterns for the material obtained from methanol, dichloromethane, methyl t-butyl ether, acetone, ethyl acetate, ethanol, acetonitrile and toluene all show a common new XPRD pattern with the dominant peak offset from the original co-crystal major peak. These XPRD patterns are shown in overlay in FIG. 5, and they suggest the formation of an additional co-crystal form or a co-crystal polymorph. The use of water or n-heptane in the solubility study results in no interaction with the original co-crystal, while the use of acetic acid results in immediate degradation.
  • Example 2 Nicotinamide Co-Crystal
  • For the slurry experiment with nicotinamide in methanol, a solid is formed, for which TGA-DSC shows an endothermic event of Tpeak=120° C. This event is similar to the endothermic event of the free base (Tpeak=120.9° C.), therefore HPLC and 1H-NMR analysis are performed. HPLC shows both the free base and the co-former are present, also 1H-NMR shows both to be present, meaning a free base-nicotinamide co-crystal is formed. XRPD analysis of the material is depicted in FIG. 2, where the top spectrum is that of the co-crystal, and the bottom spectrum is nicotinamide crystal, to provide a reference.
  • TGA-DSC analysis of the other slurry experiments using nicotinamide does not show any melting events, meaning the experiments conducted in acetonitrile or ethyl acetate do not form a co-crystal. This experiment is repeated at a gram scale. First, ITI-007 free base and nicotinamide are each dissolved in methanol. Subsequently, the obtained solutions were added in a 1:1 ratio to a vial. The mixture is stirred at room temperature for 2 hours, but no precipitation is observed. The solution is evaporated under vacuum to give a brown sticky solid. XRPD analysis of this brown sticky solid shows this to be nicotinamide itself.
  • Further experiments are conducted to evaluate other solvent systems for the production and scale-up of the nicotinamide co-crystal. Slurry experiments are performed using a 25 mg of ITI-007 free base and 8.6 mg of nicotinamide co-former in 100 μL of solvent with 24 hours of stirring. The results show that when methanol or ethanol is used, the ITI-007 free base and nicotinamide both dissolve to yield a solution. When attempts are made using isopropanol, 2-butanol, acetonitrile, ethyl acetate, 2-butanone, tetrahydrofuran, or di-isopropyl ether, dissolution does not occur and a white/brown sticky solid is seen to be suspended in the solvent. When water is used, dissolution also does not occur, and a sticky brown solid is seen to be suspended in the water. The solids are filtered and analyzed by XRPD. XRPD analysis for the organic solvents show the presence of nicotinamide, while for the aqueous solution, the solid is amorphous. This shows that of these ten solvents, only methanol or ethanol appear to potentially show the formation of a co-crystal. Evaporation of the methanol and ethanol solutions results in sticky solids. The solid obtained from ethanol evaporation is analyzed by XRPD and shows peaks corresponding to nicotinamide. In contrast, the solid obtained from methanol evaporation is analyzed by XPRD and is consistent with the formation of a co-crystal. XRPD Spectra are shown in FIG. 3 as CC1 (slurry), obtained from methanol. Nicotinamide reference crystal is shown for comparison.
  • Co-crystals are also attempted using a cooling crystallization method. 25 mg of ITI-007 free base and 8.6 mg of nicotinamide co-former are combined in 200 μL of solvent and heated to 50° C. The mixtures are kept at 50° C. for one hour, then cooled to 5° C. at a rate of 5° C. per hour. The results show that when methanol, ethanol, isopropanol or 2-butanol is used, the ITI-007 free base and nicotinamide both dissolve to yield a solution which remains a solution on cooling. In contrast, the use of acetonitrile, ethyl acetate, 2-butanone, tetrahydrofuran, or di-isopropyl ether does not result in dissolution, and instead, after cooling a white/brown sticky solid is recovered. When water is used, dissolution also does not occur, and a sticky brown solid is recovered. The solids are filtered and analyzed by XRPD. XRPD analysis for the non-alcoholic organic solvents shows the presence of nicotinamide, while for the aqueous solution, the solid is amorphous. This shows that of these ten solvents, only the alcohols appear to potentially show the formation of a co-crystal. Evaporation of the alcoholic solutions results in sticky solids for each. The solids obtained from isopropanol and 2-butanol evaporation are analyzed by XRPD and show peaks corresponding to nicotinamide. In contrast, the solids obtained from methanol and ethanol evaporation are analyzed by XPRD and are shown to be consistent with the formation of a co-crystal. XRPD Spectra are shown in FIG. 3 as CC1 (cooling), obtained from methanol, and CC2 (cooling), obtained from ethanol. Nicotinamide reference crystal is shown for comparison.

Claims (9)

1. A co-crystal of 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido [3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) and a second compound, wherein the second compound is selected from isonicotinamide and nicotinamide.
2. The co-crystal according to claim 1 which is a co-crystal of ITI-007 free base and isonicotinamide having an X-ray diffraction pattern substantially corresponding to FIG. 1.
3. The co-crystal according to claim 1 which is a co-crystal of ITI-007 free base and nicotinamide having an X-ray diffraction pattern substantially corresponding to the upper pattern on FIG. 2.
4. The co-crystal according to claim 1, selected from any of Co-crystal 1.1-1.20, described above.
5. A method making a co-crystal according to claim 1, comprising
(a) combining 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) free base with a second compound selected from isonicotinamide and nicotinamide, in an organic solvent, and
(b) removing the solvent and recovering the co-crystal thus formed.
6. A method of purifying 1-(4-fluoro-phenyl)-4-((6bR,10aS)-3-methyl-2,3 ,6b,9,10,10a-hexahydro-1H,7H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8-yl)-butan-1-one (ITI-007) in free or salt form, comprising combining crude ITI-007 with a second compound selected from isonicotinamide and nicotinamide, in an organic solvent, removing the solvent and recovering the co-crystal thus formed, and optionally converting the co-crystal back to ITI-007 free base or to a desired salt form.
7. A method for the prophylaxis or treatment of a human suffering from a disease or abnormal condition involving or mediated by the 5-HT2A receptor, serotonin transporter (SERT), and/or dopamine D1/D2 receptor signaling pathways comprising administering to said human an effective amount of a co-crystal according to claim 1.
8. A pharmaceutical composition comprising a co-crystal according to claim 1, in combination or association with a pharmaceutically acceptable diluent or carrier.
9. The pharmaceutical composition of claim 8, wherein the pharmaceutical composition is in the form of an injectable depot for extended release.
US16/090,152 2016-03-28 2017-03-28 Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide Active 2037-05-30 US11014925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/090,152 US11014925B2 (en) 2016-03-28 2017-03-28 Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662314339P 2016-03-28 2016-03-28
PCT/US2017/024597 WO2017172811A1 (en) 2016-03-28 2017-03-28 Novel co-crystals
US16/090,152 US11014925B2 (en) 2016-03-28 2017-03-28 Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide

Publications (3)

Publication Number Publication Date
US20190112310A1 US20190112310A1 (en) 2019-04-18
US20200017500A9 true US20200017500A9 (en) 2020-01-16
US11014925B2 US11014925B2 (en) 2021-05-25

Family

ID=59965148

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/090,152 Active 2037-05-30 US11014925B2 (en) 2016-03-28 2017-03-28 Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide

Country Status (4)

Country Link
US (1) US11014925B2 (en)
EP (1) EP3436016B1 (en)
JP (1) JP6997718B2 (en)
WO (1) WO2017172811A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106361B2 (en) * 2008-05-27 2017-03-29 イントラ−セルラー・セラピーズ・インコーポレイテッドIntra−Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
MX2016007219A (en) * 2013-12-03 2016-09-16 Intra-Cellular Therapies Inc Novel methods.
MX2018009158A (en) 2016-01-26 2018-11-19 Intra Cellular Therapies Inc Organic compounds.
US10654854B2 (en) * 2016-03-28 2020-05-19 Intra-Cellular Therapies, Inc. Salts and crystals of ITI-007
PL3497104T3 (en) 2016-08-09 2022-02-21 Teva Pharmaceuticals International Gmbh Solid state forms of lumateperone ditosylate salt
US11331316B2 (en) 2016-10-12 2022-05-17 Intra-Cellular Therapies, Inc. Amorphous solid dispersions
WO2018189646A1 (en) 2017-04-10 2018-10-18 Dr. Reddy's Laboratories Limited AMORPHOUS FORM AND SOLID DISPERSIONS OF LUMATEPERONE p-TOSYLATE
US11427587B2 (en) 2017-07-26 2022-08-30 Intra-Cellular Therapies, Inc. Organic compounds
EP3687535A4 (en) 2017-09-26 2021-06-09 Intra-Cellular Therapies, Inc. Novel salts and crystals
US20210220280A1 (en) * 2018-08-31 2021-07-22 Intra-Cellular Therapies, Inc. Novel methods
MX2021002321A (en) 2018-08-31 2021-04-28 Intra Cellular Therapies Inc Novel methods.
EP3887374A2 (en) 2018-11-27 2021-10-06 Teva Pharmaceuticals International GmbH Solid state forms of lumateperone salts and processes for preparation of lumateperone and salts thereof
US11753419B2 (en) 2019-12-11 2023-09-12 Intra-Cellular Therapies, Inc. 4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′,4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)-1-(4-((6bR,10aS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H-pyrido[3′4′:4,5]pyrrolo[1,2,3-de]quinoxalin-8(7H)-yl)phenyl)butan-1-one for treating conditions of the central nervous system and cardiac disorders
IL300886A (en) * 2020-09-04 2023-04-01 Intra Cellular Therapies Inc Novel salts, crystals, and co-crystals
CN117425652A (en) * 2021-06-07 2024-01-19 细胞内治疗公司 Novel salts and crystals

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2490813A (en) 1944-11-29 1949-12-13 Standard Oil Co Continuous process for making aryl amines
US3299078A (en) 1962-10-01 1967-01-17 Smith Kline French Lab Pyrido [3', 4': 4, 5] pyrrolo [3, 2, 1-hi] indoles and-[3, 2, 1-ij] quinolines
US3813392A (en) 1969-06-09 1974-05-28 J Sellstedt Pyrrolo(1,2,3-alpha epsilon)quinoxalin-2(3h)-ones and related compounds
US4183936A (en) 1972-06-19 1980-01-15 Endo Laboratories, Inc. Pyridopyrrolobenzheterocycles
US3914421A (en) 1972-06-19 1975-10-21 Endo Lab Pyridopyrrolobenzheterocycles for combatting depression
US4238607A (en) 1972-06-19 1980-12-09 Endo Laboratories Inc. Pyridopyrrolo benzheterocycles
US4115577A (en) 1972-06-19 1978-09-19 Endo Laboratories, Inc. Pyridopyrrolobenzheterocycles
US4219550A (en) 1978-11-09 1980-08-26 E. I. Du Pont De Nemours And Company Cis- and trans- octahydropyridopyrrolobenzheterocycles
US4522944A (en) 1982-12-23 1985-06-11 Erba Farmitalia Carboxamido-derivatives of 5H-1,3,4-thiadiazolo[3,2-a]pyrimidines, compositions and use
ES2058068T3 (en) 1986-03-19 1994-11-01 Kumiai Chemical Industry Co DERIVATIVES OF 5H-1,3,4-TIADIAZOL- (3,2-A) -PIRIMIDIN-5-ONA AND FUNGICIDE COMPOUNDS CONTAINED IN SUCH DERIVATIVES.
JP2641443B2 (en) 1986-04-07 1997-08-13 クミアイ化学工業株式会社 5H-1,3,4-thiadiazolo [3,2-a] pyrimidin-5-one derivative and agricultural / horticultural fungicide containing the same as an active ingredient
HU208484B (en) 1988-08-17 1993-11-29 Chinoin Gyogyszer Es Vegyeszet Process for producing pharmaceutical composition containing acid additional salt of selegilin as active component for treating schisofrenia
US5114976A (en) 1989-01-06 1992-05-19 Norden Michael J Method for treating certain psychiatric disorders and certain psychiatric symptoms
US5576460A (en) 1994-07-27 1996-11-19 Massachusetts Institute Of Technology Preparation of arylamines
US5648542A (en) 1996-02-29 1997-07-15 Xerox Corporation Arylamine processes
US5654482A (en) 1996-02-29 1997-08-05 Xerox Corporation Triarylamine processes
US5648539A (en) 1996-02-29 1997-07-15 Xerox Corporation Low temperature arylamine processes
US5847166A (en) 1996-10-10 1998-12-08 Massachusetts Institute Of Technology Synthesis of aryl ethers
US5723671A (en) 1997-01-30 1998-03-03 Xerox Corporation Arylamine processes
US5705697A (en) 1997-01-30 1998-01-06 Xerox Corporation Arylamine processes
US5723669A (en) 1997-01-30 1998-03-03 Xerox Corporation Arylamine processes
US6323366B1 (en) 1997-07-29 2001-11-27 Massachusetts Institute Of Technology Arylamine synthesis
GB2328686B (en) 1997-08-25 2001-09-26 Sankio Chemical Co Ltd Method for producing arylamine
US6395939B1 (en) 1997-10-06 2002-05-28 Massachusetts Institute Of Technology Diaryl ether condensation reactions
CA2322194C (en) 1998-02-26 2011-04-26 Massachusetts Institute Of Technology Metal-catalyzed arylations and vinylations of hydrazines, hydrazones, hydroxylamines and oximes
US6235936B1 (en) 1998-02-26 2001-05-22 Massachusetts Institute Of Technology Metal-catalyzed arylations of hydrazines, hydrazones, and related substrates
US5902901A (en) 1998-05-07 1999-05-11 Xerox Corporation Arylamine processes
US6307087B1 (en) 1998-07-10 2001-10-23 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
ES2257864T3 (en) 1998-07-10 2006-08-01 Massachusetts Institute Of Technology LINKS FOR METALS AND IMPROVED PROCESSES CATALYZED BY METALS BASED ON THE SAME.
US7223879B2 (en) 1998-07-10 2007-05-29 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
US6395916B1 (en) 1998-07-10 2002-05-28 Massachusetts Institute Of Technology Ligands for metals and improved metal-catalyzed processes based thereon
US20010008942A1 (en) 1998-12-08 2001-07-19 Buchwald Stephen L. Synthesis of aryl ethers
AR023574A1 (en) 1999-04-23 2002-09-04 Pharmacia & Upjohn Co Llc TETRACICLIC AZEPININDOL COMPOUNDS, PHARMACEUTICAL COMPOSITIONS AND THE USE OF SUCH COMPOUNDS TO PREPARE A MEDICINAL PRODUCT, AND INTERMEDIARIES
US6407092B1 (en) 1999-04-23 2002-06-18 Pharmacia & Upjohn Company Tetracyclic azepinoindole compounds
US6713471B1 (en) 1999-06-15 2004-03-30 Bristol-Myers Squibb Pharma Company Substituted heterocycle fused gamma-carbolines
US7071186B2 (en) * 1999-06-15 2006-07-04 Bristol-Myers Squibb Pharma Co. Substituted heterocycle fused gamma-carbolines
CN1370169A (en) 1999-06-15 2002-09-18 布里斯托尔-迈尔斯斯奎布药品公司 Substituted heterocycle fused gamma-carbolines
US6541639B2 (en) 2000-07-26 2003-04-01 Bristol-Myers Squibb Pharma Company Efficient ligand-mediated Ullmann coupling of anilines and azoles
RU2003121304A (en) 2000-12-20 2005-01-27 Бристол-Маерс Сквибб Компани (Us) SUBSTITUTED PYRIDOINDOLES AS SEROTONIN AGONISTS AND ANTAGONISTS
US6849619B2 (en) 2000-12-20 2005-02-01 Bristol-Myers Squibb Company Substituted pyridoindoles as serotonin agonists and antagonists
KR20030092107A (en) 2001-04-24 2003-12-03 메사추세츠 인스티튜트 오브 테크놀로지 Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds
KR20050032107A (en) 2002-08-02 2005-04-06 메사추세츠 인스티튜트 오브 테크놀로지 Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds
US7223870B2 (en) 2002-11-01 2007-05-29 Pfizer Inc. Methods for preparing N-arylated oxazolidinones via a copper catalyzed cross coupling reaction
AU2003303210A1 (en) 2002-12-19 2004-07-14 Bristol-Myers Squibb Company Substituted tricyclic gamma-carbolines as serotonin receptor agonists and antagonists
US7462641B2 (en) 2003-07-21 2008-12-09 Smithkline Beecham Corporation (2S,4S)-4-fluoro-1-[4-fluoro-beta-(4-fluorophenyl)-L-phenylalanyl]-2-pyrrolidinecarbonitrile p-toluenesulfonic acid salt and anhydrous crystalline forms thereof
US7109064B2 (en) 2003-12-08 2006-09-19 Semiconductor Components Industries, L.L.C. Method of forming a semiconductor package and leadframe therefor
JP2005259113A (en) 2004-02-12 2005-09-22 Ricoh Co Ltd Process editing apparatus, process management apparatus, process editing program, process management program, recording medium, process editing method and process management method
US20050222209A1 (en) 2004-04-01 2005-10-06 Zeldis Jerome B Methods and compositions for the treatment, prevention or management of dysfunctional sleep and dysfunctional sleep associated with disease
US7592454B2 (en) 2004-04-14 2009-09-22 Bristol-Myers Squibb Company Substituted hexahydro-pyridoindole derivatives as serotonin receptor agonists and antagonists
ATE457989T1 (en) 2004-12-15 2010-03-15 Hoffmann La Roche BI- AND TRIZYCLIC SUBSTITUTED PHENYL-METHANONES AS INHIBITORS OF GLYCINE-I (GLYT-1) TRANSPORTERS FOR THE TREATMENT OF ALZHEIMER'S DISEASE
ZA200707010B (en) 2005-01-25 2009-01-28 Celgene Corp Methods and compositions using 4-amino-2-(3-methyl-2,6-dioxopiperidini-3-yl)-isoindole-1-3-dione
EP1919287A4 (en) 2005-08-23 2010-04-28 Intra Cellular Therapies Inc Organic compounds for treating reduced dopamine receptor signalling activity
KR20080114688A (en) 2006-01-13 2008-12-31 와이어쓰 Sulfonyl substituted 1h-indoles as ligands for the 5-hydroxytryptamine receptors
BRPI0716604A2 (en) 2006-09-08 2013-04-09 Braincells Inc combinations containing a 4-acylaminopyridine derivative
KR101981840B1 (en) 2007-03-12 2019-05-23 인트라-셀룰라 써래피스, 인코퍼레이티드. Substituted heterocycle fused gamma-carbolines synthesis
JP2010535220A (en) 2007-08-01 2010-11-18 メディベイション ニューロロジー, インコーポレイテッド Methods and compositions for the treatment of schizophrenia using combination therapy for antipsychotics
AR070346A1 (en) 2008-02-07 2010-03-31 Schering Corp SPECIFIC ANTIBODY OF TIMICA STROMAL LYMPHOPYETINE RECEPTOR (TSLPR) AND USES IN ALLERGIC INFLAMMATORY AND INFLAMMATORY DISORDERS
PL2262505T3 (en) 2008-03-12 2015-04-30 Intra Cellular Therapies Inc Substituted heterocycle fused gamma-carbolines solid
JP6106361B2 (en) * 2008-05-27 2017-03-29 イントラ−セルラー・セラピーズ・インコーポレイテッドIntra−Cellular Therapies, Inc. Methods and compositions for sleep disorders and other disorders
CA2796756A1 (en) * 2010-04-22 2011-10-27 Intra-Cellular Therapies, Inc. Substituted pyrido(3',4':4,5)pyrrolo(1,2,3-de)quinoxalines for the treatment of central nervous system disorders
US20150080404A1 (en) 2012-04-14 2015-03-19 Intra-Cellular Therapies, Inc. Novel compositions and methods
EP2968320B1 (en) 2013-03-15 2020-11-11 Intra-Cellular Therapies, Inc. Organic compounds
MX2016007219A (en) * 2013-12-03 2016-09-16 Intra-Cellular Therapies Inc Novel methods.
ES2961843T3 (en) 2014-04-04 2024-03-14 Intra Cellular Therapies Inc Deuterated heterocycle-condensed gamma-carbolines as antagonists of 5-HT2A receptors
IL268970B2 (en) * 2017-03-24 2023-12-01 Intra Cellular Therapies Inc Oral transmucosal formulations of substituted heterocycle fused gamma carbolines

Also Published As

Publication number Publication date
US20190112310A1 (en) 2019-04-18
JP6997718B2 (en) 2022-01-18
US11014925B2 (en) 2021-05-25
EP3436016A4 (en) 2019-09-18
JP2019513140A (en) 2019-05-23
WO2017172811A1 (en) 2017-10-05
EP3436016A1 (en) 2019-02-06
EP3436016B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
US11014925B2 (en) Co-crystals of 1-(4-fluoro-phenyl)-4-((6bR,1OaS)-3-methyl-2,3,6b,9,10,10a-hexahydro-1H,7H- pyrido[3′,4′:4,51_pyrrolo [1,2,3-delqcuinoxalin-8-yl)-butan-1-one with nicotinamide or isonicotinamide
US10654854B2 (en) Salts and crystals of ITI-007
US20220281867A1 (en) Novel salts and crystals
US20210094930A1 (en) Coformer salts of (2s,3s)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(1-methyl-1h-1,2,4-triazol-5-yl)-4-oxo-1,2,3,4-tetrahydroquinoline-5-carboxylate and methods of preparing them
US20220363682A1 (en) Novel salts and crystals
EP2474529A1 (en) Crystalline forms of an active pharmaceutical ingredient
US20230312573A1 (en) Novel salts, crystals, and co-crystals
US10577340B1 (en) Beraprost-314d crystals and methods for preparation thereof
US20230203040A1 (en) Crystalline forms of a sulfonamide compound and processes for preparing the same
NZ728634B2 (en) Coformer salts of (2s,3s)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(1-methyl-1h-1,2,4-triazol-5-yl)-4-oxo-1,2,3,4-tetrahydroquinoline-5-carboxylate and methods of preparing them

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY