US20200016618A1 - Sprinkler System Accounting for Wind Effect - Google Patents

Sprinkler System Accounting for Wind Effect Download PDF

Info

Publication number
US20200016618A1
US20200016618A1 US16/491,495 US201716491495A US2020016618A1 US 20200016618 A1 US20200016618 A1 US 20200016618A1 US 201716491495 A US201716491495 A US 201716491495A US 2020016618 A1 US2020016618 A1 US 2020016618A1
Authority
US
United States
Prior art keywords
wind
sprinkler
processor
information
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/491,495
Inventor
Cameron Cote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20200016618A1 publication Critical patent/US20200016618A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements

Definitions

  • This invention is directed to a sprinkler system, more specifically a sprinkler system coupled with a system aimed at minimizing the effect of wind during watering.
  • Patent application WO2015157844 disclosed a new nozzle head design that allows a constantly variable flow throughout its rotation.
  • the sprinkler heads taught are said to be capable of delivering uniform coverage such that the need for overlapping spray areas is eliminated, resulting in significant water savings as well as the saving in water pipe construction.
  • the ability to have one adjustable flow head greatly simplifies installation by eliminating the need for multiple heads and piping normally required within a single area.
  • the inventors have developed a novel platform which can not only simulate and visualize the overall spraying process for complex lawn shape, but can also provide a solution to shift (minimize) the wind effect under various windy conditions.
  • the platform can be used to facilitate the sprinkler system design, test system performance under windy condition, and generate the wind effect shifting database.
  • the design started with mathematical modelling of droplet dynamic, the droplet movement from a nozzle was simulated.
  • a system for use in conjunction with at least one sprinkler wherein said system comprises:
  • the information relating to a wind comprises: wind speed and wind direction
  • the processor further comprises instructions for manipulating the water output from said at least one sprinkler through incorporation of at least one algorithm used to calculate a value.
  • a system for use in conjunction with at least one sprinkler wherein said system comprises:
  • the wind detector is an anemometer.
  • the anemometer is a vane anemometer.
  • the wind detector is adapted to wirelessly relay information to the processor.
  • the processor receives the information from the wind detector and uses a pre-determined value corresponding to an instruction to modify the sprinkler spraying program.
  • the pre-determined value corresponding to an instruction is related to the information obtained from the wind detector.
  • the wind detector is adapted to wirelessly relay information to the processor, wherein the processor further comprises a database for storing data representing values obtained through the performing of at least one algorithm, wherein said value is used for manipulating the water output from said at least one sprinkler.
  • the sprinkler is of the single head rotary type.
  • system further comprising a manifold fluidly connected to a water supply via a flow control valve, wherein said manifold is operated by instructions from a controller.
  • the controller is a computer.
  • the value calculated corresponds to at least one of: droplet diameter; spray speed; spray angle etc.
  • the method further comprises:
  • said processor receives the information from the wind detector and uses a pre-determined value corresponding to an instruction to modify the sprinkler spraying program.
  • the pre-determined value corresponding to an instruction is related to the information obtained from the wind detector.
  • the wind detector is adapted to wirelessly relay information to the processor, wherein the processor further comprises a database for storing data representing values obtained through the performing of at least one algorithm, wherein said value is used for manipulating the water output from said at least one sprinkler.
  • the method further comprises the use of at least one moisture sensor to evaluate the soil moisture and to evaluate water precipitation from a spraying program, wherein said moisture sensor is adapted to relay moisture information to the processor.
  • the processor uses the moisture information in its algorithm to modify the spraying program.
  • FIG. 1 is a graphical depiction of droplet trajectory with fixed diameter and different flow velocities
  • FIG. 2 is a graphical depiction of droplet trajectory with fixed velocity and different diameters
  • FIGS. 3 ( a ), ( b ) and ( c ) are graphical depictions of the spraying trajectory of the conventional sprinkler system
  • FIG. 4 is a graphical depiction of the spraying trajectory of the conventional sprinkler system with three sweeps
  • FIG. 5 shows a rectangular lawn with the dimension of 80 m ⁇ 40 m with the positioning of a sprinkler
  • FIGS. 7 ( a ), ( b ) and ( c ) are graphical depictions of a simulation for a rectangular lawn
  • FIGS. 8 ( a ), ( b ), ( c ) and ( d ) are graphical depictions of simulations for polygonal lawns
  • FIGS. 9 ( a ) through ( f ) are graphical depictions of the spraying effect in a three round spraying program
  • FIG. 10 is a graphical depiction of droplet diameter distribution
  • FIG. 11 is a graphical depiction of a 1D water distribution with normally distributed droplet diameter assumption
  • FIGS. 12 ( a ) through ( f ) are graphical depictions of a simulation spraying under windy conditions
  • FIG. 15 shows of a lawn with dimension 30 m ⁇ 30 m with a sprinkler positioned in its center
  • FIG. 16 is a graphical depiction of the wind shifting results for the 5 cases listed in Table 3;
  • FIG. 18 is a schematic depiction of an adaptive step length algorithm to find a solution that meets the error requirements or reaches the hardware limitations of precisions;
  • FIG. 19 is a 3D depiction of the optimizing path of the algorithm with similar conditions being the same with FIG. 17 ;
  • FIG. 20 is a graphical depiction of the figure of the algorithm performance shown in Table 5;
  • FIG. 21 ( a ) through ( f ) are graphical depictions of the wind effect with different wind velocities for wind from south to north with 30 degrees;
  • FIG. 22 ( a ) through ( f ) are graphical depictions of the wind effect with different wind velocities for wind from east to west;
  • FIG. 23 ( a ) through ( f ) are graphical depictions of a sensitivity test conducted
  • FIG. 24 provide graphical depictions of an example using target distances set up at 0.9, 0.7, 0.4 (proportion) to cover a lawn;
  • FIG. 25 provide graphical depictions of an example of arithmetic progression method.
  • FIG. 26 is a graphical depiction of an example of n-divide method. Light lines denoting target distances, while darker lines denoting divider lines;
  • FIG. 27 is a graphical depiction of an example of the divider lines method
  • FIG. 28 is a depiction of a generated database in the format of 3D matrix
  • FIG. 29 is an example of a graphical user interface to generate the required database
  • the platform developed can be used to facilitate the sprinkler system design, test system performance under windy condition, and generate the wind effect shifting database.
  • the platform developed can be used to facilitate the sprinkler system design, test system performance under windy condition, and generate the wind effect shifting database.
  • the basic principle of the platform is illustrated in details accompanied by some simulation results.
  • the wind effect is studied by using the example of square lawn, and provide the shifting solution for different cases.
  • a wind shifting algorithm is presented in details. Given the irrigation range, droplet distribution and wind condition, the proposed algorithm is capable to achieve optimal water coverage and uniform precipitation distribution by counteracting the wind effect.
  • Lorenzini G. Lorenzini, Simplified modelling of sprinkler droplet dynamics, Biosystems Engineering 87 (1) (2004) 1-11. proposed a simplified modelling for droplet dynamics without considering the wind effect.
  • Moita (R. D. Moita, H. A. Matos, C. Fernandes, C. P. Nunes, M. J. Pinho, Dynamic modelling and simulation of a heated brine spray system, Computers & Chemical Engineering 33 (8) (2009) 1323-1335.) investigated the dynamic modelling for a heated brine spraying system.
  • Conti A. Conti, D. DeWrachien, G. Lorenzini, Computational fluid dynamics (cfd) picture of water droplet evaporation in air, Irrigation and Drainage Systems Engineering 2012) studied the water droplet evaporation in the air based on computational fluid dynamics.
  • the forces applied to the system were weight and frication; the buoyancy was ignored; the evaporation was not considered; and the droplet keeps a spherical shape during the flight, thus its volume does not change.
  • a fast numerical solver using Runge-Kutta methods is implemented in the platform to compute the solution for the system of nonlinear ordinary differential equations (ODE).
  • ODE nonlinear ordinary differential equations
  • one of the most important characteristic is the size of droplet that the nozzle can generate.
  • the different droplet diameter can result on different spraying distance.
  • the variant spraying velocity will generate variant spraying distance.
  • the droplet distance would only be increased by about 2 times, from 55 m to 105 m as the flow speed v o is increased from 100 m/s to 1000 m/s.
  • the droplet distance can be significantly increased by enlarging the droplet diameter.
  • FIG. 4 the spraying process of semi-circle lawn with three round of sweeps is simulated.
  • the platform developed was shown to be capable of simulating a sprinkler system with the following features:
  • the elevation angle of the nozzle is set as 30 degree.
  • the basic idea to achieve optimum water coverage is that first the rectangular area is divided into n pies, where n is a user-defined value, then for each pie, the required velocity is computed such that the spray precisely reach the target distance.
  • the target distances are just the boundary of the lawn.
  • the target distances are determined by the contour of the lawn.
  • the characteristic curve is a function that provides the information regarding the spraying distance vs initial flow velocity for droplet at certain diameter. Once the droplet diameter is selected and the elevation angle, the characteristic curve is determined.
  • the dots in FIG. 6 are resulted from the numerical solution, and a 4th order polynomial interpolation is employed to find the continuous characteristic curve.
  • the required flow velocity can be computed for the given the lawn in FIG. 5 .
  • the required initial flow velocity should be around 50 m/s.
  • the solver to find the roots for the polynomial, the exact required flow velocity can be found.
  • the spray generated by the nozzle contains droplets with various diameters.
  • the platform is capable of simulating sophisticated spraying process for lawn with more complex contours.
  • the location of the sprinkler can be selected to be either inside the lawn perimeter or on the boundary of the lawn.
  • FIG. 8 reports a spraying process for triangular and pentagonal lawns, where the nozzle is placed inside the lawn.
  • the multiple round spraying process can be simulated. As shown in FIG. 9 , the proportion selected is [1.0, 0.75, 0.5], such that the resulting target distances are [40, 30, 20] m respectively.
  • the spraying process is from outer round to inner round, and the distance between each round is called pull back amount.
  • the speed at which the sprinkler head rotates can be adjusted by the control system.
  • the wind shift algorithm can calculate the sprinkler head rotational speed and optimize it to produce the correct distribution density.
  • Rotational speed can be adjusted by each degree in the control system. Adjustable speed allows the sprinkler head to rotate slower and increase the precipitation rate in selected areas or allow the sprinkler head to rotate faster and decrease the precipitation rate in other selected areas.
  • the platform provides a high degree of freedom to the users, and most variables in the simulation process can be set by users via a Graphical User Interface.
  • the spraying process simulation described previously is based on droplet with a constant diameter.
  • the spray jetted from nozzle consists of hundreds of thousands of droplets, and the diameters of these droplets are different. Therefore, to estimate the overall precipitation distribution, the estimate of droplet diameter distribution is needed.
  • the spraying pattern of droplets with various diameters can be computed, such that the corresponding water volume can be estimated.
  • the droplet diameter distribution is an important characteristic of the nozzle, and for given nozzle, its diameter distribution can be obtained from field test or experiments.
  • the normal distribution is used in the following work. According to the definition, the percentage of droplet with certain diameter in terms of total water volume is given by
  • is the mean value of the droplet
  • is the variance of the droplet.
  • x axis be the droplet diameter
  • y axis denotes the water volume percentage
  • N ( d ) C*f ( d
  • the selection to find the required flow velocities and corresponding angles was based on the mean droplet diameter, thus the choice of target distance was very important for achieving a uniform precipitation distribution.
  • the system provides an algorithm called divider lines method to automatically compute the optimal pull back amount for given number of pull back. All the boundary lines in the following simulations were computed by the divider lines method.
  • the characteristic curve described above can be used to find the required flow velocity to reach the target distance under the windless condition. If these computed flow velocity under a windy condition are used, then the wind effect can be simulated.
  • FIG. 12 reports the simulation of overall spraying with the droplet range from 0.001 m to 0.015 m with mean diameter 0.010 m;
  • FIG. 13 reports a simulation of overall spraying with the same droplet range 0.001 m to 0.015 m with mean diameter 0.007 m.
  • Six passes are applied as indicated by the boundary lines. The pull back amount between each red line is determined by the algorithm.
  • MSE MeanSquareError
  • Entropy the original lawn is divided into several 5 m ⁇ 5 m blocks and the water volume is measured in each block. Then the MSE is defined as following:
  • i denotes all the blocks within and outside the lawn, and target, is defined as 5,
  • target i ⁇ 0 block ⁇ ⁇ i ⁇ ⁇ is ⁇ ⁇ outside ⁇ ⁇ the ⁇ ⁇ lawn 1 n block ⁇ ⁇ i ⁇ ⁇ is ⁇ ⁇ within ⁇ ⁇ the ⁇ ⁇ lawn ( 5 )
  • the MSE measures not only the uniformity inside the lawn, but also the water wasted outside the lawn. It is well known that the entropy can be used to measure the amount of order or disorder of a system, the higher the entropy of a system, the more ordered the system is. A person skilled in the art will understand that for the precipitation case, the higher the entropy after he spraying, the more uniform the lawn is.
  • the Entropy is defined as 6:
  • FIG. 14 confirms that the platform is sufficiently flexible and accurate to simulate various wind effect cases.
  • the wind effect can be effectively quantified by MSE and Entropy, and it is concluded that the wind effect significantly deteriorates the precipitation uniformity as well as water coverage, causing the increase of MSE and decrease of Entropy.
  • the wind effect cause significant water wastage in the lawn irrigation.
  • the required velocity v o and spraying angle v o without wind can be computed from the lawn contour information.
  • ⁇ i-1 and ⁇ v i-1 are the i th searching step size of flow speed and angle
  • v i and ⁇ i are the updated speed and angle after i th correction.
  • T(v i , ⁇ i ) the spraying error SE after n th correction can be defined as the distance between T(v n , y n ) and T 0 :
  • the appropriate velocity and angle can be found by minimizing the target function (9) until the error se is less than user custom threshold value.
  • FIG. 17 shows an error distribution for the lawn in FIG. 15 , where the x, y and z coordinates correspond to spraying velocity, spraying angle, and error respectively.
  • the error function has a global minimum, such that the method of traversal can be used to find out the optimal solution.
  • Table 4 displays the minimum spray errors under the different precisions (searching step size).
  • the reason why these 2 steps work is that the shape of se(v, y) is a cone.
  • the precision can be improved by reducing the searching step by half round by round until the error requirement is met.
  • the instruments can never be exactly accurate, and one does not always require a completely accurate shifting as water can move on the ground within a certain range.
  • the higher precision wind shifting compensation consumes more time, which limits the real-time implementation of the algorithm, thus the appropriate threshold can be set according to the computing power as well as the precision of the equipment.
  • the wind condition should ideally be updated in real time.
  • the wind measuring apparatus are not accurate and contain certain delays. Therefore, sensitivity analysis is essential to test the performance of the shifting algorithm when certain errors are included in the measured wind. To do this, a constant measured wind is used such that the wind shifting parameter unchanged, and let the actual wind change, then test if the performance of wind shifting still be good, or it will deteriorate quickly.
  • the wind shifting algorithm can be used to calculate the required flow velocity and spray angle to reach any target point on a predetermined lawn. To cover the whole lawn, different target distances td are set up for each round of spraying.
  • FIG. 24 provides an illustration of an example in which 3 target distances were set as 0.9, 0.7, 0.4 (proportion) respectively to cover the lawn.
  • the most straightforward way to set up target distances is to use an arithmetic progression.
  • An example is shown in FIG. 25 , where 4 rounds of spray were used to cover the lawn and target distances are 0.2, 0.4, 0.6, 0.8 respectively.
  • the second method is n-divide method.
  • the lawn can be split into n parts as shown in FIG. 26 . It is then easier to distribute the same volume of water in each part.
  • the droplet is controlled to fall on the middle of a ring, intuitively then most of the water should fall into the target part.
  • the rectangle is divided into four area equal parts, and let the mean droplet to reach the middle of each part.
  • the third method is divider lines method.
  • the lawn is divided into n+1 area equal parts, and use the n divider lines as the target distances.
  • FIG. 27 there is an example in which the lawn is divided into 5 area of equal parts and use the 4 divider lines as target distances.
  • the implementation of the first method is quite straightforward.
  • the implementation of the database to achieve the wind shifting is more a more efficient way when the computing power is limited.
  • the wind speed can be [1, 2, 3, 4] MPH
  • the wind direction can be [10, 20, 30, 40] degree with x-axis
  • the lawn is divided in the n pies
  • the database which includes the required flow speed and spraying angle can be stored as a 3D matrix as in FIG. 29 .
  • Each bar in FIG. 29 represents a set of required flow velocity and spraying angle. Assume initially the measured wind has speed 3 and direction 40 degree as indicated by light colored bar, therefore the parameters in the light colored bar are used to conduct the spraying. Later on at the time point indicated by the black point, the wind speed reduce from 3 MPH to 1 MPH but keeps the same direction, then use is made of the data in the blue bar from the pie at the black point.
  • n-divide method divider lines method n entropy (nat) mse (10 ⁇ 5) entropy (nat) mse (10 ⁇ 5) entropy (nat) 3 5.558696094 4.42160258 8.07620625 4.374741098 2.9303625 4.569562261 4 8.259328906 4.378891534 2.83796875 4.629912844 3.072691406 4.579520176 5 6.527041406 4.468568559 5.40473125 4.501883035 2.039260156 4.662217445 6 5.3655125 4.523570614 3.516091406 4.602540766 1.515209375 4.704216864 7 6.00218125 4.55079514 2.777072656 4.634861083 1.677571875 4.689678252 8 7.196332813 4.502444524 2.336932031 4.668657601 1.456821875
  • the proportion of the pull back amount can also be included in the database in the format of a 4D matrix.
  • the platform includes a Graphic User Interface (GUI) to generate the required database.
  • GUI Graphic User Interface
  • the sprinkler apparatus used in conjunction with a system compensating for wind effect comprises: (a) a base housing configured to confiningly receive a pressurized water flow; (b) a nozzle housing coupled to the base housing, the nozzle housing sized to slidingly couple with the base housing to pop-up into an operating position or retract into a nested position; (c) an upper nozzle assembly positioned at a top end of the nozzle housing, the upper nozzle assembly comprising a rigid outer frame and a resilient inner nozzle positioned therein, the diameter of the inner nozzle being smaller than the rigid outer frame to provide space for the inner nozzle to distend to a maximum orifice size determined by the circumference of the outer frame, the resilient inner nozzle responsive to the rate of pressurized water flow to distend up to the maximum orifice size to vary the wetted radius of discharged water from the upper nozzle assembly; (d) a lower nozzle assembly positioned below the upper nozzle assembly at the top end of the nozzle housing
  • the spray pattern of a sprinkler apparatus is known to have inconsistencies in uniformity. Inconsistencies in spray pattern uniformity can result in over-watering and/or under-watering of the water receiving area leading to inefficient irrigation. To minimize such inconsistencies, uniformity of water distribution by a sprinkler apparatus used in the purposes of the present disclosure can be programmably controlled, according to some embodiments, using computer instrumentation programmed to create and implement a spray partem that is designed to compensate for inconsistencies in spray pattern uniformity based on nozzle profile and target precipitation density for the water receiving area.
  • the rate of flow of the pressurized water supply into and out of the flow control valve assembly and into and out of the pop-up type sprinkler head is modulated to vary the wetted radius of the water projected outward from the sprinkler head with each sweep of the sprinkler, so that the water receiving area is uniformly watered over the geometry of its entire area.
  • a sprinkler apparatus used in conjunction with the system according to the present disclosure can comprise computer instrumentation programmed to select a desired target level of precipitation density for the water receiving area; determine the number of sprinkler sweeps needed to achieve the selected precipitation density; pair the number of determined sprinkler sweeps with the selected precipitation density to determine the amount to pull back (i.e., reduce the wetted radius) on each sweep; determine a new flow rate based on the amount of pull back determined; and generate a spray pattern that applies the pulled back flow rates at the calculated rates on each sprinkler sweep to correct the inconsistencies in the uniformity of the spray pattern.
  • a sprinkler spray pattern can be created that is adjusted with each spray sweep to correct inconsistencies in the uniformity of the spray pattern so that the water receiving area is ideally as optimally uniformly watered as possible (within the limitations of the instrumentation) over the geometry of its entire area.
  • Another exemplary embodiment of the present disclosure pertains to a method for irrigating an irregularly shaped and/or an asymmetrically shaped water receiving area while enduring winds which affect the optimal water distribution.
  • the method generally comprises: (a) providing a sprinkler system as described above; (b) determining the geometry and irrigation needs of the water receiving area; (c) selectively diverting the water supply to the one or more sprinkler apparatus suitable to the geometry and irrigation needs determined for the water receiving area; (d) positioning the orientation of each of the one or more sprinkler apparatus according to the geometry and irrigation needs determined for the water receiving area; and (e) adjusting the pressurized water flow to each of the one or more sprinkler apparatus according to the geometry and irrigation needs determined for the water receiving area and, optionally, (f) altering the sprinkler head speed through out each sprinkler sweep to correct inconsistencies in the uniformity of the spray pattern.
  • the step of adjusting in step (e) comprises optimizing each of the one or more sprinkler apparatus to create a sprinkler spray pattern that is adjusted with sprinkler sweep to correct inconsistencies in the uniformity of the spray pattern, said optimizing comprising: (a) selecting a desired target level of precipitation density for the water receiving area; (b) determining the number of sprinkler sweeps needed to achieve the selected precipitation density; (c) pairing the number of determined sprinkler sweeps with the selected precipitation density to determine the amount to pull back on each sweep; (d) determining a new flow rate based on the amount of pull back determined; and (e) generating a spray pattern that applies the pulled back flow rates at the calculated rates on each sprinkler sweep to correct inconsistencies in the uniformity of the spray pattern.
  • the sprinkler system can further include a system controller or other computer instrumentation to synchronize the operation of each sprinkler apparatus in the system.
  • the controller or other computer instrumentation is programmable for example, following a logic and steps specific to the lawn to be watered.
  • Exemplary components for the controller include a microprocessor, a programmable logic circuit (or “PLC”), an analog control circuit, and electronic components (e.g., transistors, resistors, diodes, etc.) on a circuit board.
  • the system can be programmed to establish a watering program that is activated in response to the environmental conditions of the water receiving area.
  • the system can comprise sensors for continual monitoring of the conditions of the water receiving area in order to determine whether watering is required, and further to establish the parameters for achieving sufficient watering for the particular water receiving area.
  • the sensors are moisture sensors for continually monitoring the soil to determine when watering is required, how it is watered, and for how long it is watered.
  • the system can be configured to monitor one or more environmental conditions to make this determination, including without limitation, moisture level of the soil, temperature of the soil, solar load on the soil, salinity of the soil, wind measurements, and/or precipitation measurements.
  • the system determines that watering is required, the system is activated to water the water receiving area for a predetermined time.
  • Moisture values can continue to be monitored and compared to original values in order to determine water absorption by the soil, and/or achievement of target moisture rates.
  • the sprinkler system can comprise computer instrumentation programmed to select a desired target level of precipitation density for the water receiving area; determine the number of sprinkler sweeps needed to achieve the selected precipitation density: pair the number of determined sprinkler sweeps with the selected precipitation density to determine the amount to pull back (i.e., reduce the wetted radius) on each sweep; determine a new flow rate based on the amount of pull back determined; and generate a spray pattern that applies the pulled back flow rates at the calculated rates on each sprinkler sweep to correct the inconsistencies in the uniformity of the spray pattern.
  • a sprinkler spray pattern can be created that is adjusted with each spray sweep to correct inconsistencies in the uniformity of the spray pattern and thereby further optimize the uniformity of watering the specific water receiving area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A novel sprinkler system designed to take into account the effect of wind on water droplets. There is also disclosed a wind shifting algorithm which, when used, corrects the sprinkler water spray to counteract the effect of wind, such that good water coverage and precipitation uniformity can be achieved.

Description

    FIELD OF THE INVENTION
  • This invention is directed to a sprinkler system, more specifically a sprinkler system coupled with a system aimed at minimizing the effect of wind during watering.
  • BACKGROUND OF THE INVENTION
  • Water resources are very important to humans and ecosystems. Only 2.5% of the Earth's water is freshwater, and of which 98.8% is in ice and groundwater, and less than 0.3% of all freshwater is in rivers, lakes, and the atmosphere. About 70% of the freshwater used by humans goes to irrigation and agriculture to ensure enough food is produced. In recent years, many developing countries are facing with water crisis. In the USA, the governor of California declared mandatory water restrictions last year aiming to reduce the urban water usage by 25% for the first time ever.
  • For obvious reasons and to make a contribution to the sustainable management of water resource, it is highly desirable for the irrigation and agriculture industry to find better ways to use water more efficiently. Currently most underground sprinkler systems are comprised of heads that can be adjusted for a fixed water flow rate resulting in a fixed radius coverage area. As the radius of coverage is constant through the spray pattern, multiple sprinkler heads must be used to provide complete lawn coverage. In order to provide proper water coverage with a fixed spray pattern, sprinkler manufacturers recommend “Head to Head Coverage” which requires multiple heads per area and results in overlapping watering patterns, creating substantial water wastage and loss.
  • Patent application WO2015157844 disclosed a new nozzle head design that allows a constantly variable flow throughout its rotation. The sprinkler heads taught are said to be capable of delivering uniform coverage such that the need for overlapping spray areas is eliminated, resulting in significant water savings as well as the saving in water pipe construction. The ability to have one adjustable flow head greatly simplifies installation by eliminating the need for multiple heads and piping normally required within a single area.
  • However, the installation and parameter setting of this kind of sprinkler system require a lot of effort and experience, and the ultimate performance including the water coverage and precipitation uniformity are unknown until a field test is conducted. On the other hand, the water coverage and uniformity are vulnerable to the effects of wind, the performance of any sprinkler system usually deteriorates quickly when it is exposed to wind.
  • Despite known sprinkler systems none have incorporated a system to take into account wind on the water being sprayed. The inventors of the present invention have developed a novel system to be coupled with a sprinkler system which greatly overcomes the wind effect on sprayed water under normal and reasonable watering conditions.
  • The inventors have developed a novel platform which can not only simulate and visualize the overall spraying process for complex lawn shape, but can also provide a solution to shift (minimize) the wind effect under various windy conditions. The platform can be used to facilitate the sprinkler system design, test system performance under windy condition, and generate the wind effect shifting database. The design started with mathematical modelling of droplet dynamic, the droplet movement from a nozzle was simulated.
  • SUMMARY OF THE INVENTION
  • According to an aspect of the present invention, there is provided a system for use in conjunction with at least one sprinkler, wherein said system comprises:
      • a wind detector located proximate an area to be sprayed by the at least one sprinkler; said wind detector adapted to record and relay information relating to a wind;
      • a processor adapted to receive said information obtained from said wind detector and capable of modifying a sprinkler spraying program to compensate for said wind; said processor is operatively connected to the at least one sprinkler.
  • Preferably, the information relating to a wind comprises: wind speed and wind direction
  • According to a preferred embodiment, the processor further comprises instructions for manipulating the water output from said at least one sprinkler through incorporation of at least one algorithm used to calculate a value.
  • According to an aspect of the present invention, there is provided a system for use in conjunction with at least one sprinkler, wherein said system comprises:
      • a wind detector located proximate an area to be sprayed by the at least one sprinkler; said wind detector adapted to record information relating to a wind comprising wind speed and wind direction;
      • a processor adapted to receive said information to obtained from said wind detector and capable of modifying a sprinkler program to compensate for said wind; said processor is operatively connected to the at least one sprinkler; and comprising:
        • computer coded instructions for manipulating the water output from said at least one sprinkler through incorporation of at least one windshifting algorithm used to calculate a value; and
      • wherein said at least one windshifting algorithm using the information collected by the wind detector to yield a value corresponding to at least one instruction and providing said at least one instruction to the processor to modify a water output of the at least one sprinkler to counteract, in whole or in part, the effect of the wind.
  • Preferably, the wind detector is an anemometer. According to another preferred embodiment, the anemometer is a vane anemometer. Preferably also, the wind detector is adapted to wirelessly relay information to the processor.
  • According to a preferred embodiment, the processor receives the information from the wind detector and uses a pre-determined value corresponding to an instruction to modify the sprinkler spraying program. Preferably, the pre-determined value corresponding to an instruction is related to the information obtained from the wind detector.
  • According to a preferred embodiment, the wind detector is adapted to wirelessly relay information to the processor, wherein the processor further comprises a database for storing data representing values obtained through the performing of at least one algorithm, wherein said value is used for manipulating the water output from said at least one sprinkler.
  • Preferably, the sprinkler is of the single head rotary type.
  • According to a preferred embodiment, the system further comprising a manifold fluidly connected to a water supply via a flow control valve, wherein said manifold is operated by instructions from a controller.
  • Preferably, the controller is a computer.
  • According to a preferred embodiment, the value calculated corresponds to at least one of: droplet diameter; spray speed; spray angle etc.
  • According to another aspect of the present invention, there is provided method of spraying an area requiring watering under windy conditions, wherein said method comprises:
      • providing at least one sprinkler in fluid connection with a water source and adapted to spray said area according to a spraying program;
      • providing at least one wind detector located proximate the area requiring watering;
      • providing a processor adapted to receive information on a wind detected from the at least one wind detector and capable of modifying a spraying program based on the wind detected in order to counteract, in whole or in part, the effect of the wind on the water being sprayed;
      • recording the wind information and sending the information to the processor;
      • modifying the spraying program by providing at least one instruction to the processor operatively connected to the at least one sprinkler, said instruction being pre-determined to counteract, in whole or in part, the effect of the wind.
  • Preferably, the method further comprises:
      • at least one wind counteracting sprinkler fluidly connected to a water source and activated by the processor to perform the spraying program designed to counteract the wind effect.
  • Preferably also, said processor receives the information from the wind detector and uses a pre-determined value corresponding to an instruction to modify the sprinkler spraying program. Preferably, the pre-determined value corresponding to an instruction is related to the information obtained from the wind detector.
  • According to a preferred embodiment, the wind detector is adapted to wirelessly relay information to the processor, wherein the processor further comprises a database for storing data representing values obtained through the performing of at least one algorithm, wherein said value is used for manipulating the water output from said at least one sprinkler. Preferably, the method further comprises the use of at least one moisture sensor to evaluate the soil moisture and to evaluate water precipitation from a spraying program, wherein said moisture sensor is adapted to relay moisture information to the processor. Preferably also, the processor uses the moisture information in its algorithm to modify the spraying program.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention may be more completely understood in consideration of the following description of various embodiments of the invention in connection with the accompanying figure, in which:
  • FIG. 1 is a graphical depiction of droplet trajectory with fixed diameter and different flow velocities;
  • FIG. 2 is a graphical depiction of droplet trajectory with fixed velocity and different diameters;
  • FIGS. 3 (a), (b) and (c) are graphical depictions of the spraying trajectory of the conventional sprinkler system;
  • FIG. 4 is a graphical depiction of the spraying trajectory of the conventional sprinkler system with three sweeps;
  • FIG. 5 shows a rectangular lawn with the dimension of 80 m×40 m with the positioning of a sprinkler;
  • FIG. 6 is a graphical depiction of a characteristic curve of the droplet with the droplet diameter=0.01 m;
  • FIGS. 7 (a), (b) and (c) are graphical depictions of a simulation for a rectangular lawn;
  • FIGS. 8 (a), (b), (c) and (d) are graphical depictions of simulations for polygonal lawns;
  • FIGS. 9 (a) through (f) are graphical depictions of the spraying effect in a three round spraying program;
  • FIG. 10 is a graphical depiction of droplet diameter distribution;
  • FIG. 11 is a graphical depiction of a 1D water distribution with normally distributed droplet diameter assumption;
  • FIGS. 12 (a) through (f) are graphical depictions of a simulation spraying under windy conditions;
  • FIGS. 13 (a) through (f) are graphical depictions of a simulation spraying under windy conditions under the mean diameter d=0.007 m;
  • FIGS. 14 (a) through (c) are graphical depictions of cases 1, 2, and 3 which are simulation spraying under windy conditions where the droplet size is under the mean diameter d=0.007 m;
  • FIG. 15 shows of a lawn with dimension 30 m×30 m with a sprinkler positioned in its center;
  • FIG. 16 is a graphical depiction of the wind shifting results for the 5 cases listed in Table 3;
  • FIG. 17 is a 3D depiction of figure of se(v, y) under conditions: To=(Om, 25 m), w=lm/s, ●=300;
  • FIG. 18 is a schematic depiction of an adaptive step length algorithm to find a solution that meets the error requirements or reaches the hardware limitations of precisions;
  • FIG. 19 is a 3D depiction of the optimizing path of the algorithm with similar conditions being the same with FIG. 17;
  • FIG. 20 is a graphical depiction of the figure of the algorithm performance shown in Table 5;
  • FIG. 21 (a) through (f) are graphical depictions of the wind effect with different wind velocities for wind from south to north with 30 degrees;
  • FIG. 22 (a) through (f) are graphical depictions of the wind effect with different wind velocities for wind from east to west;
  • FIG. 23 (a) through (f) are graphical depictions of a sensitivity test conducted;
  • FIG. 24 provide graphical depictions of an example using target distances set up at 0.9, 0.7, 0.4 (proportion) to cover a lawn;
  • FIG. 25 provide graphical depictions of an example of arithmetic progression method.
  • FIG. 26 is a graphical depiction of an example of n-divide method. Light lines denoting target distances, while darker lines denoting divider lines;
  • FIG. 27 is a graphical depiction of an example of the divider lines method;
  • FIG. 28 is a depiction of a generated database in the format of 3D matrix
  • FIG. 29 is an example of a graphical user interface to generate the required database
  • DESCRIPTION OF A PREFERRED EMBODIMENT
  • The platform developed can be used to facilitate the sprinkler system design, test system performance under windy condition, and generate the wind effect shifting database. Starting with mathematical modelling of droplet dynamic, the droplet movement from a nozzle was simulated. The basic principle of the platform is illustrated in details accompanied by some simulation results. Particularly, the wind effect is studied by using the example of square lawn, and provide the shifting solution for different cases. A wind shifting algorithm is presented in details. Given the irrigation range, droplet distribution and wind condition, the proposed algorithm is capable to achieve optimal water coverage and uniform precipitation distribution by counteracting the wind effect.
  • Single Droplet Dynamic
  • The modelling of droplet dynamic has been studied by several authors. Lima (J. De Lima, P. Torfs, V. Singh, A mathematical model for evaluating the effect of wind on downward-spraying rainfall simulators, Catena 46 (4) (2002) 221-241.) investigated the mathematical model for a single droplet for a downward-spraying rainfall simulator.
  • Lorenzini (G. Lorenzini, Simplified modelling of sprinkler droplet dynamics, Biosystems Engineering 87 (1) (2004) 1-11.) proposed a simplified modelling for droplet dynamics without considering the wind effect.
  • Salvador (R. Salvador, C. Bautista-Capetillo, J. Burguete, N. Zapata, A. Serreta, E. Playa'n, A photographic method for drop characterization in agricultural sprinklers, Irrigation science 27 (4) (2009) 307-317.) proposed a photographic method to determine the droplet diameter.
  • Moita (R. D. Moita, H. A. Matos, C. Fernandes, C. P. Nunes, M. J. Pinho, Dynamic modelling and simulation of a heated brine spray system, Computers & Chemical Engineering 33 (8) (2009) 1323-1335.) investigated the dynamic modelling for a heated brine spraying system.
  • Conti (A. Conti, D. DeWrachien, G. Lorenzini, Computational fluid dynamics (cfd) picture of water droplet evaporation in air, Irrigation and Drainage Systems Engineering 2012) studied the water droplet evaporation in the air based on computational fluid dynamics.
  • To arrive at the platform designed, the following hypotheses were adopted: the forces applied to the system were weight and frication; the buoyancy was ignored; the evaporation was not considered; and the droplet keeps a spherical shape during the flight, thus its volume does not change.
  • In practice, the buoyancy has negligible effect to the droplet movement, thus was also neglected. The variables and parameters used in this study are listed in the following Table 1.
  • TABLE 1
    Symbols Definition
    νx The velocity component in the X direction
    νy The velocity component in the Y direction
    νz The velocity component in the Z direction
    ν0 The initial flow velocity of droplets from nozzle
    α The vertical spraying angle of nozzle
    γ The horizontal spraying angle
    k The drag coefficient
    m The mass of a single droplet
    h The initial height of nozzle
    d The water droplet diameter
    pw The density of water
    pa The density of air
    ψ The Reynolds number of water droplets
    w wind speed w = [wx, wy, wz]
    wx wind speed at x direction
    wy wind speed at y direction
    wz wind speed at z direction
    β the angle between wind and x-axis
  • With the assumptions above, and according to Newton's second law of motions, the mathematical model can be described as the following:
  • m dv x dt = - k ( v x - w x ) ( v x - w x ) 2 + ( v y - w y ) 2 + v z 2 ( 1 ) m dv y dt = - k ( v y - w y ) ( v x - w x ) 2 + ( v y - w y ) 2 + v z 2 ( 2 ) m dv z dt = - kv z ( v x - w x ) 2 + ( v y - w y ) 2 + v z 2 - m g , ( 3 )
  • where the droplet mass m is defined as

  • m=4/3πr 3=⅙πd 3,
  • and the drag friction coefficient is denoted by k which is given by k=ψρpad2.
  • A fast numerical solver using Runge-Kutta methods is implemented in the platform to compute the solution for the system of nonlinear ordinary differential equations (ODE). In a sprinkler system, one of the most important characteristic is the size of droplet that the nozzle can generate. For a constant spraying velocity, the different droplet diameter can result on different spraying distance. Similarly, given a constant droplet diameter, the variant spraying velocity will generate variant spraying distance. Thus we begin with analyzing the relationship between the droplet diameter, spraying velocity and spraying distance by testing a 2D single droplet spraying case. Under the windless condition, in FIG. 1, the trajectory of a water droplet with fixed diameter d=0.01 m is illustrated for the range of flow speeds vo=[25, 50, 100, 200, 500, 1000]m/s.
  • Based on the various calculations the droplet distance would only be increased by about 2 times, from 55 m to 105 m as the flow speed vo is increased from 100 m/s to 1000 m/s. The trajectory of a single droplet with fixed initial speed=120 m/s for droplet with diameter d=[0.002 0.004 0.008 0.016] m in FIG. 2 was plotted.
  • From FIG. 2, it was noted that the droplet distance can be significantly increased by enlarging the droplet diameter. The droplet with d=0.01 m and v0=1000 m/s has a similar performance with the droplet with d=0.016 m and v0=120 m/s. Therefore, a sprinkler system with the nozzle that can generate large droplet more robust under the wind condition and easier to control in terms of wind shifting.
  • Through the platform developed, it was possible to simulate a conventional sprinkler system with circular coverage. In FIG. 3, the spraying profile for the case with droplet d=0.01 m, vo=120 m/s is displayed. In FIG. 4, the spraying process of semi-circle lawn with three round of sweeps is simulated.
  • Actually, besides the conventional sprinkler pattern, the proposed platform was determined to properly simulate the sprinkler system with more complicated design discussed in the next section.
  • Modelling of Intelligent Sprinkler System
  • The platform developed was shown to be capable of simulating a sprinkler system with the following features:
      • the nozzle can continuously adjust its flow velocity at any angle;
      • the system is able to detect the real time wind condition;
      • the system has sufficient computing power to implement the wind shifting algorithm
  • With these features, it is clear that the intelligent sprinkler system according to an embodiment of the present invention is superior to a conventional sprinkler system in terms of the following aspects:
      • the water spray of intelligent sprinkler can perfectly cover lawn with any shape, since the flow velocity can adjust with the angle;
      • the intelligent sprinkler system can automatically calculate the pull back amount according to the user custom setting, such that a good water distribution uniformity can be achieved;
      • the sprinkler system is capable to counteract the wind effect to achieve good coverage and uniformity under various wind conditions
  • As an illustration, assuming a rectangular lawn with the dimension of 80 m×40 m, where the nozzle is placed on the boundary of the lawn as shown in FIG. 5, the elevation angle of the nozzle is set as 30 degree.
  • The basic idea to achieve optimum water coverage is that first the rectangular area is divided into n pies, where n is a user-defined value, then for each pie, the required velocity is computed such that the spray precisely reach the target distance. To just cover the shape of the lawn, the target distances are just the boundary of the lawn. As would be clear to the person skilled in the art, the target distances are determined by the contour of the lawn. To find the accurate required flow velocity to reach certain target distance, the characteristic curve is used. The characteristic curve is a function that provides the information regarding the spraying distance vs initial flow velocity for droplet at certain diameter. Once the droplet diameter is selected and the elevation angle, the characteristic curve is determined. The characteristic curve for the droplet with d=0.01 m is shown in FIG. 6.
  • The x and y axis in FIG. 6 denote the droplet velocity and corresponding spraying distance, it indicates that for the droplet with d=0.01 m, given the initial flow velocity, what is the corresponding spraying distance. Note that the dots in FIG. 6 are resulted from the numerical solution, and a 4th order polynomial interpolation is employed to find the continuous characteristic curve. By using the generated characteristic curve, the required flow velocity can be computed for the given the lawn in FIG. 5. For example, according to the characteristic curve in FIG. 6, to reach the target distance 40 m, the required initial flow velocity should be around 50 m/s. Using the solver to find the roots for the polynomial, the exact required flow velocity can be found.
  • In fact, for a typical sprinkler system, the spray generated by the nozzle contains droplets with various diameters.
  • Besides the conventional rectangle lawn, the platform is capable of simulating sophisticated spraying process for lawn with more complex contours. In any case, the location of the sprinkler can be selected to be either inside the lawn perimeter or on the boundary of the lawn.
  • FIG. 8 reports a spraying process for triangular and pentagonal lawns, where the nozzle is placed inside the lawn.
  • By assigning multiple target distances to the sprinkler system, and let each target distance keep same proportion at each angle, the multiple round spraying process can be simulated. As shown in FIG. 9, the proportion selected is [1.0, 0.75, 0.5], such that the resulting target distances are [40, 30, 20] m respectively.
  • Conventionally, the spraying process, is from outer round to inner round, and the distance between each round is called pull back amount. For the simulation process conducted and reported in FIG. 9 was carried out from inner round to outer round in order to achieve a better visualization effect. The speed at which the sprinkler head rotates can be adjusted by the control system. The wind shift algorithm can calculate the sprinkler head rotational speed and optimize it to produce the correct distribution density. Rotational speed can be adjusted by each degree in the control system. Adjustable speed allows the sprinkler head to rotate slower and increase the precipitation rate in selected areas or allow the sprinkler head to rotate faster and decrease the precipitation rate in other selected areas.
  • The platform provides a high degree of freedom to the users, and most variables in the simulation process can be set by users via a Graphical User Interface.
  • Estimate of the Precipitation Distribution
  • The spraying process simulation described previously is based on droplet with a constant diameter. In reality, the spray jetted from nozzle consists of hundreds of thousands of droplets, and the diameters of these droplets are different. Therefore, to estimate the overall precipitation distribution, the estimate of droplet diameter distribution is needed. Given a certain droplet diameter distribution, the spraying pattern of droplets with various diameters can be computed, such that the corresponding water volume can be estimated. Obviously, the droplet diameter distribution is an important characteristic of the nozzle, and for given nozzle, its diameter distribution can be obtained from field test or experiments. As a general assumption of the droplet diameter distribution, the normal distribution is used in the following work. According to the definition, the percentage of droplet with certain diameter in terms of total water volume is given by
  • f ( d | μ , σ ) = 1 σ 2 π e - ( d - μ ) 2 2 σ 2 ,
  • where μ is the mean value of the droplet, σ is the variance of the droplet. Let x axis be the droplet diameter, and y axis denotes the water volume percentage, then the droplet diameter distribution with mean diameter g=0.01 m and standard deviation σ=0.002 m is given in FIG. 10.
  • Assuming the water volume used in each sweep is C, then the total water volume of droplet with the diameter d is given by

  • N(d)=C*f(d|μ,σ).
  • If the mean droplet diameter is p=0.01 m, σ=0.002 m, and the range of the droplet diameter is [0.001, 0.002, . . . , 0.019, 0.020] m, then the droplet trajectory of the droplet with each diameter is denoted by the light narrow lines in FIG. 11, and with the assumption of normal distributed droplet diameter, the precipitation distribution of one spray at a fixed direction is denoted by the bold dark line in FIG. 11.
  • Considering now the precipitation distribution result can be effectively estimated. In FIG. 9, a multi-round spraying process was simulated, where the pull back amounts between each round were the same. In practice, the pull back amount is not fixed the determination of the pull back amount, experimental results or empirical methods can be applied.
  • Considering the wide range of the droplet diameter distribution, the selection to find the required flow velocities and corresponding angles was based on the mean droplet diameter, thus the choice of target distance was very important for achieving a uniform precipitation distribution.
  • Preferably, the system provides an algorithm called divider lines method to automatically compute the optimal pull back amount for given number of pull back. All the boundary lines in the following simulations were computed by the divider lines method.
  • Wind Effect Simulation Results
  • Considering the wind effect is now incorporated into the simulation. Consider the lawn of FIG. 5, the characteristic curve described above can be used to find the required flow velocity to reach the target distance under the windless condition. If these computed flow velocity under a windy condition are used, then the wind effect can be simulated.
  • In the first wind effect simulation the wind is from west to east having an angle of 30 degree between wind direction x-axis. FIG. 12 reports the simulation of overall spraying with the droplet range from 0.001 m to 0.015 m with mean diameter 0.010 m; FIG. 13 reports a simulation of overall spraying with the same droplet range 0.001 m to 0.015 m with mean diameter 0.007 m. Six passes are applied as indicated by the boundary lines. The pull back amount between each red line is determined by the algorithm.
  • For the simulation results in FIGS. 12 and 13, the upper parts depict the droplet trajectory and the lower parts are the precipitation distribution. To quantify the uniformity of water distribution, one must define MeanSquareError (MSE) and Entropy. First, the original lawn is divided into several 5 m×5 m blocks and the water volume is measured in each block. Then the MSE is defined as following:
  • mse = 1 n i = 1 n ( p i - target i ) 2 , ( 4 )
  • where i denotes all the blocks within and outside the lawn, and target, is defined as 5,
  • target i = { 0 block i is outside the lawn 1 n block i is within the lawn ( 5 )
  • Obviously, the MSE measures not only the uniformity inside the lawn, but also the water wasted outside the lawn. It is well known that the entropy can be used to measure the amount of order or disorder of a system, the higher the entropy of a system, the more ordered the system is. A person skilled in the art will understand that for the precipitation case, the higher the entropy after he spraying, the more uniform the lawn is. The Entropy is defined as 6:
  • entropy = i = 1 n - p i ln ( p i ) , ( 6 )
  • where i denotes all the blocks within the lawn, pi is the water proportion in block i. By using MSE and entropy, the wind effect shown in FIGS. 12 and 13 can be quantified as was done in Table 2 below.
  • TABLE 2
    Wind speed (m/s)
    0 1 2 3 4 5
    Droplet mean diameter dmean = 0.01 m
    MSE (×10−3) 5.07 5.31 6.99 8.05 9.20 9.41
    Entropy 4.57 4.53 4.44 4.39 4.34 4.32
    Droplet mean diameter dmean = 0.007 m
    MSE (×10−3) 2.98 5.03 4.58 5.31 5.52 6.65
    Entropy 4.67 4.57 4.58 4.55 4.53 4.45
  • From Table 2, it can be seen that as the wind speed increase, the MSE increases and Entropy decreases, showing the wind effect severity from MSE and Entropy aspects. As mentioned before, the proposed platform provides a big degree of freedom for the simulation. In FIGS. 14 (a) through (c), the wind effect is investigated and the simulation results of the three cases are reported. The three cases simulated are the following:
      • Case 1: The wind is from west to east with linearly increasing wind speed from 0 to 5 m/s
      • Case 2: The wind is from south to north at first 180 degree with w=5 m/s, and then become from east to west at another 180 degree with w=3 m/s
      • Case 3: The wind is from west to east, and wind speed has the form of sin(13), where the beta is the spraying angle
  • FIG. 14 confirms that the platform is sufficiently flexible and accurate to simulate various wind effect cases. The wind effect can be effectively quantified by MSE and Entropy, and it is concluded that the wind effect significantly deteriorates the precipitation uniformity as well as water coverage, causing the increase of MSE and decrease of Entropy. The wind effect cause significant water wastage in the lawn irrigation.
  • Wind Shifting Algorithm and Simulation
  • To introduce the idea of wind shifting technology, one considers the lawn in the shape of square as in FIG. 15, where the nozzle is placed at the center of the lawn:
  • Assuming a fixed flow velocity=55 m/s, the spray can accurately reach the lower right corner from the center under the windless condition. Assuming there are five different wind conditions, where the wind speed w=4.92 m/s, and the wind directions are indicated by arrows in FIG. 16, then the wind effect is listed in the second column of Table 3, and to counteract the wind effect, the corresponding solution is listed in the last column of Table 3. The results after the shifting are reported in FIG. 16.
  • TABLE 3
    Case No. Wind direction wind effect counteraction solution
    1 southeast to Decelerate the droplet velocity in both Increase flow velocity from 55 m/s to 118.25 m/s
    northwest directions
    2 northwest to Accelerate the droplet velocity in both Reduce flow velocity from 55 m/s to 38.5 m/s
    southeast directions
    3 west to east Reduce the flow velocity in x-direction Increase flow velocity from 55 m / s to 92.4 m / s Change the spraying angle from 7 π 4 to 7.24 π 4
    4 east to west Accelerate the flow velocity in y-direction Increase flow velocity from 55 m / s to 41.25 m / s Increase the spraying angle from 7 π 4 to 6.80 π 4
    5 northeast to southwest accelerate the flow velocity in y-direction decelerate the flow velocity in x-direction Increase flow velocity from 55 m / s to 59.4 m / s Increase the spraying angle from 7 π 4 to 7.32 π 4
  • By using the counteraction solutions in Table 3, the wind effect can be quite effectively counteracted as shown in FIG. 16.
  • In the next section we will illustrate how to find the required flow velocity as well as corresponding angles under the wind conditions.
  • Algorithms
  • Denoting the target spraying distance as To. According to the algorithm in the previous section, the required velocity vo and spraying angle vo without wind can be computed from the lawn contour information.
  • To counteract the wind effect, the optimal flow velocity and angle are studied as the following:

  • v i =v i-1 +Δv i-1  (7)

  • γii-1+Δγi-1 , i=1,2, . . .  (8)
  • where Δγi-1 and Δvi-1 are the ith searching step size of flow speed and angle, vi and γi are the updated speed and angle after ith correction. To find the appropriate v and y such that the wind effect can be efficiently counteracted, define the actual dropping point of droplet after i correction as T(vi, γi), then the spraying error SE after nth correction can be defined as the distance between T(vn, yn) and T0:

  • SE(v ii)=√{square root over ((T x(v ii)−T 0x)2+(T y(v ii)−T 0y))2)}.  (9)
  • Under wind speed w and wind direction β, the appropriate velocity and angle can be found by minimizing the target function (9) until the error se is less than user custom threshold value.
  • FIG. 17 shows an error distribution for the lawn in FIG. 15, where the x, y and z coordinates correspond to spraying velocity, spraying angle, and error respectively. According to FIG. 17, it is clear that the error function has a global minimum, such that the method of traversal can be used to find out the optimal solution. Table 4 displays the minimum spray errors under the different precisions (searching step size).
  • FIG. 17. The 3-D Figure of Se(v, γ) Under Conditions: T0=(0 m, 25 m), w=1 m/s. β=30°
  • TABLE 4
    ν precision (m/s) γ precision (°) optimal solution (m/s, °) spray error (cm)
    prsν = 5.00000000 prsγ = 10.00000000 ν = 25.00000000, γ = 90.00000000 se = 172.209
    prsν = 2.50000000 prsγ = 5.00000000 ν = 27.50000000, γ = 90.00000000 se = 113.986
    prsν = 1.25000000 prsγ = 2.50000000 ν= 26.25000000, γ = 92.50000000 se = 48.912
    prsν = 0.62500000 prsγ = 1.25000000 ν= 26.87500000, γ = 92.50000000 se = 30.527
    prsν = 0.31250000 prsγ = 0.62500000 ν= 26.56250000, γ = 91.87500000 se = 11.054
    prsν = 0.15625000 prsγ = 0.31250000 ν= 26.71875000, γ = 91.87500000 se = 3.381
    prsν = 0.07812500 prsγ = 0.15625000 ν= 26.71875000, γ = 91.87500000 se = 3.381
    prsν = 0.03906250 prsγ = 0.07812500 ν= 26.67968750, γ = 91.87500000 se = 0.767
    prsν = 0.01953125 prsγ = 0.03906250 ν= 26.67968750, γ = 91.87500000 se = 0.767
    prsν = 0.00976563 prsγ = 0.01953125 ν= 26.67968750, γ = 91.89453125 se = 0.347
  • Although an optimal solution can be reached by a method of traversal under a specified precision, it's time-consuming and impossible to provide a real-time result on an embedded sprinkler system.
  • Preferably, one uses a more efficient algorithm as shown in FIG. 18. In every round of the function, one first uses 2 steps to reach the approximate solution under current precision, i.e. first optimize by solely adjusting v, then optimize by solely adjusting y. The reason why these 2 steps work is that the shape of se(v, y) is a cone. The precision can be improved by reducing the searching step by half round by round until the error requirement is met. FIG. 19 shows an example of the optimizing path. In this example, first the velocity and angle is initialized to be Pi: v=27.4 m/s, y=90°, se=107.8 cm, which is the solution obtained by the windless model. With precision prsv=1.25, prsy, =2.5, the algorithm adjust v and then y, reaching a approximate solution P2: v=26.15 m/s, y=92.5°, se=57.0 cm. Then it improves the precision to prsv, =0.625, prsy=1.25 and reaches P3: v=26.755 m/s, y=92.5°, se=26.9 cm in the next round. Finally, it meets the error required at P4: v=26.7750 m/s, y=91.8750°, se=8.5 cm at precision prs, =0.3125, prsy=0.625 and stops.
  • Using the adaptive searching step, the global minimum can always be reached, such that the spraying error se=0. However, in practice the instruments can never be exactly accurate, and one does not always require a completely accurate shifting as water can move on the ground within a certain range. On the other hand, the higher precision wind shifting compensation consumes more time, which limits the real-time implementation of the algorithm, thus the appropriate threshold can be set according to the computing power as well as the precision of the equipment.
  • In light of this, the wind shifting algorithm is applied with different threshold value, and the corresponding time is reported in Table 5 and FIG. 20.
  • TABLE 5
    acceptable maximal se average running time1 average se
    200 cm  0.057981 s 25.9066 cm
    100 cm  0.057785 s 25.9066 cm
    50 cm 0.057619 s 24.8865 cm
    20 cm 0.077819 s 11.3012 cm
    10 cm 0.121891 s  5.6259 cm
     5 cm 0.177913 s  2.7142 cm
     2 cm 0.254274 s  1.0006 cm
     1 cm 0.302861 s  0.4923 cm
    0.5 cm  0.357425 s  0.2433 cm
    1Measured by 1000 test cases using Matlab code on labtop with Intel i7-5500U processor.
  • Wind Shifting Simulation
  • Based on the wind shifting algorithm set out above, the algorithm was applied to a 30 m×30 m lawn as in the FIG. 15. Six cases were tested as per the below:
      • Wind from south to north with 30 degree angle with the speed of 1, 3 and 5 m/s respectively; and
      • Wind from east to west with the speed of 1, 3 and 5 m/s respectively.
  • The results before and after shifting are reported in FIGS. 21 (a) through (f) and 22 (a) through (f), the corresponding MSE and Entropy are reported in Table 6 and 7.
  • TABLE 6
    wind speed (m/s) 0 1 2 3 4 5
    Before shifting
    MSE (×10−5) 1.11 1.22 1.27 1.51 1.77 2.13
    Entropy 4.82 4.81 4.80 4.77 4.73 4.68
    After shifting
    MSE (×10−5) 1.11 1.06 1.08 1.08 1.08 1.07
    Entropy 4.82 4.82 4.82 4.82 4.82 4.82
  • TABLE 7
    CATENA 00(2016) 1-29
    wind speed (m/s) 0 1 2 3 4 5
    Before shifting
    error(×10−5) 1.11 1.15 1.30 1.53 1.84 2.19
    entropy 4.82 4.82 4.80 4.76 4.72 4.67
    After shifting
    error(×10−5) 1.11 1.08 1.09 1.10 1.09 1.09
    entropy 4.82 4.82 4.82 4.82 4.82 4.82
  • From Table 6 and 7, it can be seen that the wind shifting algorithm provides very good shifting results in terms of MSE and Entropy. Particularly, in some cases the precipitation after shifting is even more uniform than the case without wind: when the wind speed w=5 m/s, the MSE without shifting is 2.13 and that with shifting is 1.07, which is a significant improvement. It should also be noted that the shifting results are very stable, for instance, the Entropy after shifting is always 4.82 in both cases.
  • Sensitivity Analysis
  • To achieve the best wind shifting effect, the wind condition should ideally be updated in real time. However, it is quite normal that the wind measuring apparatus are not accurate and contain certain delays. Therefore, sensitivity analysis is essential to test the performance of the shifting algorithm when certain errors are included in the measured wind. To do this, a constant measured wind is used such that the wind shifting parameter unchanged, and let the actual wind change, then test if the performance of wind shifting still be good, or it will deteriorate quickly.
  • Assuming that the measured wind is 5 m/s, and the actual wind is from 2 m/s to 8 m/s, which denotes about 60% measured error in terms of wind speed. The shifting results are reported in FIGS. 23 (a) through (f).
  • Similar to the previous cases, the precipitation uniformity is quantified when the measure error exists in terms of MSE as well as Entropy as listed in following Table 8
  • TABLE 8
    actual wind (m/s) 0 1 2 3 4 5 6 7 8 9 10
    measured error 5 4 3 2 1 0 1 2 3 4 5
    (wm − wa)
    error (×10−5 ) 1.98 1.79 1.60 1.32 1.17 1.07 1.21 1.33 1.71 2.14 2.73
    entropy 4.71 4.75 4.77 4.80 4.81 4.82 4.81 4.79 4.74 4.67 4.60
  • The shifting error vs. the wind measuring error was reported in terms of wind speed and wind angle for the measure wind w=6 MPH and w=11 MPH.
  • Computation of Target Distances
  • The wind shifting algorithm can be used to calculate the required flow velocity and spray angle to reach any target point on a predetermined lawn. To cover the whole lawn, different target distances td are set up for each round of spraying.
  • FIG. 24 provides an illustration of an example in which 3 target distances were set as 0.9, 0.7, 0.4 (proportion) respectively to cover the lawn.
  • One must consider how to set up the target distances for each round in order to reach a good distribution uniformity and compare three kinds of different methods.
  • The most straightforward way to set up target distances is to use an arithmetic progression. An example is shown in FIG. 25, where 4 rounds of spray were used to cover the lawn and target distances are 0.2, 0.4, 0.6, 0.8 respectively. The second method is n-divide method. To reach a better water distribution in n rounds, the lawn can be split into n parts as shown in FIG. 26. It is then easier to distribute the same volume of water in each part. For each round of spraying, the droplet is controlled to fall on the middle of a ring, intuitively then most of the water should fall into the target part. As in FIG. 26, the rectangle is divided into four area equal parts, and let the mean droplet to reach the middle of each part.
  • The third method is divider lines method. The lawn is divided into n+1 area equal parts, and use the n divider lines as the target distances. In FIG. 27, there is an example in which the lawn is divided into 5 area of equal parts and use the 4 divider lines as target distances.
  • To determine the value of n, one divides the desired total irrigation amounts by the water volume per round. Given the value of n, one can use the above-mentioned method to reach a good water distribution. The MSE and Entropy for the three methods mentioned above are reported in the following Table 9. It can be seen that the divider lines method provides the smallest MSE and the largest Entropy, thus it is the best method of the three to automatically select the target distance.
  • Implementation of the Database and Graphical User Interface
  • According to a preferable embodiment of the present invention, one can apply the simulation platform into a real application by computing the shifting parameters in real time.
  • According to another preferable embodiment of the present invention, one can apply the simulation platform into a real application by computing the shifting parameters in advance and storing those in a database. Upon use, the corresponding required flow speed as well as required angles are extracted from the database to counteract a measured wind.
  • The implementation of the first method is quite straightforward. However, the implementation of the database to achieve the wind shifting is more a more efficient way when the computing power is limited. Assume the need to generate a database for a lawn, where the wind speed can be [1, 2, 3, 4] MPH, the wind direction can be [10, 20, 30, 40] degree with x-axis, and the lawn is divided in the n pies, then the database which includes the required flow speed and spraying angle can be stored as a 3D matrix as in FIG. 29.
  • Each bar in FIG. 29 represents a set of required flow velocity and spraying angle. Assume initially the measured wind has speed 3 and direction 40 degree as indicated by light colored bar, therefore the parameters in the light colored bar are used to conduct the spraying. Later on at the time point indicated by the black point, the wind speed reduce from 3 MPH to 1 MPH but keeps the same direction, then use is made of the data in the blue bar from the pie at the black point.
  • TABLE 9
    arithmetic progression n-divide method divider lines method
    n entropy (nat) mse (105) entropy (nat) mse (105) entropy (nat)
    3 5.558696094 4.42160258 8.07620625 4.374741098 2.9303625 4.569562261
    4 8.259328906 4.378891534 2.83796875 4.629912844 3.072691406 4.579520176
    5 6.527041406 4.468568559 5.40473125 4.501883035 2.039260156 4.662217445
    6 5.3655125 4.523570614 3.516091406 4.602540766 1.515209375 4.704216864
    7 6.00218125 4.55079514 2.777072656 4.634861083 1.677571875 4.689678252
    8 7.196332813 4.502444524 2.336932031 4.668657601 1.456821875 4.707640548
    9 5.962136719 4.535717316 1.96940625 4.703067124 1.278915625 4.723180948
    10 5.378573438 4.547683044 1.58806875 4.731825277 1.415141406 4.715942761
    11 5.199463281 4.554497897 1.215084375 4.762482496 1.338676563 4.725311081
    12 5.327989063 4.545030052 1.087489063 4.770234491 1.16085625 4.739435545
    13 5.115610156 4.552588626 0.926891406 4.777530711 1.091857031 4.752680653
    14 5.432188281 4.5436457 0.774389844 4.787503575 0.969915625 4.766071533
    15 6.872671875 4.516916769 0.923022656 4.781199631 0.834810938 4.77725098
    16 7.271442969 4.508731115 1.379680469 4.752244574 0.795260156 4.779267223
    17 6.767624219 4.518178005 1.662914063 4.729969358 0.8054375 4.77978694
    18 6.3583875 4.525970252 1.606871875 4.73047667 0.788395313 4.780496854
    19 6.164800781 4.52945914 1.572677344 4.729296313 0.804582031 4.779366649
    20 6.06593125 4.529817106 1.356619531 4.750071517 0.798092969 4.779872878
  • For a multiple pull back spraying process, the proportion of the pull back amount can also be included in the database in the format of a 4D matrix. The platform includes a Graphic User Interface (GUI) to generate the required database.
  • According to an embodiment of the present invention, the sprinkler apparatus used in conjunction with a system compensating for wind effect comprises: (a) a base housing configured to confiningly receive a pressurized water flow; (b) a nozzle housing coupled to the base housing, the nozzle housing sized to slidingly couple with the base housing to pop-up into an operating position or retract into a nested position; (c) an upper nozzle assembly positioned at a top end of the nozzle housing, the upper nozzle assembly comprising a rigid outer frame and a resilient inner nozzle positioned therein, the diameter of the inner nozzle being smaller than the rigid outer frame to provide space for the inner nozzle to distend to a maximum orifice size determined by the circumference of the outer frame, the resilient inner nozzle responsive to the rate of pressurized water flow to distend up to the maximum orifice size to vary the wetted radius of discharged water from the upper nozzle assembly; (d) a lower nozzle assembly positioned below the upper nozzle assembly at the top end of the nozzle housing, the lower nozzle assembly comprising a vertical slit-shaped aperture through which water is discharged in a curtain effect; and (e) a flow control valve assembly fluidly coupled to the base housing to controllably supply the pressurized water flow: wherein the upper and lower nozzle assemblies together achieve a substantially uniform elliptical spray pattern.
  • Programmable Spray Pattern—Uniformity Distribution Optimization
  • As a person skilled in the art would know, the spray pattern of a sprinkler apparatus is known to have inconsistencies in uniformity. Inconsistencies in spray pattern uniformity can result in over-watering and/or under-watering of the water receiving area leading to inefficient irrigation. To minimize such inconsistencies, uniformity of water distribution by a sprinkler apparatus used in the purposes of the present disclosure can be programmably controlled, according to some embodiments, using computer instrumentation programmed to create and implement a spray partem that is designed to compensate for inconsistencies in spray pattern uniformity based on nozzle profile and target precipitation density for the water receiving area. In such embodiments, the rate of flow of the pressurized water supply into and out of the flow control valve assembly and into and out of the pop-up type sprinkler head is modulated to vary the wetted radius of the water projected outward from the sprinkler head with each sweep of the sprinkler, so that the water receiving area is uniformly watered over the geometry of its entire area.
  • According to a preferred embodiment of the present invention, a sprinkler apparatus used in conjunction with the system according to the present disclosure can comprise computer instrumentation programmed to select a desired target level of precipitation density for the water receiving area; determine the number of sprinkler sweeps needed to achieve the selected precipitation density; pair the number of determined sprinkler sweeps with the selected precipitation density to determine the amount to pull back (i.e., reduce the wetted radius) on each sweep; determine a new flow rate based on the amount of pull back determined; and generate a spray pattern that applies the pulled back flow rates at the calculated rates on each sprinkler sweep to correct the inconsistencies in the uniformity of the spray pattern. In this way, a sprinkler spray pattern can be created that is adjusted with each spray sweep to correct inconsistencies in the uniformity of the spray pattern so that the water receiving area is ideally as optimally uniformly watered as possible (within the limitations of the instrumentation) over the geometry of its entire area.
  • Another exemplary embodiment of the present disclosure pertains to a method for irrigating an irregularly shaped and/or an asymmetrically shaped water receiving area while enduring winds which affect the optimal water distribution. The method generally comprises: (a) providing a sprinkler system as described above; (b) determining the geometry and irrigation needs of the water receiving area; (c) selectively diverting the water supply to the one or more sprinkler apparatus suitable to the geometry and irrigation needs determined for the water receiving area; (d) positioning the orientation of each of the one or more sprinkler apparatus according to the geometry and irrigation needs determined for the water receiving area; and (e) adjusting the pressurized water flow to each of the one or more sprinkler apparatus according to the geometry and irrigation needs determined for the water receiving area and, optionally, (f) altering the sprinkler head speed through out each sprinkler sweep to correct inconsistencies in the uniformity of the spray pattern. According to further embodiments, the step of adjusting in step (e) comprises optimizing each of the one or more sprinkler apparatus to create a sprinkler spray pattern that is adjusted with sprinkler sweep to correct inconsistencies in the uniformity of the spray pattern, said optimizing comprising: (a) selecting a desired target level of precipitation density for the water receiving area; (b) determining the number of sprinkler sweeps needed to achieve the selected precipitation density; (c) pairing the number of determined sprinkler sweeps with the selected precipitation density to determine the amount to pull back on each sweep; (d) determining a new flow rate based on the amount of pull back determined; and (e) generating a spray pattern that applies the pulled back flow rates at the calculated rates on each sprinkler sweep to correct inconsistencies in the uniformity of the spray pattern.
  • According to a preferred embodiment of the present invention, the sprinkler system can further include a system controller or other computer instrumentation to synchronize the operation of each sprinkler apparatus in the system. In other preferred embodiments, the controller or other computer instrumentation is programmable for example, following a logic and steps specific to the lawn to be watered. Exemplary components for the controller include a microprocessor, a programmable logic circuit (or “PLC”), an analog control circuit, and electronic components (e.g., transistors, resistors, diodes, etc.) on a circuit board.
  • According to further embodiments, the system can be programmed to establish a watering program that is activated in response to the environmental conditions of the water receiving area. In such embodiments, for example, the system can comprise sensors for continual monitoring of the conditions of the water receiving area in order to determine whether watering is required, and further to establish the parameters for achieving sufficient watering for the particular water receiving area. According to certain embodiments, the sensors are moisture sensors for continually monitoring the soil to determine when watering is required, how it is watered, and for how long it is watered. For example, the system can be configured to monitor one or more environmental conditions to make this determination, including without limitation, moisture level of the soil, temperature of the soil, solar load on the soil, salinity of the soil, wind measurements, and/or precipitation measurements. Once the system determines that watering is required, the system is activated to water the water receiving area for a predetermined time. Moisture values can continue to be monitored and compared to original values in order to determine water absorption by the soil, and/or achievement of target moisture rates.
  • According to a preferred embodiment of the present invention, the sprinkler system can comprise computer instrumentation programmed to select a desired target level of precipitation density for the water receiving area; determine the number of sprinkler sweeps needed to achieve the selected precipitation density: pair the number of determined sprinkler sweeps with the selected precipitation density to determine the amount to pull back (i.e., reduce the wetted radius) on each sweep; determine a new flow rate based on the amount of pull back determined; and generate a spray pattern that applies the pulled back flow rates at the calculated rates on each sprinkler sweep to correct the inconsistencies in the uniformity of the spray pattern. In this way, a sprinkler spray pattern can be created that is adjusted with each spray sweep to correct inconsistencies in the uniformity of the spray pattern and thereby further optimize the uniformity of watering the specific water receiving area.
  • Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the scope of the invention. All such modifications as would be apparent to one skilled in the art are intended to be included within the scope of the following claims.

Claims (24)

1. A system for use in conjunction with at least one sprinkler, wherein said system comprises:
a wind detector located proximate an area to be sprayed by the at least one sprinkler; said wind detector adapted to record and relay information relating to a wind;
a processor adapted to receive said information obtained from said wind detector and capable of modifying a sprinkler spraying program to compensate for said wind; said processor is operatively connected to the at least one sprinkler.
2. The system according to claim 1 wherein the information relating to a wind comprises: wind speed and wind direction
3. The system according to claim 1, wherein the processor further comprises instructions for manipulating the water output from said at least one sprinkler through incorporation of at least one algorithm used to calculate a value.
4. A system for use in conjunction with at least one sprinkler, wherein said system comprises:
a wind detector located proximate an area to be sprayed by the at least one sprinkler; said wind detector adapted to record information relating to a wind comprising wind speed and wind direction;
a processor adapted to receive said information to obtained from said wind detector and capable of modifying a sprinkler program to compensate for said wind; said processor is operatively connected to the at least one sprinkler; and comprising:
computer coded instructions for manipulating the water output from said at least one sprinkler through incorporation of at least one windshifting algorithm used to calculate a value; and
wherein said at least one windshifting algorithm using the information collected by the wind detector to yield a value corresponding to at least one instruction and providing said at least one instruction to the processor to modify a water output of the at least one sprinkler to counteract, in whole or in part, the effect of the wind.
5. The system according to claim 4, wherein the wind detector is an anemometer.
6. The system according to claim 5, wherein the anemometer is a vane anemometer.
7. The system according to any one of claim 1, wherein the wind detector is adapted to wirelessly relay information to the processor.
8. The system according to any one of claim 1, wherein the processor receives the information from the wind detector and uses a pre-determined value corresponding to an instruction to modify the sprinkler spraying program.
9. The system according to claim 8, wherein the pre-determined value corresponding to an instruction is related to the information obtained from the wind detector.
10. The system according to any one of claim 1, wherein the wind detector is adapted to wirelessly relay information to the processor, wherein the processor further comprises a database for storing data representing values obtained through the performing of at least one algorithm, wherein said value is used for manipulating the water output from said at least one sprinkler.
11. The system according to any one of claim 1, wherein the sprinkler is of the single head rotary type.
12. The system according to any one of claim 1, further comprising a manifold fluidly connected to a water supply via a flow control valve, wherein said manifold is operated by instructions from a controller.
13. The system according to claim 12, wherein the controller is a computer.
14. The system according to claim 1, wherein the value calculated corresponds to at least one of: droplet diameter; spray speed; spray angle etc.
15. Method of spraying an area requiring watering under windy conditions, wherein said method comprises:
providing at least one sprinkler in fluid connection with a water source and adapted to spray said area according to a spraying program;
providing at least one wind detector located proximate the area requiring watering;
providing a processor adapted to receive information on a wind detected from the at least one wind detector and capable of modifying a spraying program based on the wind detected in order to counteract, in whole or in part, the effect of the wind on the water being sprayed;
recording the wind information and sending the information to the processor;
modifying the spraying program by providing at least one instruction to the processor operatively connected to the at least one sprinkler, said instruction being pre-determined to counteract, in whole or in part, the effect of the wind.
16. Method according to claim 15, wherein said method further comprises:
at least one wind counteracting sprinkler fluidly connected to a water source and activated by the processor to perform the spraying program designed to counteract the wind effect.
17. Method according to claim 15, wherein said processor receives the information from the wind detector and uses a pre-determined value corresponding to an instruction to modify the sprinkler spraying program.
18. The method according to claim 17, wherein the pre-determined value corresponding to an instruction is related to the information obtained from the wind detector.
19. The method according to any one of claim 15, wherein the wind detector is adapted to wirelessly relay information to the processor, wherein the processor further comprises a database for storing data representing values obtained through the performing of at least one algorithm, wherein said value is used for manipulating the water output from said at least one sprinkler.
20. The method according to any one of claim 15, wherein said method further comprises the use of at least one moisture sensor to evaluate the soil moisture and to evaluate water precipitation from a spraying program, wherein said moisture sensor is adapted to relay moisture information to the processor.
21. The method according to claim 20, wherein the processor uses the moisture information in its algorithm to modify the spraying program.
22. The method according to any one of claim 15, wherein the instruction from the processor to the sprinkler head is a modification of the speed at which the sprinkler head rotates.
23. The method according to any one of claim 15, wherein the instruction from the processor to the sprinkler head is a slowing down of the speed at which the sprinkler head rotates to increase the precipitation rate in a selected area.
24. The method according to any one of claim 15, wherein the instruction from the processor to the sprinkler head is an increase of the speed at which the sprinkler head rotates to decrease the precipitation rate in a selected area.
US16/491,495 2016-11-28 2017-11-24 Sprinkler System Accounting for Wind Effect Abandoned US20200016618A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA2949767 2016-11-28
CA2949767A CA2949767A1 (en) 2016-11-28 2016-11-28 Sprinkler system accounting for wind effect
PCT/CA2017/000250 WO2018094503A1 (en) 2016-11-28 2017-11-24 Sprinkler system accounting for wind effect

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2017/000250 A-371-Of-International WO2018094503A1 (en) 2016-11-28 2017-11-24 Sprinkler system accounting for wind effect

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/888,854 Division US11731151B2 (en) 2016-11-28 2022-08-16 Sprinkler system accounting for wind effect

Publications (1)

Publication Number Publication Date
US20200016618A1 true US20200016618A1 (en) 2020-01-16

Family

ID=62194588

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/491,495 Abandoned US20200016618A1 (en) 2016-11-28 2017-11-24 Sprinkler System Accounting for Wind Effect
US17/888,854 Active US11731151B2 (en) 2016-11-28 2022-08-16 Sprinkler system accounting for wind effect

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/888,854 Active US11731151B2 (en) 2016-11-28 2022-08-16 Sprinkler system accounting for wind effect

Country Status (5)

Country Link
US (2) US20200016618A1 (en)
EP (1) EP3565403A4 (en)
AU (2) AU2017363832A1 (en)
CA (2) CA2949767A1 (en)
WO (1) WO2018094503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119714A (en) * 2022-06-27 2022-09-30 江苏大学 Irrigation spray head and irrigation system based on wind power guiding control nozzle
US11731151B2 (en) 2016-11-28 2023-08-22 Kristy COTE Sprinkler system accounting for wind effect

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209131A (en) * 1978-05-12 1980-06-24 Motorola, Inc. Computer-controlled irrigation system
US4411386A (en) * 1981-12-28 1983-10-25 Disbrow Lynnford E Apparatus for controlling spray pattern
US6726120B2 (en) * 2001-12-19 2004-04-27 Deere & Company Automatic wind-drift compensation system for agricultural sprayers
WO2005069988A2 (en) 2004-01-20 2005-08-04 Norman Ivans Irrigation system
US20050211794A1 (en) * 2004-03-26 2005-09-29 Clark James J Water irrigation system with wind sensor and method of controlling irrigation
US7877168B1 (en) 2004-11-09 2011-01-25 Hunter Industries, Inc. Evapotranspiration unit for re-programming an irrigation controller
US7590471B2 (en) * 2004-12-02 2009-09-15 Sterling Investments Lc Intelligent sprinkler irrigation system
US20100012744A1 (en) 2008-07-16 2010-01-21 Lawrence Kates Multi-zone sprinkler system with moisture sensors and adjustable spray pattern
US20100070097A1 (en) * 2008-09-18 2010-03-18 Paul Morgenstern Remotely controlled fire protection system
US9301460B2 (en) * 2011-02-25 2016-04-05 The Toro Company Irrigation controller with weather station
US20130008977A1 (en) * 2011-07-05 2013-01-10 Lindsay Corporation System and method for controlling operation of an irrigation system end gun
CN104023520B (en) * 2011-12-19 2016-06-08 尤尼斯科技公司 Long-range sensing and adjust irrigation system
AU2014391079B2 (en) 2014-04-14 2019-08-08 COTE, Kristy Sprinkler apparatus and system for irrigation
US20150306618A1 (en) * 2014-04-24 2015-10-29 Petter Investments Adjustable Fluid Sprayer
US20180117613A1 (en) 2015-01-21 2018-05-03 Arthur J. Zito, Jr. Responsive fluid dispersion for controlled fog and mist
US10278342B2 (en) 2015-11-10 2019-05-07 Hattar Tanin, LLC Sprinkler and a group of sprinklers for irrigating areas of arbitrary shape
CA2949767A1 (en) 2016-11-28 2018-05-28 COTE, Kristy Sprinkler system accounting for wind effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731151B2 (en) 2016-11-28 2023-08-22 Kristy COTE Sprinkler system accounting for wind effect
CN115119714A (en) * 2022-06-27 2022-09-30 江苏大学 Irrigation spray head and irrigation system based on wind power guiding control nozzle

Also Published As

Publication number Publication date
CA3054676A1 (en) 2018-05-31
EP3565403A4 (en) 2020-12-23
AU2017363832A1 (en) 2019-11-21
US20220401985A1 (en) 2022-12-22
WO2018094503A1 (en) 2018-05-31
EP3565403A1 (en) 2019-11-13
CA3054676C (en) 2024-04-30
CA2949767A1 (en) 2018-05-28
AU2023201633A1 (en) 2023-04-13
US11731151B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US11731151B2 (en) Sprinkler system accounting for wind effect
Carrión et al. SIRIAS: A simulation model for sprinkler irrigation: I. Description of model
US10391503B2 (en) System and method for predicting wind direction and speed to better control drift
Rabiei et al. Rainfall estimation using moving cars as rain gauges–laboratory experiments
Fister et al. A portable wind and rainfall simulator for in situ soil erosion measurements
Yacoubi et al. Day and night time sprinkler irrigated tomato: Irrigation performance and crop yield
US8311786B2 (en) Accurate methods for modeling the spatial distribution for irrigation systems for landscapes
Sanchez et al. The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers
US20120065886A1 (en) Method of evaluating wind flow based on terrain exposure and elevation
Delirhasannia et al. Dynamic model for water application using centre pivot irrigation
Mateos Assessing whole-field uniformity of stationary sprinkler irrigation systems
CN106613571A (en) Pesticide spraying method and system
Dwomoh et al. Field performance characteristics of fluidic sprinkler
Sánchez Burillo et al. Initial drop velocity in a fixed spray plate sprinkler
CN104796915A (en) Method for optimizing two-dimensional aeoplotropism sensor network coverage
WO2020047593A1 (en) Automatic irrigation system with 3d soil moisture mapping tool
KR102291266B1 (en) Apparatus and method for managing golf course grass
CN116097290A (en) Method for constructing a wind farm in a predetermined space
CN112577702B (en) Wind environment simulation and prediction method for construction site
Corradini et al. Meteorological systems producing rainfall
Ouazaa et al. Effect of intra-irrigation meteorological variability on seasonal center-pivot irrigation performance and corn yield
Sobenko et al. Performance of an iris mechanism equipped with fixed and rotating deflector plates for variable rate sprinkler irrigation
Li et al. Improving agricultural robot patch-spraying accuracy and precision through combined error adjustment
Prado et al. Asymmetric wetted sector angle in water distribution of traveling gun irrigation systems
Abd El Mageed et al. Simulating the overlapping patterns of irrigation sprinklers using computer model

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION