US20200009663A1 - Throwaway insert - Google Patents

Throwaway insert Download PDF

Info

Publication number
US20200009663A1
US20200009663A1 US16/470,138 US201716470138A US2020009663A1 US 20200009663 A1 US20200009663 A1 US 20200009663A1 US 201716470138 A US201716470138 A US 201716470138A US 2020009663 A1 US2020009663 A1 US 2020009663A1
Authority
US
United States
Prior art keywords
cutting edge
base
ridgeline
face
throwaway insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/470,138
Other versions
US11458546B2 (en
Inventor
Kazuo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Assigned to SUMITOMO ELECTRIC SINTERED ALLOY, LTD. reassignment SUMITOMO ELECTRIC SINTERED ALLOY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAEDA, KAZUO
Publication of US20200009663A1 publication Critical patent/US20200009663A1/en
Application granted granted Critical
Publication of US11458546B2 publication Critical patent/US11458546B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/04Overall shape
    • B23B2200/0447Parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/04Overall shape
    • B23B2200/049Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/08Rake or top surfaces
    • B23B2200/085Rake or top surfaces discontinuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/20Top or side views of the cutting edge
    • B23B2200/201Details of the nose radius and immediately surrounding area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/242Cross section of the cutting edge bevelled or chamfered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/24Cross section of the cutting edge
    • B23B2200/245Cross section of the cutting edge rounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/28Angles
    • B23B2200/283Negative cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2240/00Details of connections of tools or workpieces
    • B23B2240/08Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/141Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness
    • B23B27/145Specially shaped plate-like cutting inserts, i.e. length greater or equal to width, width greater than or equal to thickness characterised by having a special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/34Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of turning or planing tools or tool bits, e.g. gear cutters
    • B24B3/343Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of turning or planing tools or tool bits, e.g. gear cutters of throw-away cutting bits

Definitions

  • the present invention relates to a throwaway insert.
  • the present application claims a priority based on Japanese Patent Application No. 2016-243351 filed on Dec. 15, 2016, the entire content of which is incorporated herein by reference.
  • Patent Literature 1 discloses a throwaway insert including: a base (base material) having a corner portion provided with a recess; and a cutting edge member (hard sintered material) joined to the recess.
  • the cutting edge member includes: an upper surface; a first side surface flush with a side surface of the base; and a second side surface facing a side surface of the recess.
  • This cutting edge member includes: a first ridgeline formed by the upper surface and the first side surface and serving as a cutting edge; and a second ridgeline formed by the upper surface and the second side surface. The first ridgeline crosses the second ridgeline at an acute angle.
  • a throwaway insert includes a base and a cutting edge member.
  • the base has an upper surface, a lower surface, and a plurality of side surfaces that connect the upper surface to the lower surface, the base being provided with a recess at a corner portion at which the upper surface crosses two side surfaces of the plurality of side surfaces.
  • the cutting edge member is joined to the recess.
  • the cutting edge member includes: a rake face; a flank face extending to cross the rake face; a first connecting face; a second connecting face; and a first ridgeline serving as a cutting edge.
  • the first connecting face connects the flank face to one side surface of the two side surfaces and extends to cross the rake face.
  • the second connecting face connects the flank face to the other side surface of the two side surfaces and extends to cross the rake face.
  • the first ridgeline is formed by the rake face and the flank face.
  • the rake face includes: a main surface extending along the upper surface; and a first chamfer provided at an edge tip portion of the cutting edge member, the edge tip portion including an extreme tip portion of the cutting edge member.
  • the cutting edge includes a first cutting edge part constituted of a first ridgeline part formed by the first chamfer and the flank face. In a plan view from the upper surface of the base, the flank face, the first connecting face, and the second connecting face are located external to the base.
  • the first chamfer is inclined relative to the main surface so as to increase a thickness of the cutting edge member as the first chamfer is closer to the main surface.
  • FIG. 1 is a schematic perspective view of a throwaway insert according to a first embodiment.
  • FIG. 2 is a schematic plan view of the throwaway insert according to the first embodiment.
  • FIG. 3 is a schematic partial cross sectional view of the throwaway insert according to the first embodiment along a cross sectional line shown in FIG. 2 .
  • FIG. 4 is a schematic enlarged plan view of the throwaway insert according to the first embodiment at a region IV shown in FIG. 2 .
  • FIG. 5 shows a flowchart of a method of grinding each throwaway insert according to the first and second embodiments.
  • FIG. 6 is a schematic partial enlarged cross sectional view showing a method of grinding a first chamfer portion of the throwaway insert according to the first embodiment.
  • FIG. 7 is a schematic perspective view of the throwaway insert according to the second embodiment.
  • FIG. 8 is a schematic plan view of the throwaway insert according to the second embodiment.
  • FIG. 9 is a schematic partial cross sectional view of the throwaway insert according to the second embodiment along a cross sectional line IX-IX shown in FIG. 8 .
  • FIG. 10 is a schematic partial cross sectional view of the throwaway insert according to the second embodiment along a cross sectional line X-X shown in FIG. 8 .
  • FIG. 11 is a schematic enlarged plan view of the throwaway insert according to the second embodiment at a region XI shown in FIG. 8 .
  • FIG. 12 is a schematic partial enlarged cross sectional view showing a method of grinding a first chamfer portion of the throwaway insert according to the second embodiment.
  • FIG. 13 is a schematic partial enlarged cross sectional view showing a method of grinding a second chamfer portion of the throwaway insert according to the second embodiment.
  • FIG. 14 is a schematic perspective view of a throwaway insert according to a third embodiment.
  • FIG. 15 is a schematic plan view of the throwaway insert according to the third embodiment.
  • FIG. 16 is a schematic partial cross sectional view of the throwaway insert according to the third embodiment along a cross sectional line XVI-XVI shown in FIG. 15 .
  • FIG. 17 is a schematic enlarged plan view of the throwaway insert according to the third embodiment at a region XVII shown in FIG. 15 .
  • FIG. 18 is a schematic perspective view of a throwaway insert according to a fourth embodiment.
  • FIG. 19 is a schematic plan view of the throwaway insert according to the fourth embodiment.
  • FIG. 20 is a schematic partial cross sectional view of the throwaway insert according to the fourth embodiment along a cross sectional line XX-XX shown in FIG. 19 .
  • FIG. 21 is a schematic partial cross sectional view of the throwaway insert according to the fourth embodiment along a cross sectional line XXI-XXI shown in FIG. 19 .
  • FIG. 22 is a schematic enlarged plan view of the throwaway insert according to the fourth embodiment at a region XXII shown in FIG. 19 .
  • the cutting edge member is likely to be chipped when the cutting edge member of the throwaway insert described in Patent Literature 1 is ground and when a workpiece is cut using the throwaway insert described in Patent Literature 1. Moreover, in the throwaway insert described in Patent Literature 1, it is difficult to increase the number of times of reusing the cutting edge member (the number of times of grinding the cutting edge member).
  • An object of one embodiment of the present invention is to provide a throwaway insert having stable quality and including a cutting edge member that can be reused a larger number of times.
  • a throwaway insert having stable quality and including a cutting edge member that can be reused a larger number of times.
  • a throwaway insert 1 , 2 , 3 , 4 includes a base 10 , 10 c and a cutting edge member 20 , 20 b , 20 c , 20 d .
  • Base 10 , 10 c has an upper surface 11 , a lower surface 12 , and a plurality of side surfaces 13 that connect upper surface 11 to lower surface 12 , base 10 , 10 c being provided with a recess 14 at a corner portion at which upper surface 11 crosses two side surfaces ( 13 a , 13 b ) of the plurality of side surfaces 13 .
  • Cutting edge member 20 , 20 b , 20 c , 20 d is joined to recess 14 .
  • Cutting edge member 20 , 20 b , 20 c , 20 d includes: a rake face 21 , 121 ; a flank face 22 , 22 c extending to cross rake face 21 , 121 ; a first connecting face 23 ; a second connecting face 26 ; and a first ridgeline ( 24 , 124 ) serving as a cutting edge 24 , 124 .
  • First connecting face 23 connects flank face 22 , 22 c to one side surface 13 a of the two side surfaces ( 13 a , 13 b ) and extends to cross rake face 21 , 121 .
  • Second connecting face 26 connects flank face 22 , 22 c to the other side surface 13 b of two side surfaces ( 13 a , 13 b ) and extends to cross rake face 21 , 121 .
  • the first ridgeline ( 24 , 124 ) is formed by rake face 21 , 121 and flank face 22 , 22 c .
  • Rake face 21 , 121 includes: a main surface 21 a , 121 a extending along upper surface 11 ; and a first chamfer 21 b , 121 b provided at an edge tip portion of cutting edge member 20 , 20 b , 20 c , 20 d , the edge tip portion including an extreme tip portion 30 of cutting edge member 20 , 20 b , 20 c , 20 d .
  • Cutting edge 24 , 124 includes a first cutting edge part 24 d , 124 d constituted of a first ridgeline part ( 24 d , 124 d ) formed by first chamfer 21 b , 121 b and flank face 22 , 22 c .
  • flank face 22 , 22 c , first connecting face 23 , and second connecting face 26 are located external to base 10 , 10 c .
  • First chamfer 21 b , 121 b is inclined relative to main surface 21 a , 121 a so as to increase a thickness of cutting edge member 20 , 20 b , 20 c , 20 d as first chamfer 21 b , 121 b is closer to main surface 21 a , 121 a.
  • First chamfer 21 b , 121 b is provided at the edge tip portion of cutting edge member 20 , 20 b , 20 c , 20 d , the edge tip portion including extreme tip portion 30 of cutting edge member 20 , 20 b , 20 c , 20 d .
  • a damage portion 40 , 140 such as breakage and chipping can be suppressed from being produced in cutting edge 24 , 124 .
  • Throwaway insert 1 , 2 , 3 , 4 has stable quality.
  • flank face 22 , 22 c , first connecting face 23 , and second connecting face 26 are located external to base 10 , 10 c . Therefore, when damage portion 40 , 140 such as breakage and chipping is produced in cutting edge 24 , 124 , damage portion 40 , 140 can be removed by grinding flank face 22 , 22 c of cutting edge member 20 , 20 b , 20 c , 20 d . According to throwaway insert 1 , 2 , 3 , 4 , the number of times of reusing cutting edge member 20 , 20 b , 20 c , 20 d can be increased, whereby throwaway insert 1 , 2 , 3 , 4 can be used economically.
  • First chamfer 21 b , 121 b is inclined relative to main surface 21 a , 121 a so as to increase the thickness of cutting edge member 20 , 20 b , 20 c , 20 d as first chamfer 21 b , 121 b is closer to main surface 21 a , 121 a . Accordingly, when flank face 22 , 22 c is ground in order to remove damage portion 40 , 140 , the thickness of cutting edge member 20 , 20 b , 20 c , 20 d at the first ridgeline ( 24 , 124 ) serving as cutting edge 24 , 124 is increased, whereby damage portion 40 , 140 such as breakage and chipping is less likely to be produced in cutting edge 24 , 124 . Throwaway insert 1 , 2 , 3 , 4 has stable quality.
  • rake face 121 further includes a second chamfer 121 c , 121 d connected to main surface 121 a , first chamfer 121 b , and flank face 22 , 22 c .
  • Second chamfer 121 c , 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b , 20 d as second chamfer 121 c , 121 d is closer to main surface 121 a .
  • Cutting edge 124 includes a second cutting edge part 124 e , 124 f constituted of a second ridgeline part ( 124 e , 1240 formed by second chamfer 121 c , 121 d and flank face 22 , 22 c .
  • a first distance d 1 between extreme tip portion 30 of cutting edge member 20 b , 20 d and base 10 , 10 c is larger than a second distance d 2 between second cutting edge part 124 e , 124 f and base 10 , 10 c.
  • rake face 121 further includes second chamfer 121 c , 121 d . Accordingly, when cutting edge member 20 b , 20 d is ground and when a workpiece is cut using throwaway insert 2 , 4 , damage portion 40 , 140 such as breakage and chipping can be further suppressed from being produced in cutting edge 124 . Throwaway insert 2 , 4 has more stable quality.
  • second chamfer 121 c , 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b , 20 d as second chamfer 121 c , 121 d is closer to main surface 121 a . Accordingly, when flank face 22 , 22 c is ground in order to remove damage portion 40 , 140 , the thickness of cutting edge member 20 b , 20 d at the first ridgeline ( 124 ) serving as cutting edge 124 is increased, whereby damage portion 40 , 140 is less likely to be produced in cutting edge 124 . Throwaway insert 2 , 4 has stable quality.
  • Extreme tip portion 30 of cutting edge member 20 b is a portion used most to cut a workpiece, and is a portion at which damage portion 40 is most likely to be produced. Since first distance d 1 is larger than second distance d 2 in the plan view from upper surface 11 of base 10 , 10 c , the number of times of reusing cutting edge member 20 b , 20 d can be increased. Throwaway insert 2 , 4 can be used economically.
  • first angle ⁇ 1 between first chamfer 121 b and a first extension plane 121 e of main surface 121 a is smaller than a second angle ⁇ 2 between second chamfer 121 c , 121 d and first extension plane 121 e of main surface 121 a . Therefore, in the plan view from upper surface 11 of base 10 , 10 c , first distance d 1 is larger than second distance dz. According to throwaway insert 2 , 4 , the number of times of reusing cutting edge member 20 b , 20 d can be increased, whereby throwaway insert 2 , 4 can be used economically.
  • a first angle ⁇ 1 between first chamfer 21 b , 121 b and a first extension plane 21 e , 121 e of main surface 21 a , 121 a is more than or equal to 3° and less than or equal to 25°.
  • first angle ⁇ 1 is more than or equal to 3°, damage portion 40 such as breakage and chipping can be suppressed from being produced in cutting edge 24 , 124 , and burr can be suppressed from being produced in a workpiece during cutting of the workpiece. Accordingly, throwaway insert 1 , 2 , 3 , 4 has stable quality.
  • first angle ⁇ 1 By setting first angle ⁇ 1 to be less than or equal to 25°, even after grinding cutting edge member 20 , 20 b , 20 c , 20 d , the cutting edge strength can be secured and a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20 , 20 b , 20 c , 20 d .
  • the cutting performance of cutting edge member 20 , 20 b , 20 c , 20 d can be suppressed from being deteriorated after grinding cutting edge member 20 , 20 b , 20 c , 20 d.
  • extreme tip portion 30 of cutting edge member 20 , 20 b , 20 c , 20 d is located on a second extension plane 11 e of upper surface 11 . Accordingly, even after grinding cutting edge member 20 , 20 b , 20 c , 20 d , a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20 , 20 b , 20 c , 20 d .
  • the cutting performance of cutting edge member 20 , 20 b , 20 c , 20 d can be suppressed from being deteriorated after grinding cutting edge member 20 , 20 b , 20 c , 20 d.
  • flank face 22 c is inclined relative to main surface 21 a , 121 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 21 a , 121 a . Accordingly, a flank amount of flank face 22 c relative to a workpiece can be increased. Flank face 22 c is suppressed from being worn during cutting, whereby throwaway insert 3 , 4 has a longer life. Further, cuttability of cutting edge 24 , 124 is improved.
  • cutting edge member 20 c , 20 d protrudes relative to the two side surfaces ( 13 a , 13 b ) of base 10 c , occurrence of chatter vibration can be suppressed during cutting of a workpiece, thereby suppressing decrease of cutting precision.
  • flank face 22 c is inclined at an inclination angle ⁇ 5 of more than or equal to 0.1° and less than or equal to 15° relative to an imaginary plane 21 v , 121 v that is orthogonal to main surface 21 a , 121 a and that is in contact with the first ridgeline ( 24 , 124 ).
  • inclination angle ⁇ 5 of flank face 22 c is more than or equal to 0.1°, wear of flank face 22 c of cutting edge member 20 c , 20 d and occurrence of chatter vibration during cutting can be further suppressed.
  • flank face 22 c can be ground using a grindstone without an interference of the grindstone with base 10 , 10 c.
  • throwaway insert 1 , 2 , 3 , 4 In throwaway insert 1 , 2 , 3 , 4 according to any one of (1) to (7), a second ridgeline 25 , 125 formed by rake face 21 , 121 and first connecting face 23 crosses the first ridgeline ( 24 , 124 ) at an obtuse angle. A third ridgeline 27 , 127 formed by rake face 21 , 121 and second connecting face 26 crosses the first ridgeline ( 24 , 124 ) at an obtuse angle. Accordingly, cutting edge member 20 , 20 b , 20 c , 20 d can be suppressed from being chipped. Throwaway insert 1 , 2 , 3 , 4 has stable quality.
  • cutting edge 24 , 124 includes: a first straight cutting edge portion 24 a , 124 a located between first connecting face 23 and first cutting edge part 24 d , 124 d ; and a second straight cutting edge portion 24 c , 124 c located between second connecting face 26 and first cutting edge part 24 d , 124 d .
  • each of a first crossing angle ⁇ (degree) between the first ridgeline ( 24 , 124 ) and second ridgeline 25 , 125 and a second crossing angle ⁇ (degree) between the first ridgeline ( 24 , 124 ) and third ridgeline 27 , 127 is more than or equal to (160- ⁇ /2) and less than or equal to (200- ⁇ /2). Therefore, a change in cutting depth of cutting edge member 20 , 20 b , 20 c , 20 d into a workpiece before and after grinding of cutting edge member 20 , 20 b , 20 c , 20 d can be further decreased.
  • cutting edge 24 , 124 includes: a first straight cutting edge portion 24 a , 124 a located between first connecting face 23 and first cutting edge part 24 d , 124 d ; and a second straight cutting edge portion 24 c , 124 c located between second connecting face 26 and first cutting edge part 24 d , 124 d .
  • First straight cutting edge portion 24 a , 124 a is parallel to a first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10 , 10 c .
  • Second straight cutting edge portion 24 c , 124 c is parallel to a second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10 , 10 c.
  • cutting edge 24 , 124 can be positioned relative to a workpiece with high precision. Precision in cutting a workpiece by throwaway insert 1 , 2 , 3 , 4 can be improved. Cutting edge 24 , 124 can be positioned relative to a grindstone with high precision. Precision in grinding cutting edge member 20 , 20 b , 20 c , 20 d is improved, thereby obtaining high-quality cutting edge 24 , 124 .
  • a third distance d 3 between first straight cutting edge portion 24 a , 124 a and first base ridgeline 15 a is more than or equal to 0.01 mm and less than or equal to 1 mm.
  • a fourth distance d 4 between second straight cutting edge portion 24 c , 124 c and second base ridgeline 15 b is more than or equal to 0.01 mm and less than or equal to 1 mm.
  • each of third distance d 3 and fourth distance d 4 can be less than or equal to 1 mm in the plan view from upper surface 11 of base 10 , 10 c . Accordingly, when cutting a workpiece, chipping of cutting edge member 20 , 20 b , 20 c , 20 d and decrease in cutting precision can be suppressed.
  • third distance d 3 and fourth distance d 4 can be more than or equal to 0.01 mm in the plan view from upper surface 11 of base 10 , 10 c , flank face 22 , 22 c of cutting edge member 20 , 20 b , 20 c , 20 d can be ground while securely preventing grinding of base 10 , 10 c . Clogging in a grindstone and cracking in throwaway insert 1 , 2 , 3 , 4 can be securely prevented from occurring due to swarf of base 10 , 10 c during grinding of cutting edge member 20 , 20 b , 20 c , 20 d.
  • first cutting edge part 24 d , 124 d includes a curved cutting edge portion 24 b , 124 b having a protruding curved shape.
  • Curved cutting edge portion 24 b , 124 b includes extreme tip portion 30 . Accordingly, damage portion 40 , 140 such as breakage and chipping can be suppressed from being produced in extreme tip portion 30 of throwaway insert 1 , 2 , 3 , 4 .
  • Throwaway insert 1 , 2 , 3 , 4 has stable quality.
  • cutting edge member 20 , 20 b , 20 c , 20 d includes one of the following materials: diamond, cubic boron nitride, cemented carbide and cermet.
  • Throwaway insert 1 , 2 , 3 , 4 can be used to highly precisely cut workpieces having various hardnesses, such as high-hardness materials or non-iron soft metals.
  • a throwaway insert 1 according to the present embodiment mainly includes a base 10 and a cutting edge member 20 .
  • Throwaway insert 1 according to the present embodiment may further include a backing body 18 .
  • Base 10 has an upper surface 11 , a lower surface 12 , and a plurality of side surfaces 13 that connect upper surface 11 to lower surface 12 .
  • base 10 in a plan view from upper surface 11 of base 10 , base 10 may have a regular triangle shape.
  • the plan view from upper surface 11 of base 10 means viewing in a direction perpendicular to upper surface 11 of base 10 .
  • the plurality of side surfaces 13 may include a side surface 13 a , a side surface 13 b , and a side surface 13 c .
  • base 10 may have a polygonal shape such as a rhombus shape (see FIG. 14 , FIG. 15 , FIG. 18 and FIG. 19 ), a square shape, a regular pentagon shape, a right hexagon shape or the like.
  • base 10 is provided with a recess 14 at a corner portion at which upper surface 11 crosses two side surfaces ( 13 a , 13 b ) of the plurality of side surfaces 13 .
  • base 10 is provided with respective recesses 14 at a first corner portion at which upper surface 11 crosses two side surfaces ( 13 a , 13 b ), a second corner portion at which upper surface 11 crosses two side surfaces ( 13 b , 13 c ), and a third corner portion at which upper surface 11 crosses two side surfaces ( 13 c , 13 a ).
  • Recesses 14 may be provided at all the corner portions at each of which upper surface 11 crosses two side surfaces of the plurality of side surfaces 13 .
  • Recess 14 may be provided at at least one of all the corner portions at each of which upper surface 11 crosses two side surfaces of the plurality of side surfaces 13 .
  • Base 10 further includes: a first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of the two side surfaces ( 13 a , 13 b ); and a second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of the two side surfaces ( 13 a , 13 b ).
  • Base 10 is also provided with a through hole 16 extending between the central portion of upper surface 11 and the central portion of lower surface 12 .
  • throwaway insert 1 may be attached to a holder (not shown) for cutting or a holder (not shown) for grinding.
  • Cemented carbide may be used as a material of base 10 .
  • Base 10 may be composed of a material having a toughness higher than that of cutting edge member 20 .
  • Cutting edge member 20 is joined to recess 14 of base 10 using a brazing material or the like. Cutting edge member 20 may be joined to recess 14 of base 10 at the entire surface of recess 14 of base 10 . In the present embodiment, recesses 14 are provided at the first corner portion, second corner portion, and third corner portion of base 10 . Cutting edge member 20 may be joined to at least one of these recesses 14 .
  • Cutting edge member 20 includes: a rake face 21 ; a flank face 22 extending to cross rake face 21 ; a first connecting face 23 ; a second connecting face 26 ; and a first ridgeline ( 24 ) serving as a cutting edge 24 .
  • First connecting face 23 connects flank face 22 to one side surface 13 a of the two side surfaces ( 13 a , 13 b ), and extends to cross rake face 21 .
  • Second connecting face 26 connects flank face 22 to the other side surface 13 b of the two side surfaces ( 13 a , 13 b ), and extends to cross rake face 21 .
  • the first ridgeline ( 24 ) is formed by rake face 21 and flank face 22 .
  • cutting edge member 20 further includes: a second ridgeline 25 formed by rake face 21 and first connecting face 23 ; and a third ridgeline 27 formed by rake face 21 and second connecting face 26 .
  • second ridgeline 25 may cross the first ridgeline ( 24 ) at a first crossing angle ⁇ , which is an obtuse angle.
  • First crossing angle ⁇ between the first ridgeline ( 24 ) and second ridgeline 25 is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°.
  • an angle ⁇ between second ridgeline 25 and first base ridgeline 15 a is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°.
  • Angle ⁇ between second ridgeline 25 and first base ridgeline 15 a may be equal to first crossing angle ⁇ between the first ridgeline ( 24 ) and second ridgeline 25 .
  • third ridgeline 27 may cross the first ridgeline ( 24 ) at a second crossing angle ⁇ , which is an obtuse angle.
  • Second crossing angle ⁇ between the first ridgeline ( 24 ) and third ridgeline 27 is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°.
  • an angle between third ridgeline 27 and second base ridgeline 15 b is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°.
  • Angle c between third ridgeline 27 and second base ridgeline 15 b may be equal to second crossing angle ⁇ between the first ridgeline ( 24 ) and third ridgeline 27 .
  • Second crossing angle ⁇ between the first ridgeline ( 24 ) and third ridgeline 27 may be equal to first crossing angle ⁇ between the first ridgeline ( 24 ) and second ridgeline 25 .
  • Angle c between third ridgeline 27 and second base ridgeline 15 b may be equal to angle ⁇ between second ridgeline 25 and first base ridgeline 15 a.
  • Rake face 21 includes: a main surface 21 a extending along upper surface 11 ; and a first chamfer 21 b provided at an edge tip portion of cutting edge member 20 , the edge tip portion including an extreme tip portion 30 of cutting edge member 20 .
  • the expression “main surface 21 a extends along upper surface 11 ” means that the main extending direction of main surface 21 a is the same as the main extending direction of upper surface 11 .
  • each of the main extending direction of main surface 21 a and the main extending direction of upper surface 11 corresponds to an inward direction in the plane of sheet.
  • main surface 21 a extends along upper surface 11 encompasses a case where main surface 21 a is not flush with upper surface 11 . As shown in FIG. 1 and FIG. 3 , main surface 21 a may protrude relative to upper surface 11 .
  • the expression “main surface 21 a extends along upper surface 11 ” encompasses both the following cases: a case where main surface 21 a is parallel to upper surface 11 ; and a case where main surface 21 a is not parallel to upper surface 11 .
  • extreme tip portion 30 of cutting edge member 20 may be located on a second extension plane 11 e of upper surface 11 .
  • a first distance d 1 between extreme tip portion 30 of cutting edge member 20 and base 10 is larger than a third distance d 3 between first straight cutting edge portion 24 a and first base ridgeline 15 a .
  • first distance d 1 is defined as a minimum distance between extreme tip portion 30 of cutting edge member 20 and base 10 when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10 .
  • Third distance d 3 is defined as a minimum distance between the first ridgeline ( 24 ) and an extension line of first base ridgeline 15 a when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10 .
  • first distance d 1 between extreme tip portion 30 of cutting edge member 20 and base 10 is larger than a fourth distance d 4 between second straight cutting edge portion 24 c and second base ridgeline 15 b .
  • Fourth distance d 4 is defined as a minimum distance between the first ridgeline ( 24 ) and the extension line of second base ridgeline 15 b when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10 .
  • first chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a .
  • a first angle ⁇ 1 between first chamfer 21 b and first extension plane 21 e of main surface 21 a may be more than or equal to 3°, may be preferably more than or equal to 5°, and may be more preferably more than or equal to 7°.
  • first angle ⁇ 1 such as breakage and chipping can be suppressed from being produced in cutting edge 24 , and burr can be suppressed from being produced in a workpiece during cutting of the workpiece. Accordingly, throwaway insert 1 of the present embodiment has stable quality.
  • First angle ⁇ 1 between first chamfer 21 b and first extension plane 21 e of main surface 21 a may be less than or equal to 25°, may be preferably less than or equal to 15°, and may be more preferably less than or equal to 10°.
  • first angle ⁇ 1 By setting first angle ⁇ 1 to be less than or equal to 25°, the thickness of cutting edge member 20 can be prevented from being greatly varied before and after grinding of cutting edge member 20 .
  • the thickness of cutting edge member 20 is defined as the length of cutting edge member 20 in the direction perpendicular to main surface 21 a .
  • the center height of cutting edge 24 can be prevented from being greatly varied before and after grinding of cutting edge member 20 .
  • the cutting edge strength can be secured and a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20 .
  • the cutting performance of cutting edge member 20 can be suppressed from being deteriorated after grinding cutting edge member 20 .
  • Cutting edge 24 includes a first cutting edge part 24 d constituted of a first ridgeline part ( 24 d ) formed by first chamfer 21 b and flank face 22 .
  • First cutting edge part 24 d includes extreme tip portion 30 of cutting edge member 20 .
  • flank face 22 , first connecting face 23 , and second connecting face 26 are located external to base 10 or the two side surfaces ( 13 a , 13 b ).
  • cutting edge member 20 may cover recess 14 entirely.
  • cutting edge 24 includes: a first straight cutting edge portion 24 a located between first connecting face 23 and first cutting edge part 24 d ; and a second straight cutting edge portion 24 c located between second connecting face 26 and first cutting edge part 24 d .
  • First straight cutting edge portion 24 a and second straight cutting edge portion 24 c may be formed by main surface 21 a and flank face 22 .
  • each of first crossing angle ⁇ (degree) between the first ridgeline ( 24 ) and second ridgeline 25 and second crossing angle ⁇ (degree) between the first ridgeline ( 24 ) and third ridgeline 27 may be preferably more than or equal to (160- ⁇ /2) and less than or equal to (200- ⁇ /2), and may be more preferably more than or equal to (170- ⁇ /2) and less than or equal to (190- ⁇ /2).
  • First straight cutting edge portion 24 a may be connected to first connecting face 23 .
  • First straight cutting edge portion 24 a may be connected to second ridgeline 25 .
  • Second straight cutting edge portion 24 c may be connected to second connecting face 26 .
  • Second straight cutting edge portion 24 c may be connected to third ridgeline 27 .
  • First straight cutting edge portion 24 a may be parallel to first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10 .
  • Second straight cutting edge portion 24 c may be parallel to second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10 .
  • third distance d 3 between first straight cutting edge portion 24 a and first base ridgeline 15 a is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm.
  • third distance d 3 in the plan view from upper surface 11 of base 10 is defined as a distance between first straight cutting edge portion 24 a and the extension line of first base ridgeline 15 a when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10 .
  • fourth distance d 4 between second straight cutting edge portion 24 c and second base ridgeline 15 b is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm.
  • fourth distance d 4 in the plan view from upper surface 11 of base 10 is defined as a distance between second straight cutting edge portion 24 c and the extension line of second base ridgeline 15 b when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10 .
  • Fourth distance d 4 may be equal to third distance d 3 .
  • First cutting edge part 24 d may include a curved cutting edge portion 24 b having a protruding curved shape. Particularly, curved cutting edge portion 24 b may have a protruding arc shape. Curved cutting edge portion 24 b may include extreme tip portion 30 of cutting edge member 20 . Curved cutting edge portion 24 b may be formed by first chamfer 21 b and flank face 22 . Curved cutting edge portion 24 b is located between first straight cutting edge portion 24 a and second straight cutting edge portion 24 c . Curved cutting edge portion 24 b is connected to first straight cutting edge portion 24 a and second straight cutting edge portion 24 c.
  • First cutting edge part 24 d may include a third straight cutting edge portion 24 e and a fourth straight cutting edge portion 24 f .
  • Third straight cutting edge portion 24 e and fourth straight cutting edge portion 24 f may be formed by first chamfer 21 b and flank face 22 .
  • Third straight cutting edge portion 24 e may be connected to first straight cutting edge portion 24 a and curved cutting edge portion 24 b .
  • Fourth straight cutting edge portion 24 f may be connected to second straight cutting edge portion 24 c and curved cutting edge portion 24 b.
  • cutting edge member 20 may include one of the following materials: diamond, cubic boron nitride, cemented carbide and cermet.
  • Cutting edge member 20 including the diamond may be a diamond sintered material.
  • Cutting edge member 20 including the cubic boron nitride (CBN) may be a cubic boron nitride (CBN) sintered material including more than or equal to 20 volume % of the cubic boron nitride (CBN).
  • the cemented carbide may include, as a main component, tungsten carbide (WC) having at least one of cobalt (Co), titanium carbide (TiC), titanium nitride (TiN), and titanium carbonitride (TiCN) added therein.
  • WC tungsten carbide
  • the cermet may include titanium carbide (TiC), titanium nitride (TiN), or titanium carbonitride (TiCN) as a main component.
  • Cutting edge member 20 is composed of a material having a hardness higher than that of base 10 .
  • Backing body 18 may be located between recess 14 of base 10 and cutting edge member 20 .
  • Backing body 18 is composed of a material having a toughness higher than that of cutting edge member 20 . Accordingly, even when a large load acts on cutting edge 24 during cutting, part of this load can be absorbed by backing body 18 .
  • Backing body 18 prevents concentration of this load on cutting edge member 20 , and prevents cutting edge 24 from being chipped during cutting.
  • Backing body 18 can extend the life of throwaway insert 1 . Throwaway insert 1 including backing body 18 has more stable quality.
  • Cemented carbide may be used as a material of backing body 18 .
  • a side surface 18 s of backing body 18 may be flush with flank face 22 of cutting edge member 20 .
  • side surface 18 s of backing body 18 may be flush with the two side surfaces ( 13 a , 13 b ) of base 10 , and flank face 22 of cutting edge member 20 may protrude relative to the two side surfaces ( 13 a , 13 b ) of base 10 and side surface 18 s of backing body 18 .
  • Backing body 18 may be integrated with cutting edge member 20 .
  • Cutting edge member 20 and backing body 18 may be a composite sintered material obtained by sintering and shaping cutting edge member 20 and backing body 18 integrally.
  • the composite sintered material is obtained by sintering and shaping cutting edge member 20 and backing body 18 integrally.
  • This composite sintered material is joined to recess 14 of base 10 using a brazing material or the like with backing body 18 of this composite sintered material facing recess 14 of base 10 .
  • cutting edge 24 is formed at the first ridgeline ( 24 ). In this way, throwaway insert 1 of the present embodiment can be manufactured.
  • Throwaway insert 1 is held at a holder for cutting.
  • the first ridgeline ( 24 ) serving as cutting edge 24 is brought into contact with a workpiece and the workpiece is rotated with respect to throwaway insert 1 . In this way, the workpiece is cut using throwaway insert 1 of the present embodiment.
  • Throwaway insert 1 is held at a holder for grinding (S 1 ).
  • Flank face 22 including cutting edge 24 is brought into contact with a grindstone to grind flank face 22 .
  • flank face 22 may be ground to grind first straight cutting edge portion 24 a and second straight cutting edge portion 24 c (S 2 ).
  • third straight cutting edge portion 24 e and fourth straight cutting edge portion 24 f may also be ground.
  • flank face 22 may be ground to grind curved cutting edge portion 24 b (S 3 ). In this way, cutting edge 24 of throwaway insert 1 of the present embodiment is ground.
  • flank face 22 in the plan view from upper surface 11 of base 10 , flank face 22 , first connecting face 23 , and second connecting face 26 are located external to base 10 . Accordingly, as shown in FIG. 6 , when a damage portion 40 is produced in cutting edge member 20 during cutting of a workpiece using throwaway insert 1 , flank face 22 can be ground, thereby removing damage portion 40 .
  • a damage portion 40 having a width w 1 and a height h 1 is produced in cutting edge 24 (first cutting edge part 24 d ) formed by first chamfer 21 b and flank face 22 .
  • first cutting edge part 24 d first chamfer 21 b and flank face 22 .
  • grinding flank face 22 by a grinding width w 3 , i.e., by grinding flank face 22 to a grinding line 41 , damage portion 40 can be removed. Grinding width w 3 is larger than width w 1 of damage portion 40 .
  • a damage portion 40 having width w 1 and height h 1 is produced again in cutting edge member 20 .
  • flank face 22 is ground by grinding width w 3 , thereby removing damage portion 40 .
  • Cutting edge member 20 can be ground five times to grinding lines 41 , 42 , 43 , 44 , 45 , whereby throwaway insert 1 of the present embodiment can be reused five times.
  • Each of amounts of protrusion of flank face 22 , first connecting face 23 , and second connecting face 26 relative to the two side surfaces ( 13 a , 13 b ) of base 10 in the plan view from upper surface 11 of base 10 is preferably such an amount of protrusion that throwaway insert 1 may be reused twice or more.
  • Each of amounts of protrusion of flank face 22 , first connecting face 23 , and second connecting face 26 relative to the two side surfaces ( 13 a , 13 b ) of base 10 in the plan view from upper surface 11 of base 10 may be more than or equal to 0.01 mm, for example.
  • first chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a . Accordingly, when flank face 22 is ground in order to remove damage portion 40 , the thickness of cutting edge member 20 at the first ridgeline ( 24 ) serving as cutting edge 24 is increased.
  • Throwaway insert 1 of the present embodiment includes base 10 and cutting edge member 20 .
  • Base 10 has upper surface 11 , lower surface 12 , and the plurality of side surfaces 13 that connect upper surface 11 to lower surface 12 , base 10 being provided with recess 14 at the corner portion at which upper surface 11 crosses two side surfaces ( 13 a , 13 b ) of the plurality of side surfaces 13 .
  • Cutting edge member 20 is joined to recess 14 .
  • Cutting edge member 20 includes: rake face 21 ; flank face 22 extending to cross rake face 21 ; first connecting face 23 ; second connecting face 26 ; and the first ridgeline ( 24 ) serving as cutting edge 24 .
  • First connecting face 23 connects flank face 22 to one side surface 13 a of the two side surfaces ( 13 a , 13 b ), and extends to cross rake face 21 .
  • Second connecting face 26 connects flank face 22 to the other side surface 13 b of the two side surfaces ( 13 a , 13 b ), and extends to cross rake face 21 .
  • the first ridgeline ( 24 ) is formed by rake face 21 and flank face 22 .
  • Rake face 21 includes: main surface 21 a extending along upper surface 11 ; and first chamfer 21 b provided at the edge tip portion of cutting edge member 20 , the edge tip portion including extreme tip portion 30 of cutting edge member 20 .
  • Cutting edge 24 includes first cutting edge part 24 d constituted of the first ridgeline part ( 24 d ) formed by first chamfer 21 b and flank face 22 .
  • First chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a.
  • first chamfer 21 b is provided at the edge tip portion of cutting edge member 20 , the edge tip portion including extreme tip portion 30 of cutting edge member 20 . Accordingly, when cutting edge member 20 is ground and when a workpiece is cut using throwaway insert 1 , damage portion 40 such as breakage and chipping can be suppressed from being produced in cutting edge 24 . Throwaway insert 1 of the present embodiment has stable quality.
  • flank face 22 in the plan view from upper surface 11 of base 10 , flank face 22 , first connecting face 23 , and second connecting face 26 are located external to base 10 . Therefore, when damage portion 40 is produced in cutting edge 24 while cutting a workpiece using throwaway insert 1 , damage portion 40 can be removed by grinding flank face 22 of cutting edge member 20 .
  • width w 1 of damage portion 40 in the direction parallel to main surface 21 a of rake face 21 is smaller than height h 1 of damage portion 40 in the direction perpendicular to main surface 21 a of rake face 21 .
  • a required amount of grinding of cutting edge member 20 to remove damage portion 40 in throwaway insert 1 of the present embodiment in which flank face 22 is ground can be reduced as compared with a first comparative example in which rake face 21 is ground.
  • the grinding of cutting edge member 20 to remove damage portion 40 in cutting edge member 20 can be performed a larger number of times. According to throwaway insert 1 of the present embodiment, the number of times of reusing cutting edge member 20 can be increased, whereby throwaway insert 1 of the present embodiment can be used economically.
  • first chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a . Accordingly, when flank face 22 is ground in order to remove damage portion 40 , the thickness of cutting edge member 20 at the first ridgeline ( 24 ) serving as cutting edge 24 is increased, whereby damage portion 40 is less likely to be produced in cutting edge 24 .
  • Throwaway insert 1 of the present embodiment has stable quality.
  • cutting edge member 20 including first chamfer 21 b is ground only by grinding flank face 22 to remove damage portion 40 .
  • cutting edge member 20 including first chamfer 21 b is ground by grinding rake face 21 to remove damage portion 40 and then grinding a portion of rake face 21 again to form first chamfer 21 b .
  • cutting edge member 20 including first chamfer 21 b is ground with a smaller number of grinding steps.
  • flank face 22 in the plan view from upper surface 11 of base 10 , flank face 22 , first connecting face 23 , and second connecting face 26 are located external to base 10 . Accordingly, flank face 22 can be ground without grinding base 10 . According to throwaway insert 1 of the present embodiment, clogging in a grindstone and cracking in throwaway insert 1 can be prevented from occurring due to swarf of base 10 during grinding of cutting edge member 20 .
  • throwaway insert 1 of the present embodiment in the plan view from upper surface 11 of base 10 , flank face 22 , first connecting face 23 , and second connecting face 26 are located external to base 10 . Therefore, cutting edge member 20 can be joined to base 10 at the entire surface of recess 14 of base 10 . According to throwaway insert 1 of the present embodiment, cutting edge member 20 can be firmly joined to base 10 .
  • first angle ⁇ 1 between first chamfer 21 b and first extension plane 21 e of main surface 21 a may be more than or equal to 3° and less than or equal to 25°.
  • first angle ⁇ 1 By setting first angle ⁇ 1 to be more than or equal to 3°, damage portion 40 can be suppressed from being produced in cutting edge 24 , and burr can be suppressed from being produced in a workpiece during cutting of the workpiece. Accordingly, throwaway insert 1 having stable quality can be provided.
  • first angle ⁇ 1 By setting first angle ⁇ 1 to be less than or equal to 25°, the thickness of cutting edge member 20 can be prevented from being greatly varied before and after grinding of cutting edge member 20 .
  • the center height of cutting edge 24 can be prevented from being greatly varied before and after grinding of cutting edge member 20 .
  • the cutting edge strength can be secured and a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20 .
  • the cutting performance of cutting edge member 20 can be suppressed from being deteriorated after grinding cutting edge member 20 .
  • extreme tip portion 30 of cutting edge member 20 may be located on second extension plane 11 e of upper surface 11 . Accordingly, the center height of cutting edge 24 can be defined precisely. Even after grinding cutting edge member 20 , a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20 . The cutting performance of cutting edge member 20 can be suppressed from being deteriorated after grinding cutting edge member 20 .
  • second ridgeline 25 formed by rake face 21 and first connecting face 23 may cross the first ridgeline ( 24 ) at an obtuse angle.
  • Third ridgeline 27 formed by rake face 21 and second connecting face 26 may cross the first ridgeline ( 24 ) at an obtuse angle. Therefore, as compared with a throwaway insert of a second comparative example in which second ridgeline 25 and third ridgeline 27 cross the first ridgeline ( 24 ) at an acute angle, according to throwaway insert 1 of the present embodiment, mechanical strength can be improved at a first end portion of cutting edge member 20 and a second end portion of cutting edge member 20 .
  • the first end portion of cutting edge member 20 is a region at which flank face 22 and first connecting face 23 cross each other, and the second end portion of cutting edge member 20 is a region at which flank face 22 and second connecting face 26 cross each other.
  • the first end portion and second end portion of cutting edge member 20 can be suppressed from being chipped when grinding cutting edge member 20 .
  • Throwaway insert 1 of the present embodiment has stable quality.
  • a change in length of cutting edge 24 before and after grinding cutting edge member 20 can be made small.
  • a change in cutting depth of cutting edge member 20 into a workpiece before and after grinding of cutting edge member 20 can be decreased.
  • cutting edge 24 may include: first straight cutting edge portion 24 a located between first connecting face 23 and first cutting edge part 24 d ; and second straight cutting edge portion 24 c located between second connecting face 26 and first cutting edge part 24 d .
  • ⁇ (degree) represents an angle between first straight cutting edge portion 24 a and second straight cutting edge portion 24 c in the plan view from upper surface 11 of base 10
  • each of a first crossing angle ⁇ (degree) between the first ridgeline ( 24 ) and second ridgeline 25 and a second crossing angle ⁇ (degree) between the first ridgeline ( 24 ) and third ridgeline 27 may be more than or equal to (160- ⁇ /2) and less than or equal to (200- ⁇ /2).
  • first length of first straight cutting edge portion 24 a after grinding is substantially unchanged from the first length of first straight cutting edge portion 24 a before grinding
  • second length of second straight cutting edge portion 24 c after grinding is substantially unchanged from the second length of second straight cutting edge portion 24 c before grinding.
  • a change in cutting depth of cutting edge member 20 into a workpiece before and after grinding of cutting edge member 20 can be further decreased.
  • cutting edge 24 includes: first straight cutting edge portion 24 a located between first connecting face 23 and first cutting edge part 24 d ; and second straight cutting edge portion 24 c located between second connecting face 26 and first cutting edge part 24 d .
  • First straight cutting edge portion 24 a may be parallel to first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10 .
  • Second straight cutting edge portion 24 c may be parallel to second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10 .
  • Each of the plurality of side surfaces 13 of base 10 is positioned precisely.
  • First straight cutting edge portion 24 a is parallel to first base ridgeline 15 a included in one side surface 13 a .
  • Second straight cutting edge portion 24 c is parallel to second base ridgeline 15 b included in the other side surface 13 b . Accordingly, when at least one of the two side surfaces ( 13 a , 13 b ) of base 10 is bound to a holder for cutting or a holder for grinding, the at least one of the two side surfaces ( 13 a , 13 b ) of base 10 may be used as a positional reference of cutting edge 24 .
  • Cutting edge 24 can be positioned relative to a workpiece with high precision. Precision in cutting a workpiece by throwaway insert 1 can be improved.
  • Cutting edge 24 can be positioned relative to a grindstone with high precision. Precision in grinding cutting edge member 20 is improved, thereby obtaining high-quality cutting edge 24 .
  • third distance d 3 between first straight cutting edge portion 24 a and first base ridgeline 15 a may be more than or equal to 0.01 mm and less than or equal to 1 mm.
  • fourth distance d 4 between second straight cutting edge portion 24 c and second base ridgeline 15 b may be more than or equal to 0.01 mm and less than or equal to 1 mm.
  • each of third distance d 3 and fourth distance d 4 can be less than or equal to 1 mm in the plan view from upper surface 11 of base 10 .
  • the rigidity of cutting edge member 20 can be suppressed from being significantly decreased.
  • cutting edge member 20 can be suppressed from being chipped.
  • Throwaway insert 1 has stable quality.
  • the rigidity of cutting edge member 20 can be suppressed from being significantly decreased, occurrence of chatter vibration can be prevented during cutting of a workpiece.
  • the cutting precision can be suppressed from being decreased.
  • flank face 22 of cutting edge member 20 can be ground while securely preventing grinding of base 10 .
  • clogging in a grindstone and cracking in throwaway insert 1 can be prevented from occurring due to swarf of base 10 during grinding of cutting edge member 20 .
  • first cutting edge part 24 d may include a curved cutting edge portion 24 b having a protruding curved shape. Curved cutting edge portion 24 b may include extreme tip portion 30 . Accordingly, damage portion 40 can be suppressed from being produced in extreme tip portion 30 of throwaway insert 1 . Throwaway insert 1 of the present embodiment has stable quality.
  • cutting edge member 20 may include one of the following materials: diamond, cubic boron nitride, cemented carbide and cermet. Throwaway insert 1 of the present embodiment can be used to highly precisely cut workpieces having various hardnesses, such as high-hardness materials or non-iron soft metals.
  • Throwaway insert 2 of the present embodiment includes the same configuration as that of throwaway insert 1 of the first embodiment, but is different therefrom in a configuration of a cutting edge member 20 b.
  • Cutting edge member 20 b includes: a rake face 121 ; flank face 22 extending to cross rake face 121 ; first connecting face 23 ; second connecting face 26 ; and a first ridgeline ( 124 ) serving as a cutting edge 124 .
  • First connecting face 23 connects flank face 22 to one side surface 13 a of the two side surfaces ( 13 a , 13 b ), and extends to cross rake face 121 .
  • Second connecting face 26 connects flank face 22 to the other side surface 13 b of the two side surfaces ( 13 a , 13 b ), and extends to cross rake face 121 .
  • the first ridgeline ( 124 ) is formed by rake face 121 and flank face 22 .
  • Rake face 121 includes: a main surface 121 a ; a first chamfer 121 b provided at an edge tip portion of cutting edge member 20 b , the edge tip portion including an extreme tip portion 30 of cutting edge member 20 b ; and second chamfers 121 c , 121 d each connected to main surface 121 a , first chamfer 121 b , and flank face 22 .
  • Main surface 121 a and first chamfer 121 b of the present embodiment respectively have the same configurations as those of main surface 21 a and first chamfer 21 b of the first embodiment.
  • Each of second chamfers 121 c , 121 d is inclined relative to main surface 121 a so as to increase a thickness of cutting edge member 20 b as each of second chamfers 121 c , 121 d is closer to main surface 121 a .
  • Second chamfer 121 c may be connected to first connecting face 23 .
  • Second chamfer 121 d may be connected to second connecting face 26 .
  • cutting edge member 20 b further includes: a second ridgeline 125 formed by rake face 121 and first connecting face 23 ; and a third ridgeline 127 formed by rake face 121 and second connecting face 26 .
  • Second ridgeline 125 may be formed by second chamfer 121 c and first connecting face 23 .
  • Third ridgeline 127 may be formed by second chamfer 121 c and second connecting face 26 .
  • Cutting edge 124 includes a first cutting edge part 124 d and second cutting edge parts 124 e , 124 f
  • First cutting edge part 124 d is constituted of a first ridgeline part ( 124 d ) formed by first chamfer 121 b and flank face 22 .
  • Second cutting edge parts 124 e , 124 f are constituted of second ridgeline parts ( 124 e , 1240 formed by second chamfers 121 c , 121 d and flank face 22 .
  • First cutting edge part 124 d is located between second cutting edge part 124 e and second cutting edge part 124 f .
  • First cutting edge part 124 d is connected to second cutting edge part 124 e and second cutting edge part 124 f.
  • a first distance d 1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than a second distance d 2 between each of second cutting edge parts 124 e , 124 f and base 10 .
  • second distance d 2 is defined as a minimum distance between each of second cutting edge parts 124 e , 124 f and an extension line of first base ridgeline 15 a when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10 .
  • a first angle ⁇ 1 between first chamfer 121 b and first extension plane 121 e of main surface 121 a is smaller than a second angle ⁇ 2 between each of second chamfers 121 c , 121 d and first extension plane 121 e of main surface 121 a .
  • First angle ⁇ 1 may be more than or equal to 3°, may be preferably more than or equal to 5°, and may be more preferably more than or equal to 7°.
  • First angle ⁇ 1 may be less than or equal to 25°, may be preferably less than or equal to 15°, and may be more preferably less than or equal to 10°.
  • Second angle ⁇ 2 may be more than or equal to 3°, may be preferably more than or equal to 10°, and may be more preferably more than or equal to 12°.
  • a damage portion 140 such as breakage and chipping can be further suppressed from being produced in cutting edge 124 . Accordingly, throwaway insert 2 having stable quality can be provided.
  • Second angle ⁇ 2 may be less than or equal to 25°, may be preferably less than or equal to 20°, and may be more preferably less than or equal to 18°.
  • Second angle ⁇ 2 may be less than or equal to 25°, the thickness of cutting edge member 20 b can be prevented from being greatly varied before and after grinding of cutting edge member 20 b .
  • the center height of cutting edge 124 can be prevented from being greatly varied before and after grinding of cutting edge member 20 b . Accordingly, even after grinding cutting edge member 20 b , a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20 b .
  • the cutting performance of cutting edge member 20 b can be suppressed from being deteriorated after grinding cutting edge member 20 b.
  • cutting edge 124 includes: a first straight cutting edge portion 124 a located between first connecting face 23 and first cutting edge part 124 d ; and a second straight cutting edge portion 124 c located between second connecting face 26 and first cutting edge part 124 d .
  • First straight cutting edge portion 124 a and second straight cutting edge portion 124 c may be formed by second chamfers 121 c , 121 d and flank face 22 .
  • first distance d 1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than a third distance d 3 between first straight cutting edge portion 124 a and first base ridgeline 15 a .
  • first distance d 1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than a fourth distance d 4 between second straight cutting edge portion 124 c and second base ridgeline 15 b.
  • First straight cutting edge portion 124 a may be parallel to first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10 .
  • Second straight cutting edge portion 124 c may be parallel to second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10 .
  • third distance d 3 between first straight cutting edge portion 124 a and first base ridgeline 15 a is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm.
  • fourth distance d 4 between second straight cutting edge portion 124 c and second base ridgeline 15 b is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm.
  • Fourth distance d 4 in the plan view from upper surface 11 of base 10 may be equal to third distance d 3 in the plan view from upper surface 11 of base 10 .
  • each of third distance d 3 and fourth distance d 4 By setting each of third distance d 3 and fourth distance d 4 to be less than or equal to 1 mm in the plan view from upper surface 11 of base 10 , the rigidity of cutting edge member 20 b can be suppressed from being greatly decreased. Accordingly, when cutting a workpiece, chipping of cutting edge member 20 b and decrease in cutting precision can be suppressed.
  • third distance d 3 and fourth distance d 4 By setting third distance d 3 and fourth distance d 4 to be more than or equal to 0.01 mm in the plan view from upper surface 11 of base 10 , flank face 22 of cutting edge member 20 b can be ground while securely preventing grinding of base 10 . Clogging in a grindstone and cracking in throwaway insert 2 can be securely prevented from occurring due to swarf of base 10 during grinding of cutting edge member 20 b.
  • each of a first crossing angle ⁇ (degree) between the first ridgeline ( 124 ) and second ridgeline 125 and a second crossing angle ⁇ (degree) between the first ridgeline ( 124 ) and third ridgeline 127 may be preferably more than or equal to (160- ⁇ /2) and less than or equal to (200- ⁇ /2), and may be more preferably more than or equal to (170- ⁇ /2) and less than or equal to (190- ⁇ /2). Therefore, a change in cutting depth of cutting edge member 20 into a workpiece before and after grinding of cutting edge member 20 b can be decreased.
  • First cutting edge part 124 d may include a curved cutting edge portion 124 b having a protruding curved shape. Particularly, curved cutting edge portion 124 b may have a protruding arc shape. Curved cutting edge portion 124 b may include extreme tip portion 30 of cutting edge member 20 b . Curved cutting edge portion 124 b is formed by first chamfer 121 b , portions of second chamfers 121 c , 121 d , and flank face 22 . Curved cutting edge portion 124 b is located between first straight cutting edge portion 124 a and second straight cutting edge portion 124 c . Curved cutting edge portion 124 b is connected to first straight cutting edge portion 124 a and second straight cutting edge portion 124 c.
  • Second cutting edge part 124 e may include a portion of curved cutting edge portion 124 b and first straight cutting edge portion 124 a .
  • Second cutting edge part 124 f may include a portion of curved cutting edge portion 124 b and second straight cutting edge portion 124 c .
  • Extreme tip portion 30 of cutting edge member 20 b is located between second cutting edge parts 124 e , 124 f . Accordingly, a larger amount of extreme tip portion 30 of cutting edge member 20 b is ground than those of second cutting edge parts 124 e , 124 f.
  • Throwaway insert 2 is held at a holder for grinding (S 1 ).
  • Flank face 22 including cutting edge 124 is brought into contact with a grindstone to grind flank face 22 .
  • flank face 22 may be ground to grind first straight cutting edge portion 124 a and second straight cutting edge portion 124 c (S 2 ).
  • flank face 22 may be ground to grind curved cutting edge portion 124 b (S 3 ). In this way, cutting edge 124 of throwaway insert 2 of the present embodiment is ground.
  • flank face 22 in the plan view from upper surface 11 of base 10 , flank face 22 , first connecting face 23 , and second connecting face 26 are located external to base 10 . Accordingly, as shown in FIG. 12 and FIG. 13 , when damage portions 40 , 140 such as breakage and chipping are produced in cutting edge member 20 b during cutting of a workpiece using throwaway insert 2 , flank face 22 of cutting edge member 20 b can be ground, thereby removing damage portions 40 , 140 .
  • damage portion 40 when a damage portion 40 having width w 1 and height h 1 is produced in cutting edge 124 (first cutting edge part 124 d ) formed by first chamfer 121 b and flank face 22 during cutting of a workpiece using throwaway insert 2 , damage portion 40 can be removed by grinding flank face 22 by a grinding width w 3 , i.e., by grinding flank face 22 to a grinding line 41 . Grinding width w 3 is larger than width w 1 of damage portion 40 .
  • damage portion 140 when a damage portion 140 having a width w 2 and a height h 2 is produced in cutting edge 124 (second cutting edge part 1240 formed by second chamfer 121 d and flank face 22 during cutting of a workpiece using throwaway insert 2 , damage portion 140 can be removed by grinding flank face 22 by a grinding width w 4 , i.e., by grinding flank face 22 to a grinding line 141 . Grinding width w 4 is larger than width w 2 of damage portion 140 .
  • damage portion 140 is produced in cutting edge 124 (second cutting edge part 1240 formed by second chamfer 121 d and flank face 22 , the same applies to a case where damage portion 140 is produced in cutting edge 124 (second cutting edge part 124 e ) formed by second chamfer 121 c and flank face 22 .
  • Extreme tip portion 30 of cutting edge member 20 b is located between second cutting edge parts 124 e , 124 f . Therefore, grinding width w 3 at extreme tip portion 30 is larger than grinding width w 4 at cutting edge 124 (second cutting edge part 1240 formed by second chamfer 121 d and flank face 22 .
  • Each of amounts of protrusion of flank face 22 , first connecting face 23 , and second connecting face 26 relative to the two side surfaces ( 13 a , 13 b ) of base 10 in the plan view from upper surface 11 of base 10 is preferably such an amount of protrusion that throwaway insert 2 can be reused twice or more.
  • Each of amounts of protrusion of flank face 22 , first connecting face 23 , and second connecting face 26 relative to the two side surfaces ( 13 a , 13 b ) of base 10 in the plan view from upper surface 11 of base 10 may be more than or equal to 0.01 mm, for example.
  • each of second chamfers 121 c , 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b as each of second chamfers 121 c , 121 d is closer to main surface 121 a . Accordingly, when flank face 22 is ground in order to remove each of damage portions 40 , 140 , the thickness of cutting edge member 20 b at the first ridgeline ( 124 ) serving as cutting edge 124 is increased.
  • throwaway insert 2 of the present embodiment exhibits the following effects.
  • rake face 121 further includes each of second chamfers 121 c , 121 d connected to main surface 121 a , first chamfer 121 b , and flank face 22 .
  • Each of second chamfers 121 c , 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b as each of second chamfers 121 c , 121 d is closer to main surface 121 a .
  • Cutting edge 124 includes second cutting edge parts 124 e , 124 f constituted of the second ridgeline parts ( 124 e , 1240 formed by second chamfers 121 c , 121 d and flank face 22 .
  • first distance d 1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than second distance d 2 between each of second cutting edge parts 124 e , 124 f and base 10 .
  • rake face 121 further includes second chamfers 121 c , 121 d . Accordingly, when cutting edge member 20 b is ground and when a workpiece is cut using throwaway insert 2 , damage portions 40 , 140 can be suppressed from being produced in cutting edge 124 . Throwaway insert 2 of the present embodiment has more stable quality.
  • flank face 22 in the plan view from upper surface 11 of base 10 , flank face 22 , first connecting face 23 , and second connecting face 26 are located external to base 10 . Therefore, when damage portions 40 , 140 are produced in cutting edge 124 while cutting a workpiece using throwaway insert 2 , damage portions 40 , 140 can be removed by grinding flank face 22 of cutting edge member 20 b.
  • widths w 1 , w 2 of damage portions 40 , 140 in the direction parallel to main surface 121 a of rake face 121 are smaller than heights h 1 , h 2 of damage portions 40 , 140 in the direction perpendicular to main surface 121 a of rake face 121 .
  • the grinding of cutting edge member 20 b to remove damage portions 40 , 140 in cutting edge member 20 b can be performed a larger number of times. According to throwaway insert 2 of the present embodiment, the number of times of reusing cutting edge member 20 b can be increased, whereby throwaway insert 2 of the present embodiment can be used economically.
  • each of second chamfers 121 c , 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b as each of second chamfers 121 c , 121 d is closer to main surface 121 a . Accordingly, when flank face 22 is ground in order to remove damage portions 40 , 140 , the thickness of cutting edge member 20 b at the first ridgeline ( 124 ) serving as cutting edge 124 is increased, whereby damage portions 40 , 140 are less likely to be produced in cutting edge 124 .
  • Throwaway insert 2 of the present embodiment has stable quality.
  • cutting edge member 20 b including first chamfer 121 b and second chamfers 121 c , 121 d can be ground only by grinding flank face 22 to remove damage portions 40 , 140 .
  • cutting edge member 20 b including first chamfer 21 b and second chamfers 121 c , 121 d can be ground by grinding rake face 121 to remove damage portions 40 , 140 , then grinding a portion of rake face 121 to form second chamfers 121 c , 121 d , and further grinding a portion of rake face 121 to form first chamfer 121 b .
  • cutting edge member 20 b including first chamfer 21 b and second chamfers 121 c , 121 d can be ground with a smaller number of grinding steps.
  • Extreme tip portion 30 of cutting edge member 20 b is a portion used most to cut a workpiece, and is a portion at which damage portion 40 is most likely to be produced. Since first distance d 1 is larger than second distance d 2 in the plan view from upper surface 11 of base 10 , the number of times of reusing cutting edge member 20 b can be increased. Throwaway insert 2 of the present embodiment can be used economically.
  • first angle ⁇ 1 between first chamfer 121 b and first extension plane 121 e of main surface 121 a is smaller than second angle ⁇ 2 between each of second chamfers 121 c , 121 d and first extension plane 121 e of main surface 121 a . Therefore, in the plan view from upper surface 11 of base 10 , first distance d 1 is larger than second distance dz. According to throwaway insert 2 of the present embodiment, the number of times of reusing cutting edge member 20 b can be increased, whereby throwaway insert 2 of the present embodiment can be used economically.
  • Throwaway insert 3 of the present embodiment includes the same configuration as that of throwaway insert 1 of the first embodiment, but is different therefrom in respective configurations of a cutting edge member 20 c , a backing body 18 c , and a base 10 c.
  • a flank face 22 c is inclined relative to main surface 21 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 21 a .
  • a fourth ridgeline 29 is located at the two-side-surface ( 13 a , 13 b ) side relative to cutting edge 24 .
  • Fourth ridgeline 29 is formed by flank face 22 c and a bottom surface 28 of cutting edge member 20 c opposite to rake face 21 .
  • flank face 22 c is inclined relative to main surface 21 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 21 a .
  • flank face 22 c is inclined relative to main surface 21 a such that cutting edge member 20 c gradually become thinner in a direction from rake face 21 toward bottom surface 28 .
  • Flank face 22 c may be inclined at an inclination angle ⁇ 5 of more than or equal to 0.1° and less than or equal to 15° relative to an imaginary plane 21 v that is orthogonal to main surface 21 a and that is in contact with the first ridgeline ( 24 ).
  • Imaginary plane 21 v is a plane parallel to flank face 22 of the first embodiment.
  • flank face 22 c may be inclined at inclination angle ⁇ 5 of more than or equal to 0.1° and less than or equal to 15° relative to the normal line ( 21 v ) of main surface 21 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 21 a.
  • a side surface 18 s of backing body 18 c may be inclined in the same manner as flank face 22 c .
  • Side surface 18 s of backing body 18 c may be flush with flank face 22 c of cutting edge member 20 c .
  • side surface 18 s of backing body 18 c may be flush with the two side surfaces ( 13 a , 13 b ) of base 10 c
  • flank face 22 c of cutting edge member 20 c may protrude relative to the two side surfaces ( 13 a , 13 b ) of base 10 c and side surface 18 s of backing body 18 c.
  • base 10 c has a rhombus shape in the plan view from upper surface 11 of base 10 c .
  • the plurality of side surfaces 13 may include side surface 13 a , side surface 13 b , side surface 13 c , and a side surface 13 d.
  • each of side surfaces 13 a , 13 b , 13 c , 13 d of base 10 c is inclined relative to lower surface 12 so as to be further away from cutting edge 24 as each of side surfaces 13 a , 13 b , 13 c , 13 d of base 10 c is further away from upper surface 11 .
  • each of side surfaces 13 a , 13 b , 13 c , 13 d of base 10 c is inclined relative to lower surface 12 such that base 10 c becomes gradually thinner in a direction from upper surface 11 toward lower surface 12 . Accordingly, side surfaces 13 a , 13 b , 13 c , 13 d of base 10 c can be suppressed from being worn during cutting.
  • Each of side surfaces 13 a , 13 b 13 c , 13 d of base 10 c may be inclined at an inclination angle ⁇ 6 (degree) relative to lower surface 12 in the cross section (cross section shown in FIG. 16 ) orthogonal to each of side surfaces 13 a , 13 b , 13 c , 13 d and lower surface 12 .
  • ⁇ 6 -90 may be equal to ⁇ 5 or may be larger than ⁇ 5 .
  • throwaway insert 3 of the present embodiment exhibits the following effects.
  • flank face 22 c is inclined relative to main surface 21 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 21 a in the plan view from main surface 21 a . Since flank face 22 c is inclined in this way, a flank amount of flank face 22 c relative to a workpiece can be increased. Flank face 22 c is suppressed from being worn during cutting, whereby throwaway insert 3 has a longer life.
  • flank face 22 c is inclined in this way, cuttability of cutting edge 24 is improved. Even though cutting edge member 20 c protrudes relative to the two side surfaces ( 13 a , 13 b ) of base 10 c , occurrence of chatter vibration can be suppressed during cutting of a workpiece, thereby suppressing decrease of cutting precision.
  • flank face 22 c is inclined at inclination angle ⁇ 5 of more than or equal to 0.1° and less than or equal to 15° relative to imaginary plane 21 v that is orthogonal to main surface 21 a and that is in contact with the first ridgeline ( 24 ).
  • inclination angle ⁇ 5 of flank face 22 c By setting inclination angle ⁇ 5 of flank face 22 c to be more than or equal to 0.1°, wear of flank face 22 c and occurrence of chatter vibration during cutting can be further suppressed.
  • flank face 22 c By setting inclination angle ⁇ 5 of flank face 22 c to be less than or equal to 15°, flank face 22 c can be ground using a grindstone without an interference of the grindstone with base 10 c.
  • Throwaway insert 4 of the present embodiment includes the same configuration as that of throwaway insert 2 of the second embodiment, but is different therefrom in respective configurations of a cutting edge member 20 d , backing body 18 c , and base 10 c.
  • Flank face 22 c of cutting edge member 20 d of the present embodiment is inclined in the same manner as flank face 22 c of cutting edge member 20 c of the third embodiment. Specifically, as shown in FIG. 22 , flank face 22 c is inclined relative to main surface 121 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 121 a in the plan view from main surface 121 a . In the plan view from main surface 121 a , fourth ridgeline 29 is located at the two-side-surface ( 13 a , 13 b ) side relative to cutting edge 124 . Fourth ridgeline 29 is formed by flank face 22 c and a bottom surface 28 of cutting edge member 20 d opposite to rake face 121 .
  • flank face 22 c is inclined relative to main surface 121 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 121 a .
  • flank face 22 c is inclined relative to main surface 121 a such that cutting edge member 20 d gradually becomes thinner in a direction from rake face 121 toward bottom surface 28 .
  • Flank face 22 c may be inclined at an inclination angle ⁇ 5 of more than or equal to 0.1° and less than or equal to 15° relative to an imaginary plane 121 v that is orthogonal to main surface 121 a and that is in contact with the first ridgeline ( 124 ).
  • Imaginary plane 121 v is a plane parallel to flank face 22 of the second embodiment.
  • flank face 22 c may be inclined at inclination angle ⁇ 5 of more than or equal to 0.1° and less than or equal to 15° relative to the normal line ( 121 v ) of main surface 121 a so as to be closer to the two side surfaces ( 13 a , 13 b ) of base 10 c as flank face 22 c is further away from main surface 121 a.
  • Base 10 c of the present embodiment includes the same structure as that of base 10 c of the third embodiment.
  • Throwaway insert 4 of the present embodiment exhibits the effect of throwaway insert 2 of the second embodiment and the effect of throwaway insert 3 of the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Milling Processes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The throwaway insert includes a base and a cutting edge member. The cutting edge member includes a rake face, a flank face, a first connecting face, a second connecting face, and a first ridgeline serving as a cutting edge. The rake face includes a main surface and a first chamfer provided at an edge tip portion of the cutting edge member, the edge tip portion including an extreme tip portion of the cutting edge member. In a plan view from an upper surface of the base, the flank face, the first connecting face, and the second connecting face are located external to the base. The first chamfer is inclined relative to the main surface so as to increase a thickness of the cutting edge member as the first chamfer is closer to the main surface.

Description

    TECHNICAL FIELD
  • The present invention relates to a throwaway insert. The present application claims a priority based on Japanese Patent Application No. 2016-243351 filed on Dec. 15, 2016, the entire content of which is incorporated herein by reference.
  • BACKGROUND ART
  • Japanese Patent Laying-Open No. 11-320219 (Patent Literature 1) discloses a throwaway insert including: a base (base material) having a corner portion provided with a recess; and a cutting edge member (hard sintered material) joined to the recess. The cutting edge member includes: an upper surface; a first side surface flush with a side surface of the base; and a second side surface facing a side surface of the recess. This cutting edge member includes: a first ridgeline formed by the upper surface and the first side surface and serving as a cutting edge; and a second ridgeline formed by the upper surface and the second side surface. The first ridgeline crosses the second ridgeline at an acute angle.
  • CITATION LIST Patent Literature
  • PTL 1: Japanese Patent Laying-Open No. 11-320219
  • SUMMARY OF INVENTION
  • A throwaway insert according to one embodiment of the present invention includes a base and a cutting edge member. The base has an upper surface, a lower surface, and a plurality of side surfaces that connect the upper surface to the lower surface, the base being provided with a recess at a corner portion at which the upper surface crosses two side surfaces of the plurality of side surfaces. The cutting edge member is joined to the recess. The cutting edge member includes: a rake face; a flank face extending to cross the rake face; a first connecting face; a second connecting face; and a first ridgeline serving as a cutting edge. The first connecting face connects the flank face to one side surface of the two side surfaces and extends to cross the rake face. The second connecting face connects the flank face to the other side surface of the two side surfaces and extends to cross the rake face. The first ridgeline is formed by the rake face and the flank face. The rake face includes: a main surface extending along the upper surface; and a first chamfer provided at an edge tip portion of the cutting edge member, the edge tip portion including an extreme tip portion of the cutting edge member. The cutting edge includes a first cutting edge part constituted of a first ridgeline part formed by the first chamfer and the flank face. In a plan view from the upper surface of the base, the flank face, the first connecting face, and the second connecting face are located external to the base. The first chamfer is inclined relative to the main surface so as to increase a thickness of the cutting edge member as the first chamfer is closer to the main surface.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic perspective view of a throwaway insert according to a first embodiment.
  • FIG. 2 is a schematic plan view of the throwaway insert according to the first embodiment.
  • FIG. 3 is a schematic partial cross sectional view of the throwaway insert according to the first embodiment along a cross sectional line shown in FIG. 2.
  • FIG. 4 is a schematic enlarged plan view of the throwaway insert according to the first embodiment at a region IV shown in FIG. 2.
  • FIG. 5 shows a flowchart of a method of grinding each throwaway insert according to the first and second embodiments.
  • FIG. 6 is a schematic partial enlarged cross sectional view showing a method of grinding a first chamfer portion of the throwaway insert according to the first embodiment.
  • FIG. 7 is a schematic perspective view of the throwaway insert according to the second embodiment.
  • FIG. 8 is a schematic plan view of the throwaway insert according to the second embodiment.
  • FIG. 9 is a schematic partial cross sectional view of the throwaway insert according to the second embodiment along a cross sectional line IX-IX shown in FIG. 8.
  • FIG. 10 is a schematic partial cross sectional view of the throwaway insert according to the second embodiment along a cross sectional line X-X shown in FIG. 8.
  • FIG. 11 is a schematic enlarged plan view of the throwaway insert according to the second embodiment at a region XI shown in FIG. 8.
  • FIG. 12 is a schematic partial enlarged cross sectional view showing a method of grinding a first chamfer portion of the throwaway insert according to the second embodiment.
  • FIG. 13 is a schematic partial enlarged cross sectional view showing a method of grinding a second chamfer portion of the throwaway insert according to the second embodiment.
  • FIG. 14 is a schematic perspective view of a throwaway insert according to a third embodiment.
  • FIG. 15 is a schematic plan view of the throwaway insert according to the third embodiment.
  • FIG. 16 is a schematic partial cross sectional view of the throwaway insert according to the third embodiment along a cross sectional line XVI-XVI shown in FIG. 15.
  • FIG. 17 is a schematic enlarged plan view of the throwaway insert according to the third embodiment at a region XVII shown in FIG. 15.
  • FIG. 18 is a schematic perspective view of a throwaway insert according to a fourth embodiment.
  • FIG. 19 is a schematic plan view of the throwaway insert according to the fourth embodiment.
  • FIG. 20 is a schematic partial cross sectional view of the throwaway insert according to the fourth embodiment along a cross sectional line XX-XX shown in FIG. 19.
  • FIG. 21 is a schematic partial cross sectional view of the throwaway insert according to the fourth embodiment along a cross sectional line XXI-XXI shown in FIG. 19.
  • FIG. 22 is a schematic enlarged plan view of the throwaway insert according to the fourth embodiment at a region XXII shown in FIG. 19.
  • DETAILED DESCRIPTION Problems to be Solved by the Present Disclosure
  • The cutting edge member is likely to be chipped when the cutting edge member of the throwaway insert described in Patent Literature 1 is ground and when a workpiece is cut using the throwaway insert described in Patent Literature 1. Moreover, in the throwaway insert described in Patent Literature 1, it is difficult to increase the number of times of reusing the cutting edge member (the number of times of grinding the cutting edge member).
  • An object of one embodiment of the present invention is to provide a throwaway insert having stable quality and including a cutting edge member that can be reused a larger number of times.
  • Advantageous Effect of the Present Disclosure
  • According to one embodiment of the present invention, there can be provided a throwaway insert having stable quality and including a cutting edge member that can be reused a larger number of times.
  • DESCRIPTION OF EMBODIMENTS
  • First, embodiments of the present invention are listed and described.
  • (1) A throwaway insert 1, 2, 3, 4 according to one embodiment of the present invention includes a base 10, 10 c and a cutting edge member 20, 20 b, 20 c, 20 d. Base 10, 10 c has an upper surface 11, a lower surface 12, and a plurality of side surfaces 13 that connect upper surface 11 to lower surface 12, base 10, 10 c being provided with a recess 14 at a corner portion at which upper surface 11 crosses two side surfaces (13 a, 13 b) of the plurality of side surfaces 13. Cutting edge member 20, 20 b, 20 c, 20 d is joined to recess 14. Cutting edge member 20, 20 b, 20 c, 20 d includes: a rake face 21, 121; a flank face 22, 22 c extending to cross rake face 21, 121; a first connecting face 23; a second connecting face 26; and a first ridgeline (24, 124) serving as a cutting edge 24, 124. First connecting face 23 connects flank face 22, 22 c to one side surface 13 a of the two side surfaces (13 a, 13 b) and extends to cross rake face 21, 121. Second connecting face 26 connects flank face 22, 22 c to the other side surface 13 b of two side surfaces (13 a, 13 b) and extends to cross rake face 21, 121. The first ridgeline (24, 124) is formed by rake face 21, 121 and flank face 22, 22 c. Rake face 21, 121 includes: a main surface 21 a, 121 a extending along upper surface 11; and a first chamfer 21 b, 121 b provided at an edge tip portion of cutting edge member 20, 20 b, 20 c, 20 d, the edge tip portion including an extreme tip portion 30 of cutting edge member 20, 20 b, 20 c, 20 d. Cutting edge 24, 124 includes a first cutting edge part 24 d, 124 d constituted of a first ridgeline part (24 d, 124 d) formed by first chamfer 21 b, 121 b and flank face 22, 22 c. In a plan view from upper surface 11 of base 10, 10 c, flank face 22, 22 c, first connecting face 23, and second connecting face 26 are located external to base 10, 10 c. First chamfer 21 b, 121 b is inclined relative to main surface 21 a, 121 a so as to increase a thickness of cutting edge member 20, 20 b, 20 c, 20 d as first chamfer 21 b, 121 b is closer to main surface 21 a, 121 a.
  • First chamfer 21 b, 121 b is provided at the edge tip portion of cutting edge member 20, 20 b, 20 c, 20 d, the edge tip portion including extreme tip portion 30 of cutting edge member 20, 20 b, 20 c, 20 d. Hence, a damage portion 40, 140 such as breakage and chipping can be suppressed from being produced in cutting edge 24, 124. Throwaway insert 1, 2, 3, 4 has stable quality.
  • In the plan view from upper surface 11 of base 10, 10 c, flank face 22, 22 c, first connecting face 23, and second connecting face 26 are located external to base 10, 10 c. Therefore, when damage portion 40, 140 such as breakage and chipping is produced in cutting edge 24, 124, damage portion 40, 140 can be removed by grinding flank face 22, 22 c of cutting edge member 20, 20 b, 20 c, 20 d. According to throwaway insert 1, 2, 3, 4, the number of times of reusing cutting edge member 20, 20 b, 20 c, 20 d can be increased, whereby throwaway insert 1, 2, 3, 4 can be used economically.
  • First chamfer 21 b, 121 b is inclined relative to main surface 21 a, 121 a so as to increase the thickness of cutting edge member 20, 20 b, 20 c, 20 d as first chamfer 21 b, 121 b is closer to main surface 21 a, 121 a. Accordingly, when flank face 22, 22 c is ground in order to remove damage portion 40, 140, the thickness of cutting edge member 20, 20 b, 20 c, 20 d at the first ridgeline (24, 124) serving as cutting edge 24, 124 is increased, whereby damage portion 40, 140 such as breakage and chipping is less likely to be produced in cutting edge 24, 124. Throwaway insert 1, 2, 3, 4 has stable quality.
  • (2) In throwaway insert 2, 4 according to (1), rake face 121 further includes a second chamfer 121 c, 121 d connected to main surface 121 a, first chamfer 121 b, and flank face 22, 22 c. Second chamfer 121 c, 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b, 20 d as second chamfer 121 c, 121 d is closer to main surface 121 a. Cutting edge 124 includes a second cutting edge part 124 e, 124 f constituted of a second ridgeline part (124 e, 1240 formed by second chamfer 121 c, 121 d and flank face 22, 22 c. In the plan view from upper surface 11 of base 10, 10 c, a first distance d1 between extreme tip portion 30 of cutting edge member 20 b, 20 d and base 10, 10 c is larger than a second distance d2 between second cutting edge part 124 e, 124 f and base 10, 10 c.
  • In throwaway insert 2, 4, rake face 121 further includes second chamfer 121 c, 121 d. Accordingly, when cutting edge member 20 b, 20 d is ground and when a workpiece is cut using throwaway insert 2, 4, damage portion 40, 140 such as breakage and chipping can be further suppressed from being produced in cutting edge 124. Throwaway insert 2, 4 has more stable quality.
  • In throwaway insert 2, 4, second chamfer 121 c, 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b, 20 d as second chamfer 121 c, 121 d is closer to main surface 121 a. Accordingly, when flank face 22, 22 c is ground in order to remove damage portion 40, 140, the thickness of cutting edge member 20 b, 20 d at the first ridgeline (124) serving as cutting edge 124 is increased, whereby damage portion 40, 140 is less likely to be produced in cutting edge 124. Throwaway insert 2, 4 has stable quality.
  • Extreme tip portion 30 of cutting edge member 20 b is a portion used most to cut a workpiece, and is a portion at which damage portion 40 is most likely to be produced. Since first distance d1 is larger than second distance d2 in the plan view from upper surface 11 of base 10, 10 c, the number of times of reusing cutting edge member 20 b, 20 d can be increased. Throwaway insert 2, 4 can be used economically.
  • (3) In throwaway insert 2, 4 according to (2), a first angle θ1 between first chamfer 121 b and a first extension plane 121 e of main surface 121 a is smaller than a second angle θ2 between second chamfer 121 c, 121 d and first extension plane 121 e of main surface 121 a. Therefore, in the plan view from upper surface 11 of base 10, 10 c, first distance d1 is larger than second distance dz. According to throwaway insert 2, 4, the number of times of reusing cutting edge member 20 b, 20 d can be increased, whereby throwaway insert 2, 4 can be used economically.
  • (4) In throwaway insert 1, 2, 3, 4 according to (1) or (2), a first angle θ1 between first chamfer 21 b, 121 b and a first extension plane 21 e, 121 e of main surface 21 a, 121 a is more than or equal to 3° and less than or equal to 25°. By setting first angle θ1 to be more than or equal to 3°, damage portion 40 such as breakage and chipping can be suppressed from being produced in cutting edge 24, 124, and burr can be suppressed from being produced in a workpiece during cutting of the workpiece. Accordingly, throwaway insert 1, 2, 3, 4 has stable quality.
  • By setting first angle θ1 to be less than or equal to 25°, even after grinding cutting edge member 20, 20 b, 20 c, 20 d, the cutting edge strength can be secured and a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20, 20 b, 20 c, 20 d. The cutting performance of cutting edge member 20, 20 b, 20 c, 20 d can be suppressed from being deteriorated after grinding cutting edge member 20, 20 b, 20 c, 20 d.
  • (5) In throwaway insert 1, 2, 3, 4 according to any one of (1) to (4), extreme tip portion 30 of cutting edge member 20, 20 b, 20 c, 20 d is located on a second extension plane 11 e of upper surface 11. Accordingly, even after grinding cutting edge member 20, 20 b, 20 c, 20 d, a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20, 20 b, 20 c, 20 d. The cutting performance of cutting edge member 20, 20 b, 20 c, 20 d can be suppressed from being deteriorated after grinding cutting edge member 20, 20 b, 20 c, 20 d.
  • (6) In throwaway insert 3, 4 according to any one of (1) to (5), in the plan view from main surface 21 a, 121 a, flank face 22 c is inclined relative to main surface 21 a, 121 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 21 a, 121 a. Accordingly, a flank amount of flank face 22 c relative to a workpiece can be increased. Flank face 22 c is suppressed from being worn during cutting, whereby throwaway insert 3, 4 has a longer life. Further, cuttability of cutting edge 24, 124 is improved. Even though cutting edge member 20 c, 20 d protrudes relative to the two side surfaces (13 a, 13 b) of base 10 c, occurrence of chatter vibration can be suppressed during cutting of a workpiece, thereby suppressing decrease of cutting precision.
  • (7) In throwaway insert 3, 4 according to (6), flank face 22 c is inclined at an inclination angle θ5 of more than or equal to 0.1° and less than or equal to 15° relative to an imaginary plane 21 v, 121 v that is orthogonal to main surface 21 a, 121 a and that is in contact with the first ridgeline (24, 124). By setting inclination angle θ5 of flank face 22 c to be more than or equal to 0.1°, wear of flank face 22 c of cutting edge member 20 c, 20 d and occurrence of chatter vibration during cutting can be further suppressed. By setting inclination angle θ5 to be less than or equal to 15°, flank face 22 c can be ground using a grindstone without an interference of the grindstone with base 10, 10 c.
  • (8) In throwaway insert 1, 2, 3, 4 according to any one of (1) to (7), a second ridgeline 25, 125 formed by rake face 21, 121 and first connecting face 23 crosses the first ridgeline (24, 124) at an obtuse angle. A third ridgeline 27, 127 formed by rake face 21, 121 and second connecting face 26 crosses the first ridgeline (24, 124) at an obtuse angle. Accordingly, cutting edge member 20, 20 b, 20 c, 20 d can be suppressed from being chipped. Throwaway insert 1, 2, 3, 4 has stable quality.
  • (9) In throwaway insert 1, 2, 3, 4 according to (8), cutting edge 24, 124 includes: a first straight cutting edge portion 24 a, 124 a located between first connecting face 23 and first cutting edge part 24 d, 124 d; and a second straight cutting edge portion 24 c, 124 c located between second connecting face 26 and first cutting edge part 24 d, 124 d. When γ (degree) represents an angle between first straight cutting edge portion 24 a, 124 a and second straight cutting edge portion 24 c, 124 c in the plan view from upper surface 11 of base 10, 10 c, each of a first crossing angle α (degree) between the first ridgeline (24, 124) and second ridgeline 25, 125 and a second crossing angle δ (degree) between the first ridgeline (24, 124) and third ridgeline 27, 127 is more than or equal to (160-γ/2) and less than or equal to (200-γ/2). Therefore, a change in cutting depth of cutting edge member 20, 20 b, 20 c, 20 d into a workpiece before and after grinding of cutting edge member 20, 20 b, 20 c, 20 d can be further decreased.
  • (10) In throwaway insert 1, 2, 3, 4 according to any one of (1) to (8), cutting edge 24, 124 includes: a first straight cutting edge portion 24 a, 124 a located between first connecting face 23 and first cutting edge part 24 d, 124 d; and a second straight cutting edge portion 24 c, 124 c located between second connecting face 26 and first cutting edge part 24 d, 124 d. First straight cutting edge portion 24 a, 124 a is parallel to a first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10, 10 c. Second straight cutting edge portion 24 c, 124 c is parallel to a second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10, 10 c.
  • Therefore, cutting edge 24, 124 can be positioned relative to a workpiece with high precision. Precision in cutting a workpiece by throwaway insert 1, 2, 3, 4 can be improved. Cutting edge 24, 124 can be positioned relative to a grindstone with high precision. Precision in grinding cutting edge member 20, 20 b, 20 c, 20 d is improved, thereby obtaining high- quality cutting edge 24, 124.
  • (11) In throwaway insert 1, 2, 3, 4 according to (10), in the plan view from upper surface 11 of base 10, 10 c, a third distance d3 between first straight cutting edge portion 24 a, 124 a and first base ridgeline 15 a is more than or equal to 0.01 mm and less than or equal to 1 mm. In the plan view from upper surface 11 of base 10, 10 c, a fourth distance d4 between second straight cutting edge portion 24 c, 124 c and second base ridgeline 15 b is more than or equal to 0.01 mm and less than or equal to 1 mm.
  • By setting each of third distance d3 and fourth distance d4 to be less than or equal to 1 mm in the plan view from upper surface 11 of base 10, 10 c, the rigidity of cutting edge member 20, 20 b, 20 c, 20 d can be suppressed from being greatly decreased. Accordingly, when cutting a workpiece, chipping of cutting edge member 20, 20 b, 20 c, 20 d and decrease in cutting precision can be suppressed. By setting third distance d3 and fourth distance d4 to be more than or equal to 0.01 mm in the plan view from upper surface 11 of base 10, 10 c, flank face 22, 22 c of cutting edge member 20, 20 b, 20 c, 20 d can be ground while securely preventing grinding of base 10, 10 c. Clogging in a grindstone and cracking in throwaway insert 1, 2, 3, 4 can be securely prevented from occurring due to swarf of base 10, 10 c during grinding of cutting edge member 20, 20 b, 20 c, 20 d.
  • (12) In throwaway insert 1, 2, 3, 4 according to any one of (1) to (11), first cutting edge part 24 d, 124 d includes a curved cutting edge portion 24 b, 124 b having a protruding curved shape. Curved cutting edge portion 24 b, 124 b includes extreme tip portion 30. Accordingly, damage portion 40, 140 such as breakage and chipping can be suppressed from being produced in extreme tip portion 30 of throwaway insert 1, 2, 3, 4. Throwaway insert 1, 2, 3, 4 has stable quality.
  • (13) In throwaway insert 1, 2, 3, 4 according to any one of (1) to (12), cutting edge member 20, 20 b, 20 c, 20 d includes one of the following materials: diamond, cubic boron nitride, cemented carbide and cermet. Throwaway insert 1, 2, 3, 4 can be used to highly precisely cut workpieces having various hardnesses, such as high-hardness materials or non-iron soft metals.
  • DETAILS OF EMBODIMENT OF THE PRESENT INVENTION
  • The following describes details of embodiments of the present invention with reference to figures. It should be noted that in the below-mentioned figures, the same or corresponding portions are given the same reference characters and are not described repeatedly. Moreover, at least a part of configurations of the embodiments described below may be appropriately combined.
  • First Embodiment
  • As shown in FIG. 1 to FIG. 4, a throwaway insert 1 according to the present embodiment mainly includes a base 10 and a cutting edge member 20. Throwaway insert 1 according to the present embodiment may further include a backing body 18.
  • Base 10 has an upper surface 11, a lower surface 12, and a plurality of side surfaces 13 that connect upper surface 11 to lower surface 12. In the present embodiment, in a plan view from upper surface 11 of base 10, base 10 may have a regular triangle shape. In the present specification, the plan view from upper surface 11 of base 10 means viewing in a direction perpendicular to upper surface 11 of base 10. The plurality of side surfaces 13 may include a side surface 13 a, a side surface 13 b, and a side surface 13 c. In the plan view from upper surface 11 of base 10, base 10 may have a polygonal shape such as a rhombus shape (see FIG. 14, FIG. 15, FIG. 18 and FIG. 19), a square shape, a regular pentagon shape, a right hexagon shape or the like.
  • Further, base 10 is provided with a recess 14 at a corner portion at which upper surface 11 crosses two side surfaces (13 a, 13 b) of the plurality of side surfaces 13. Particularly, base 10 is provided with respective recesses 14 at a first corner portion at which upper surface 11 crosses two side surfaces (13 a, 13 b), a second corner portion at which upper surface 11 crosses two side surfaces (13 b, 13 c), and a third corner portion at which upper surface 11 crosses two side surfaces (13 c, 13 a). Recesses 14 may be provided at all the corner portions at each of which upper surface 11 crosses two side surfaces of the plurality of side surfaces 13. Recess 14 may be provided at at least one of all the corner portions at each of which upper surface 11 crosses two side surfaces of the plurality of side surfaces 13.
  • Base 10 further includes: a first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of the two side surfaces (13 a, 13 b); and a second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of the two side surfaces (13 a, 13 b). Base 10 is also provided with a through hole 16 extending between the central portion of upper surface 11 and the central portion of lower surface 12. By fitting a screw or a pressing member into hole 16, throwaway insert 1 may be attached to a holder (not shown) for cutting or a holder (not shown) for grinding. Cemented carbide may be used as a material of base 10. Base 10 may be composed of a material having a toughness higher than that of cutting edge member 20.
  • Cutting edge member 20 is joined to recess 14 of base 10 using a brazing material or the like. Cutting edge member 20 may be joined to recess 14 of base 10 at the entire surface of recess 14 of base 10. In the present embodiment, recesses 14 are provided at the first corner portion, second corner portion, and third corner portion of base 10. Cutting edge member 20 may be joined to at least one of these recesses 14.
  • Cutting edge member 20 includes: a rake face 21; a flank face 22 extending to cross rake face 21; a first connecting face 23; a second connecting face 26; and a first ridgeline (24) serving as a cutting edge 24. First connecting face 23 connects flank face 22 to one side surface 13 a of the two side surfaces (13 a, 13 b), and extends to cross rake face 21. Second connecting face 26 connects flank face 22 to the other side surface 13 b of the two side surfaces (13 a, 13 b), and extends to cross rake face 21. The first ridgeline (24) is formed by rake face 21 and flank face 22.
  • As shown in FIG. 4, cutting edge member 20 further includes: a second ridgeline 25 formed by rake face 21 and first connecting face 23; and a third ridgeline 27 formed by rake face 21 and second connecting face 26. As shown in FIG. 4, second ridgeline 25 may cross the first ridgeline (24) at a first crossing angle α, which is an obtuse angle. First crossing angle α between the first ridgeline (24) and second ridgeline 25 is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°. In the plan view from upper surface 11 of base 10, an angle β between second ridgeline 25 and first base ridgeline 15 a is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°. Angle β between second ridgeline 25 and first base ridgeline 15 a may be equal to first crossing angle α between the first ridgeline (24) and second ridgeline 25.
  • As shown in FIG. 4, third ridgeline 27 may cross the first ridgeline (24) at a second crossing angle δ, which is an obtuse angle. Second crossing angle δ between the first ridgeline (24) and third ridgeline 27 is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°. In the plan view from upper surface 11 of base 10, an angle between third ridgeline 27 and second base ridgeline 15 b is desirably more than or equal to 110° and less than or equal to 165°, and is more desirably more than or equal to 130° and less than or equal to 150°. Angle c between third ridgeline 27 and second base ridgeline 15 b may be equal to second crossing angle δ between the first ridgeline (24) and third ridgeline 27. Second crossing angle δ between the first ridgeline (24) and third ridgeline 27 may be equal to first crossing angle α between the first ridgeline (24) and second ridgeline 25. Angle c between third ridgeline 27 and second base ridgeline 15 b may be equal to angle β between second ridgeline 25 and first base ridgeline 15 a.
  • Rake face 21 includes: a main surface 21 a extending along upper surface 11; and a first chamfer 21 b provided at an edge tip portion of cutting edge member 20, the edge tip portion including an extreme tip portion 30 of cutting edge member 20. In the present specification, the expression “main surface 21 a extends along upper surface 11” means that the main extending direction of main surface 21 a is the same as the main extending direction of upper surface 11. Specifically, in FIG. 2 and FIG. 4, each of the main extending direction of main surface 21 a and the main extending direction of upper surface 11 corresponds to an inward direction in the plane of sheet. The expression “main surface 21 a extends along upper surface 11” encompasses a case where main surface 21 a is not flush with upper surface 11. As shown in FIG. 1 and FIG. 3, main surface 21 a may protrude relative to upper surface 11. The expression “main surface 21 a extends along upper surface 11” encompasses both the following cases: a case where main surface 21 a is parallel to upper surface 11; and a case where main surface 21 a is not parallel to upper surface 11.
  • As shown in FIG. 3, extreme tip portion 30 of cutting edge member 20 may be located on a second extension plane 11 e of upper surface 11. As shown in FIG. 4, in the plan view from upper surface 11 of base 10, a first distance d1 between extreme tip portion 30 of cutting edge member 20 and base 10 is larger than a third distance d3 between first straight cutting edge portion 24 a and first base ridgeline 15 a. In the present specification, first distance d1 is defined as a minimum distance between extreme tip portion 30 of cutting edge member 20 and base 10 when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10. Third distance d3 is defined as a minimum distance between the first ridgeline (24) and an extension line of first base ridgeline 15 a when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10.
  • In the plan view from upper surface 11 of base 10, first distance d1 between extreme tip portion 30 of cutting edge member 20 and base 10 is larger than a fourth distance d4 between second straight cutting edge portion 24 c and second base ridgeline 15 b. Fourth distance d4 is defined as a minimum distance between the first ridgeline (24) and the extension line of second base ridgeline 15 b when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10.
  • As shown in FIG. 3, first chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a. A first angle θ1 between first chamfer 21 b and first extension plane 21 e of main surface 21 a may be more than or equal to 3°, may be preferably more than or equal to 5°, and may be more preferably more than or equal to 7°. By setting first angle θ1 to be more than or equal to 3°, a damage portion 40 (see FIG. 6) such as breakage and chipping can be suppressed from being produced in cutting edge 24, and burr can be suppressed from being produced in a workpiece during cutting of the workpiece. Accordingly, throwaway insert 1 of the present embodiment has stable quality.
  • First angle θ1 between first chamfer 21 b and first extension plane 21 e of main surface 21 a may be less than or equal to 25°, may be preferably less than or equal to 15°, and may be more preferably less than or equal to 10°. By setting first angle θ1 to be less than or equal to 25°, the thickness of cutting edge member 20 can be prevented from being greatly varied before and after grinding of cutting edge member 20. In the present specification, the thickness of cutting edge member 20 is defined as the length of cutting edge member 20 in the direction perpendicular to main surface 21 a. The center height of cutting edge 24 can be prevented from being greatly varied before and after grinding of cutting edge member 20. Accordingly, even after grinding cutting edge member 20, the cutting edge strength can be secured and a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20. The cutting performance of cutting edge member 20 can be suppressed from being deteriorated after grinding cutting edge member 20.
  • Cutting edge 24 includes a first cutting edge part 24 d constituted of a first ridgeline part (24 d) formed by first chamfer 21 b and flank face 22. First cutting edge part 24 d includes extreme tip portion 30 of cutting edge member 20. In the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10 or the two side surfaces (13 a, 13 b). In the plan view from upper surface 11 of base 10, cutting edge member 20 may cover recess 14 entirely.
  • As shown in FIG. 4, cutting edge 24 includes: a first straight cutting edge portion 24 a located between first connecting face 23 and first cutting edge part 24 d; and a second straight cutting edge portion 24 c located between second connecting face 26 and first cutting edge part 24 d. First straight cutting edge portion 24 a and second straight cutting edge portion 24 c may be formed by main surface 21 a and flank face 22. When γ (degree) represents an angle between first straight cutting edge portion 24 a and second straight cutting edge portion 24 c in the plan view from upper surface 11 of base 10, each of first crossing angle α (degree) between the first ridgeline (24) and second ridgeline 25 and second crossing angle δ (degree) between the first ridgeline (24) and third ridgeline 27 may be preferably more than or equal to (160-γ/2) and less than or equal to (200-γ/2), and may be more preferably more than or equal to (170-γ/2) and less than or equal to (190-γ/2).
  • First straight cutting edge portion 24 a may be connected to first connecting face 23. First straight cutting edge portion 24 a may be connected to second ridgeline 25. Second straight cutting edge portion 24 c may be connected to second connecting face 26. Second straight cutting edge portion 24 c may be connected to third ridgeline 27. First straight cutting edge portion 24 a may be parallel to first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10. Second straight cutting edge portion 24 c may be parallel to second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10.
  • In the plan view from upper surface 11 of base 10, third distance d3 between first straight cutting edge portion 24 a and first base ridgeline 15 a is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm. In the present specification, third distance d3 in the plan view from upper surface 11 of base 10 is defined as a distance between first straight cutting edge portion 24 a and the extension line of first base ridgeline 15 a when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10. In the plan view from upper surface 11 of base 10, fourth distance d4 between second straight cutting edge portion 24 c and second base ridgeline 15 b is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm. In the present specification, fourth distance d4 in the plan view from upper surface 11 of base 10 is defined as a distance between second straight cutting edge portion 24 c and the extension line of second base ridgeline 15 b when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10. Fourth distance d4 may be equal to third distance d3.
  • First cutting edge part 24 d may include a curved cutting edge portion 24 b having a protruding curved shape. Particularly, curved cutting edge portion 24 b may have a protruding arc shape. Curved cutting edge portion 24 b may include extreme tip portion 30 of cutting edge member 20. Curved cutting edge portion 24 b may be formed by first chamfer 21 b and flank face 22. Curved cutting edge portion 24 b is located between first straight cutting edge portion 24 a and second straight cutting edge portion 24 c. Curved cutting edge portion 24 b is connected to first straight cutting edge portion 24 a and second straight cutting edge portion 24 c.
  • First cutting edge part 24 d may include a third straight cutting edge portion 24 e and a fourth straight cutting edge portion 24 f. Third straight cutting edge portion 24 e and fourth straight cutting edge portion 24 f may be formed by first chamfer 21 b and flank face 22. Third straight cutting edge portion 24 e may be connected to first straight cutting edge portion 24 a and curved cutting edge portion 24 b. Fourth straight cutting edge portion 24 f may be connected to second straight cutting edge portion 24 c and curved cutting edge portion 24 b.
  • In throwaway insert 1 of the present embodiment, cutting edge member 20 may include one of the following materials: diamond, cubic boron nitride, cemented carbide and cermet. Cutting edge member 20 including the diamond may be a diamond sintered material. Cutting edge member 20 including the cubic boron nitride (CBN) may be a cubic boron nitride (CBN) sintered material including more than or equal to 20 volume % of the cubic boron nitride (CBN). The cemented carbide may include, as a main component, tungsten carbide (WC) having at least one of cobalt (Co), titanium carbide (TiC), titanium nitride (TiN), and titanium carbonitride (TiCN) added therein. The cermet may include titanium carbide (TiC), titanium nitride (TiN), or titanium carbonitride (TiCN) as a main component. Cutting edge member 20 is composed of a material having a hardness higher than that of base 10.
  • Backing body 18 may be located between recess 14 of base 10 and cutting edge member 20. Backing body 18 is composed of a material having a toughness higher than that of cutting edge member 20. Accordingly, even when a large load acts on cutting edge 24 during cutting, part of this load can be absorbed by backing body 18. Backing body 18 prevents concentration of this load on cutting edge member 20, and prevents cutting edge 24 from being chipped during cutting. Backing body 18 can extend the life of throwaway insert 1. Throwaway insert 1 including backing body 18 has more stable quality. Cemented carbide may be used as a material of backing body 18.
  • As shown in FIG. 3, a side surface 18 s of backing body 18 may be flush with flank face 22 of cutting edge member 20. As one modification of the present embodiment, side surface 18 s of backing body 18 may be flush with the two side surfaces (13 a, 13 b) of base 10, and flank face 22 of cutting edge member 20 may protrude relative to the two side surfaces (13 a, 13 b) of base 10 and side surface 18 s of backing body 18. Backing body 18 may be integrated with cutting edge member 20. Cutting edge member 20 and backing body 18 may be a composite sintered material obtained by sintering and shaping cutting edge member 20 and backing body 18 integrally.
  • The following describes an exemplary method of manufacturing throwaway insert 1 of the present embodiment. The composite sintered material is obtained by sintering and shaping cutting edge member 20 and backing body 18 integrally. This composite sintered material is joined to recess 14 of base 10 using a brazing material or the like with backing body 18 of this composite sintered material facing recess 14 of base 10. By grinding flank face 22 including the first ridgeline (24) without grinding base 10, cutting edge 24 is formed at the first ridgeline (24). In this way, throwaway insert 1 of the present embodiment can be manufactured.
  • The following describes an exemplary method of cutting a workpiece using throwaway insert 1 of the present embodiment. Throwaway insert 1 is held at a holder for cutting. The first ridgeline (24) serving as cutting edge 24 is brought into contact with a workpiece and the workpiece is rotated with respect to throwaway insert 1. In this way, the workpiece is cut using throwaway insert 1 of the present embodiment.
  • With reference to FIG. 5, the following describes an exemplary method of grinding cutting edge 24 of throwaway insert 1 of the present embodiment. Throwaway insert 1 is held at a holder for grinding (S1). Flank face 22 including cutting edge 24 is brought into contact with a grindstone to grind flank face 22. Specifically, first, flank face 22 may be ground to grind first straight cutting edge portion 24 a and second straight cutting edge portion 24 c (S2). On this occasion, third straight cutting edge portion 24 e and fourth straight cutting edge portion 24 f may also be ground. Then, flank face 22 may be ground to grind curved cutting edge portion 24 b (S3). In this way, cutting edge 24 of throwaway insert 1 of the present embodiment is ground.
  • In throwaway insert 1 of the present embodiment, in the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10. Accordingly, as shown in FIG. 6, when a damage portion 40 is produced in cutting edge member 20 during cutting of a workpiece using throwaway insert 1, flank face 22 can be ground, thereby removing damage portion 40.
  • Specifically, as shown in FIG. 6, during cutting of a workpiece using throwaway insert 1, a damage portion 40 having a width w1 and a height h1 is produced in cutting edge 24 (first cutting edge part 24 d) formed by first chamfer 21 b and flank face 22. By grinding flank face 22 by a grinding width w3, i.e., by grinding flank face 22 to a grinding line 41, damage portion 40 can be removed. Grinding width w3 is larger than width w1 of damage portion 40.
  • Then, during cutting of a workpiece using throwaway insert 1, a damage portion 40 having width w1 and height h1 is produced again in cutting edge member 20. By grinding flank face 22 by grinding width w3, i.e., by grinding flank face 22 to a grinding line 42, damage portion 40 can be removed. Likewise, whenever a damage portion 40 having width w1 and height h1 is produced in cutting edge member 20, flank face 22 is ground by grinding width w3, thereby removing damage portion 40. Cutting edge member 20 can be ground five times to grinding lines 41, 42, 43, 44, 45, whereby throwaway insert 1 of the present embodiment can be reused five times.
  • Each of amounts of protrusion of flank face 22, first connecting face 23, and second connecting face 26 relative to the two side surfaces (13 a, 13 b) of base 10 in the plan view from upper surface 11 of base 10 is preferably such an amount of protrusion that throwaway insert 1 may be reused twice or more. Each of amounts of protrusion of flank face 22, first connecting face 23, and second connecting face 26 relative to the two side surfaces (13 a, 13 b) of base 10 in the plan view from upper surface 11 of base 10 may be more than or equal to 0.01 mm, for example.
  • As shown in FIG. 6, in throwaway insert 1 of the present embodiment, first chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a. Accordingly, when flank face 22 is ground in order to remove damage portion 40, the thickness of cutting edge member 20 at the first ridgeline (24) serving as cutting edge 24 is increased.
  • The following describes functions and effects of throwaway insert 1 of the present embodiment.
  • Throwaway insert 1 of the present embodiment includes base 10 and cutting edge member 20. Base 10 has upper surface 11, lower surface 12, and the plurality of side surfaces 13 that connect upper surface 11 to lower surface 12, base 10 being provided with recess 14 at the corner portion at which upper surface 11 crosses two side surfaces (13 a, 13 b) of the plurality of side surfaces 13. Cutting edge member 20 is joined to recess 14. Cutting edge member 20 includes: rake face 21; flank face 22 extending to cross rake face 21; first connecting face 23; second connecting face 26; and the first ridgeline (24) serving as cutting edge 24. First connecting face 23 connects flank face 22 to one side surface 13 a of the two side surfaces (13 a, 13 b), and extends to cross rake face 21. Second connecting face 26 connects flank face 22 to the other side surface 13 b of the two side surfaces (13 a, 13 b), and extends to cross rake face 21. The first ridgeline (24) is formed by rake face 21 and flank face 22. Rake face 21 includes: main surface 21 a extending along upper surface 11; and first chamfer 21 b provided at the edge tip portion of cutting edge member 20, the edge tip portion including extreme tip portion 30 of cutting edge member 20. Cutting edge 24 includes first cutting edge part 24 d constituted of the first ridgeline part (24 d) formed by first chamfer 21 b and flank face 22. In the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10. First chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a.
  • In throwaway insert 1 of the present embodiment, first chamfer 21 b is provided at the edge tip portion of cutting edge member 20, the edge tip portion including extreme tip portion 30 of cutting edge member 20. Accordingly, when cutting edge member 20 is ground and when a workpiece is cut using throwaway insert 1, damage portion 40 such as breakage and chipping can be suppressed from being produced in cutting edge 24. Throwaway insert 1 of the present embodiment has stable quality.
  • In throwaway insert 1 of the present embodiment, in the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10. Therefore, when damage portion 40 is produced in cutting edge 24 while cutting a workpiece using throwaway insert 1, damage portion 40 can be removed by grinding flank face 22 of cutting edge member 20.
  • Generally, width w1 of damage portion 40 in the direction parallel to main surface 21 a of rake face 21 is smaller than height h1 of damage portion 40 in the direction perpendicular to main surface 21 a of rake face 21. A required amount of grinding of cutting edge member 20 to remove damage portion 40 in throwaway insert 1 of the present embodiment in which flank face 22 is ground can be reduced as compared with a first comparative example in which rake face 21 is ground. In throwaway insert 1 of the present embodiment, the grinding of cutting edge member 20 to remove damage portion 40 in cutting edge member 20 can be performed a larger number of times. According to throwaway insert 1 of the present embodiment, the number of times of reusing cutting edge member 20 can be increased, whereby throwaway insert 1 of the present embodiment can be used economically.
  • In throwaway insert 1 of the present embodiment, first chamfer 21 b is inclined relative to main surface 21 a so as to increase the thickness of cutting edge member 20 as first chamfer 21 b is closer to main surface 21 a. Accordingly, when flank face 22 is ground in order to remove damage portion 40, the thickness of cutting edge member 20 at the first ridgeline (24) serving as cutting edge 24 is increased, whereby damage portion 40 is less likely to be produced in cutting edge 24. Throwaway insert 1 of the present embodiment has stable quality.
  • In throwaway insert 1 of the present embodiment, cutting edge member 20 including first chamfer 21 b is ground only by grinding flank face 22 to remove damage portion 40. On the other hand, in the throwaway insert of the first comparative example, cutting edge member 20 including first chamfer 21 b is ground by grinding rake face 21 to remove damage portion 40 and then grinding a portion of rake face 21 again to form first chamfer 21 b. According to throwaway insert 1 of the present embodiment, cutting edge member 20 including first chamfer 21 b is ground with a smaller number of grinding steps.
  • In throwaway insert 1 of the present embodiment, in the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10. Accordingly, flank face 22 can be ground without grinding base 10. According to throwaway insert 1 of the present embodiment, clogging in a grindstone and cracking in throwaway insert 1 can be prevented from occurring due to swarf of base 10 during grinding of cutting edge member 20.
  • In throwaway insert 1 of the present embodiment, in the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10. Therefore, cutting edge member 20 can be joined to base 10 at the entire surface of recess 14 of base 10. According to throwaway insert 1 of the present embodiment, cutting edge member 20 can be firmly joined to base 10.
  • In throwaway insert 1 of the present embodiment, first angle θ1 between first chamfer 21 b and first extension plane 21 e of main surface 21 a may be more than or equal to 3° and less than or equal to 25°. By setting first angle θ1 to be more than or equal to 3°, damage portion 40 can be suppressed from being produced in cutting edge 24, and burr can be suppressed from being produced in a workpiece during cutting of the workpiece. Accordingly, throwaway insert 1 having stable quality can be provided.
  • By setting first angle θ1 to be less than or equal to 25°, the thickness of cutting edge member 20 can be prevented from being greatly varied before and after grinding of cutting edge member 20. The center height of cutting edge 24 can be prevented from being greatly varied before and after grinding of cutting edge member 20. Hence, even after grinding cutting edge member 20, the cutting edge strength can be secured and a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20. The cutting performance of cutting edge member 20 can be suppressed from being deteriorated after grinding cutting edge member 20.
  • In throwaway insert 1 of the present embodiment, extreme tip portion 30 of cutting edge member 20 may be located on second extension plane 11 e of upper surface 11. Accordingly, the center height of cutting edge 24 can be defined precisely. Even after grinding cutting edge member 20, a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20. The cutting performance of cutting edge member 20 can be suppressed from being deteriorated after grinding cutting edge member 20.
  • In throwaway insert 1 of the present embodiment, second ridgeline 25 formed by rake face 21 and first connecting face 23 may cross the first ridgeline (24) at an obtuse angle. Third ridgeline 27 formed by rake face 21 and second connecting face 26 may cross the first ridgeline (24) at an obtuse angle. Therefore, as compared with a throwaway insert of a second comparative example in which second ridgeline 25 and third ridgeline 27 cross the first ridgeline (24) at an acute angle, according to throwaway insert 1 of the present embodiment, mechanical strength can be improved at a first end portion of cutting edge member 20 and a second end portion of cutting edge member 20. The first end portion of cutting edge member 20 is a region at which flank face 22 and first connecting face 23 cross each other, and the second end portion of cutting edge member 20 is a region at which flank face 22 and second connecting face 26 cross each other. In throwaway insert 1 of the present embodiment, the first end portion and second end portion of cutting edge member 20 can be suppressed from being chipped when grinding cutting edge member 20. Throwaway insert 1 of the present embodiment has stable quality.
  • Moreover, as compared with the throwaway insert of the second comparative example in which second ridgeline 25 and third ridgeline 27 cross the first ridgeline (24) at an acute angle, according to throwaway insert 1 of the present embodiment, a change in length of cutting edge 24 before and after grinding cutting edge member 20 can be made small. A change in cutting depth of cutting edge member 20 into a workpiece before and after grinding of cutting edge member 20 can be decreased.
  • In throwaway insert 1 of the present embodiment, cutting edge 24 may include: first straight cutting edge portion 24 a located between first connecting face 23 and first cutting edge part 24 d; and second straight cutting edge portion 24 c located between second connecting face 26 and first cutting edge part 24 d. When γ (degree) represents an angle between first straight cutting edge portion 24 a and second straight cutting edge portion 24 c in the plan view from upper surface 11 of base 10, each of a first crossing angle α (degree) between the first ridgeline (24) and second ridgeline 25 and a second crossing angle δ (degree) between the first ridgeline (24) and third ridgeline 27 may be more than or equal to (160-γ/2) and less than or equal to (200-γ/2).
  • Accordingly, the first length of first straight cutting edge portion 24 a after grinding is substantially unchanged from the first length of first straight cutting edge portion 24 a before grinding, and the second length of second straight cutting edge portion 24 c after grinding is substantially unchanged from the second length of second straight cutting edge portion 24 c before grinding. According to throwaway insert 1 of the present embodiment, a change in cutting depth of cutting edge member 20 into a workpiece before and after grinding of cutting edge member 20 can be further decreased.
  • In throwaway insert 1 of the present embodiment, cutting edge 24 includes: first straight cutting edge portion 24 a located between first connecting face 23 and first cutting edge part 24 d; and second straight cutting edge portion 24 c located between second connecting face 26 and first cutting edge part 24 d. First straight cutting edge portion 24 a may be parallel to first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10. Second straight cutting edge portion 24 c may be parallel to second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10.
  • Each of the plurality of side surfaces 13 of base 10 is positioned precisely. First straight cutting edge portion 24 a is parallel to first base ridgeline 15 a included in one side surface 13 a. Second straight cutting edge portion 24 c is parallel to second base ridgeline 15 b included in the other side surface 13 b. Accordingly, when at least one of the two side surfaces (13 a, 13 b) of base 10 is bound to a holder for cutting or a holder for grinding, the at least one of the two side surfaces (13 a, 13 b) of base 10 may be used as a positional reference of cutting edge 24. Cutting edge 24 can be positioned relative to a workpiece with high precision. Precision in cutting a workpiece by throwaway insert 1 can be improved. Cutting edge 24 can be positioned relative to a grindstone with high precision. Precision in grinding cutting edge member 20 is improved, thereby obtaining high-quality cutting edge 24.
  • In throwaway insert 1 of the present embodiment, in the plan view from upper surface 11 of base 10, third distance d3 between first straight cutting edge portion 24 a and first base ridgeline 15 a may be more than or equal to 0.01 mm and less than or equal to 1 mm. In the plan view from upper surface 11 of base 10, fourth distance d4 between second straight cutting edge portion 24 c and second base ridgeline 15 b may be more than or equal to 0.01 mm and less than or equal to 1 mm.
  • By setting each of third distance d3 and fourth distance d4 to be less than or equal to 1 mm in the plan view from upper surface 11 of base 10, an amount of protrusion of cutting edge member 20 relative to base 10 can be prevented from being too large. The rigidity of cutting edge member 20 can be suppressed from being significantly decreased. When cutting a workpiece, cutting edge member 20 can be suppressed from being chipped. Throwaway insert 1 has stable quality. Moreover, since the rigidity of cutting edge member 20 can be suppressed from being significantly decreased, occurrence of chatter vibration can be prevented during cutting of a workpiece. The cutting precision can be suppressed from being decreased.
  • By setting each of third distance d3 and fourth distance d4 to be more than or equal to 0.01 mm, flank face 22 of cutting edge member 20 can be ground while securely preventing grinding of base 10. In throwaway insert 1 of the present embodiment, clogging in a grindstone and cracking in throwaway insert 1 can be prevented from occurring due to swarf of base 10 during grinding of cutting edge member 20.
  • In throwaway insert 1 of the present embodiment, first cutting edge part 24 d may include a curved cutting edge portion 24 b having a protruding curved shape. Curved cutting edge portion 24 b may include extreme tip portion 30. Accordingly, damage portion 40 can be suppressed from being produced in extreme tip portion 30 of throwaway insert 1. Throwaway insert 1 of the present embodiment has stable quality.
  • In throwaway insert 1 of the present embodiment, cutting edge member 20 may include one of the following materials: diamond, cubic boron nitride, cemented carbide and cermet. Throwaway insert 1 of the present embodiment can be used to highly precisely cut workpieces having various hardnesses, such as high-hardness materials or non-iron soft metals.
  • Second Embodiment
  • With reference to FIG. 7 to FIG. 11, the following describes a throwaway insert 2 of a second embodiment. Throwaway insert 2 of the present embodiment includes the same configuration as that of throwaway insert 1 of the first embodiment, but is different therefrom in a configuration of a cutting edge member 20 b.
  • Cutting edge member 20 b includes: a rake face 121; flank face 22 extending to cross rake face 121; first connecting face 23; second connecting face 26; and a first ridgeline (124) serving as a cutting edge 124. First connecting face 23 connects flank face 22 to one side surface 13 a of the two side surfaces (13 a, 13 b), and extends to cross rake face 121. Second connecting face 26 connects flank face 22 to the other side surface 13 b of the two side surfaces (13 a, 13 b), and extends to cross rake face 121. The first ridgeline (124) is formed by rake face 121 and flank face 22.
  • Rake face 121 includes: a main surface 121 a; a first chamfer 121 b provided at an edge tip portion of cutting edge member 20 b, the edge tip portion including an extreme tip portion 30 of cutting edge member 20 b; and second chamfers 121 c, 121 d each connected to main surface 121 a, first chamfer 121 b, and flank face 22. Main surface 121 a and first chamfer 121 b of the present embodiment respectively have the same configurations as those of main surface 21 a and first chamfer 21 b of the first embodiment. Each of second chamfers 121 c, 121 d is inclined relative to main surface 121 a so as to increase a thickness of cutting edge member 20 b as each of second chamfers 121 c, 121 d is closer to main surface 121 a. Second chamfer 121 c may be connected to first connecting face 23. Second chamfer 121 d may be connected to second connecting face 26.
  • As shown in FIG. 11, cutting edge member 20 b further includes: a second ridgeline 125 formed by rake face 121 and first connecting face 23; and a third ridgeline 127 formed by rake face 121 and second connecting face 26. Second ridgeline 125 may be formed by second chamfer 121 c and first connecting face 23. Third ridgeline 127 may be formed by second chamfer 121 c and second connecting face 26.
  • Cutting edge 124 includes a first cutting edge part 124 d and second cutting edge parts 124 e, 124 f First cutting edge part 124 d is constituted of a first ridgeline part (124 d) formed by first chamfer 121 b and flank face 22. Second cutting edge parts 124 e, 124 f are constituted of second ridgeline parts (124 e, 1240 formed by second chamfers 121 c, 121 d and flank face 22. First cutting edge part 124 d is located between second cutting edge part 124 e and second cutting edge part 124 f. First cutting edge part 124 d is connected to second cutting edge part 124 e and second cutting edge part 124 f.
  • In the plan view from upper surface 11 of base 10, a first distance d1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than a second distance d2 between each of second cutting edge parts 124 e, 124 f and base 10. In the present specification, second distance d2 is defined as a minimum distance between each of second cutting edge parts 124 e, 124 f and an extension line of first base ridgeline 15 a when upper surface 11 of base 10 is seen in the direction perpendicular to upper surface 11 of base 10.
  • As shown in FIG. 9 and FIG. 10, a first angle θ1 between first chamfer 121 b and first extension plane 121 e of main surface 121 a is smaller than a second angle θ2 between each of second chamfers 121 c, 121 d and first extension plane 121 e of main surface 121 a. First angle θ1 may be more than or equal to 3°, may be preferably more than or equal to 5°, and may be more preferably more than or equal to 7°. First angle θ1 may be less than or equal to 25°, may be preferably less than or equal to 15°, and may be more preferably less than or equal to 10°.
  • Second angle θ2 may be more than or equal to 3°, may be preferably more than or equal to 10°, and may be more preferably more than or equal to 12°. By setting second angle θ2 to be more than or equal to 3°, a damage portion 140 (see FIG. 13) such as breakage and chipping can be further suppressed from being produced in cutting edge 124. Accordingly, throwaway insert 2 having stable quality can be provided.
  • Second angle θ2 may be less than or equal to 25°, may be preferably less than or equal to 20°, and may be more preferably less than or equal to 18°. By setting second angle θ2 to be less than or equal to 25°, the thickness of cutting edge member 20 b can be prevented from being greatly varied before and after grinding of cutting edge member 20 b. The center height of cutting edge 124 can be prevented from being greatly varied before and after grinding of cutting edge member 20 b. Accordingly, even after grinding cutting edge member 20 b, a workpiece can be cut with high cutting precision in the same manner as before grinding cutting edge member 20 b. The cutting performance of cutting edge member 20 b can be suppressed from being deteriorated after grinding cutting edge member 20 b.
  • As shown in FIG. 11, cutting edge 124 includes: a first straight cutting edge portion 124 a located between first connecting face 23 and first cutting edge part 124 d; and a second straight cutting edge portion 124 c located between second connecting face 26 and first cutting edge part 124 d. First straight cutting edge portion 124 a and second straight cutting edge portion 124 c may be formed by second chamfers 121 c, 121 d and flank face 22.
  • As shown in FIG. 11, in the plan view from upper surface 11 of base 10, a first distance d1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than a third distance d3 between first straight cutting edge portion 124 a and first base ridgeline 15 a. In the plan view from upper surface 11 of base 10, first distance d1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than a fourth distance d4 between second straight cutting edge portion 124 c and second base ridgeline 15 b.
  • First straight cutting edge portion 124 a may be parallel to first base ridgeline 15 a formed by upper surface 11 and one side surface 13 a of base 10. Second straight cutting edge portion 124 c may be parallel to second base ridgeline 15 b formed by upper surface 11 and the other side surface 13 b of base 10.
  • In the plan view from upper surface 11 of base 10, third distance d3 between first straight cutting edge portion 124 a and first base ridgeline 15 a is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm. In the plan view from upper surface 11 of base 10, fourth distance d4 between second straight cutting edge portion 124 c and second base ridgeline 15 b is desirably more than or equal to 0.01 mm and less than or equal to 1 mm, and is more desirably more than or equal to 0.1 mm and less than or equal to 0.6 mm. Fourth distance d4 in the plan view from upper surface 11 of base 10 may be equal to third distance d3 in the plan view from upper surface 11 of base 10.
  • By setting each of third distance d3 and fourth distance d4 to be less than or equal to 1 mm in the plan view from upper surface 11 of base 10, the rigidity of cutting edge member 20 b can be suppressed from being greatly decreased. Accordingly, when cutting a workpiece, chipping of cutting edge member 20 b and decrease in cutting precision can be suppressed. By setting third distance d3 and fourth distance d4 to be more than or equal to 0.01 mm in the plan view from upper surface 11 of base 10, flank face 22 of cutting edge member 20 b can be ground while securely preventing grinding of base 10. Clogging in a grindstone and cracking in throwaway insert 2 can be securely prevented from occurring due to swarf of base 10 during grinding of cutting edge member 20 b.
  • When γ (degree) represents an angle between first straight cutting edge portion 124 a and second straight cutting edge portion 124 c in the plan view from upper surface 11 of base 10, each of a first crossing angle α (degree) between the first ridgeline (124) and second ridgeline 125 and a second crossing angle δ (degree) between the first ridgeline (124) and third ridgeline 127 may be preferably more than or equal to (160-γ/2) and less than or equal to (200-γ/2), and may be more preferably more than or equal to (170-γ/2) and less than or equal to (190-γ/2). Therefore, a change in cutting depth of cutting edge member 20 into a workpiece before and after grinding of cutting edge member 20 b can be decreased.
  • First cutting edge part 124 d may include a curved cutting edge portion 124 b having a protruding curved shape. Particularly, curved cutting edge portion 124 b may have a protruding arc shape. Curved cutting edge portion 124 b may include extreme tip portion 30 of cutting edge member 20 b. Curved cutting edge portion 124 b is formed by first chamfer 121 b, portions of second chamfers 121 c, 121 d, and flank face 22. Curved cutting edge portion 124 b is located between first straight cutting edge portion 124 a and second straight cutting edge portion 124 c. Curved cutting edge portion 124 b is connected to first straight cutting edge portion 124 a and second straight cutting edge portion 124 c.
  • Second cutting edge part 124 e may include a portion of curved cutting edge portion 124 b and first straight cutting edge portion 124 a. Second cutting edge part 124 f may include a portion of curved cutting edge portion 124 b and second straight cutting edge portion 124 c. Extreme tip portion 30 of cutting edge member 20 b is located between second cutting edge parts 124 e, 124 f. Accordingly, a larger amount of extreme tip portion 30 of cutting edge member 20 b is ground than those of second cutting edge parts 124 e, 124 f.
  • With reference to FIG. 5, the following describes an exemplary method of grinding cutting edge 124 of throwaway insert 2 of the present embodiment. Throwaway insert 2 is held at a holder for grinding (S1). Flank face 22 including cutting edge 124 is brought into contact with a grindstone to grind flank face 22. Specifically, first, flank face 22 may be ground to grind first straight cutting edge portion 124 a and second straight cutting edge portion 124 c (S2). Then, flank face 22 may be ground to grind curved cutting edge portion 124 b (S3). In this way, cutting edge 124 of throwaway insert 2 of the present embodiment is ground.
  • In throwaway insert 2 of the present embodiment, in the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10. Accordingly, as shown in FIG. 12 and FIG. 13, when damage portions 40, 140 such as breakage and chipping are produced in cutting edge member 20 b during cutting of a workpiece using throwaway insert 2, flank face 22 of cutting edge member 20 b can be ground, thereby removing damage portions 40, 140.
  • Specifically, as shown in FIG. 12, when a damage portion 40 having width w1 and height h1 is produced in cutting edge 124 (first cutting edge part 124 d) formed by first chamfer 121 b and flank face 22 during cutting of a workpiece using throwaway insert 2, damage portion 40 can be removed by grinding flank face 22 by a grinding width w3, i.e., by grinding flank face 22 to a grinding line 41. Grinding width w3 is larger than width w1 of damage portion 40.
  • Then, during cutting of a workpiece using throwaway insert 2, when a damage portion 40 having width w1 and height h1 is produced again in cutting edge member 20 b, damage portion 40 can be removed by grinding flank face 22 by grinding width w3, i.e., by grinding flank face 22 to a grinding line 42. Likewise, whenever a damage portion 40 having width w1 and height h1 is produced in cutting edge member 20 b, flank face 22 is ground by grinding width w3, thereby removing damage portion 40. Cutting edge member 20 b can be ground five times to grinding lines 41, 42, 43, 44, 45, whereby throwaway insert 2 of the present embodiment can be reused five times.
  • As shown in FIG. 13, when a damage portion 140 having a width w2 and a height h2 is produced in cutting edge 124 (second cutting edge part 1240 formed by second chamfer 121 d and flank face 22 during cutting of a workpiece using throwaway insert 2, damage portion 140 can be removed by grinding flank face 22 by a grinding width w4, i.e., by grinding flank face 22 to a grinding line 141. Grinding width w4 is larger than width w2 of damage portion 140.
  • Then, during cutting of a workpiece using throwaway insert 2, when a damage portion 140 having width w2 and height h2 is produced again in cutting edge member 20, damage portion 140 can be removed by grinding flank face 22 by grinding width w4, i.e., by grinding flank face 22 to a grinding line 142. Likewise, whenever a damage portion 140 having width w2 and height h2 is produced in cutting edge member 20 b, flank face 22 of cutting edge member 20 b is ground by grinding width w4, thereby removing damage portion 140. Cutting edge member 20 b can be ground five times to grinding lines 141, 142, 143, 144, 145, whereby throwaway insert 2 of the present embodiment can be reused five times. Although it has been described that damage portion 140 is produced in cutting edge 124 (second cutting edge part 1240 formed by second chamfer 121 d and flank face 22, the same applies to a case where damage portion 140 is produced in cutting edge 124 (second cutting edge part 124 e) formed by second chamfer 121 c and flank face 22.
  • Extreme tip portion 30 of cutting edge member 20 b is located between second cutting edge parts 124 e, 124 f. Therefore, grinding width w3 at extreme tip portion 30 is larger than grinding width w4 at cutting edge 124 (second cutting edge part 1240 formed by second chamfer 121 d and flank face 22.
  • Each of amounts of protrusion of flank face 22, first connecting face 23, and second connecting face 26 relative to the two side surfaces (13 a, 13 b) of base 10 in the plan view from upper surface 11 of base 10 is preferably such an amount of protrusion that throwaway insert 2 can be reused twice or more. Each of amounts of protrusion of flank face 22, first connecting face 23, and second connecting face 26 relative to the two side surfaces (13 a, 13 b) of base 10 in the plan view from upper surface 11 of base 10 may be more than or equal to 0.01 mm, for example.
  • As shown in FIG. 12 and FIG. 13, in throwaway insert 2 of the present embodiment, each of second chamfers 121 c, 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b as each of second chamfers 121 c, 121 d is closer to main surface 121 a. Accordingly, when flank face 22 is ground in order to remove each of damage portions 40, 140, the thickness of cutting edge member 20 b at the first ridgeline (124) serving as cutting edge 124 is increased.
  • The following describes functions and effects of throwaway insert 2 of the present embodiment. In addition to the effects of throwaway insert 1 of the first embodiment, throwaway insert 2 of the present embodiment exhibits the following effects.
  • In throwaway insert 2 of the present embodiment, rake face 121 further includes each of second chamfers 121 c, 121 d connected to main surface 121 a, first chamfer 121 b, and flank face 22. Each of second chamfers 121 c, 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b as each of second chamfers 121 c, 121 d is closer to main surface 121 a. Cutting edge 124 includes second cutting edge parts 124 e, 124 f constituted of the second ridgeline parts (124 e, 1240 formed by second chamfers 121 c, 121 d and flank face 22. In the plan view from upper surface 11 of base 10, first distance d1 between extreme tip portion 30 of cutting edge member 20 b and base 10 is larger than second distance d2 between each of second cutting edge parts 124 e, 124 f and base 10.
  • In throwaway insert 2 of the present embodiment, rake face 121 further includes second chamfers 121 c, 121 d. Accordingly, when cutting edge member 20 b is ground and when a workpiece is cut using throwaway insert 2, damage portions 40, 140 can be suppressed from being produced in cutting edge 124. Throwaway insert 2 of the present embodiment has more stable quality.
  • In throwaway insert 2 of the present embodiment, in the plan view from upper surface 11 of base 10, flank face 22, first connecting face 23, and second connecting face 26 are located external to base 10. Therefore, when damage portions 40, 140 are produced in cutting edge 124 while cutting a workpiece using throwaway insert 2, damage portions 40, 140 can be removed by grinding flank face 22 of cutting edge member 20 b.
  • Generally, widths w1, w2 of damage portions 40, 140 in the direction parallel to main surface 121 a of rake face 121 are smaller than heights h1, h2 of damage portions 40, 140 in the direction perpendicular to main surface 121 a of rake face 121. In throwaway insert 2 of the present embodiment, the grinding of cutting edge member 20 b to remove damage portions 40, 140 in cutting edge member 20 b can be performed a larger number of times. According to throwaway insert 2 of the present embodiment, the number of times of reusing cutting edge member 20 b can be increased, whereby throwaway insert 2 of the present embodiment can be used economically.
  • In throwaway insert 2 of the present embodiment, each of second chamfers 121 c, 121 d is inclined relative to main surface 121 a so as to increase the thickness of cutting edge member 20 b as each of second chamfers 121 c, 121 d is closer to main surface 121 a. Accordingly, when flank face 22 is ground in order to remove damage portions 40, 140, the thickness of cutting edge member 20 b at the first ridgeline (124) serving as cutting edge 124 is increased, whereby damage portions 40, 140 are less likely to be produced in cutting edge 124. Throwaway insert 2 of the present embodiment has stable quality.
  • In throwaway insert 2 of the present embodiment, cutting edge member 20 b including first chamfer 121 b and second chamfers 121 c, 121 d can be ground only by grinding flank face 22 to remove damage portions 40, 140. On the other hand, in a throwaway insert of a third comparative example, cutting edge member 20 b including first chamfer 21 b and second chamfers 121 c, 121 d can be ground by grinding rake face 121 to remove damage portions 40, 140, then grinding a portion of rake face 121 to form second chamfers 121 c, 121 d, and further grinding a portion of rake face 121 to form first chamfer 121 b. According to throwaway insert 2 of the present embodiment, cutting edge member 20 b including first chamfer 21 b and second chamfers 121 c, 121 d can be ground with a smaller number of grinding steps.
  • Extreme tip portion 30 of cutting edge member 20 b is a portion used most to cut a workpiece, and is a portion at which damage portion 40 is most likely to be produced. Since first distance d1 is larger than second distance d2 in the plan view from upper surface 11 of base 10, the number of times of reusing cutting edge member 20 b can be increased. Throwaway insert 2 of the present embodiment can be used economically.
  • In throwaway insert 2 of the present embodiment, first angle θ1 between first chamfer 121 b and first extension plane 121 e of main surface 121 a is smaller than second angle θ2 between each of second chamfers 121 c, 121 d and first extension plane 121 e of main surface 121 a. Therefore, in the plan view from upper surface 11 of base 10, first distance d1 is larger than second distance dz. According to throwaway insert 2 of the present embodiment, the number of times of reusing cutting edge member 20 b can be increased, whereby throwaway insert 2 of the present embodiment can be used economically.
  • Third Embodiment
  • With reference to FIG. 14 to FIG. 17, the following describes a throwaway insert 3 of a third embodiment. Throwaway insert 3 of the present embodiment includes the same configuration as that of throwaway insert 1 of the first embodiment, but is different therefrom in respective configurations of a cutting edge member 20 c, a backing body 18 c, and a base 10 c.
  • As shown in FIG. 17, in throwaway insert 3 of the present embodiment, in the plan view from main surface 21 a, a flank face 22 c is inclined relative to main surface 21 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 21 a. In the plan view from main surface 21 a, a fourth ridgeline 29 is located at the two-side-surface (13 a, 13 b) side relative to cutting edge 24. Fourth ridgeline 29 is formed by flank face 22 c and a bottom surface 28 of cutting edge member 20 c opposite to rake face 21.
  • As shown in FIG. 16, in a cross section (cross section shown in FIG. 16) that is orthogonal to main surface 21 a and that is orthogonal to the first ridgeline (24) in the plan view from main surface 21 a, flank face 22 c is inclined relative to main surface 21 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 21 a. As shown in FIG. 16 and FIG. 17, flank face 22 c is inclined relative to main surface 21 a such that cutting edge member 20 c gradually become thinner in a direction from rake face 21 toward bottom surface 28.
  • Flank face 22 c may be inclined at an inclination angle θ5 of more than or equal to 0.1° and less than or equal to 15° relative to an imaginary plane 21 v that is orthogonal to main surface 21 a and that is in contact with the first ridgeline (24). Imaginary plane 21 v is a plane parallel to flank face 22 of the first embodiment. In the cross section (cross section shown in FIG. 16) that is orthogonal to main surface 21 a and that is orthogonal to the first ridgeline (24) in the plan view from main surface 21 a, flank face 22 c may be inclined at inclination angle θ5 of more than or equal to 0.1° and less than or equal to 15° relative to the normal line (21 v) of main surface 21 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 21 a.
  • In the plan view from main surface 21 a, a side surface 18 s of backing body 18 c may be inclined in the same manner as flank face 22 c. Side surface 18 s of backing body 18 c may be flush with flank face 22 c of cutting edge member 20 c. As one modification of the present embodiment, side surface 18 s of backing body 18 c may be flush with the two side surfaces (13 a, 13 b) of base 10 c, and flank face 22 c of cutting edge member 20 c may protrude relative to the two side surfaces (13 a, 13 b) of base 10 c and side surface 18 s of backing body 18 c.
  • In throwaway insert 3 of the present embodiment, base 10 c has a rhombus shape in the plan view from upper surface 11 of base 10 c. The plurality of side surfaces 13 may include side surface 13 a, side surface 13 b, side surface 13 c, and a side surface 13 d.
  • As shown in FIG. 17, in the plan view from upper surface 11, each of side surfaces 13 a, 13 b, 13 c, 13 d of base 10 c is inclined relative to lower surface 12 so as to be further away from cutting edge 24 as each of side surfaces 13 a, 13 b, 13 c, 13 d of base 10 c is further away from upper surface 11. As shown in FIG. 16 and FIG. 17, each of side surfaces 13 a, 13 b, 13 c, 13 d of base 10 c is inclined relative to lower surface 12 such that base 10 c becomes gradually thinner in a direction from upper surface 11 toward lower surface 12. Accordingly, side surfaces 13 a, 13 b, 13 c, 13 d of base 10 c can be suppressed from being worn during cutting.
  • Each of side surfaces 13 a, 13 b 13 c, 13 d of base 10 c may be inclined at an inclination angle θ6 (degree) relative to lower surface 12 in the cross section (cross section shown in FIG. 16) orthogonal to each of side surfaces 13 a, 13 b, 13 c, 13 d and lower surface 12. Regarding inclination angle θ5 (degree) and inclination angle θ6 (degree), θ6-90 may be equal to θ5 or may be larger than θ5.
  • The following describes functions and effects of throwaway insert 3 of the present embodiment. In addition to the effects of throwaway insert 1 of the first embodiment, throwaway insert 3 of the present embodiment exhibits the following effects.
  • In throwaway insert 3 of the present embodiment, flank face 22 c is inclined relative to main surface 21 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 21 a in the plan view from main surface 21 a. Since flank face 22 c is inclined in this way, a flank amount of flank face 22 c relative to a workpiece can be increased. Flank face 22 c is suppressed from being worn during cutting, whereby throwaway insert 3 has a longer life.
  • Further, since flank face 22 c is inclined in this way, cuttability of cutting edge 24 is improved. Even though cutting edge member 20 c protrudes relative to the two side surfaces (13 a, 13 b) of base 10 c, occurrence of chatter vibration can be suppressed during cutting of a workpiece, thereby suppressing decrease of cutting precision.
  • In throwaway insert 3 of the present embodiment, flank face 22 c is inclined at inclination angle θ5 of more than or equal to 0.1° and less than or equal to 15° relative to imaginary plane 21 v that is orthogonal to main surface 21 a and that is in contact with the first ridgeline (24). By setting inclination angle θ5 of flank face 22 c to be more than or equal to 0.1°, wear of flank face 22 c and occurrence of chatter vibration during cutting can be further suppressed. By setting inclination angle θ5 of flank face 22 c to be less than or equal to 15°, flank face 22 c can be ground using a grindstone without an interference of the grindstone with base 10 c.
  • Fourth Embodiment
  • With reference to FIG. 18 to FIG. 22, the following describes a throwaway insert 4 of a fourth embodiment. Throwaway insert 4 of the present embodiment includes the same configuration as that of throwaway insert 2 of the second embodiment, but is different therefrom in respective configurations of a cutting edge member 20 d, backing body 18 c, and base 10 c.
  • Flank face 22 c of cutting edge member 20 d of the present embodiment is inclined in the same manner as flank face 22 c of cutting edge member 20 c of the third embodiment. Specifically, as shown in FIG. 22, flank face 22 c is inclined relative to main surface 121 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 121 a in the plan view from main surface 121 a. In the plan view from main surface 121 a, fourth ridgeline 29 is located at the two-side-surface (13 a, 13 b) side relative to cutting edge 124. Fourth ridgeline 29 is formed by flank face 22 c and a bottom surface 28 of cutting edge member 20 d opposite to rake face 121.
  • As shown in FIG. 20 and FIG. 21, in a cross section (each of a cross section shown in FIG. 20 and a cross section shown in FIG. 21) that is orthogonal to main surface 121 a and that is orthogonal to the first ridgeline (124) in the plan view from main surface 121 a, flank face 22 c is inclined relative to main surface 121 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 121 a. As shown in FIG. 20 to FIG. 22, flank face 22 c is inclined relative to main surface 121 a such that cutting edge member 20 d gradually becomes thinner in a direction from rake face 121 toward bottom surface 28.
  • Flank face 22 c may be inclined at an inclination angle θ5 of more than or equal to 0.1° and less than or equal to 15° relative to an imaginary plane 121 v that is orthogonal to main surface 121 a and that is in contact with the first ridgeline (124). Imaginary plane 121 v is a plane parallel to flank face 22 of the second embodiment. In the cross section (each of the cross section shown in FIG. 20 and the cross section shown in FIG. 21) that is orthogonal to main surface 121 a and that is orthogonal to the first ridgeline (124) in the plan view from main surface 121 a, flank face 22 c may be inclined at inclination angle θ5 of more than or equal to 0.1° and less than or equal to 15° relative to the normal line (121 v) of main surface 121 a so as to be closer to the two side surfaces (13 a, 13 b) of base 10 c as flank face 22 c is further away from main surface 121 a.
  • Side surface 18 s of backing body 18 c of the present embodiment is inclined in the same manner as side surface 18 s of backing body 18 c of the third embodiment. Base 10 c of the present embodiment includes the same structure as that of base 10 c of the third embodiment.
  • Throwaway insert 4 of the present embodiment exhibits the effect of throwaway insert 2 of the second embodiment and the effect of throwaway insert 3 of the third embodiment.
  • The embodiments disclosed herein are illustrative and non-restrictive in any respect. The scope of the present invention is defined by the terms of the claims, rather than the embodiments described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
  • REFERENCE SIGNS LIST
      • 1, 2, 3, 4: throwaway insert; 10, 10 c: base; 11: upper surface; 11 e: second extension plane; 12: lower surface; 12 v: normal line; 13: plurality of side surfaces; 13 a, 13 b, 13 c, 13 d, 18 s: side surface; 14: recess; 15 a: first base ridgeline; 15 b: second base ridgeline; 16: hole; 18, 18 c: backing body; 20, 20 b, 20 c, 20 d: cutting edge member; 21, 121: rake face; 21 a, 121 a: main surface; 21 b, 121 b: first chamfer; 21 e, 121 e: first extension plane; 21 v: imaginary plane; 22, 22 c: flank face; 23: first connecting face; 24, 124: cutting edge; 24 a, 124 a: first straight cutting edge portion; 24 b, 124 b: curved cutting edge portion; 24 c, 124 b, 124 c: second straight cutting edge portion; 24 d, 124 d: first cutting edge part; 24 e: third straight cutting edge portion; 24 f: fourth straight cutting edge portion; 25, 125: second ridgeline; 26: second connecting face; 27, 127: third ridgeline; 28: bottom surface; 29: fourth ridgeline; 30: extreme tip portion; 40, 140: damage portion; 41, 42, 43, 44, 45, 141, 142, 143, 144, 145: grinding line; 121 c, 121 d: second chamfer; 124 e, 124 f: second cutting edge part.

Claims (13)

1. A throwaway insert comprising:
a base having an upper surface, a lower surface, and a plurality of side surfaces that connect the upper surface to the lower surface, the base being provided with a recess at a corner portion at which the upper surface crosses two side surfaces of the plurality of side surfaces; and
a cutting edge member joined to the recess, wherein
the cutting edge member includes
a rake face,
a flank face extending to cross the rake face,
a first connecting face connecting the flank face to one side surface of the two side surfaces and extending to cross the rake face,
a second connecting face connecting the flank face to the other side surface of the two side surfaces and extending to cross the rake face, and
a first ridgeline formed by the rake face and the flank face and serving as a cutting edge,
the rake face includes
a main surface extending along the upper surface, and
a first chamfer provided at an edge tip portion of the cutting edge member, the edge tip portion including an extreme tip portion of the cutting edge member,
the cutting edge includes a first cutting edge part constituted of a first ridgeline part formed by the first chamfer and the flank face,
in a plan view from the upper surface of the base, the flank face, the first connecting face, and the second connecting face are located external to the base, and
the first chamfer is inclined relative to the main surface so as to increase a thickness of the cutting edge member as the first chamfer is closer to the main surface.
2. The throwaway insert according to claim 1, wherein
the rake face further includes a second chamfer connected to the main surface, the first chamfer, and the flank face,
the second chamfer is inclined relative to the main surface so as to increase the thickness of the cutting edge member as the second chamfer is closer to the main surface,
the cutting edge includes a second cutting edge part constituted of a second ridgeline part formed by the second chamfer and the flank face, and
in the plan view from the upper surface of the base, a first distance between the extreme tip portion of the cutting edge member and the base is larger than a second distance between the second cutting edge part and the base.
3. The throwaway insert according to claim 2, wherein a first angle between the first chamfer and a first extension plane of the main surface is smaller than a second angle between the second chamfer and the first extension plane of the main surface.
4. The throwaway insert according to claim 1, wherein a first angle between the first chamfer and a first extension plane of the main surface is more than or equal to 3° and less than or equal to 25°.
5. The throwaway insert according to claim 1, wherein the extreme tip portion of the cutting edge member is located on a second extension plane of the upper surface.
6. The throwaway insert according to claim 1, wherein in the plan view from the main surface, the flank face is inclined relative to the main surface so as to be closer to the two side surfaces of the base as the flank face is further away from the main surface.
7. The throwaway insert according to claim 6, wherein the flank face is inclined at an inclination angle of more than or equal to 0.1° and less than or equal to 15° relative to an imaginary plane that is orthogonal to the main surface and that is in contact with the first ridgeline.
8. The throwaway insert according to claim 1, wherein
a second ridgeline formed by the rake face and the first connecting face crosses the first ridgeline at an obtuse angle, and
a third ridgeline formed by the rake face and the second connecting face crosses the first ridgeline at an obtuse angle.
9. The throwaway insert according to claim 8, wherein
the cutting edge includes
a first straight cutting edge portion located between the first connecting face and the first cutting edge part, and
a second straight cutting edge portion located between the second connecting face and the first cutting edge part, and
when γ (degree) represents an angle between the first straight cutting edge portion and the second straight cutting edge portion in the plan view from the upper surface of the base, each of a first crossing angle α (degree) between the first ridgeline and the second ridgeline and a second crossing angle δ (degree) between the first ridgeline and the third ridgeline is more than or equal to (160-γ/2) and less than or equal to (200-γ/2).
10. The throwaway insert according to claim 1, wherein
the cutting edge includes
a first straight cutting edge portion located between the first connecting face and the first cutting edge part, and
a second straight cutting edge portion located between the second connecting face and the first cutting edge part,
the first straight cutting edge portion is parallel to a first base ridgeline formed by the upper surface and the one side surface of the base, and
the second straight cutting edge portion is parallel to a second base ridgeline formed by the upper surface and the other side surface of the base.
11. The throwaway insert according to claim 10, wherein
in the plan view from the upper surface of the base, a third distance between the first straight cutting edge portion and the first base ridgeline is more than or equal to 0.01 mm and less than or equal to 1 mm, and
in the plan view from the upper surface of the base, a fourth distance between the second straight cutting edge portion and the second base ridgeline is more than or equal to 0.01 mm and less than or equal to 1 mm.
12. The throwaway insert according to claim 1, wherein
the first cutting edge part includes a curved cutting edge portion having a protruding curved shape, and
the curved cutting edge portion includes the extreme tip portion.
13. The throwaway insert according to claim 1, wherein the cutting edge member includes one of the following materials: diamond, cubic boron nitride, cemented carbide and cermet.
US16/470,138 2016-12-15 2017-02-02 Throwaway insert Active 2038-06-19 US11458546B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016243351A JP6766998B2 (en) 2016-12-15 2016-12-15 Throw away tip
JPJP2016-243351 2016-12-15
JP2016-243351 2016-12-15
PCT/JP2017/003716 WO2018109954A1 (en) 2016-12-15 2017-02-02 Throw-away tip

Publications (2)

Publication Number Publication Date
US20200009663A1 true US20200009663A1 (en) 2020-01-09
US11458546B2 US11458546B2 (en) 2022-10-04

Family

ID=62558234

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/470,138 Active 2038-06-19 US11458546B2 (en) 2016-12-15 2017-02-02 Throwaway insert

Country Status (7)

Country Link
US (1) US11458546B2 (en)
JP (1) JP6766998B2 (en)
KR (1) KR102587183B1 (en)
CN (1) CN110072656B (en)
DE (1) DE112017006302T5 (en)
MX (1) MX2019006352A (en)
WO (1) WO2018109954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11975392B2 (en) 2020-12-22 2024-05-07 Sumitomo Electric Hardmetal Corp. Cutting tool and method for manufacturing same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584302A (en) * 1981-06-30 1983-01-11 Toshiba Corp Throwaway tip
SE454420B (en) * 1984-05-14 1988-05-02 Santrade Ltd HAPPENS FOR LONG, SLIPPING OR COPYRUPTING
JPS61178101A (en) * 1985-01-31 1986-08-09 Sumitomo Electric Ind Ltd Throw away tip
JPH01164003U (en) * 1988-04-30 1989-11-15
JPH05302U (en) * 1991-06-19 1993-01-08 東芝タンガロイ株式会社 Composite sintered body chip
JPH10193203A (en) * 1997-01-08 1998-07-28 Mitsubishi Materials Corp Throwaway tip and manufacture thereof
JP3697893B2 (en) 1998-05-14 2005-09-21 住友電気工業株式会社 Hard sintered body throw-away tip and manufacturing method thereof
JP2002192407A (en) * 2000-12-26 2002-07-10 Ngk Spark Plug Co Ltd Cutting tool
JP4228557B2 (en) * 2001-02-05 2009-02-25 三菱マテリアル株式会社 Throwaway tip
US20050183893A1 (en) * 2004-01-13 2005-08-25 Sandvik Ab Indexable cutting inserts and methods for producing the same
SE530153C2 (en) * 2005-02-22 2008-03-11 Seco Tools Ab Cut for turning with a peripheral land of constant width
SE529146C2 (en) * 2005-02-22 2007-05-15 Seco Tools Ab Cut for turning where the phase angle at the corner shows a minimum
US7520701B2 (en) * 2005-03-16 2009-04-21 Sumitomo Electric Hardmetal Corp. Cbn cutting tool for high-quality, high-efficiency cutting
US7765902B2 (en) * 2005-10-06 2010-08-03 Sumitomo Electric Hardmetal Corp. Cutting tool for high-quality high-efficiency machining and cutting method using the same
JP5206018B2 (en) * 2008-02-26 2013-06-12 株式会社タンガロイ Super high pressure sintered tool
US9199312B2 (en) * 2011-03-07 2015-12-01 Kennametal Inc. Cutting insert with discrete cutting tip and chip control structure
US20120282048A1 (en) * 2011-05-03 2012-11-08 Diamond Innovations, Inc. Insert With A Wiper To Induce Chip Thinning On A Leading Edge
EP2979812B1 (en) * 2013-03-29 2018-04-04 Sumitomo Electric Hardmetal Corp. Method for manufacturing a cubic boron nitride cutting tool and cubic boron nitride cutting tool
WO2016043127A1 (en) * 2014-09-16 2016-03-24 住友電気工業株式会社 Cutting insert and manufacturing method therefor
WO2016136694A1 (en) * 2015-02-24 2016-09-01 株式会社タンガロイ Cutting tool
US11338371B2 (en) * 2017-10-31 2022-05-24 Sumitomo Electric Hardmetal Corp. Cutting insert

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11975392B2 (en) 2020-12-22 2024-05-07 Sumitomo Electric Hardmetal Corp. Cutting tool and method for manufacturing same

Also Published As

Publication number Publication date
DE112017006302T5 (en) 2019-08-29
KR20190096351A (en) 2019-08-19
CN110072656A (en) 2019-07-30
KR102587183B1 (en) 2023-10-06
MX2019006352A (en) 2019-08-14
US11458546B2 (en) 2022-10-04
JP6766998B2 (en) 2020-10-14
JP2018094692A (en) 2018-06-21
CN110072656B (en) 2020-11-06
WO2018109954A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5654212B2 (en) Milling insert
WO2017047700A1 (en) Cutting insert and replaceable-blade-type cutting tool
JP5853613B2 (en) Cutting insert
US10717136B2 (en) Cutting insert
US11040401B2 (en) Throwaway insert and method of grinding cutting edge of throwaway insert
KR102400417B1 (en) Double-sided high feed milling insert, high feed milling tool and method
JPWO2011046045A1 (en) Cutting insert
JP4957000B2 (en) Cutting tools
JP6420239B2 (en) Cutting insert, cutting tool, and method of manufacturing cut workpiece
WO2014057985A1 (en) Cutting insert and cutting tool
JP5056215B2 (en) Cutting insert
JP4810902B2 (en) Inserts and turning tools
JP5988010B2 (en) Cutting inserts, tool bodies and cutting tools
US11458546B2 (en) Throwaway insert
JP2006187813A (en) Cutting insert and cutting tool
JP2018043321A (en) Cutting insert and tip replaceable cutting tool
JP5887859B2 (en) Cutting insert
JP4655548B2 (en) Throwaway tip
JP2024015617A (en) Cutting tool
JP4906690B2 (en) Throwaway tip
JP2013202724A (en) Cutting insert

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO ELECTRIC SINTERED ALLOY, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAEDA, KAZUO;REEL/FRAME:049478/0200

Effective date: 20190410

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE