US20200000124A1 - Pet food - Google Patents

Pet food Download PDF

Info

Publication number
US20200000124A1
US20200000124A1 US16/480,029 US201816480029A US2020000124A1 US 20200000124 A1 US20200000124 A1 US 20200000124A1 US 201816480029 A US201816480029 A US 201816480029A US 2020000124 A1 US2020000124 A1 US 2020000124A1
Authority
US
United States
Prior art keywords
pet food
canceled
optionally
core
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/480,029
Other versions
US11992033B2 (en
Inventor
Sarah Belt
Matthew GOSLING
Guy Heath
Gareth Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mars Inc
Original Assignee
Mars Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mars Inc filed Critical Mars Inc
Publication of US20200000124A1 publication Critical patent/US20200000124A1/en
Assigned to MARS, INCORPORATED reassignment MARS, INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEATH, GUY, BELT, SARAH, GOSLING, Matthew, THOMAS, GARETH
Application granted granted Critical
Publication of US11992033B2 publication Critical patent/US11992033B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • A23K50/45Semi-moist feed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • A23K50/48Moist feed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/24Animal feeding-stuffs from material of animal origin from blood
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/26Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/26Compounds containing phosphorus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/30Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present disclosure relates generally to food compositions, more specifically to pet food compositions and/or pet food, such as compositions and/or products, e.g. in the form of treats, for feeding to cats or dogs.
  • the present disclosure relates generally to food compositions, more specifically to pet food compositions and/or pet food products, such as compositions and/or products for feeding to cats or dogs.
  • High meat content, foods and treats for pets are a desirable commodity for many pet owners.
  • factors affecting the likelihood that a pet owner (consumer) will purchase a product for their pet and factors affecting the likelihood that the pet will eat the food, which are not always the same, as explained below.
  • a key attribute of treats is that they must be highly palatable to the animal to ensure that they are accepted immediately and consumers, that is, the pet owner, are not disappointed.
  • the present disclosure provides a pet food.
  • the pet food may be a semi-moist, edible pet food, e.g. wherein the pet food has a moisture content of 15 to 50 wt %, optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %.
  • the pet food may comprise animal protein, e.g. in an amount of at least 30 wt %.
  • the pet food may comprise a glucose-containing carbohydrate selected from a dextrin and a starch, for example an esterified starch.
  • the pet food may comprise a chelant.
  • the pet food may comprise an emulsifier.
  • the pet food may comprise a core and a coating disposed on the core, the core may comprise animal protein, and optionally the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.
  • the pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and, optionally the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a chelant.
  • the pet food may comprise a core and a coating disposed on the core, the core may comprise animal protein, the pet food may have an animal protein content of at least 30 wt %, and/or optionally at least one of the core and the coating comprises an emulsifier.
  • the pet food comprises an edible pet food, which may be termed a semi-moist edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein, the pet food has an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.
  • a pet food composition there is provided a pet food composition.
  • the pet food composition may or may not have a coating thereon.
  • the pet food composition may comprise any of the components described herein for the pet food in any of the stated amounts.
  • the pet food composition may be for forming a core of a pet food described herein.
  • a pet food composition comprising from at least one dextrin; and diacetyl tartaric acid esters of mono- and diglycerides (DATEM), wherein the pet food composition has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • DATEM diacetyl tartaric acid esters of mono- and diglycerides
  • a pet food composition comprising from 1-10 wt % of at least one dextrin; and from 0.2-2 wt % of diacetyl tartaric acid esters of mono- and diglycerides (DATEM), wherein the pet food composition has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • DATEM diacetyl tartaric acid esters of mono- and diglycerides
  • a pet food composition comprising: animal protein, calcium bound to a chelant, wherein the pet food composition has (i) a calcium content of at least 100 mg per gram of the composition and (ii) a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • an edible pet food wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %) and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein and calcium bound to a chelant, and the coating comprises a species selected from an emulsifier, a dextrin and an esterified starch.
  • a method of producing an edible pet food composition or an edible pet food may comprise: combining a meat with one or more components to form a pet food composition, cooking the pet food composition, optionally with steam, and optionally drying the pet food composition, wherein a pet food is formed by the method and the pet food has a moisture content of from 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • a method of producing an edible pet food as described herein comprising combining an amount of meat comprising animal protein, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch to form a pet food composition, cooking the pet food composition with steam; drying the pet food composition, and, before or after the drying, applying a coating to the pet food composition to produce a pet food having the pet food composition in a core and the coating disposed thereon, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and pet food has an animal protein content of at least 30 wt %.
  • the method comprises combining an emulsifier with the amount of meat comprising animal protein and an amount of a glucose-containing carbohydrate to form the pet food composition.
  • a method of producing a pet food comprising: combining an amount of meat, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch, and an amount of at least one emulsifier to form a pet food composition; cooking the pet food composition with steam; and drying the pet food composition at a temperature of at least 90° C. to create a pet food having a moisture content of from 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • the method further involves, after the cooking and before or after the drying, applying a coating on the pet food product to produce a pet food having a core comprising the pet food product having a coating disposed thereon.
  • a component in an edible pet food having a moisture content of 15 to 50 wt % to reduce or prevent bloom formation on its surface, wherein the component is selected from (i) a chelant and (ii) a glucose-containing carbohydrate selected from an esterified dextrin and an esterified starch.
  • a component in an edible pet food comprising animal protein to reduce the chewiness and/or firmness of the pet food compared to a pet food lacking the component, wherein the component is selected from (i) a glucose-containing carbohydrate selected from a dextrin and an esterified starch and (ii) an emulsifier, and the pet food has a moisture content of 15 to 50 wt %.
  • a component in an edible pet food comprising animal protein to provide the pet food with (a) a resilience measured by Texture Profile Analysis of 0.14 or greater and/or (b) a cohesiveness measured by Texture Profile Analysis of 0.50 or greater, wherein the component is selected from (i) a glucose-containing carbohydrate selected from a dextrin and a starch and (ii) an emulsifier, and the pet food has a moisture content of 15 to 50 wt %.
  • the edible pet food may be a cat treat (or a plurality of cat treats) or a dog treat (or a plurality of dog treats).
  • the pack may have an interior chamber, and the chamber may comprise an amount of two or more gases, and wherein the two or more gases comprise at least 60 vol % nitrogen and at least 25 vol % carbon dioxide.
  • the interior chamber may be airtight.
  • the interior chamber may contain the pet food.
  • the present disclosure provides pet food, which may be in the form of a treat for a cat or a dog.
  • the present inventors have found that although many dry foods (e.g. having low moisture content—typically less than 15 wt. %), are palatable for cats and many wet foods (high moisture content—e.g. having a moisture content of above 50 wt. % on average) are palatable for cats, many semi-moist food products (e.g. containing approximately 15 to 50 wt. % moisture content) have not been found to be very palatable for cats.
  • the present inventors have found that the intermediate moisture content of a semi-moist food can produce an undesirably chewy/cohesive texture, particularly when the protein content is high. Since the physiology of cats is not suited to chewing as their jaws are shaped for ripping and tearing, this may contribute to the reduced palatability of the semi-moist foods.
  • the present inventors have found that one method of improving the palatability of semi-moist foods has been to apply a coating (sometimes referred to as a palatant) to the surface of the food to improve its appeal to the animal.
  • a coating sometimes referred to as a palatant
  • this may not provide sufficient palatability.
  • a further factor is that the preferences of consumers purchasing these treats may differ from those of their pets.
  • the consumer when purchasing high meat content foods for their animal, typically desires the food have a ‘meaty’ appearance. This meaty appearance can be enhanced by modulating the moisture content of some food products.
  • the animal whilst the animal may prefer to eat a pet food containing less moisture, the consumer may prefer to purchase a pet food that appears meatier and, in effect, may contain a higher moisture content.
  • the present inventors have found that products of this type with a meaty appearance and a high meat content can have a texture that is unappealing to animals.
  • pet foods must also be nutritious. Meat, in particular, is known to provide only limited amounts of vitamins and minerals and thus, in high meat content pet foods, sometimes vitamins and minerals are added to improve the nutritional value of the food.
  • the present inventors have found that in some semi-moist foods, particularly those with added minerals, visible, white compounds develop on the surface of semi-moist pet foods over time once the product is in contact with air. This effect is referred to herein as “bloom”. It also occurs in semi-moist pet food that does not contain added minerals.
  • the bloom effect is a result of the evaporation of moisture from the food when a packet is opened. Whilst an equilibrium between atmospheric moisture content and the moisture content of the food develop inside the packet, reducing the bloom, the removal of the food from the packaging causes moisture to evaporate due to the strong moisture gradient of the product relative to ambient humidity. This movement of water out of the product transports minerals contained within the product to the surface (efflorescence) where they are deposited, appearing as a white crust. This effect is exacerbated when using a palatant coating on semi-moist products comprising a mixture of fat and phosphates, which promote the conglomeration of the minerals as they are enthalpically incompatible with the high fat environment of the coating.
  • the present disclosure provides a semi-moist pet food with a texture that has been found to be more palatable to animals, in particular, cats.
  • the pet food is nevertheless be suitable for other animals, such as dogs.
  • the improved texture may result from the inclusion of at least one dextrin in the pet food.
  • the undesirable (chewy/cohesive) texture was found to be a result of a strong protein structure in the high meat content product.
  • the dextrin interrupts the protein structure, weakening the product and enabling it to be broken apart more easily.
  • the present improved texture may result from the inclusion of an emulsifier in the pet food.
  • An emulsifier is also able to interrupt the protein structure within the pet food, weakening the product and enabling it to be broken apart more easily.
  • the present disclosure also provides a semi-moist pet food for which bloom is reduced or prevented.
  • the “reduction” of bloom may indicate that, in a given time period, e.g. 24 hours, 48 hours or 72 hours, the extent of bloom formation in a pet food is reduced, when the pet food is taken from an environment in which the moisture content of the pet food is in equilibrium with its surrounding (e.g. in a sealed pack) and placed in air under ambient conditions e.g. at standard temperature (e.g. 25° C.), standard pressure (100 kPa) and 40% relative humidity.
  • the extent of bloom formation may be measured by the degree of lightening (or whitening) of the pet food during this period.
  • the extent of bloom may also be measured by x-ray microanalysis to detect one or more of the following ions: K + , Ca2 + , Na + , CO 3 2 ⁇ and P 3 O 10 5 ⁇ .
  • the reduction or prevention of bloom may result from the inclusion of a chelant in the product.
  • the chelant binds to the minerals, stabilizing them within the structure of the food, significantly reducing the enthalpic impetus for the minerals to migrate to the surface of the food with the water gradient.
  • the reduction or prevention of bloom may result from the inclusion of a modified starch or dextrin, such as an octenyl succinate hydrolyzed starch in the product, in particular, in a coating on the surface of the product.
  • a modified starch or dextrin such as an octenyl succinate hydrolyzed starch
  • the modified starch or dextrin binds fat in the coating and alters the polarity. This alters the electrostatic forces acting on the minerals such that the minerals remain dispersed within the fat-containing coating and therefore, the minerals remain as free ions and do not form deposits on the surface.
  • an modified starch or dextrin, such as octenyl succinate hydrolyzed starch to the coating improves the appearance of the food from the consumer's perspective, providing a shiny appearance that gives the appearance of meat.
  • FIG. 1 is a schematic of a Texture Profile Analysis measurement, as described in Example 1 below.
  • FIG. 2 is a plot of data comparing the properties of examples of a pet food of the present disclosure, as described in Example 4, with commercially available pet foods, and samples of cooked, but unprocessed meat.
  • the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ⁇ 50%, in some embodiments ⁇ 40%, in some embodiments ⁇ 30%, in some embodiments ⁇ 20%, in some embodiments ⁇ 10%, in some embodiments ⁇ 5%, in some embodiments ⁇ 1%, in some embodiments ⁇ 0.5%, and in some embodiments ⁇ 0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.
  • ranges can be expressed as from “about” one particular value, and/or to “about” another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
  • the pet food is described as comprising a certain amount of a component, this indicates that it is the whole of the pet food, including any core and coating that are present, which comprises the component in the certain amount. For example, if the pet food comprises 5 wt % of component A, this indicates that the whole of the pet food, including the core and coating, if present, comprises the component A in an amount of 5 wt % of the whole pet food.
  • pet food means a composition intended for oral consumption to meet one or more nutritional needs of a pet.
  • Pet food expressly excludes items which are capable of being orally ingested but are not intended to be ingested, such as rocks.
  • the pet food may be selected from a treat, chew, biscuit, gravy, supplement, topper, and combinations thereof.
  • the pet food may or may not be nutritionally balanced and complete.
  • nutrients as used herein, “nutritionally balanced” and/or “nutritionally complete” refers to a composition capable of sustaining life as the sole dietary ration for an animal, without the need for any other substance, except possibly water.
  • % of a component in a composition, pet food or other item mentioned herein are wt %, i.e. the weight percent of the component in the relevant composition, pet food or other item, unless otherwise stated.
  • the pet food may be in the form of a treat or a plurality of treats.
  • a treat may be defined as an object having at least one dimension larger than 2 mm and/or at least one dimension smaller than 20 mm.
  • the pet food has a maximum dimension of 20 mm or less, optionally 17 mm or less, optionally 15 mm or less, optionally 12 mm or less and/or in some embodiments, the pet food has a minimum dimension of at least 2 mm, optionally at least 3 mm, optionally at least 4 mm.
  • the treat may have dimensions, perpendicular to one another, defined as length, width and height, and the height may be from 2 mm to 20 mm, the length may be from 2 mm to 20 mm, and the width may be from 2 mm to 20 mm.
  • the treat may have dimensions, perpendicular to one another, defined as length, width and height, and the height may be from 2 mm to 15 mm, the length may be from 2 mm to 15 mm, and the width may be from 2 mm to 15 mm.
  • the treat may have dimensions, perpendicular to one another, defined as length, width and height, and the height may be from 3 mm to 8 mm, the length may be from 9 mm to 13 mm, and the width may be from 8 mm to 12 mm.
  • a treat may be an object having a relatively consistent cross-sectional shape along one dimension (e.g. its length).
  • the cross sectional shape may be a regular shape, e.g. a triangle, or four-sided shaped, such as a rectangle.
  • the cross-sectional shape may be a non-regular shape, e.g. in the approximate form of a letter, such as an M or a T.
  • the cross-sectional shape may be a regular shape having one or more indentations.
  • the treat may be formed by passing a pet food composition, before cooking, through a shaped nozzle, and then cutting it at into one or more parts along its length.
  • animal or “pet” mean a domestic animal including, but not limited to, domestic dogs, cats, horses, cows, ferrets, rabbits, pigs, and the like. In some embodiments, “pet” means a domesticated cat.
  • meat may indicate animal flesh suitable for use in a pet food.
  • the meat may be ground and cooked.
  • the meat may be from any suitable animal, for example from a cow, a chicken or a turkey.
  • the present disclosure provides a pet food.
  • the pet food may be a semi-moist edible pet food, e.g. wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • the pet food may comprise animal protein, e.g. in an amount of at least 30 wt %.
  • the pet food may comprise a glucose-containing carbohydrate selected from a dextrin and a starch, for example an esterified starch.
  • the pet food may comprise a chelant.
  • the pet food may comprise an emulsifier.
  • the pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.
  • the pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a chelant.
  • the pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises an emulsifier.
  • the pet food comprises an edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %) and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein and the pet food has an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.
  • a pet food composition comprising from 1-10 wt % of at least one dextrin; and from 0.2-2 wt % of diacetyl tartaric acid esters of mono- and diglycerides (DATEM), wherein the pet food composition has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • DATEM diacetyl tartaric acid esters of mono- and diglycerides
  • a pet food composition comprising: animal protein, calcium bound to a chelant, wherein the pet food composition has (i) a calcium content of at least 100 mg per gram of the composition and (ii) a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • an edible pet food wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %) and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein and calcium bound to a chelant, and the coating comprises a species selected from an emulsifier, a dextrin and an esterified starch.
  • the glucose-containing carbohydrate is selected from a dextrin and a starch, for example an esterified starch.
  • a starch may be defined as a carbohydrate comprising glucose units linked by glycosidic bonds, and it typically comprises amylose and amylopectin. Starch may comprise, by weight, 20 to 25% amylose and 75 to 80% amylopectin (in the absence of any modification).
  • the starch may be an unmodified starch or a modified starch.
  • a modified starch may, for example, be an esterified starch.
  • the dextrin and the starch are optionally modified dextrin or starch.
  • Dextrin may be defined as a carbohydrate that is a polymer of D-glucose units linked by ⁇ -(1 ⁇ 4) or ⁇ -(1 ⁇ 6) glycosidic bonds.
  • Dextrin may be produced by the hydrolysis of starch.
  • the dextrin which may be a maltodextrin, may comprise from 3 to 17 glucose units.
  • the dextrin may be selected from maltodextrin, cyclodextrin, amylodextrin, (beta) or (alpha) Limit dextrin.
  • the dextrin may be an unmodified dextrin or a modified dextrin.
  • a modified dextrin may, for example, be an esterified dextrin.
  • An unmodified dextrin may indicate a dextrin that has not had any substituents, e.g. ester groups,
  • the dextrin may have a dextrose equivalent of from 1 to 25, optionally from 1 to 13, optionally from 3 to 20.
  • Dextrose equivalent (DE) is a measure of the amount of reducing sugars present in a sugar product, relative to dextrose (a.k.a. glucose), expressed as a percentage on a dry basis.
  • the dextrose equivalent may be measured by the Lane-Eynon titration, involving the reduction of copper (II) sulfate in an alkaline tartrate solution.
  • the core comprises an unmodified dextrin.
  • the unmodified dextrin may be selected from maltodextrin, cyclodextrin, amylodextrin, (beta) or (alpha) Limit dextrin. It has been found that unmodified dextrin, particularly maltodextrin, assists in producing a product with favourable texture characteristics, such that the pet food is desirable, e.g. to a cat, and not too chewy or cohesive. For cats, for example, which typically rip and tear food, rather than chewing, the product was found to be acceptable and would not be refused as often as an equivalent food lacking the dextrin.
  • the combination of the glucose-containing carbohydrate is selected, e.g. a dextrin, and an emulsifier was found to be particularly effective in creating a pet food that was not too chewy, despite, in some embodiments, containing a reasonably high amount of animal protein.
  • the glucose-containing carbohydrate and/or the emulsifier may act to interrupt the protein structure in the pet food, to a certain extent, allowing it to be broken apart more easily in an animal's mouth.
  • the core comprises the maltodextrin.
  • the pet food comprises from 1 wt % to 6 wt % maltodextrin. In some embodiments, the pet food comprises from 1.2 to 1.6 wt % maltodextrin, optionally about 1.3 wt %, about 1.4 wt % or about 1.5 wt %
  • the present disclosure provides a pet food, wherein the pet food has a moisture content of from 15 wt % to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %, optionally from 18 wt % to 23 wt %) and comprises at least one dextrin and at least one emulsifier.
  • the pet food includes maltodextrin and/or DATEM.
  • the pet food may comprise one or more of the following ingredients: maltodextrin, DATEM, OSA-modified starch and any combination thereof.
  • Modified dextrins and modified starches have been found to be effective in reducing or preventing ‘bloom’ formation, e.g. when the pet food is removed from a sealed package.
  • the coating preferably comprises a carbohydrate selected from a modified dextrins and a modified starch, more preferably a carbohydrate selected from esterified dextrins and esterified starch. These carbohydrates have been found to be particularly effective in reducing or preventing bloom formation when incorporated into the coating.
  • the bloom discoloration may be due to minerals migrating to the surface of the pet food from the core, and the present of these carbohydrates stabilizes the minerals, such that they do not form deposits.
  • the chelant when bound to a metal ion, slows the metal ion's migration from the core to the coating, but, even when the metal ion reaches the coating, the chelated metal ion is less likely to precipitate and form a deposit.
  • the coating comprises a glucose-containing carbohydrate selected from an esterified dextrin and an esterified starch.
  • the esterified dextrin or the esterified starch contains an alkyl group having at least 2 carbon atoms, optionally at least 4 carbon atoms, optionally at least 5 atoms, optionally from 2 to 15 atoms, optionally from 5 to 12 atoms, optionally from 6 to 10 atoms, optionally 7, 8 or 9 atoms.
  • the esterified dextrin or the esterified starch is the product of the esterification of a dextrin or starch with an alkyl succinic anhydride.
  • the esterified dextrin or the esterified starch is the product of the esterification of a dextrin or starch with an alkyl succinic anhydride, wherein the alkyl comprises at least 2 carbon atoms, optionally at least 4 carbon atoms, optionally at least 5 atoms, optionally from 2 to 15 atoms, optionally from 5 to 12 atoms, optionally from 6 to 10 atoms, optionally 7, 8 or 9 atoms.
  • the glucose-containing carbohydrate is selected from an esterified dextrin and an esterified starch and the glucose-containing carbohydrate constitutes from 0.5 to 10 wt % of the edible pet food, optionally from 1 to 6 wt % of the edible pet food, optionally from 1 to 5 wt % of the edible pet food, optionally from 1 to 4 wt % of the edible pet food, optionally from 2 to 5 wt % of the edible pet food, optionally from 2 to 4 wt % of the edible pet food.
  • the coating comprises an amount of at least one octenyl succinate hydrolysed starch, which may also be termed an octenyl succinate maltodextrin.
  • the amount of octenyl succinate hydrolysed starch constitutes from 0.5 to 10 wt % of the edible pet food, optionally from 1 to 6 wt % of the edible pet food, optionally from 1 to 5 wt % of the edible pet food, optionally from 1 to 4 wt % of the edible pet food, optionally from 2 to 5 wt % of the edible pet food, optionally from 2 to 4 wt % of the edible pet food.
  • the pet food preferably comprises a chelant.
  • the chelant has been found to assist in reducing or preventing bloom formation.
  • a chelant may be defined as a species capable of forming two or more coordinate bonds with an ion, e.g. a metal ion.
  • the chelant may be a polydentate ligand.
  • the chelant is bound to a metal atom.
  • the metal atom may be selected from a divalent and a trivalent metal atom.
  • the metal atom may be an atom from Group II and the transition metals (Groups 3 to 12 of the periodic table).
  • the metal atom may be selected from calcium, copper, iron, magnesium, manganese, zinc, sodium and potassium.
  • the chelant is preferably a chelant that binds to calcium.
  • the pet food comprises a core and a coating
  • a chelant may be selected from a citrate, an acetate, ethylenediaminetetraacetate (EDTA), a phosphate, sorbitol, a tartrate and a thiosulfate, a gluconate, an oxystearin and a phytate.
  • the citrate may be selected from calcium citrate, citric acid, monoisopropyl citrate, monoglyceride citrate, potassium citrate, sodium citrate, stearyl citrate, trimethyl citrate.
  • the phosphate may be selected from a monophosphate (also termed an orthophosphate), a polyphosphate such as a diphosphate (sometimes termed a pyrophosphate), a metaphosphate (a cyclic phosphate, such as trimetaphosphosphate).
  • the phosphate may be selected from a calcium phosphate, a sodium phosphate and a potassium phosphate.
  • the acetate may be a calcium acetate.
  • the EDTA may be selected from disodium calcium EDTA and disodium dihydrogen EDTA.
  • the gluconate may be selected from calcium gluconate and sodium gluconate.
  • the tartrate may be selected from calcium tartrate, sodium tartrate, and potassium tartrate.
  • the thiosulphate may be selected from calcium thiosulphate and sodium thiosulphate.
  • Calcium citrate may also be termed tricalcium dicitrate or 2-hydroxy-1,2,3-propane-tricarboxylic acid calcium salt
  • the chelant is a citrate.
  • the pet food comprises at least 1 wt % of at least one citrate.
  • the citrate is selected from a calcium citrate, a sodium citrate and any combination thereof.
  • the pet food, e.g. the core comprises calcium ions, and optionally at least some of which are bound to a chelant, and optionally the calcium ion content is at least 100 mg per 100 gram of the pet food, optionally at least 200 mg per 100 gram of the pet food, optionally at least optionally at least 500 mg per 100 gram of the pet food, optionally at least 800 mg per 100 gram of the pet food, optionally at least 1 g per 100 gram of the pet food, optionally at least 1.2 g per 100 gram of the pet food.
  • the edible pet food comprises an emulsifier.
  • the edible pet food comprises a core and a coating, wherein at least one of the core and the coating further comprises an emulsifier.
  • the emulsifier may be present with the glucose-containing carbohydrate is selected from a dextrin and a starch.
  • the emulsifier may be present with maltodextrin.
  • the emulsifier has a HLB value of less than 15. In an embodiment, the emulsifier has an HLB value of from 5 to 15, optionally from 6 to 12, optionally from 7 to 11, optionally from 8 to 10.
  • the emulsifier is selected from diacetyl tartaric acid esters of mono- and diglycerides [DATEM], lecithin [LC], mono- and diglycerides [MDG], a stearoyllactate, e.g.
  • DATEM diacetyl tartaric acid esters of mono- and diglycerides
  • LC lecithin
  • MDG mono- and diglycerides
  • stearoyllactate e.g.
  • the emulsifier comprises diacetyl tartaric acid esters of mono- and diglycerides (DATEM).
  • the core comprises diacetyl tartaric acid esters of mono- and diglycerides (DATEM). In an embodiment, the core comprises maltodextrin and diacetyl tartaric acid esters of mono- and diglycerides (DATEM). In an embodiment, the pet food comprises from 0.5 to 1.1 wt % DATEM.
  • the resilience and the cohesiveness of the pet food have been found to be features that influence how readily the pet food is eaten by an animal, such as a cat or dog.
  • the present inventors found that pet foods with certain levels of resilience and cohesiveness were more desirable than others.
  • the following values indicate a food that is desirable, particularly for a cat.
  • the resilience and cohesiveness may be measured by Texture Profile Analysis, for example as described in Example 1 below.
  • the pet food has a resilience measured by Texture Profile Analysis of 0.14 or greater, optionally a resilience measured by Texture Profile Analysis of from 0.14 to 0.25, optionally from 0.14 to 0.23, optionally from 0.14 to 0.21, 0.14 to 0.20.
  • the pet food has a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
  • the pet food has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.75.
  • the pet food has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.61, optionally from 0.50 to 0.58, optionally from 0.50 to 0.56.
  • the pet food has a resilience measured by Texture Profile Analysis of 0.14 or greater and a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
  • the moisture content of the pet food may be measured as described in Example 2.
  • the moisture content may be measured in accordance with BS 4401 Pt 3:1997, BS 4401-3:1997, ISO 1442:1997.
  • the pet food has a moisture content of 15 to 50 wt %, optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %, optionally from 17 to 25 wt %, optionally from 19 to 23 wt %.
  • the pet food comprises at least 50 wt % meat, optionally at least 60 wt % meat, optionally at least 70 wt % meat, optionally at least 80 wt % meat. In an embodiment, the pet food comprises from 50 wt % to 95 wt % meat, optionally from 60 wt % to 95 wt %, optionally from 70 wt % to 95 wt % meat.
  • the meat comprises organ meat.
  • at least 50 wt % of the meat is organ meat.
  • the organ may be selected from liver and heart.
  • the pet food comprises at least 50 wt % meat, of which at least 50 wt % is organ meat.
  • the meat comprises viscera.
  • the pet food comprises at least 50 wt % meat, of which at least 15 wt % is viscera.
  • the pet food comprises at least 2 wt % blood plasma, optionally at least 3 wt % blood plasma, optionally at least 4 wt % blood plasma, optionally at least 5 wt % blood plasma, optionally at least 6 wt % blood plasma.
  • the pet food comprises from 2 wt % to 10 wt % blood plasma, optionally 4 wt % to 9 wt % blood plasma, optionally from 5 wt % to 9 wt % blood plasma, 6 wt % to 8 wt % blood plasma.
  • the blood plasma may be from any suitable animal, such as a pig or a cow.
  • the pet food may have an animal protein content of at least 30 wt %, optionally at least 35 wt %, optionally at least 38 wt %, optionally at least 40 wt %.
  • the pet food may have an animal protein content of from at least 30 wt % to 60 wt %, optionally 30 wt % to 50 wt %, optionally from 35 wt % to 45 wt %, optionally from 38 wt % to 44 wt %.
  • the protein content may be measured using any suitable method, for example the method according to BS 4401 Pt 2: 1980, ISO 937-1978.
  • the pet food e.g. the core or coating, may comprise a phosphate, e.g. a tetrapotassium pyrophosphate.
  • the pet food comprises at least about 0.3 wt % tetrapotassium pyrophosphate. This is believed to contribute to weakening the protein structure and producing a more favourable texture for the pet food.
  • the water activity (Aw) of the edible pet food is from 0.7 to 0.8.
  • each component may be present in the core and/or the coating.
  • the edible pet food may comprise at least one humectant.
  • the humectant may be present in the core or the coating, preferably the core.
  • the humectant may act to bind water and prevent movement to the surface of the pet food, helping to reduce or prevent bloom formation.
  • the at least one humectant is selected from glycol, glycerol, pectin, sodium carboxymethyl cellulose (CMC), and any combination thereof.
  • the pet food may comprises at least one of an amount of yeast, an amount of yeast extract, or a combination thereof.
  • a pet food of the present disclosure is designed to be 100% nutritionally complete and balanced for animal nutrition.
  • a pet food of the present disclosure may also contain at least one fat, flavor enhancers, preservatives, nutrients, and/or colorants.
  • fat includes edible oils and preferably will be liquid fat at room temperature.
  • Exemplary fats include corn oil, soybean oil, peanut oil, cottonseed oil, grapeseed oil, sunflower oil, flaxseed oil (and other sources of omega-3 and omega-6 fatty acids), vegetable oil, palm kernel oil, olive oil, tallow, lard, shortening, butter and combinations thereof.
  • the pet food of the present disclosure demonstrates flexibility and elastic properties to reduce chewing time, which is also referred to, variously, as “lasting time.”
  • the pet food is designed to break down under minimal chewing.
  • the texture of the pet food ensures proper balance between animal safety and preference.
  • the pet food of the present disclosure can be formulated using one or more of the following ingredients: gelatin, wheat protein isolate, glycerin, pea protein, water, potato protein, sodium caseinate, natural poultry flavor, lecithin, minerals (dicalcium phosphate, potassium chloride, magnesium amino acid chelate, calcium carbonate, zinc sulfate, ferrous sulfate, copper sulfate, manganese sulfate, potassium iodide), vitamins (dl-alpha tocopherol acetate [source of vitamin E], L-ascorbyl-2-polyphosphate [source of vitamin C], vitamin B12 supplement, d-calcium pantothenate [vitamin B5], niacin supplement, vitamin A supplement, riboflavin supplement, vitamin D3 supplement, biotin, pyridoxine hydrochloride [vitamin B6], thiamine mononitrate [vitamin B1], folic acid), dried tomato, apple pomace, vegetable oil (pres
  • a pet food of the present disclosure can include, but is not limited to, protein materials, starch materials, fiber materials, fat materials, mineral materials, vitamin materials, and mixtures and combinations thereof.
  • Protein materials can include, but are not limited to, chicken meal, chicken, chicken by-product meal, lamb, lamb meal, turkey, turkey meal, beef, beef by-product, viscera, fish meal, entrails, and mixtures and combinations thereof.
  • Starch materials can include, but are not limited to, cereals, grains, corn, wheat, rice, oats, corn grits, sorghum, grain sorghum, wheat bran, oat bran, amaranth, durum wheat, potatoes, tapioca and mixtures and combinations thereof.
  • Fiber materials can include, but are not limited to, fructooligiosaccharides, beet pulp, mannanoligosaccharides, oat fiber, citrus pulp, carboxymethylcellulose, gums such as gum Arabic guar gum and carrageen, apple and tomato pomaces, citrus fiber, fiber extracts, fiber derivatives, dried beet fiber, distillers dried grain solids, and mixtures and combinations thereof.
  • Fat materials include, but are not limited to, poultry fat, chicken fat, turkey fat, pork fat, lard, tallow, beef fat, vegetable oils, corn oil, soy oil, cotton pellet oil, rape pellet oil, fish oil, menhaden oil, anchovy oil, palm oil, palm kernel oil, coconut oil, and mixtures and combinations thereof, and partially or fully hydrogenated versions of any of the aforementioned oils.
  • Mineral materials can include, but are not limited to, sodium selenite, monosodium phosphate, calcium carbonate, potassium chloride, ferrous sulfate, zinc oxide, manganese sulfate, copper sulfate, manganese oxide, potassium iodide, cobalt carbonate, and mixtures and combinations thereof.
  • Vitamin materials can include, but are not limited to, choline chloride, vitamin E supplement, ascorbic acid, vitamin A acetate, calcium pantothenate, pantothenic acid, biotin, thiamine mononitrate, vitamin B12 supplement, niacin, riboflavin supplement, inositol, pyridoxine hydrochloride, vitamin D3 supplement, folic acid, vitamin C, and mixtures and combinations thereof.
  • a pet food of the present disclosure can comprise additional components including, but not limited to, beef broth, brewers dried yeast, egg, egg product, flax meal, amino acids such as methionine, leucine, lysine, tryptophan, arginine, cysteine, aspartic acid, taurine, and mixtures and combinations thereof.
  • the pet food comprises a core and a coating disposed on the core.
  • the coating may be a layer that covers at least some of the core, optionally all of the core.
  • the coating may cover, for example, at least 10% of the area of the surface of the core, optionally at least 20% of the area of the surface of the core, optionally at least 30% of the area of the surface of the core, optionally at least 40% of the area of the surface of the core, optionally at least 50% of the area of the surface of the core, optionally at least 60% of the area of the surface of the core, optionally at least 70% of the area of the surface of the core, optionally at least 80% by of the area of the surface of the core, optionally at least 90% of the area of the surface of the core, optionally at least 95% of the area of the surface of the core, optionally at least 98% of the area of the surface of the core.
  • the coating may constitute from 1 wt % to 30 wt % of the pet food, in some embodiments from 5 wt % to 30 wt % of the pet food, e.g. from 10 wt % to 20 wt % of the pet food.
  • the core will typically comprises animal meat comprising protein, and the coating may contain less protein than the core (in terms of wt %) or lack or substantially lack protein, e.g. the coating may comprises 10 wt % or less protein, optionally 5 wt % or less protein, optionally 2 wt % or less protein, optionally 1 wt % or less protein.
  • the coating may comprise fat, e.g.
  • the coating may comprise at least 10 wt % fat, optionally 20 wt % fat.
  • the core comprises animal meat comprising protein, and the coating comprises an animal fat, and optionally the core substantially lacks protein.
  • the animal fat, which may be present in the coating may constitute from 0.1 wt % to 10 wt % of the pet food, optionally from 0.1 wt % to 5 wt % of the pet food, optionally from 0.5 wt % to 5 wt % of the pet food, optionally from 0.5 wt % to 4 wt % of the pet food.
  • the coating may further comprise a particulate material.
  • the particulate material may comprise a phosphate.
  • the coating preferably comprises a glucose-containing carbohydrate selected from a dextrin and an starch, preferably a glucose-containing carbohydrate selected from an esterified dextrin and an esterified starch, such as octenylsuccinate hydrolysed starch.
  • the core may further comprise a chelant.
  • the coating comprises at least one fat and at least one phosphate.
  • the pack may comprise an interior chamber that is airtight and/or contains less than 10 vol % oxygen, optionally less than 5 vol % oxygen, optionally less than 1 vol % oxygen, optionally less than 0.5 vol % oxygen.
  • the interior chamber may lack or substantially lack oxygen.
  • the interior chamber may comprises an amount of two or more gases, and wherein the two or more gases comprise at least 60 vol % nitrogen and at least 25 vol % carbon dioxide.
  • the interior chamber may comprises a gas selected from nitrogen and oxygen, and optionally a mixture thereof, and the interior chamber may contains less than 10 vol % oxygen, optionally less than 5 vol % oxygen, optionally less than 1 vol % oxygen, optionally less than 0.5 vol % oxygen, and the interior chamber may lack or substantially lack oxygen.
  • the pet food may be present in the interior chamber.
  • the pack may be formed from suitable materials, e.g. plastic and/or metal.
  • a method of producing an edible pet food composition or an edible pet food may comprise:
  • a meat with one or more components, e.g. one or more components mentioned herein, to form a pet food composition, cooking the pet food composition, optionally with steam, and optionally drying the pet food composition, wherein a pet food is formed by the method and the pet food has a moisture content of from 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • a method of producing an edible pet food as described herein comprising combining an amount of meat comprising animal protein, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch to form a pet food composition, cooking the pet food composition with steam; drying the pet food composition, and, before or after the drying, applying a coating to the pet food composition to produce a pet food having the pet food composition in a core and the coating disposed thereon, wherein the pet food has a moisture content of at least 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and pet food has an animal protein content of at least 30 wt %.
  • the method comprises combining an emulsifier with the amount of meat comprising animal protein and an amount of a glucose-containing carbohydrate to form the pet food composition.
  • a method of producing a pet food comprising: combining an amount of meat, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch, and an amount of at least one emulsifier to form a pet food composition; cooking the pet food composition with steam; and
  • the method further involves, after the cooking and before or after the drying, applying a coating on the pet food to produce a pet food having a core comprising the pet food having a coating disposed thereon.
  • the drying may be carried out at a temperature of from 90° C. to 110° C., optionally from 95° C. to 105° C.
  • the cooking may be carried out at a higher temperature than the drying, e.g. at a temperature of from at least 120°, optionally at least 130° C., optionally from 150 to 190° C.
  • the coating may be formed using any suitable method, such as spraying the pet food composition (or core) with, or dipping the pet food composition (or core), into the material that will form the coating.
  • a method of producing an edible pet food as described herein comprising combining an amount of meat comprising animal protein, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch to form a pet food composition, cooking the pet food composition with steam; drying the pet food composition, and, before or after the drying, applying a coating to the pet food composition to produce a pet food having the pet food composition in a core and the coating disposed thereon, wherein the pet food has a moisture content of at least 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and pet food has an animal protein content of at least 30 wt %.
  • the method comprises combining an emulsifier with the amount of meat comprising animal protein and an amount of a glucose-containing carbohydrate to form the pet food composition.
  • the pet food composition may be passed through a nozzle, e.g. a shaped nozzle, and then placed in an oven for the cooking.
  • the composition may be coated with a coating as described herein.
  • the composition or pet food may be cut before or after the cooking, e.g. at certain points along its length, and then coated with a coating as described herein.
  • One or more further components may be included in the pet food composition, which may form the core of a pet food if a coating is applied, and the one or more further components may be as described herein. If a coating is applied, one or more further components may be included in coating, and the one or more further components may be as described herein.
  • the dextrin may comprises maltodextrin.
  • the emulsifier may be selected from diacetyl tartaric acid esters of mono- and diglycerides (DATEM), lecithin, mono- and diglycerides, [a stearoyllactate, e.g.
  • the emulsifier comprises diacetyl tartaric acid esters of mono- and diglycerides (DATEM).
  • DATEM diacetyl tartaric acid esters of mono- and diglycerides
  • the pet food produced by the method has a resilience measured by Texture Profile Analysis of 0.14 or greater.
  • the pet food produced by the method has a resilience measured by Texture Profile Analysis of from 0.14 to 0.19.
  • the pet food produced by the method has a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
  • the pet food produced by the method has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.75.
  • the pet food produced by the method has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.61.
  • the pet food produced by the method has a resilience measured by Texture Profile Analysis of 0.14 or greater and a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
  • the resilience is from 0.14 to 0.19.
  • the cohesiveness is from 0.50 to 0.75.
  • the pet food produced by the method comprises from 1.2 to 1.6 wt % maltodextrin.
  • the pet food produced by the method from 0.5 to 1.1% DATEM.
  • the moisture content may be from 19-25 wt %.
  • the pet food composition and/or pet food produced by the method comprises at least 50 wt % meat.
  • the meat comprises at least 50 wt % organ meat.
  • the meat comprises at least 15 wt % viscera.
  • the pet food composition and/or pet food produced by the method further comprises at least about 0.3 wt % tetrapotassium pyrophosphate.
  • the pet food composition and/or the pet food produced by the method further comprises at least about 1 wt % of at least one citrate.
  • the at least one citrate is selected from a calcium citrate, a sodium citrate and any combination thereof.
  • the Aw of the pet food produced by the method is from 0.7 to 0.8.
  • the pet food composition and/or the pet food produced by the method further comprises at least one humectant.
  • the at least one humectant is selected from glycol, glycerol, pectin, sodium carboxymethyl cellulose (CMC), and any combination thereof.
  • the pet food composition and/or the pet food produced by the method further comprises at least 6 wt % blood plasma.
  • the pet food composition and/or the pet food produced by the method further comprises at least one of an amount of yeast, an amount of yeast extract, and a combination thereof.
  • the coating may comprise at least one fat and/or at least one phosphate.
  • the coating may comprise an amount of at least one octenyl succinate hydrolysed starch.
  • the amount of octenyl succinate hydrolysed starch may be from 1 to 4 wt % of the pet food produced by the method.
  • the method may further comprise packing the pet food in a pack, wherein the pack comprises an airtight interior chamber, and optionally wherein the interior chamber comprises an amount of two or more gases, and wherein the two or more gases comprise at least 60 vol % nitrogen and at least 25 vol % carbon dioxide.
  • FIG. 1 is a schematic of a Texture Profile Analysis measurement, as described in Example 1 below.
  • FIG. 2 is a plot of data comparing the properties of examples of a pet food of the present disclosure, as described in Example 4, with commercially available pet foods, and samples of cooked, but unprocessed meat.
  • Texture Profile Analysis allows the determination of several parameters that characterise the texture of the sample.
  • the sample is first incubated at 22° C. for 1 hour prior to testing.
  • the samples are tested immediately after removal from the incubator. These samples are laid flat in the center of a flat surface such that the sample is compressed in the longitudinal direction.
  • a texture analyser Stable Micro Systems TA HD Plus
  • a compression plate of a size sufficient to compress the entire surface of the sample is used to compress the product to 50% strain, or 50% of its overall height at a speed of 1 mm/s. In the case of the 10 mm high sample, the distance to 50% strain is 5 mm.
  • the probe is then moved upwards immediately at rate of 1 mm/s and stops 10 mm above the base plate, the original sample height.
  • the compression plate pauses for a period of 5 seconds in which the product, dependent on its material properties can recover some of its original shape and form.
  • the second compression cycle is then carried out.
  • the compression plate is moved down to the distance that was required to achieve 50% strain during first compression (in this case 5 mm) at a speed of 1 mm/s.
  • the probe is then moved upwards immediately at rate of 1 mm/s and stops at the original probe height.
  • FIG. 1 A schematic of a Texture Profile Analysis measurement is shown in FIG. 1 .
  • the measurement is presented as the force experienced by the probe against time elapsed. This emulates the compression from a first bite, followed by a second bite at the same location and is a well-established technique.
  • L 1 corresponds to the period during the test in which the probe is moving in the downward direction during the first compression and there is a force measured.
  • L 2 corresponds to the period during the test in which the probe is moving in the upward direction during the first compression and a force is measured.
  • L 4 corresponds to the period during the test in which the probe is moving in the downward direction during the second compression and a positive force is measured.
  • L 5 corresponds to the period during the test in which the probe is moving in the upward direction during the second compression and a positive force is measured.
  • the first parameter of interest from this measurement is the hardness. This is the peak force of the first compression of the sample. This need not correspond to the point of deepest compression. In the present work, this has also been normalised relative to the area of the sample upon which the platen acts to give a stress value. This value indicates the amount of resistance a tooth would encounter during a biting action. As noted above, a higher stress value can increase the risk of tooth fracture.
  • the second parameter of interest is cohesiveness. This is a measure of work during the second compression relative to the work during the first compression:
  • Cohesiveness therefore represents how well the product withstands a second deformation relative to how it behaved under the first deformation and so is a good indication of the ability of the sample to maintain a resistance to subsequent bites and offer a continuing cleaning action for the animal's teeth.
  • the third parameter of interest is the instantaneous recoverable springiness (IRS), which is a measure of the springback during the first compression:
  • IRS is therefore indicative of the springiness of the sample directly after the compressive downstroke.
  • the fourth parameter is the retarded recoverable springiness (RRS), which is a measure of how well the product physically springs back after it has been deformed during the first compression.
  • the springback is measured at the downstroke of the second compression relative to the first compression:
  • RRS is indicative of the amount of springback before the second compressive downstroke.
  • the fifth parameter is the resilience, which is a measure of the area during withdrawal of the first compression relative to the area during the first compressive downstroke:
  • the resilience is indicative of how much work the sample does in trying to regain its original shape, and so is another indication of the instantaneous springiness of the sample.
  • the moisture content (i.e. water content) of the samples is measured using the following procedure.
  • An aluminum dish is dried in an oven at 102 ⁇ 2° C. for at least one hour.
  • the tray is removed from the oven and placed in a desiccator and allowed to cool for at least 30 minutes to reach room temperature.
  • the weight of the dried dish is then recorded (A).
  • 5 ⁇ 0.5 g of sample e.g. pet food or composition
  • the sample-containing dish is then placed inside an oven held at 102 ⁇ 2° C. for 240 minutes ⁇ 5 minutes, the time is recorded from the point when the oven has reached equilibrium and the oven door remains closed throughout this time.
  • the sample-containing dish is then removed and placed in a desiccator for 30 minutes and then reweighed to give a final combined weight of dish and sample (C).
  • the moisture content of the sample as a percentage of the total weight of the sample is
  • the semi-moist edible pet food in this Example in this case a chicken-based product, was prepared using the ingredients shown in Table 1.
  • a core was formed.
  • the core was formulated by preparing a meat emulsion by first grinding the meat components labelled ‘M’ in Table 1. The meat is frozen at the start of grinding, and gradually defrosts during the grinding, mixing and emulsification steps. Next, the mixture of dry ingredients labelled ‘D’ and liquid ingredients labelled ‘L’ were added to the ground meat components labelled ‘M’ and the composition mixed and emulsified.
  • the core of the pet food is then shaped by pumping the pet food through a shaped nozzle.
  • the shaped core is then cooked by using a combi-oven, which utilizes a combination of steam and heat to cook the composition at a temperature of about 150° C.-190° C. This procedure sets the shape by protein coagulation. In some cases, the shaped core is then cut to provide the final product shape and size.
  • a combi-oven which utilizes a combination of steam and heat to cook the composition at a temperature of about 150° C.-190° C. This procedure sets the shape by protein coagulation. In some cases, the shaped core is then cut to provide the final product shape and size.
  • the cooked cores are then dried in a drier at 100° C. for approximately 40-50 minutes to reach a moisture content of 18 wt. %.
  • a drier at 100° C. for approximately 40-50 minutes to reach a moisture content of 18 wt. %.
  • This provides the core used in the semi-moist edible pet food. While drying at 120° C. made the treats more palatable to cats, the overall appearance of the product was not as desirable.
  • the coating for the semi-moist edible pet food is formed by combining the C components (palatant powder with phosphate 17.24 wt. % of coating, palatant liquid 41.38 wt. % of coating, animal fat 41.38 wt. % of coating).
  • the semi-moist edible pet food is then formed by spraying the coating (7.25 wt. % of the pet food) onto the entire surface of the core (92.75 wt. % of the pet food), forming a core and a coating disposed on the core.
  • the semi-moist edible pet food may then be packaged in a modified atmosphere of nitrogen (70 wt. %) and carbon (30 wt. %).
  • Example 1 The texture profile analysis described in Example 1 was performed for this product. The resilience and cohesiveness of the semi-moist edible pet food made from chicken were similar to those found for Example 4.
  • a consumer screening research study also indicated an improvement in OPE (owner perceived enjoyment) and a reduction in product refusals for cats, compared to products that were very similar, but lacked the maltodextrin and DATEM ester.
  • the method of cooking using steam described above was also found to improve the palatability of the pet food to cats compared to the same food cooked through boiling (using the so-called ‘slice’ process).
  • the content of moisture, protein, fat, calcium, phosphorus, potassium and sodium were similar to the amounts described for Example 4 below.
  • the core was prepared as described in Example 3 except that calcium carbonate was replaced with calcium citrate (such that the quantity of calcium ions remained the same in the product to maintain the Ca:P ratio in the product) and maize starch modified hydrolysed sodium octenyl succinate was added to the coating at a sufficient quantity to form 3 wt. % of the overall coating pet food composition. This is included in the coating by combining it with water in a ratio of 50:50 or 55:45 and heating the composition before spraying the coating onto the core at a sufficient quantity to 5.5 or 6 wt. % of the overall pet food composition.
  • Example 4 The pet food of Example 4 was compared in tests to a reference pet food that was very similar, except the core contained calcium carbonate (as in Example 3) and coating lacked OSA hydrolysed starch.
  • the core i.e. the calcium citrate
  • coating i.e. the OSA hydrolysed starch
  • Example 4 The modification of the core and coating as described in Example 4 significantly reduced bloom formation such that, after 24 hours in air, no significant bloom was visible. Moreover, even after 96 hours, no significant bloom was visible. In contrast, the semi-moist edible pet food of Example 3 showed significant bloom after 24 hours.
  • Example 4 The feeding performance of the edible pet food of Example 4 (a chicken-based pet food) and similar edible pet foods in which the meat was beef and turkey instead of chicken, was assessed in a 60 cat difference test to ensure they met feeding performance targets.
  • the three types of pet food were tested against a benchmark product (Dreamies Chicken) and met the target of no significant difference at the 95% confidence level.
  • Example 4 Three types of pet foods of Example 4 were produced, each containing a different type of meat—turkey, chicken and beef, respectively. The resilience and cohesiveness of these products were tested and the results are shown in FIG. 2 (P 1 indicates a pet food of Example 4 containing turkey, P 2 indicates a pet food of Example 4 containing beef, and P 3 indicates a pet food of Example 4 containing chicken).
  • P 4 is a sample of turkey meat (cooked, but otherwise not processed)
  • P 5 is a sample of beef meat (cooked, but otherwise not processed)
  • P 6 is a sample of chicken meat (cooked, but otherwise not processed).
  • Samples P 7 to P 19 are commercially available cat foods, generally of the treat variety.
  • the chicken-based pet food of Example 4 was found to have the following content (per 100 g) of various components:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Birds (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

An edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein and the pet food has an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.

Description

    TECHNICAL FIELD
  • The present disclosure relates generally to food compositions, more specifically to pet food compositions and/or pet food, such as compositions and/or products, e.g. in the form of treats, for feeding to cats or dogs.
  • BACKGROUND
  • The present disclosure relates generally to food compositions, more specifically to pet food compositions and/or pet food products, such as compositions and/or products for feeding to cats or dogs.
  • High meat content, foods and treats for pets are a desirable commodity for many pet owners. In devising new pet foods, a variety of different factors must be considered, such as factors affecting the likelihood that a pet owner (consumer) will purchase a product for their pet and factors affecting the likelihood that the pet will eat the food, which are not always the same, as explained below.
  • A key attribute of treats is that they must be highly palatable to the animal to ensure that they are accepted immediately and consumers, that is, the pet owner, are not disappointed.
  • BRIEF SUMMARY
  • This summary describes several embodiments of the presently-disclosed subject matter, and in many cases lists variations and permutations of these embodiments. This summary is merely exemplary of the numerous and varied embodiments. Mention of one or more representative features of a given embodiment is likewise exemplary. Such an embodiment can typically exist with or without the feature(s) mentioned; likewise, those features can be applied to other embodiments of the presently-disclosed subject matter, whether listed in this summary or not. To avoid excessive repetition, this summary does not list or suggest all possible combinations of features.
  • In some embodiments, the present disclosure provides a pet food. The pet food may be a semi-moist, edible pet food, e.g. wherein the pet food has a moisture content of 15 to 50 wt %, optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %. The pet food may comprise animal protein, e.g. in an amount of at least 30 wt %. The pet food may comprise a glucose-containing carbohydrate selected from a dextrin and a starch, for example an esterified starch. The pet food may comprise a chelant. The pet food may comprise an emulsifier. The pet food may comprise a core and a coating disposed on the core, the core may comprise animal protein, and optionally the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch. The pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and, optionally the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a chelant. The pet food may comprise a core and a coating disposed on the core, the core may comprise animal protein, the pet food may have an animal protein content of at least 30 wt %, and/or optionally at least one of the core and the coating comprises an emulsifier.
  • In some embodiments, the pet food comprises an edible pet food, which may be termed a semi-moist edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein, the pet food has an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.
  • In some embodiments, there is provided a pet food composition. The pet food composition may or may not have a coating thereon. The pet food composition may comprise any of the components described herein for the pet food in any of the stated amounts. The pet food composition may be for forming a core of a pet food described herein. In some embodiments, there is provided a pet food composition comprising from at least one dextrin; and diacetyl tartaric acid esters of mono- and diglycerides (DATEM), wherein the pet food composition has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %). In some embodiments, there is provided a pet food composition comprising from 1-10 wt % of at least one dextrin; and from 0.2-2 wt % of diacetyl tartaric acid esters of mono- and diglycerides (DATEM), wherein the pet food composition has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • In some embodiments, there is provided a pet food composition comprising: animal protein, calcium bound to a chelant, wherein the pet food composition has (i) a calcium content of at least 100 mg per gram of the composition and (ii) a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • In some embodiments, there is provided an edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %) and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein and calcium bound to a chelant, and the coating comprises a species selected from an emulsifier, a dextrin and an esterified starch.
  • In some embodiments, there is provided a method of producing an edible pet food composition or an edible pet food. In some embodiments, the method may comprise: combining a meat with one or more components to form a pet food composition, cooking the pet food composition, optionally with steam, and optionally drying the pet food composition, wherein a pet food is formed by the method and the pet food has a moisture content of from 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • In some embodiments, there is provided a method of producing an edible pet food as described herein, wherein the method comprises combining an amount of meat comprising animal protein, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch to form a pet food composition, cooking the pet food composition with steam; drying the pet food composition, and, before or after the drying, applying a coating to the pet food composition to produce a pet food having the pet food composition in a core and the coating disposed thereon, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and pet food has an animal protein content of at least 30 wt %. In an embodiment, the method comprises combining an emulsifier with the amount of meat comprising animal protein and an amount of a glucose-containing carbohydrate to form the pet food composition.
  • In some embodiments, there is provided a method of producing a pet food, comprising: combining an amount of meat, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch, and an amount of at least one emulsifier to form a pet food composition; cooking the pet food composition with steam; and drying the pet food composition at a temperature of at least 90° C. to create a pet food having a moisture content of from 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %). In an embodiment, the method further involves, after the cooking and before or after the drying, applying a coating on the pet food product to produce a pet food having a core comprising the pet food product having a coating disposed thereon.
  • In an embodiment, there is provided use of a component in an edible pet food having a moisture content of 15 to 50 wt % to reduce or prevent bloom formation on its surface, wherein the component is selected from (i) a chelant and (ii) a glucose-containing carbohydrate selected from an esterified dextrin and an esterified starch.
  • In an embodiment, there is provided use of a component in an edible pet food comprising animal protein to reduce the chewiness and/or firmness of the pet food compared to a pet food lacking the component, wherein the component is selected from (i) a glucose-containing carbohydrate selected from a dextrin and an esterified starch and (ii) an emulsifier, and the pet food has a moisture content of 15 to 50 wt %.
  • In an embodiment, there is provided use of a component in an edible pet food comprising animal protein to provide the pet food with (a) a resilience measured by Texture Profile Analysis of 0.14 or greater and/or (b) a cohesiveness measured by Texture Profile Analysis of 0.50 or greater, wherein the component is selected from (i) a glucose-containing carbohydrate selected from a dextrin and a starch and (ii) an emulsifier, and the pet food has a moisture content of 15 to 50 wt %.
  • The edible pet food may be a cat treat (or a plurality of cat treats) or a dog treat (or a plurality of dog treats).
  • Also provided herein is a pack comprising the edible pet food as described herein. The pack may have an interior chamber, and the chamber may comprise an amount of two or more gases, and wherein the two or more gases comprise at least 60 vol % nitrogen and at least 25 vol % carbon dioxide. The interior chamber may be airtight. The interior chamber may contain the pet food.
  • The present disclosure provides pet food, which may be in the form of a treat for a cat or a dog.
  • The present inventors have found that although many dry foods (e.g. having low moisture content—typically less than 15 wt. %), are palatable for cats and many wet foods (high moisture content—e.g. having a moisture content of above 50 wt. % on average) are palatable for cats, many semi-moist food products (e.g. containing approximately 15 to 50 wt. % moisture content) have not been found to be very palatable for cats. The present inventors have found that the intermediate moisture content of a semi-moist food can produce an undesirably chewy/cohesive texture, particularly when the protein content is high. Since the physiology of cats is not suited to chewing as their jaws are shaped for ripping and tearing, this may contribute to the reduced palatability of the semi-moist foods.
  • The present inventors have found that one method of improving the palatability of semi-moist foods has been to apply a coating (sometimes referred to as a palatant) to the surface of the food to improve its appeal to the animal. However, with high meat content, semi-moist pet foods, this may not provide sufficient palatability.
  • A further factor is that the preferences of consumers purchasing these treats may differ from those of their pets. The consumer, when purchasing high meat content foods for their animal, typically desires the food have a ‘meaty’ appearance. This meaty appearance can be enhanced by modulating the moisture content of some food products.
  • Accordingly, whilst the animal may prefer to eat a pet food containing less moisture, the consumer may prefer to purchase a pet food that appears meatier and, in effect, may contain a higher moisture content. However, the present inventors have found that products of this type with a meaty appearance and a high meat content can have a texture that is unappealing to animals.
  • In addition to the texture of the product, other factors must be considered. For example, pet foods must also be nutritious. Meat, in particular, is known to provide only limited amounts of vitamins and minerals and thus, in high meat content pet foods, sometimes vitamins and minerals are added to improve the nutritional value of the food. However, the present inventors have found that in some semi-moist foods, particularly those with added minerals, visible, white compounds develop on the surface of semi-moist pet foods over time once the product is in contact with air. This effect is referred to herein as “bloom”. It also occurs in semi-moist pet food that does not contain added minerals.
  • The present inventors have found that the bloom effect is a result of the evaporation of moisture from the food when a packet is opened. Whilst an equilibrium between atmospheric moisture content and the moisture content of the food develop inside the packet, reducing the bloom, the removal of the food from the packaging causes moisture to evaporate due to the strong moisture gradient of the product relative to ambient humidity. This movement of water out of the product transports minerals contained within the product to the surface (efflorescence) where they are deposited, appearing as a white crust. This effect is exacerbated when using a palatant coating on semi-moist products comprising a mixture of fat and phosphates, which promote the conglomeration of the minerals as they are enthalpically incompatible with the high fat environment of the coating.
  • The present disclosure provides a semi-moist pet food with a texture that has been found to be more palatable to animals, in particular, cats. The pet food is nevertheless be suitable for other animals, such as dogs.
  • The improved texture may result from the inclusion of at least one dextrin in the pet food. The undesirable (chewy/cohesive) texture was found to be a result of a strong protein structure in the high meat content product. The dextrin interrupts the protein structure, weakening the product and enabling it to be broken apart more easily.
  • The present improved texture may result from the inclusion of an emulsifier in the pet food. An emulsifier is also able to interrupt the protein structure within the pet food, weakening the product and enabling it to be broken apart more easily.
  • The present disclosure also provides a semi-moist pet food for which bloom is reduced or prevented. The “reduction” of bloom may indicate that, in a given time period, e.g. 24 hours, 48 hours or 72 hours, the extent of bloom formation in a pet food is reduced, when the pet food is taken from an environment in which the moisture content of the pet food is in equilibrium with its surrounding (e.g. in a sealed pack) and placed in air under ambient conditions e.g. at standard temperature (e.g. 25° C.), standard pressure (100 kPa) and 40% relative humidity. The extent of bloom formation may be measured by the degree of lightening (or whitening) of the pet food during this period. The extent of bloom may also be measured by x-ray microanalysis to detect one or more of the following ions: K+, Ca2+, Na+, CO3 2− and P3O10 5−.
  • The reduction or prevention of bloom may result from the inclusion of a chelant in the product. The chelant binds to the minerals, stabilizing them within the structure of the food, significantly reducing the enthalpic impetus for the minerals to migrate to the surface of the food with the water gradient.
  • The reduction or prevention of bloom may result from the inclusion of a modified starch or dextrin, such as an octenyl succinate hydrolyzed starch in the product, in particular, in a coating on the surface of the product. The modified starch or dextrin binds fat in the coating and alters the polarity. This alters the electrostatic forces acting on the minerals such that the minerals remain dispersed within the fat-containing coating and therefore, the minerals remain as free ions and do not form deposits on the surface. Furthermore, the addition of an modified starch or dextrin, such as octenyl succinate hydrolyzed starch, to the coating improves the appearance of the food from the consumer's perspective, providing a shiny appearance that gives the appearance of meat.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic of a Texture Profile Analysis measurement, as described in Example 1 below.
  • FIG. 2 is a plot of data comparing the properties of examples of a pet food of the present disclosure, as described in Example 4, with commercially available pet foods, and samples of cooked, but unprocessed meat.
  • DETAILED DESCRIPTION
  • The details of one or more embodiments of the presently-disclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom. In case of conflict, the specification of this document, including definitions, will control.
  • The presently-disclosed subject matter is illustrated by specific but non-limiting examples throughout this description. The examples may include compilations of data that are representative of data gathered at various times during the course of development and experimentation related to the present invention(s). Each example is provided by way of explanation of the present disclosure and is not a limitation thereon. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made to the teachings of the present disclosure without departing from the scope of the disclosure. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment.
  • All references to singular characteristics or limitations of the present disclosure shall include the corresponding plural characteristic(s) or limitation(s) and vice versa, unless otherwise specified or clearly implied to the contrary by the context in which the reference is made.
  • All combinations of method or process steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.
  • While the following terms used herein are believed to be well understood by one of ordinary skill in the art, definitions are set forth to facilitate explanation of the presently-disclosed subject matter.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presently-disclosed subject matter, representative methods, devices, and materials are now described.
  • Following long-standing patent law convention, the terms “a”, “an”, and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “an amino acid” may include a plurality of such amino acids, and so forth.
  • Unless otherwise indicated, all numbers expressing quantities, properties, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.
  • As used herein, the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±50%, in some embodiments ±40%, in some embodiments ±30%, in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.
  • As used herein, ranges can be expressed as from “about” one particular value, and/or to “about” another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
  • If the pet food is described as comprising a certain amount of a component, this indicates that it is the whole of the pet food, including any core and coating that are present, which comprises the component in the certain amount. For example, if the pet food comprises 5 wt % of component A, this indicates that the whole of the pet food, including the core and coating, if present, comprises the component A in an amount of 5 wt % of the whole pet food.
  • As used herein, “pet food” means a composition intended for oral consumption to meet one or more nutritional needs of a pet. Pet food expressly excludes items which are capable of being orally ingested but are not intended to be ingested, such as rocks. The pet food may be selected from a treat, chew, biscuit, gravy, supplement, topper, and combinations thereof. The pet food may or may not be nutritionally balanced and complete.
  • As used herein, “nutritionally balanced” and/or “nutritionally complete” refers to a composition capable of sustaining life as the sole dietary ration for an animal, without the need for any other substance, except possibly water.
  • All % of a component in a composition, pet food or other item mentioned herein are wt %, i.e. the weight percent of the component in the relevant composition, pet food or other item, unless otherwise stated.
  • The pet food may be in the form of a treat or a plurality of treats. A treat may be defined as an object having at least one dimension larger than 2 mm and/or at least one dimension smaller than 20 mm. In some embodiments, the pet food has a maximum dimension of 20 mm or less, optionally 17 mm or less, optionally 15 mm or less, optionally 12 mm or less and/or in some embodiments, the pet food has a minimum dimension of at least 2 mm, optionally at least 3 mm, optionally at least 4 mm. The treat may have dimensions, perpendicular to one another, defined as length, width and height, and the height may be from 2 mm to 20 mm, the length may be from 2 mm to 20 mm, and the width may be from 2 mm to 20 mm. The treat may have dimensions, perpendicular to one another, defined as length, width and height, and the height may be from 2 mm to 15 mm, the length may be from 2 mm to 15 mm, and the width may be from 2 mm to 15 mm. The treat may have dimensions, perpendicular to one another, defined as length, width and height, and the height may be from 3 mm to 8 mm, the length may be from 9 mm to 13 mm, and the width may be from 8 mm to 12 mm. A treat may be an object having a relatively consistent cross-sectional shape along one dimension (e.g. its length). The cross sectional shape may be a regular shape, e.g. a triangle, or four-sided shaped, such as a rectangle. The cross-sectional shape may be a non-regular shape, e.g. in the approximate form of a letter, such as an M or a T. The cross-sectional shape may be a regular shape having one or more indentations. The treat may be formed by passing a pet food composition, before cooking, through a shaped nozzle, and then cutting it at into one or more parts along its length.
  • As used herein, the terms “animal” or “pet” mean a domestic animal including, but not limited to, domestic dogs, cats, horses, cows, ferrets, rabbits, pigs, and the like. In some embodiments, “pet” means a domesticated cat.
  • As used herein, “meat” may indicate animal flesh suitable for use in a pet food. The meat may be ground and cooked. The meat may be from any suitable animal, for example from a cow, a chicken or a turkey.
  • All lists of items, such as, for example, lists of ingredients, are intended to and should be interpreted as Markush groups. Thus, all lists can be read and interpreted as items “selected from the group consisting of” . . . list of items . . . “and combinations and mixtures thereof.”
  • The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40° C.” is intended to mean “about 40° C.”
  • All percentages in the present disclosure are listed as percent by weight on the total weight of the material or mixture, unless explicitly noted otherwise.
  • Any optional or preferred feature mentioned herein may be combined with any embodiment described herein and/or any other optional or preferred feature.
  • As mentioned, in some embodiments, the present disclosure provides a pet food. The pet food may be a semi-moist edible pet food, e.g. wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %). The pet food may comprise animal protein, e.g. in an amount of at least 30 wt %. The pet food may comprise a glucose-containing carbohydrate selected from a dextrin and a starch, for example an esterified starch. The pet food may comprise a chelant. The pet food may comprise an emulsifier. The pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch. The pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a chelant. The pet food may comprise a core and a coating disposed on the core, and the core may comprise animal protein and the pet food may have an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises an emulsifier.
  • In some embodiments, the pet food comprises an edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %) and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein and the pet food has an animal protein content of at least 30 wt %, and at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.
  • In some embodiments, there is provided a pet food composition comprising from 1-10 wt % of at least one dextrin; and from 0.2-2 wt % of diacetyl tartaric acid esters of mono- and diglycerides (DATEM), wherein the pet food composition has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • In some embodiments, there is provided a pet food composition comprising: animal protein, calcium bound to a chelant, wherein the pet food composition has (i) a calcium content of at least 100 mg per gram of the composition and (ii) a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • In some embodiments, there is provided an edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %) and the pet food comprises a core and a coating disposed on the core, wherein the core comprises animal protein and calcium bound to a chelant, and the coating comprises a species selected from an emulsifier, a dextrin and an esterified starch.
  • Glucose-Containing Carbohydrate (Including Modified and Unmodified Dextrins and Starch)
  • In some embodiments, the glucose-containing carbohydrate is selected from a dextrin and a starch, for example an esterified starch. A starch may be defined as a carbohydrate comprising glucose units linked by glycosidic bonds, and it typically comprises amylose and amylopectin. Starch may comprise, by weight, 20 to 25% amylose and 75 to 80% amylopectin (in the absence of any modification). In the present disclosure the starch may be an unmodified starch or a modified starch. A modified starch may, for example, be an esterified starch.
  • The dextrin and the starch are optionally modified dextrin or starch. Dextrin may be defined as a carbohydrate that is a polymer of D-glucose units linked by α-(1→4) or α-(1→6) glycosidic bonds. Dextrin may be produced by the hydrolysis of starch. The dextrin, which may be a maltodextrin, may comprise from 3 to 17 glucose units. The dextrin may be selected from maltodextrin, cyclodextrin, amylodextrin, (beta) or (alpha) Limit dextrin. In the present disclosure the dextrin may be an unmodified dextrin or a modified dextrin. A modified dextrin may, for example, be an esterified dextrin. An unmodified dextrin may indicate a dextrin that has not had any substituents, e.g. ester groups, added to it.
  • The dextrin may have a dextrose equivalent of from 1 to 25, optionally from 1 to 13, optionally from 3 to 20. Dextrose equivalent (DE) is a measure of the amount of reducing sugars present in a sugar product, relative to dextrose (a.k.a. glucose), expressed as a percentage on a dry basis. The dextrose equivalent may be measured by the Lane-Eynon titration, involving the reduction of copper (II) sulfate in an alkaline tartrate solution.
  • If the pet food comprises a core and a coating, preferably the core comprises an unmodified dextrin. The unmodified dextrin may be selected from maltodextrin, cyclodextrin, amylodextrin, (beta) or (alpha) Limit dextrin. It has been found that unmodified dextrin, particularly maltodextrin, assists in producing a product with favourable texture characteristics, such that the pet food is desirable, e.g. to a cat, and not too chewy or cohesive. For cats, for example, which typically rip and tear food, rather than chewing, the product was found to be acceptable and would not be refused as often as an equivalent food lacking the dextrin. The combination of the glucose-containing carbohydrate is selected, e.g. a dextrin, and an emulsifier was found to be particularly effective in creating a pet food that was not too chewy, despite, in some embodiments, containing a reasonably high amount of animal protein. The glucose-containing carbohydrate and/or the emulsifier may act to interrupt the protein structure in the pet food, to a certain extent, allowing it to be broken apart more easily in an animal's mouth.
  • In some embodiments, the core comprises the maltodextrin. In some embodiments, the pet food comprises from 1 wt % to 6 wt % maltodextrin. In some embodiments, the pet food comprises from 1.2 to 1.6 wt % maltodextrin, optionally about 1.3 wt %, about 1.4 wt % or about 1.5 wt %
  • In some embodiments, the present disclosure provides a pet food, wherein the pet food has a moisture content of from 15 wt % to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %, optionally from 18 wt % to 23 wt %) and comprises at least one dextrin and at least one emulsifier. In some embodiments, the pet food includes maltodextrin and/or DATEM.
  • Indeed, in some embodiments, the pet food may comprise one or more of the following ingredients: maltodextrin, DATEM, OSA-modified starch and any combination thereof.
  • Modified dextrins and modified starches, particularly esterified starches and esterified dextrins have been found to be effective in reducing or preventing ‘bloom’ formation, e.g. when the pet food is removed from a sealed package. When the pet food comprises a core and a coating, the coating preferably comprises a carbohydrate selected from a modified dextrins and a modified starch, more preferably a carbohydrate selected from esterified dextrins and esterified starch. These carbohydrates have been found to be particularly effective in reducing or preventing bloom formation when incorporated into the coating. It is believed that the bloom discoloration may be due to minerals migrating to the surface of the pet food from the core, and the present of these carbohydrates stabilizes the minerals, such that they do not form deposits. The combination of a carbohydrate selected from esterified dextrins and esterified starch and the use of a chelant, particularly when the core comprises the chelant and the coating comprises the esterified dextrin and/or esterified starch, has been found to be particularly effective in reducing or preventing bloom formation in the pet food. The chelant, when bound to a metal ion, slows the metal ion's migration from the core to the coating, but, even when the metal ion reaches the coating, the chelated metal ion is less likely to precipitate and form a deposit.
  • In an embodiment, the coating comprises a glucose-containing carbohydrate selected from an esterified dextrin and an esterified starch.
  • In an embodiment, the esterified dextrin or the esterified starch contains an alkyl group having at least 2 carbon atoms, optionally at least 4 carbon atoms, optionally at least 5 atoms, optionally from 2 to 15 atoms, optionally from 5 to 12 atoms, optionally from 6 to 10 atoms, optionally 7, 8 or 9 atoms.
  • In an embodiment, the esterified dextrin or the esterified starch is the product of the esterification of a dextrin or starch with an alkyl succinic anhydride. In an embodiment, the esterified dextrin or the esterified starch is the product of the esterification of a dextrin or starch with an alkyl succinic anhydride, wherein the alkyl comprises at least 2 carbon atoms, optionally at least 4 carbon atoms, optionally at least 5 atoms, optionally from 2 to 15 atoms, optionally from 5 to 12 atoms, optionally from 6 to 10 atoms, optionally 7, 8 or 9 atoms.
  • In an embodiment, the glucose-containing carbohydrate is selected from an esterified dextrin and an esterified starch and the glucose-containing carbohydrate constitutes from 0.5 to 10 wt % of the edible pet food, optionally from 1 to 6 wt % of the edible pet food, optionally from 1 to 5 wt % of the edible pet food, optionally from 1 to 4 wt % of the edible pet food, optionally from 2 to 5 wt % of the edible pet food, optionally from 2 to 4 wt % of the edible pet food.
  • In an embodiment, the coating comprises an amount of at least one octenyl succinate hydrolysed starch, which may also be termed an octenyl succinate maltodextrin.
  • In an embodiment, the amount of octenyl succinate hydrolysed starch constitutes from 0.5 to 10 wt % of the edible pet food, optionally from 1 to 6 wt % of the edible pet food, optionally from 1 to 5 wt % of the edible pet food, optionally from 1 to 4 wt % of the edible pet food, optionally from 2 to 5 wt % of the edible pet food, optionally from 2 to 4 wt % of the edible pet food.
  • Chelant
  • The pet food preferably comprises a chelant. The chelant has been found to assist in reducing or preventing bloom formation. A chelant may be defined as a species capable of forming two or more coordinate bonds with an ion, e.g. a metal ion. The chelant may be a polydentate ligand. In some embodiments, the chelant is bound to a metal atom. The metal atom may be selected from a divalent and a trivalent metal atom. The metal atom may be an atom from Group II and the transition metals (Groups 3 to 12 of the periodic table). The metal atom may be selected from calcium, copper, iron, magnesium, manganese, zinc, sodium and potassium. The chelant is preferably a chelant that binds to calcium.
  • In an embodiment, if the pet food comprises a core and a coating, preferably at least one of the core and the coating further comprises a chelant. The chelant may be selected from a citrate, an acetate, ethylenediaminetetraacetate (EDTA), a phosphate, sorbitol, a tartrate and a thiosulfate, a gluconate, an oxystearin and a phytate. The citrate may be selected from calcium citrate, citric acid, monoisopropyl citrate, monoglyceride citrate, potassium citrate, sodium citrate, stearyl citrate, trimethyl citrate. The phosphate may be selected from a monophosphate (also termed an orthophosphate), a polyphosphate such as a diphosphate (sometimes termed a pyrophosphate), a metaphosphate (a cyclic phosphate, such as trimetaphosphosphate). The phosphate may be selected from a calcium phosphate, a sodium phosphate and a potassium phosphate. The acetate may be a calcium acetate. The EDTA may be selected from disodium calcium EDTA and disodium dihydrogen EDTA. The gluconate may be selected from calcium gluconate and sodium gluconate. The tartrate may be selected from calcium tartrate, sodium tartrate, and potassium tartrate. The thiosulphate may be selected from calcium thiosulphate and sodium thiosulphate. Calcium citrate may also be termed tricalcium dicitrate or 2-hydroxy-1,2,3-propane-tricarboxylic acid calcium salt.
  • Preferably, the chelant is a citrate.
  • In an embodiment, the pet food comprises at least 1 wt % of at least one citrate. Preferably, the citrate is selected from a calcium citrate, a sodium citrate and any combination thereof. In an embodiment, the pet food, e.g. the core, comprises calcium ions, and optionally at least some of which are bound to a chelant, and optionally the calcium ion content is at least 100 mg per 100 gram of the pet food, optionally at least 200 mg per 100 gram of the pet food, optionally at least optionally at least 500 mg per 100 gram of the pet food, optionally at least 800 mg per 100 gram of the pet food, optionally at least 1 g per 100 gram of the pet food, optionally at least 1.2 g per 100 gram of the pet food.
  • Emulsifier
  • In an embodiment, the edible pet food comprises an emulsifier. In an embodiment, the edible pet food comprises a core and a coating, wherein at least one of the core and the coating further comprises an emulsifier. The emulsifier may be present with the glucose-containing carbohydrate is selected from a dextrin and a starch. The emulsifier may be present with maltodextrin.
  • In an embodiment, the emulsifier has a HLB value of less than 15. In an embodiment, the emulsifier has an HLB value of from 5 to 15, optionally from 6 to 12, optionally from 7 to 11, optionally from 8 to 10.
  • Optionally, the emulsifier is selected from diacetyl tartaric acid esters of mono- and diglycerides [DATEM], lecithin [LC], mono- and diglycerides [MDG], a stearoyllactate, e.g. sodium stearoyllactate [SSL] and calcium stearoyllactate [CSL], acetyl esters of monoglycerides [AMG], ethoxylated mono- and diglycerides [EMG], glycerol monostearate [GMS], lactyl esters of monoglycerides [LMG], polyglycerol esters [PGE], propylene glycol monostearate [PGMS], polysorbate 60 [PS60], succinyl monoglyceride [SMG], sorbitane monostearate [SPAN 60], sucrose esters [SUE]. Preferably, the emulsifier comprises diacetyl tartaric acid esters of mono- and diglycerides (DATEM). In an embodiment, the core comprises diacetyl tartaric acid esters of mono- and diglycerides (DATEM). In an embodiment, the core comprises maltodextrin and diacetyl tartaric acid esters of mono- and diglycerides (DATEM). In an embodiment, the pet food comprises from 0.5 to 1.1 wt % DATEM.
  • Cohesiveness and Resilience
  • The resilience and the cohesiveness of the pet food have been found to be features that influence how readily the pet food is eaten by an animal, such as a cat or dog. The present inventors found that pet foods with certain levels of resilience and cohesiveness were more desirable than others. The following values indicate a food that is desirable, particularly for a cat. The resilience and cohesiveness may be measured by Texture Profile Analysis, for example as described in Example 1 below.
  • In an embodiment, the pet food has a resilience measured by Texture Profile Analysis of 0.14 or greater, optionally a resilience measured by Texture Profile Analysis of from 0.14 to 0.25, optionally from 0.14 to 0.23, optionally from 0.14 to 0.21, 0.14 to 0.20. In an embodiment, the pet food has a cohesiveness measured by Texture Profile Analysis of 0.50 or greater. In an embodiment, the pet food has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.75. In an embodiment, the pet food has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.61, optionally from 0.50 to 0.58, optionally from 0.50 to 0.56. In an embodiment, the pet food has a resilience measured by Texture Profile Analysis of 0.14 or greater and a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
  • Moisture Content
  • The moisture content of the pet food may be measured as described in Example 2. The moisture content may be measured in accordance with BS 4401 Pt 3:1997, BS 4401-3:1997, ISO 1442:1997.
  • In an embodiment, the pet food has a moisture content of 15 to 50 wt %, optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %, optionally from 17 to 25 wt %, optionally from 19 to 23 wt %.
  • Meat and Protein Content
  • In an embodiment, the pet food comprises at least 50 wt % meat, optionally at least 60 wt % meat, optionally at least 70 wt % meat, optionally at least 80 wt % meat. In an embodiment, the pet food comprises from 50 wt % to 95 wt % meat, optionally from 60 wt % to 95 wt %, optionally from 70 wt % to 95 wt % meat.
  • Optionally, at least some of the meat comprises organ meat. Optionally, at least 50 wt % of the meat is organ meat. The organ may be selected from liver and heart. Optionally, the pet food comprises at least 50 wt % meat, of which at least 50 wt % is organ meat.
  • Optionally, at least some of the meat comprises viscera. Optionally, the pet food comprises at least 50 wt % meat, of which at least 15 wt % is viscera.
  • In an embodiment, the pet food comprises at least 2 wt % blood plasma, optionally at least 3 wt % blood plasma, optionally at least 4 wt % blood plasma, optionally at least 5 wt % blood plasma, optionally at least 6 wt % blood plasma. In an embodiment, the pet food comprises from 2 wt % to 10 wt % blood plasma, optionally 4 wt % to 9 wt % blood plasma, optionally from 5 wt % to 9 wt % blood plasma, 6 wt % to 8 wt % blood plasma. The blood plasma may be from any suitable animal, such as a pig or a cow.
  • The pet food may have an animal protein content of at least 30 wt %, optionally at least 35 wt %, optionally at least 38 wt %, optionally at least 40 wt %. The pet food may have an animal protein content of from at least 30 wt % to 60 wt %, optionally 30 wt % to 50 wt %, optionally from 35 wt % to 45 wt %, optionally from 38 wt % to 44 wt %. The protein content may be measured using any suitable method, for example the method according to BS 4401 Pt 2: 1980, ISO 937-1978.
  • Tetrapotassium Pyrophosphate
  • The pet food, e.g. the core or coating, may comprise a phosphate, e.g. a tetrapotassium pyrophosphate. In an embodiment, the pet food comprises at least about 0.3 wt % tetrapotassium pyrophosphate. This is believed to contribute to weakening the protein structure and producing a more favourable texture for the pet food.
  • Water Activity
  • In an embodiment, the water activity (Aw) of the edible pet food is from 0.7 to 0.8.
  • Other Components
  • Other possible components of the pet food are described herein. If the pet food comprises a core and a coating, each component may be present in the core and/or the coating.
  • The edible pet food may comprise at least one humectant. The humectant may be present in the core or the coating, preferably the core. The humectant may act to bind water and prevent movement to the surface of the pet food, helping to reduce or prevent bloom formation. In an embodiment the at least one humectant is selected from glycol, glycerol, pectin, sodium carboxymethyl cellulose (CMC), and any combination thereof.
  • The pet food may comprises at least one of an amount of yeast, an amount of yeast extract, or a combination thereof.
  • In some embodiments, a pet food of the present disclosure is designed to be 100% nutritionally complete and balanced for animal nutrition.
  • In some embodiments, a pet food of the present disclosure may also contain at least one fat, flavor enhancers, preservatives, nutrients, and/or colorants. As used herein fat includes edible oils and preferably will be liquid fat at room temperature. Exemplary fats include corn oil, soybean oil, peanut oil, cottonseed oil, grapeseed oil, sunflower oil, flaxseed oil (and other sources of omega-3 and omega-6 fatty acids), vegetable oil, palm kernel oil, olive oil, tallow, lard, shortening, butter and combinations thereof.
  • Preferably, the pet food of the present disclosure demonstrates flexibility and elastic properties to reduce chewing time, which is also referred to, variously, as “lasting time.” The pet food is designed to break down under minimal chewing. The texture of the pet food ensures proper balance between animal safety and preference.
  • In some embodiments, the pet food of the present disclosure can be formulated using one or more of the following ingredients: gelatin, wheat protein isolate, glycerin, pea protein, water, potato protein, sodium caseinate, natural poultry flavor, lecithin, minerals (dicalcium phosphate, potassium chloride, magnesium amino acid chelate, calcium carbonate, zinc sulfate, ferrous sulfate, copper sulfate, manganese sulfate, potassium iodide), vitamins (dl-alpha tocopherol acetate [source of vitamin E], L-ascorbyl-2-polyphosphate [source of vitamin C], vitamin B12 supplement, d-calcium pantothenate [vitamin B5], niacin supplement, vitamin A supplement, riboflavin supplement, vitamin D3 supplement, biotin, pyridoxine hydrochloride [vitamin B6], thiamine mononitrate [vitamin B1], folic acid), dried tomato, apple pomace, vegetable oil (preserved with mixed tocopherols), ground flaxseed, dried sweet potato, cranberry fiber, dried cultured skim milk, choline chloride, taurine, decaffeinated green tea extract, carotene, turmeric, and anthocyanins. In certain embodiments, the pet food is a natural pet food.
  • In some embodiments, a pet food of the present disclosure can include, but is not limited to, protein materials, starch materials, fiber materials, fat materials, mineral materials, vitamin materials, and mixtures and combinations thereof. Protein materials can include, but are not limited to, chicken meal, chicken, chicken by-product meal, lamb, lamb meal, turkey, turkey meal, beef, beef by-product, viscera, fish meal, entrails, and mixtures and combinations thereof.
  • Starch materials can include, but are not limited to, cereals, grains, corn, wheat, rice, oats, corn grits, sorghum, grain sorghum, wheat bran, oat bran, amaranth, durum wheat, potatoes, tapioca and mixtures and combinations thereof.
  • Fiber materials can include, but are not limited to, fructooligiosaccharides, beet pulp, mannanoligosaccharides, oat fiber, citrus pulp, carboxymethylcellulose, gums such as gum Arabic guar gum and carrageen, apple and tomato pomaces, citrus fiber, fiber extracts, fiber derivatives, dried beet fiber, distillers dried grain solids, and mixtures and combinations thereof.
  • Fat materials include, but are not limited to, poultry fat, chicken fat, turkey fat, pork fat, lard, tallow, beef fat, vegetable oils, corn oil, soy oil, cotton pellet oil, rape pellet oil, fish oil, menhaden oil, anchovy oil, palm oil, palm kernel oil, coconut oil, and mixtures and combinations thereof, and partially or fully hydrogenated versions of any of the aforementioned oils. Mineral materials can include, but are not limited to, sodium selenite, monosodium phosphate, calcium carbonate, potassium chloride, ferrous sulfate, zinc oxide, manganese sulfate, copper sulfate, manganese oxide, potassium iodide, cobalt carbonate, and mixtures and combinations thereof. Vitamin materials can include, but are not limited to, choline chloride, vitamin E supplement, ascorbic acid, vitamin A acetate, calcium pantothenate, pantothenic acid, biotin, thiamine mononitrate, vitamin B12 supplement, niacin, riboflavin supplement, inositol, pyridoxine hydrochloride, vitamin D3 supplement, folic acid, vitamin C, and mixtures and combinations thereof.
  • In one embodiment, a pet food of the present disclosure can comprise additional components including, but not limited to, beef broth, brewers dried yeast, egg, egg product, flax meal, amino acids such as methionine, leucine, lysine, tryptophan, arginine, cysteine, aspartic acid, taurine, and mixtures and combinations thereof.
  • Coating
  • In some embodiments, the pet food comprises a core and a coating disposed on the core. The coating may be a layer that covers at least some of the core, optionally all of the core. The coating may cover, for example, at least 10% of the area of the surface of the core, optionally at least 20% of the area of the surface of the core, optionally at least 30% of the area of the surface of the core, optionally at least 40% of the area of the surface of the core, optionally at least 50% of the area of the surface of the core, optionally at least 60% of the area of the surface of the core, optionally at least 70% of the area of the surface of the core, optionally at least 80% by of the area of the surface of the core, optionally at least 90% of the area of the surface of the core, optionally at least 95% of the area of the surface of the core, optionally at least 98% of the area of the surface of the core.
  • The coating may constitute from 1 wt % to 30 wt % of the pet food, in some embodiments from 5 wt % to 30 wt % of the pet food, e.g. from 10 wt % to 20 wt % of the pet food. The core will typically comprises animal meat comprising protein, and the coating may contain less protein than the core (in terms of wt %) or lack or substantially lack protein, e.g. the coating may comprises 10 wt % or less protein, optionally 5 wt % or less protein, optionally 2 wt % or less protein, optionally 1 wt % or less protein. The coating may comprise fat, e.g. animal fat, which may be selected from poultry fat, chicken fat, turkey fat, pork fat, lard, tallow and beef fat. The coating may comprise at least 10 wt % fat, optionally 20 wt % fat. In an embodiment, the core comprises animal meat comprising protein, and the coating comprises an animal fat, and optionally the core substantially lacks protein. The animal fat, which may be present in the coating, may constitute from 0.1 wt % to 10 wt % of the pet food, optionally from 0.1 wt % to 5 wt % of the pet food, optionally from 0.5 wt % to 5 wt % of the pet food, optionally from 0.5 wt % to 4 wt % of the pet food.
  • The coating may further comprise a particulate material. The particulate material may comprise a phosphate.
  • The presence of an animal fat and/or phosphate in the coating has been found to increase the palatability of the pet food. However, it also has an effect of increasing the propensity of the pet food to bloom.
  • As indicated above, the coating preferably comprises a glucose-containing carbohydrate selected from a dextrin and an starch, preferably a glucose-containing carbohydrate selected from an esterified dextrin and an esterified starch, such as octenylsuccinate hydrolysed starch. The core may further comprise a chelant. These features together assist in reducing or preventing bloom.
  • In an embodiment, the coating comprises at least one fat and at least one phosphate.
  • Pack
  • Also provided herein is a pack comprising the edible pet food described herein. The pack may comprise an interior chamber that is airtight and/or contains less than 10 vol % oxygen, optionally less than 5 vol % oxygen, optionally less than 1 vol % oxygen, optionally less than 0.5 vol % oxygen. The interior chamber may lack or substantially lack oxygen. The interior chamber may comprises an amount of two or more gases, and wherein the two or more gases comprise at least 60 vol % nitrogen and at least 25 vol % carbon dioxide. The interior chamber may comprises a gas selected from nitrogen and oxygen, and optionally a mixture thereof, and the interior chamber may contains less than 10 vol % oxygen, optionally less than 5 vol % oxygen, optionally less than 1 vol % oxygen, optionally less than 0.5 vol % oxygen, and the interior chamber may lack or substantially lack oxygen. The pet food may be present in the interior chamber.
  • The pack may be formed from suitable materials, e.g. plastic and/or metal.
  • Methods
  • In some embodiments, there is provided a method of producing an edible pet food composition or an edible pet food. In some embodiments, the method may comprise:
  • combining a meat with one or more components, e.g. one or more components mentioned herein, to form a pet food composition, cooking the pet food composition, optionally with steam, and optionally drying the pet food composition, wherein a pet food is formed by the method and the pet food has a moisture content of from 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %).
  • In some embodiments, there is provided a method of producing an edible pet food as described herein, wherein the method comprises combining an amount of meat comprising animal protein, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch to form a pet food composition, cooking the pet food composition with steam; drying the pet food composition, and, before or after the drying, applying a coating to the pet food composition to produce a pet food having the pet food composition in a core and the coating disposed thereon, wherein the pet food has a moisture content of at least 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and pet food has an animal protein content of at least 30 wt %. In an embodiment, the method comprises combining an emulsifier with the amount of meat comprising animal protein and an amount of a glucose-containing carbohydrate to form the pet food composition.
  • In some embodiments, there is provided a method of producing a pet food, comprising: combining an amount of meat, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch, and an amount of at least one emulsifier to form a pet food composition; cooking the pet food composition with steam; and
  • drying the pet food composition at a temperature of at least 90° C. to create a pet food having a moisture content of from 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %). In an embodiment, the method further involves, after the cooking and before or after the drying, applying a coating on the pet food to produce a pet food having a core comprising the pet food having a coating disposed thereon.
  • IN any embodiment described herein, the drying may be carried out at a temperature of from 90° C. to 110° C., optionally from 95° C. to 105° C. The cooking may be carried out at a higher temperature than the drying, e.g. at a temperature of from at least 120°, optionally at least 130° C., optionally from 150 to 190° C.
  • The coating may be formed using any suitable method, such as spraying the pet food composition (or core) with, or dipping the pet food composition (or core), into the material that will form the coating.
  • In some embodiments, there is provided a method of producing an edible pet food as described herein, wherein the method comprises combining an amount of meat comprising animal protein, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch to form a pet food composition, cooking the pet food composition with steam; drying the pet food composition, and, before or after the drying, applying a coating to the pet food composition to produce a pet food having the pet food composition in a core and the coating disposed thereon, wherein the pet food has a moisture content of at least 15 to 50 wt % (optionally from 15 to 40 wt %, optionally from 15 to 30 wt %, optionally from 15 to 25 wt %), and pet food has an animal protein content of at least 30 wt %. In some embodiments, the method comprises combining an emulsifier with the amount of meat comprising animal protein and an amount of a glucose-containing carbohydrate to form the pet food composition. After the combining and before the cooking, the pet food composition may be passed through a nozzle, e.g. a shaped nozzle, and then placed in an oven for the cooking. After the cooking, the composition may be coated with a coating as described herein. The composition or pet food may be cut before or after the cooking, e.g. at certain points along its length, and then coated with a coating as described herein.
  • One or more further components may be included in the pet food composition, which may form the core of a pet food if a coating is applied, and the one or more further components may be as described herein. If a coating is applied, one or more further components may be included in coating, and the one or more further components may be as described herein.
  • In any of the embodiments of the method, the dextrin may comprises maltodextrin.
  • In any of the embodiments of the method, the emulsifier may be selected from diacetyl tartaric acid esters of mono- and diglycerides (DATEM), lecithin, mono- and diglycerides, [a stearoyllactate, e.g. sodium stearoyllactate and calcium stearoyllactate], acetyl esters of monoglycerides [AMG], ethoxylated mono- and diglycerides [EMG], glycerol monostearate [GMS], lactyl esters of monoglycerides [LMG], polyglycerol esters [PGE], propylene glycol monostearate [PGMS], polysorbate 60 [PS60], succinyl monoglyceride [SMG], sorbitane monostearate [SPAN 60], sucrose esters [SUE]
  • In any of the embodiments of the method, optionally the emulsifier comprises diacetyl tartaric acid esters of mono- and diglycerides (DATEM).
  • In any of the embodiments of the method, optionally the pet food produced by the method has a resilience measured by Texture Profile Analysis of 0.14 or greater.
  • In any of the embodiments of the method, optionally the pet food produced by the method has a resilience measured by Texture Profile Analysis of from 0.14 to 0.19.
  • In any of the embodiments of the method, optionally the pet food produced by the method has a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
  • In any of the embodiments of the method, optionally the pet food produced by the method has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.75.
  • In any of the embodiments of the method, optionally the pet food produced by the method has a cohesiveness measured by Texture Profile Analysis of from 0.50 to 0.61.
  • In any of the embodiments of the method, optionally the pet food produced by the method has a resilience measured by Texture Profile Analysis of 0.14 or greater and a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
  • In any of the embodiments of the method, optionally the resilience is from 0.14 to 0.19.
  • In any of the embodiments of the method, optionally the cohesiveness is from 0.50 to 0.75.
  • In any of the embodiments of the method, wherein the pet food produced by the method comprises from 1.2 to 1.6 wt % maltodextrin.
  • In any of the embodiments of the method, the pet food produced by the method from 0.5 to 1.1% DATEM.
  • In any of the embodiments of the method, the moisture content may be from 19-25 wt %.
  • In any of the embodiments of the method, the pet food composition and/or pet food produced by the method comprises at least 50 wt % meat. Optionally, the meat comprises at least 50 wt % organ meat. Optionally, the meat comprises at least 15 wt % viscera.
  • In any of the embodiments of the method, the pet food composition and/or pet food produced by the method further comprises at least about 0.3 wt % tetrapotassium pyrophosphate.
  • In any of the embodiments of the method, the pet food composition and/or the pet food produced by the method further comprises at least about 1 wt % of at least one citrate. Optionally, the at least one citrate is selected from a calcium citrate, a sodium citrate and any combination thereof.
  • In any of the embodiments of the method, the Aw of the pet food produced by the method is from 0.7 to 0.8.
  • In any of the embodiments of the method, the pet food composition and/or the pet food produced by the method further comprises at least one humectant. Optionally, the at least one humectant is selected from glycol, glycerol, pectin, sodium carboxymethyl cellulose (CMC), and any combination thereof.
  • In any of the embodiments of the method, the pet food composition and/or the pet food produced by the method further comprises at least 6 wt % blood plasma.
  • In any of the embodiments of the method, the pet food composition and/or the pet food produced by the method further comprises at least one of an amount of yeast, an amount of yeast extract, and a combination thereof.
  • In any of the embodiments of the method in which a coating is applied, the coating may comprise at least one fat and/or at least one phosphate.
  • In any of the embodiments of the method in which a coating is applied, the coating may comprise an amount of at least one octenyl succinate hydrolysed starch. The amount of octenyl succinate hydrolysed starch may be from 1 to 4 wt % of the pet food produced by the method.
  • In any of the embodiments of the method, the method may further comprise packing the pet food in a pack, wherein the pack comprises an airtight interior chamber, and optionally wherein the interior chamber comprises an amount of two or more gases, and wherein the two or more gases comprise at least 60 vol % nitrogen and at least 25 vol % carbon dioxide.
  • EXAMPLES
  • FIG. 1 is a schematic of a Texture Profile Analysis measurement, as described in Example 1 below.
  • FIG. 2 is a plot of data comparing the properties of examples of a pet food of the present disclosure, as described in Example 4, with commercially available pet foods, and samples of cooked, but unprocessed meat.
  • The following test methods were used to characterise the properties of the novel pet food disclosed herein.
  • Example 1 Texture Profile Analysis
  • Texture Profile Analysis (TPA) allows the determination of several parameters that characterise the texture of the sample. The sample is first incubated at 22° C. for 1 hour prior to testing. The samples are tested immediately after removal from the incubator. These samples are laid flat in the center of a flat surface such that the sample is compressed in the longitudinal direction. Using a texture analyser (Stable Micro Systems TA HD Plus) a compression plate of a size sufficient to compress the entire surface of the sample is used to compress the product to 50% strain, or 50% of its overall height at a speed of 1 mm/s. In the case of the 10 mm high sample, the distance to 50% strain is 5 mm. Once the required strain distance is reached, the probe is then moved upwards immediately at rate of 1 mm/s and stops 10 mm above the base plate, the original sample height. After completing the first compression cycle, the compression plate pauses for a period of 5 seconds in which the product, dependent on its material properties can recover some of its original shape and form. The second compression cycle is then carried out. The compression plate is moved down to the distance that was required to achieve 50% strain during first compression (in this case 5 mm) at a speed of 1 mm/s. After reaching the required strain distance, the probe is then moved upwards immediately at rate of 1 mm/s and stops at the original probe height.
  • A schematic of a Texture Profile Analysis measurement is shown in FIG. 1. As can be seen, the measurement is presented as the force experienced by the probe against time elapsed. This emulates the compression from a first bite, followed by a second bite at the same location and is a well-established technique. With reference to FIG. 1, L1 corresponds to the period during the test in which the probe is moving in the downward direction during the first compression and there is a force measured. L2 corresponds to the period during the test in which the probe is moving in the upward direction during the first compression and a force is measured. L4 corresponds to the period during the test in which the probe is moving in the downward direction during the second compression and a positive force is measured. L5 corresponds to the period during the test in which the probe is moving in the upward direction during the second compression and a positive force is measured.
  • The first parameter of interest from this measurement is the hardness. This is the peak force of the first compression of the sample. This need not correspond to the point of deepest compression. In the present work, this has also been normalised relative to the area of the sample upon which the platen acts to give a stress value. This value indicates the amount of resistance a tooth would encounter during a biting action. As noted above, a higher stress value can increase the risk of tooth fracture.
  • The second parameter of interest is cohesiveness. This is a measure of work during the second compression relative to the work during the first compression:
  • Cohesiveness = A 3 A 1
  • Cohesiveness therefore represents how well the product withstands a second deformation relative to how it behaved under the first deformation and so is a good indication of the ability of the sample to maintain a resistance to subsequent bites and offer a continuing cleaning action for the animal's teeth.
  • The third parameter of interest is the instantaneous recoverable springiness (IRS), which is a measure of the springback during the first compression:
  • IRS = L 2 L 1
  • IRS is therefore indicative of the springiness of the sample directly after the compressive downstroke.
  • The fourth parameter is the retarded recoverable springiness (RRS), which is a measure of how well the product physically springs back after it has been deformed during the first compression. The springback is measured at the downstroke of the second compression relative to the first compression:
  • RRS = L 4 L 1
  • Therefore, RRS is indicative of the amount of springback before the second compressive downstroke.
  • The fifth parameter is the resilience, which is a measure of the area during withdrawal of the first compression relative to the area during the first compressive downstroke:
  • Resilience = A 5 A 4
  • The resilience is indicative of how much work the sample does in trying to regain its original shape, and so is another indication of the instantaneous springiness of the sample.
  • The invention(s) is further illustrated by the following examples. It will be appreciated that the examples are for illustrative purposes only and are not intended to limit the invention as described above. Modification of detail may be made without departing from the scope of the invention.
  • Example 2 Moisture Content
  • The moisture content (i.e. water content) of the samples is measured using the following procedure. An aluminum dish is dried in an oven at 102±2° C. for at least one hour. The tray is removed from the oven and placed in a desiccator and allowed to cool for at least 30 minutes to reach room temperature. The weight of the dried dish is then recorded (A). 5±0.5 g of sample (e.g. pet food or composition) is placed in the dish and the dish is reweighed to give a combined weight of sample and dish (B). The sample-containing dish is then placed inside an oven held at 102±2° C. for 240 minutes±5 minutes, the time is recorded from the point when the oven has reached equilibrium and the oven door remains closed throughout this time. The sample-containing dish is then removed and placed in a desiccator for 30 minutes and then reweighed to give a final combined weight of dish and sample (C). The moisture content of the sample as a percentage of the total weight of the sample is
  • ( B - C B - A ) × 100.
  • then given by
  • Example 3
  • The following is an example of a pet food according to the present disclosure.
  • The semi-moist edible pet food in this Example, in this case a chicken-based product, was prepared using the ingredients shown in Table 1.
  • TABLE 1
    Component Ingredients Wt. %
    M Chicken organs 82.85 
    (liver, hearts,
    viscera)
    D Vitamin mix 0.02
    (including B1,
    E, B2, B6, B9)
    D Tetrapotassium 0.67
    pyrophsophate
    D Taurine 0.09
    D Sodium Chloride 0.89
    D Pork skin protein 1.04
    D Mineral mixture 0.03
    (including Zn,
    Fe, Mn, Iodine)
    D Copper sulphate 0.13
    D Choline chloride 0.32
    D Calcium carbonate 0.88
    D Blood plasma 7.35
    D DATEM ester* 0.84
    D Maltodextrin 1.52
    D Potassium sorbate 0.25
    L Antioxidant mixture 0.03
    C Palatant powder 0.53
    with phosphate
    C Palatant liquid 1.28
    C Fat 1.28
  • In forming the semi-moist edible pet food, first a core was formed. The core was formulated by preparing a meat emulsion by first grinding the meat components labelled ‘M’ in Table 1. The meat is frozen at the start of grinding, and gradually defrosts during the grinding, mixing and emulsification steps. Next, the mixture of dry ingredients labelled ‘D’ and liquid ingredients labelled ‘L’ were added to the ground meat components labelled ‘M’ and the composition mixed and emulsified.
  • To produce beef and turkey products an equivalent recipe was used, where the chicken organs were replaced by beef or turkey organs.
  • After mixing and emulsification, the core of the pet food is then shaped by pumping the pet food through a shaped nozzle.
  • The shaped core is then cooked by using a combi-oven, which utilizes a combination of steam and heat to cook the composition at a temperature of about 150° C.-190° C. This procedure sets the shape by protein coagulation. In some cases, the shaped core is then cut to provide the final product shape and size.
  • The cooked cores are then dried in a drier at 100° C. for approximately 40-50 minutes to reach a moisture content of 18 wt. %. (For beef, the same temperature is used, but the beef is cooked for 70-80 minutes; and for turkey, the same temperature is used, but the turkey is cooked for 75-90 minutes). This provides the core used in the semi-moist edible pet food. While drying at 120° C. made the treats more palatable to cats, the overall appearance of the product was not as desirable.
  • The coating for the semi-moist edible pet food is formed by combining the C components (palatant powder with phosphate 17.24 wt. % of coating, palatant liquid 41.38 wt. % of coating, animal fat 41.38 wt. % of coating).
  • The semi-moist edible pet food is then formed by spraying the coating (7.25 wt. % of the pet food) onto the entire surface of the core (92.75 wt. % of the pet food), forming a core and a coating disposed on the core.
  • The semi-moist edible pet food may then be packaged in a modified atmosphere of nitrogen (70 wt. %) and carbon (30 wt. %).
  • The texture profile analysis described in Example 1 was performed for this product. The resilience and cohesiveness of the semi-moist edible pet food made from chicken were similar to those found for Example 4.
  • A consumer screening research study also indicated an improvement in OPE (owner perceived enjoyment) and a reduction in product refusals for cats, compared to products that were very similar, but lacked the maltodextrin and DATEM ester.
  • The method of cooking using steam described above was also found to improve the palatability of the pet food to cats compared to the same food cooked through boiling (using the so-called ‘slice’ process).
  • In further tests, it was found that a level of maltodextrin of 6.5 wt % or below of the whole pet food was preferable, since above 6.5 wt %, the protein structure in the pet food was found to be weakened—the product was not so easily processed, and was observed to break apart during the cooking step.
  • The content of moisture, protein, fat, calcium, phosphorus, potassium and sodium were similar to the amounts described for Example 4 below.
  • Example 4
  • The following is an example of a pet food according to the present disclosure.
  • The core was prepared as described in Example 3 except that calcium carbonate was replaced with calcium citrate (such that the quantity of calcium ions remained the same in the product to maintain the Ca:P ratio in the product) and maize starch modified hydrolysed sodium octenyl succinate was added to the coating at a sufficient quantity to form 3 wt. % of the overall coating pet food composition. This is included in the coating by combining it with water in a ratio of 50:50 or 55:45 and heating the composition before spraying the coating onto the core at a sufficient quantity to 5.5 or 6 wt. % of the overall pet food composition.
  • The pet food of Example 4 was compared in tests to a reference pet food that was very similar, except the core contained calcium carbonate (as in Example 3) and coating lacked OSA hydrolysed starch. These modifications to the composition of the core (i.e. the calcium citrate) and coating (i.e. the OSA hydrolysed starch) disposed on the core provided improvements to the appearance of the product. When left in the presence of air, e.g. when removed from a package containing an atmosphere of nitrogen and carbon, it was found that the semi-moist edible reference pet food lost moisture, resulting in the appearance of light-coloured mineral deposits on the surface of the coating (so-called “bloom formation”). This appears to have been a result of migration of the minerals to the surface through moisture loss. The modification of the core and coating as described in Example 4 significantly reduced bloom formation such that, after 24 hours in air, no significant bloom was visible. Moreover, even after 96 hours, no significant bloom was visible. In contrast, the semi-moist edible pet food of Example 3 showed significant bloom after 24 hours.
  • The feeding performance of the edible pet food of Example 4 (a chicken-based pet food) and similar edible pet foods in which the meat was beef and turkey instead of chicken, was assessed in a 60 cat difference test to ensure they met feeding performance targets. The three types of pet food were tested against a benchmark product (Dreamies Chicken) and met the target of no significant difference at the 95% confidence level.
  • A consumer study was also conducted to measure owner perceived enjoyment (OPE) and refusals. In this test, 160 cats participated and each cat was fed 3 products—the semi-moist pet food of reference example (CC), a semi-moist pet food of Example 4(CN) and a benchmark product Dreamies Chicken (DC). The objective was to understand whether there was a significant difference perceived between these products by consumers in terms of OPE or refusals. All met the standard of less than 10% refusal. For OPE, there was no significant difference between CN & CC.
  • Three types of pet foods of Example 4 were produced, each containing a different type of meat—turkey, chicken and beef, respectively. The resilience and cohesiveness of these products were tested and the results are shown in FIG. 2 (P1 indicates a pet food of Example 4 containing turkey, P2 indicates a pet food of Example 4 containing beef, and P3 indicates a pet food of Example 4 containing chicken). In FIG. 2, P4 is a sample of turkey meat (cooked, but otherwise not processed), P5 is a sample of beef meat (cooked, but otherwise not processed), P6 is a sample of chicken meat (cooked, but otherwise not processed). Samples P7 to P19 are commercially available cat foods, generally of the treat variety.
  • The chicken-based pet food of Example 4 was found to have the following content (per 100 g) of various components:
      • moisture—19.1 g (as measured in accordance with BS 4401 Pt 3:1997, BS 4401-3:1997, ISO 1442:1997)
      • protein—42.3 g (i.e. crude protein as measured in accordance with BS 4401 Pt 2: 1980, ISO 937-1978)
      • fat—13.2% (as measured in accordance with EC 152/2009)
      • calcium—1.05 g (as measured using inductively coupled plasma optical emission spectrometry (ICP-OES))
      • phosphorus—0.738 g (as measured using inductively coupled plasma optical emission spectrometry (ICP-OES))
      • potassium—1.4 g
      • sodium—1.20 g (for this test, the sample is microwave digested in acid and determined by ICP-OES).
  • Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any disclosure disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such disclosure. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
  • While particular embodiments of the present disclosure have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the disclosure. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this disclosure. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.
  • One of ordinary skill in the art will recognize that additional embodiments or implementations are possible without departing from the teachings of the present disclosure or the scope of the claims which follow. This detailed description, and particularly the specific details of the exemplary embodiments and implementations disclosed herein, is given primarily for clarity of understanding, and no unnecessary limitations are to be understood therefrom, for modifications will become obvious to those skilled in the art upon reading this disclosure and may be made without departing from the spirit or scope of the claimed invention(s).

Claims (86)

1. An edible pet food, wherein the pet food has a moisture content of 15 to 50 wt % and the pet food comprises a core and a coating disposed on the core, wherein
the core comprises animal protein and the pet food has an animal protein content of at least 30 wt %, and
at least one of the core and the coating comprises a glucose-containing carbohydrate selected from a dextrin and an esterified starch.
2. The edible pet food of claim 1, wherein the dextrin comprises maltodextrin.
3. (canceled)
4. (canceled)
5. (canceled)
6. The edible pet food of claim 1, wherein at least one of the core and the coating further comprises an emulsifier.
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. The edible pet food of claim 1, wherein the pet food has a resilience measured by Texture Profile Analysis of 0.14 or greater.
14. (canceled)
15. The edible pet food of claim 1, wherein the pet food has a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. The edible pet food of claim 1, the pet food comprising at least 50 wt % meat.
23. (canceled)
24. (canceled)
25. The edible pet food of claim 1, further comprising at least about 0.3 wt % tetrapotassium pyrophosphate.
26. The edible pet food of claim 1, wherein at least one of the core and the coating further comprises a chelant.
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. The edible pet food of claim 1, wherein the coating comprises a glucose-containing carbohydrate selected from an esterified dextrin and an esterified starch.
33. (canceled)
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
38. The edible pet food of claim 1, wherein the coating comprises an amount of at least one octenyl succinate hydrolysed starch.
39. (canceled)
40. The edible pet food of claim 1, wherein a water activity (Aw) of the edible pet food is from 0.7 to 0.8.
41. The edible pet food of claim 1, further comprising at least one humectant.
42. (canceled)
43. The edible pet food of claim 1, further comprising at least 6 wt % blood plasma.
44. The edible pet food of claim 1, further comprising at least one of an amount of yeast, an amount of yeast extract, or a combination thereof.
45. The edible pet food of claim 1, wherein the coating comprises a component selected from at least one fat and at least one phosphate.
46. (canceled)
47. (canceled)
48. A method of producing an edible pet food, wherein the method comprises combining an amount of meat comprising animal protein, an amount of a glucose-containing carbohydrate selected from a dextrin and an esterified starch to form a pet food composition,
cooking the pet food composition with steam;
drying the pet food composition, and, before or after the drying, applying a coating to the pet food composition to produce a pet food having the pet food composition in a core and the coating disposed thereon, wherein the pet food has a moisture content of at least 15 to 50 wt %, and pet food has an animal protein content of at least 30 wt %.
49. The method of claim 48, wherein the method comprises combining an emulsifier with the amount of meat comprising animal protein and an amount of a glucose-containing carbohydrate to form the pet food composition.
50. (canceled)
51. (canceled)
52. (canceled)
53. (canceled)
54. (canceled)
55. The method of claim 48, wherein the pet food has a resilience measured by Texture Profile Analysis of 0.14 or greater.
56. (canceled)
57. The method of claim 48, wherein the pet food has a cohesiveness measured by Texture Profile Analysis of 0.50 or greater.
58. (canceled)
59. (canceled)
60. (canceled)
61. (canceled)
62. (canceled)
63. (canceled)
64. (canceled)
65. (canceled)
66. (canceled)
67. (canceled)
68. (canceled)
69. (canceled)
70. (canceled)
71. (canceled)
72. (canceled)
73. (canceled)
74. (canceled)
75. (canceled)
76. (canceled)
77. (canceled)
78. (canceled)
79. (canceled)
80. (canceled)
81. A pet food composition comprising
from 1-10 wt % of at least one dextrin; and
from 0.2-2 wt % of diacetyl tartaric acid esters of mono- and diglycerides (DATEM), wherein the pet food composition has a moisture content of 15 to 50 wt %.
82. (canceled)
83. (canceled)
84. (canceled)
85. (canceled)
86. (canceled)
US16/480,029 2017-01-27 2018-01-26 Pet food Active 2040-03-28 US11992033B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB1701417.6 2017-01-27
GBGB1701417.6A GB201701417D0 (en) 2017-01-27 2017-01-27 Pet food
GB1701417 2017-01-27
PCT/GB2018/050231 WO2018138515A1 (en) 2017-01-27 2018-01-26 Pet food

Publications (2)

Publication Number Publication Date
US20200000124A1 true US20200000124A1 (en) 2020-01-02
US11992033B2 US11992033B2 (en) 2024-05-28

Family

ID=58462824

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/480,029 Active 2040-03-28 US11992033B2 (en) 2017-01-27 2018-01-26 Pet food

Country Status (5)

Country Link
US (1) US11992033B2 (en)
EP (1) EP3573473A1 (en)
JP (1) JP7258752B2 (en)
GB (1) GB201701417D0 (en)
WO (1) WO2018138515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177905A1 (en) * 2020-03-04 2021-09-10 Songkla Canning Pcl. Animal chew and method of manufacture the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102567250B1 (en) * 2020-12-07 2023-08-21 전주대학교 산학협력단 Method for manufacturing by Sous-Vide cuisine
CN114304384A (en) * 2021-12-02 2022-04-12 石玲青 Animal chew food and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527646A (en) * 1966-09-12 1970-09-08 American Maize Prod Co Method of coating foods with pregelatinized starch
IE912927A1 (en) * 1990-08-31 1992-03-11 Mars Inc Shelf-stable proteinaceous products and processes for their¹production
US5795397A (en) * 1996-05-06 1998-08-18 National Starch And Chemical Investment Holding Corporation Chemically derivatized maltodextrins
EP1241950B1 (en) * 1999-12-28 2005-11-16 Colgate-Palmolive Company High meat pet food compositions
US20080038304A1 (en) * 2006-08-14 2008-02-14 Sergeant's Pet Care Products Inc. Microencapsulated compositions for topically treating an animal against parasite infestation
WO2010051120A1 (en) * 2008-10-30 2010-05-06 The Iams Company Pet food composition comprising an antioxidant component
US20100233756A1 (en) * 2008-09-11 2010-09-16 Gregory Dean Sunvold Animal Feed Kibble with Protein-Based Core and Related Methods
US20100330229A1 (en) * 2008-01-28 2010-12-30 Nathalie Gelineau Method for enhancing pet food palatability
CA2805500A1 (en) * 2010-08-03 2012-02-09 Hill's Pet Nutrition, Inc. Pet food compositions having antimicrobial activity
CA2862326A1 (en) * 2012-01-25 2013-08-01 Cargill, Incorporated Pellets comprising starch and protein, process therefor and use thereof

Family Cites Families (277)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US414090A (en) 1889-10-29 Draw-plate
CA139848A (en) 1912-03-21 1912-04-23 Chas. H. Light Bag holder
US2003578A (en) 1933-08-09 1935-06-04 Victor A Clement Pastry cake and method and mold for making the same
US2062489A (en) 1935-03-06 1936-12-01 Wilson & Co Inc Weasand product and method of preparing
US2659163A (en) 1950-05-05 1953-11-17 Albee Wilder Jerome Game apparatus
US3384496A (en) 1964-08-19 1968-05-21 Colgate Palmolive Co Apple product
FR1453512A (en) 1965-08-13 1966-06-03 Rhodiaceta New brush
CH600790A5 (en) * 1974-10-04 1978-06-30 Mepros Anstalt
USD249724S (en) 1976-09-23 1978-09-26 Ernest Lynn Balmforth Playing piece for game
USD249723S (en) 1976-09-23 1978-09-26 Ernest Lynn Balmforth Playing piece for game
USD254337S (en) 1977-03-09 1980-03-04 Ralston Purina Company Animal food product
USD254338S (en) 1977-03-09 1980-03-04 Ralston Purina Company Animal food product
USD254336S (en) 1977-03-09 1980-03-04 Ralston Purina Company Animal food product
USD254339S (en) 1977-05-05 1980-03-04 Ralston Purina Company Animal food product
USD251509S (en) 1977-12-19 1979-04-03 Protective Treatments, Inc. Trim strip adapted to be secured to an automobile bumper or body
US4162333A (en) 1978-08-03 1979-07-24 Mars Incorporated Method and apparatus for making filled food product
USD267776S (en) 1980-04-24 1983-02-01 Telefonaktiebolaget L M Ericsson Mounting strip for electric cables or similar articles
USD301794S (en) 1984-05-31 1989-06-27 Alberto Ballerini Food stuff
USD286919S (en) 1984-08-31 1986-11-25 Usv Pharmaceutical Corp. Pharmaceutical tablet
JPS61249354A (en) * 1985-04-30 1986-11-06 Nisshin Flour Milling Co Ltd Pet food
USD293186S (en) 1986-05-19 1987-12-15 Leon Parnham Back support pillow
US5194283A (en) 1988-09-15 1993-03-16 Nestec S.A. Process for the manufacture of composite cheese and product thereof
USD323233S (en) 1989-04-10 1992-01-21 General Mills, Inc. Food product
US5149555A (en) 1989-05-18 1992-09-22 Kraft General Foods Canada Inc. Method for forming an open textured product
US5015485A (en) 1989-05-30 1991-05-14 Nabisco Brands, Inc. Dog biscuits having a coating containing an inorganic pyrophosphate
USD339899S (en) 1990-11-15 1993-10-05 Pietro's Corporation Pizza crust
USD344141S (en) 1991-12-23 1994-02-08 Wonderly John E Railing
USD353642S (en) 1993-03-18 1994-12-20 Klutz, Inc. Football game projectile
US5532010A (en) * 1993-05-28 1996-07-02 Nabisco, Inc. Coated canine biscuits and preparation process
US6013255A (en) 1994-04-18 2000-01-11 Gist-Brocades B.V. Stable water-in-oil emulsions
ES2153400T3 (en) 1994-09-24 2001-03-01 Nestle Sa EMULSION OF THE WATER OIL TYPE, STABLE TO HEAT, AND PROCEDURE FOR MANUFACTURING.
US5500234A (en) 1994-10-05 1996-03-19 Russo; Peter J. Crispy chip sandwich and process of producing a sandwich product
US5676987A (en) 1994-11-23 1997-10-14 Swift-Eckrich, Inc. Low-fat meat analogues and methods for making same
US5985336A (en) 1995-06-07 1999-11-16 Novus International, Inc. Nutrient formulation and process for feeding young poultry and other animals
US5731029A (en) 1995-07-26 1998-03-24 Nabisco Technology Company Method for making jerky products
US5690988A (en) 1996-02-02 1997-11-25 Colgate Palmolive Company Pet food composition of improved palatability and a method of enhancing the palatability of a food composition
USD379244S (en) 1996-04-02 1997-05-13 Wiebe Charles F Hand rail
WO1998015191A1 (en) 1996-10-09 1998-04-16 Givaudan-Roure (International) S.A. Process for preparing beads as food or tobacco additive
USD410315S (en) 1997-02-27 1999-06-01 Good Humor-Breyers Ice Cream, Division Of Conopco, Inc. Confection product
US5947807A (en) 1997-02-28 1999-09-07 Overseth; Elmo R. Apparatus for cleaning and polishing a surface
USD410026S (en) 1997-03-10 1999-05-18 Tektronix, Inc. Solid ink stick for a color printer
USD393335S (en) 1997-03-20 1998-04-14 Long Clawson Dairy Limited Rainbow cheese
US6178922B1 (en) 1997-04-15 2001-01-30 Seefar Technologies, Inc. Mastication article possessing microbe-inhibiting properties
US5899210A (en) 1997-12-31 1999-05-04 Nailco, Inc. Nail tool having multiple surfaces
CA2322467A1 (en) 1998-03-09 1999-09-16 Kent J. Lanter Animal feed gel
US6455083B1 (en) 1998-05-05 2002-09-24 Natural Polymer International Corporation Edible thermoplastic and nutritious pet chew
US5922379A (en) 1998-05-05 1999-07-13 Natural Polymer International Corporation Biodegradable protein/starch-based thermoplastic composition
US6009682A (en) 1998-07-02 2000-01-04 Audubon Products, Inc. Composite hand rail
US6056991A (en) 1998-07-15 2000-05-02 Tfh Publications, Inc. Turkey and rice dog chew with modifiable texture
USD416662S (en) 1998-09-11 1999-11-23 Kal Kan Foods, Inc. Dry dog food
US6033715A (en) 1998-11-06 2000-03-07 Bryan W. Scott Process for reducing fat content of pork skin and products made therefrom
US6077558A (en) 1998-12-23 2000-06-20 Bristol-Myers Squibb Company Elemental nutritional products
US6277420B1 (en) 1999-01-11 2001-08-21 David B. Andersen Combination rawhide and formulated food pet chew
USD415601S (en) 1999-01-29 1999-10-26 Starbucks Corporation Chocolate confection
US6238715B1 (en) 1999-02-02 2001-05-29 Robert Scott Baikie Chew toy for dogs and method of making the same
US6767573B1 (en) 1999-03-10 2004-07-27 Nestec S.A. Fried pet treats
US6207216B1 (en) 1999-04-23 2001-03-27 General Mills, Inc. Quickly dissolving aerated confection and method of preparation
US6576246B1 (en) 1999-05-24 2003-06-10 Seefar Technologies, Inc. Degradable animal chewing article possessing enhanced safety, durability and mouth-feel
USD429402S (en) 1999-06-01 2000-08-15 Boca Foods, Inc. Cookie
DE60039177D1 (en) 1999-09-07 2008-07-24 Nestle Sa METHOD FOR IMPROVING THE SKIN AND FUSE OF PETS
US7211280B1 (en) 1999-09-09 2007-05-01 Nestec S.A. Condition of elderly pets
USD435955S1 (en) 1999-11-02 2001-01-09 Donald Roland Speck Ham bone shaped dog treat
USD435713S1 (en) 1999-11-02 2001-01-02 Donald Roland Speck Lamb bone shaped dog treat
USD445236S1 (en) 2000-01-29 2001-07-24 August Kirchner Triangular ice-cream in a wafer with two edges covered with chocolate
GB0005736D0 (en) 2000-03-09 2000-05-03 G C Hahn Co Ltd Low fat edible emulsions
USD437101S1 (en) 2000-04-04 2001-02-06 Borden Foods Corporation Pasta
US6436463B1 (en) 2000-06-26 2002-08-20 Hill's Pet Nutrition, Inc. Pet food composition and method
USD444243S1 (en) 2000-06-26 2001-06-26 Erwin Industries, Inc. Fence cap
US20040076731A1 (en) 2000-12-20 2004-04-22 Bourke Neil Joseph Powdered fat composition and products made thereof
US6586027B2 (en) 2001-02-23 2003-07-01 T.F.H. Publications, Inc. Health chew toy
JP2004519241A (en) 2001-03-09 2004-07-02 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Composition that improves physiological disorders associated with aging and extends lifespan
WO2002078432A1 (en) 2001-03-30 2002-10-10 Societe Des Produits Nestle S.A. Products and methods for improving animal dental hygiene
US20020187220A1 (en) 2001-05-11 2002-12-12 Luhadiya Ashok Premchand Edible particulate adhesive
USD459985S1 (en) 2001-06-15 2002-07-09 Alan Davis Compressed fabric article package having a tooth shape
US6634884B2 (en) 2001-07-11 2003-10-21 Yvonne M Phillips Fluid absorbing bite block
ATE449544T1 (en) * 2001-07-23 2009-12-15 Iams Company DEVICE AND METHOD FOR ON-LINE MIXING AND APPLICATION OF SURFACE COATING COMPOSITIONS FOR FOODS
JP3771820B2 (en) 2001-08-02 2006-04-26 立治 中田 Artificial rawhide manufacturing method
US7842329B2 (en) 2001-09-18 2010-11-30 Nestec S.A. Pet food product and method of manufacture
US6440485B1 (en) 2001-09-25 2002-08-27 Hill's Pet Nutrition, Inc. Pet food composition and method
DE10157626A1 (en) 2001-11-26 2003-06-05 Buehler Ag Dosage forms of Aleuron
US6814996B2 (en) 2001-12-19 2004-11-09 Kraft Foods Holdings, Inc. Nutritionally superior cheese products
AU149714S (en) 2002-01-23 2002-10-30 Mars Australia Pty Ltd Animal puppy chew
JP2003284620A (en) 2002-01-24 2003-10-07 Foot Techno Inc Posture correction tool and its manufacturing method, and chair having posture correction tool
USD473348S1 (en) 2002-02-21 2003-04-15 Dad's Products Company, Inc. Pet chew
EP1344458A1 (en) 2002-03-12 2003-09-17 Société des Produits Nestlé S.A. Probiotic delivery system
USD475095S1 (en) 2002-03-26 2003-05-27 Mattel, Inc. Craft kit construction component—asymmetric pallet form
USD478705S1 (en) 2002-04-18 2003-08-26 Societe Des Produits Nestle S.A. Pet treat
USD508570S1 (en) 2002-07-13 2005-08-16 3M Innovative Properties Company Masking strip design
US20040033293A1 (en) 2002-08-14 2004-02-19 Mars, Incorporated Decorated food product
US20040037869A1 (en) 2002-08-16 2004-02-26 Douglas Cleverly Non-animal product containing veterinary formulations
US20040043115A1 (en) 2002-08-29 2004-03-04 Mendenhall George A. Cut potato piece with condiment trough
US20050181097A1 (en) * 2002-09-16 2005-08-18 Mars, Inc. Nutritionally complete pet food and method of feeding and manufacturing same
USD497238S1 (en) 2002-09-18 2004-10-19 The Pillsbury Company Raw dough product
AU2003301249A1 (en) 2002-10-18 2004-05-04 Petra Pet, Inc. D/B/A Petrapport Pet chews with filled receptacles and method of making same
US20040086616A1 (en) 2002-10-30 2004-05-06 Mgp Ingredients, Inc. Extrusion processed starch-based, long lasting dog chew product
USD497700S1 (en) 2002-10-31 2004-10-26 Rocla Oyj Profile for a lift truck mast
US6815000B2 (en) 2003-01-29 2004-11-09 David L. Kesler Jerky product and method of producing the same
USD503645S1 (en) 2003-02-10 2005-04-05 Safety Mowstor, Inc. Guidance wand
USD503506S1 (en) 2003-02-12 2005-04-05 Petra Pet, Inc. Hot dog chew
US7063868B2 (en) 2003-02-28 2006-06-20 T.F.H. Publications, Inc. Method of removing molded natural resins from molds utilizing lifter bars
USD507135S1 (en) 2003-03-11 2005-07-12 Interlego Ag Tray for a playing table
JP4685762B2 (en) 2003-03-12 2011-05-18 ネステク ソシエテ アノニム Puffed pet food for dietary restrictions
EP1462005A1 (en) 2003-03-28 2004-09-29 Cerestar Holding B.V. Multipurpose basic filling for baked products
USD487951S1 (en) 2003-04-02 2004-04-06 Recot, Inc. Snack food
USD534706S1 (en) 2003-04-04 2007-01-09 Societe Des Produits Nestle Twisted pet chew product
KR100478861B1 (en) 2003-05-09 2005-03-25 유명식 Molecular press dehydrating agents for vegetative tissue comprising starch hydrolysates or their derivatives
USD498571S1 (en) 2003-05-23 2004-11-23 Mars Incorporated Dog treat
USD514264S1 (en) 2003-06-11 2006-01-31 Charles Viola Helical pet toy
US20090104314A1 (en) 2003-06-27 2009-04-23 Dellinger David A Edible, biodegradable pet food container and packaging method
US7070827B2 (en) 2003-07-03 2006-07-04 Solae, Llc Vegetable protein meat analog
US6812263B1 (en) 2003-07-03 2004-11-02 The Hoover Company Polyvinyl chloride-based elements for floor cleaning units
US20050008759A1 (en) 2003-07-11 2005-01-13 Li Nie Grain protein-based formulations and methods of using same
TWI366442B (en) 2003-07-30 2012-06-21 Novartis Ag Palatable ductile chewable veterinary composition
US20050037108A1 (en) * 2003-08-14 2005-02-17 Charles Lin Methods and compositions for enhancing palatability of animal feed using tetrapotassium pyrophosphate
US20050042331A1 (en) 2003-08-22 2005-02-24 Billmers Robert L. Starches for reduced fat in fried foods systems
BRPI0414728A (en) 2003-09-26 2006-11-21 Nat Starch Chem Invest dough agents for baked goods
ES2383565T3 (en) 2003-11-03 2012-06-22 Hill's Pet Nutrition, Inc. Composition of coated pet food
USD512810S1 (en) 2003-12-20 2005-12-20 Hartmut Englisch Food stuffs for animals
US7288275B2 (en) 2004-01-08 2007-10-30 T.F.H. Publications, Inc Apparatus and process for forming pet treats
WO2005067720A1 (en) 2004-01-14 2005-07-28 Cerestar Holding B.V. Batter mix containing modified starch
USD501700S1 (en) 2004-01-29 2005-02-15 Mars Incorporated Animal chew
DE602005008556D1 (en) 2004-02-06 2008-09-11 Basf Se AQUEOUS DISPERSION AND ITS USE
USD500579S1 (en) 2004-02-19 2005-01-11 Sunshine Mills, Inc. Dog chew product
JP4724797B2 (en) 2004-04-16 2011-07-13 セレスタール・ホールデイング・ベスローテン・フェンノートシャップ Next generation starch products
US7534422B2 (en) 2004-07-09 2009-05-19 Viscofan, S.A. Universal fishing bait based on fibrous collagen and the procedure for its preparation
US7534461B2 (en) 2004-08-17 2009-05-19 Kraft Foods Holdings, Inc. Non-protein foaming compositions and methods of making the same
USD509045S1 (en) 2004-08-19 2005-09-06 The Hartz Mountain Corporation Dog chew
CN101005768B (en) 2004-08-31 2012-07-11 阿克佐诺贝尔股份有限公司 Method for pigment solubilisation, a pigment composition and its use
JP4915717B2 (en) * 2004-09-09 2012-04-11 花王株式会社 Obesity prevention / amelioration agent
USD532583S1 (en) 2004-10-12 2006-11-28 Mars, Incorporated Pet food bone
USD517774S1 (en) 2004-11-03 2006-03-28 The Hartz Mountain Corporation Dog chew
US20060105025A1 (en) 2004-11-15 2006-05-18 Hill Ira D Recovery pet chews
US20060110501A1 (en) 2004-11-22 2006-05-25 Axelrod Glen S Vaccinium injection molding
US7490579B2 (en) 2004-11-22 2009-02-17 T.F.H. Publications, Inc. Animal chew with cylindrical portion
US7332188B2 (en) 2004-11-22 2008-02-19 T.F.H. Publications, Inc. Animal chew containing fermented soyfood
AU2005322814B2 (en) 2004-12-30 2010-06-24 Hill's Pet Nutrition, Inc. Process for preparing a meat and carbohydrate based composition for consumption by felines
USD515275S1 (en) 2005-01-14 2006-02-21 Societe Des Produits Nestle Pet treat
USD530606S1 (en) 2005-01-24 2006-10-24 Hoffmann Neopac Ag Container lid
US20060188632A1 (en) 2005-01-26 2006-08-24 Li Nie Pet treats with rough surface texture
USD515775S1 (en) 2005-02-11 2006-02-28 General Mills, Inc. Food product
USD516276S1 (en) 2005-02-18 2006-03-07 Mars, Incorporated Animal chew
US20060188611A1 (en) 2005-02-18 2006-08-24 Emine Unlu Edible pet chew
US20100233312A9 (en) 2005-04-11 2010-09-16 The Procter & Gamble Company Compositions comprising probiotic and sweetener components
US20080003282A1 (en) 2005-04-18 2008-01-03 Soll Mark D Antiparasitical agents and methods for treating, preventing and controlling external parasites in animals
USD535018S1 (en) 2005-04-22 2007-01-09 Wm. Wrigley Jr. Company Trilateral tablet
US20090317509A1 (en) 2005-05-04 2009-12-24 Matthew Duncan Golding Satiety emulsions and food compositions
US9480275B2 (en) * 2005-05-20 2016-11-01 Mars Incorporated Coated pet food products
US8524299B2 (en) 2005-05-20 2013-09-03 The Procter & Gamble Company Wet pet food products comprising a first layer bonded with a base food
US8574653B2 (en) 2005-05-27 2013-11-05 Del Monte Corporation Intermittent flow extrusion process and food product
USD538506S1 (en) 2005-05-27 2007-03-20 Mars Incorporated Dog chew treat
DE102005030952A1 (en) 2005-06-30 2007-01-18 Basf Ag Process for the preparation of an aqueous suspension and a pulverulent preparation of one or more carotenoids
US7691315B2 (en) 2005-07-18 2010-04-06 T.F.H. Publications, Inc. Injection mold having cavities in series
EP2272380A1 (en) 2005-07-20 2011-01-12 DSM IP Assets B.V. Carotenoid compositions dispersed in a matrix comprising starch
US7651708B2 (en) * 2005-07-22 2010-01-26 Mars, Inc. Method of producing an animal food product with a core and shell
US7914835B2 (en) 2005-07-22 2011-03-29 Del Monte Corporation Dog chew treats
USD528261S1 (en) 2005-08-26 2006-09-19 Mars, Incorporated Pet treat bone
US7691424B2 (en) 2005-10-28 2010-04-06 T.F.H. Pulications, Inc. Nutritional supplement
ES2343587T3 (en) 2005-11-02 2010-08-04 Novozymes A/S MEAT-BASED FOOD PRODUCT.
GB2432506A (en) 2005-11-23 2007-05-30 Salix Llc Pet chew with nutraceutical agent
EP2197300A4 (en) 2005-11-28 2010-09-08 Jorrocks Pty Ltd Low temperature forming of feeds
US20070148282A1 (en) 2005-12-02 2007-06-28 Mars, Inc. Performance Oral Snack
US8057838B2 (en) 2005-12-02 2011-11-15 Sergeant's Pet Care Products Animal by-product pet treat
USD533973S1 (en) 2005-12-09 2006-12-19 Kelsoe Jeffrey L Tooth-shaped chew toy for pets
EP1800545A1 (en) 2005-12-23 2007-06-27 Nestec S.A. Pet food and processes of producing the same
JP5641694B2 (en) 2006-02-06 2014-12-17 ディーエスエム アイピー アセッツ ビー.ブイ. Active ingredient composition
USD536538S1 (en) 2006-04-12 2007-02-13 Agio International Company, Ltd. Synthetic wicker
USD536537S1 (en) 2006-04-12 2007-02-13 Agio International Company, Ltd. Synthetic wicker
USD539550S1 (en) 2006-04-12 2007-04-03 Agio International Company, Ltd. Synthetic wicker
DE602007010603D1 (en) 2006-04-17 2010-12-30 Iams Company Sterilization method for producing a food composition
US20100003393A1 (en) 2006-06-21 2010-01-07 Mars Incorporated Edible pet chew and method of making the same
ES2303446B1 (en) 2006-07-03 2009-07-28 Viscofan, S.A. MASSABLE AND / OR EDIBLE PRODUCT FOR PETS AND ANIMALS.
ES2594656T3 (en) 2006-07-13 2016-12-21 Nestec S.A. Stabilizer system for liquid nutritional compositions
US7662414B1 (en) 2006-07-18 2010-02-16 Jakks Pacific, Inc. Easily-digestible pet chew that promotes oral health and prevents malodorous breath in animals, and method of making thereof
TW200820913A (en) 2006-08-25 2008-05-16 Martek Biosciences Corp Food fortification with polyunsaturated fatty acids
US10383347B2 (en) 2006-12-28 2019-08-20 Purina Animal Nutrition Llc Extruded animal feed with gelatin binder and low starch content and method of making
CN101583286B (en) 2007-01-16 2013-08-21 巴斯夫欧洲公司 Liquid formulations containing carotenoid
US8394438B2 (en) 2007-02-01 2013-03-12 T.F.H. Publications, Inc. Molded meat jerky
WO2008110225A1 (en) 2007-03-15 2008-09-18 Dsm Ip Assets B.V. Carotenoid compositions containing modified gum acacia
US8257775B2 (en) 2007-03-20 2012-09-04 T.F.H. Publications, Inc. Molded products based upon textured vegetable protein
USD578727S1 (en) 2007-03-21 2008-10-21 Mars, Incorporated Cat treat
RU2476073C2 (en) 2007-04-02 2013-02-27 Нестек С.А. Extruded fodder composition for domestic animals containing tryglycerides with medium length of chain
USD585627S1 (en) 2007-04-25 2009-02-03 Mars, Incorporated Pet chew
AU2008248946A1 (en) 2007-05-07 2008-11-13 Mars, Incorporated Pet food and a process for its manufacture
USD585177S1 (en) 2007-05-18 2009-01-27 Mars, Incorporated Pet chew
USD586529S1 (en) 2007-08-22 2009-02-17 Ogg Design, Inc. Cracker
EP2042043A1 (en) 2007-09-26 2009-04-01 Nestec S.A. A shelf-stable taste enhancing cultured savoury base and a process for its preparation
USD583179S1 (en) 2007-09-28 2008-12-23 Mariam-Sena Haile Triangle nesting pillow
EP2197294A1 (en) 2007-10-10 2010-06-23 DSM IP Assets B.V. Feed composition for companion animals
USD593277S1 (en) 2007-11-22 2009-06-02 Mars, Incorporated Pet food
USD590555S1 (en) 2007-12-13 2009-04-14 3M Innovative Properties Company Sponge
US20090304897A1 (en) 2007-12-21 2009-12-10 Crosswind Industries, Inc. Process for manufacturing peel-apart pet treats and products
AU2008343847B2 (en) 2008-01-02 2015-01-22 Nestec S.A. Edible compositions
CN101939011B (en) 2008-02-07 2012-10-10 雀巢产品技术援助有限公司 Compositions and methods for influencing recovery from strenuous physical activity
US7707668B2 (en) 2008-02-22 2010-05-04 Janine Kloes Support pillow for relieving pressure on muscles, tendons, and blood vessels and method therefor
USD586534S1 (en) 2008-03-11 2009-02-17 Societe Des Produits Nestle S.A. Dog chew treat
US20090235872A1 (en) 2008-03-19 2009-09-24 Nevenka Filipi Increased occupancy time pet chews
USD591926S1 (en) 2008-04-11 2009-05-12 The Hartz Mountain Corporation Pet chew
JP2009268415A (en) 2008-05-08 2009-11-19 Tominaga Jushi Kogyosho:Kk Snack food for pet
US20090291188A1 (en) 2008-05-22 2009-11-26 Milne Jeffrey J Vegetable protein meat analogues and methods of making the same
US20090297664A1 (en) 2008-05-30 2009-12-03 Jorrocks Pty Ltd Low temperature forming of feeds
WO2009147158A2 (en) 2008-06-03 2009-12-10 Dsm Ip Assets B.V. Compositions of fat-soluble active ingredients containing gum ghatti
WO2009152283A1 (en) * 2008-06-12 2009-12-17 Professor Connors, Inc. Pet food treats, pet food treats processing system, and process for making the pet food treats
USD595986S1 (en) 2008-07-24 2009-07-14 Kloes James R Pillow
EP2153732A1 (en) 2008-08-04 2010-02-17 DSM IP Assets B.V. Production of Beadlets Comprising Hygroscopic Plant Extracts
ES2553852T3 (en) 2008-08-04 2015-12-14 Dsm Ip Assets B.V. Pearl production comprising probiotic compounds
EP2177113A1 (en) 2008-10-15 2010-04-21 Nestec S.A. Improved liver glycocen synthesis
FR2937639B1 (en) 2008-10-24 2010-10-29 Rhodia Operations NEW COMPOUND BASED ON VANILLIN AND ETHYLVANILLIN, ITS PREPARATION AND APPLICATIONS
DK2385766T4 (en) * 2009-01-07 2022-05-23 Oterra As COMPOSITION INCLUDING CALCIUM CARBONATE AS A WHITE PIGMENT
USD603136S1 (en) 2009-01-14 2009-11-03 Mars, Incorporated Pet chew
USD603135S1 (en) 2009-01-14 2009-11-03 Mars, Incorporated Pet chew
ES2621184T3 (en) 2009-03-30 2017-07-03 Basf Se Stable, ready-to-use suspension of partially amorphous beta-carotene particles
RU2530507C9 (en) 2009-06-19 2015-02-10 Спесиалите Пет Фуд Method for production of dry cat fodder with high taste attractiveness
CA2768568C (en) 2009-07-30 2019-03-19 Nestec S.A. Wet food compositions having the characteristics of dry food compositions
CN102573513A (en) 2009-10-02 2012-07-11 帝斯曼知识产权资产管理有限公司 Novel plant gum-modified food starch conjugate as emulsifying agent for fat soluble ingredients
FR2951165B1 (en) 2009-10-08 2011-10-28 Rhodia Operations PROCESS FOR THE PREPARATION OF A COMPOSITION COMPRISING A COMPOUND BASED ON VANILLINE AND ETHYLVANILLIN, COMPOSITION OBTAINED AND APPLICATIONS THEREOF
US20110139087A1 (en) 2009-12-16 2011-06-16 Lang Jeffrey S Digestible Pet Chew and Method for Producing a Digestible Pet Chew
DE102009059807B4 (en) 2009-12-21 2013-12-12 Mars Inc. Process for the preparation of a feed or food and thereafter obtained product containing viscous gel
USD614830S1 (en) 2010-01-14 2010-05-04 Mars, Incorporated Pet treat
CN106387370A (en) * 2010-01-22 2017-02-15 马斯公司 Process for making a pet food in the form of a coated kibble
USD618428S1 (en) 2010-01-22 2010-06-29 Mars, Incorporated Pet treat
FR2956661B1 (en) 2010-02-24 2012-02-10 Rhodia Operations PROCESS FOR THE PREPARATION OF A COMPOSITION COMPRISING A COMPOUND BASED ON VANILLINE AND ETHYLVANILLIN, COMPOSITION OBTAINED AND APPLICATIONS THEREOF
USD659837S1 (en) 2010-03-17 2012-05-15 Jordco, Inc. Dental organizer insert
KR101009988B1 (en) 2010-03-18 2011-01-21 주식회사 포켄스 Multi-functional chew for pet and preparing method thereof
DE202010009512U1 (en) 2010-05-28 2011-01-13 Hfp Ingredients B.V. collagen powder
USD637439S1 (en) 2010-06-01 2011-05-10 Paul Richard Mettler Pillow
USD637440S1 (en) 2010-06-01 2011-05-10 Paul Richard Mettler Travel pillow
US20130122178A1 (en) 2010-07-23 2013-05-16 Nestec S.A. Liquid creamer composition and process
US20120071563A1 (en) 2010-08-05 2012-03-22 Basf Se Stabilizer
JP2013544073A (en) 2010-09-30 2013-12-12 ネステク ソシエテ アノニム Multi-textured animal snack
US20120093994A1 (en) 2010-10-13 2012-04-19 The Curators Of The University Of Missouri Meat Analog Compositions and Process
USD644001S1 (en) 2010-10-28 2011-08-30 Wm. Wringley Jr. Company Confectionary
USD641947S1 (en) 2010-10-28 2011-07-26 Wm. Wrigley Jr. Company Confectionary
USD641950S1 (en) 2010-10-28 2011-07-26 Wm. J. Wrigley Company Confectionary
USD647276S1 (en) 2010-10-28 2011-10-25 Wm. Wrigley Jr. Company Confectionary
USD641953S1 (en) 2010-10-29 2011-07-26 Wm. Wrigley Jr. Company Confectionary
CL2011001171S1 (en) 2010-11-24 2011-10-07 Mars Inc Food product for pets consisting of a base prism and trapezoidal cross section of rounded vertices, oblique curved convex sides, concave curved major and minor bases that generate channels, where the upper channel is deeper and smaller than the wall channel lower.
EP2645884A4 (en) 2010-12-01 2014-12-31 Cargill Inc Meat substitute product
EP2645866A4 (en) 2010-12-01 2013-11-27 Cargill Inc Meat product
US20130287930A1 (en) 2010-12-16 2013-10-31 Specialites Pet Food Method for producing highly palatable dry cat food
CN102669438A (en) 2011-03-15 2012-09-19 上海光贝电子衡器有限公司 Edible pet chews
US10159266B2 (en) 2011-03-21 2018-12-25 Shanghai Sunlight Electronic Weighting Apparatus Co., Ltd. Edible pet chew of artificial bully stick
CA3083009A1 (en) 2011-07-12 2013-01-17 Impossible Foods Inc. Methods and compositions for consumables
USD665147S1 (en) 2011-07-13 2012-08-14 The Procter & Gamble Company Edible product for companion animal
CN103813719B (en) 2011-08-15 2017-06-13 雀巢产品技术援助有限公司 Many quality animal dessert
US10238136B2 (en) 2011-10-14 2019-03-26 Colgate-Palmolive Company Process for preparing a pet food composition
US20130104810A1 (en) 2011-11-02 2013-05-02 Canine Genius Edible dog toys
TWI474782B (en) 2011-12-28 2015-03-01 Food Industry Res & Dev Inst Substitute for fat within meat and the forming method thereof
GB2513493B (en) 2012-01-19 2017-08-09 S I P Siam Inter Pacific Co Ltd Pet food product with interlocking feature
US20150056347A1 (en) 2012-03-30 2015-02-26 Specialites Pet Food Food products having an improved appeal to pet owners and at least a maintained palatability to pets, and methods of preparation
US8875663B2 (en) 2012-05-15 2014-11-04 T.F.H. Publications, Inc. Pet chew product containing natural animal fibers, methods of manufacture and use thereof
EP2852300A1 (en) 2012-05-21 2015-04-01 Nestec S.A. Canned food products having one or more fillings
AU2013265435B2 (en) 2012-05-21 2016-10-27 Société des Produits Nestlé S.A. Canned food products having a filling
USD695988S1 (en) 2012-05-22 2013-12-24 Societe Des Produits Nestle S.A. Animal treat
JP6004167B2 (en) * 2012-07-02 2016-10-05 ユニ・チャーム株式会社 Pet food and method for producing pet food
CA2885497C (en) 2012-09-18 2020-03-10 Omnis Biotechnology Inc. Composition
US20140113032A1 (en) 2012-10-22 2014-04-24 Mars, Incorporated Aerated injection molded pet chew
RU2015121372A (en) * 2012-11-05 2016-12-27 Нестек Са AROMATED DRINKING WATER AND WAYS TO IMPROVE THE COMPLETION OF LOSS OF LIQUID IN ANIMALS
US9591868B2 (en) 2012-12-20 2017-03-14 Hill's Pet Nutrition, Inc. Methods for improving the condition of hair in non-human animals
US20140272070A1 (en) * 2013-03-15 2014-09-18 Ainsworth Pet Nutrition Animal food and method for producing same
USD710568S1 (en) 2013-03-15 2014-08-12 Paulette Suzanne Fox Bite-sized ice
CA2920148A1 (en) 2013-08-26 2018-11-29 Nestec S.A. Chewy edible compositions
USD722449S1 (en) 2013-10-18 2015-02-17 Max Krishtul Seating cushion
RU2667748C1 (en) 2013-11-25 2018-09-24 Нестек Са Chewy edible compositions with expanded texture
JP5766384B1 (en) 2013-12-09 2015-08-19 株式会社マルカン Edible monofilament and pet dental care material made using the edible monofilament
USD771348S1 (en) 2014-01-15 2016-11-15 S-L Snacks National, LLC Pretzel cracker
US9380802B2 (en) 2014-04-03 2016-07-05 Redbarn Pet Products, Inc. Coated pet chew product
WO2016004337A1 (en) 2014-07-02 2016-01-07 Kansas State University Research Foundation Gummy animal treat and method of preparation
US20160081304A1 (en) 2014-09-23 2016-03-24 Petstages, Inc. Pet chew toy assembly
US9737054B2 (en) 2014-10-02 2017-08-22 The Kyjen Company, Llc Pet chew toy assembly
US20160113242A1 (en) 2014-10-23 2016-04-28 Steve Brian LACASSE Thermoplastic stone bone
JP5733709B1 (en) * 2014-11-18 2015-06-10 ユニ・チャーム株式会社 Pet food for cats and method for producing the same
USD769574S1 (en) 2014-11-20 2016-10-25 Societe Des Produits Nestle S.A. Food product
CN104621394B (en) 2015-01-29 2017-09-29 上海懿丰宠物用品有限公司 A kind of foaming bone of pets and preparation method thereof
JP6563219B2 (en) * 2015-03-13 2019-08-21 ユニ・チャーム株式会社 Pet food
USD755543S1 (en) 2015-05-18 2016-05-10 Ashish UPADHYAY Seat cushion
USD765515S1 (en) 2015-06-11 2016-09-06 Apollonia Health Inc. Tooth-shaped bottle
USD768353S1 (en) 2015-08-12 2016-10-11 Rush Direct, Inc. Pet treat

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527646A (en) * 1966-09-12 1970-09-08 American Maize Prod Co Method of coating foods with pregelatinized starch
IE912927A1 (en) * 1990-08-31 1992-03-11 Mars Inc Shelf-stable proteinaceous products and processes for their¹production
US5795397A (en) * 1996-05-06 1998-08-18 National Starch And Chemical Investment Holding Corporation Chemically derivatized maltodextrins
EP1241950B1 (en) * 1999-12-28 2005-11-16 Colgate-Palmolive Company High meat pet food compositions
US20080038304A1 (en) * 2006-08-14 2008-02-14 Sergeant's Pet Care Products Inc. Microencapsulated compositions for topically treating an animal against parasite infestation
US20100330229A1 (en) * 2008-01-28 2010-12-30 Nathalie Gelineau Method for enhancing pet food palatability
US20100233756A1 (en) * 2008-09-11 2010-09-16 Gregory Dean Sunvold Animal Feed Kibble with Protein-Based Core and Related Methods
WO2010051120A1 (en) * 2008-10-30 2010-05-06 The Iams Company Pet food composition comprising an antioxidant component
CA2805500A1 (en) * 2010-08-03 2012-02-09 Hill's Pet Nutrition, Inc. Pet food compositions having antimicrobial activity
CA2862326A1 (en) * 2012-01-25 2013-08-01 Cargill, Incorporated Pellets comprising starch and protein, process therefor and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Del Hoyo et al. Demineralization of animal blood plasma by ion exchange and ultrafiltration Meat Science vol. 76 pages 402-410 (Year: 2007) *
van gijssel et al. EP1361802A1 2003 (Year: 2003) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177905A1 (en) * 2020-03-04 2021-09-10 Songkla Canning Pcl. Animal chew and method of manufacture the same

Also Published As

Publication number Publication date
JP2020506668A (en) 2020-03-05
JP7258752B2 (en) 2023-04-17
US11992033B2 (en) 2024-05-28
EP3573473A1 (en) 2019-12-04
WO2018138515A1 (en) 2018-08-02
GB201701417D0 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6824984B2 (en) Combination of natural antioxidants
RU2476082C2 (en) Method for intensification of taste attractiveness of fodder for animals
RU2698130C2 (en) Appetizing dry fodders for cats and methods for their preparation
US11992033B2 (en) Pet food
JP6073481B2 (en) Use of fat compositions to maintain the enhanced palatability of pet food for extended periods of time
MX2009001422A (en) Methods of improving bone health and muscle health.
US20150010669A1 (en) Pet food product and method for feeding pet food to pet
JP2017515860A (en) Preference improver containing amino reactant and carbonyl compound for use in cat food
CA3040541A1 (en) Pet food compositions and methods for the same
JP2016506406A (en) Methods for improving hair condition in non-human animals
JP2020114228A (en) Specific fat fraction containing palatable cat kibble
RU2535968C2 (en) Food compositions for animals with fried slices (versions) and such compositions preparation method
EP2931061B1 (en) Method of preparing a food composition
JP7100583B2 (en) Pet food
JP2020103315A (en) Palatability enhancers comprising amino reactants and carbonyl compounds for use in cat food
CA3112019A1 (en) Compositions containing linoleic acid
JP6417429B2 (en) Methods for improving hair condition in non-human animals
RU2727434C1 (en) Fodder compositions for domestic animals and methods for production thereof
EP4344553A1 (en) Animal food compositions with improved customizability, and methods for preparing the same

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

AS Assignment

Owner name: MARS, INCORPORATED, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BELT, SARAH;GOSLING, MATTHEW;HEATH, GUY;AND OTHERS;SIGNING DATES FROM 20170328 TO 20170329;REEL/FRAME:066881/0598

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE