US20190389904A2 - Malt1 inhibitors and uses thereof - Google Patents

Malt1 inhibitors and uses thereof Download PDF

Info

Publication number
US20190389904A2
US20190389904A2 US15/755,951 US201615755951A US2019389904A2 US 20190389904 A2 US20190389904 A2 US 20190389904A2 US 201615755951 A US201615755951 A US 201615755951A US 2019389904 A2 US2019389904 A2 US 2019389904A2
Authority
US
United States
Prior art keywords
optionally substituted
alkyl
certain embodiments
compound
carbocyclyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/755,951
Other versions
US10711036B2 (en
US20180251489A1 (en
Inventor
Nathanael S. Gray
David A. Scott
John Hatcher
Spandan Chennamadhavuni
Ari M. Melnick
Lorena Fontan Gabas
Hao Wu
Qi Qiao
Guangyan Du
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Childrens Medical Center Corp
Dana Farber Cancer Institute Inc
Cornell University
Original Assignee
Childrens Medical Center Corp
Dana Farber Cancer Institute Inc
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Childrens Medical Center Corp, Dana Farber Cancer Institute Inc, Cornell University filed Critical Childrens Medical Center Corp
Priority to US15/755,951 priority Critical patent/US10711036B2/en
Publication of US20180251489A1 publication Critical patent/US20180251489A1/en
Assigned to CHILDREN'S MEDICAL CENTER CORPORATION reassignment CHILDREN'S MEDICAL CENTER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QIAO, QI, WU, HAO
Assigned to CORNELL UNIVERSITY reassignment CORNELL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Gabas, Lorena Fontan, MELNICK, ARI M.
Assigned to DANA-FARBER CANCER INSTITUTE, INC. reassignment DANA-FARBER CANCER INSTITUTE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HATCHER, JOHN, GRAY, NATHANAEL S., DU, Guangyan, SCOTT, DAVID A., CHENNAMADHAVUNI, Spandan
Publication of US20190389904A2 publication Critical patent/US20190389904A2/en
Application granted granted Critical
Publication of US10711036B2 publication Critical patent/US10711036B2/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: DANA-FARBER CANCER INST
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1019Tetrapeptides with the first amino acid being basic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/07Tetrapeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0205Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-(X)3-C(=0)-, e.g. statine or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • C07K5/06052Val-amino acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/0606Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06078Dipeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0821Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • Diffuse large B-cell lymphoma accounts for about 25% of all lymphoma cases.
  • Subtypes of DLBCL identified by gene expression profiling include germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL and primary mediastinal B-cell lymphoma (PMBL) [2,3].
  • GCB germinal center B-cell-like
  • ABSC activated B-cell-like
  • PMBL primary mediastinal B-cell lymphoma
  • MALT1 Mucosa-associated lymphoid tissue lymphoma translocation protein 1
  • TCR T-cell receptors
  • BCR B-cell receptors
  • MALT1 has also been shown to facilitate lymphocyte proliferation, activation, and cytokine production.
  • CBM complex caspase recruitment domain family member 11
  • B-cell 10 B-cell lymphoma 10
  • MALT1 contains a caspase-like domain with proteolytic activity for several important substrates in lymphocyte regulation. MALT1 is a paracaspase, which cleaves after an arginine or lysine residues instead of an aspartate as in caspases.
  • Known peptide substrates of MALT1, or fusion protein API2-MALT1 include A20, CYLD, Bcl10, RelB, regnase-1, roquin-1, NIK, LIMA1 ⁇ , and MALT1.
  • API2-MALT1 results from a t(11;18)(q21;q21) translocation, and is detected in up to 55% of patents with MALT associated lymphomas.
  • Mucosa-associated lymphoid tissue transformation protein 1 is a key regulator of T-cell and B-cell signaling pathways including NF- ⁇ B activation, lymphocyte proliferation, lymphocyte activation, cytokine expression and secretion, and natural killer (NK) receptor activation.
  • MALT1 acts as both a scaffold protein in the signaling chain between T- and B-cell receptors (TCR and BCR) and NF- ⁇ B activation, and as a protease for cleavage of several peptides involved in NF- ⁇ B regulation and other pathways.
  • Proteolysis is catalyzed by a caspase-like domain with conserved residues Cys464 (C464) and His415, and referred to as a paracaspase domain [5].
  • Substrates identified for MALT1 protease activity include tumor necrosis factor, alpha-induced protein (A20), B-cell lymphoma 10 (Bcl10), cylindromatosis (CYLD), transcription factor RelB, regnase-1, roquin-1, and roquin-2. Auto-proteolysis of MALT1 has also been demonstrated.
  • the fusion protein API2-MALT1 cleaves NF- ⁇ B inducing kinase (NIK) and LIM domain and actin-binding protein 1 (LIMA1 ⁇ ).
  • the paracaspase domain cleaves peptide substrates after an arginine or a lysine.
  • the domain may also require an uncharged amino acid (e.g., serine, proline, cysteine) after the arginine or lysine residue.
  • A20, CYLD, and RelB are negative regulators of NF- ⁇ B activation, thus proteolysis by MALT1 promotes NF- ⁇ B activation and NF- ⁇ B dependent gene expression.
  • CYLD also negatively regulates c-Jun N-terminal kinase (JNK) signaling.
  • JNK c-Jun N-terminal kinase
  • Both A20 and CYLD are deubiquitinases that remove polyubiquitin from proteins of NF- ⁇ B signaling pathway such as TRAF2, TRAF6, NEMO, MALT1, and TAK1.
  • RelB binds NF- ⁇ B subunits RelA and c-Rel, inhibiting transcription of their target genes.
  • the MALT1 fragment produced by auto-proteolysis retains MALT1 proteolysis activity, and cleavage of the Bcl10 binding domain promotes NF- ⁇ B activation.
  • Regnase-1 regulates the decay of mRNA for several genes including IL-2, IL-6, c-Rel, and Ox40.
  • Roquins also bind mRNA and repress expression of transcription factors c-Rel, IRF4, I ⁇ BNS, and I ⁇ B ⁇ , which regulate T-cell differentiation (e.g., Th17) and cytokine expression (e.g., IL-17).
  • T-cell differentiation e.g., Th17
  • cytokine expression e.g., IL-17
  • Substrates of API2-MALT1 include NIK and LIMA1 ⁇ .
  • API2 binding of NIK allows for cleavage of the kinase even at low cellular concentrations, which generates a NIK C-terminal fragment resistant to proteasomal degradation.
  • Sufficient levels of C-terminal fragment promote non-canonical NF- ⁇ B activation which leads to up-regulation of genes that enhance B-cell adhesion and apoptosis resistance.
  • API2-MALT1 cleavage of LIMA1a produces fragments that lose the tumor suppressor function of LIMA1a and lymphocyte proliferation and adhesion.
  • the proteolytic activity of MALT1 and API2-MALT1 is therefore critical in regulating the oncogenic properties of T- and B-cell lymphocytes.
  • Different subtypes of diffuse large B-cell lymphoma (DLBCL) have different phenotypes for NF- ⁇ B activation pathways and NF- ⁇ B dependent gene expression.
  • Activation of NF- ⁇ B by pathways involving MALT1 proteolytic activity is critical to the proliferation and survival of ABC-DLBCL cells.
  • the irreversible MALT1 inhibitor Z-VRPR-fmk has been demonstrated to reduce ABC-DLBCL viability. Genes known to be upregulated in ABC-DLBCL (e.g., FLIP, A1, A20, IL-6, IL-10) were shown to be down-regulated by MALT1 inhibition. [18]
  • Phenothiazine derivatives e.g., mepazine, thioridazine, and promazine
  • MALT1 Phenothiazine derivatives
  • MI-2 has been identified as an irreversible MALT1 inhibitor capable of inhibiting ABC-DLBCL cell grown in vitro and in a xenograft mouse model.
  • Additional analog of MI-2 are described in WIPO Application No. PCT/US2013/069141, which is incorporated herein by reference.
  • MALT1 may be inhibitors of MALT1.
  • compounds that inhibit MALT1 variants such as fusion proteins API2-MALT1 or IGH-MALT 1. They may inhibit the proteolytic activity of MALT1 or a MALT1 fusion protein for cleavage of substrates including, but not limited to, A20, CYLD, Bcl10, RelB, regnase-1, roquin-1, NIK, LIMA1 ⁇ , and MALT1.
  • the inhibition of MALT1 proteolysis may suppress NF- ⁇ B activation, down-regulate expression of NF- ⁇ B dependent genes, regulate expression of cytokines (e.g., IL-2, IL-6, IL-8, IL-10), enhance lymphocyte adhesion, enhance lymphocyte apoptosis resistance, and/or enhance lymphocyte proliferation.
  • cytokines e.g., IL-2, IL-6, IL-8, IL-10
  • the compound of Formula (I) is a tripeptide (i.e., L 1 is a bond).
  • the compound of Formula (I) is a tripeptide of formula R 8 —P3-P2-P1-fmk, wherein P3, P2, and P1 are amino acids, fmk is fluoromethylketone, and R 8 is as described herein.
  • each of P3, P2, and P1 is a naturally occurring proteinogenic amino acid.
  • P1 is arginine.
  • P2 is proline, serine, or cysteine.
  • P3 is valine, alanine, isoleucine, or leucine.
  • P1 is arginine and P2 is proline.
  • compositions comprising a compound described herein, or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, and optionally a pharmaceutically acceptable excipient.
  • the pharmaceutical compositions described herein include a therapeutically or prophylactically effective amount of a compound described herein.
  • the pharmaceutical composition may be useful for treating a proliferative disease in a subject in need thereof, preventing a proliferative disease in a subject in need thereof, inhibiting the activity of a protein kinase in a subject, biological sample, tissue, or cell, and/or inducing apoptosis in a cell.
  • the pharmaceutical composition may contain one or more additional pharmaceutical agents (e.g., anti-proliferative agents, anti-cancer agents).
  • the present invention provides methods for treating and/or preventing a proliferative disease comprising administering a compound described herein, or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, or a pharmaceutical composition thereof, to a subject in need thereof.
  • the proliferative disease is cancer (e.g., leukemia, lymphoma).
  • the disease is a hematological malignancy.
  • the disease is diffuse large B-cell lymphoma.
  • the disease is MALT lymphoma.
  • the disease is an autoimmune disease.
  • the proliferative disease is benign neoplasm, a disease associated with angiogenesis, an inflammatory disease, or autoinflammatory disease.
  • kits comprising a compound described herein, or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, or a pharmaceutical composition thereof; and instructions for using the compound, or pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, or the pharmaceutical composition.
  • NF- ⁇ B nuclear factor ⁇ B
  • kits for inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a subject by administering to the subject a compound described herein, or inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a biological sample by contacting the biological sample with a compound described herein.
  • the method inhibits the protease activity of MALT1.
  • the method inhibits the protease activity of a MALT1 fusion protein (e.g., API2-MALT1).
  • the method inhibits the protease activity of MALT1 for cleavage of a peptide substrate.
  • the peptide substrate is A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1 ⁇ , or MALT1.
  • provided herein are methods of inhibiting cell proliferation in a subject by administering to the subject a compound described herein, or inhibiting cell proliferation in a biological sample by contacting the biological sample with a compound described herein.
  • cell proliferation is inhibited for T-cells.
  • cell proliferation is inhibited for B-cells.
  • cell proliferation is inhibited for T-cells and B-cells.
  • cell is a tumor cell.
  • the cell is a lymphocyte.
  • the cell is a T-cell.
  • the cell is a B-cell.
  • cell is a tumor cell.
  • the cell is a lymphocyte.
  • the cell is a T-cell.
  • the cell is a B-cell.
  • Compounds described herein can comprise one or more asymmetric centers, and thus can exist in various stereoisomeric forms, e.g., enantiomers and/or diastereomers.
  • the compounds described herein can be in the form of an individual enantiomer, diastereomer or geometric isomer, or can be in the form of a mixture of stereoisomers, including racemic mixtures and mixtures enriched in one or more stereoisomer.
  • Isomers can be isolated from mixtures by methods known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts; or preferred isomers can be prepared by asymmetric syntheses.
  • HPLC high pressure liquid chromatography
  • a formula is a single bond where the stereochemistry of the moieties immediately attached thereto is not specified, - - - is absent or a single bond, and or is a single or double bond.
  • structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, replacement of 19 F with 18 F, or the replacement of 12 C with 13 C or 14 C are within the scope of the disclosure.
  • Such compounds may be useful, for example, as analytical tools or probes in biological assays.
  • C 1-6 alkyl is intended to encompass, C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 1-6 , C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-5 , C 2-4 , C 2-3 , C 3-6 , C 3-5 , C 3-4 , C 4-6 , C 4-5 , and C 5-6 alkyl.
  • aliphatic refers to alkyl, alkenyl, alkynyl, and carbocyclic groups.
  • heteroaliphatic refers to heteroalkyl, heteroalkenyl, heteroalkynyl, and heterocyclic groups.
  • alkyl refers to a radical of a straight-chain or branched saturated hydrocarbon group having from 1 to 10 carbon atoms (“C 1-10 alkyl”). In some embodiments, an alkyl group has 1 to 9 carbon atoms (“C 1-9 alkyl”). In some embodiments, an alkyl group has 1 to 8 carbon atoms (“C 1-8 alkyl”). In some embodiments, an alkyl group has 1 to 7 carbon atoms (“C 1-7 alkyl”). In some embodiments, an alkyl group has 1 to 6 carbon atoms (“C 1-6 alkyl”). In some embodiments, an alkyl group has 1 to 5 carbon atoms (“C 1-5 alkyl”).
  • an alkyl group has 1 to 4 carbon atoms (“C 1-4 alkyl”). In some embodiments, an alkyl group has 1 to 3 carbon atoms (“C 1-3 alkyl”). In some embodiments, an alkyl group has 1 to 2 carbon atoms (“C 1-2 alkyl”). In some embodiments, an alkyl group has 1 carbon atom (“C 1 alkyl”). In some embodiments, an alkyl group has 2 to 6 carbon atoms (“C 2-6 alkyl”).
  • C 1-6 alkyl groups include methyl (C 1 ), ethyl (C 2 ), propyl (C 3 ) (e.g., n-propyl, isopropyl), butyl (C 4 ) (e.g., n-butyl, tert-butyl, sec-butyl, iso-butyl), pentyl (C 5 ) (e.g., n-pentyl, 3-pentanyl, amyl, neopentyl, 3-methyl-2-butanyl, tertiary amyl), and hexyl (C 6 ) (e.g., n-hexyl).
  • alkyl groups include n-heptyl (C 7 ), n-octyl (C 8 ), and the like. Unless otherwise specified, each instance of an alkyl group is independently unsubstituted (an “unsubstituted alkyl”) or substituted (a “substituted alkyl”) with one or more substituents (e.g., halogen, such as F).
  • substituents e.g., halogen, such as F
  • the alkyl group is an unsubstituted C 1-10 alkyl (such as unsubstituted C 1-6 alkyl, e.g., —CH 3 (Me), unsubstituted ethyl (Et), unsubstituted propyl (Pr, e.g., unsubstituted n-propyl (n-Pr), unsubstituted isopropyl (i-Pr)), unsubstituted butyl (Bu, e.g., unsubstituted n-butyl (n-Bu), unsubstituted tert-butyl (tert-Bu or t-Bu), unsubstituted sec-butyl (sec-Bu), unsubstituted isobutyl (i-Bu)).
  • the alkyl group is a substituted C 1-10 alkyl (such as substituted C 1-6 alkyl, e.g.,
  • haloalkyl is a substituted alkyl group, wherein one or more of the hydrogen atoms are independently replaced by a halogen, e.g., fluoro, bromo, chloro, or iodo.
  • the haloalkyl moiety has 1 to 8 carbon atoms (“C 1-8 haloalkyl”).
  • the haloalkyl moiety has 1 to 6 carbon atoms (“C 1-6 haloalkyl”).
  • the haloalkyl moiety has 1 to 4 carbon atoms (“C 1-4 haloalkyl”).
  • the haloalkyl moiety has 1 to 3 carbon atoms (“C 1-3 haloalkyl”). In some embodiments, the haloalkyl moiety has 1 to 2 carbon atoms (“C 1-2 haloalkyl”). Examples of haloalkyl groups include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 CF 3 , —CCl 3 , —CFCl 2 , —CF 2 Cl, and the like.
  • heteroalkyl refers to an alkyl group, which further includes at least one heteroatom (e.g., 1, 2, 3, or 4 heteroatoms) selected from oxygen, nitrogen, or sulfur within (i.e., inserted between adjacent carbon atoms of) and/or placed at one or more terminal position(S) of the parent chain.
  • a heteroalkyl group refers to a saturated group having from 1 to 10 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC 1-10 alkyl”).
  • a heteroalkyl group is a saturated group having 1 to 9 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC 1-9 alkyl”).
  • a heteroalkyl group is a saturated group having 1 to 8 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC 1-8 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 7 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC 1-7 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 6 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC 1-6 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 5 carbon atoms and 1 or 2 heteroatoms within the parent chain (“heteroC 1-5 alkyl”).
  • a heteroalkyl group is a saturated group having 1 to 4 carbon atoms and 1 or 2 heteroatoms within the parent chain (“heteroC 1-4 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 3 carbon atoms and 1 heteroatom within the parent chain (“heteroC 1-3 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 2 carbon atoms and 1 heteroatom within the parent chain (“heteroC 1-2 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 carbon atom and 1 heteroatom (“heteroC 1 alkyl”).
  • a heteroalkyl group is a saturated group having 2 to 6 carbon atoms and 1 or 2 heteroatoms within the parent chain (“heteroC 2-6 alkyl”). Unless otherwise specified, each instance of a heteroalkyl group is independently unsubstituted (an “unsubstituted heteroalkyl”) or substituted (a “substituted heteroalkyl”) with one or more substituents. In certain embodiments, the heteroalkyl group is an unsubstituted heteroC 1-10 alkyl. In certain embodiments, the heteroalkyl group is a substituted heteroC 1-10 alkyl.
  • alkenyl refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 10 carbon atoms and one or more carbon-carbon double bonds (e.g., 1, 2, 3, or 4 double bonds).
  • an alkenyl group has 2 to 9 carbon atoms (“C 2-9 alkenyl”).
  • an alkenyl group has 2 to 8 carbon atoms (“C 2-8 alkenyl”).
  • an alkenyl group has 2 to 7 carbon atoms (“C 2-7 alkenyl”).
  • an alkenyl group has 2 to 6 carbon atoms (“C 2-6 alkenyl”).
  • an alkenyl group has 2 to 5 carbon atoms (“C 2-5 alkenyl”). In some embodiments, an alkenyl group has 2 to 4 carbon atoms (“C 2-4 alkenyl”). In some embodiments, an alkenyl group has 2 to 3 carbon atoms (“C 2-3 alkenyl”). In some embodiments, an alkenyl group has 2 carbon atoms (“C 2 alkenyl”).
  • the one or more carbon-carbon double bonds can be internal (such as in 2-butenyl) or terminal (such as in 1-butenyl).
  • Examples of C 2-4 alkenyl groups include ethenyl (C 2 ), 1-propenyl (C 3 ), 2-propenyl (C 3 ), 1-butenyl (C 4 ), 2-butenyl (C 4 ), butadienyl (C 4 ), and the like.
  • Examples of C 2-6 alkenyl groups include the aforementioned C 2-4 alkenyl groups as well as pentenyl (C 5 ), pentadienyl (C 5 ), hexenyl (C 6 ), and the like. Additional examples of alkenyl include heptenyl (C 7 ), octenyl (C 8 ), octatrienyl (C 8 ), and the like.
  • each instance of an alkenyl group is independently unsubstituted (an “unsubstituted alkenyl”) or substituted (a “substituted alkenyl”) with one or more substituents.
  • the alkenyl group is an unsubstituted C 2-10 alkenyl.
  • the alkenyl group is a substituted C 2-10 alkenyl.
  • a C ⁇ C double bond for which the stereochemistry is not specified (e.g., —H ⁇ CHCH 3 or
  • heteroalkenyl refers to an alkenyl group, which further includes at least one heteroatom (e.g., 1, 2, 3, or 4 heteroatoms) selected from oxygen, nitrogen, or sulfur within (i.e., inserted between adjacent carbon atoms of) and/or placed at one or more terminal position(S) of the parent chain.
  • a heteroalkenyl group refers to a group having from 2 to 10 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-10 alkenyl”).
  • a heteroalkenyl group has 2 to 9 carbon atoms at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-9 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 8 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-8 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 7 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-7 alkenyl”).
  • a heteroalkenyl group has 2 to 6 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-6 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 5 carbon atoms, at least one double bond, and 1 or 2 heteroatoms within the parent chain (“heteroC 2-5 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 4 carbon atoms, at least one double bond, and 1 or 2 heteroatoms within the parent chain (“heteroC 2-4 alkenyl”).
  • a heteroalkenyl group has 2 to 3 carbon atoms, at least one double bond, and 1 heteroatom within the parent chain (“heteroC 2-3 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 6 carbon atoms, at least one double bond, and 1 or 2 heteroatoms within the parent chain (“heteroC 2-6 alkenyl”). Unless otherwise specified, each instance of a heteroalkenyl group is independently unsubstituted (an “unsubstituted heteroalkenyl”) or substituted (a “substituted heteroalkenyl”) with one or more substituents. In certain embodiments, the heteroalkenyl group is an unsubstituted heteroC 2-10 alkenyl. In certain embodiments, the heteroalkenyl group is a substituted heteroC 2-10 alkenyl.
  • alkynyl refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 10 carbon atoms and one or more carbon-carbon triple bonds (e.g., 1, 2, 3, or 4 triple bonds) (“C 2-10 alkynyl”).
  • an alkynyl group has 2 to 9 carbon atoms (“C 2-9 alkynyl”).
  • an alkynyl group has 2 to 8 carbon atoms (“C 2-8 alkynyl”).
  • an alkynyl group has 2 to 7 carbon atoms (“C 2-7 alkynyl”).
  • an alkynyl group has 2 to 6 carbon atoms (“C 2-6 alkynyl”).
  • an alkynyl group has 2 to 5 carbon atoms (“C 2-5 alkynyl”). In some embodiments, an alkynyl group has 2 to 4 carbon atoms (“C 2-4 alkynyl”). In some embodiments, an alkynyl group has 2 to 3 carbon atoms (“C 2-3 alkynyl”). In some embodiments, an alkynyl group has 2 carbon atoms (“C 2 alkynyl”).
  • the one or more carbon-carbon triple bonds can be internal (such as in 2-butynyl) or terminal (such as in 1-butynyl).
  • Examples of C 2-4 alkynyl groups include, without limitation, ethynyl (C 2 ), 1-propynyl (C 3 ), 2-propynyl (C 3 ), 1-butynyl (C 4 ), 2-butynyl (C 4 ), and the like.
  • Examples of C 2-6 alkenyl groups include the aforementioned C 2-4 alkynyl groups as well as pentynyl (C 5 ), hexynyl (C 6 ), and the like. Additional examples of alkynyl include heptynyl (C 7 ), octynyl (C 8 ), and the like.
  • each instance of an alkynyl group is independently unsubstituted (an “unsubstituted alkynyl”) or substituted (a “substituted alkynyl”) with one or more substituents.
  • the alkynyl group is an unsubstituted C 2-10 alkynyl.
  • the alkynyl group is a substituted C 2-10 alkynyl.
  • heteroalkynyl refers to an alkynyl group, which further includes at least one heteroatom (e.g., 1, 2, 3, or 4 heteroatoms) selected from oxygen, nitrogen, or sulfur within (i.e., inserted between adjacent carbon atoms of) and/or placed at one or more terminal position(S) of the parent chain.
  • a heteroalkynyl group refers to a group having from 2 to 10 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-10 alkynyl”).
  • a heteroalkynyl group has 2 to 9 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-9 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 8 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-8 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 7 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-7 alkynyl”).
  • a heteroalkynyl group has 2 to 6 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC 2-6 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 5 carbon atoms, at least one triple bond, and 1 or 2 heteroatoms within the parent chain (“heteroC 2-5 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 4 carbon atoms, at least one triple bond, and 1 or 2 heteroatoms within the parent chain (“heteroC 2-4 alkynyl”).
  • a heteroalkynyl group has 2 to 3 carbon atoms, at least one triple bond, and 1 heteroatom within the parent chain (“heteroC 2-3 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 6 carbon atoms, at least one triple bond, and 1 or 2 heteroatoms within the parent chain (“heteroC 2-6 alkynyl”). Unless otherwise specified, each instance of a heteroalkynyl group is independently unsubstituted (an “unsubstituted heteroalkynyl”) or substituted (a “substituted heteroalkynyl”) with one or more substituents. In certain embodiments, the heteroalkynyl group is an unsubstituted heteroC 2-10 alkynyl. In certain embodiments, the heteroalkynyl group is a substituted heteroC 2-10 alkynyl.
  • carbocyclyl refers to a radical of a non-aromatic cyclic hydrocarbon group having from 3 to 14 ring carbon atoms (“C 3-14 carbocyclyl”) and zero heteroatoms in the non-aromatic ring system.
  • a carbocyclyl group has 3 to 10 ring carbon atoms (“C 3-10 carbocyclyl”).
  • a carbocyclyl group has 3 to 8 ring carbon atoms (“C 3-8 carbocyclyl”).
  • a carbocyclyl group has 3 to 7 ring carbon atoms (“C 3-7 carbocyclyl”).
  • a carbocyclyl group has 3 to 6 ring carbon atoms (“C 3-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 4 to 6 ring carbon atoms (“C 4-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 5 to 6 ring carbon atoms (“C 5-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 5 to 10 ring carbon atoms (“C 5-10 carbocyclyl”).
  • Exemplary C 3-6 carbocyclyl groups include, without limitation, cyclopropyl (C 3 ), cyclopropenyl (C 3 ), cyclobutyl (C 4 ), cyclobutenyl (C 4 ), cyclopentyl (C 5 ), cyclopentenyl (C 5 ), cyclohexyl (C 6 ), cyclohexenyl (C 6 ), cyclohexadienyl (C 6 ), and the like.
  • Exemplary C 3-8 carbocyclyl groups include, without limitation, the aforementioned C 3-6 carbocyclyl groups as well as cycloheptyl (C 7 ), cycloheptenyl (C 7 ), cycloheptadienyl (C 7 ), cycloheptatrienyl (C 7 ), cyclooctyl (C 8 ), cyclooctenyl (C 8 ), bicyclo[2.2.1]heptanyl (C 7 ), bicyclo[2.2.2]octanyl (C 8 ), and the like.
  • Exemplary C 3-10 carbocyclyl groups include, without limitation, the aforementioned C 3-8 carbocyclyl groups as well as cyclononyl (C 9 ), cyclononenyl (C 9 ), cyclodecyl (C 10 ), cyclodecenyl (C 10 ), octahydro-1H-indenyl (C 9 ), decahydronaphthalenyl (C 10 ), spiro[4.5]decanyl (C 10 ), and the like.
  • the carbocyclyl group is either monocyclic (“monocyclic carbocyclyl”) or polycyclic (e.g., containing a fused, bridged or spiro ring system such as a bicyclic system (“bicyclic carbocyclyl”) or tricyclic system (“tricyclic carbocyclyl”)) and can be saturated or can contain one or more carbon-carbon double or triple bonds.
  • Carbocyclyl also includes ring systems wherein the carbocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups wherein the point of attachment is on the carbocyclyl ring, and in such instances, the number of carbons continue to designate the number of carbons in the carbocyclic ring system.
  • each instance of a carbocyclyl group is independently unsubstituted (an “unsubstituted carbocyclyl”) or substituted (a “substituted carbocyclyl”) with one or more substituents.
  • the carbocyclyl group is an unsubstituted C 3-14 carbocyclyl.
  • the carbocyclyl group is a substituted C 3-14 carbocyclyl.
  • “carbocyclyl” is a monocyclic, saturated carbocyclyl group having from 3 to 14 ring carbon atoms (“C 3-14 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 10 ring carbon atoms (“C 3-10 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 8 ring carbon atoms (“C 3-8 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 6 ring carbon atoms (“C 3-6 cycloalkyl”). In some embodiments, a cycloalkyl group has 4 to 6 ring carbon atoms (“C 4-6 cycloalkyl”).
  • a cycloalkyl group has 5 to 6 ring carbon atoms (“C 5-6 cycloalkyl”). In some embodiments, a cycloalkyl group has 5 to 10 ring carbon atoms (“C 5-10 cycloalkyl”). Examples of C 5-6 cycloalkyl groups include cyclopentyl (C 5 ) and cyclohexyl (C 5 ). Examples of C 3-6 cycloalkyl groups include the aforementioned C 5-6 cycloalkyl groups as well as cyclopropyl (C 3 ) and cyclobutyl (C 4 ).
  • C 3-8 cycloalkyl groups include the aforementioned C 3-6 cycloalkyl groups as well as cycloheptyl (C 7 ) and cyclooctyl (C 8 ).
  • each instance of a cycloalkyl group is independently unsubstituted (an “unsubstituted cycloalkyl”) or substituted (a “substituted cycloalkyl”) with one or more substituents.
  • the cycloalkyl group is an unsubstituted C 3-14 cycloalkyl.
  • the cycloalkyl group is a substituted C 3-14 cycloalkyl.
  • the carbocyclyl includes 0, 1, or 2 C ⁇ C double bonds in the carbocyclic ring system, as valency permits.
  • heterocyclyl refers to a radical of a 3- to 14-membered non-aromatic ring system having ring carbon atoms and 1 to 4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“3-14 membered heterocyclyl”).
  • heterocyclyl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits.
  • a heterocyclyl group can either be monocyclic (“monocyclic heterocyclyl”) or polycyclic (e.g., a fused, bridged or spiro ring system such as a bicyclic system (“bicyclic heterocyclyl”) or tricyclic system (“tricyclic heterocyclyl”)), and can be saturated or can contain one or more carbon-carbon double or triple bonds.
  • Heterocyclyl polycyclic ring systems can include one or more heteroatoms in one or both rings.
  • Heterocyclyl also includes ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more carbocyclyl groups wherein the point of attachment is either on the carbocyclyl or heterocyclyl ring, or ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups, wherein the point of attachment is on the heterocyclyl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heterocyclyl ring system.
  • each instance of heterocyclyl is independently unsubstituted (an “unsubstituted heterocyclyl”) or substituted (a “substituted heterocyclyl”) with one or more substituents.
  • the heterocyclyl group is an unsubstituted 3-14 membered heterocyclyl.
  • the heterocyclyl group is a substituted 3-14 membered heterocyclyl.
  • the heterocyclyl is substituted or unsubstituted, 3-6 membered, monocyclic heterocyclyl, wherein 1, 2, or 3 atoms in the heterocyclic ring system are independently oxygen, nitrogen, or sulfur, as valency permits.
  • a heterocyclyl group is a 5-10 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-10 membered heterocyclyl”).
  • a heterocyclyl group is a 5-8 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-8 membered heterocyclyl”).
  • a heterocyclyl group is a 5-6 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-6 membered heterocyclyl”).
  • the 5-6 membered heterocyclyl has 1-3 ring heteroatoms selected from nitrogen, oxygen, and sulfur.
  • the 5-6 membered heterocyclyl has 1-2 ring heteroatoms selected from nitrogen, oxygen, and sulfur.
  • the 5-6 membered heterocyclyl has 1 ring heteroatom selected from nitrogen, oxygen, and sulfur.
  • Exemplary 3-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azirdinyl, oxiranyl, and thiiranyl.
  • Exemplary 4-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azetidinyl, oxetanyl, and thietanyl.
  • Exemplary 5-membered heterocyclyl groups containing 1 heteroatom include, without limitation, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothiophenyl, dihydrothiophenyl, pyrrolidinyl, dihydropyrrolyl, and pyrrolyl-2,5-dione.
  • Exemplary 5-membered heterocyclyl groups containing 2 heteroatoms include, without limitation, dioxolanyl, oxathiolanyl and dithiolanyl.
  • Exemplary 5-membered heterocyclyl groups containing 3 heteroatoms include, without limitation, triazolinyl, oxadiazolinyl, and thiadiazolinyl.
  • Exemplary 6-membered heterocyclyl groups containing 1 heteroatom include, without limitation, piperidinyl, tetrahydropyranyl, dihydropyridinyl, and thianyl.
  • Exemplary 6-membered heterocyclyl groups containing 2 heteroatoms include, without limitation, piperazinyl, morpholinyl, dithianyl, and dioxanyl.
  • Exemplary 6-membered heterocyclyl groups containing 3 heteroatoms include, without limitation, triazinanyl (triazinyl).
  • Exemplary 7-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azepanyl, oxepanyl and thiepanyl.
  • Exemplary 8-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azocanyl, oxecanyl and thiocanyl.
  • bicyclic heterocyclyl groups include, without limitation, indolinyl, isoindolinyl, dihydrobenzofuranyl, dihydrobenzothienyl, tetrahydrobenzothienyl, tetrahydrobenzofuranyl, tetrahydroindolyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, decahydroisoquinolinyl, octahydrochromenyl, octahydroisochromenyl, decahydronaphthyridinyl, decahydro-1,8-naphthyridinyl, octahydropyrrolo[3,2-b]pyrrole, indolinyl, phthalimidyl, naphthalimidyl, chromanyl, chromenyl, 1H-benzo[e][1,4-
  • aryl refers to a radical of a monocyclic or polycyclic (e.g., bicyclic or tricyclic) 4n+2 aromatic ring system (e.g., having 6, 10, or 14 t electrons shared in a cyclic array) having 6-14 ring carbon atoms and zero heteroatoms provided in the aromatic ring system (“C 6-14 aryl”).
  • an aryl group has 6 ring carbon atoms (“C 6 aryl”; e.g., phenyl).
  • an aryl group has 10 ring carbon atoms (“C 10 aryl”; e.g., naphthyl such as 1-naphthyl and 2-naphthyl).
  • an aryl group has 14 ring carbon atoms (“C 14 aryl”; e.g., anthracyl).
  • Aryl also includes ring systems wherein the aryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the radical or point of attachment is on the aryl ring, and in such instances, the number of carbon atoms continue to designate the number of carbon atoms in the aryl ring system.
  • each instance of an aryl group is independently unsubstituted (an “unsubstituted aryl”) or substituted (a “substituted aryl”) with one or more substituents.
  • the aryl group is an unsubstituted C 6-14 aryl.
  • the aryl group is a substituted C 6-14 aryl.
  • Alkyl is a subset of “alkyl” and refers to an alkyl group substituted by an aryl group, wherein the point of attachment is on the alkyl moiety.
  • heteroaryl refers to a radical of a 5-14 membered monocyclic or polycyclic (e.g., bicyclic, tricyclic) 4n+2 aromatic ring system (e.g., having 6, 10, or 14 ⁇ electrons shared in a cyclic array) having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-14 membered heteroaryl”).
  • the point of attachment can be a carbon or nitrogen atom, as valency permits.
  • Heteroaryl polycyclic ring systems can include one or more heteroatoms in one or both rings.
  • Heteroaryl includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the point of attachment is on the heteroaryl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heteroaryl ring system. “Heteroaryl” also includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more aryl groups wherein the point of attachment is either on the aryl or heteroaryl ring, and in such instances, the number of ring members designates the number of ring members in the fused polycyclic (aryl/heteroaryl) ring system.
  • Polycyclic heteroaryl groups wherein one ring does not contain a heteroatom e.g., indolyl, quinolinyl, carbazolyl, and the like
  • the point of attachment can be on either ring, i.e., either the ring bearing a heteroatom (e.g., 2-indolyl) or the ring that does not contain a heteroatom (e.g., 5-indolyl).
  • the heteroaryl is substituted or unsubstituted, 5-6 membered, monocyclic heteroaryl.
  • the heteroaryl is substituted or unsubstituted, 9-10 membered, bicyclic heteroaryl.
  • a heteroaryl group is a 5-10 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-10 membered heteroaryl”).
  • a heteroaryl group is a 5-8 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-8 membered heteroaryl”).
  • a heteroaryl group is a 5-6 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-6 membered heteroaryl”).
  • the 5-6 membered heteroaryl has 1-3 ring heteroatoms selected from nitrogen, oxygen, and sulfur.
  • the 5-6 membered heteroaryl has 1-2 ring heteroatoms selected from nitrogen, oxygen, and sulfur.
  • the 5-6 membered heteroaryl has 1 ring heteroatom selected from nitrogen, oxygen, and sulfur.
  • each instance of a heteroaryl group is independently unsubstituted (an “unsubstituted heteroaryl”) or substituted (a “substituted heteroaryl”) with one or more substituents.
  • the heteroaryl group is an unsubstituted 5-14 membered heteroaryl.
  • the heteroaryl group is a substituted 5-14 membered heteroaryl.
  • Exemplary 5-membered heteroaryl groups containing 1 heteroatom include, without limitation, pyrrolyl, furanyl, and thiophenyl.
  • Exemplary 5-membered heteroaryl groups containing 2 heteroatoms include, without limitation, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, and isothiazolyl.
  • Exemplary 5-membered heteroaryl groups containing 3 heteroatoms include, without limitation, triazolyl, oxadiazolyl, and thiadiazolyl.
  • Exemplary 5-membered heteroaryl groups containing 4 heteroatoms include, without limitation, tetrazolyl.
  • Exemplary 6-membered heteroaryl groups containing 1 heteroatom include, without limitation, pyridinyl.
  • Exemplary 6-membered heteroaryl groups containing 2 heteroatoms include, without limitation, pyridazinyl, pyrimidinyl, and pyrazinyl.
  • Exemplary 6-membered heteroaryl groups containing 3 or 4 heteroatoms include, without limitation, triazinyl and tetrazinyl, respectively.
  • Exemplary 7-membered heteroaryl groups containing 1 heteroatom include, without limitation, azepinyl, oxepinyl, and thiepinyl.
  • Exemplary 5,6-bicyclic heteroaryl groups include, without limitation, indolyl, isoindolyl, indazolyl, benzotriazolyl, benzothiophenyl, isobenzothiophenyl, benzofuranyl, benzoisofuranyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzoxadiazolyl, benzthiazolyl, benzisothiazolyl, benzthiadiazolyl, indolizinyl, and purinyl.
  • Exemplary 6,6-bicyclic heteroaryl groups include, without limitation, naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, cinnolinyl, quinoxalinyl, phthalazinyl, and quinazolinyl.
  • Exemplary tricyclic heteroaryl groups include, without limitation, phenanthridinyl, dibenzofuranyl, carbazolyl, acridinyl, phenothiazinyl, phenoxazinyl and phenazinyl.
  • Heteroaralkyl is a subset of “alkyl” and refers to an alkyl group substituted by a heteroaryl group, wherein the point of attachment is on the alkyl moiety.
  • unsaturated or “partially unsaturated” refers to a moiety that includes at least one double or triple bond.
  • saturated refers to a moiety that does not contain a double or triple bond, i.e., the moiety only contains single bonds.
  • alkylene is the divalent moiety of alkyl
  • alkenylene is the divalent moiety of alkenyl
  • alkynylene is the divalent moiety of alkynyl
  • heteroalkylene is the divalent moiety of heteroalkyl
  • heteroalkenylene is the divalent moiety of heteroalkenyl
  • heteroalkynylene is the divalent moiety of heteroalkynyl
  • carbocyclylene is the divalent moiety of carbocyclyl
  • heterocyclylene is the divalent moiety of heterocyclyl
  • arylene is the divalent moiety of aryl
  • heteroarylene is the divalent moiety of heteroaryl.
  • a group is optionally substituted unless expressly provided otherwise.
  • the term “optionally substituted” refers to being substituted or unsubstituted.
  • alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl groups are optionally substituted.
  • Optionally substituted refers to a group which may be substituted or unsubstituted (e.g., “substituted” or “unsubstituted” alkyl, “substituted” or “unsubstituted” alkenyl, “substituted” or “unsubstituted” alkynyl, “substituted” or “unsubstituted” heteroalkyl, “substituted” or “unsubstituted” heteroalkenyl, “substituted” or “unsubstituted” heteroalkynyl, “substituted” or “unsubstituted” carbocyclyl, “substituted” or “unsubstituted” heterocyclyl, “substituted” or “unsubstituted” aryl or “substituted” or “unsubstituted” heteroaryl group).
  • substituted means that at least one hydrogen present on a group is replaced with a permissible substituent, e.g., a substituent which upon substitution results in a stable compound, e.g., a compound which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, or other reaction.
  • a “substituted” group has a substituent at one or more substitutable positions of the group, and when more than one position in any given structure is substituted, the substituent is either the same or different at each position.
  • substituted is contemplated to include substitution with all permissible substituents of organic compounds, and includes any of the substituents described herein that results in the formation of a stable compound.
  • the present invention contemplates any and all such combinations in order to arrive at a stable compound.
  • heteroatoms such as nitrogen may have hydrogen substituents and/or any suitable substituent as described herein which satisfy the valencies of the heteroatoms and results in the formation of a stable moiety.
  • the invention is not intended to be limited in any manner by the exemplary substituents described herein.
  • Exemplary carbon atom substituents include, but are not limited to, halogen, —CN, —NO 2 , —N 3 , —SO 2 H, —SO 3 H, —OH, —OR aa , —ON(R bb ) 2 , —N(R bb ) 2 , —N(R bb ) 3 + X ⁇ , —N(OR cc )R bb , —SH, —SR aa , —SSR cc , —C( ⁇ O)R aa , —CO 2 H, —CHO, —C(OR cc ) 2 , —CO 2 R aa , —OC( ⁇ O)R aa , —OCO 2 R aa , —C( ⁇ O)N(R bb ) 2 , —OC( ⁇ O)N(R bb ) 2 , —NR bb C
  • each instance of R aa is, independently, selected from C 1-10 alkyl, C 1-10 perhaloalkyl, C 2-10 alkenyl, C 2-10 alkynyl, heteroC 1-10 alkyl, heteroC 2-10 alkenyl, heteroC 2-10 alkynyl, C 3-10 carbocyclyl, 3-14 membered heterocyclyl, C 6-14 aryl, and 5-14 membered heteroaryl, or two R aa groups are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R dd groups;
  • each instance of R bb is, independently, selected from hydrogen, —OH, —OR aa , —N(R cc ) 2 , —CN, —C( ⁇ O)R aa , —C( ⁇ O)N(R cc ) 2 , —CO 2 R aa , —SO 2 R aa , —C( ⁇ NR cc )OR aa , —C( ⁇ NR cc )N(R cc ) 2 , —SO 2 N(R cc ) 2 , —SO 2 R aa , —SO 2 OR aa , —SOR aa , —C( ⁇ S)N(R cc ) 2 , —C( ⁇ O)SR cc , —C( ⁇ S)SR cc , —P( ⁇ O)(R aa ) 2 , —P( ⁇ O)(OR cc ) 2
  • each instance of R cc is, independently, selected from hydrogen, C 1-10 alkyl, C 1-10 perhaloalkyl, C 2-10 alkenyl, C 2-10 alkynyl, heteroC 1-10 alkyl, heteroC 2-10 alkenyl, heteroC 2-10 alkynyl, C 3-10 carbocyclyl, 3-14 membered heterocyclyl, C 6-14 aryl, and 5-14 membered heteroaryl, or two R cc groups are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R dd groups;
  • each instance of R dd is, independently, selected from halogen, —CN, —NO 2 , —N 3 , —SO 2 H, —SO 3 H, —OH, —OR ee , —ON(R ff ) 2 , —N(R ff ) 2 , —N(R ff ) 3 + X ⁇ , —N(OR ee )R ff , —SH, —SR ee , —SSR ee , —C( ⁇ O)R ee , —CO 2 H, —CO 2 R ee , —OC( ⁇ O)R ee , —OCO 2 R ee , —C( ⁇ O)N(R ff ) 2 , —OC( ⁇ O)N(R) 2 , —NR ff C( ⁇ O)R ee , —NR ff CO 2 R ee ,
  • each instance of R ee is, independently, selected from C 1-6 alkyl, C 1-6 perhaloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, heteroC 1-6 alkyl, heteroC 2-6 alkenyl, heteroC 2-6 alkynyl, C 3-10 carbocyclyl, C 6-10 aryl, 3-10 membered heterocyclyl, and 3-10 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R gg groups;
  • each instance of R ff is, independently, selected from hydrogen, C 1-6 alkyl, C 1-6 perhaloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, heteroC 1-6 alkyl, heteroC 2-6 alkenyl, heteroC 2-6 alkynyl, C 3-10 carbocyclyl, 3-10 membered heterocyclyl, C 6-10 aryl and 5-10 membered heteroaryl, or two R ff groups are joined to form a 3-10 membered heterocyclyl or 5-10 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 R gg groups; and
  • each instance of R gg is, independently, halogen, —CN, —NO 2 , —N 3 , —SO 2 H, —SO 3 H, —OH, —OC 1-6 alkyl, —ON(C 1-6 alkyl) 2 , —N(C 1-6 alkyl) 2 , —N(C 1-6 alkyl) 3 + X ⁇ , —NH(C 1-6 alkyl) 2 + X ⁇ , —NH 2 (C 1-6 alkyl) + X ⁇ , —NH 3 + X ⁇ , —N(OC 1-6 alkyl)(C 1-6 alkyl), —N(OH)(C 1-6 alkyl), —NH(OH), —SH, —SC 1-6 alkyl, —SS(C 1-6 alkyl), —C( ⁇ O)(C 1-6 alkyl), —CO 2 H, —CO 2 (C 1-6 alkyl), —OC( ⁇ O)
  • the carbon atom substituents are independently halogen, substituted or unsubstituted C 1-6 alkyl, —OR aa , —SR aa , —N(R bb ) 2 , —CN, —SCN, —NO 2 , —C( ⁇ O)R aa , —CO 2 R aa , —C( ⁇ O)N(R bb ) 2 , —OC( ⁇ O)R aa , —OCO 2 R aa , —OC( ⁇ O)N(R bb ) 2 , —NR bb C( ⁇ O)R aa , —NR bb CO 2 R aa , or —NR bb C( ⁇ O)N(R bb ) 2 .
  • the carbon atom substituents are independently halogen, substituted or unsubstituted C 1-6 alkyl, —OR aa , —SR aa , —N(R bb ) 2 , —CN, —SCN, or —NO 2 .
  • halo or halogen refers to fluorine (fluoro, —F), chlorine (chloro, —Cl), bromine (bromo, —Br), or iodine (iodo, —I).
  • hydroxyl refers to the group —OH.
  • substituted hydroxyl or “substituted hydroxyl,” by extension, refers to a hydroxyl group wherein the oxygen atom directly attached to the parent molecule is substituted with a group other than hydrogen, and includes groups selected from —OR aa , —ON(R bb ) 2 , —OC( ⁇ O)SR aa , —OC( ⁇ O)R aa , —OCO 2 R aa , —OC( ⁇ O)N(R bb ) 2 , —OC( ⁇ NR bb )R aa , —OC( ⁇ NR bb )OR aa , —OC( ⁇ NR bb )N(R bb ) 2 , —OS( ⁇ O)R aa , —OSO 2 R aa , —OSi(R aa ) 3 , —
  • amino refers to the group —NH 2 .
  • substituted amino by extension, refers to a monosubstituted amino, a disubstituted amino, or a trisubstituted amino. In certain embodiments, the “substituted amino” is a monosubstituted amino or a disubstituted amino group.
  • the term “monosubstituted amino” refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with one hydrogen and one group other than hydrogen, and includes groups selected from —NH(R bb ), —NHC( ⁇ O)R aa , —NHCO 2 R aa , —NHC( ⁇ O)N(R bb ) 2 , —NHC( ⁇ NR bb )N(R bb ) 2 , —NHSO 2 R aa , —NHP( ⁇ O)(OR cc ) 2 , and —NHP( ⁇ O)(N(R bb ) 2 ) 2 , wherein R aa , R bb and R cc are as defined herein, and wherein R bb of the group —NH(R bb ) is not hydrogen.
  • disubstituted amino refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with two groups other than hydrogen, and includes groups selected from —N(R bb ) 2 , —NR bb C( ⁇ O)R aa , —NR bb CO 2 R aa , —NR bb C( ⁇ O)N(R bb ) 2 , —NR bb C( ⁇ NR bb )N(R bb ) 2 , —NR bb SO 2 R aa , —NR bb P( ⁇ O)(OR cc ) 2 , and —NR bb P( ⁇ O)(N(R bb ) 2 ) 2 , wherein R aa , R bb , and R cc are as defined herein, with the proviso that the nitrogen atom directly attached to the parent molecule is not substituted with hydrogen.
  • trisubstituted amino refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with three groups, and includes groups selected from —N(R bb ) 3 and —N(R bb ) 3 + X ⁇ , wherein R bb and X ⁇ are as defined herein.
  • sulfonyl refers to a group selected from —SO 2 N(R bb ) 2 , —SO 2 R aa , and —SO 2 OR aa , wherein R aa and R bb are as defined herein.
  • acyl refers to a group having the general formula —C( ⁇ O)R X1 , —C( ⁇ O)OR X1 , —C( ⁇ O)—O—C( ⁇ O)R X1 , —C( ⁇ O)SR X1 , —C( ⁇ O)N(R X1 ) 2 , —C( ⁇ S)R X1 , —C( ⁇ S)N(R X1 ) 2 , and —C( ⁇ S)S(R X1 ), —C( ⁇ NR X1 )R X1 , —C( ⁇ NR X1 )OR X1 , —C( ⁇ NR X1 )SR X1 , and —C( ⁇ NR X1 )N(R X1 ) 2 , wherein R X1 is hydrogen; halogen; substituted or unsubstituted hydroxyl; substituted or unsubstituted thiol;
  • acyl groups include aldehydes (—CHO), carboxylic acids (—CO 2 H), ketones, acyl halides, esters, amides, imines, carbonates, carbamates, and ureas.
  • Acyl substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety (e.g., aliphatic, alkyl, alkenyl, alkynyl, heteroaliphatic, heterocyclic, aryl, heteroaryl, acyl, oxo, imino, thiooxo, cyano, isocyano, amino, azido, nitro, hydroxyl, thiol, halo, aliphaticamino, heteroaliphaticamino, alkylamino, heteroalkylamino, arylamino, heteroarylamino, alkylaryl, arylalkyl, aliphaticoxy, heteroaliphaticoxy, alkyl
  • carbonyl refers a group wherein the carbon directly attached to the parent molecule is sp 2 hybridized, and is substituted with an oxygen, nitrogen or sulfur atom, e.g., a group selected from ketones (—C( ⁇ O)R aa ), carboxylic acids (—CO 2 H), aldehydes (—CHO), esters (—CO 2 R aa , —C( ⁇ O)SR aa ), and amides (—C( ⁇ O)N(R bb ) 2 , —C( ⁇ O)NR bb SO 2 R aa , —C( ⁇ S)N(R bb ) 2 ), wherein R aa and R bb are as defined herein.
  • oxo refers to the group ⁇ O
  • thiooxo refers to the group ⁇ S.
  • Nitrogen atoms can be substituted or unsubstituted as valency permits, and include primary, secondary, tertiary, and quaternary nitrogen atoms.
  • Exemplary nitrogen atom substituents include, but are not limited to, hydrogen, —OH, —OR aa , —N(R cc ) 2 , —CN, —C( ⁇ O)R aa , —C( ⁇ O)N(R cc ) 2 , —CO 2 R aa , —SO 2 R aa , —C( ⁇ NR bb )R aa , —C( ⁇ NR cc )OR aa , —C( ⁇ NR cc )N(R cc ) 2 , —SO 2 N(R cc ) 2 , —SO 2 R cc , —SO 2 OR aa , —SOR aa , —C( ⁇ S)N(R
  • the substituent present on the nitrogen atom is an nitrogen protecting group (also referred to herein as an “amino protecting group”).
  • Nitrogen protecting groups include, but are not limited to, —OH, —OR aa , —N(R cc ) 2 , —C( ⁇ O)R aa , —C( ⁇ O)N(R cc ) 2 , —CO 2 R aa , —SO 2 R aa , —C( ⁇ NR cc )R aa , —C( ⁇ NR cc )OR aa , —C( ⁇ NR cc )N(R cc ) 2 , —SO 2 N(R cc ) 2 , —SO 2 R cc , —SO 2 OR cc , —SOR aa , —C( ⁇ S)N(R cc ) 2 , —C( ⁇ O)SR cc , ,
  • Nitrogen protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3 rd edition, John Wiley & Sons, 1999, incorporated herein by reference.
  • the nitrogen protecting group described herein is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • nitrogen protecting groups such as amide groups (e.g., —C( ⁇ O)R aa ) include, but are not limited to, formamide, acetamide, chloroacetamide, trichloroacetamide, trifluoroacetamide, phenylacetamide, 3-phenylpropanamide, picolinamide, 3-pyridylcarboxamide, N-benzoylphenylalanyl derivative, benzamide, p-phenylbenzamide, o-nitophenylacetamide, o-nitrophenoxyacetamide, acetoacetamide, (N′-dithiobenzyloxyacylamino)acetamide, 3-(p-hydroxyphenyl)propanamide, 3-(o-nitrophenyl)propanamide, 2-methyl-2-(o-nitrophenoxy)propanamide, 2-methyl-2-(o-phenylazophenoxy)propanamide, 4-chlorobutanamide, 3-methyl-3-nitrobutanamide, o-nitro
  • Nitrogen protecting groups such as carbamate groups include, but are not limited to, methyl carbamate, ethyl carbamate, 9-fluorenylmethyl carbamate (Fmoc), 9-(2-sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-t-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanthyl)]methyl carbamate (DBD-Tmoc), 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2-trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), 1-(1-adamantyl)-1-methylethyl carbamate
  • Nitrogen protecting groups such as sulfonamide groups include, but are not limited to, p-toluenesulfonamide (Ts), benzenesulfonamide, 2,3,6-trimethyl-4-methoxybenzenesulfonamide (Mtr), 2,4,6-trimethoxybenzenesulfonamide (Mtb), 2,6-dimethyl-4-methoxybenzenesulfonamide (Pme), 2,3,5,6-tetramethyl-4-methoxybenzenesulfonamide (Mte), 4-methoxybenzenesulfonamide (Mbs), 2,4,6-trimethylbenzenesulfonamide (Mts), 2,6-dimethoxy-4-methylbenzenesulfonamide (iMds), 2,2,5,7,8-pentamethylchroman-6-sulfonamide (Pmc), methanesulfonamide
  • Ts p-toluenesulfonamide
  • nitrogen protecting groups include, but are not limited to, phenothiazinyl-(10)-acyl derivative, N′-p-toluenesulfonylaminoacyl derivative, N′-phenylaminothioacyl derivative, N-benzoylphenylalanyl derivative, N-acetylmethionine derivative, 4,5-diphenyl-3-oxazolin-2-one, N-phthalimide, N-dithiasuccinimide (Dts), N-2,3-diphenylmaleimide, N-2,5-dimethylpyrrole, N-1,1,4,4-tetramethyldisilylazacyclopentane adduct (STABASE), 5-substituted 1,3-dimethyl-1,3,5-triazacyclohexan-2-one, 5-substituted 1,3-dibenzyl-1,3,5-triazacyclohexan-2-one, 1-substituted 3,5-dinitro-4
  • the substituent present on an oxygen atom is an oxygen protecting group (also referred to herein as an “hydroxyl protecting group”).
  • Oxygen protecting groups include, but are not limited to, —R aa , —N(R bb ) 2 , —C( ⁇ O)SR aa , —C( ⁇ O)R aa , —CO 2 R aa , —C( ⁇ O)N(R bb ) 2 , —C( ⁇ NR bb )R aa , —C( ⁇ NR bb )OR aa , —C( ⁇ NR bb )N(R bb ) 2 , —S( ⁇ O)R aa , —SO 2 R aa , —Si(R aa ) 3 , —P(R cc ) 2 , —P(R cc ) 3 + X ⁇ , —P(OR cc
  • Oxygen protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3 rd edition, John Wiley & Sons, 1999, incorporated herein by reference.
  • an oxygen protecting group described herein is silyl, TBDPS, TBDMS, TIPS, TES, TMS, MOM, THP, t-Bu, Bn, allyl, acetyl, pivaloyl, or benzoyl.
  • oxygen protecting groups include, but are not limited to, methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), t-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p-methoxybenzyloxymethyl (PMBM), (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), t-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2-(trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl (MTHP), 4-meth
  • a “counterion” or “anionic counterion” is a negatively charged group associated with a positively charged group in order to maintain electronic neutrality.
  • An anionic counterion may be monovalent (i.e., including one formal negative charge).
  • An anionic counterion may also be multivalent (i.e., including more than one formal negative charge), such as divalent or trivalent.
  • Exemplary counterions include halide ions (e.g., F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ), NO 3 ⁇ , ClO 4 ⁇ , OH ⁇ , H 2 PO 4 ⁇ , HCO 3 ⁇ , HSO 4 ⁇ , sulfonate ions (e.g., methansulfonate, trifluoromethanesulfonate, p-toluenesulfonate, benzenesulfonate, 10-camphor sulfonate, naphthalene-2-sulfonate, naphthalene-1-sulfonic acid-5-sulfonate, ethan-1-sulfonic acid-2-sulfonate, and the like), carboxylate ions (e.g., acetate, propanoate, benzoate, glycerate, lactate, tartrate, glycolate, gluconate, and the like), BF 4
  • Exemplary counterions which may be multivalent include CO 3 2 ⁇ , HPO 4 2 ⁇ , PO 4 3 ⁇ , B 4 O 7 2 ⁇ , SO 4 2 ⁇ , S 2 O 3 2 ⁇ , carboxylate anions (e.g., tartrate, citrate, fumarate, maleate, malate, malonate, gluconate, succinate, glutarate, adipate, pimelate, suberate, azelate, sebacate, salicylate, phthalates, aspartate, glutamate, and the like), and carboranes.
  • carboxylate anions e.g., tartrate, citrate, fumarate, maleate, malate, malonate, gluconate, succinate, glutarate, adipate, pimelate, suberate, azelate, sebacate, salicylate, phthalates, aspartate, glutamate, and the like
  • carboranes e.g., tartrate, citrate, fumarate, maleate, mal
  • LG is an art-understood term referring to a molecular fragment that departs with a pair of electrons in heterolytic bond cleavage, wherein the molecular fragment is an anion or neutral molecule.
  • a leaving group can be an atom or a group capable of being displaced by a nucleophile. See, for example, Smith, March Advanced Organic Chemistry 6th ed. (501-502).
  • Exemplary leaving groups include, but are not limited to, halo (e.g., chloro, bromo, iodo) and activated substituted hydroxyl groups (e.g., —OC( ⁇ O)SR aa , —OC( ⁇ O)R aa , —OCO 2 R aa , —OC( ⁇ O)N(R bb ) 2 , —OC( ⁇ NR bb )R aa , —OC( ⁇ NR bb )OR aa , —OC( ⁇ NR bb )N(R bb ) 2 , —OS( ⁇ O)R aa , —OSO 2 R aa , —OP(R cc ) 2 , —OP(R cc ) 3 , —OP( ⁇ O) 2 R aa , —OP( ⁇ O)(R aa ) 2 , —OP( ⁇ O)(OR cc
  • At least one instance refers to 1, 2, 3, 4, or more instances, but also encompasses a range, e.g., for example, from 1 to 4, from 1 to 3, from 1 to 2, from 2 to 4, from 2 to 3, or from 3 to 4 instances, inclusive.
  • non-hydrogen group refers to any group that is defined for a particular variable that is not hydrogen.
  • amino acid includes the natural (naturally occurring) amino acids (e.g. Ala, Arg, Asn, Asp, Cys, selenocysteine, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val) in D or L form, and unnatural (not naturally occurring) amino acids (e.g.
  • amino acid also includes mono-radicals of the natural amino acids and unnatural amino acids.
  • amino acid also includes di-radicals of the natural amino acids and unnatural amino acids.
  • the point of attachment may be at the C-terminus or the N-terminus.
  • the points of attachment may be at the C-terminus and the N-terminus.
  • dipeptide includes two peptidically bound amino acids joined by a peptide bond.
  • dipeptide also includes mono-radicals of two peptidically bound amino acids joined by a peptide bond.
  • dipeptide also includes di-radicals of two peptidically bound amino acids joined by a peptide bond.
  • the point of attachment may be at the C-terminus or the N-terminus.
  • the points of attachment may be at the C-terminus and the N-terminus.
  • salt refers to any and all salts, and encompasses pharmaceutically acceptable salts.
  • pharmaceutically acceptable salt refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases.
  • Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and perchloric acid or with organic acids, such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods known in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and perchloric acid
  • organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods known in the art such as ion exchange.
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate,
  • Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium, and N + (C 1-4 alkyl) 4 ⁇ salts.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate, and aryl sulfonate.
  • solvate refers to forms of the compound, or a salt thereof, that are associated with a solvent, usually by a solvolysis reaction. This physical association may include hydrogen bonding.
  • Conventional solvents include water, methanol, ethanol, acetic acid, DMSO, THF, diethyl ether, and the like.
  • the compounds described herein may be prepared, e.g., in crystalline form, and may be solvated.
  • Suitable solvates include pharmaceutically acceptable solvates and further include both stoichiometric solvates and non-stoichiometric solvates. In certain instances, the solvate will be capable of isolation, for example, when one or more solvent molecules are incorporated in the crystal lattice of a crystalline solid.
  • “Solvate” encompasses both solution-phase and isolatable solvates. Representative solvates include hydrates, ethanolates, and methanolates.
  • hydrate refers to a compound that is associated with water.
  • the number of the water molecules contained in a hydrate of a compound is in a definite ratio to the number of the compound molecules in the hydrate. Therefore, a hydrate of a compound may be represented, for example, by the general formula R.x H 2 O, wherein R is the compound, and x is a number greater than 0.
  • a given compound may form more than one type of hydrate, including, e.g., monohydrates (x is 1), lower hydrates (x is a number greater than 0 and smaller than 1, e.g., hemihydrates (R.0.5H 2 O)), and polyhydrates (x is a number greater than 1, e.g., dihydrates (R.2H 2 O) and hexahydrates (R.6H 2 O)).
  • monohydrates x is 1
  • lower hydrates x is a number greater than 0 and smaller than 1, e.g., hemihydrates (R.0.5H 2 O)
  • polyhydrates x is a number greater than 1, e.g., dihydrates (R.2H 2 O) and hexahydrates (R.6H 2 O)
  • tautomers or “tautomeric” refers to two or more interconvertible compounds resulting from at least one formal migration of a hydrogen atom and at least one change in valency (e.g., a single bond to a double bond, a triple bond to a single bond, or vice versa).
  • the exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH. Tautomerizations (i.e., the reaction providing a tautomeric pair) may catalyzed by acid or base.
  • Exemplary tautomerizations include keto-to-enol, amide-to-imide, lactam-to-lactim, enamine-to-imine, and enamine-to-(a different enamine) tautomerizations.
  • stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers”.
  • enantiomers When a compound has an asymmetric center, for example, it is bonded to four different groups, a pair of enantiomers is possible.
  • An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or ( ⁇ )-isomers respectively).
  • a chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture”.
  • polymorph refers to a crystalline form of a compound (or a salt, hydrate, or solvate thereof). All polymorphs have the same elemental composition. Different crystalline forms usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystal shape, optical and electrical properties, stability, and solubility. Recrystallization solvent, rate of crystallization, storage temperature, and other factors may cause one crystal form to dominate. Various polymorphs of a compound can be prepared by crystallization under different conditions.
  • prodrugs refers to compounds that have cleavable groups and become by solvolysis or under physiological conditions the compounds described herein, which are pharmaceutically active in vivo. Such examples include, but are not limited to, choline ester derivatives and the like, N-alkylmorpholine esters and the like. Other derivatives of the compounds described herein have activity in both their acid and acid derivative forms, but in the acid sensitive form often offer advantages of solubility, tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985).
  • Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acid with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a substituted or unsubstituted amine, or acid anhydrides, or mixed anhydrides. Simple aliphatic or aromatic esters, amides, and anhydrides derived from acidic groups pendant on the compounds described herein are particular prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy)alkyl esters or ((alkoxycarbonyl)oxy)alkylesters. C 1-8 alkyl, C 2-8 alkenyl, C 2-8 alkynyl, aryl, C 7-12 substituted aryl, and C 7-12 arylalkyl esters of the compounds described herein may be preferred.
  • composition and “formulation” are used interchangeably.
  • a “subject” to which administration is contemplated refers to a human (i.e., male or female of any age group, e.g., pediatric subject (e.g., infant, child, or adolescent) or adult subject (e.g., young adult, middle-aged adult, or senior adult)) or non-human animal.
  • the non-human animal is a mammal (e.g., primate (e.g., cynomolgus monkey or rhesus monkey), commercially relevant mammal (e.g., cattle, pig, horse, sheep, goat, cat, or dog), or bird (e.g., commercially relevant bird, such as chicken, duck, goose, or turkey)).
  • primate e.g., cynomolgus monkey or rhesus monkey
  • commercially relevant mammal e.g., cattle, pig, horse, sheep, goat, cat, or dog
  • bird e.g., commercially relevant bird, such as
  • the non-human animal is a fish, reptile, or amphibian.
  • the non-human animal may be a male or female at any stage of development.
  • the non-human animal may be a transgenic animal or genetically engineered animal.
  • patient refers to a human subject in need of treatment of a disease.
  • tissue sample refers to any sample including tissue samples (such as tissue sections and needle biopsies of a tissue); cell samples (e.g., cytological smears (such as Pap or blood smears) or samples of cells obtained by microdissection); samples of whole organisms (such as samples of yeasts or bacteria); or cell fractions, fragments or organelles (such as obtained by lysing cells and separating the components thereof by centrifugation or otherwise).
  • tissue samples such as tissue sections and needle biopsies of a tissue
  • cell samples e.g., cytological smears (such as Pap or blood smears) or samples of cells obtained by microdissection) or samples of cells obtained by microdissection
  • samples of whole organisms such as samples of yeasts or bacteria
  • cell fractions, fragments or organelles such as obtained by lysing cells and separating the components thereof by centrifugation or otherwise.
  • biological samples include blood, serum, urine, semen, fecal matter, cerebrospinal fluid, interstitial fluid, mucous, tears, sweat, pus, biopsied tissue (e.g., obtained by a surgical biopsy or needle biopsy), nipple aspirates, milk, vaginal fluid, saliva, swabs (such as buccal swabs), or any material containing biomolecules that is derived from a first biological sample.
  • administer refers to implanting, absorbing, ingesting, injecting, inhaling, or otherwise introducing a compound described herein, or a composition thereof, in or on a subject.
  • treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease described herein.
  • treatment may be administered after one or more signs or symptoms of the disease have developed or have been observed.
  • treatment may be administered in the absence of signs or symptoms of the disease.
  • treatment may be administered to a susceptible subject prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of exposure to a pathogen). Treatment may also be continued after symptoms have resolved, for example, to delay or prevent recurrence.
  • prevent refers to a prophylactic treatment of a subject who is not and was not with a disease but is at risk of developing the disease or who was with a disease, is not with the disease, but is at risk of regression of the disease.
  • the subject is at a higher risk of developing the disease or at a higher risk of regression of the disease than an average healthy member of a population of subjects.
  • proliferative disease refers to a disease that occurs due to abnormal growth or extension by the multiplication of cells (Walker, Cambridge Dictionary of Biology; Cambridge University Press: Cambridge, UK, 1990).
  • a proliferative disease may be associated with: 1) the pathological proliferation of normally quiescent cells; 2) the pathological migration of cells from their normal location (e.g., metastasis of neoplastic cells); 3) the pathological expression of proteolytic enzymes such as the matrix metalloproteinases (e.g., collagenases, gelatinases, and elastases); or 4) the pathological angiogenesis as in proliferative retinopathy and tumor metastasis.
  • Exemplary proliferative diseases include cancers (i.e., “malignant neoplasms”), benign neoplasms, diseases associated with angiogenesis, inflammatory diseases, and autoimmune diseases.
  • angiogenesis refers to the physiological process through which new blood vessels form from pre-existing vessels.
  • Angiogenesis is distinct from vasculogenesis, which is the de novo formation of endothelial cells from mesoderm cell precursors. The first vessels in a developing embryo form through vasculogenesis, after which angiogenesis is responsible for most blood vessel growth during normal or abnormal development.
  • Angiogenesis is a vital process in growth and development, as well as in wound healing and in the formation of granulation tissue.
  • angiogenesis is also a fundamental step in the transition of tumors from a benign state to a malignant one, leading to the use of angiogenesis inhibitors in the treatment of cancer.
  • Angiogenesis may be chemically stimulated by angiogenic proteins, such as growth factors (e.g., VEGF).
  • angiogenic proteins such as growth factors (e.g., VEGF).
  • VEGF growth factors
  • “Pathological angiogenesis” refers to abnormal (e.g., excessive or insufficient) angiogenesis that amounts to and/or is associated with a disease.
  • neoplasm and “tumor” are used herein interchangeably and refer to an abnormal mass of tissue wherein the growth of the mass surpasses and is not coordinated as in the growth of normal tissue.
  • a neoplasm or tumor may be “benign” or “malignant,” depending on the following characteristics: degree of cellular differentiation (including morphology and functionality), rate of growth, local invasion, and metastasis.
  • a “benign neoplasm” is generally well differentiated, has characteristically slower growth than a malignant neoplasm, and remains localized to the site of origin.
  • a benign neoplasm does not have the capacity to infiltrate, invade, or metastasize to distant sites.
  • Exemplary benign neoplasms include, but are not limited to, lipoma, chondroma, adenomas, acrochordon, senile angiomas, seborrheic keratoses, lentigos, and sebaceous hyperplasias.
  • certain “benign” tumors may later give rise to malignant neoplasms, which may result from additional genetic changes in a subpopulation of the tumor's neoplastic cells, and these tumors are referred to as “pre-malignant neoplasms.”
  • An exemplary pre-malignant neoplasm is a teratoma.
  • a “malignant neoplasm” is generally poorly differentiated (anaplasia) and has characteristically rapid growth accompanied by progressive infiltration, invasion, and destruction of the surrounding tissue. Furthermore, a malignant neoplasm generally has the capacity to metastasize to distant sites.
  • the term “metastasis,” “metastatic,” or “metastasize” refers to the spread or migration of cancerous cells from a primary or original tumor to another organ or tissue and is typically identifiable by the presence of a “secondary tumor” or “secondary cell mass” of the tissue type of the primary or original tumor and not of that of the organ or tissue in which the secondary (metastatic) tumor is located.
  • a prostate cancer that has migrated to bone is said to be metastasized prostate cancer and includes cancerous prostate cancer cells growing in bone tissue.
  • cancer refers to a class of diseases characterized by the development of abnormal cells that proliferate uncontrollably and have the ability to infiltrate and destroy normal body tissues. See, e.g., Stedman's Medical Dictionary, 25th ed.; Hensyl ed.; Williams & Wilkins: Philadelphia, 1990.
  • Exemplary cancers include, but are not limited to, hematological malignancies.
  • Additional exemplary cancers include, but are not limited to, acoustic neuroma; adenocarcinoma; adrenal gland cancer; anal cancer; angiosarcoma (e.g., lymphangiosarcoma, lymphangioendotheliosarcoma, hemangiosarcoma); appendix cancer; benign monoclonal gammopathy; biliary cancer (e.g., cholangiocarcinoma); bladder cancer; breast cancer (e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, mammary cancer, medullary carcinoma of the breast, triple negative breast cancer (TNBC)); brain cancer (e.g., meningioma, glioblastomas, glioma (e.g., astrocytoma, oligodendroglioma), medulloblastoma); bronchus cancer; carcinoid tumor; cervical cancer (e.g., cervical adeno
  • liver cancer e.g., hepatocellular cancer (HCC), malignant hepatoma
  • lung cancer e.g., bronchogenic carcinoma, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung
  • leiomyosarcoma LMS
  • mastocytosis e.g., systemic mastocytosis
  • muscle cancer myelodysplastic syndrome (MDS); mesothelioma; myeloproliferative disorder (MPD) (e.g., polycythemia vera (PV), essential thrombocytosis (ET), agnogenic myeloid metaplasia (AMM) a.k.a.
  • myelofibrosis MF
  • chronic idiopathic myelofibrosis chronic myelocytic leukemia (CML), chronic neutrophilic leukemia (CNL), hypereosinophilic syndrome (HES)
  • neuroblastoma e.g., neurofibromatosis (NF) type 1 or type 2, schwannomatosis
  • neuroendocrine cancer e.g., gastroenteropancreatic neuroendocrine tumor (GEP-NET), carcinoid tumor
  • osteosarcoma e.g., bone cancer
  • ovarian cancer e.g., cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma
  • papillary adenocarcinoma pancreatic cancer
  • pancreatic cancer e.g., pancreatic andenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), Islet cell tumors
  • penile cancer
  • hematological malignancy refers to tumors that affect blood, bone marrow, and/or lymph nodes.
  • exemplary hematological malignancies include, but are not limited to, leukemia, such as acute lymphoblastic leukemia (ALL) (e.g., B-cell ALL, T-cell ALL), acute myelocytic leukemia (AML) (e.g., B-cell AML, T-cell AML), chronic myelocytic leukemia (CML) (e.g., B-cell CML, T-cell CML), and chronic lymphocytic leukemia (CLL) (e.g., B-cell CLL, T-cell CLL)); lymphoma, such as Hodgkin lymphoma (HL) (e.g., B-cell HL, T-cell HL) and non-Hodgkin lymphoma (NHL) (e.g., B-cell NHL, such as diffuse large cell lymphoma (DLCL) (e.g
  • inflammatory disease refers to a disease caused by, resulting from, or resulting in inflammation.
  • inflammatory disease may also refer to a dysregulated inflammatory reaction that causes an exaggerated response by macrophages, granulocytes, and/or T-lymphocytes leading to abnormal tissue damage and/or cell death.
  • An inflammatory disease can be either an acute or chronic inflammatory condition and can result from infections or non-infectious causes.
  • Inflammatory diseases include, without limitation, atherosclerosis, arteriosclerosis, autoimmune disorders, multiple sclerosis, systemic lupus erythematosus, polymyalgia rheumatica (PMR), gouty arthritis, degenerative arthritis, tendonitis, bursitis, psoriasis, cystic fibrosis, arthrosteitis, rheumatoid arthritis, inflammatory arthritis, Sjogren's syndrome, giant cell arteritis, progressive systemic sclerosis (scleroderma), ankylosing spondylitis, polymyositis, dermatomyositis, pemphigus, pemphigoid, diabetes (e.g., Type I), myasthenia gravis, Hashimoto's thyroiditis, Graves' disease, Goodpasture's disease, mixed connective tissue disease, sclerosing cholangitis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, per
  • autoimmune disease refers to a disease arising from an inappropriate immune response of the body of a subject against substances and tissues normally present in the body. In other words, the immune system mistakes some part of the body as a pathogen and attacks its own cells. This may be restricted to certain organs (e.g., in autoimmune thyroiditis) or involve a particular tissue in different places (e.g., Goodpasture's disease which may affect the basement membrane in both the lung and kidney).
  • the treatment of autoimmune diseases is typically with immunosuppression, e.g., medications which decrease the immune response.
  • Exemplary autoimmune diseases include, but are not limited to, glomerulonephritis, Goodpasture's syndrome, necrotizing vasculitis, lymphadenitis, peri-arteritis nodosa, systemic lupus erythematosis, rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosis, psoriasis, ulcerative colitis, systemic sclerosis, dermatomyositis/polymyositis, anti-phospholipid antibody syndrome, scleroderma, pemphigus vulgaris, ANCA-associated vasculitis (e.g., Wegener's granulomatosis, microscopic polyangiitis), uveitis, Sjogren's syndrome, Crohn's disease, Reiter's syndrome, ankylosing spondylitis, Lyme disease, Guillain-Barré syndrome, Hashimoto's thyroiditis, and cardio
  • an “effective amount” of a compound described herein refers to an amount sufficient to elicit the desired biological response.
  • An effective amount of a compound described herein may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the condition being treated, the mode of administration, and the age and health of the subject.
  • an effective amount is a therapeutically effective amount.
  • an effective amount is a prophylactic treatment.
  • an effective amount is the amount of a compound described herein in a single dose.
  • an effective amount is the combined amounts of a compound described herein in multiple doses.
  • a “therapeutically effective amount” of a compound described herein is an amount sufficient to provide a therapeutic benefit in the treatment of a condition or to delay or minimize one or more symptoms associated with the condition.
  • a therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment of the condition.
  • the term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms, signs, or causes of the condition, and/or enhances the therapeutic efficacy of another therapeutic agent.
  • a therapeutically effective amount is an amount sufficient for inhibiting MALT1.
  • a therapeutically effective amount is an amount sufficient for treating cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)). In certain embodiments, a therapeutically effective amount is an amount sufficient for inhibiting MALT1 and treating cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)).
  • cancer e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)).
  • a “prophylactically effective amount” of a compound described herein is an amount sufficient to prevent a condition, or one or more symptoms associated with the condition or prevent its recurrence.
  • a prophylactically effective amount of a compound means an amount of a therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the condition.
  • the term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
  • a therapeutically effective amount is an amount sufficient for inhibiting MALT1.
  • a prophylactically effective amount is an amount sufficient for preventing cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)). In certain embodiments, a prophylactically effective amount is an amount sufficient for inhibiting MALT1 and treating cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)).
  • cancer e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)
  • a prophylactically effective amount is an amount sufficient for inhibiting MALT1 and treating cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)).
  • the term “inhibit” or “inhibition” in the context of enzymes refers to a reduction in the activity of the enzyme.
  • the activity of the enzyme is an activity for peptide cleavage.
  • the proteolytic activity towards cleavage of a peptide including, but not limited to, A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1 ⁇ , and MALT1.
  • the term refers to a reduction of the level of enzyme activity, e.g., MALT1 activity, to a level that is statistically significantly lower than an initial level, which may, for example, be a baseline level of enzyme activity. In some embodiments, the term refers to a reduction of the level of enzyme activity, e.g., MALT1 activity, to a level that is less than 75%, less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.1%, less than 0.01%, less than 0.001%, or less than 0.0001% of an initial level, which may, for example, be a baseline level of enzyme activity.
  • MALT1 refers to mucosa-associate lymphoid tissue lymphoma translocation protein 1.
  • MALT1 may refer to the RNA and DNA encoding sequences in addition to the protein.
  • MALT1 is a member of the paracaspase family.
  • Human MALT1 is encoded by the MALT1 gene.
  • a MALT1 inhibitor provided herein is specific for a MALT1 from a specific species, e.g., for human MALT1.
  • the term MALT1 further includes, in some embodiments, sequence variants and mutations (e.g., naturally occurring or synthetic MALT1 sequence variants or mutations), and different MALT1 isoforms.
  • MALT1 fusion proteins from translocations are also included in the term MALT1, and may also be specifically referred to (e.g., API2-MALT1) in some embodiments.
  • the term MALT1 includes protein or encoding sequences that are homologous to a MALT1 protein or encoding sequence, for example, a protein or encoding sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% sequence identity with a MALT1 sequence, for example, with a MALT1 sequence provided herein.
  • MALT1 protein and encoding gene sequences are well known to those of skill in the art, and exemplary protein sequences include, but are not limited to, the following sequences. Additional MALT1 sequences, e.g., MALT1 homologues from other species, will be apparent to those of skill in the art, and the invention is not limited to the exemplary sequences provided herein.
  • FIG. 1A Western blots for RelB and MALT1 after 30 minutes pretreatment with indicated doses of compounds or vehicle, followed by proteasome inhibitor MG-132 (5 ⁇ M) treatment for 2 hours in OCI-LY3.
  • clev cleavage product of RelB.
  • FIG. 1B Western blots for RelB with indicated doses of compounds or vehicle in OCI-LY3.
  • FIG. 2 Dose-response effect of compound 202 in luciferase activity of MALT1 GLOSENSORTM reporter. Luciferase activity is increased by MALT1 cleavage of the reporter protein.
  • RAJI Backitt's lymphoma
  • PMA/IO phorbol myristate acetate+ionomycin
  • FIG. 3 shows a co-crystal structure of compound 101 and MALT1.
  • Compound 101 is in the MALT1 paracaspase pocket.
  • FIG. 4 shows Scheme E3.
  • FIG. 5 shows Scheme E4.
  • MALT1, or a MALT1 variant such as a fusion protein comprising a MALT1 sequence (e.g., API2-MALT1).
  • the compounds and pharmaceutical compositions may be useful in methods provided herein for the treatment or prevention of proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease).
  • proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease).
  • the cell is a lymphocyte.
  • the cell is a B-cell.
  • the cell is a T-cell.
  • the compounds may also be useful inhibiting activation of NF- ⁇ B, inhibiting cleavage of A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1 ⁇ , or MALT1, modulating cytokine production (e.g., inhibiting expression of IL-2, IL-6, IL-8, IL-10, or IL-17), inhibiting lymphocyte adhesion to fibronectin, or up-regulating expression of a gene (e.g. I ⁇ BNS, I ⁇ B, c-Rel, IRF4, IL-2, IL-6, c-Rel, or Ox40).
  • cytokine production e.g., inhibiting expression of IL-2, IL-6, IL-8, IL-10, or IL-17
  • lymphocyte adhesion to fibronectin e.g. I ⁇ BNS, I ⁇ B, c-Rel, IRF4, IL-2, IL-6
  • the compounds may irreversibly inhibit MALT1, or a variant thereof, by forming a covalent attachment between MALT1 and the inhibitor.
  • the fluoromethylketone group is able to covalently bind Cys464 of MALT1.
  • the proximity of the fluoromethylketone moiety and Cys464 of MALT1 is shown in a co-crystal structure of the paracaspase binding pocket with compound 101 (See FIG. 3 ).
  • the inhibitor is not cleaved by MALT1.
  • the inhibitor is cleaved by MALT1 (e.g., after the arginine moiety).
  • the covalently bound inhibitor prevents binding of a MALT1 substrate.
  • the compound is of Formula (I):
  • the compounds is not of formula:
  • R 8 is not -L 1 -R 8a . In certain embodiments, R 8 is not —C( ⁇ O)R 8b . In certain embodiments, R 8b is not optionally substituted alkyl. In certain embodiments, R 8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C( ⁇ O)R 8b , —C( ⁇ O)OR 8a , —C( ⁇ O)N(R 8a ) 2 , —S( ⁇ O) 2 R 8a , or a nitrogen protecting group.
  • R 8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C( ⁇ O)OR 8a , —C( ⁇ O)N(R 8a ) 2 , —S( ⁇ O) 2 R 8a , or a nitrogen protecting group.
  • each of R 5 and R 6 is not 3-gunaidinopropyl.
  • each of R 5 and R 6 is not alkyl substituted with a guanidine or a guanidine derivative.
  • each of R 3 and R 4 is not benzyl.
  • the compound of Formula (I) is a stereoisomer of formula:
  • the compound of Formula (I) is a stereoisomer of formula:
  • the compound of Formula (I) is of Formula (I-A):
  • the compound of Formula (I) is of Formula (I-A-1):
  • the compound of Formula (I) is of Formula (I-A-2):
  • the compound of Formula (I) is of Formula (I-A-3):
  • the compound of Formula (I) is of Formula (I-B):
  • the compound of Formula (I) is of Formula (I-B-1):
  • the compound of Formula (I) is of Formula (I-B-2):
  • the compound of Formula (I) is of Formula (I-B-3):
  • the compound of Formula (I) is of Formula (I-C):
  • the compound of Formula (I) is of Formula (I-C-1):
  • the compound of Formula (I) is of Formula (I-D):
  • the compound of Formula (I) is of Formula (I-D-1):
  • R 3 and R N are joined to form an optionally substituted heterocyclic ring. In certain embodiments, R 3 and R N are joined to form an optionally substituted azetidine ring. In certain embodiments, R 3 and R N are joined to form an optionally substituted pyrrolidene ring. In certain embodiments, R 3 and R N are joined to form an optionally substituted oxazole or thiozole ring. In certain embodiments, R 3 and R N are joined to form an optionally substituted oxazolidine ring. In certain embodiments, R 3 and R N are joined to form an optionally substituted thiazolidine ring. In certain embodiments, R 3 and R N are joined to form an optionally substituted piperidine ring.
  • R 3 and R N are joined to form an optionally substituted morpholine ring. In certain embodiments, R 4 and R N are joined to form an optionally substituted heterocyclic ring. In certain embodiments, R 4 and R N are joined to form an optionally substituted pyrrolidene ring. In certain embodiments, R 4 and R N are joined to form an optionally substituted piperidine ring. In certain embodiments, R 3 and R 4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring. In certain embodiments, R 3 and R 4 are joined to form an optionally substituted cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl ring.
  • no combination of R 3 , R 4 and R N is joined.
  • the heterocyclic ring formed by joining R 3 and R N is substituted with one or more (e.g., 1, 2, 3, 4, 5, or 6), as valency permits, substituents (e.g., substituents independently selected form the group consisting of halogen, substituted and unsubstituted C 1-6 alkyl, —OR 8a (e.g., —OH), and —CN).
  • R 3 and R N are taken together as a moiety of formula:
  • R 3 and R N are taken together as a moiety of formula:
  • R 3 and R N are taken together as a moiety of formula:
  • R 4 and R N are taken together as a moiety of formula:
  • R is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R 3 is hydrogen. In some embodiments, R 3 is a non-hydrogen group. In certain embodiments, R 3 is halogen. In certain embodiments, R 3 is —F. In certain embodiments, R 3 is —Cl, —Br, or —I.
  • R 3 is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R 3 is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R 3 is methyl. In certain embodiments, R 3 is ethyl, propyl, or butyl. In certain embodiments, R 3 is substituted methyl (e.g., methyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen and —OR 8a (e.g., —OH). In certain embodiments, R 3 is —CH 2 OH. In certain embodiments, R 3 is haloalkyl, e.g., —CHF 2 , —CHCl 2 , —CH 2 CHF 2 , —CH 2 CHCl 2 . In certain embodiments, R 3 is perhaloalkyl, e.g., —CF 3 , —CF 2 CF 3 , —CCl 3 .
  • R 3 is optionally substituted carbocyclyl, e.g., optionally substituted C 3-6 carbocyclyl, optionally substituted C 3-4 carbocyclyl, optionally substituted C 4-5 carbocyclyl, or optionally substituted C 5-6 carbocyclyl.
  • R 3 is unsubstituted carbocyclyl, e.g., unsubstituted C 3-6 carbocyclyl.
  • R 3 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • R 3 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl.
  • R 3 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • R 3 is optionally substituted aryl, e.g., optionally substituted phenyl. In certain embodiments, R 3 is unsubstituted aryl, e.g., unsubstituted phenyl. In certain embodiments, R 3 is optionally substituted heteroaryl, e.g., optionally substituted 5-6 membered heteroaryl, or optionally substituted 9-10 membered bicyclic heteroaryl. In certain embodiments, R 3 is unsubstituted heteroaryl, e.g., unsubstituted 5-6 membered heteroaryl, or unsubstituted 9-10 membered bicyclic heteroaryl.
  • R 3 is optionally substituted aralkyl, e.g., optionally substituted benzyl.
  • R 3 is optionally substituted heteroaralkyl, e.g., methyl substituted with an optionally substituted 5-6 membered heteroaryl ring.
  • R 3 is unsubstituted aralkyl, e.g., unsubstituted benzyl.
  • R 3 is unsubstituted heteroaralkyl, e.g., methyl substituted with an unsubstituted 5-6 membered heteroaryl ring.
  • R 3 is of formula:
  • R 3 is of formula:
  • R 3 is of formula:
  • R 4 is hydrogen, halogen, or optionally substituted alkyl. In some embodiments, R 4 is hydrogen. In some embodiments, R 4 is a non-hydrogen group. In certain embodiments, R 4 is halogen. In certain embodiments, R 4 is —F. In certain embodiments, R 4 is —Cl, —Br, or —I.
  • R 4 is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R 4 is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R 4 is methyl. In certain embodiments, R 4 is substituted methyl (e.g., methyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen and —OR 8a (e.g., —OH). In certain embodiments, R 4 is —CH 2 OH. In certain embodiments, R 4 is ethyl, propyl, or butyl. In certain embodiments, R 4 is haloalkyl, e.g., —CHF 2 , —CHCl 2 , —CH 2 CHF 2 , —CH 2 CHCl 2 . In certain embodiments, R 4 is perhaloalkyl, e.g., —CF 3 , —CF 2 CF 3 , —CCl 3 .
  • R 4 is of formula:
  • R 4 is of formula:
  • R 4 is of formula:
  • R N is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group. In some embodiments, R N is hydrogen. In some embodiments, R N is a non-hydrogen group.
  • R N is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R N is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R N is methyl.
  • R N is ethyl, propyl, or butyl.
  • R N is optionally substituted acyl, e.g., —CHO, —CO 2 H, or —C( ⁇ O)NH 2 .
  • R N is —C( ⁇ O)R f , —C( ⁇ O)OR f , —C( ⁇ O)NH(R′), or —C( ⁇ O)N(R f ) 2 , wherein each occurrence of R f is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R f are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • R N is —C( ⁇ O)R f , and R f is optionally substituted alkyl, e.g., —C( ⁇ O)Me. In certain embodiments, R N is —C( ⁇ O)R f , and R f is optionally substituted alkenyl. In certain embodiments, R N is —C( ⁇ O)R f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, R N is —C( ⁇ O)OR f , and R f is optionally substituted alkyl.
  • R N is —C( ⁇ O)OR f , and R f is optionally substituted alkenyl. In certain embodiments, R N is —C( ⁇ O)OR f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, R N is —C( ⁇ O)N(R f ) 2 , and at least one R f is optionally substituted alkyl. In certain embodiments, R N is —C( ⁇ O)NHR f , and R f is optionally substituted alkyl.
  • R N is —C( ⁇ O)NHR f
  • R f is optionally substituted alkenyl.
  • R N is —C( ⁇ O)NHR f
  • R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R N is a nitrogen protecting group.
  • R N is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • R 5 and R 6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring. In certain embodiments, R 5 and R 6 are joined to form an optionally substituted, 3-6 membered, monocyclic carbocyclic ring. In certain embodiments, R 5 and R 6 are joined to form an optionally substituted, cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl ring. In certain embodiments, R 5 and R 6 are joined to form an optionally substituted, 3-6 membered, monocyclic heterocyclic ring. In certain embodiments, R 5 and R 6 are joined to form an optionally substituted tetrahydropyran ring.
  • R 5 and R 6 are not joined.
  • R 5 is optionally substituted alkyl, e.g., optionally substituted C 1-12 alkyl.
  • R 5 is unsubstituted alkyl, e.g., unsubstituted C 1-12 alkyl.
  • R 6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R 6 is hydrogen. In some embodiments, R 6 is a non-hydrogen group. In certain embodiments, R 6 is halogen. In certain embodiments, R 6 is —F. In certain embodiments, R 6 is —Cl, —Br, or —I.
  • R 6 is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R 6 is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R 6 is methyl. In certain embodiments, R 6 is ethyl, propyl, or butyl. In certain embodiments, R 6 is haloalkyl, e.g., —CHF 2 , —CHCl 2 , —CH 2 CHF 2 , —CH 2 CHCl 2 . In certain embodiments, R 6 is perhaloalkyl, e.g., —CF 3 , —CF 2 CF 3 , —CCl 3 .
  • R 6 is optionally substituted carbocyclyl, e.g., optionally substituted C 3-6 carbocyclyl, optionally substituted C 3-4 carbocyclyl, optionally substituted C 4-5 carbocyclyl, or optionally substituted C 5-6 carbocyclyl.
  • R 6 is unsubstituted carbocyclyl, e.g., unsubstituted C 3-6 carbocyclyl.
  • R 6 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • R 6 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl.
  • R 6 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • R 6 is optionally substituted aryl, e.g., optionally substituted phenyl. In certain embodiments, R 6 is unsubstituted aryl, e.g., unsubstituted phenyl. In certain embodiments, R 6 is optionally substituted heteroaryl, e.g., optionally substituted 5-6 membered heteroaryl, or optionally substituted 9-10 membered bicyclic heteroaryl. In certain embodiments, R 6 is unsubstituted heteroaryl, e.g., unsubstituted 5-6 membered heteroaryl, or unsubstituted 9-10 membered bicyclic heteroaryl.
  • R 6 is optionally substituted aralkyl, e.g., optionally substituted benzyl.
  • R 6 is optionally substituted heteroaralkyl, e.g., methyl substituted with an optionally substituted 5-6 membered heteroaryl ring.
  • R 6 is unsubstituted aralkyl, e.g., unsubstituted benzyl.
  • R 6 is unsubstituted heteroaralkyl, e.g., methyl substituted with an unsubstituted 5-6 membered heteroaryl ring.
  • R 6 is of formula:
  • R 6 is of formula:
  • R 5 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, R 5 is hydrogen, halogen, or optionally substituted alkyl. In some embodiments, R 5 is hydrogen. In some embodiments, R 5 is a non-hydrogen group. In certain embodiments, R 5 is halogen. In certain embodiments, R 5 is —F. In certain embodiments, R 5 is —Cl, —Br, or —I.
  • R 5 is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R 5 is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R 5 is methyl. In certain embodiments, R 5 is ethyl, propyl, or butyl. In certain embodiments, R 5 is haloalkyl, e.g., —CHF 2 , —CHCl 2 , —CH 2 CHF 2 , —CH 2 CHCl 2 . In certain embodiments, R 5 is perhaloalkyl, e.g., —CF 3 , —CF 2 CF 3 , —CCl 3 .
  • R 5 is optionally substituted carbocyclyl, e.g., optionally substituted C 3-6 carbocyclyl, optionally substituted C 3-4 carbocyclyl, optionally substituted C 4-5 carbocyclyl, or optionally substituted C 5-6 carbocyclyl.
  • R 5 is unsubstituted carbocyclyl, e.g., unsubstituted C 3-6 carbocyclyl.
  • R 5 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • R 5 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl.
  • R 5 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • R 5 is optionally substituted aryl, e.g., optionally substituted phenyl. In certain embodiments, R 5 is unsubstituted aryl, e.g., unsubstituted phenyl.
  • R 5 is optionally substituted heteroaryl, e.g., optionally substituted 5-6 membered monocyclic heteroaryl, or optionally substituted 9-10 membered bicyclic heteroaryl.
  • R 5 is unsubstituted heteroaryl, e.g., unsubstituted 5-6 membered monocyclic heteroaryl, or unsubstituted 9-10 membered bicyclic heteroaryl.
  • R 5 is optionally substituted aralkyl, e.g., optionally substituted benzyl.
  • R 5 is optionally substituted heteroaralkyl, e.g., methyl substituted with an optionally substituted 5-6 membered monocyclic heteroaryl ring.
  • R 5 is unsubstituted aralkyl, e.g., unsubstituted benzyl.
  • R 5 is unsubstituted heteroaralkyl, e.g., methyl substituted with an unsubstituted 5-6 membered monocyclic heteroaryl ring.
  • R 5 is of formula:
  • R 5 is of formula:
  • R 8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C( ⁇ O)R 8b , —C( ⁇ O)OR 8a , —C( ⁇ O)N(R 8a ) 2 , —S( ⁇ O) 2 R 8a .
  • R 8 is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R 8 is methyl. In certain embodiments, R 8 is ethyl, propyl, or butyl. In certain embodiments, R 8 is haloalkyl, e.g., —CHF 2 , —CHCl 2 , —CH 2 CHF 2 , —CH 2 CHCl 2 . In certain embodiments, R 8 is perhaloalkyl, e.g., —CF 3 , —CF 2 CF 3 , —CCl 3 .
  • R 8 is optionally substituted carbocyclyl, e.g., optionally substituted C 3-6 carbocyclyl, optionally substituted C 3-4 carbocyclyl, optionally substituted C 4-5 carbocyclyl, or optionally substituted C 5-6 carbocyclyl.
  • R is unsubstituted carbocyclyl, e.g., unsubstituted C 3-6 carbocyclyl.
  • R 8 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • R 8 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl.
  • R 8 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • R 8 is —C( ⁇ O)R 8b , wherein R 8b is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted acyl. In certain embodiments, R 8 is —C( ⁇ O)R 8b , wherein R 8b is hydrogen, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted acyl.
  • R 8 is —C( ⁇ O)R 8b , and R 8b is optionally substituted alkyl, e.g., —C( ⁇ O)Me. In certain embodiments, R 8 is —C( ⁇ O)R 8b , and R 8b is optionally substituted alkenyl. In certain embodiments, R 8 is —C( ⁇ O)R 8b , and R 8b is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R 8 is —C( ⁇ O)R 8b , wherein R 8b is optionally substituted alkenyl. In certain embodiments, R 8 is —C( ⁇ O)OR 8a , wherein R 8a is optionally substituted alkenyl.
  • R 8 is —C( ⁇ O)OR 8a , wherein R 8a is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, or an oxygen protecting group.
  • R 8 is —C( ⁇ O)OR 8a , and R 8a is optionally substituted alkyl.
  • R 8 is —C( ⁇ O)OR 8a , and R 8a is optionally substituted alkenyl.
  • R 8 is —C( ⁇ O)OR 8a , and R 8a is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R 8 is —C( ⁇ O)N(R 8a ) 2 , wherein each R 8a is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, a nitrogen protecting group, or two R 8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • R 8 is —C( ⁇ O)N(R 8a ) 2 , and at least one R 8a is optionally substituted alkyl.
  • R 8 is —C( ⁇ O)NHR 8a , and R 8a is optionally substituted alkyl. In certain embodiments, R 8 is —C( ⁇ O)NHR 8a , and R 8a is optionally substituted alkenyl. In certain embodiments, R 8 is —C( ⁇ O)NHR 8a , and R 8a is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R 8 is optionally substituted sulfonyl, e.g., —S( ⁇ O) 2 OH.
  • R 8 is —S( ⁇ O) 2 R 8a , wherein R 8a is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R 8 is —S( ⁇ O) 2 R 8a , and R 8a is optionally substituted alkyl, e.g., —S( ⁇ O) 2 Me.
  • R 8 is —S( ⁇ O) 2 R 8a , and R 8a is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R 8 is a nitrogen protecting group.
  • R is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • R 8 is of formula:
  • each instance of R A is independently hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, cyano, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted acyl, or two R A attached to neighboring atoms are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • At least one R A is hydrogen. In certain embodiments, each R A is hydrogen. In certain embodiments, at least one R A is halogen. In certain embodiments, each R A is halogen. In certain embodiments, at least one R A is substituted or unsubstituted alkyl (e.g., substituted or unsubstituted C 1-6 alkyl). In certain embodiments, each R A is independently hydrogen, halogen, or substituted or unsubstituted C 1-6 alkyl. In certain embodiments, each R A is independently halogen or substituted or unsubstituted C 1-6 alkyl.
  • R 8 is of formula:
  • X is N or CR A ; Y is O, S, NR A , or C(R A ) 2 ; and each occurrence of R A is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, or a nitrogen protecting group, or two R A attached to neighboring atoms are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • R 8 is of formula:
  • X is N or CR A ; Y is O, S, NR A , or C(R A ) 2 ; and each occurrence of R A is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, or a nitrogen protecting group, or two R A attached to neighboring atoms are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • R 8 is of formula:
  • R 8 is of formula:
  • R is of formula:
  • L 1 is a bond, an amino acid, or a dipeptide.
  • L 1 is an L natural amino acid.
  • L 1 is a D natural amino acid.
  • L 1 is an unnatural amino acid.
  • L 1 is a dipeptide of two natural amino acids that are independently L or D.
  • R is -L 1 -R 8a
  • L 1 is an amino acid (e.g., a peptidically bound amino acid).
  • R 8 is -L 1 -R 8a
  • L 1 is a dipeptide (e.g., two peptidically bound amino acids joined by a peptide bond).
  • L 1 is of formula:
  • R L is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R L is a side chain of a naturally occurring amino acid selected from glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • a naturally occurring amino acid selected from glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • L 1 is of formula:
  • R L is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • R L is a side chain of a naturally occurring amino acid (e.g., glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate).
  • a naturally occurring amino acid e.g., glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • L 1 is of formula:
  • each R L is independently hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • each R L is independently a side chain of a naturally occurring amino acid selected from glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • a naturally occurring amino acid selected from glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • L 1 is of formula:
  • each R L is independently hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • each R L is independently a side chain of a naturally occurring amino acid (e.g., glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate).
  • a naturally occurring amino acid e.g., glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • two instances of R L are the same. In certain embodiments, two instances of R L are different from each other.
  • R c and R d is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group.
  • R c is hydrogen.
  • R d is hydrogen.
  • both R c and R d are hydrogen.
  • R c is hydrogen and R d is a non-hydrogen group (e.g., methyl).
  • R c is a non-hydrogen group (e.g., methyl) and R d is hydrogen.
  • both R c and R d are non-hydrogen group (e.g., methyl).
  • R c is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R c is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R c is methyl.
  • R c is ethyl, propyl, or butyl.
  • R d is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • R d is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • R d is methyl.
  • R d is ethyl, propyl, or butyl.
  • R c is optionally substituted acyl, e.g., —CHO, —CO 2 H, or —C( ⁇ O)NH 2 .
  • R c is —C( ⁇ O)R f , —C( ⁇ O)OR f , —C( ⁇ O)NH(R′), or —C( ⁇ O)N(R f ) 2 , wherein each occurrence of R f is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R f are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • R c is —C( ⁇ O)R f
  • R f is optionally substituted alkyl, e.g., —C( ⁇ O)Me.
  • R c is —C( ⁇ O)R f
  • R f is optionally substituted alkenyl.
  • R c is —C( ⁇ O)R f
  • R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R c is —C( ⁇ O)OR f
  • R f is optionally substituted alkyl.
  • R c is —C( ⁇ O)OR f , and R f is optionally substituted alkenyl. In certain embodiments, R c is —C( ⁇ O)OR f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, R c is —C( ⁇ O)N(R f ) 2 , and at least one R f is optionally substituted alkyl. In certain embodiments, R c is —C( ⁇ O)NHR f , and R f is optionally substituted alkyl.
  • R c is —C( ⁇ O)NHR f
  • R f is optionally substituted alkenyl.
  • R c is —C( ⁇ O)NHR f
  • R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R c is a nitrogen protecting group.
  • R c is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • R d is optionally substituted acyl, e.g., —CHO, —CO 2 H, or —C( ⁇ O)NH 2 .
  • R d is —C( ⁇ O)R f , —C( ⁇ O)OR f , —C( ⁇ O)NH(R f ), or —C( ⁇ O)N(R f ) 2 , wherein each occurrence of R f is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R f are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • R d is —C( ⁇ O)R f
  • R f is optionally substituted alkyl, e.g., —C( ⁇ O)Me.
  • R d is —C( ⁇ O)R f
  • R f is optionally substituted alkenyl.
  • R d is —C( ⁇ O)R f
  • R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R d is —C( ⁇ O)OR f
  • R f is optionally substituted alkyl.
  • R d is —C( ⁇ O)OR f , and R f is optionally substituted alkenyl. In certain embodiments, R d is —C( ⁇ O)OR f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, R d is —C( ⁇ O)N(R f ) 2 , and at least one R f is optionally substituted alkyl. In certain embodiments, R d is —C( ⁇ O)NHR f , and R f is optionally substituted alkyl.
  • R d is —C( ⁇ O)NHR f
  • R f is optionally substituted alkenyl.
  • R d is —C( ⁇ O)NHR f
  • R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R d is a nitrogen protecting group.
  • R d is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • R A1 , R A2 , R A3 , and R A4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • R A1 and R A2 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, R A1 and R A3 or R A4 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, R A2 and R A3 or R A4 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, R A3 and R A4 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, none of R A1 , R A2 , R A3 , and R A4 are joined to form a ring.
  • each of R A1 , R A2 , R A3 , and R A4 is hydrogen. In certain embodiments, each of R A1 , R A2 , and R A3 is hydrogen, and R A4 is a non-hydrogen group. In certain embodiments, each of R A1 , R A3 , and R A4 is hydrogen, and R A2 is a non-hydrogen group. In certain embodiments, R A1 and R A3 are hydrogen, and R A2 and R A4 are non-hydrogen groups.
  • R A1 , R A2 , R A3 , or R A4 is optionally substituted alkyl, e.g., optionally substituted C 1-6 alkyl, optionally substituted C 1-2 alkyl, optionally substituted C 2-3 alkyl, optionally substituted C 3-4 alkyl, optionally substituted C 4-5 alkyl, or optionally substituted C 5-6 alkyl.
  • At least one of R A1 , R A2 , R A3 , or R A4 is unsubstituted alkyl, e.g., unsubstituted C 1-6 alkyl, unsubstituted C 1-2 alkyl, unsubstituted C 2-3 alkyl, unsubstituted C 3-4 alkyl, unsubstituted C 4-5 alkyl, or unsubstituted C 5-6 alkyl.
  • at least one of R A1 , R A2 , R A3 , or R A4 is methyl.
  • at least one of R A1 , R A2 , R A3 , or R A4 is ethyl, propyl, or butyl.
  • At least one of R A1 , R A2 , R A3 , or R A4 is optionally substituted acyl, e.g., —CHO, —CO 2 H, or —C( ⁇ O)NH 2 .
  • At least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)R f , —C( ⁇ O)OR f , —C( ⁇ O)NH(R f ), or —C( ⁇ O)N(R f ) 2 , wherein each occurrence of R f is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R f are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • At least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)R f , and R f is optionally substituted alkyl, e.g., —C( ⁇ O)Me. In certain embodiments, at least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)R f , and R f is optionally substituted alkenyl.
  • At least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)R f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • at least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)OR f , and R f is optionally substituted alkyl.
  • at least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)OR f , and R f is optionally substituted alkenyl.
  • At least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)OR f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • at least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)N(R f ) 2 , and at least one R f is optionally substituted alkyl.
  • at least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)NHR f , and R f is optionally substituted alkyl.
  • At least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)NHR f , and R f is optionally substituted alkenyl. In certain embodiments, at least one of R A1 , R A2 , R A3 , or R A4 is —C( ⁇ O)NHR f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • At least one of R A1 , R A2 , R A3 , or R A4 is optionally substituted sulfonyl, e.g., —S( ⁇ O) 2 OH.
  • at least one of R A1 , R A2 , R A3 , or R A4 is —S( ⁇ O) 2 R f , wherein R f is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • At least one of R A1 , R A2 , R A3 , or R A4 is —S( ⁇ O) 2 R f , and R f is optionally substituted alkyl, e.g., —S( ⁇ O) 2 Me. In certain embodiments, at least one of R A1 , R A2 , R A3 , or R A4 is —S( ⁇ O) 2 R f , and R f is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • R A1 , R A2 , R A3 , or R A4 is a nitrogen protecting group.
  • R A4 is a nitrogen protecting group.
  • R A2 is a nitrogen protecting group.
  • R A2 is a nitrogen protecting group, and R A4 is a nitrogen protecting group.
  • the nitrogen protecting group is selected from the group consisting of selected from the group consisting of tosyl, 2,2,5,7,8-pentamethylchroman-6-yl, 2,2,4,5,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl, mesityl-2-sulfonyl, 4-methoxy-2,3,6-trimethylphenylsulfonyl, 1,2-dimethylindole-3-sulfonyl, tert-butoxycarbonyl, 5-dibenzosuberenyl, 5-dibenzosuberyl, 2-methoxy-5-dibenzosuberyl, trifluoroacetyl, benzyloxycarbonyl, allyloxycarbonyl, and —NO 2 .
  • the guanidine moiety is of formula:
  • the guanidine moiety is of formula:
  • the guanidine moiety is of formula:
  • the guanidine moiety is of formula:
  • the guanidine moiety is of formula:
  • the guanidine moiety is of formula:
  • the compound is a compound listed in Table 1, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • the compound is a compound listed in Table 2, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • the compound described herein is of the formula:
  • the compound described herein is compound 172, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 171, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 135, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 174, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 116, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • the compound described herein is compound 143, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 173, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 149, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 151, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 177, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • a compound described herein is a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug of a formula described herein.
  • P 1 is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted acyl, or an oxygen protecting group.
  • Step S-1 comprises coupling an amino acid of Formula (B) with an amino acid ester of Formula (B), to form a dipeptide ester of Formula (C). All methods of peptide coupling are contemplated.
  • the step of coupling is performed in the presence of a carboxyl activating agent.
  • the carboxyl activating agent is a carbodiimide.
  • the carbodiimide is dicyclohexylcarbodiimide (DCC), diisoproylcarbodiimide (DIC), or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC), or a derivative thereof.
  • the carboxyl activating agent is a triazole.
  • the triazole is 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), 2-cyano-2-(hydroxyimino)acetate), HBTU, HATU, HCTU, TBTU, or PyBOP, or a derivative thereof.
  • the step of coupling is performed in the presence of a base.
  • the base is a non-nucleophilic base.
  • the base is an amine.
  • the base is trimethyl amine, triethyl amine, diisopropyl ethyl amine (DIPEA), tetramethylpiperidine, 1,8-diazabicycloundec-7-ene (DBU), lutidene, or 2,6-di-tert-butylpyridine.
  • the coupling is performed in a solvent comprising DMF.
  • P 1 is unsubstituted C 1-6 alkyl.
  • P 1 is methyl, ethyl, propyl, or butyl.
  • P 1 is methyl.
  • P 1 is an oxygen protecting group.
  • the oxygen protecting group is silyl, TBDPS, TBDMS, TIPS, TES, TMS, MOM, THP, t-Bu, Bn, allyl, acetyl, pivaloyl, or benzoyl.
  • Step S-2 comprises converting the ester of a dipeptide ester of Formula (C) to a carboxylic acid of Formula (D).
  • the step of converting is an acid hydrolysis of the ester.
  • the step of converting is a base hydrolysis of the ester.
  • the step of converting is performed in the presence of a base.
  • the base is a hydroxide, carbonate, or phosphate salt.
  • the base is lithium hydroxide, sodium hydroxide, or potassium hydroxide.
  • Step S-3 comprises coupling a dipeptide ester of Formula (C) with an arginine analog of Formula (E). All methods of peptide coupling are contemplated.
  • the carbodiimide is dicyclohexylcarbodiimide (DCC), dissoproylcarbodiimide (DIC), or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC), or a derivative thereof.
  • the carboxyl activating agent is a triazole.
  • the triazole is 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), 2-cyano-2-(hydroxyimino)acetate), HBTU, HATU, HCTU, TBTU, or PyBOP, or a derivative thereof.
  • the step of coupling is performed in the presence of a base.
  • the base is a non-nucleophilic base.
  • the base is an amine.
  • the base is trimethyl amine, triethyl amine, diisopropyl ethyl amine (DIPEA), tetramethylpiperidine, 1,8-diazabicycloundec-7-ene (DBU), lutidene, or 2,6-di-tert-butylpyridine.
  • the coupling is performed in a solvent comprising DMF.
  • the arginine analog of Formula (E) is a protected arginine (e.g., R A4 is protecting group, R A4 and R A2 are protecting groups).
  • each of R A1 , R A2 , R A3 , and R A4 is hydrogen.
  • at least one of R A1 , R A2 , R A3 , and R A4 is a non-hydrogen group.
  • the step of coupling (D) and (E) further comprises deprotecting the guanidine group (i.e., removing a non-hydrogen group from R A1 , R A2 , R A3 , or R A4 , or a combination thereof).
  • the guanidine moiety e.g., in a compound of Formula (E) is of formula:
  • the method of preparing a compound of Formula (I) or an intermediate thereto may optionally further comprise one or more steps of protecting a nitrogen, oxygen, or sulfur atom, or deprotecting a nitrogen, oxygen, or sulfur atom.
  • the step of deprotecting or protecting comprises replacing group R 8 or -L 1 -R 8 .
  • the step of deprotecting or protecting comprises replacing group R N .
  • the step of deprotecting or protecting comprises replacing group R c .
  • the step of deprotecting or protecting comprises replacing group R d .
  • the step of deprotecting or protecting comprises replacing group R A1 .
  • the step of deprotecting or protecting comprises replacing group R A2 .
  • the step of deprotecting or protecting comprises replacing group R A3 .
  • the step of deprotecting or protecting comprises replacing group R A4 .
  • R 3 , R 4 , R N , R 5 , R 6 , R, L 1 , R c , R d , R A1 , R A2 , R A3 , and R A4 are as defined herein.
  • the method of preparing a compound of Formula (I) further comprises converting an ester of Formula (C):
  • the method of preparing a compound of Formula (I) further comprises coupling a compound of Formula (A):
  • the present invention also provides pharmaceutical compositions comprising a compound described herein (e.g., a compound of Formula (I)), or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, or prodrug thereof, and optionally a pharmaceutically acceptable excipient.
  • the pharmaceutical composition described herein comprises a compound of Formula (I), or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, and a pharmaceutically acceptable excipient.
  • the pharmaceutical composition is useful for treating a patient with a proliferative disease.
  • the pharmaceutical composition is useful for treating a patient with cancer.
  • the pharmaceutical composition is useful for treating a patient with a lymphoma. In certain embodiments, the pharmaceutical composition is useful for treating a patient with a leukemia. In certain embodiments, the pharmaceutical composition is useful for treating a patient with Hodgkin's lymphoma, Burkitt's lymphoma, non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, or MALT lymphoma. In certain embodiments, the pharmaceutical composition is useful for treating a patient with diffuse large B-cell lymphoma.
  • the compound described herein is provided in an effective amount in the pharmaceutical composition.
  • the effective amount is a therapeutically effective amount.
  • the effective amount is a prophylactically effective amount.
  • the effective amount is an amount effective for treating a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • the effective amount is an amount effective for preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • the effective amount is an amount effective for reducing the risk of developing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • the effective amount is an amount effective for inhibiting MALT1 in a subject.
  • the effective amount is an amount effective for inhibiting a MALT1 fusion protein (e.g. API2-MALT1) in a subject.
  • the effective amount is an amount effective for inhibiting the cleavage of A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1 ⁇ , or MALT1 in a subject. In certain embodiments, the effective amount is an amount effective for inhibiting secretion of IL-6 in a subject.
  • the effective amount is an amount effective for inhibiting MALT1 by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 98%. In certain embodiments, the effective amount is an amount effective for inhibiting MALT1 by not more than 10%, not more than 20%, not more than 30%, not more than 40%, not more than 50%, not more than 60%, not more than 70%, not more than 80%, not more than 90%, not more than 95%, or not more than 98%. In certain embodiments, the effective amount is an amount effective for a range of inhibition between a percentage described in this paragraph and another percentage described in this paragraph, inclusive.
  • compositions described herein can be prepared by any method known in the art of pharmacology.
  • preparatory methods include bringing the compound described herein (i.e., the “active ingredient”) into association with a carrier or excipient, and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping, and/or packaging the product into a desired single- or multi-dose unit.
  • compositions can be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses.
  • a “unit dose” is a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient.
  • the amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage, such as one-half or one-third of such a dosage.
  • Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition described herein will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered.
  • the composition may comprise between 0.1% and 100% (w/w) active ingredient.
  • compositions used in the manufacture of provided pharmaceutical compositions include inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and perfuming agents may also be present in the composition.
  • Exemplary diluents include calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, and mixtures thereof.
  • Exemplary granulating and/or dispersing agents include potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose, and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (Veegum), sodium lauryl sulfate, quaternary ammonium compounds, and mixtures thereof.
  • crospovidone cross-linked poly(vinyl-pyrrolidone)
  • sodium carboxymethyl starch sodium starch glycolate
  • Exemplary surface active agents and/or emulsifiers include natural emulsifiers (e.g., acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g., bentonite (aluminum silicate) and Veegum (magnesium aluminum silicate)), long chain amino acid derivatives, high molecular weight alcohols (e.g., stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g., carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulos
  • Exemplary binding agents include starch (e.g., cornstarch and starch paste), gelatin, sugars (e.g., sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol, etc.), natural and synthetic gums (e.g., acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (Veegum®), and larch arabogalactan), alginates, polyethylene oxide, polyethylene glycol, inorganic calcium salts, silicic acid, polymethacrylates, waxes, water, alcohol, and/or mixtures
  • Exemplary preservatives include antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, antiprotozoan preservatives, alcohol preservatives, acidic preservatives, and other preservatives.
  • the preservative is an antioxidant.
  • the preservative is a chelating agent.
  • antioxidants include alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and sodium sulfite.
  • Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA) and salts and hydrates thereof (e.g., sodium edetate, disodium edetate, trisodium edetate, calcium disodium edetate, dipotassium edetate, and the like), citric acid and salts and hydrates thereof (e.g., citric acid monohydrate), fumaric acid and salts and hydrates thereof, malic acid and salts and hydrates thereof, phosphoric acid and salts and hydrates thereof, and tartaric acid and salts and hydrates thereof.
  • EDTA ethylenediaminetetraacetic acid
  • salts and hydrates thereof e.g., sodium edetate, disodium edetate, trisodium edetate, calcium disodium edetate, dipotassium edetate, and the like
  • citric acid and salts and hydrates thereof e.g., citric acid mono
  • antimicrobial preservatives include benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and thimerosal.
  • antifungal preservatives include butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and sorbic acid.
  • Exemplary alcohol preservatives include ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and phenylethyl alcohol.
  • Exemplary acidic preservatives include vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and phytic acid.
  • preservatives include tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, Glydant® Plus, Phenonip®, methylparaben, Germall® 115, Germaben® II, Neolone®, Kathon®, and Euxyl®.
  • Exemplary buffering agents include citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer
  • Exemplary lubricating agents include magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, and mixtures thereof.
  • Exemplary natural oils include almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba , macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buck
  • Exemplary synthetic oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and mixtures thereof.
  • Liquid dosage forms for oral and parenteral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (e.g., cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art such as, for example, water or other solvents, so
  • the oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
  • the conjugates described herein are mixed with solubilizing agents such as Cremophor®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and mixtures thereof.
  • sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation can be a sterile injectable solution, suspension, or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that can be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono- or di-glycerides.
  • fatty acids such as oleic acid are used in the preparation of injectables.
  • the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, (c) humectants such as glycerol, (d) disintegrating agents such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (e) solution retarding agents such as paraffin, (f) absorption accelerators such as quaternary ammonium compounds, (g) wetting agents such as, for example, cetyl alcohol and glycerol mono
  • Solid compositions of a similar type can be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the art of pharmacology. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(S) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
  • encapsulating compositions which can be used include polymeric substances and waxes.
  • Solid compositions of a similar type can be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the active ingredient can be in a micro-encapsulated form with one or more excipients as noted above.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings, and other coatings well known in the pharmaceutical formulating art.
  • the active ingredient can be admixed with at least one inert diluent such as sucrose, lactose, or starch.
  • Such dosage forms may comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose.
  • the dosage forms may comprise buffering agents. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(S) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
  • encapsulating agents which can be used include polymeric substances and waxes.
  • Dosage forms for topical and/or transdermal administration of a compound described herein may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, and/or patches.
  • the active ingredient is admixed under sterile conditions with a pharmaceutically acceptable carrier or excipient and/or any needed preservatives and/or buffers as can be required.
  • the present disclosure contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of an active ingredient to the body.
  • Such dosage forms can be prepared, for example, by dissolving and/or dispensing the active ingredient in the proper medium.
  • the rate can be controlled by either providing a rate controlling membrane and/or by dispersing the active ingredient in a polymer matrix and/or gel.
  • Formulations suitable for topical administration include, but are not limited to, liquid and/or semi-liquid preparations such as liniments, lotions, oil-in-water and/or water-in-oil emulsions such as creams, ointments, and/or pastes, and/or solutions and/or suspensions.
  • Topically administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient can be as high as the solubility limit of the active ingredient in the solvent.
  • Formulations for topical administration may further comprise one or more of the additional ingredients described herein.
  • a pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation suitable for pulmonary administration via the buccal cavity.
  • a formulation may comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 to about 7 nanometers, or from about 1 to about 6 nanometers.
  • Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant can be directed to disperse the powder and/or using a self-propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container.
  • Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nanometers and at least 95% of the particles by number have a diameter less than 7 nanometers. Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nanometer and at least 90% of the particles by number have a diameter less than 6 nanometers.
  • Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.
  • Low boiling propellants generally include liquid propellants having a boiling point of below 65° F. at atmospheric pressure. Generally the propellant may constitute 50 to 99.9% (w/w) of the composition, and the active ingredient may constitute 0.1 to 20% (w/w) of the composition.
  • the propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).
  • compositions described herein formulated for pulmonary delivery may provide the active ingredient in the form of droplets of a solution and/or suspension.
  • Such formulations can be prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising the active ingredient, and may conveniently be administered using any nebulization and/or atomization device.
  • Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate.
  • the droplets provided by this route of administration may have an average diameter in the range from about 0.1 to about 200 nanometers.
  • Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition described herein.
  • Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 to 500 micrometers. Such a formulation is administered by rapid inhalation through the nasal passage from a container of the powder held close to the nares.
  • Formulations for nasal administration may, for example, comprise from about as little as 0.1% (w/w) to as much as 100% (w/w) of the active ingredient, and may comprise one or more of the additional ingredients described herein.
  • a pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation for buccal administration.
  • Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may contain, for example, 0.1 to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein.
  • formulations for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising the active ingredient.
  • Such powdered, aerosolized, and/or aerosolized formulations when dispersed, may have an average particle and/or droplet size in the range from about 0.1 to about 200 nanometers, and may further comprise one or more of the additional ingredients described herein.
  • a pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation for ophthalmic administration.
  • Such formulations may, for example, be in the form of eye drops including, for example, a 0.1-1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid carrier or excipient.
  • Such drops may further comprise buffering agents, salts, and/or one or more other of the additional ingredients described herein.
  • Other opthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are also contemplated as being within the scope of this disclosure.
  • compositions suitable for administration to humans are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with ordinary experimentation.
  • compositions described herein are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions described herein will be decided by a physician within the scope of sound medical judgment.
  • the specific therapeutically effective dose level for any particular subject or organism will depend upon a variety of factors including the disease being treated and the severity of the disorder; the activity of the specific active ingredient employed; the specific composition employed; the age, body weight, general health, sex, and diet of the subject; the time of administration, route of administration, and rate of excretion of the specific active ingredient employed; the duration of the treatment; drugs used in combination or coincidental with the specific active ingredient employed; and like factors well known in the medical arts.
  • the compounds and compositions provided herein can be administered by any route, including enteral (e.g., oral), parenteral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, topical (as by powders, ointments, creams, and/or drops), mucosal, nasal, bucal, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; and/or as an oral spray, nasal spray, and/or aerosol.
  • enteral e.g., oral
  • parenteral intravenous, intramuscular, intra-arterial, intramedullary
  • intrathecal subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal
  • topical as by powders, ointments, creams, and/or drops
  • mucosal nasal,
  • Specifically contemplated routes are oral administration, intravenous administration (e.g., systemic intravenous injection), regional administration via blood and/or lymph supply, and/or direct administration to an affected site.
  • intravenous administration e.g., systemic intravenous injection
  • regional administration via blood and/or lymph supply e.g., via blood and/or lymph supply
  • direct administration e.g., direct administration to an affected site.
  • the most appropriate route of administration will depend upon a variety of factors including the nature of the agent (e.g., its stability in the environment of the gastrointestinal tract), and/or the condition of the subject (e.g., whether the subject is able to tolerate oral administration).
  • the compound or pharmaceutical composition described herein is suitable for topical administration to the eye of a subject.
  • any two doses of the multiple doses include different or substantially the same amounts of a compound described herein.
  • the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is three doses a day, two doses a day, one dose a day, one dose every other day, one dose every third day, one dose every week, one dose every two weeks, one dose every three weeks, or one dose every four weeks.
  • the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is one dose per day. In certain embodiments, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is two doses per day.
  • the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is three doses per day.
  • the duration between the first dose and last dose of the multiple doses is one day, two days, four days, one week, two weeks, three weeks, one month, two months, three months, four months, six months, nine months, one year, two years, three years, four years, five years, seven years, ten years, fifteen years, twenty years, or the lifetime of the subject, tissue, or cell.
  • the duration between the first dose and last dose of the multiple doses is three months, six months, or one year.
  • the duration between the first dose and last dose of the multiple doses is the lifetime of the subject, tissue, or cell.
  • a dose (e.g., a single dose, or any dose of multiple doses) described herein includes independently between 0.1 ag and 1 ag, between 0.001 mg and 0.01 mg, between 0.01 mg and 0.1 mg, between 0.1 mg and 1 mg, between 1 mg and 3 mg, between 3 mg and 10 mg, between 10 mg and 30 mg, between 30 mg and 100 mg, between 100 mg and 300 mg, between 300 mg and 1,000 mg, or between 1 g and 10 g, inclusive, of a compound described herein.
  • a dose described herein includes independently between 1 mg and 3 mg, inclusive, of a compound described herein.
  • a dose described herein includes independently between 3 mg and 10 mg, inclusive, of a compound described herein. In certain embodiments, a dose described herein includes independently between 10 mg and 30 mg, inclusive, of a compound described herein. In certain embodiments, a dose described herein includes independently between 30 mg and 100 mg, inclusive, of a compound described herein.
  • Dose ranges as described herein provide guidance for the administration of provided pharmaceutical compositions to an adult.
  • the amount to be administered to, for example, a child or an adolescent can be determined by a medical practitioner or person skilled in the art and can be lower or the same as that administered to an adult.
  • a dose described herein is a dose to an adult human whose body weight is 70 kg.
  • a compound or composition, as described herein, can be administered in combination with one or more additional pharmaceutical agents (e.g., therapeutically and/or prophylactically active agents).
  • the compounds or compositions can be administered in combination with additional pharmaceutical agents that improve their activity (e.g., activity (e.g., potency and/or efficacy) in treating a disease in a subject in need thereof, in preventing a disease in a subject in need thereof, in reducing the risk to develop a disease in a subject in need thereof, and/or in inhibiting MALT1), improve bioavailability, improve safety, reduce drug resistance, reduce and/or modify metabolism, inhibit excretion, and/or modify distribution in a subject or cell.
  • additional pharmaceutical agents e.g., therapeutically and/or prophylactically active agents.
  • additional pharmaceutical agents that improve their activity (e.g., activity (e.g., potency and/or efficacy) in treating a disease in a subject in need thereof, in preventing a disease in a subject in need thereof
  • a pharmaceutical composition described herein including a compound described herein and an additional pharmaceutical agent shows a synergistic effect that is absent in a pharmaceutical composition including one of the compound and the additional pharmaceutical agent, but not both.
  • the compound or composition can be administered concurrently with, prior to, or subsequent to one or more additional pharmaceutical agents, which are different from the compound described herein and may be useful as, e.g., combination therapies.
  • Pharmaceutical agents include therapeutically active agents.
  • Pharmaceutical agents also include prophylactically active agents.
  • Pharmaceutical agents include small organic molecules such as drug compounds (e.g., compounds approved for human or veterinary use by the U.S.
  • CFR Code of Federal Regulations
  • proteins proteins, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, nucleoproteins, mucoproteins, lipoproteins, synthetic polypeptides or proteins, small molecules linked to proteins, glycoproteins, steroids, nucleic acids, DNAs, RNAs, nucleotides, nucleosides, oligonucleotides, antisense oligonucleotides, lipids, hormones, vitamins, and cells.
  • CFR Code of Federal Regulations
  • DLBCLs display a large mutational burden that affects multiple protein coding genes. Because of that, single-agent therapy would not be expected to eradicate disease. ABC-DLBCLs are more resistant to current chemotherapy regimens. For instance, ABC-DLBCL is less responsive to the standard of care, R-CHOP, with 40% 3-year progression free survival versus 74% for GCB-DLBCL. Combination therapy, e.g. R-CHOP, may be useful for treating and/or preventing DLBCLs. It is possible that MALT1 inhibition could sensitize ABC-DLBCLs to R-CHOP by disrupting cell survival signaling through NF- ⁇ B.
  • MALT1-targeted therapy could synergistically kill lymphoma cells when a MALT1 inhibitor is combined with other more upstream BCR pathway inhibitors that might complement MALT1 inhibition.
  • PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase
  • SYK spleen tyrosine kinase
  • BTK Bruton's tyrosine kinase
  • Inhibitors of these proteins include: PI3K inhibitors BEZ235, BKM120, GDC-0941, BYL719 or CAL-101; SYK inhibitors R-406 or Fostamatinib; BTK inhibitors Ibrutinib or CC-292.
  • Other potential targets for MALT1 combination therapy in ABC-DLBCL include other oncogenes frequently deregulated in this subtype of lymphoma: BCL2, BCL6, and MYC.
  • BCL2 is frequently amplified and overexpressed in ABC-DLBCL.
  • Several agents have been developed to inhibit BCL2 and its antiapoptotic family members, including small-molecule BH3-mimetic compounds such as ABT-737 and obatoclax.
  • BCL6 Simultaneous inhibition of MALT1 and BCL2 would be expected to reduce NF- ⁇ B activation and induce apoptosis, with potential to synergistically kill lymphoma cells.
  • the BCL6 gene is also frequently translocated or mutated, resulting in its deregulated expression in ABC-DLBCL, where it suppresses cell-cycle checkpoint genes as well as terminal differentiation through repression of PRDM1 and other genes.
  • Peptidomimetic and small-molecule inhibitors of BCL6 that disrupt its ability to form repression complexes have potent antilymphoma activity against DLBCLs, including ABC-DLBCLs. BCL6 inhibitors do not seem to induce toxic effects in animals, supporting the suitability of their use in combinatorial regimens.
  • MYC is frequently overexpressed in DLBCL.
  • Deregulated expression of MYC affects many cellular processes, including proliferation, differentiation, and metabolism.
  • An inhibitor of the bromodomain-containing protein 4 (BRD4), JQ1 downregulates MYC transcription, resulting in downregulation of MYC-induced target genes. JQ1 caused cell-cycle arrest and cellular senescence in multiple myeloma, Burkitt lymphoma, and acute myeloid leukemia.
  • Combination of MALT1 inhibition with JQ1 is expected to synergistically collaborate to kill lymphoma by concomitantly affecting fundamental pathways for cell proliferation.
  • Around 30% of ABC-DLBCLs display activating mutations of MYD88 that in a large proportion of the cases coexist with B-cell receptor activating mutations, therefore combination of MALT1 inhibition with TLR 7/8/9 antagonist or inhibition of MYD88 or its downstream targets IRAK1 and IRAK4 is expected to synergistically kill lymphoma by parallel inhibition of the two pathways.
  • Hsp90 is a heat shock protein required for survival of cancer cells and in particular DLBCL.
  • Hsp90 inhibition has been shown to inhibit NF- ⁇ B signaling at various levels and concomitant treatment with MALT1 inhibition is expected to have additive or synergistic effect in killing DLBCL.
  • the additional pharmaceutical agent is a pharmaceutical agent useful for treating and/or preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease).
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease).
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease,
  • the particular combination to employ in a regimen will take into account compatibility of the compound described herein with the additional pharmaceutical agent(s) and/or the desired therapeutic and/or prophylactic effect to be achieved.
  • the additional pharmaceutical agent(s) in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
  • the additional pharmaceutical agents include, but are not limited to, anti-diabetic agents, anti-proliferative agents, anti-cancer agents, anti-angiogenesis agents, anti-inflammatory agents, anti-bacterial agents, anti-viral agents, cardiovascular agents, and pain-relieving agents.
  • the additional pharmaceutical agent is an anti-cancer agent.
  • the additional pharmaceutical agent is an anti-proliferative agent.
  • the additional pharmaceutical agent is an anti-angiogenesis agent.
  • the additional pharmaceutical agent is an anti-inflammatory agent.
  • the additional pharmaceutical agent inhibits MALT1.
  • the compounds described herein or pharmaceutical compositions can be administered in combination with an anti-cancer therapy including, but not limited to, transplantation (e.g., bone marrow transplantation, stem cell transplantation), surgery, radiation therapy, immunotherapy, and chemotherapy.
  • transplantation e.g., bone marrow transplantation, stem cell transplantation
  • surgery e.g., radiation therapy, immunotherapy, and chemotherapy.
  • radiation therapy e.g., radiation therapy, immunotherapy, and chemotherapy.
  • the additional pharmaceutical agent is an anti-proliferative agent (e.g., anti-cancer agent). In certain embodiments, the additional pharmaceutical agent is an anti-leukemia agent. In certain embodiments, the additional pharmaceutical agent is an anti-lymphoma agent. In certain embodiments, the additional pharmaceutical agent is an anti-myelodysplasia agent. In certain embodiments, the additional pharmaceutical agent is an agent listed elsewhere herein.
  • the additional pharmaceutical agent is rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone, prednisolone, lenalidomide, etoposide, or bortezomib, or a combination thereof.
  • the additional pharmaceutical agent is a proteasome inhibitor (e.g., bortezomib).
  • the compound or pharmaceutical composition described herein is administered in combination with a chemotherapy regimen, such as CHOP or R-CHOP.
  • CHOP comprises administration of cyclophosphamide, hydroxydaunorubicin, vincristine (ONCOVIN), and prednisone or prednisolone.
  • R-CHOP adds rituximab to the CHOP regimen.
  • the additional pharmaceutical agent is an upstream-BCR-pathway inhibitor.
  • the additional pharmaceutical agent is a PI3K inhibitor (e.g., BEZ235, BKM120, GDC-0941, BYL719, CAL-101, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • the PI3K inhibitor is tozasertib, GSK1059615, PX866, LY294002, SF1126, XL147, XL765, BGT226, BAY80946, BAY841236, GDC-0941, GDC-0032, GDC-0980, GDC-0941, PX-866, GSK2126458, INK1117, ZSTK474, PWT33597, AEZS-136, PKI-587, PF-4691502, PF-05212384, wortmannin, demethoxyviridin, pictilisib, idelalisib, IPI-145, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is a SYK inhibitor (e.g., Staurosporine (antibiotic AM-2282), BAY 61-3606 (SYK Inhibitor IV), Piceatannol (astringinin), R406, PKC-412, R788 (Fostamatinib), 2-(2-aminoethylamino)-4-(3-trifluoromethylanilino)-pyrimidine-5-carboxamide (SYK Inhibitor II), MNS (SYK Inhibitor III), (2-oxo-morpholin-4-yl)-acetic acid, PRT062607 (P505-15, BIIB057), Entospletinib (GS-9973), PRT318, P505-15, ER-27139, R112, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug
  • the additional pharmaceutical agent is a BTK inhibitor (e.g., GDC-0834, CGI-560, CGI-1746, HM-71224, CC-292 (AVL-292), ONO-4059, CNX-774, LFM-A13, PCI-32765 (Imbruvica), QL47, BGB-3111, ACP-196, Ibrutinib, LMA-13 ( ⁇ -cyano- ⁇ -hydroxy- ⁇ -methyl-N-(2,5dibromophenyl)propenamide), DDE11, CI32765, AVL-292, AVL-101, PRN1008, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • BTK inhibitor e.g., GDC-0834, CGI-560, CGI-1746, HM-71224, CC-292 (AVL-292), ONO-4059
  • the additional pharmaceutical agent is a MAPK inhibitor (e.g., AMG548, AS1940477, CBS3830, Dilmapimod (SB-6813123), Doramapimod (BIRB-796), FR-167653, JLU1124, LASSBio-998, Losmapimod (GW856553), LY2228820, LY3007113, ML3403, Pamapimod, PD-98059 (PD098059), PD-169316, PH-797804, R-130823, RO3201195, RPR-200765A, RPR-203494, RWJ-67657, SB-202190, SB-203580, SB-239063, SB-242235, SCIO-323, SD-282, Semapimod (CNI-1493), Soblidotin (TZT-1027), TAK-715, Talmapimod (SCIO-469), UO126, UR-13756, VX-702, VX-745, or a pharmaceutically acceptable salt, solvate
  • the additional pharmaceutical agent is a JNK inhibitor (e.g., AS007149, AS601245, Berberine, CDDO-Me (Triterpenoid), Curcumin, DA-125, DIM, echinocystic acid, Eupalmerin acetate, Isoobtusilactone A, Mangostin, Norcantharidin, Plumbagin, Rocaglamide, SAMC, SP-600125 (anthrapyrazolone), SP600129, Tanzisertib (CC-930), Tetrahydroxyquinone, Vitamin E succinate, XG-102 (D-JNKI-1), RWJ 67657, CC-401, Bentamapimod, Aloisine A, AEG 3482, BI 78D3, SU 3327, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • JNK inhibitor
  • the additional pharmaceutical agent is a NFAT inhibitor (e.g., VIVIT peptide, MAGPHPVIVITGPHEE (SEQ ID NO: 3), cyclosporin-A (CsA), FK506, Tacrolimus, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • NFAT inhibitor e.g., VIVIT peptide, MAGPHPVIVITGPHEE (SEQ ID NO: 3), cyclosporin-A (CsA), FK506, Tacrolimus, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is a BCL2 inhibitor (e.g., ABT-737, ABT 263 (Navitoclax), Gossypol, ( ⁇ )-Epigallocatechin gallate, Obatoclax, Licochalcone A, HA14-1, TW-37, EM20-25, 4-methoxy-2-[2-(5-methoxy-2-nitrosophenyl)ethyl]-1-nitrosobenzene, Nilotinib-d3, YC137, ABT 737-d8, ABT 263-d8, 2-Methoxy-antimycin A3, ABT-199 (Venetoclax, GDC-0199), Gambogic acid, Nilotinib, Obatoclax (GX15-070), UMI-77, Sabutoclax, AT101, BAM7, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically label
  • the additional pharmaceutical agent is a BCL6 inhibitor (e.g., 2-((5Z)-5-(5-bromo-2-oxo-1H-indol-3-ylidene)-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)butanedioic acid (CID5721353), or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • BCL6 inhibitor e.g., 2-((5Z)-5-(5-bromo-2-oxo-1H-indol-3-ylidene)-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)butanedioic acid (CID5721353)
  • the additional pharmaceutical agent is a MYC inhibitor (e.g., F3680 (10058-F4), Omomyc, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • MYC inhibitor e.g., F3680 (10058-F4), Omomyc, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is a bromodomain-containing protein inhibitor (e.g., bromodomain-containing protein 2 (BRD2) inhibitor, bromodomain-containing protein 3 (BRD3) inhibitor, bromodomain-containing protein 4 (BRD4) inhibitor, TBP (TATA box binding protein)-associated factor protein (TAF) inhibitor, CREB-binding protein (CBP) inhibitor, or E1A binding protein p300 (EP300) inhibitor).
  • the bromodomain-containing protein inhibitor is JQ1, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the bromodomain-containing protein inhibitor is I-BET 151, I-BET 762, OTX-015, TEN-010, CPI-203, CPI-0610, RVX-208, LY294002, BMS-986158, GSK525762, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is a TLR 7/8/9 antagonist (e.g., IRS 661, IRS 954, Chloroquine (NBP2-29386), Quinacrine (NBP2-29385), IMO-8400, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • a TLR 7/8/9 antagonist e.g., IRS 661, IRS 954, Chloroquine (NBP2-29386), Quinacrine (NBP2-29385), IMO-8400, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is a MYD88 inhibitor (e.g., Pepinh-MYD, ST 2825, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • MYD88 inhibitor e.g., Pepinh-MYD, ST 2825, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is an IRAK1 inhibitor (e.g., 1-(2-(4-Morpholinyl)ethyl)-2-(3-nitrobenzoylamino)benzimidazole, Pacritinib, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • IRAK1 inhibitor e.g., 1-(2-(4-Morpholinyl)ethyl)-2-(3-nitrobenzoylamino)benzimidazole, Pacritinib, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is an IRAK4 inhibitor (e.g., 1-(2-(4-Morpholinyl)ethyl)-2-(3-nitrobenzoylamino)benzimidazole, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof).
  • IRAK4 inhibitor e.g., 1-(2-(4-Morpholinyl)ethyl)-2-(3-nitrobenzoylamino)benzimidazole, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • the additional pharmaceutical agent is a Hsp90 inhibitor (e.g., Tanespimycin (17-N-allylamino-17-demethoxygeldanamycin (17-AAG)), Luminespib (AUY-922, NVP-AUY922), 17-DMAG (Alvespimycin), Ganetespib (STA-9090), VER155008, PUH71, HSP990 (NVP-HSP990), BIIBO21, AICAR, Geldanamycin, IPI-504, Radicicol, Herbimycin A, Gedunin, Celastrol, Celastrus scandens , NVP-AUY922, Novobiocin, Macbecin I, MPC-3100, CAY10607, 17-GMB-APA-GA, 17-AEP-GA, 17-DMAP-GA, KW-2478, NVP-BEP800, AT13387, Nelfinavir, Novobiocin, or a pharmaceutically acceptable salt, solvate, hydrate,
  • the additional pharmaceutical agent is BEZ235, BKM120, GDC-0941, BYL719, CAL-101, R-406, Fostamatinib, Ibrutinib, CC-292, ABT-737, obatoclax, JQ1, 17AAG, PUH71, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • kits e.g., pharmaceutical packs.
  • the kits provided may comprise a pharmaceutical composition or compound described herein and optionally a container (e.g., a vial, ampule, bottle, syringe, and/or dispenser package, or other suitable container).
  • a container e.g., a vial, ampule, bottle, syringe, and/or dispenser package, or other suitable container.
  • provided kits may optionally further include a second container comprising a pharmaceutical excipient for dilution or suspension of a pharmaceutical composition or compound described herein.
  • the pharmaceutical composition or compound described herein provided in the first container and the second container are combined to form one unit dosage form.
  • kits including a first container comprising a compound or pharmaceutical composition described herein.
  • the kits are useful for treating a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • kits are useful for preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • kits are useful for reducing the risk of developing proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease
  • the kits are useful for inhibiting MALT1, or a MALT1 fusion protein (e.g., API2-MALT1) in a subject.
  • kits described herein further includes instructions for using the kit (e.g., instructions for using the compound or pharmaceutical composition included in the kit, such as instructions for administering the compound or pharmaceutical composition to a subject in need thereof).
  • a kit described herein may also include information as required by a regulatory agency such as the U.S. Food and Drug Administration (FDA).
  • the information included in the kits is prescribing information.
  • kits and instructions provide for treating a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis,
  • kits and instructions provide for preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • kits and instructions provide for reducing the risk of developing proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof.
  • the kits and instructions provide for inhibiting MALT1 in a subject or in an infectious microorganism.
  • a kit described herein may include one or more additional pharmaceutical agents described herein as a separate composition.
  • the present invention also provides methods for the treatment or prevention of a proliferative disease.
  • the proliferative disease is cancer.
  • the disease in an autoimmune disease.
  • the proliferative disease is benign neoplasm, a disease associated with angiogenesis, an inflammatory disease, an autoinflammatory disease, or an autoimmune disease.
  • the cancer is a lymphoma.
  • the cancer is a leukemia.
  • the cancer is Hodgkin's lymphoma.
  • the cancer is non-Hodgkin's lymphoma.
  • the cancer is Burkitt's lymphoma.
  • the cancer is diffuse large B-cell lymphoma (DLBCL). In certain embodiments, the cancer is MALT lymphoma. In some embodiments, the cancer is germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) or primary mediastinal B-cell lymphoma (PMBL). In some embodiments, the cancer is activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL).
  • GCB-DLBCL germinal center B-cell-like diffuse large B-cell lymphoma
  • PMBL primary mediastinal B-cell lymphoma
  • ABS activated B-cell-like diffuse large B-cell lymphoma
  • the compounds described herein may exhibit a therapeutic and/or preventative effect in the treatment of proliferative diseases (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) and/or may exhibit a therapeutic or preventative effect superior to existing agents for treatment of a proliferative disease.
  • proliferative diseases e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) and/or may exhibit a therapeutic or preventative effect superior to existing agents for treatment of a proliferative disease.
  • cancer e.g., non-Hodgkin's lymphom
  • the compounds described herein may exhibit inhibitory activity towards mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) or a MALT1 fusion protein (e.g., API2-MALT1); may exhibit the ability to inhibit cleavage of a peptide selected from A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1 ⁇ , and MALT1; may exhibit the ability to inhibit activation of nuclear factor- ⁇ B (NF- ⁇ B); may exhibit the ability to down-regulate expression of a gene selected from FLIP, A1, A20, IL-2, IL-6, IL-10 or STAT3; may exhibit the ability to inhibit phosphorylation of STAT3; may inhibit T-cell or B-cell activation and/or may inhibit T-cell or B-cell proliferation.
  • MALT1 mucosa-associated lymphoid tissue lymphoma translocation protein 1
  • the compounds described herein may exhibit selective inhibition of MALT1 or a MALT1 fusion protein (e.g., API2-MALT1) versus inhibition of other proteins.
  • the compound of Formula (I) selectively inhibits MALT1 or API2-MALT1 over another protease.
  • the compound of Formula (I) selectively inhibits MALT1 or API2-MALT1 over another paracaspase.
  • the selectivity versus inhibition of another protein is between about 2 fold and about 10 fold. In certain embodiments, the selectivity is between about 10 fold and about 50 fold. In certain embodiments, the selectivity is between about 50 fold and about 100 fold.
  • the selectivity is between about 100 fold and about 500 fold. In certain embodiments, the selectivity is between about 500 fold and about 1000 fold. In certain embodiments, the selectivity is between about 1000 fold and about 5000 fold. In certain embodiments. In certain embodiments, the selectivity is between about 5000 fold and about 10000 fold. In certain embodiments, or at least about 10000 fold.
  • the present invention provides methods that may be useful for the treatment of an proliferative disease by administering a compound described herein, or pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, or prodrug thereof, or pharmaceutical composition thereof, to a subject in need thereof.
  • the compound is administered as a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • the compound is administered as a pharmaceutically acceptable salt of the compound.
  • the compound is administered as a specific stereoisomer or mixture of stereoisomers of the compound.
  • the compound is administered as a specific tautomer or mixture of tautomers of the compound.
  • the compound is administered as a pharmaceutical composition as described herein comprising the compound.
  • the present invention also provides uses of the inventive compounds, and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, prodrugs, and pharmaceutical compositions thereof, in the manufacture of medicaments for the treatment and prevention of a proliferative disease.
  • the proliferative disease is cancer.
  • the proliferative disease is benign neoplasm, a disease associated with angiogenesis, an inflammatory disease, an autoinflammatory disease, or an autoimmune disease.
  • the cancer is a lymphoma.
  • the cancer is a leukemia.
  • the cancer is Hodgkin's lymphoma.
  • the cancer is non-Hodgkin's lymphoma. In certain embodiments, the cancer is Burkitt's lymphoma. In certain embodiments, the cancer is diffuse large B-cell lymphoma (DLBCL). In certain embodiments, the cancer is MALT lymphoma. In some embodiments, the cancer is germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) or primary mediastinal B-cell lymphoma (PMBL). In some embodiments, the cancer is activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL).
  • GCB-DLBCL germinal center B-cell-like diffuse large B-cell lymphoma
  • PMBL primary mediastinal B-cell lymphoma
  • the cancer is activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL).
  • the subject is an animal.
  • the animal may be of either sex and may be at any stage of development.
  • the subject described herein is a human.
  • the subject is a non-human animal.
  • the subject is a mammal.
  • the subject is a non-human mammal.
  • the subject is a domesticated animal, such as a dog, cat, cow, pig, horse, sheep, or goat.
  • the subject is a companion animal, such as a dog or cat.
  • the subject is a livestock animal, such as a cow, pig, horse, sheep, or goat.
  • the subject is a zoo animal.
  • the subject is a research animal, such as a rodent (e.g., mouse, rat), dog, pig, or non-human primate.
  • the animal is a genetically engineered animal.
  • the animal is a transgenic animal (e.g., transgenic mice and transgenic pigs).
  • the subject is a fish or reptile.
  • the proliferative disease to be treated or prevented using the compounds described herein is cancer. All types of cancers disclosed herein or known in the art are contemplated as being within the scope of the invention.
  • the proliferative disease is a cancer associated with or dependent on MALT1.
  • the proliferative disease is a cancer associated with or dependent on a MALT1 fusion protein (e.g., API2-MALT1).
  • the proliferative disease is a cancer associated with dependence on B-cell lymphoma 10 (Bcl10).
  • the proliferative disease is a cancer associated with dependence on caspase recruitment domain-containing protein (CARD1).
  • the proliferative disease is a cancer associated with dependence on NF- ⁇ B.
  • Exemplary cancers include, but are not limited to, hematological malignancies. Additional exemplary cancers include, but are not limited to, acoustic neuroma; adenocarcinoma; adrenal gland cancer; anal cancer; angiosarcoma (e.g., lymphangiosarcoma, lymphangioendotheliosarcoma, hemangiosarcoma); appendix cancer; benign monoclonal gammopathy; biliary cancer (e.g., cholangiocarcinoma); bladder cancer; breast cancer (e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, mammary cancer, medullary carcinoma of the breast, triple negative breast cancer (TNBC)); brain cancer (e.g., meningioma, glioblastomas, glioma (e.g., astrocytoma,
  • liver cancer e.g., hepatocellular cancer (HCC), malignant hepatoma
  • lung cancer e.g., bronchogenic carcinoma, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung
  • leiomyosarcoma LMS
  • mastocytosis e.g., systemic mastocytosis
  • muscle cancer myelodysplastic syndrome (MDS); mesothelioma; myeloproliferative disorder (MPD) (e.g., polycythemia vera (PV), essential thrombocytosis (ET), agnogenic myeloid metaplasia (AMM) a.k.a.
  • myelofibrosis MF
  • chronic idiopathic myelofibrosis chronic myelocytic leukemia (CML), chronic neutrophilic leukemia (CNL), hypereosinophilic syndrome (HES)
  • neuroblastoma e.g., neurofibromatosis (NF) type 1 or type 2, schwannomatosis
  • neuroendocrine cancer e.g., gastroenteropancreatic neuroendocrine tumor (GEP-NET), carcinoid tumor
  • osteosarcoma e.g., bone cancer
  • ovarian cancer e.g., cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma
  • papillary adenocarcinoma pancreatic cancer
  • pancreatic cancer e.g., pancreatic andenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), Islet cell tumors
  • penile cancer
  • the cancer is a hematological malignancy.
  • hematological malignancies include, but are not limited to, leukemia, such as acute lymphoblastic leukemia (ALL) (e.g., B-cell ALL, T-cell ALL), acute myelocytic leukemia (AML) (e.g., B-cell AML, T-cell AML), chronic myelocytic leukemia (CML) (e.g., B-cell CML, T-cell CML), and chronic lymphocytic leukemia (CLL) (e.g., B-cell CLL, T-cell CLL)); lymphoma, such as Hodgkin lymphoma (HL) (e.g., B-cell HL, T-cell HL) and non-Hodgkin lymphoma (NHL) (e.g., B-cell NHL, such as diffuse large cell lymphoma (DLCL) (e.g., diffuse large B-cell lymphoma (DLCL) (e
  • the disease is an autoimmune disease.
  • autoimmune diseases include, but are not limited to, glomerulonephritis, Goodpasture's syndrome, necrotizing vasculitis, lymphadenitis, peri-arteritis nodosa, systemic lupus erythematosis, rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosis, psoriasis, ulcerative colitis, systemic sclerosis, dermatomyositis/polymyositis, anti-phospholipid antibody syndrome, scleroderma, pemphigus vulgaris, ANCA-associated vasculitis (e.g., Wegener's granulomatosis, microscopic polyangiitis), uveitis, Sjogren's syndrome, Crohn's disease, Reiter's syndrome, ankylosing spondylitis, Lyme disease, Guillain-Barré syndrome
  • the disease is a cancer associated with a viral infection. In some embodiments, the disease is a cancer resulting from infection with an oncovirus.
  • the oncovirus is hepatitis A, hepatitis B, hepatitis C, human T-lymphotropic virus (HTLV), human papillomavirus (HPV), Kaposi's sarcoma-associated herpesvirus (HHV-8), Merkel cell polyomavirus, or Epstein-Barr virus (EBV).
  • the disease is human T-lymphotropic virus.
  • the disease is Kaposi's sarcoma-associated herpesvirus.
  • the disease is Epstein-Barr virus.
  • Leukemias and lymphomas which may be associated with an oncoviral include: for HTLV, adult T-cell leukemia; for HHV-8, Castleman's disease and primary effusion lymphoma; and for EBV, Burkitt's lymphoma, Hogdkin's lymphoma, and post-transplant lymphoproliferative disease.
  • kits for down-regulating expression of a gene in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or down-regulating expression of a gene in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • the gene which is down-regulated is a NF- ⁇ B dependent gene.
  • Genes which may be down-regulated include, but are not limited to, FLIP, A1, A20, IL-2, IL-6, IL-8, IL-10 and STAT3.
  • a compound described herein e.g., a compound of Formula (I)
  • a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • cell proliferation is inhibited for T-cells.
  • cell proliferation is inhibited for B-cells.
  • cell proliferation is inhibited for T-cells and B-cells.
  • cell is a tumor cell.
  • the cell is a lymphocyte.
  • the cell is a T-cell.
  • the cell is a B-cell.
  • cell is a tumor cell.
  • the cell is a lymphocyte.
  • the cell is a T-cell.
  • the cell is a B-cell.
  • provided herein are methods of inhibiting activation of T-cells or B-cells in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting activation of T-cells or B-cells in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • a compound described herein e.g., a compound of Formula (I)
  • NF- ⁇ B nuclear factor ⁇ B
  • methods of inhibiting activation of nuclear factor ⁇ B (NF- ⁇ B) in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting activation of nuclear factor ⁇ B (NF- ⁇ B) in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • a compound described herein e.g., a compound of Formula (I)
  • kits for inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • the method inhibits the protease activity of MALT1.
  • the method inhibits the protease activity of a MALT1 fusion protein (e.g., API2-MALT1). In certain embodiments, the method inhibits the protease activity of MALT1 or a MALT1 fusion protein for cleavage of a peptide substrate.
  • the peptide substrate is A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1 ⁇ , or MALT1.
  • the inhibitor may selectively inhibit the protease activity of MALT1 or a MALT1 fusion protein for cleavage of a first peptide substrate over protease activity for cleavage of a second peptide substrate.
  • the first and/or second substrate is A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1 ⁇ , or MALT1.
  • the selectivity is between about 1.25 fold and about 5 fold. In certain embodiments, the selectivity is between about 5 fold and about 10 fold. In certain embodiments, the selectivity is between about 10 fold and about 25 fold.
  • the selectivity is between about 25 fold and about 50 fold. In certain embodiments, the selectivity is between about 50 fold and about 100 fold. In certain embodiments, the selectivity is between about 100 fold and about 250 fold. In certain embodiments. In certain embodiments, the selectivity is between about 250 fold and about 500 fold. In certain embodiments, the selectivity is between about 500 fold and about 1000 fold. In certain embodiments, or at least about 1000 fold.
  • cytokine production in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or modulating cytokine production in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • the method inhibits production of a cytokine selected from IL-2, IL-6, IL-8, IL-10, or IL-17.
  • the method promotes production of a cytokine selected from IL-2, IL-6, IL-8, IL-10, or IL-17.
  • the method inhibits production of cytokines in T-cells.
  • the method inhibits production of cytokines in B-cells.
  • a compound described herein e.g., a compound of Formula (I)
  • a compound described herein e.g., a compound of Formula (I)
  • a compound described herein e.g., a compound of Formula (I)
  • a compound described herein e.g., a compound of Formula (I)
  • provided herein are methods of inhibiting lymphocyte adhesion to fibronectin in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting lymphocyte adhesion to fibronectin in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • a compound described herein e.g., a compound of Formula (I)
  • a compound described herein e.g., a compound of Formula (I)
  • the gene encodes a transcription factor or transcriptional regulator.
  • the transcription factor is c-Rel or IRF4.
  • the transcription factor is I ⁇ BNS or I ⁇ B ⁇ .
  • the gene encodes a cytokine (e.g., IL-17).
  • the gene is up-regulating by inhibiting degradation of a mRNA.
  • the mRNA is encoding a T-cell effector gene.
  • the mRNA is encoding a gene selected from IL-2, IL-6, c-Rel, or Ox40.
  • provided herein are methods of inhibiting phosphorylation of STAT3 in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting phosphorylation of STAT3 in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • a compound described herein e.g., a compound of Formula (I)
  • Certain methods described herein may further comprise administering one or more additional pharmaceutical agents in combination with the compounds described herein, or administration of the compounds described herein may be combined with other treatment methods, e.g., an anti-cancer therapy.
  • the compounds described herein or pharmaceutical compositions can be administered in combination with an anti-cancer therapy including, but not limited to, transplantation (e.g., bone marrow transplantation, stem cell transplantation), surgery, radiation therapy, immunotherapy, and chemotherapy.
  • Pharmaceutical agents include therapeutically active agents.
  • Pharmaceutical agents also include prophylactically active agents.
  • Pharmaceutical agents include small organic molecules such as drug compounds (e.g., compounds approved for human or veterinary use by the U.S.
  • CFR Code of Federal Regulations
  • proteins proteins, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, nucleoproteins, mucoproteins, lipoproteins, synthetic polypeptides or proteins, small molecules linked to proteins, glycoproteins, steroids, nucleic acids, DNAs, RNAs, nucleotides, nucleosides, oligonucleotides, antisense oligonucleotides, lipids, hormones, vitamins, and cells.
  • CFR Code of Federal Regulations
  • the additional pharmaceutical agent is a pharmaceutical agent useful for treating and/or preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease).
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease).
  • a proliferative disease e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease,
  • the particular combination to employ in a regimen will take into account compatibility of the compound described herein with the additional pharmaceutical agent(s) and/or the desired therapeutic and/or prophylactic effect to be achieved.
  • the additional pharmaceutical agent(s) in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
  • the additional pharmaceutical agents include, but are not limited to, anti-diabetic agents, anti-proliferative agents, anti-cancer agents, anti-angiogenesis agents, anti-inflammatory agents, anti-bacterial agents, anti-viral agents, cardiovascular agents, and pain-relieving agents.
  • the additional pharmaceutical agent is an anti-cancer agent.
  • the additional pharmaceutical agent is an anti-proliferative agent.
  • the additional pharmaceutical agent is an anti-angiogenesis agent.
  • the additional pharmaceutical agent is an anti-inflammatory agent.
  • the additional pharmaceutical agent inhibits MALT1.
  • the additional pharmaceutical agent is an anti-cancer agent.
  • the additional pharmaceutical agent is an anti-leukemia agent.
  • the additional pharmaceutical agent is an anti-leukemia agent.
  • the additional pharmaceutical agent is ABITREXATE (methotrexate), ADE, Adriamycin RDF (doxorubicin hydrochloride), Ambochlorin (chlorambucil), ARRANON (nelarabine), ARZERRA (ofatumumab), BOSULIF (bosutinib), BUSULFEX (busulfan), CAMPATH (alemtuzumab), CERUBIDINE (daunorubicin hydrochloride), CLAFEN (cyclophosphamide), CLOFAREX (clofarabine), CLOLAR (clofarabine), CVP, CYTOSAR-U (cytarabine), CYTOXAN (cyclophosphamide), ERWINAZE (Asparaginase Erwinia Chrysanthemi ), FLUDARA (fludarabine phosphate), FOLEX (methotre
  • the additional pharmaceutical agent is an anti-lymphoma agent.
  • the additional pharmaceutical agent is ABITREXATE (methotrexate), ABVD, ABVE, ABVE-PC, ADCETRIS (brentuximab vedotin), ADRIAMYCIN PFS (doxorubicin hydrochloride), ADRIAMYCIN RDF (doxorubicin hydrochloride), AMBOCHLORIN (chlorambucil), AMBOCLORIN (chlorambucil), ARRANON (nelarabine), BEACOPP, BECENUM (carmustine), BELEODAQ (belinostat), BEXXAR (tositumomab and iodine I 131 tositumomab), BICNU (carmustine), BLENOXANE (bleomycin), CARMUBRIS (carmustine), CHOP, CLAFEN (cyclophosphamide), COPP, COPP-ABV,
  • the additional pharmaceutical agent is an anti-myelodysplasia agent.
  • the additional pharmaceutical agent is REVLIMID (lenalidomide), DACOGEN (decitabine), VIDAZA (azacitidine), CYTOSAR-U (cytarabine), IDAMYCIN (idarubicin), CERUBIDINE (daunorubicin), or a combination thereof.
  • the additional pharmaceutical agent is an anti-macroglobulinemia agent.
  • the additional pharmaceutical agent is LEUKERAN (chlorambucil), NEOSAR (cyclophosphamide), FLUDARA (fludarabine), LEUSTATIN (cladribine), or a combination thereof.
  • the additional pharmaceutical agent is ABITREXATE (methotrexate), ABRAXANE (paclitaxel albumin-stabilized nanoparticle formulation), AC, AC-T, ADE, ADRIAMYCIN PFS (doxorubicin hydrochloride), ADRUCIL (fluorouracil), AFINITOR (everolimus), AFINITOR DISPERZ (everolimus), ALDARA (imiquimod), ALIMTA (pemetrexed disodium), AREDIA (pamidronate disodium), ARIMIDEX (anastrozole), AROMASIN (exemestane), AVASTIN (bevacizumab), BECENUM (carmustine), BEP, BICNU (carmustine), BLENOXANE (bleomycin), CAF, CAMPTOSAR (irinotecan hydrochloride), CAPOX, CAPRELSA (vandetanib), CARBOPLATIN-TAXOL, CARMUBRIS (carmustine), CASODE
  • the additional pharmaceutical agent is rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone, prednisolone, lenalidomide, etoposide, or bortezomib, or a combination thereof.
  • the additional pharmaceutical agent is a proteasome inhibitor (e.g., bortezomib).
  • the compound or pharmaceutical composition described herein is administered in combination with a chemotherapy regimen, such as CHOP or R-CHOP.
  • CHOP comprises administration of cyclophosphamide, hydroxydaunorubicin, vincristine (ONCOVIN), prednisone, prednisolone, or rituximab.
  • Exemplary compounds of Formula (I) were prepared according to the Schemes E1 to E4. Generally, the sequence begins with preparation of a dipeptide ester (e.g., DE-101) by coupling of two protected amino acids. Hydrolysis of the ester affords a dipeptide acid (e.g., DA-101), which is coupled with an arginine analog followed by deprotection to give the Compound of Formula (I) (e.g., 101).
  • a dipeptide ester e.g., DE-101
  • DA-101 dipeptide acid
  • arginine analog e.g., 101
  • the reaction mixture was purified by reverse-phase HPLC (10-100% CH 3 CN in H 2 O) and the resulting brown oil was dissolved in a mixture of 90% TFA in DCM (30 mL) and stirred for 1 hour. The solvent was removed under reduced pressure and the residue purified by reverse-phase HPLC (1-50% CH 3 CN in H 2 O) to give a brown oil (0.018 g, 16% yield over 2 steps).
  • the dipeptide acid intermediates were prepared in a similar manner to ((benzyloxy)carbonyl)-L-valyl-L-proline (DA-101), and are listed in Table E2, along with characterization data and the corresponding dipeptide ester from which they were prepared.
  • Dipeptide esters DE-102-DE-105, DE-A1, and DE-A2 were prepared in a similar manner to methyl ((benzyloxy)carbonyl)-L-valyl-L-prolinate (DE-101) from the corresponding acid and methyl L-prolinate.
  • Dipeptide esters DE-107 and DE-108 were prepared from the corresponding acid and methyl (S)-piperidine-2-carboxylate.
  • Dipeptide esters DE-109-DE-111 and DE-140 were prepared from ((benzyloxy)carbonyl)-L-valine and the corresponding proline and serine esters.
  • Dipeptide esters DE-113, DE-115 to DE-139, DE-145 to DE-148, and DE-151 to DE-159 were prepared in a similar manner to methyl (2-bromobenzoyl)-L-valyl-L-prolinate (DE-114) from methyl L-valyl-L-prolinate and the corresponding acid, acid chloride, isocyanate, or sulfonyl chloride.
  • Dipeptide esters DE-142 to DE-144 and DE-149 were prepared from 4-bromobenzoyl chloride and the corresponding esters.
  • Dipeptide esters DE-160, DE-162, DE-163 and DE-171 to DE-186 were prepared in a similar manner to DE-101 or DE-114 from the corresponding amine ester and acid or acid chloride in Table E3.
  • Methyl (tert-butoxycarbonyl)-L-valyl-L-prolinate (856 mg) was dissolved in 1,4-dioxane (10 mL). HCl in 1,4-dioxane (4 M, 5 mL) was added and the reaction stirred for 1 hour. The solvent was removed under reduced pressure to give a white solid (700 mg), used directly without purification. This compound was dissolved in DCM (50 mL) and cooled to 0° C. Benzyl chloroformate (0.48 mL) and triethylamine (2.14 mL) were added, and the mixture stirred for 1 hour. The reaction mixture was quenched with sat. aq.
  • Triethylamine (1.21 mL, 8.76 mmol) was added to a solution of methyl L-valyl-L-prolinate (1.00 g, 4.38 mmol) and 2-bromobenzoyl chloride (961 mg, 4.38 mmol) in DCM (20 mL) at 0° C. After 30 minutes, the reaction mixture was diluted with DCM and washed with 1M HCl. The organic layer was dried (MgSO4), concentrated, and the residue purified by column chromatography (EtOAc in Hexanes, gradient) to give 1.20 g product.
  • Phenyl isocyanate (0.23 mL, 1.89 mmol) and triethylamine (0.79 mL, 5.67 mmol) were added to a solution of methyl L-valyl-L-prolinate (0.50 g, 1.89 mmol) in DCM (25 mL) at 0° C. The mixture was warmed to RT and stirred for 1 hour. The reaction was quenched with H 2 O (10 mL) and extracted with DCM (3 ⁇ 50 mL). The combined organic layer was washed with brine, dried (MgSO 4 ) and concentrated, and the residue purified by column chromatography (10-50% EtOAc in Hexanes) to give a colorless oil (0.57 g, 88% yield). MS (m/z): 348.4 [M+1] + .
  • Dipeptide Esters DE-165 and DE-167 were prepared in a similar manner to DE-164 from the corresponding aniline and methyl L-valyl-L-prolinate.
  • Dipeptide Esters DE-169 and DE-170 were prepared in a similar manner to DE-168 from the corresponding alcohol and methyl ((S)-2-isocyanato-3-methylbutanoyl)-L-prolinate.
  • Triphosgene (1.11 g, 3.7 mmol) was added in portions to a mixture of methyl L-valyl-L-prolinate (3 g, 11.4 mmol) and sodium bicarbonate (4.8 g, 56.8 mmol) in DCM/water (60 mL/45 mL) at 5° C. The reaction was stirred for 5 min at 5° C. The organic layer was separated and the water phase was re-extracted with dichloromethane (50 mL ⁇ 2). The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated to give the title compound (2.8 g, 97%), which was used without further purification.
  • Amino Esters AE-1 to AE-11 were prepared in a similar manner to methyl L-valyl-L-prolinate (DE-A3), by deprotection of the coupling products of the corresponding acid starting materials and amine starting materials are shown in Table E6.
  • Acids 1 to 3 were prepared by coupling of 4-bromobenzoyl chloride and the corresponding amines, followed by hydrolysis of the methyl ester in the case of acid 1.
  • Acid 4 was prepared by coupling of (S)-2-(((benzyloxy)carbonyl)amino)-3-cyclohexylpropanoic acid (Acid 5) and methyl L-prolinate, followed by ester hydrolysis. MS (m/z): 403.2 [M+1] + .
  • Acid 5 was prepared by Cbz protection of (S)-2-amino-3-cyclohexylpropanoic acid. MS (m/z): 306.4 [M+1] + .
  • N-(tert-Butoxycarbonyl)-N-((2,2,5,7,8-pentamethylchroman-6-yl)sulfonyl)-L-arginine (1.0 g, 1.85 mmol) was dissolved in THF (75 mL) and cooled to 0° C.
  • CDI (0.75 g, 4.63 mmol) was added and the reaction was stirred under N 2 for 2 hours.
  • Magnesium benzyl fluoromalonate (2.39 g, 5.55 mmol) was added and the mixture stirred at RT overnight. The reaction was quenched with sat. aq. NaHCO 3 and extracted with EtOAc (3 ⁇ 100 mL).
  • FIG. 3 indicates the formation of a covalent bond between: (1) the carbon atom to which the fluorine atom is directly attached in compound 101; and (2) the sulfur atom of the Cys464 residue of MALT1.
  • Exemplary evidence for the formation of the covalent bond is the existence of continuous electron density from compound 101 to the Cys464 residue of MALT1. The electron density is 2Fo-Fc map contoured at 1.0 sigma.
  • Ki for inhibition of MALT1 was measured (Table E11). A concentration of 100 nM MALT1 was used for the assay.
  • OCI-Ly3 cells a line of human diffuse large B-cell lymphoma (ABC type)
  • ABSC type human diffuse large B-cell lymphoma
  • Protein was then extracted in a PBS-based lysis buffer containing 1% NP-40. Equal amounts of total protein (50 to 75 ⁇ g) were separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and electrotransferred onto nitrocellulose membranes.
  • Membranes were incubated with primary antibodies (MALT1, from Santa Cruz Biotechnologies, Santa Cruz, Calif.; RELB from Cell Signaling, Danvers, Mass., and ⁇ -Tubulin from Sigma), followed by secondary antibodies conjugated to horseradish peroxidase, which were detected by chemiluminescence (Pierce, Thermo Scientific, Rockford, Ill.).
  • primary antibodies MALT1, from Santa Cruz Biotechnologies, Santa Cruz, Calif.
  • RELB Cell Signaling, Danvers, Mass.
  • ⁇ -Tubulin from Sigma
  • TMD8 is another line of ABC type diffuse large-B cell lymphoma
  • OCI-LY1 is a DLBCL line of the germinal center B-cell subtype.
  • Table E12 lists the measured killing effect for Z-VRPR-fmk, mepazine, and exemplary compounds of the disclosure at concentration of 20 ⁇ M or 5 ⁇ M.
  • OCI-LY3 TMD8 OCI-LY1 Compound 20 ⁇ M 5 ⁇ M 20 ⁇ M 5 ⁇ M 20 ⁇ M 5 ⁇ M Z-VRPR-fmk 62% 42% 67% 27% ⁇ 0% ⁇ 0% mepazine 97% 35% 99% 32% 82% 6% 101 79% 70% 63% 50% 7% ⁇ 0% 102 85% — 54% — 19% — 107 85% 38% 58% 29% 11% 3% 112 51% 28% 66% — 2% 5% 114 — 40% — 9% — 115 84% — 64% — 15% — 116 90% — 76% — 19% — 120 81% — 52% — ⁇ 0% — 202 87% 71% 59% — ⁇ 0% 6% 203 79% — 59% — 3% —
  • the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, and descriptive terms from one or more of the listed claims is introduced into another claim.
  • any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim.
  • elements are presented as lists, e.g., in Markush group format, each subgroup of the elements is also disclosed, and any element(S) can be removed from the group. It should it be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements and/or features, certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements and/or features.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Provided herein are compounds of Formula (I) and pharmaceutical compositions thereof, which may be useful as MALT1 inhibitors. Also provided are for the treatment of proliferative disorders (e.g., cancer (e.g., non-Hodgkin' s lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis,an autoimmune disease, an inflammatory disease, an autoinflammatory disease) by administering a compound of Formula (I).

Description

    RELATED APPLICATIONS
  • The present application is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2016/049038, filed Aug. 26,2016, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent applications, U.S. Ser. No. 62/211,629, filed Aug. 28, 2015, and U.S. Ser. No. 62/256,672, filed Nov. 17, 2015, each of which is incorporated herein by reference.
  • GOVERNMENT SUPPORT
  • This invention was made with government support under Grant Number R01 CA182736 awarded by the National Institutes of Health. The government has certain rights in the invention.
  • BACKGROUND
  • Diffuse large B-cell lymphoma (DLBCL) accounts for about 25% of all lymphoma cases. [1]. Subtypes of DLBCL identified by gene expression profiling include germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL and primary mediastinal B-cell lymphoma (PMBL) [2,3]. Patients with the GCB subtype have a significantly better overall survival compared to those with the ABC subtype. [2,3]
  • ABC-DLBCL is characterized by its reliance on the oncogenic activation of the NF-κB pathway. [4] Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) functions in an essential role in NF-κB signaling downstream of T-cell receptors (TCR) and B-cell receptors (BCR) [5]. MALT1 has also been shown to facilitate lymphocyte proliferation, activation, and cytokine production. [6,7] In NF-κB signaling, MALT1 functions as a scaffold protein and forms a complex, referred to as the CBM complex, with caspase recruitment domain family member 11 (CARD11) and B-cell lymphoma 10 (B-cell 10). Through a mechanism mediated by ubiquination of the CBM complex, multiple downstream NF-κB signals are activated to ultimately induce proteasomal degradation of IκBα and release NF-κB for nuclear translocation. [5]
  • In addition to the scaffold function, MALT1 contains a caspase-like domain with proteolytic activity for several important substrates in lymphocyte regulation. MALT1 is a paracaspase, which cleaves after an arginine or lysine residues instead of an aspartate as in caspases. [8] Known peptide substrates of MALT1, or fusion protein API2-MALT1, include A20, CYLD, Bcl10, RelB, regnase-1, roquin-1, NIK, LIMA1α, and MALT1. [8-16] API2-MALT1 results from a t(11;18)(q21;q21) translocation, and is detected in up to 55% of patents with MALT associated lymphomas. [17] Cleavage of these peptides by MALT1 results in inactivation of the peptides resulting in a range of effects, including enhancing NF-κB activation, enhancing B-cell adhesion to fibronectin, and promoting cytokine expression and secretion. Through these and other mechanisms the paracaspase activity of MALT1 promotes cell proliferation and survival in lymphomas and autoimmune diseases. [5] Due in particular to the high chemo-resistance and low survival rates associated with ABC-DLBCL there is a need from improved therapeutic agents that target lymphocyte signaling and proliferation pathways such as those mediated by MALT1 paracaspase activity.
  • SUMMARY OF THE INVENTION
  • Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a key regulator of T-cell and B-cell signaling pathways including NF-κB activation, lymphocyte proliferation, lymphocyte activation, cytokine expression and secretion, and natural killer (NK) receptor activation. MALT1 acts as both a scaffold protein in the signaling chain between T- and B-cell receptors (TCR and BCR) and NF-κB activation, and as a protease for cleavage of several peptides involved in NF-κB regulation and other pathways. Proteolysis is catalyzed by a caspase-like domain with conserved residues Cys464 (C464) and His415, and referred to as a paracaspase domain [5].
  • Substrates identified for MALT1 protease activity include tumor necrosis factor, alpha-induced protein (A20), B-cell lymphoma 10 (Bcl10), cylindromatosis (CYLD), transcription factor RelB, regnase-1, roquin-1, and roquin-2. Auto-proteolysis of MALT1 has also been demonstrated. [16] Additionally, the fusion protein API2-MALT1 (resulting from a t(11;18)(q21;q21) translocation) cleaves NF-κB inducing kinase (NIK) and LIM domain and actin-binding protein 1 (LIMA1α). [5] The paracaspase domain cleaves peptide substrates after an arginine or a lysine. The domain may also require an uncharged amino acid (e.g., serine, proline, cysteine) after the arginine or lysine residue.
  • A20, CYLD, and RelB are negative regulators of NF-κB activation, thus proteolysis by MALT1 promotes NF-κB activation and NF-κB dependent gene expression. CYLD also negatively regulates c-Jun N-terminal kinase (JNK) signaling. [10] Both A20 and CYLD are deubiquitinases that remove polyubiquitin from proteins of NF-κB signaling pathway such as TRAF2, TRAF6, NEMO, MALT1, and TAK1. [8,10] RelB binds NF-κB subunits RelA and c-Rel, inhibiting transcription of their target genes. [11] The MALT1 fragment produced by auto-proteolysis retains MALT1 proteolysis activity, and cleavage of the Bcl10 binding domain promotes NF-κB activation. [16]
  • The MALT1 substrates regnase-1, roquin-1 and roquin-2 repress expression of multiple genes by post-transcriptional regulation. Regnase-1 regulates the decay of mRNA for several genes including IL-2, IL-6, c-Rel, and Ox40. [13] Roquins also bind mRNA and repress expression of transcription factors c-Rel, IRF4, IκBNS, and IκBζ, which regulate T-cell differentiation (e.g., Th17) and cytokine expression (e.g., IL-17). [12]
  • Substrates of API2-MALT1 include NIK and LIMA1α. API2 binding of NIK allows for cleavage of the kinase even at low cellular concentrations, which generates a NIK C-terminal fragment resistant to proteasomal degradation. [14] Sufficient levels of C-terminal fragment promote non-canonical NF-κB activation which leads to up-regulation of genes that enhance B-cell adhesion and apoptosis resistance. Similarly API2-MALT1 cleavage of LIMA1a produces fragments that lose the tumor suppressor function of LIMA1a and lymphocyte proliferation and adhesion. [15]
  • The proteolytic activity of MALT1 and API2-MALT1 is therefore critical in regulating the oncogenic properties of T- and B-cell lymphocytes. Different subtypes of diffuse large B-cell lymphoma (DLBCL) have different phenotypes for NF-κB activation pathways and NF-κB dependent gene expression. Activation of NF-κB by pathways involving MALT1 proteolytic activity is critical to the proliferation and survival of ABC-DLBCL cells. [18] The irreversible MALT1 inhibitor Z-VRPR-fmk has been demonstrated to reduce ABC-DLBCL viability. Genes known to be upregulated in ABC-DLBCL (e.g., FLIP, A1, A20, IL-6, IL-10) were shown to be down-regulated by MALT1 inhibition. [18]
  • Figure US20190389904A2-20191226-C00002
  • Phenothiazine derivatives (e.g., mepazine, thioridazine, and promazine) have been shown to reversible inhibit MALT1, and display anti-proliferative effects in MALT1-dependent B-cell lymphoma cells. [19] Additionally, MI-2 has been identified as an irreversible MALT1 inhibitor capable of inhibiting ABC-DLBCL cell grown in vitro and in a xenograft mouse model. [20] Additional analog of MI-2 are described in WIPO Application No. PCT/US2013/069141, which is incorporated herein by reference.
  • Figure US20190389904A2-20191226-C00003
  • Compounds provided herein may be inhibitors of MALT1. Also contemplated are compounds that inhibit MALT1 variants, such as fusion proteins API2-MALT1 or IGH-MALT 1. They may inhibit the proteolytic activity of MALT1 or a MALT1 fusion protein for cleavage of substrates including, but not limited to, A20, CYLD, Bcl10, RelB, regnase-1, roquin-1, NIK, LIMA1α, and MALT1. The inhibition of MALT1 proteolysis may suppress NF-κB activation, down-regulate expression of NF-κB dependent genes, regulate expression of cytokines (e.g., IL-2, IL-6, IL-8, IL-10), enhance lymphocyte adhesion, enhance lymphocyte apoptosis resistance, and/or enhance lymphocyte proliferation.
  • In one aspect, provide herein are compound of Formula (I):
  • Figure US20190389904A2-20191226-C00004
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, with variable positions defined herein.
  • In some embodiments, the compound of Formula (I) is a tripeptide (i.e., L1 is a bond). In some embodiments, the compound of Formula (I) is a tripeptide of formula R8—P3-P2-P1-fmk, wherein P3, P2, and P1 are amino acids, fmk is fluoromethylketone, and R8 is as described herein. In some embodiments, each of P3, P2, and P1 is a naturally occurring proteinogenic amino acid. In some embodiments, P1 is arginine. In some embodiments, P2 is proline, serine, or cysteine. In some embodiments, P3 is valine, alanine, isoleucine, or leucine. In some embodiments, P1 is arginine and P2 is proline.
  • In another aspect, provided herein are pharmaceutical compositions comprising a compound described herein, or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, and optionally a pharmaceutically acceptable excipient. In certain embodiments, the pharmaceutical compositions described herein include a therapeutically or prophylactically effective amount of a compound described herein. The pharmaceutical composition may be useful for treating a proliferative disease in a subject in need thereof, preventing a proliferative disease in a subject in need thereof, inhibiting the activity of a protein kinase in a subject, biological sample, tissue, or cell, and/or inducing apoptosis in a cell. The pharmaceutical composition may contain one or more additional pharmaceutical agents (e.g., anti-proliferative agents, anti-cancer agents).
  • In another aspect, the present invention provides methods for treating and/or preventing a proliferative disease comprising administering a compound described herein, or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, or a pharmaceutical composition thereof, to a subject in need thereof. In certain embodiments, the proliferative disease is cancer (e.g., leukemia, lymphoma). In some embodiments, the disease is a hematological malignancy. In some embodiments, the disease is diffuse large B-cell lymphoma. In some embodiments, the disease is MALT lymphoma. In certain embodiments, the disease is an autoimmune disease. In certain embodiments, the proliferative disease is benign neoplasm, a disease associated with angiogenesis, an inflammatory disease, or autoinflammatory disease.
  • In another aspect the present invention provides kits comprising a compound described herein, or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, or a pharmaceutical composition thereof; and instructions for using the compound, or pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, or the pharmaceutical composition.
  • In another aspect, provided herein are methods of inhibiting activation of nuclear factor κB (NF-κB) in a subject by administering to the subject a compound described herein, or inhibiting activation of nuclear factor κB (NF-κB) in a biological sample by contacting the biological sample with a compound described herein.
  • In another aspect, provided herein are methods of inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a subject by administering to the subject a compound described herein, or inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a biological sample by contacting the biological sample with a compound described herein. In certain embodiments, the method inhibits the protease activity of MALT1. In certain embodiments, the method inhibits the protease activity of a MALT1 fusion protein (e.g., API2-MALT1). In certain embodiments, the method inhibits the protease activity of MALT1 for cleavage of a peptide substrate. In certain embodiments, the peptide substrate is A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1α, or MALT1.
  • In another aspect, provided herein are methods of inhibiting cell proliferation in a subject by administering to the subject a compound described herein, or inhibiting cell proliferation in a biological sample by contacting the biological sample with a compound described herein. In some embodiments, cell proliferation is inhibited for T-cells. In some embodiments, cell proliferation is inhibited for B-cells. In some embodiments, cell proliferation is inhibited for T-cells and B-cells.
  • In another aspect, provided herein are methods of inducing apoptosis of a cell in a subject by administering to the subject a compound described herein, or inducing apoptosis of a cell in a biological sample by contacting the biological sample with a compound described herein. In some embodiments, cell is a tumor cell. In some embodiments, the cell is a lymphocyte. In some embodiments, the cell is a T-cell. In some embodiments, the cell is a B-cell.
  • In another aspect, provided herein are methods of inhibiting adhesion of a cell in a subject by administering to the subject a compound described herein, or inhibiting adhesion of a cell in a biological sample by contacting the biological sample with a compound described herein. In some embodiments, cell is a tumor cell. In some embodiments, the cell is a lymphocyte. In some embodiments, the cell is a T-cell. In some embodiments, the cell is a B-cell.
  • The details of certain embodiments of the invention are set forth in the Detailed Description of Certain Embodiments, as described below. Other features, objects, and advantages of the invention will be apparent from the Definitions, Examples, Figures, and Claims.
  • Definitions
  • Definitions of specific functional groups and chemical terms are described in more detail below. The chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in Organic Chemistry, Thomas Sorrell, University Science Books, Sausalito, 1999; Smith and March March's Advanced Organic Chemistry, 5th Edition, John Wiley & Sons, Inc., New York, 2001; Larock, Comprehensive Organic Transformations, VCH Publishers, Inc., New York, 1989; and Carruthers, Some Modern Methods of Organic Synthesis, 3rd Edition, Cambridge University Press, Cambridge, 1987.
  • Compounds described herein can comprise one or more asymmetric centers, and thus can exist in various stereoisomeric forms, e.g., enantiomers and/or diastereomers. For example, the compounds described herein can be in the form of an individual enantiomer, diastereomer or geometric isomer, or can be in the form of a mixture of stereoisomers, including racemic mixtures and mixtures enriched in one or more stereoisomer. Isomers can be isolated from mixtures by methods known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts; or preferred isomers can be prepared by asymmetric syntheses. See, for example, Jacques et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen et al., Tetrahedron 33:2725 (1977); Eliel, E. L. Stereochemistry of Carbon Compounds (McGraw-Hill, N Y, 1962); and Wilen, S. H. Tables of Resolving Agents and Optical Resolutions p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind. 1972). The invention additionally encompasses compounds as individual isomers substantially free of other isomers, and alternatively, as mixtures of various isomers.
  • In a formula,
    Figure US20190389904A2-20191226-P00001
    is a single bond where the stereochemistry of the moieties immediately attached thereto is not specified, - - - is absent or a single bond, and
    Figure US20190389904A2-20191226-P00002
    or
    Figure US20190389904A2-20191226-P00003
    is a single or double bond.
  • Unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, replacement of 19F with 18F, or the replacement of 12C with 13C or 14C are within the scope of the disclosure. Such compounds may be useful, for example, as analytical tools or probes in biological assays.
  • When a range of values is listed, it is intended to encompass each value and sub-range within the range. For example “C1-6 alkyl” is intended to encompass, C1, C2, C3, C4, C5, C6, C1-6, C1-5, C1-4, C1-3, C1-2, C2-6, C2-5, C2-4, C2-3, C3-6, C3-5, C3-4, C4-6, C4-5, and C5-6 alkyl.
  • The term “aliphatic” refers to alkyl, alkenyl, alkynyl, and carbocyclic groups. Likewise, the term “heteroaliphatic” refers to heteroalkyl, heteroalkenyl, heteroalkynyl, and heterocyclic groups.
  • The term “alkyl” refers to a radical of a straight-chain or branched saturated hydrocarbon group having from 1 to 10 carbon atoms (“C1-10 alkyl”). In some embodiments, an alkyl group has 1 to 9 carbon atoms (“C1-9 alkyl”). In some embodiments, an alkyl group has 1 to 8 carbon atoms (“C1-8 alkyl”). In some embodiments, an alkyl group has 1 to 7 carbon atoms (“C1-7 alkyl”). In some embodiments, an alkyl group has 1 to 6 carbon atoms (“C1-6 alkyl”). In some embodiments, an alkyl group has 1 to 5 carbon atoms (“C1-5 alkyl”). In some embodiments, an alkyl group has 1 to 4 carbon atoms (“C1-4 alkyl”). In some embodiments, an alkyl group has 1 to 3 carbon atoms (“C1-3 alkyl”). In some embodiments, an alkyl group has 1 to 2 carbon atoms (“C1-2 alkyl”). In some embodiments, an alkyl group has 1 carbon atom (“C1 alkyl”). In some embodiments, an alkyl group has 2 to 6 carbon atoms (“C2-6 alkyl”). Examples of C1-6 alkyl groups include methyl (C1), ethyl (C2), propyl (C3) (e.g., n-propyl, isopropyl), butyl (C4) (e.g., n-butyl, tert-butyl, sec-butyl, iso-butyl), pentyl (C5) (e.g., n-pentyl, 3-pentanyl, amyl, neopentyl, 3-methyl-2-butanyl, tertiary amyl), and hexyl (C6) (e.g., n-hexyl). Additional examples of alkyl groups include n-heptyl (C7), n-octyl (C8), and the like. Unless otherwise specified, each instance of an alkyl group is independently unsubstituted (an “unsubstituted alkyl”) or substituted (a “substituted alkyl”) with one or more substituents (e.g., halogen, such as F). In certain embodiments, the alkyl group is an unsubstituted C1-10 alkyl (such as unsubstituted C1-6 alkyl, e.g., —CH3 (Me), unsubstituted ethyl (Et), unsubstituted propyl (Pr, e.g., unsubstituted n-propyl (n-Pr), unsubstituted isopropyl (i-Pr)), unsubstituted butyl (Bu, e.g., unsubstituted n-butyl (n-Bu), unsubstituted tert-butyl (tert-Bu or t-Bu), unsubstituted sec-butyl (sec-Bu), unsubstituted isobutyl (i-Bu)). In certain embodiments, the alkyl group is a substituted C1-10 alkyl (such as substituted C1-6 alkyl, e.g., —CF3, Bn).
  • The term “haloalkyl” is a substituted alkyl group, wherein one or more of the hydrogen atoms are independently replaced by a halogen, e.g., fluoro, bromo, chloro, or iodo. In some embodiments, the haloalkyl moiety has 1 to 8 carbon atoms (“C1-8 haloalkyl”). In some embodiments, the haloalkyl moiety has 1 to 6 carbon atoms (“C1-6 haloalkyl”). In some embodiments, the haloalkyl moiety has 1 to 4 carbon atoms (“C1-4 haloalkyl”). In some embodiments, the haloalkyl moiety has 1 to 3 carbon atoms (“C1-3 haloalkyl”). In some embodiments, the haloalkyl moiety has 1 to 2 carbon atoms (“C1-2 haloalkyl”). Examples of haloalkyl groups include —CF3, —CF2CF3, —CF2CF2CF3, —CCl3, —CFCl2, —CF2Cl, and the like.
  • The term “heteroalkyl” refers to an alkyl group, which further includes at least one heteroatom (e.g., 1, 2, 3, or 4 heteroatoms) selected from oxygen, nitrogen, or sulfur within (i.e., inserted between adjacent carbon atoms of) and/or placed at one or more terminal position(S) of the parent chain. In certain embodiments, a heteroalkyl group refers to a saturated group having from 1 to 10 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC1-10 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 9 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC1-9 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 8 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC1-8 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 7 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC1-7 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 6 carbon atoms and 1 or more heteroatoms within the parent chain (“heteroC1-6 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 5 carbon atoms and 1 or 2 heteroatoms within the parent chain (“heteroC1-5 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 4 carbon atoms and 1 or 2 heteroatoms within the parent chain (“heteroC1-4 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 3 carbon atoms and 1 heteroatom within the parent chain (“heteroC1-3 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 to 2 carbon atoms and 1 heteroatom within the parent chain (“heteroC1-2 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 1 carbon atom and 1 heteroatom (“heteroC1 alkyl”). In some embodiments, a heteroalkyl group is a saturated group having 2 to 6 carbon atoms and 1 or 2 heteroatoms within the parent chain (“heteroC2-6 alkyl”). Unless otherwise specified, each instance of a heteroalkyl group is independently unsubstituted (an “unsubstituted heteroalkyl”) or substituted (a “substituted heteroalkyl”) with one or more substituents. In certain embodiments, the heteroalkyl group is an unsubstituted heteroC1-10 alkyl. In certain embodiments, the heteroalkyl group is a substituted heteroC1-10 alkyl.
  • The term “alkenyl” refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 10 carbon atoms and one or more carbon-carbon double bonds (e.g., 1, 2, 3, or 4 double bonds). In some embodiments, an alkenyl group has 2 to 9 carbon atoms (“C2-9 alkenyl”). In some embodiments, an alkenyl group has 2 to 8 carbon atoms (“C2-8 alkenyl”). In some embodiments, an alkenyl group has 2 to 7 carbon atoms (“C2-7 alkenyl”). In some embodiments, an alkenyl group has 2 to 6 carbon atoms (“C2-6 alkenyl”). In some embodiments, an alkenyl group has 2 to 5 carbon atoms (“C2-5 alkenyl”). In some embodiments, an alkenyl group has 2 to 4 carbon atoms (“C2-4 alkenyl”). In some embodiments, an alkenyl group has 2 to 3 carbon atoms (“C2-3 alkenyl”). In some embodiments, an alkenyl group has 2 carbon atoms (“C2 alkenyl”). The one or more carbon-carbon double bonds can be internal (such as in 2-butenyl) or terminal (such as in 1-butenyl). Examples of C2-4 alkenyl groups include ethenyl (C2), 1-propenyl (C3), 2-propenyl (C3), 1-butenyl (C4), 2-butenyl (C4), butadienyl (C4), and the like. Examples of C2-6 alkenyl groups include the aforementioned C2-4 alkenyl groups as well as pentenyl (C5), pentadienyl (C5), hexenyl (C6), and the like. Additional examples of alkenyl include heptenyl (C7), octenyl (C8), octatrienyl (C8), and the like. Unless otherwise specified, each instance of an alkenyl group is independently unsubstituted (an “unsubstituted alkenyl”) or substituted (a “substituted alkenyl”) with one or more substituents. In certain embodiments, the alkenyl group is an unsubstituted C2-10 alkenyl. In certain embodiments, the alkenyl group is a substituted C2-10 alkenyl. In an alkenyl group, a C═C double bond for which the stereochemistry is not specified (e.g., —H═CHCH3 or
  • Figure US20190389904A2-20191226-C00005
  • may be an (E)- or (Z)-double bond.
  • The term “heteroalkenyl” refers to an alkenyl group, which further includes at least one heteroatom (e.g., 1, 2, 3, or 4 heteroatoms) selected from oxygen, nitrogen, or sulfur within (i.e., inserted between adjacent carbon atoms of) and/or placed at one or more terminal position(S) of the parent chain. In certain embodiments, a heteroalkenyl group refers to a group having from 2 to 10 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC2-10 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 9 carbon atoms at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC2-9 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 8 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC2-8 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 7 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC2-7 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 6 carbon atoms, at least one double bond, and 1 or more heteroatoms within the parent chain (“heteroC2-6 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 5 carbon atoms, at least one double bond, and 1 or 2 heteroatoms within the parent chain (“heteroC2-5 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 4 carbon atoms, at least one double bond, and 1 or 2 heteroatoms within the parent chain (“heteroC2-4 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 3 carbon atoms, at least one double bond, and 1 heteroatom within the parent chain (“heteroC2-3 alkenyl”). In some embodiments, a heteroalkenyl group has 2 to 6 carbon atoms, at least one double bond, and 1 or 2 heteroatoms within the parent chain (“heteroC2-6 alkenyl”). Unless otherwise specified, each instance of a heteroalkenyl group is independently unsubstituted (an “unsubstituted heteroalkenyl”) or substituted (a “substituted heteroalkenyl”) with one or more substituents. In certain embodiments, the heteroalkenyl group is an unsubstituted heteroC2-10 alkenyl. In certain embodiments, the heteroalkenyl group is a substituted heteroC2-10 alkenyl.
  • The term “alkynyl” refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 10 carbon atoms and one or more carbon-carbon triple bonds (e.g., 1, 2, 3, or 4 triple bonds) (“C2-10 alkynyl”). In some embodiments, an alkynyl group has 2 to 9 carbon atoms (“C2-9 alkynyl”). In some embodiments, an alkynyl group has 2 to 8 carbon atoms (“C2-8 alkynyl”). In some embodiments, an alkynyl group has 2 to 7 carbon atoms (“C2-7 alkynyl”). In some embodiments, an alkynyl group has 2 to 6 carbon atoms (“C2-6 alkynyl”). In some embodiments, an alkynyl group has 2 to 5 carbon atoms (“C2-5 alkynyl”). In some embodiments, an alkynyl group has 2 to 4 carbon atoms (“C2-4 alkynyl”). In some embodiments, an alkynyl group has 2 to 3 carbon atoms (“C2-3 alkynyl”). In some embodiments, an alkynyl group has 2 carbon atoms (“C2 alkynyl”). The one or more carbon-carbon triple bonds can be internal (such as in 2-butynyl) or terminal (such as in 1-butynyl). Examples of C2-4 alkynyl groups include, without limitation, ethynyl (C2), 1-propynyl (C3), 2-propynyl (C3), 1-butynyl (C4), 2-butynyl (C4), and the like. Examples of C2-6 alkenyl groups include the aforementioned C2-4 alkynyl groups as well as pentynyl (C5), hexynyl (C6), and the like. Additional examples of alkynyl include heptynyl (C7), octynyl (C8), and the like. Unless otherwise specified, each instance of an alkynyl group is independently unsubstituted (an “unsubstituted alkynyl”) or substituted (a “substituted alkynyl”) with one or more substituents. In certain embodiments, the alkynyl group is an unsubstituted C2-10 alkynyl. In certain embodiments, the alkynyl group is a substituted C2-10 alkynyl.
  • The term “heteroalkynyl” refers to an alkynyl group, which further includes at least one heteroatom (e.g., 1, 2, 3, or 4 heteroatoms) selected from oxygen, nitrogen, or sulfur within (i.e., inserted between adjacent carbon atoms of) and/or placed at one or more terminal position(S) of the parent chain. In certain embodiments, a heteroalkynyl group refers to a group having from 2 to 10 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC2-10 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 9 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC2-9 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 8 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC2-8 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 7 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC2-7 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 6 carbon atoms, at least one triple bond, and 1 or more heteroatoms within the parent chain (“heteroC2-6 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 5 carbon atoms, at least one triple bond, and 1 or 2 heteroatoms within the parent chain (“heteroC2-5 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 4 carbon atoms, at least one triple bond, and 1 or 2 heteroatoms within the parent chain (“heteroC2-4 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 3 carbon atoms, at least one triple bond, and 1 heteroatom within the parent chain (“heteroC2-3 alkynyl”). In some embodiments, a heteroalkynyl group has 2 to 6 carbon atoms, at least one triple bond, and 1 or 2 heteroatoms within the parent chain (“heteroC2-6 alkynyl”). Unless otherwise specified, each instance of a heteroalkynyl group is independently unsubstituted (an “unsubstituted heteroalkynyl”) or substituted (a “substituted heteroalkynyl”) with one or more substituents. In certain embodiments, the heteroalkynyl group is an unsubstituted heteroC2-10 alkynyl. In certain embodiments, the heteroalkynyl group is a substituted heteroC2-10 alkynyl.
  • The term “carbocyclyl” or “carbocyclic” refers to a radical of a non-aromatic cyclic hydrocarbon group having from 3 to 14 ring carbon atoms (“C3-14 carbocyclyl”) and zero heteroatoms in the non-aromatic ring system. In some embodiments, a carbocyclyl group has 3 to 10 ring carbon atoms (“C3-10 carbocyclyl”). In some embodiments, a carbocyclyl group has 3 to 8 ring carbon atoms (“C3-8 carbocyclyl”). In some embodiments, a carbocyclyl group has 3 to 7 ring carbon atoms (“C3-7 carbocyclyl”). In some embodiments, a carbocyclyl group has 3 to 6 ring carbon atoms (“C3-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 4 to 6 ring carbon atoms (“C4-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 5 to 6 ring carbon atoms (“C5-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 5 to 10 ring carbon atoms (“C5-10 carbocyclyl”). Exemplary C3-6 carbocyclyl groups include, without limitation, cyclopropyl (C3), cyclopropenyl (C3), cyclobutyl (C4), cyclobutenyl (C4), cyclopentyl (C5), cyclopentenyl (C5), cyclohexyl (C6), cyclohexenyl (C6), cyclohexadienyl (C6), and the like. Exemplary C3-8 carbocyclyl groups include, without limitation, the aforementioned C3-6 carbocyclyl groups as well as cycloheptyl (C7), cycloheptenyl (C7), cycloheptadienyl (C7), cycloheptatrienyl (C7), cyclooctyl (C8), cyclooctenyl (C8), bicyclo[2.2.1]heptanyl (C7), bicyclo[2.2.2]octanyl (C8), and the like. Exemplary C3-10 carbocyclyl groups include, without limitation, the aforementioned C3-8 carbocyclyl groups as well as cyclononyl (C9), cyclononenyl (C9), cyclodecyl (C10), cyclodecenyl (C10), octahydro-1H-indenyl (C9), decahydronaphthalenyl (C10), spiro[4.5]decanyl (C10), and the like. As the foregoing examples illustrate, in certain embodiments, the carbocyclyl group is either monocyclic (“monocyclic carbocyclyl”) or polycyclic (e.g., containing a fused, bridged or spiro ring system such as a bicyclic system (“bicyclic carbocyclyl”) or tricyclic system (“tricyclic carbocyclyl”)) and can be saturated or can contain one or more carbon-carbon double or triple bonds. “Carbocyclyl” also includes ring systems wherein the carbocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups wherein the point of attachment is on the carbocyclyl ring, and in such instances, the number of carbons continue to designate the number of carbons in the carbocyclic ring system. Unless otherwise specified, each instance of a carbocyclyl group is independently unsubstituted (an “unsubstituted carbocyclyl”) or substituted (a “substituted carbocyclyl”) with one or more substituents. In certain embodiments, the carbocyclyl group is an unsubstituted C3-14 carbocyclyl. In certain embodiments, the carbocyclyl group is a substituted C3-14 carbocyclyl.
  • In some embodiments, “carbocyclyl” is a monocyclic, saturated carbocyclyl group having from 3 to 14 ring carbon atoms (“C3-14 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 10 ring carbon atoms (“C3-10 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 8 ring carbon atoms (“C3-8 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 6 ring carbon atoms (“C3-6 cycloalkyl”). In some embodiments, a cycloalkyl group has 4 to 6 ring carbon atoms (“C4-6 cycloalkyl”). In some embodiments, a cycloalkyl group has 5 to 6 ring carbon atoms (“C5-6 cycloalkyl”). In some embodiments, a cycloalkyl group has 5 to 10 ring carbon atoms (“C5-10 cycloalkyl”). Examples of C5-6 cycloalkyl groups include cyclopentyl (C5) and cyclohexyl (C5). Examples of C3-6 cycloalkyl groups include the aforementioned C5-6 cycloalkyl groups as well as cyclopropyl (C3) and cyclobutyl (C4). Examples of C3-8 cycloalkyl groups include the aforementioned C3-6 cycloalkyl groups as well as cycloheptyl (C7) and cyclooctyl (C8). Unless otherwise specified, each instance of a cycloalkyl group is independently unsubstituted (an “unsubstituted cycloalkyl”) or substituted (a “substituted cycloalkyl”) with one or more substituents. In certain embodiments, the cycloalkyl group is an unsubstituted C3-14 cycloalkyl. In certain embodiments, the cycloalkyl group is a substituted C3-14 cycloalkyl. In certain embodiments, the carbocyclyl includes 0, 1, or 2 C═C double bonds in the carbocyclic ring system, as valency permits.
  • The term “heterocyclyl” or “heterocyclic” refers to a radical of a 3- to 14-membered non-aromatic ring system having ring carbon atoms and 1 to 4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“3-14 membered heterocyclyl”). In heterocyclyl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits. A heterocyclyl group can either be monocyclic (“monocyclic heterocyclyl”) or polycyclic (e.g., a fused, bridged or spiro ring system such as a bicyclic system (“bicyclic heterocyclyl”) or tricyclic system (“tricyclic heterocyclyl”)), and can be saturated or can contain one or more carbon-carbon double or triple bonds. Heterocyclyl polycyclic ring systems can include one or more heteroatoms in one or both rings. “Heterocyclyl” also includes ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more carbocyclyl groups wherein the point of attachment is either on the carbocyclyl or heterocyclyl ring, or ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups, wherein the point of attachment is on the heterocyclyl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heterocyclyl ring system. Unless otherwise specified, each instance of heterocyclyl is independently unsubstituted (an “unsubstituted heterocyclyl”) or substituted (a “substituted heterocyclyl”) with one or more substituents. In certain embodiments, the heterocyclyl group is an unsubstituted 3-14 membered heterocyclyl. In certain embodiments, the heterocyclyl group is a substituted 3-14 membered heterocyclyl. In certain embodiments, the heterocyclyl is substituted or unsubstituted, 3-6 membered, monocyclic heterocyclyl, wherein 1, 2, or 3 atoms in the heterocyclic ring system are independently oxygen, nitrogen, or sulfur, as valency permits.
  • In some embodiments, a heterocyclyl group is a 5-10 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-10 membered heterocyclyl”). In some embodiments, a heterocyclyl group is a 5-8 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-8 membered heterocyclyl”). In some embodiments, a heterocyclyl group is a 5-6 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-6 membered heterocyclyl”). In some embodiments, the 5-6 membered heterocyclyl has 1-3 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5-6 membered heterocyclyl has 1-2 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5-6 membered heterocyclyl has 1 ring heteroatom selected from nitrogen, oxygen, and sulfur.
  • Exemplary 3-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azirdinyl, oxiranyl, and thiiranyl. Exemplary 4-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azetidinyl, oxetanyl, and thietanyl. Exemplary 5-membered heterocyclyl groups containing 1 heteroatom include, without limitation, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothiophenyl, dihydrothiophenyl, pyrrolidinyl, dihydropyrrolyl, and pyrrolyl-2,5-dione. Exemplary 5-membered heterocyclyl groups containing 2 heteroatoms include, without limitation, dioxolanyl, oxathiolanyl and dithiolanyl. Exemplary 5-membered heterocyclyl groups containing 3 heteroatoms include, without limitation, triazolinyl, oxadiazolinyl, and thiadiazolinyl. Exemplary 6-membered heterocyclyl groups containing 1 heteroatom include, without limitation, piperidinyl, tetrahydropyranyl, dihydropyridinyl, and thianyl. Exemplary 6-membered heterocyclyl groups containing 2 heteroatoms include, without limitation, piperazinyl, morpholinyl, dithianyl, and dioxanyl. Exemplary 6-membered heterocyclyl groups containing 3 heteroatoms include, without limitation, triazinanyl (triazinyl). Exemplary 7-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azepanyl, oxepanyl and thiepanyl. Exemplary 8-membered heterocyclyl groups containing 1 heteroatom include, without limitation, azocanyl, oxecanyl and thiocanyl. Exemplary bicyclic heterocyclyl groups include, without limitation, indolinyl, isoindolinyl, dihydrobenzofuranyl, dihydrobenzothienyl, tetrahydrobenzothienyl, tetrahydrobenzofuranyl, tetrahydroindolyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, decahydroisoquinolinyl, octahydrochromenyl, octahydroisochromenyl, decahydronaphthyridinyl, decahydro-1,8-naphthyridinyl, octahydropyrrolo[3,2-b]pyrrole, indolinyl, phthalimidyl, naphthalimidyl, chromanyl, chromenyl, 1H-benzo[e][1,4]diazepinyl, 1,4,5,7-tetrahydropyrano[3,4-b]pyrrolyl, 5,6-dihydro-4H-furo[3,2-b]pyrrolyl, 6,7-dihydro-5H-furo[3,2-b]pyranyl, 5,7-dihydro-4H-thieno[2,3-c]pyranyl, 2,3-dihydro-1H-pyrrolo[2,3-b]pyridinyl, 2,3-dihydrofuro[2,3-b]pyridinyl, 4,5,6,7-tetrahydro-1H-pyrrolo[2,3-b]pyridinyl, 4,5,6,7-tetrahydrofuro[3,2-c]pyridinyl, 4,5,6,7-tetrahydrothieno[3,2-b]pyridinyl, 1,2,3,4-tetrahydro-1,6-naphthyridinyl, and the like.
  • The term “aryl” refers to a radical of a monocyclic or polycyclic (e.g., bicyclic or tricyclic) 4n+2 aromatic ring system (e.g., having 6, 10, or 14 t electrons shared in a cyclic array) having 6-14 ring carbon atoms and zero heteroatoms provided in the aromatic ring system (“C6-14 aryl”). In some embodiments, an aryl group has 6 ring carbon atoms (“C6 aryl”; e.g., phenyl). In some embodiments, an aryl group has 10 ring carbon atoms (“C10 aryl”; e.g., naphthyl such as 1-naphthyl and 2-naphthyl). In some embodiments, an aryl group has 14 ring carbon atoms (“C14 aryl”; e.g., anthracyl). “Aryl” also includes ring systems wherein the aryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the radical or point of attachment is on the aryl ring, and in such instances, the number of carbon atoms continue to designate the number of carbon atoms in the aryl ring system. Unless otherwise specified, each instance of an aryl group is independently unsubstituted (an “unsubstituted aryl”) or substituted (a “substituted aryl”) with one or more substituents. In certain embodiments, the aryl group is an unsubstituted C6-14 aryl. In certain embodiments, the aryl group is a substituted C6-14 aryl.
  • “Aralkyl” is a subset of “alkyl” and refers to an alkyl group substituted by an aryl group, wherein the point of attachment is on the alkyl moiety.
  • The term “heteroaryl” refers to a radical of a 5-14 membered monocyclic or polycyclic (e.g., bicyclic, tricyclic) 4n+2 aromatic ring system (e.g., having 6, 10, or 14π electrons shared in a cyclic array) having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-14 membered heteroaryl”). In heteroaryl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits. Heteroaryl polycyclic ring systems can include one or more heteroatoms in one or both rings. “Heteroaryl” includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the point of attachment is on the heteroaryl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heteroaryl ring system. “Heteroaryl” also includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more aryl groups wherein the point of attachment is either on the aryl or heteroaryl ring, and in such instances, the number of ring members designates the number of ring members in the fused polycyclic (aryl/heteroaryl) ring system. Polycyclic heteroaryl groups wherein one ring does not contain a heteroatom (e.g., indolyl, quinolinyl, carbazolyl, and the like) the point of attachment can be on either ring, i.e., either the ring bearing a heteroatom (e.g., 2-indolyl) or the ring that does not contain a heteroatom (e.g., 5-indolyl). In certain embodiments, the heteroaryl is substituted or unsubstituted, 5-6 membered, monocyclic heteroaryl. In certain embodiments, the heteroaryl is substituted or unsubstituted, 9-10 membered, bicyclic heteroaryl.
  • In some embodiments, a heteroaryl group is a 5-10 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-10 membered heteroaryl”). In some embodiments, a heteroaryl group is a 5-8 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-8 membered heteroaryl”). In some embodiments, a heteroaryl group is a 5-6 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-6 membered heteroaryl”). In some embodiments, the 5-6 membered heteroaryl has 1-3 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5-6 membered heteroaryl has 1-2 ring heteroatoms selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5-6 membered heteroaryl has 1 ring heteroatom selected from nitrogen, oxygen, and sulfur. Unless otherwise specified, each instance of a heteroaryl group is independently unsubstituted (an “unsubstituted heteroaryl”) or substituted (a “substituted heteroaryl”) with one or more substituents. In certain embodiments, the heteroaryl group is an unsubstituted 5-14 membered heteroaryl. In certain embodiments, the heteroaryl group is a substituted 5-14 membered heteroaryl.
  • Exemplary 5-membered heteroaryl groups containing 1 heteroatom include, without limitation, pyrrolyl, furanyl, and thiophenyl. Exemplary 5-membered heteroaryl groups containing 2 heteroatoms include, without limitation, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, and isothiazolyl. Exemplary 5-membered heteroaryl groups containing 3 heteroatoms include, without limitation, triazolyl, oxadiazolyl, and thiadiazolyl. Exemplary 5-membered heteroaryl groups containing 4 heteroatoms include, without limitation, tetrazolyl. Exemplary 6-membered heteroaryl groups containing 1 heteroatom include, without limitation, pyridinyl. Exemplary 6-membered heteroaryl groups containing 2 heteroatoms include, without limitation, pyridazinyl, pyrimidinyl, and pyrazinyl. Exemplary 6-membered heteroaryl groups containing 3 or 4 heteroatoms include, without limitation, triazinyl and tetrazinyl, respectively. Exemplary 7-membered heteroaryl groups containing 1 heteroatom include, without limitation, azepinyl, oxepinyl, and thiepinyl. Exemplary 5,6-bicyclic heteroaryl groups include, without limitation, indolyl, isoindolyl, indazolyl, benzotriazolyl, benzothiophenyl, isobenzothiophenyl, benzofuranyl, benzoisofuranyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzoxadiazolyl, benzthiazolyl, benzisothiazolyl, benzthiadiazolyl, indolizinyl, and purinyl. Exemplary 6,6-bicyclic heteroaryl groups include, without limitation, naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, cinnolinyl, quinoxalinyl, phthalazinyl, and quinazolinyl. Exemplary tricyclic heteroaryl groups include, without limitation, phenanthridinyl, dibenzofuranyl, carbazolyl, acridinyl, phenothiazinyl, phenoxazinyl and phenazinyl.
  • “Heteroaralkyl” is a subset of “alkyl” and refers to an alkyl group substituted by a heteroaryl group, wherein the point of attachment is on the alkyl moiety.
  • The term “unsaturated bond” refers to a double or triple bond.
  • The term “unsaturated” or “partially unsaturated” refers to a moiety that includes at least one double or triple bond.
  • The term “saturated” refers to a moiety that does not contain a double or triple bond, i.e., the moiety only contains single bonds.
  • Affixing the suffix “-ene” to a group indicates the group is a divalent moiety, e.g., alkylene is the divalent moiety of alkyl, alkenylene is the divalent moiety of alkenyl, alkynylene is the divalent moiety of alkynyl, heteroalkylene is the divalent moiety of heteroalkyl, heteroalkenylene is the divalent moiety of heteroalkenyl, heteroalkynylene is the divalent moiety of heteroalkynyl, carbocyclylene is the divalent moiety of carbocyclyl, heterocyclylene is the divalent moiety of heterocyclyl, arylene is the divalent moiety of aryl, and heteroarylene is the divalent moiety of heteroaryl.
  • A group is optionally substituted unless expressly provided otherwise. The term “optionally substituted” refers to being substituted or unsubstituted. In certain embodiments, alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl groups are optionally substituted. “Optionally substituted” refers to a group which may be substituted or unsubstituted (e.g., “substituted” or “unsubstituted” alkyl, “substituted” or “unsubstituted” alkenyl, “substituted” or “unsubstituted” alkynyl, “substituted” or “unsubstituted” heteroalkyl, “substituted” or “unsubstituted” heteroalkenyl, “substituted” or “unsubstituted” heteroalkynyl, “substituted” or “unsubstituted” carbocyclyl, “substituted” or “unsubstituted” heterocyclyl, “substituted” or “unsubstituted” aryl or “substituted” or “unsubstituted” heteroaryl group). In general, the term “substituted” means that at least one hydrogen present on a group is replaced with a permissible substituent, e.g., a substituent which upon substitution results in a stable compound, e.g., a compound which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, or other reaction. Unless otherwise indicated, a “substituted” group has a substituent at one or more substitutable positions of the group, and when more than one position in any given structure is substituted, the substituent is either the same or different at each position. The term “substituted” is contemplated to include substitution with all permissible substituents of organic compounds, and includes any of the substituents described herein that results in the formation of a stable compound. The present invention contemplates any and all such combinations in order to arrive at a stable compound. For purposes of this invention, heteroatoms such as nitrogen may have hydrogen substituents and/or any suitable substituent as described herein which satisfy the valencies of the heteroatoms and results in the formation of a stable moiety. The invention is not intended to be limited in any manner by the exemplary substituents described herein.
  • Exemplary carbon atom substituents include, but are not limited to, halogen, —CN, —NO2, —N3, —SO2H, —SO3H, —OH, —ORaa, —ON(Rbb)2, —N(Rbb)2, —N(Rbb)3 +X, —N(ORcc)Rbb, —SH, —SRaa, —SSRcc, —C(═O)Raa, —CO2H, —CHO, —C(ORcc)2, —CO2Raa, —OC(═O)Raa, —OCO2Raa, —C(═O)N(Rbb)2, —OC(═O)N(Rbb)2, —NRbbC(═O)Raa, —NRbbCO2Raa, —NRbbC(═O)N(Rbb)2, —C(═NRbb)Raa, —C(═NRbb)ORaa, —OC(═NRbb)Raa, —OC(═NRbb)ORaa, —C(═NRbb)N(Rbb)2, —OC(═NRbb)N(Rbb)2, —NRbbC(═NRbb)N(Rbb)2, —C(═O)NRbbSO2Raa, —NRbbSO2Raa, —SO2N(Rbb)2, —SO2Raa, —SO2ORaa, —OSO2Raa, —S(═O)Raa, —OS(═O)Raa, —Si(Raa)3, —OSi(Raa)3—C(═S)N(Rbb)2, —C(═O)SRaa, —C(═S)SRaa, —SC(═S)SRaa, —SC(═O)SRaa, —OC(═O)SRaa, —SC(═O)ORaa, —SC(═O)Raa, —P(═O)(Raa)2, —P(═O)(ORcc)2, —OP(═O)(Raa)2, —OP(═O)(ORcc)2, —P(═O)(N(Rbb)2)2, —OP(═O)(N(Rbb)2)2, —NRbbP(═O)(Raa)2, —NRbbP(═O)(ORcc)2, —NRbbP(═O)(N(Rbb)2)2, —P(Rcc)2, —P(ORcc)2, —P(Rcc)3 +X, —P(ORcc)3 +X, —P(Rcc)4, —P(ORcc)4, —OP(Rcc)2, —OP(Rcc)3 +X, —OP(ORcc)2, —OP(ORcc)3 +X, —OP(Rcc)4, —OP(ORcc)4, —B(Raa)2, —B(ORcc)2, —BRaa(ORcc), C1-10 alkyl, C1-10 perhaloalkyl, C2-10 alkenyl, C2-10 alkynyl, heteroC1-10 alkyl, heteroC2-10 alkenyl, heteroC2-10 alkynyl, C3-10 carbocyclyl, 3-14 membered heterocyclyl, C6-14 aryl, and 5-14 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rdd groups; wherein X is a counterion;
  • or two geminal hydrogens on a carbon atom are replaced with the group ═O, ═S, ═NN(Rbb)2, ═NNRbbC(═O)Raa, ═NNRbbC(═O)ORaa, ═NNRbbS(═O)2Raa, ═NRbb, or ═NORcc;
  • each instance of Raa is, independently, selected from C1-10 alkyl, C1-10 perhaloalkyl, C2-10 alkenyl, C2-10 alkynyl, heteroC1-10 alkyl, heteroC2-10alkenyl, heteroC2-10alkynyl, C3-10 carbocyclyl, 3-14 membered heterocyclyl, C6-14 aryl, and 5-14 membered heteroaryl, or two Raa groups are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rdd groups;
  • each instance of Rbb is, independently, selected from hydrogen, —OH, —ORaa, —N(Rcc)2, —CN, —C(═O)Raa, —C(═O)N(Rcc)2, —CO2Raa, —SO2Raa, —C(═NRcc)ORaa, —C(═NRcc)N(Rcc)2, —SO2N(Rcc)2, —SO2Raa, —SO2ORaa, —SORaa, —C(═S)N(Rcc)2, —C(═O)SRcc, —C(═S)SRcc, —P(═O)(Raa)2, —P(═O)(ORcc)2, —P(═O)(N(Rcc)2)2, C1-10 alkyl, C1-10 perhaloalkyl, C2-10 alkenyl, C2-10 alkynyl, heteroC1-10alkyl, heteroC2-10alkenyl, heteroC2-10alkynyl, C3-10 carbocyclyl, 3-14 membered heterocyclyl, C6-14 aryl, and 5-14 membered heteroaryl, or two Rbb groups are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rdd groups; wherein X is a counterion;
  • each instance of Rcc is, independently, selected from hydrogen, C1-10 alkyl, C1-10 perhaloalkyl, C2-10 alkenyl, C2-10 alkynyl, heteroC1-10 alkyl, heteroC2-10 alkenyl, heteroC2-10 alkynyl, C3-10 carbocyclyl, 3-14 membered heterocyclyl, C6-14 aryl, and 5-14 membered heteroaryl, or two Rcc groups are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rdd groups;
  • each instance of Rdd is, independently, selected from halogen, —CN, —NO2, —N3, —SO2H, —SO3H, —OH, —ORee, —ON(Rff)2, —N(Rff)2, —N(Rff)3 +X, —N(ORee)Rff, —SH, —SRee, —SSRee, —C(═O)Ree, —CO2H, —CO2Ree, —OC(═O)Ree, —OCO2Ree, —C(═O)N(Rff)2, —OC(═O)N(R)2, —NRffC(═O)Ree, —NRffCO2Ree, —NRffC(═O)N(Rff)2, —C(═NR)ORee, —OC(═NRff)Ree, —OC(═NRff)ORee, —C(═NRff)N(Rff)2, —OC(═NRff)N(Rff)2, —NRffC(═NRff)N(Rff)2, —NRffSO2Ree, —SO2N(Rff)2, —SO2Ree, —SO2ORee, —OSO2Ree, —S(═O)Ree, —Si(Ree)3, —OSi(Ree)3, —C(═S)N(Rff)2, —C(═O)SRee, —C(═S)SRee, —SC(═S)SRee, —P(═O)(ORee)2, —P(═O)(Ree)2, —OP(═O)(Ree)2, —OP(═O)(ORee)2, C1-6 alkyl, C1-6 perhaloalkyl, C2-6 alkenyl, C2-6 alkynyl, heteroC1-6alkyl, heteroC2-6alkenyl, heteroC2-6alkynyl, C3-10 carbocyclyl, 3-10 membered heterocyclyl, C6-10 aryl, 5-10 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rgg groups, or two geminal Rdd substituents can be joined to form ═O or ═S; wherein X is a counterion;
  • each instance of Ree is, independently, selected from C1-6 alkyl, C1-6 perhaloalkyl, C2-6 alkenyl, C2-6 alkynyl, heteroC1-6 alkyl, heteroC2-6alkenyl, heteroC2-6 alkynyl, C3-10 carbocyclyl, C6-10 aryl, 3-10 membered heterocyclyl, and 3-10 membered heteroaryl, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rgg groups;
  • each instance of Rff is, independently, selected from hydrogen, C1-6 alkyl, C1-6 perhaloalkyl, C2-6 alkenyl, C2-6 alkynyl, heteroC1-6alkyl, heteroC2-6alkenyl, heteroC2-6alkynyl, C3-10 carbocyclyl, 3-10 membered heterocyclyl, C6-10 aryl and 5-10 membered heteroaryl, or two Rff groups are joined to form a 3-10 membered heterocyclyl or 5-10 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rgg groups; and
  • each instance of Rgg is, independently, halogen, —CN, —NO2, —N3, —SO2H, —SO3H, —OH, —OC1-6 alkyl, —ON(C1-6 alkyl)2, —N(C1-6 alkyl)2, —N(C1-6 alkyl)3 +X, —NH(C1-6 alkyl)2 +X, —NH2(C1-6 alkyl)+X, —NH3 +X, —N(OC1-6 alkyl)(C1-6 alkyl), —N(OH)(C1-6 alkyl), —NH(OH), —SH, —SC1-6 alkyl, —SS(C1-6 alkyl), —C(═O)(C1-6 alkyl), —CO2H, —CO2(C1-6 alkyl), —OC(═O)(C1-6 alkyl), —OCO2(C1-6 alkyl), —C(═O)NH2, —C(═O)N(C1-6 alkyl)2, —OC(═O)NH(C1-6 alkyl), —NHC(═O)(C1-6 alkyl), —N(C1-6 alkyl)C(═O)(C1-6 alkyl), —NHCO2(C1-6 alkyl), —NHC(═O)N(C1-6 alkyl)2, —NHC(═O)NH(C1-6 alkyl), —NHC(═O)NH2, —C(═NH)O(C1-6 alkyl), —OC(═NH)(C1-6 alkyl), —OC(═NH)OC1-6 alkyl, —C(═NH)N(C1-6 alkyl)2, —C(═NH)NH(C1-6 alkyl), —C(═NH)NH2, —OC(═NH)N(C1-6 alkyl)2, —OC(NH)NH(C1-6 alkyl), —OC(NH)NH2, —NHC(NH)N(C1-6 alkyl)2, —NHC(═NH)NH2, —NHSO2(C1-6 alkyl), —SO2N(C1-6 alkyl)2, —SO2NH(C1-6 alkyl), —SO2NH2, —SO2C1-6 alkyl, —SO2OC1-6 alkyl, —OSO2C1-6 alkyl, —SOC1-6 alkyl, —Si(C1-6 alkyl)3, —OSi(C1-6 alkyl)3-C(═S)N(C1-6 alkyl)2, C(═S)NH(C1-6 alkyl), C(═S)NH2, —C(═O)S(C1-6 alkyl), —C(═S)SC1-6 alkyl, —SC(═S)SC1-6 alkyl, —P(═O)(OC1-6 alkyl)2, —P(═O)(C1-6 alkyl)2, —OP(═O)(C1-6 alkyl)2, —OP(═O)(OC1-6 alkyl)2, C1-6 alkyl, C1-6 perhaloalkyl, C2-6 alkenyl, C2-6 alkynyl, heteroC1-6alkyl, heteroC2-6alkenyl, heteroC2-6alkynyl, C3-10 carbocyclyl, C6-10 aryl, 3-10 membered heterocyclyl, 5-10 membered heteroaryl; or two geminal Rgg substituents can be joined to form ═O or ═S; wherein X is a counterion.
  • In certain embodiments, the carbon atom substituents are independently halogen, substituted or unsubstituted C1-6 alkyl, —ORaa, —SRaa, —N(Rbb)2, —CN, —SCN, —NO2, —C(═O)Raa, —CO2Raa, —C(═O)N(Rbb)2, —OC(═O)Raa, —OCO2Raa, —OC(═O)N(Rbb)2, —NRbbC(═O)Raa, —NRbbCO2Raa, or —NRbbC(═O)N(Rbb)2. In certain embodiments, the carbon atom substituents are independently halogen, substituted or unsubstituted C1-6 alkyl, —ORaa, —SRaa, —N(Rbb)2, —CN, —SCN, or —NO2.
  • The term “halo” or “halogen” refers to fluorine (fluoro, —F), chlorine (chloro, —Cl), bromine (bromo, —Br), or iodine (iodo, —I).
  • The term “hydroxyl” or “hydroxy” refers to the group —OH. The term “substituted hydroxyl” or “substituted hydroxyl,” by extension, refers to a hydroxyl group wherein the oxygen atom directly attached to the parent molecule is substituted with a group other than hydrogen, and includes groups selected from —ORaa, —ON(Rbb)2, —OC(═O)SRaa, —OC(═O)Raa, —OCO2Raa, —OC(═O)N(Rbb)2, —OC(═NRbb)Raa, —OC(═NRbb)ORaa, —OC(═NRbb)N(Rbb)2, —OS(═O)Raa, —OSO2Raa, —OSi(Raa)3, —OP(Rcc)2, —OP(Rcc)3 +X, —OP(ORcc)2, —OP(ORcc)3 +X, —OP(═O)(Raa)2, —OP(═O)(ORcc)2, and —OP(═O)(N(Rbb))2, wherein X, Raa, Rbb, and Rcc are as defined herein.
  • The term “amino” refers to the group —NH2. The term “substituted amino,” by extension, refers to a monosubstituted amino, a disubstituted amino, or a trisubstituted amino. In certain embodiments, the “substituted amino” is a monosubstituted amino or a disubstituted amino group.
  • The term “monosubstituted amino” refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with one hydrogen and one group other than hydrogen, and includes groups selected from —NH(Rbb), —NHC(═O)Raa, —NHCO2Raa, —NHC(═O)N(Rbb)2, —NHC(═NRbb)N(Rbb)2, —NHSO2Raa, —NHP(═O)(ORcc)2, and —NHP(═O)(N(Rbb)2)2, wherein Raa, Rbb and Rcc are as defined herein, and wherein Rbb of the group —NH(Rbb) is not hydrogen.
  • The term “disubstituted amino” refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with two groups other than hydrogen, and includes groups selected from —N(Rbb)2, —NRbb C(═O)Raa, —NRbbCO2Raa, —NRbbC(═O)N(Rbb)2, —NRbbC(═NRbb)N(Rbb)2, —NRbbSO2Raa, —NRbbP(═O)(ORcc)2, and —NRbbP(═O)(N(Rbb)2)2, wherein Raa, Rbb, and Rcc are as defined herein, with the proviso that the nitrogen atom directly attached to the parent molecule is not substituted with hydrogen.
  • The term “trisubstituted amino” refers to an amino group wherein the nitrogen atom directly attached to the parent molecule is substituted with three groups, and includes groups selected from —N(Rbb)3 and —N(Rbb)3 +X, wherein Rbb and X are as defined herein.
  • The term “sulfonyl” refers to a group selected from —SO2N(Rbb)2, —SO2Raa, and —SO2ORaa, wherein Raa and Rbb are as defined herein.
  • The term “acyl” refers to a group having the general formula —C(═O)RX1, —C(═O)ORX1, —C(═O)—O—C(═O)RX1, —C(═O)SRX1, —C(═O)N(RX1)2, —C(═S)RX1, —C(═S)N(RX1)2, and —C(═S)S(RX1), —C(═NRX1)RX1, —C(═NRX1)ORX1, —C(═NRX1)SRX1, and —C(═NRX1)N(RX1)2, wherein RX1 is hydrogen; halogen; substituted or unsubstituted hydroxyl; substituted or unsubstituted thiol; substituted or unsubstituted amino; substituted or unsubstituted acyl, cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched alkyl; cyclic or acyclic, substituted or unsubstituted, branched or unbranched alkenyl; substituted or unsubstituted alkynyl; substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, aliphaticoxy, heteroaliphaticoxy, alkyloxy, heteroalkyloxy, aryloxy, heteroaryloxy, aliphaticthioxy, heteroaliphaticthioxy, alkylthioxy, heteroalkylthioxy, arylthioxy, heteroarylthioxy, mono- or di-aliphaticamino, mono- or di-heteroaliphaticamino, mono- or di-alkylamino, mono- or di-heteroalkylamino, mono- or di-arylamino, or mono- or di-heteroarylamino; or two RX1 groups taken together form a 5- to 6-membered heterocyclic ring. Exemplary acyl groups include aldehydes (—CHO), carboxylic acids (—CO2H), ketones, acyl halides, esters, amides, imines, carbonates, carbamates, and ureas. Acyl substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety (e.g., aliphatic, alkyl, alkenyl, alkynyl, heteroaliphatic, heterocyclic, aryl, heteroaryl, acyl, oxo, imino, thiooxo, cyano, isocyano, amino, azido, nitro, hydroxyl, thiol, halo, aliphaticamino, heteroaliphaticamino, alkylamino, heteroalkylamino, arylamino, heteroarylamino, alkylaryl, arylalkyl, aliphaticoxy, heteroaliphaticoxy, alkyloxy, heteroalkyloxy, aryloxy, heteroaryloxy, aliphaticthioxy, heteroaliphaticthioxy, alkylthioxy, heteroalkylthioxy, arylthioxy, heteroarylthioxy, acyloxy, and the like, each of which may or may not be further substituted).
  • The term “carbonyl” refers a group wherein the carbon directly attached to the parent molecule is sp2 hybridized, and is substituted with an oxygen, nitrogen or sulfur atom, e.g., a group selected from ketones (—C(═O)Raa), carboxylic acids (—CO2H), aldehydes (—CHO), esters (—CO2Raa, —C(═O)SRaa), and amides (—C(═O)N(Rbb)2, —C(═O)NRbbSO2Raa, —C(═S)N(Rbb)2), wherein Raa and Rbb are as defined herein.
  • The term “oxo” refers to the group ═O, and the term “thiooxo” refers to the group ═S.
  • Nitrogen atoms can be substituted or unsubstituted as valency permits, and include primary, secondary, tertiary, and quaternary nitrogen atoms. Exemplary nitrogen atom substituents include, but are not limited to, hydrogen, —OH, —ORaa, —N(Rcc)2, —CN, —C(═O)Raa, —C(═O)N(Rcc)2, —CO2Raa, —SO2Raa, —C(═NRbb)Raa, —C(═NRcc)ORaa, —C(═NRcc)N(Rcc)2, —SO2N(Rcc)2, —SO2Rcc, —SO2ORaa, —SORaa, —C(═S)N(Rcc)2, —C(═O)SRcc, —C(═S)SRcc, —P(═O)(ORcc)2, —P(═O)(Raa)2, —P(═O)(N(Rcc)2)2, C1-10 alkyl, C1-10 perhaloalkyl, C2-10 alkenyl, C2-10 alkynyl, heteroC1-10alkyl, heteroC2-10alkenyl, heteroC2-10alkynyl, C3-10 carbocyclyl, 3-14 membered heterocyclyl, C6-14 aryl, and 5-14 membered heteroaryl, or two Rcc groups attached to an N atom are joined to form a 3-14 membered heterocyclyl or 5-14 membered heteroaryl ring, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rdd groups, and wherein Raa, Rbb, Rcc and Rdd are as defined above.
  • In certain embodiments, the substituent present on the nitrogen atom is an nitrogen protecting group (also referred to herein as an “amino protecting group”). Nitrogen protecting groups include, but are not limited to, —OH, —ORaa, —N(Rcc)2, —C(═O)Raa, —C(═O)N(Rcc)2, —CO2Raa, —SO2Raa, —C(═NRcc)Raa, —C(═NRcc)ORaa, —C(═NRcc)N(Rcc)2, —SO2N(Rcc)2, —SO2Rcc, —SO2ORcc, —SORaa, —C(═S)N(Rcc)2, —C(═O)SRcc, —C(═S)SRcc, C1-10 alkyl (e.g., aralkyl, heteroaralkyl), C2-10 alkenyl, C2-10 alkynyl, heteroC1-10 alkyl, heteroC2-10 alkenyl, heteroC2-10 alkynyl, C3-10 carbocyclyl, 3-14 membered heterocyclyl, C6-14 aryl, and 5-14 membered heteroaryl groups, wherein each alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, carbocyclyl, heterocyclyl, aralkyl, aryl, and heteroaryl is independently substituted with 0, 1, 2, 3, 4, or 5 Rdd groups, and wherein Raa, Rbb, Rcc and Rdd are as defined herein. Nitrogen protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3rd edition, John Wiley & Sons, 1999, incorporated herein by reference. In certain embodiments, the nitrogen protecting group described herein is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • For example, nitrogen protecting groups such as amide groups (e.g., —C(═O)Raa) include, but are not limited to, formamide, acetamide, chloroacetamide, trichloroacetamide, trifluoroacetamide, phenylacetamide, 3-phenylpropanamide, picolinamide, 3-pyridylcarboxamide, N-benzoylphenylalanyl derivative, benzamide, p-phenylbenzamide, o-nitophenylacetamide, o-nitrophenoxyacetamide, acetoacetamide, (N′-dithiobenzyloxyacylamino)acetamide, 3-(p-hydroxyphenyl)propanamide, 3-(o-nitrophenyl)propanamide, 2-methyl-2-(o-nitrophenoxy)propanamide, 2-methyl-2-(o-phenylazophenoxy)propanamide, 4-chlorobutanamide, 3-methyl-3-nitrobutanamide, o-nitrocinnamide, N-acetylmethionine derivative, o-nitrobenzamide and o-(benzoyloxymethyl)benzamide.
  • Nitrogen protecting groups such as carbamate groups (e.g., —C(═O)ORaa) include, but are not limited to, methyl carbamate, ethyl carbamate, 9-fluorenylmethyl carbamate (Fmoc), 9-(2-sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-t-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanthyl)]methyl carbamate (DBD-Tmoc), 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2-trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), 1-(1-adamantyl)-1-methylethyl carbamate (Adpoc), 1,1-dimethyl-2-haloethyl carbamate, 1,1-dimethyl-2,2-dibromoethyl carbamate (DB-t-BOC), 1,1-dimethyl-2,2,2-trichloroethyl carbamate (TCBOC), 1-methyl-1-(4-biphenylyl)ethyl carbamate (Bpoc), 1-(3,5-di-t-butylphenyl)-1-methylethyl carbamate (t-Bumeoc), 2-(2′- and 4′-pyridyl)ethyl carbamate (Pyoc), 2-(N,N-dicyclohexylcarboxamido)ethyl carbamate, t-butyl carbamate (BOC or Boc), 1-adamantyl carbamate (Adoc), vinyl carbamate (Voc), allyl carbamate (Alloc), 1-isopropylallyl carbamate (Ipaoc), cinnamyl carbamate (Coc), 4-nitrocinnamyl carbamate (Noc), 8-quinolyl carbamate, N-hydroxypiperidinyl carbamate, alkyldithio carbamate, benzyl carbamate (Cbz), p-methoxybenzyl carbamate (Moz), p-nitobenzyl carbamate, p-bromobenzyl carbamate, p-chlorobenzyl carbamate, 2,4-dichlorobenzyl carbamate, 4-methylsulfinylbenzyl carbamate (Msz), 9-anthrylmethyl carbamate, diphenylmethyl carbamate, 2-methylthioethyl carbamate, 2-methylsulfonylethyl carbamate, 2-(p-toluenesulfonyl)ethyl carbamate, [2-(1,3-dithianyl)]methyl carbamate (Dmoc), 4-methylthiophenyl carbamate (Mtpc), 2,4-dimethylthiophenyl carbamate (Bmpc), 2-phosphonioethyl carbamate (Peoc), 2-triphenylphosphonioisopropyl carbamate (Ppoc), 1,1-dimethyl-2-cyanoethyl carbamate, m-chloro-p-acyloxybenzyl carbamate, p-(dihydroxyboryl)benzyl carbamate, 5-benzisoxazolylmethyl carbamate, 2-(trifluoromethyl)-6-chromonylmethyl carbamate (Tcroc), m-nitrophenyl carbamate, 3,5-dimethoxybenzyl carbamate, o-nitrobenzyl carbamate, 3,4-dimethoxy-6-nitrobenzyl carbamate, phenyl(o-nitrophenyl)methyl carbamate, t-amyl carbamate, S-benzyl thiocarbamate, p-cyanobenzyl carbamate, cyclobutyl carbamate, cyclohexyl carbamate, cyclopentyl carbamate, cyclopropylmethyl carbamate, p-decyloxybenzyl carbamate, 2,2-dimethoxyacylvinyl carbamate, o-(N,N-dimethylcarboxamido)benzyl carbamate, 1,1-dimethyl-3-(N,N-dimethylcarboxamido)propyl carbamate, 1,1-dimethylpropynyl carbamate, di(2-pyridyl)methyl carbamate, 2-furanylmethyl carbamate, 2-iodoethyl carbamate, isoborynl carbamate, isobutyl carbamate, isonicotinyl carbamate, p-(p′-methoxyphenylazo)benzyl carbamate, 1-methylcyclobutyl carbamate, 1-methylcyclohexyl carbamate, 1-methyl-1-cyclopropylmethyl carbamate, 1-methyl-1-(3,5-dimethoxyphenyl)ethyl carbamate, 1-methyl-1-(p-phenylazophenyl)ethyl carbamate, 1-methyl-1-phenylethyl carbamate, 1-methyl-1-(4-pyridyl)ethyl carbamate, phenyl carbamate, p-(phenylazo)benzyl carbamate, 2,4,6-tri-t-butylphenyl carbamate, 4-(trimethylammonium)benzyl carbamate, and 2,4,6-trimethylbenzyl carbamate.
  • Nitrogen protecting groups such as sulfonamide groups (e.g., —S(═O)2Raa) include, but are not limited to, p-toluenesulfonamide (Ts), benzenesulfonamide, 2,3,6-trimethyl-4-methoxybenzenesulfonamide (Mtr), 2,4,6-trimethoxybenzenesulfonamide (Mtb), 2,6-dimethyl-4-methoxybenzenesulfonamide (Pme), 2,3,5,6-tetramethyl-4-methoxybenzenesulfonamide (Mte), 4-methoxybenzenesulfonamide (Mbs), 2,4,6-trimethylbenzenesulfonamide (Mts), 2,6-dimethoxy-4-methylbenzenesulfonamide (iMds), 2,2,5,7,8-pentamethylchroman-6-sulfonamide (Pmc), methanesulfonamide (Ms), 3-trimethylsilylethanesulfonamide (SES), 9-anthracenesulfonamide, 4-(4′,8′-dimethoxynaphthylmethyl)benzenesulfonamide (DNMBS), benzylsulfonamide, trifluoromethylsulfonamide, and phenacylsulfonamide.
  • Other nitrogen protecting groups include, but are not limited to, phenothiazinyl-(10)-acyl derivative, N′-p-toluenesulfonylaminoacyl derivative, N′-phenylaminothioacyl derivative, N-benzoylphenylalanyl derivative, N-acetylmethionine derivative, 4,5-diphenyl-3-oxazolin-2-one, N-phthalimide, N-dithiasuccinimide (Dts), N-2,3-diphenylmaleimide, N-2,5-dimethylpyrrole, N-1,1,4,4-tetramethyldisilylazacyclopentane adduct (STABASE), 5-substituted 1,3-dimethyl-1,3,5-triazacyclohexan-2-one, 5-substituted 1,3-dibenzyl-1,3,5-triazacyclohexan-2-one, 1-substituted 3,5-dinitro-4-pyridone, N-methylamine, N-allylamine, N-[2-(trimethylsilyl)ethoxy]methylamine (SEM), N-3-acetoxypropylamine, N-(1-isopropyl-4-nitro-2-oxo-3-pyroolin-3-yl)amine, quaternary ammonium salts, N-benzylamine, N-di(4-methoxyphenyl)methylamine, N-5-dibenzosuberylamine, N-triphenylmethylamine (Tr), N-[(4-methoxyphenyl)diphenylmethyl]amine (MMTr), N-9-phenylfluorenylamine (PhF), N-2,7-dichloro-9-fluorenylmethyleneamine, N-ferrocenylmethylamino (Fcm), N-2-picolylamino N′-oxide, N-1,1-dimethylthiomethyleneamine, N-benzylideneamine, N-p-methoxybenzylideneamine, N-diphenylmethyleneamine, N-[(2-pyridyl)mesityl]methyleneamine, N—(N′,N′-dimethylaminomethylene)amine, N,N′-isopropylidenediamine, N-p-nitrobenzylideneamine, N-salicylideneamine, N-5-chlorosalicylideneamine, N-(5-chloro-2-hydroxyphenyl)phenylmethyleneamine, N-cyclohexylideneamine, N-(5,5-dimethyl-3-oxo-1-cyclohexenyl)amine, N-borane derivative, N-diphenylborinic acid derivative, N-[phenyl(pentaacylchromium- or tungsten)acyl]amine, N-copper chelate, N-zinc chelate, N-nitroamine, N-nitrosoamine, amine N-oxide, diphenylphosphinamide (Dpp), dimethylthiophosphinamide (Mpt), diphenylthiophosphinamide (Ppt), dialkyl phosphoramidates, dibenzyl phosphoramidate, diphenyl phosphoramidate, benzenesulfenamide, o-nitrobenzenesulfenamide (Nps), 2,4-dinitrobenzenesulfenamide, pentachlorobenzenesulfenamide, 2-nitro-4-methoxybenzenesulfenamide, triphenylmethylsulfenamide, and 3-nitropyridinesulfenamide (Npys).
  • In certain embodiments, the substituent present on an oxygen atom is an oxygen protecting group (also referred to herein as an “hydroxyl protecting group”). Oxygen protecting groups include, but are not limited to, —Raa, —N(Rbb)2, —C(═O)SRaa, —C(═O)Raa, —CO2Raa, —C(═O)N(Rbb)2, —C(═NRbb)Raa, —C(═NRbb)ORaa, —C(═NRbb)N(Rbb)2, —S(═O)Raa, —SO2Raa, —Si(Raa)3, —P(Rcc)2, —P(Rcc)3 +X, —P(ORcc)2, —P(ORcc)3 +X, —P(═O)(Raa)2, —P(═O)(ORcc)2, and —P(═O)(N(Rbb)2)2, wherein X, Raa, Rbb, and Rcc are as defined herein. Oxygen protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3rd edition, John Wiley & Sons, 1999, incorporated herein by reference. In certain embodiments, an oxygen protecting group described herein is silyl, TBDPS, TBDMS, TIPS, TES, TMS, MOM, THP, t-Bu, Bn, allyl, acetyl, pivaloyl, or benzoyl.
  • Exemplary oxygen protecting groups include, but are not limited to, methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), t-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p-methoxybenzyloxymethyl (PMBM), (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), t-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2-(trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl (MTHP), 4-methoxytetrahydrothiopyranyl, 4-methoxytetrahydrothiopyranyl S,S-dioxide, 1-[(2-chloro-4-methyl)phenyl]-4-methoxypiperidin-4-yl (CTMP), 1,4-dioxan-2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl, 2,3,3a,4,5,6,7,7a-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 1-methyl-1-methoxyethyl, 1-methyl-1-benzyloxyethyl, 1-methyl-1-benzyloxy-2-fluoroethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 2-(phenylselenyl)ethyl, t-butyl, allyl, p-chlorophenyl, p-methoxyphenyl, 2,4-dinitrophenyl, benzyl (Bn), p-methoxybenzyl, 3,4-dimethoxybenzyl, o-nitrobenzyl, p-nitrobenzyl, p-halobenzyl, 2,6-dichlorobenzyl, p-cyanobenzyl, p-phenylbenzyl, 2-picolyl, 4-picolyl, 3-methyl-2-picolyl N-oxido, diphenylmethyl, p,p′-dinitrobenzhydryl, 5-dibenzosuberyl, triphenylmethyl, α-naphthyldiphenylmethyl, p-methoxyphenyldiphenylmethyl, di(p-methoxyphenyl)phenylmethyl, tri(p-methoxyphenyl)methyl, 4-(4′-bromophenacyloxyphenyl)diphenylmethyl, 4,4′,4″-tris(4,5-dichlorophthalimidophenyl)methyl, 4,4′,4″-tris(levulinoyloxyphenyl)methyl, 4,4′,4″-tris(benzoyloxyphenyl)methyl, 3-(imidazol-1-yl)bis(4′,4″-dimethoxyphenyl)methyl, 1,1-bis(4-methoxyphenyl)-1′-pyrenylmethyl, 9-anthryl, 9-(9-phenyl)xanthenyl, 9-(9-phenyl-10-oxo)anthryl, 1,3-benzodithiolan-2-yl, benzisothiazolyl S,S-dioxido, trimethylsilyl (TMS), triethylsilyl (TES), triisopropylsilyl (TIPS), dimethylisopropylsilyl (IPDMS), diethylisopropylsilyl (DEIPS), dimethylthexylsilyl, t-butyldimethylsilyl (TBDMS), t-butyldiphenylsilyl (TBDPS), tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsilyl (DPMS), t-butylmethoxyphenylsilyl (TBMPS), formate, benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, p-chlorophenoxyacetate, 3-phenylpropionate, 4-oxopentanoate (levulinate), 4,4-(ethylenedithio)pentanoate (levulinoyldithioacetal), pivaloate, adamantoate, crotonate, 4-methoxycrotonate, benzoate, p-phenylbenzoate, 2,4,6-trimethylbenzoate (mesitoate), methyl carbonate, 9-fluorenylmethyl carbonate (Fmoc), ethyl carbonate, 2,2,2-trichloroethyl carbonate (Troc), 2-(trimethylsilyl)ethyl carbonate (TMSEC), 2-(phenylsulfonyl) ethyl carbonate (Psec), 2-(triphenylphosphonio) ethyl carbonate (Peoc), isobutyl carbonate, vinyl carbonate, allyl carbonate, t-butyl carbonate (BOC or Boc), p-nitrophenyl carbonate, benzyl carbonate, p-methoxybenzyl carbonate, 3,4-dimethoxybenzyl carbonate, o-nitrobenzyl carbonate, p-nitrobenzyl carbonate, S-benzyl thiocarbonate, 4-ethoxy-1-napththyl carbonate, methyl dithiocarbonate, 2-iodobenzoate, 4-azidobutyrate, 4-nitro-4-methylpentanoate, o-(dibromomethyl)benzoate, 2-formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl, 4-(methylthiomethoxy)butyrate, 2-(methylthiomethoxymethyl)benzoate, 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro-4-(1,1,3,3-tetramethylbutyl)phenoxyacetate, 2,4-bis(1,1-dimethylpropyl)phenoxyacetate, chlorodiphenylacetate, isobutyrate, monosuccinoate, (E)-2-methyl-2-butenoate, o-(methoxyacyl)benzoate, o-naphthoate, nitrate, alkyl N,N,N′,N′-tetramethylphosphorodiamidate, alkyl N-phenylcarbamate, borate, dimethylphosphinothioyl, alkyl 2,4-dinitrophenylsulfenate, sulfate, methanesulfonate (mesylate), benzylsulfonate, and tosylate (Ts).
  • A “counterion” or “anionic counterion” is a negatively charged group associated with a positively charged group in order to maintain electronic neutrality. An anionic counterion may be monovalent (i.e., including one formal negative charge). An anionic counterion may also be multivalent (i.e., including more than one formal negative charge), such as divalent or trivalent. Exemplary counterions include halide ions (e.g., F, Cl, Br, I), NO3 , ClO4 , OH, H2PO4 , HCO3 , HSO4 , sulfonate ions (e.g., methansulfonate, trifluoromethanesulfonate, p-toluenesulfonate, benzenesulfonate, 10-camphor sulfonate, naphthalene-2-sulfonate, naphthalene-1-sulfonic acid-5-sulfonate, ethan-1-sulfonic acid-2-sulfonate, and the like), carboxylate ions (e.g., acetate, propanoate, benzoate, glycerate, lactate, tartrate, glycolate, gluconate, and the like), BF4 , PF4 , PF6 , AsF6 , SbF6 , B[3,5-(CF3)2C6H3]4], B(C6F5)4 , BPh4 , Al(OC(CF3)3)4 , and carborane anions (e.g., CB11H12 or (HCB11Me5Br6)). Exemplary counterions which may be multivalent include CO3 2−, HPO4 2−, PO4 3−, B4O7 2−, SO4 2−, S2O3 2−, carboxylate anions (e.g., tartrate, citrate, fumarate, maleate, malate, malonate, gluconate, succinate, glutarate, adipate, pimelate, suberate, azelate, sebacate, salicylate, phthalates, aspartate, glutamate, and the like), and carboranes.
  • As used herein, a “leaving group” (LG) is an art-understood term referring to a molecular fragment that departs with a pair of electrons in heterolytic bond cleavage, wherein the molecular fragment is an anion or neutral molecule. As used herein, a leaving group can be an atom or a group capable of being displaced by a nucleophile. See, for example, Smith, March Advanced Organic Chemistry 6th ed. (501-502). Exemplary leaving groups include, but are not limited to, halo (e.g., chloro, bromo, iodo) and activated substituted hydroxyl groups (e.g., —OC(═O)SRaa, —OC(═O)Raa, —OCO2Raa, —OC(═O)N(Rbb)2, —OC(═NRbb)Raa, —OC(═NRbb)ORaa, —OC(═NRbb)N(Rbb)2, —OS(═O)Raa, —OSO2Raa, —OP(Rcc)2, —OP(Rcc)3, —OP(═O)2Raa, —OP(═O)(Raa)2, —OP(═O)(ORcc)2, —OP(═O)2N(Rbb)2, and —OP(═O)(NRbb)2, wherein Raa, Rbb, and Rcc are as defined herein).
  • As used herein, use of the phrase “at least one instance” refers to 1, 2, 3, 4, or more instances, but also encompasses a range, e.g., for example, from 1 to 4, from 1 to 3, from 1 to 2, from 2 to 4, from 2 to 3, or from 3 to 4 instances, inclusive.
  • A “non-hydrogen group” refers to any group that is defined for a particular variable that is not hydrogen.
  • The term “amino acid” includes the natural (naturally occurring) amino acids (e.g. Ala, Arg, Asn, Asp, Cys, selenocysteine, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val) in D or L form, and unnatural (not naturally occurring) amino acids (e.g. phosphoserine, phosphothreonine, phosphotyrosine, hydroxyproline, gamma-carboxyglutamate; hippuric acid, octahydroindole-2-carboxylic acid, statine, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, penicillamine, ornithine, citruline, alpha-methyl-alanine, para-benzoylphenylalanine, phenylglycine, propargylglycine, sarcosine, and tert-butylglycine). The term “amino acid” also includes mono-radicals of the natural amino acids and unnatural amino acids. The term “amino acid” also includes di-radicals of the natural amino acids and unnatural amino acids. When the amino acid is a mono-radical, the point of attachment may be at the C-terminus or the N-terminus. When the amino acid is a di-radical, the points of attachment may be at the C-terminus and the N-terminus.
  • The term “dipeptide” includes two peptidically bound amino acids joined by a peptide bond. The term “dipeptide” also includes mono-radicals of two peptidically bound amino acids joined by a peptide bond. The term “dipeptide” also includes di-radicals of two peptidically bound amino acids joined by a peptide bond. When the dipeptide is a mono-radical, the point of attachment may be at the C-terminus or the N-terminus. When the dipeptide is a di-radical, the points of attachment may be at the C-terminus and the N-terminus.
  • These and other exemplary substituents are described in more detail in the Detailed Description, Examples, and Claims. The invention is not intended to be limited in any manner by the above exemplary listing of substituents.
  • As used herein, the term “salt” refers to any and all salts, and encompasses pharmaceutically acceptable salts.
  • The term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, and perchloric acid or with organic acids, such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods known in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium, and N+(C1-4 alkyl)4 salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate, and aryl sulfonate.
  • The term “solvate” refers to forms of the compound, or a salt thereof, that are associated with a solvent, usually by a solvolysis reaction. This physical association may include hydrogen bonding. Conventional solvents include water, methanol, ethanol, acetic acid, DMSO, THF, diethyl ether, and the like. The compounds described herein may be prepared, e.g., in crystalline form, and may be solvated. Suitable solvates include pharmaceutically acceptable solvates and further include both stoichiometric solvates and non-stoichiometric solvates. In certain instances, the solvate will be capable of isolation, for example, when one or more solvent molecules are incorporated in the crystal lattice of a crystalline solid. “Solvate” encompasses both solution-phase and isolatable solvates. Representative solvates include hydrates, ethanolates, and methanolates.
  • The term “hydrate” refers to a compound that is associated with water. Typically, the number of the water molecules contained in a hydrate of a compound is in a definite ratio to the number of the compound molecules in the hydrate. Therefore, a hydrate of a compound may be represented, for example, by the general formula R.x H2O, wherein R is the compound, and x is a number greater than 0. A given compound may form more than one type of hydrate, including, e.g., monohydrates (x is 1), lower hydrates (x is a number greater than 0 and smaller than 1, e.g., hemihydrates (R.0.5H2O)), and polyhydrates (x is a number greater than 1, e.g., dihydrates (R.2H2O) and hexahydrates (R.6H2O)).
  • The term “tautomers” or “tautomeric” refers to two or more interconvertible compounds resulting from at least one formal migration of a hydrogen atom and at least one change in valency (e.g., a single bond to a double bond, a triple bond to a single bond, or vice versa). The exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH. Tautomerizations (i.e., the reaction providing a tautomeric pair) may catalyzed by acid or base. Exemplary tautomerizations include keto-to-enol, amide-to-imide, lactam-to-lactim, enamine-to-imine, and enamine-to-(a different enamine) tautomerizations.
  • It is also to be understood that compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers”. Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers”.
  • Stereoisomers that are not mirror images of one another are termed “diastereomers” and those that are non-superimposable mirror images of each other are termed “enantiomers”. When a compound has an asymmetric center, for example, it is bonded to four different groups, a pair of enantiomers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center and is described by the R- and S-sequencing rules of Cahn and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (−)-isomers respectively). A chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a “racemic mixture”.
  • The term “polymorph” refers to a crystalline form of a compound (or a salt, hydrate, or solvate thereof). All polymorphs have the same elemental composition. Different crystalline forms usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystal shape, optical and electrical properties, stability, and solubility. Recrystallization solvent, rate of crystallization, storage temperature, and other factors may cause one crystal form to dominate. Various polymorphs of a compound can be prepared by crystallization under different conditions.
  • The term “prodrugs” refers to compounds that have cleavable groups and become by solvolysis or under physiological conditions the compounds described herein, which are pharmaceutically active in vivo. Such examples include, but are not limited to, choline ester derivatives and the like, N-alkylmorpholine esters and the like. Other derivatives of the compounds described herein have activity in both their acid and acid derivative forms, but in the acid sensitive form often offer advantages of solubility, tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acid with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a substituted or unsubstituted amine, or acid anhydrides, or mixed anhydrides. Simple aliphatic or aromatic esters, amides, and anhydrides derived from acidic groups pendant on the compounds described herein are particular prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy)alkyl esters or ((alkoxycarbonyl)oxy)alkylesters. C1-8 alkyl, C2-8 alkenyl, C2-8 alkynyl, aryl, C7-12 substituted aryl, and C7-12 arylalkyl esters of the compounds described herein may be preferred.
  • The terms “composition” and “formulation” are used interchangeably.
  • A “subject” to which administration is contemplated refers to a human (i.e., male or female of any age group, e.g., pediatric subject (e.g., infant, child, or adolescent) or adult subject (e.g., young adult, middle-aged adult, or senior adult)) or non-human animal. In certain embodiments, the non-human animal is a mammal (e.g., primate (e.g., cynomolgus monkey or rhesus monkey), commercially relevant mammal (e.g., cattle, pig, horse, sheep, goat, cat, or dog), or bird (e.g., commercially relevant bird, such as chicken, duck, goose, or turkey)). In certain embodiments, the non-human animal is a fish, reptile, or amphibian. The non-human animal may be a male or female at any stage of development. The non-human animal may be a transgenic animal or genetically engineered animal. The term “patient” refers to a human subject in need of treatment of a disease.
  • The term “biological sample” refers to any sample including tissue samples (such as tissue sections and needle biopsies of a tissue); cell samples (e.g., cytological smears (such as Pap or blood smears) or samples of cells obtained by microdissection); samples of whole organisms (such as samples of yeasts or bacteria); or cell fractions, fragments or organelles (such as obtained by lysing cells and separating the components thereof by centrifugation or otherwise). Other examples of biological samples include blood, serum, urine, semen, fecal matter, cerebrospinal fluid, interstitial fluid, mucous, tears, sweat, pus, biopsied tissue (e.g., obtained by a surgical biopsy or needle biopsy), nipple aspirates, milk, vaginal fluid, saliva, swabs (such as buccal swabs), or any material containing biomolecules that is derived from a first biological sample.
  • The term “administer,” “administering,” or “administration” refers to implanting, absorbing, ingesting, injecting, inhaling, or otherwise introducing a compound described herein, or a composition thereof, in or on a subject.
  • The terms “treatment,” “treat,” and “treating” refer to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease described herein. In some embodiments, treatment may be administered after one or more signs or symptoms of the disease have developed or have been observed. In other embodiments, treatment may be administered in the absence of signs or symptoms of the disease. For example, treatment may be administered to a susceptible subject prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of exposure to a pathogen). Treatment may also be continued after symptoms have resolved, for example, to delay or prevent recurrence.
  • The term “prevent,” “preventing,” or “prevention” refers to a prophylactic treatment of a subject who is not and was not with a disease but is at risk of developing the disease or who was with a disease, is not with the disease, but is at risk of regression of the disease. In certain embodiments, the subject is at a higher risk of developing the disease or at a higher risk of regression of the disease than an average healthy member of a population of subjects.
  • The terms “condition,” “disease,” and “disorder” are used interchangeably.
  • A “proliferative disease” refers to a disease that occurs due to abnormal growth or extension by the multiplication of cells (Walker, Cambridge Dictionary of Biology; Cambridge University Press: Cambridge, UK, 1990). A proliferative disease may be associated with: 1) the pathological proliferation of normally quiescent cells; 2) the pathological migration of cells from their normal location (e.g., metastasis of neoplastic cells); 3) the pathological expression of proteolytic enzymes such as the matrix metalloproteinases (e.g., collagenases, gelatinases, and elastases); or 4) the pathological angiogenesis as in proliferative retinopathy and tumor metastasis. Exemplary proliferative diseases include cancers (i.e., “malignant neoplasms”), benign neoplasms, diseases associated with angiogenesis, inflammatory diseases, and autoimmune diseases.
  • The term “angiogenesis” refers to the physiological process through which new blood vessels form from pre-existing vessels. Angiogenesis is distinct from vasculogenesis, which is the de novo formation of endothelial cells from mesoderm cell precursors. The first vessels in a developing embryo form through vasculogenesis, after which angiogenesis is responsible for most blood vessel growth during normal or abnormal development. Angiogenesis is a vital process in growth and development, as well as in wound healing and in the formation of granulation tissue. However, angiogenesis is also a fundamental step in the transition of tumors from a benign state to a malignant one, leading to the use of angiogenesis inhibitors in the treatment of cancer. Angiogenesis may be chemically stimulated by angiogenic proteins, such as growth factors (e.g., VEGF). “Pathological angiogenesis” refers to abnormal (e.g., excessive or insufficient) angiogenesis that amounts to and/or is associated with a disease.
  • The terms “neoplasm” and “tumor” are used herein interchangeably and refer to an abnormal mass of tissue wherein the growth of the mass surpasses and is not coordinated as in the growth of normal tissue. A neoplasm or tumor may be “benign” or “malignant,” depending on the following characteristics: degree of cellular differentiation (including morphology and functionality), rate of growth, local invasion, and metastasis. A “benign neoplasm” is generally well differentiated, has characteristically slower growth than a malignant neoplasm, and remains localized to the site of origin. In addition, a benign neoplasm does not have the capacity to infiltrate, invade, or metastasize to distant sites. Exemplary benign neoplasms include, but are not limited to, lipoma, chondroma, adenomas, acrochordon, senile angiomas, seborrheic keratoses, lentigos, and sebaceous hyperplasias. In some cases, certain “benign” tumors may later give rise to malignant neoplasms, which may result from additional genetic changes in a subpopulation of the tumor's neoplastic cells, and these tumors are referred to as “pre-malignant neoplasms.” An exemplary pre-malignant neoplasm is a teratoma. In contrast, a “malignant neoplasm” is generally poorly differentiated (anaplasia) and has characteristically rapid growth accompanied by progressive infiltration, invasion, and destruction of the surrounding tissue. Furthermore, a malignant neoplasm generally has the capacity to metastasize to distant sites. The term “metastasis,” “metastatic,” or “metastasize” refers to the spread or migration of cancerous cells from a primary or original tumor to another organ or tissue and is typically identifiable by the presence of a “secondary tumor” or “secondary cell mass” of the tissue type of the primary or original tumor and not of that of the organ or tissue in which the secondary (metastatic) tumor is located. For example, a prostate cancer that has migrated to bone is said to be metastasized prostate cancer and includes cancerous prostate cancer cells growing in bone tissue.
  • The term “cancer” refers to a class of diseases characterized by the development of abnormal cells that proliferate uncontrollably and have the ability to infiltrate and destroy normal body tissues. See, e.g., Stedman's Medical Dictionary, 25th ed.; Hensyl ed.; Williams & Wilkins: Philadelphia, 1990. Exemplary cancers include, but are not limited to, hematological malignancies. Additional exemplary cancers include, but are not limited to, acoustic neuroma; adenocarcinoma; adrenal gland cancer; anal cancer; angiosarcoma (e.g., lymphangiosarcoma, lymphangioendotheliosarcoma, hemangiosarcoma); appendix cancer; benign monoclonal gammopathy; biliary cancer (e.g., cholangiocarcinoma); bladder cancer; breast cancer (e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, mammary cancer, medullary carcinoma of the breast, triple negative breast cancer (TNBC)); brain cancer (e.g., meningioma, glioblastomas, glioma (e.g., astrocytoma, oligodendroglioma), medulloblastoma); bronchus cancer; carcinoid tumor; cervical cancer (e.g., cervical adenocarcinoma); choriocarcinoma; chordoma; craniopharyngioma; colorectal cancer (e.g., colon cancer, rectal cancer, colorectal adenocarcinoma); connective tissue cancer; epithelial carcinoma; ependymoma; endotheliosarcoma (e.g., Kaposi's sarcoma, multiple idiopathic hemorrhagic sarcoma); endometrial cancer (e.g., uterine cancer, uterine sarcoma); esophageal cancer (e.g., adenocarcinoma of the esophagus, Barrett's adenocarcinoma); Ewing's sarcoma; ocular cancer (e.g., intraocular melanoma, retinoblastoma); familiar hypereosinophilia; gall bladder cancer; gastric cancer (e.g., stomach adenocarcinoma); gastrointestinal stromal tumor (GIST); germ cell cancer; head and neck cancer (e.g., head and neck squamous cell carcinoma, oral cancer (e.g., oral squamous cell carcinoma), throat cancer (e.g., laryngeal cancer, pharyngeal cancer, nasopharyngeal cancer, oropharyngeal cancer)); heavy chain disease (e.g., alpha chain disease, gamma chain disease, mu chain disease; hemangioblastoma; hypopharynx cancer; inflammatory myofibroblastic tumors; immunocytic amyloidosis; kidney cancer (e.g., nephroblastoma a.k.a. Wilms' tumor, renal cell carcinoma); liver cancer (e.g., hepatocellular cancer (HCC), malignant hepatoma); lung cancer (e.g., bronchogenic carcinoma, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung); leiomyosarcoma (LMS); mastocytosis (e.g., systemic mastocytosis); muscle cancer; myelodysplastic syndrome (MDS); mesothelioma; myeloproliferative disorder (MPD) (e.g., polycythemia vera (PV), essential thrombocytosis (ET), agnogenic myeloid metaplasia (AMM) a.k.a. myelofibrosis (MF), chronic idiopathic myelofibrosis, chronic myelocytic leukemia (CML), chronic neutrophilic leukemia (CNL), hypereosinophilic syndrome (HES)); neuroblastoma; neurofibroma (e.g., neurofibromatosis (NF) type 1 or type 2, schwannomatosis); neuroendocrine cancer (e.g., gastroenteropancreatic neuroendocrine tumor (GEP-NET), carcinoid tumor); osteosarcoma (e.g., bone cancer); ovarian cancer (e.g., cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma); papillary adenocarcinoma; pancreatic cancer (e.g., pancreatic andenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), Islet cell tumors); penile cancer (e.g., Paget's disease of the penis and scrotum); pinealoma; primitive neuroectodermal tumor (PNT); plasma cell neoplasia; paraneoplastic syndromes; intraepithelial neoplasms; prostate cancer (e.g., prostate adenocarcinoma); rectal cancer; rhabdomyosarcoma; salivary gland cancer; skin cancer (e.g., squamous cell carcinoma (SCC), keratoacanthoma (KA), melanoma, basal cell carcinoma (BCC)); small bowel cancer (e.g., appendix cancer); soft tissue sarcoma (e.g., malignant fibrous histiocytoma (MFH), liposarcoma, malignant peripheral nerve sheath tumor (MPNST), chondrosarcoma, fibrosarcoma, myxosarcoma); sebaceous gland carcinoma; small intestine cancer; sweat gland carcinoma; synovioma; testicular cancer (e.g., seminoma, testicular embryonal carcinoma); thyroid cancer (e.g., papillary carcinoma of the thyroid, papillary thyroid carcinoma (PTC), medullary thyroid cancer); urethral cancer; vaginal cancer; and vulvar cancer (e.g., Paget's disease of the vulva).
  • The term “hematological malignancy” refers to tumors that affect blood, bone marrow, and/or lymph nodes. Exemplary hematological malignancies include, but are not limited to, leukemia, such as acute lymphoblastic leukemia (ALL) (e.g., B-cell ALL, T-cell ALL), acute myelocytic leukemia (AML) (e.g., B-cell AML, T-cell AML), chronic myelocytic leukemia (CML) (e.g., B-cell CML, T-cell CML), and chronic lymphocytic leukemia (CLL) (e.g., B-cell CLL, T-cell CLL)); lymphoma, such as Hodgkin lymphoma (HL) (e.g., B-cell HL, T-cell HL) and non-Hodgkin lymphoma (NHL) (e.g., B-cell NHL, such as diffuse large cell lymphoma (DLCL) (e.g., diffuse large B-cell lymphoma (DLBCL, e.g., activated B-cell (ABC) DLBCL (ABC-DLBCL))), follicular lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), mantle cell lymphoma (MCL), marginal zone B-cell lymphoma (e.g., mucosa-associated lymphoid tissue (MALT) lymphoma, nodal marginal zone B-cell lymphoma, splenic marginal zone B-cell lymphoma), primary mediastinal B-cell lymphoma, Burkitt's lymphoma, Waldenstrim's macroglobulinemia (WM, lymphoplasmacytic lymphoma), hairy cell leukemia (HCL), immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, central nervous system (CNS) lymphoma (e.g., primary CNS lymphoma and secondary CNS lymphoma); and T-cell NHL, such as precursor T-lymphoblastic lymphomalleukemia, peripheral T-cell lymphoma (PTCL) (e.g., cutaneous T-cell lymphoma (CTCL) (e.g., mycosis fungoides, Sezary syndrome), angioimmunoblastic T-cell lymphoma, extranodal natural killer T-cell lymphoma, enteropathy type T-cell lymphoma, subcutaneous panniculitis-like T-cell lymphoma, and anaplastic large cell lymphoma); lymphoma of an immune privileged site (e.g., cerebral lymphoma, ocular lymphoma, lymphoma of the placenta, lymphoma of the fetus, testicular lymphoma); a mixture of one or more leukemiallymphoma as described above; myelodysplasia; and multiple myeloma (MM).
  • The term “inflammatory disease” refers to a disease caused by, resulting from, or resulting in inflammation. The term “inflammatory disease” may also refer to a dysregulated inflammatory reaction that causes an exaggerated response by macrophages, granulocytes, and/or T-lymphocytes leading to abnormal tissue damage and/or cell death. An inflammatory disease can be either an acute or chronic inflammatory condition and can result from infections or non-infectious causes. Inflammatory diseases include, without limitation, atherosclerosis, arteriosclerosis, autoimmune disorders, multiple sclerosis, systemic lupus erythematosus, polymyalgia rheumatica (PMR), gouty arthritis, degenerative arthritis, tendonitis, bursitis, psoriasis, cystic fibrosis, arthrosteitis, rheumatoid arthritis, inflammatory arthritis, Sjogren's syndrome, giant cell arteritis, progressive systemic sclerosis (scleroderma), ankylosing spondylitis, polymyositis, dermatomyositis, pemphigus, pemphigoid, diabetes (e.g., Type I), myasthenia gravis, Hashimoto's thyroiditis, Graves' disease, Goodpasture's disease, mixed connective tissue disease, sclerosing cholangitis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, pernicious anemia, inflammatory dermatoses, usual interstitial pneumonitis (UIP), asbestosis, silicosis, bronchiectasis, berylliosis, talcosis, pneumoconiosis, sarcoidosis, desquamative interstitial pneumonia, lymphoid interstitial pneumonia, giant cell interstitial pneumonia, cellular interstitial pneumonia, extrinsic allergic alveolitis, Wegener's granulomatosis and related forms of angiitis (temporal arteritis and polyarteritis nodosa), inflammatory dermatoses, hepatitis, delayed-type hypersensitivity reactions (e.g., poison ivy dermatitis), pneumonia, respiratory tract inflammation, Adult Respiratory Distress Syndrome (ARDS), encephalitis, immediate hypersensitivity reactions, asthma, hay fever, allergies, acute anaphylaxis, rheumatic fever, glomerulonephritis, pyelonephritis, cellulitis, cystitis, chronic cholecystitis, ischemia (ischemic injury), reperfusion injury, allograft rejection, host-versus-graft rejection, appendicitis, arteritis, blepharitis, bronchiolitis, bronchitis, cervicitis, cholangitis, chorioamnionitis, conjunctivitis, dacryoadenitis, dermatomyositis, endocarditis, endometritis, enteritis, enterocolitis, epicondylitis, epididymitis, fasciitis, fibrositis, gastritis, gastroenteritis, gingivitis, ileitis, iritis, laryngitis, myelitis, myocarditis, nephritis, omphalitis, oophoritis, orchitis, osteitis, otitis, pancreatitis, parotitis, pericarditis, pharyngitis, pleuritis, phlebitis, pneumonitis, proctitis, prostatitis, rhinitis, salpingitis, sinusitis, stomatitis, synovitis, testitis, tonsillitis, urethritis, urocystitis, uveitis, vaginitis, vasculitis, vulvitis, vulvovaginitis, angitis, chronic bronchitis, osteomyelitis, optic neuritis, temporal arteritis, transverse myelitis, necrotizing fasciitis, and necrotizing enterocolitis.
  • An “autoimmune disease” refers to a disease arising from an inappropriate immune response of the body of a subject against substances and tissues normally present in the body. In other words, the immune system mistakes some part of the body as a pathogen and attacks its own cells. This may be restricted to certain organs (e.g., in autoimmune thyroiditis) or involve a particular tissue in different places (e.g., Goodpasture's disease which may affect the basement membrane in both the lung and kidney). The treatment of autoimmune diseases is typically with immunosuppression, e.g., medications which decrease the immune response. Exemplary autoimmune diseases include, but are not limited to, glomerulonephritis, Goodpasture's syndrome, necrotizing vasculitis, lymphadenitis, peri-arteritis nodosa, systemic lupus erythematosis, rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosis, psoriasis, ulcerative colitis, systemic sclerosis, dermatomyositis/polymyositis, anti-phospholipid antibody syndrome, scleroderma, pemphigus vulgaris, ANCA-associated vasculitis (e.g., Wegener's granulomatosis, microscopic polyangiitis), uveitis, Sjogren's syndrome, Crohn's disease, Reiter's syndrome, ankylosing spondylitis, Lyme disease, Guillain-Barré syndrome, Hashimoto's thyroiditis, and cardiomyopathy.
  • An “effective amount” of a compound described herein refers to an amount sufficient to elicit the desired biological response. An effective amount of a compound described herein may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the condition being treated, the mode of administration, and the age and health of the subject. In certain embodiments, an effective amount is a therapeutically effective amount. In certain embodiments, an effective amount is a prophylactic treatment. In certain embodiments, an effective amount is the amount of a compound described herein in a single dose. In certain embodiments, an effective amount is the combined amounts of a compound described herein in multiple doses.
  • A “therapeutically effective amount” of a compound described herein is an amount sufficient to provide a therapeutic benefit in the treatment of a condition or to delay or minimize one or more symptoms associated with the condition. A therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment of the condition. The term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms, signs, or causes of the condition, and/or enhances the therapeutic efficacy of another therapeutic agent. In certain embodiments, a therapeutically effective amount is an amount sufficient for inhibiting MALT1. In certain embodiments, a therapeutically effective amount is an amount sufficient for treating cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)). In certain embodiments, a therapeutically effective amount is an amount sufficient for inhibiting MALT1 and treating cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)).
  • A “prophylactically effective amount” of a compound described herein is an amount sufficient to prevent a condition, or one or more symptoms associated with the condition or prevent its recurrence. A prophylactically effective amount of a compound means an amount of a therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the condition. The term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent. In certain embodiments, a therapeutically effective amount is an amount sufficient for inhibiting MALT1. In certain embodiments, a prophylactically effective amount is an amount sufficient for preventing cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)). In certain embodiments, a prophylactically effective amount is an amount sufficient for inhibiting MALT1 and treating cancer (e.g., lymphoma (e.g., diffuse large B-cell lymphoma, MALT lymphoma)).
  • As used herein the term “inhibit” or “inhibition” in the context of enzymes, for example, in the context of MALT1, refers to a reduction in the activity of the enzyme. In some embodiments, the activity of the enzyme is an activity for peptide cleavage. For example, in the context of MALT1, the proteolytic activity towards cleavage of a peptide including, but not limited to, A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1α, and MALT1. In some embodiments, the term refers to a reduction of the level of enzyme activity, e.g., MALT1 activity, to a level that is statistically significantly lower than an initial level, which may, for example, be a baseline level of enzyme activity. In some embodiments, the term refers to a reduction of the level of enzyme activity, e.g., MALT1 activity, to a level that is less than 75%, less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.1%, less than 0.01%, less than 0.001%, or less than 0.0001% of an initial level, which may, for example, be a baseline level of enzyme activity.
  • The term “MALT1” refers to mucosa-associate lymphoid tissue lymphoma translocation protein 1. MALT1 may refer to the RNA and DNA encoding sequences in addition to the protein. MALT1 is a member of the paracaspase family. Human MALT1 is encoded by the MALT1 gene. In some embodiments, a MALT1 inhibitor provided herein is specific for a MALT1 from a specific species, e.g., for human MALT1. The term MALT1 further includes, in some embodiments, sequence variants and mutations (e.g., naturally occurring or synthetic MALT1 sequence variants or mutations), and different MALT1 isoforms. MALT1 fusion proteins from translocations are also included in the term MALT1, and may also be specifically referred to (e.g., API2-MALT1) in some embodiments. In some embodiments, the term MALT1 includes protein or encoding sequences that are homologous to a MALT1 protein or encoding sequence, for example, a protein or encoding sequence having at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% sequence identity with a MALT1 sequence, for example, with a MALT1 sequence provided herein. MALT1 protein and encoding gene sequences are well known to those of skill in the art, and exemplary protein sequences include, but are not limited to, the following sequences. Additional MALT1 sequences, e.g., MALT1 homologues from other species, will be apparent to those of skill in the art, and the invention is not limited to the exemplary sequences provided herein.
  • >gi|5803078|ref|NP_006776.1| mucosa-associated lymphoid tissue
    lymphoma translocation protein 1 isoform a [Homosapiens]
    (SEQ ID NO: 1)
    A) MSLLGDPLQALPPSAAPTGPLLAPPAGATLNRLREPLLRRLSELLDQAPEGRGWRRLAEL
    B) AGSRGRLRLSCLDLEQCSLKVLEPEGSPSLCLLKLMGEKGCTVTELSDFLQAMEHTEVLQ
    C) LLSPPGIKITVNPESKAVLAGQFVKLCCRATGHPFVQYQWFKMNKEIPNGNTSELIFNAV
    D) HVKDAGFYVCRVNNNFTFEFSQWSQLDVCDIPESFQRSVDGVSESKLQICVEPTSQKLMP
    E) GSTLVLQCVAVGSPIPHYQWEKNELPLTHETKKLYMVPYVDLEHQGTYWCHVYNDRDSQD
    F) SKKVEITIGRTDEAVECTEDELNNLGHPDNKEQTTDQPLAKDKVALLIGNMNYREHPKLK
    G) APLVDVYELTNLLRQLDFKVVSLLDLTEYEMRNAVDEFLLLLDKGVYGLLYYAGHGYENF
    H) GNSFMVPVDAPNPYRSENCLCVQNILKLMQEKETGLNVELLDMCRKRNDYDDTIPILDAL
    I) KVTANIVEGYATCQGAEAFEIQHSGLANGIFMKFLKDRLLEDKKITVLLDEVAEDMGKCH
    J) LTKGKQALEIRSSLSEKRALTDPIQGTEYSAESLVRNLQWAKAHELPESMCLKEDCGVQI
    K) QLGFAAEFSNVMITYTSIVYKPPEIIMCDAYVTDEPLDLDIDPKDANKGTPEETGSYLVS
    L) KDLPKHCLYTRLSSLQKLKEHLVETVCLSYQYSGLEDTVEDKQEVNVGKPLIAKLDMHRG
    M) LGRKTCFQTCLMSNGPYQSSAATSGGAGHYHSLQDPFHGVYHSHPGNPSNVTPADSCHCS
    N) RTPDAFISSFAHHASCHFSRSNVPVETTDEIPFSFSDRLRISEK
    >gi|27886566|ref|NP_776216.1| mucosa-associated lymphoid tissue
    lymphoma translocation protein 1 isoform b [Homosapients]
    (SEQ ID NO: 2)
    A) MSLLGDPLQALPPSAAPTGPLLAPPAGATLNRLREPLLRRLSELLDQAPEGRGWRRLAEL
    B) AGSRGRLRLSCLDLEQCSLKVLEPEGSPSLCLLKLMGEKGCTVTELSDFLQAMEHTEVLQ
    C) LLSPPGIKITVNPESKAVLAGQFVKLCCRATGHPFVQYQWFKMNKEIPNGNTSELIFNAV
    D) HVKDAGFYVCRVNNNFTFEFSQWSQLDVCDIPESFQRSVDGVSESKLQICVEPTSQKLMP
    E) GSTLVLQCVAVGSPIPHYQWFKNELPLTHETKKLYMVPYVDLEHQGTYWCHVYNDRDSQD
    F) SKKVEIIIDELNNLGHPDNKEQTTDQPLAKDKVALLIGNMNYREHPKLKAPLVDVYELTN
    G) LLRQLDEKVVSLLDLTEYEMRNAVDEFLLLLDKGVYGLLYYAGHGYENEGNSFMVPVDAP
    H) NPYRSENCLCVQNILKLMQEKETGLNVFLLDMCRKRNDYDDTIPILDALKVTANIVEGYA
    I) TCQGAEAFEIQHSGLANGIFMKFLKDRLLEDKKITVLLDEVAEDMGKCHLTKGKQALEIR
    J) SSLSEKRALTDPIQGTEYSAESLVRNLQWAKAHELPESMCLKEDCGVQTQLGFAAEFSNV
    K) MIIYTSIVYKPPEIIMCDAYVTDFPLDLDIDPKDANKGTPEETGSYLVSKDLPKHCLYTR
    L) LSSLQKLKEHLVETVCLSYQYSGLEDTVEDKQEVNVGKPLIAKLDMHRGLGRKTCFQTCL
    M) MSNGPYQSSAATSGGAGHYHSLQDPFHGVYHSHPGNPSNVTPADSCHCSRTPDAFISSFA
    N) HHASCHFSRSNVPVETTDEIPFSFSDRLRISEK
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
  • FIG. 1A. Western blots for RelB and MALT1 after 30 minutes pretreatment with indicated doses of compounds or vehicle, followed by proteasome inhibitor MG-132 (5 μM) treatment for 2 hours in OCI-LY3. clev=cleavage product of RelB.
  • FIG. 1B. Western blots for RelB with indicated doses of compounds or vehicle in OCI-LY3.
  • FIG. 2. Dose-response effect of compound 202 in luciferase activity of MALT1 GLOSENSOR™ reporter. Luciferase activity is increased by MALT1 cleavage of the reporter protein. RAJI (Burkitt's lymphoma) cells were treated with different concentrations of 202 for 1 hour, and subsequently stimulated with phorbol myristate acetate+ionomycin (PMA/IO) for 1 hour.
  • FIG. 3 shows a co-crystal structure of compound 101 and MALT1. Compound 101 is in the MALT1 paracaspase pocket.
  • FIG. 4 shows Scheme E3.
  • FIG. 5 shows Scheme E4.
  • DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS
  • Provided herein are compounds and pharmaceutical compositions that may inhibit MALT1, or a MALT1 variant, such as a fusion protein comprising a MALT1 sequence (e.g., API2-MALT1). The compounds and pharmaceutical compositions may be useful in methods provided herein for the treatment or prevention of proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease).
  • Compound provided herein may be useful in inhibiting cell proliferation, inducing apoptosis of a cell, or inhibiting cell adhesion in a subject or biological sample. In some embodiments, the cell is a lymphocyte. In some embodiments, the cell is a B-cell. In some embodiments, the cell is a T-cell. The compounds may also be useful inhibiting activation of NF-κB, inhibiting cleavage of A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1α, or MALT1, modulating cytokine production (e.g., inhibiting expression of IL-2, IL-6, IL-8, IL-10, or IL-17), inhibiting lymphocyte adhesion to fibronectin, or up-regulating expression of a gene (e.g. IκBNS, IκB, c-Rel, IRF4, IL-2, IL-6, c-Rel, or Ox40).
  • Without wishing to be bound to any particular theory, the compounds may irreversibly inhibit MALT1, or a variant thereof, by forming a covalent attachment between MALT1 and the inhibitor. In some embodiments, the fluoromethylketone group is able to covalently bind Cys464 of MALT1. The proximity of the fluoromethylketone moiety and Cys464 of MALT1 is shown in a co-crystal structure of the paracaspase binding pocket with compound 101 (See FIG. 3). In some embodiments, the inhibitor is not cleaved by MALT1. In some embodiments, the inhibitor is cleaved by MALT1 (e.g., after the arginine moiety). In some embodiments, the covalently bound inhibitor prevents binding of a MALT1 substrate.
  • Provided herein are compounds of Formula (I):
  • Figure US20190389904A2-20191226-C00006
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, wherein:
    • R3 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
    • R4 is hydrogen, halogen, or optionally substituted alkyl;
    • RN is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group;
    • or RN and either R3 or R4 are joined to form an optionally substituted heterocyclic ring, or R3 and R4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
    • R5 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
    • R6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
    • or R5 and R6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
    • R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group;
    • each occurrence of R8a and R8b is independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
    • L1 is a bond, an amino acid, or a dipeptide;
    • each of Rc and Rd is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group; and
    • each of RA1, RA2, RA3, and RA4 is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, optionally substituted sulfonyl, or a nitrogen protecting group, or any two of RA1, RA2, RA3, and RA4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • In certain embodiments, provided herein are compounds of Formula (I):
  • Figure US20190389904A2-20191226-C00007
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof, wherein:
    • R3 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
    • R4 is hydrogen, halogen, or optionally substituted alkyl;
    • RN is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group;
    • or RN and either R3 or R4 are joined to form an optionally substituted heterocyclic ring, or R3 and R4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
    • R5 is hydrogen, halogen, or optionally substituted alkyl;
    • R6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
    • or R5 and R6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
    • R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group;
    • each occurrence of R8a and R8b is independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
    • L1 is a bond, an amino acid, or a dipeptide;
    • each of Rc and Rd is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group; and
    • each of RA1, RA2, RA3, and RA4 is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, optionally substituted sulfonyl, or a nitrogen protecting group, or any two of RA1, RA2, RA3, and RA4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • In certain embodiments, the compound is of Formula (I):
  • Figure US20190389904A2-20191226-C00008
  • or a pharmaceutically acceptable salt, wherein:
    • R3 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
    • R4 is hydrogen, halogen, or optionally substituted alkyl;
    • RN is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group;
    • or RN and either R3 or R4 are joined to form an optionally substituted heterocyclic ring, or R3 and R4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
    • R5 is hydrogen, halogen, or optionally substituted alkyl;
    • R6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
    • or R5 and R6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
    • R is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group;
    • each occurrence of R8a and R8b is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
    • L1 is a bond, an amino acid, or a dipeptide;
    • each of Rc and Rd is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group; and
    • each of RA1, RA2, RA3, and RA4 is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, optionally substituted sulfonyl, or a nitrogen protecting group, or any two of RA1, RA2, RA3, and RA4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • In certain embodiments, the compounds is not of formula:
  • Figure US20190389904A2-20191226-C00009
  • In certain embodiments, R8 is not -L1-R8a. In certain embodiments, R8 is not —C(═O)R8b. In certain embodiments, R8b is not optionally substituted alkyl. In certain embodiments, R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group. In certain embodiments, R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group. In certain embodiments, each of R5 and R6 is not 3-gunaidinopropyl. In certain embodiments, each of R5 and R6 is not alkyl substituted with a guanidine or a guanidine derivative. In certain embodiments, each of R3 and R4 is not benzyl.
  • In certain embodiments, the compound of Formula (I) is a stereoisomer of formula:
  • Figure US20190389904A2-20191226-C00010
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is a stereoisomer of formula:
  • Figure US20190389904A2-20191226-C00011
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-A):
  • Figure US20190389904A2-20191226-C00012
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-A-1):
  • Figure US20190389904A2-20191226-C00013
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-A-2):
  • Figure US20190389904A2-20191226-C00014
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-A-3):
  • Figure US20190389904A2-20191226-C00015
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-B):
  • Figure US20190389904A2-20191226-C00016
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-B-1):
  • Figure US20190389904A2-20191226-C00017
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-B-2):
  • Figure US20190389904A2-20191226-C00018
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-B-3):
  • Figure US20190389904A2-20191226-C00019
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-C):
  • Figure US20190389904A2-20191226-C00020
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-C-1):
  • Figure US20190389904A2-20191226-C00021
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-D):
  • Figure US20190389904A2-20191226-C00022
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound of Formula (I) is of Formula (I-D-1):
  • Figure US20190389904A2-20191226-C00023
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the carbon to which R3 and R4 is chiral. In some embodiments, the carbon to which R3 and R4 is attached is in the (S)-configuration. In some embodiments, the carbon to which R3 and R4 is attached is in the (R)-configuration.
  • In certain embodiments, R3 and RN are joined to form an optionally substituted heterocyclic ring. In certain embodiments, R3 and RN are joined to form an optionally substituted azetidine ring. In certain embodiments, R3 and RN are joined to form an optionally substituted pyrrolidene ring. In certain embodiments, R3 and RN are joined to form an optionally substituted oxazole or thiozole ring. In certain embodiments, R3 and RN are joined to form an optionally substituted oxazolidine ring. In certain embodiments, R3 and RN are joined to form an optionally substituted thiazolidine ring. In certain embodiments, R3 and RN are joined to form an optionally substituted piperidine ring. In certain embodiments, R3 and RN are joined to form an optionally substituted morpholine ring. In certain embodiments, R4 and RN are joined to form an optionally substituted heterocyclic ring. In certain embodiments, R4 and RN are joined to form an optionally substituted pyrrolidene ring. In certain embodiments, R4 and RN are joined to form an optionally substituted piperidine ring. In certain embodiments, R3 and R4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring. In certain embodiments, R3 and R4 are joined to form an optionally substituted cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl ring. In certain embodiments, no combination of R3, R4 and RN is joined. In certain embodiments, the heterocyclic ring formed by joining R3 and RN is substituted with one or more (e.g., 1, 2, 3, 4, 5, or 6), as valency permits, substituents (e.g., substituents independently selected form the group consisting of halogen, substituted and unsubstituted C1-6 alkyl, —OR8a (e.g., —OH), and —CN).
  • In certain embodiments, R3 and RN are taken together as a moiety of formula:
  • Figure US20190389904A2-20191226-C00024
  • In certain embodiments, R3 and RN are taken together as a moiety of formula:
  • Figure US20190389904A2-20191226-C00025
  • In certain embodiments, R3 and RN are taken together as a moiety of formula:
  • Figure US20190389904A2-20191226-C00026
  • In certain embodiments, R4 and RN are taken together as a moiety of formula:
  • Figure US20190389904A2-20191226-C00027
  • As generally defined herein R is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • In some embodiments, R3 is hydrogen. In some embodiments, R3 is a non-hydrogen group. In certain embodiments, R3 is halogen. In certain embodiments, R3 is —F. In certain embodiments, R3 is —Cl, —Br, or —I.
  • In certain embodiments, R3 is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, R3 is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, R3 is methyl. In certain embodiments, R3 is ethyl, propyl, or butyl. In certain embodiments, R3 is substituted methyl (e.g., methyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen and —OR8a (e.g., —OH). In certain embodiments, R3 is —CH2OH. In certain embodiments, R3 is haloalkyl, e.g., —CHF2, —CHCl2, —CH2CHF2, —CH2CHCl2. In certain embodiments, R3 is perhaloalkyl, e.g., —CF3, —CF2CF3, —CCl3.
  • In certain embodiments, R3 is optionally substituted carbocyclyl, e.g., optionally substituted C3-6 carbocyclyl, optionally substituted C3-4 carbocyclyl, optionally substituted C4-5 carbocyclyl, or optionally substituted C5-6 carbocyclyl. In certain embodiments, R3 is unsubstituted carbocyclyl, e.g., unsubstituted C3-6 carbocyclyl. In some embodiments, R3 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In certain embodiments, R3 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl. In certain embodiments, R3 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • In certain embodiments, R3 is optionally substituted aryl, e.g., optionally substituted phenyl. In certain embodiments, R3 is unsubstituted aryl, e.g., unsubstituted phenyl. In certain embodiments, R3 is optionally substituted heteroaryl, e.g., optionally substituted 5-6 membered heteroaryl, or optionally substituted 9-10 membered bicyclic heteroaryl. In certain embodiments, R3 is unsubstituted heteroaryl, e.g., unsubstituted 5-6 membered heteroaryl, or unsubstituted 9-10 membered bicyclic heteroaryl. In certain embodiments, R3 is optionally substituted aralkyl, e.g., optionally substituted benzyl. In certain embodiments, R3 is optionally substituted heteroaralkyl, e.g., methyl substituted with an optionally substituted 5-6 membered heteroaryl ring. In certain embodiments, R3 is unsubstituted aralkyl, e.g., unsubstituted benzyl. In certain embodiments, R3 is unsubstituted heteroaralkyl, e.g., methyl substituted with an unsubstituted 5-6 membered heteroaryl ring.
  • In certain embodiments, R3 is of formula:
  • Figure US20190389904A2-20191226-C00028
  • In certain embodiments, R3 is of formula:
  • Figure US20190389904A2-20191226-C00029
  • In certain embodiments, R3 is of formula:
  • Figure US20190389904A2-20191226-C00030
  • As generally defined herein, R4 is hydrogen, halogen, or optionally substituted alkyl. In some embodiments, R4 is hydrogen. In some embodiments, R4 is a non-hydrogen group. In certain embodiments, R4 is halogen. In certain embodiments, R4 is —F. In certain embodiments, R4 is —Cl, —Br, or —I.
  • In certain embodiments, R4 is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, R4 is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, R4 is methyl. In certain embodiments, R4 is substituted methyl (e.g., methyl substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen and —OR8a (e.g., —OH). In certain embodiments, R4 is —CH2OH. In certain embodiments, R4 is ethyl, propyl, or butyl. In certain embodiments, R4 is haloalkyl, e.g., —CHF2, —CHCl2, —CH2CHF2, —CH2CHCl2. In certain embodiments, R4 is perhaloalkyl, e.g., —CF3, —CF2CF3, —CCl3.
  • In certain embodiments, R4 is of formula:
  • Figure US20190389904A2-20191226-C00031
  • In certain embodiments, R4 is of formula:
  • Figure US20190389904A2-20191226-C00032
  • In certain embodiments, R4 is of formula:
  • Figure US20190389904A2-20191226-C00033
  • As generally defined herein, RN is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group. In some embodiments, RN is hydrogen. In some embodiments, RN is a non-hydrogen group.
  • In certain embodiments, RN is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, RN is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, RN is methyl. In certain embodiments, RN is ethyl, propyl, or butyl.
  • In certain embodiments, RN is optionally substituted acyl, e.g., —CHO, —CO2H, or —C(═O)NH2. In certain embodiments, RN is —C(═O)Rf, —C(═O)ORf, —C(═O)NH(R′), or —C(═O)N(Rf)2, wherein each occurrence of Rf is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two Rf are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring. In certain embodiments, RN is —C(═O)Rf, and Rf is optionally substituted alkyl, e.g., —C(═O)Me. In certain embodiments, RN is —C(═O)Rf, and Rf is optionally substituted alkenyl. In certain embodiments, RN is —C(═O)Rf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, RN is —C(═O)ORf, and Rf is optionally substituted alkyl. In certain embodiments, RN is —C(═O)ORf, and Rf is optionally substituted alkenyl. In certain embodiments, RN is —C(═O)ORf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, RN is —C(═O)N(Rf)2, and at least one Rf is optionally substituted alkyl. In certain embodiments, RN is —C(═O)NHRf, and Rf is optionally substituted alkyl. In certain embodiments, RN is —C(═O)NHRf, and Rf is optionally substituted alkenyl. In certain embodiments, RN is —C(═O)NHRf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, RN is a nitrogen protecting group. In some embodiments, RN is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • In certain embodiments, the carbon to which R5 and R6 is chiral. In some embodiments, the carbon to which R5 and R6 is attached is in the (S)-configuration. In some embodiments, the carbon to which R5 and R6 is attached is in the (R)-configuration.
  • In certain embodiments, R5 and R6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring. In certain embodiments, R5 and R6 are joined to form an optionally substituted, 3-6 membered, monocyclic carbocyclic ring. In certain embodiments, R5 and R6 are joined to form an optionally substituted, cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl ring. In certain embodiments, R5 and R6 are joined to form an optionally substituted, 3-6 membered, monocyclic heterocyclic ring. In certain embodiments, R5 and R6 are joined to form an optionally substituted tetrahydropyran ring.
  • In certain embodiments, R5 and R6 are not joined. In certain embodiments, R5 is optionally substituted alkyl, e.g., optionally substituted C1-12 alkyl. In certain embodiments, R5 is unsubstituted alkyl, e.g., unsubstituted C1-12 alkyl.
  • As generally defined herein R6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
  • In some embodiments, R6 is hydrogen. In some embodiments, R6 is a non-hydrogen group. In certain embodiments, R6 is halogen. In certain embodiments, R6 is —F. In certain embodiments, R6 is —Cl, —Br, or —I.
  • In certain embodiments, R6 is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, R6 is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, R6 is methyl. In certain embodiments, R6 is ethyl, propyl, or butyl. In certain embodiments, R6 is haloalkyl, e.g., —CHF2, —CHCl2, —CH2CHF2, —CH2CHCl2. In certain embodiments, R6 is perhaloalkyl, e.g., —CF3, —CF2CF3, —CCl3.
  • In certain embodiments, R6 is optionally substituted carbocyclyl, e.g., optionally substituted C3-6 carbocyclyl, optionally substituted C3-4 carbocyclyl, optionally substituted C4-5 carbocyclyl, or optionally substituted C5-6 carbocyclyl. In certain embodiments, R6 is unsubstituted carbocyclyl, e.g., unsubstituted C3-6 carbocyclyl. In some embodiments, R6 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In certain embodiments, R6 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl. In certain embodiments, R6 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • In certain embodiments, R6 is optionally substituted aryl, e.g., optionally substituted phenyl. In certain embodiments, R6 is unsubstituted aryl, e.g., unsubstituted phenyl. In certain embodiments, R6 is optionally substituted heteroaryl, e.g., optionally substituted 5-6 membered heteroaryl, or optionally substituted 9-10 membered bicyclic heteroaryl. In certain embodiments, R6 is unsubstituted heteroaryl, e.g., unsubstituted 5-6 membered heteroaryl, or unsubstituted 9-10 membered bicyclic heteroaryl. In certain embodiments, R6 is optionally substituted aralkyl, e.g., optionally substituted benzyl. In certain embodiments, R6 is optionally substituted heteroaralkyl, e.g., methyl substituted with an optionally substituted 5-6 membered heteroaryl ring. In certain embodiments, R6 is unsubstituted aralkyl, e.g., unsubstituted benzyl. In certain embodiments, R6 is unsubstituted heteroaralkyl, e.g., methyl substituted with an unsubstituted 5-6 membered heteroaryl ring.
  • In certain embodiments, R6 is of formula:
  • Figure US20190389904A2-20191226-C00034
  • In certain embodiments, R6 is of formula:
  • Figure US20190389904A2-20191226-C00035
  • As generally defined herein, R5 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, R5 is hydrogen, halogen, or optionally substituted alkyl. In some embodiments, R5 is hydrogen. In some embodiments, R5 is a non-hydrogen group. In certain embodiments, R5 is halogen. In certain embodiments, R5 is —F. In certain embodiments, R5 is —Cl, —Br, or —I.
  • In certain embodiments, R5 is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, R5 is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, R5 is methyl. In certain embodiments, R5 is ethyl, propyl, or butyl. In certain embodiments, R5 is haloalkyl, e.g., —CHF2, —CHCl2, —CH2CHF2, —CH2CHCl2. In certain embodiments, R5 is perhaloalkyl, e.g., —CF3, —CF2CF3, —CCl3.
  • In certain embodiments, R5 is optionally substituted carbocyclyl, e.g., optionally substituted C3-6 carbocyclyl, optionally substituted C3-4 carbocyclyl, optionally substituted C4-5 carbocyclyl, or optionally substituted C5-6 carbocyclyl. In certain embodiments, R5 is unsubstituted carbocyclyl, e.g., unsubstituted C3-6 carbocyclyl. In some embodiments, R5 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • In certain embodiments, R5 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl. In certain embodiments, R5 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • In certain embodiments, R5 is optionally substituted aryl, e.g., optionally substituted phenyl. In certain embodiments, R5 is unsubstituted aryl, e.g., unsubstituted phenyl.
  • In certain embodiments, R5 is optionally substituted heteroaryl, e.g., optionally substituted 5-6 membered monocyclic heteroaryl, or optionally substituted 9-10 membered bicyclic heteroaryl. In certain embodiments, R5 is unsubstituted heteroaryl, e.g., unsubstituted 5-6 membered monocyclic heteroaryl, or unsubstituted 9-10 membered bicyclic heteroaryl.
  • In certain embodiments, R5 is optionally substituted aralkyl, e.g., optionally substituted benzyl. In certain embodiments, R5 is optionally substituted heteroaralkyl, e.g., methyl substituted with an optionally substituted 5-6 membered monocyclic heteroaryl ring. In certain embodiments, R5 is unsubstituted aralkyl, e.g., unsubstituted benzyl. In certain embodiments, R5 is unsubstituted heteroaralkyl, e.g., methyl substituted with an unsubstituted 5-6 membered monocyclic heteroaryl ring.
  • In certain embodiments, R5 is of formula:
  • Figure US20190389904A2-20191226-C00036
  • In certain embodiments, R5 is of formula:
  • Figure US20190389904A2-20191226-C00037
  • As generally defined herein, R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a.
  • In certain embodiments, R8 is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, R is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, R8 is methyl. In certain embodiments, R8 is ethyl, propyl, or butyl. In certain embodiments, R8 is haloalkyl, e.g., —CHF2, —CHCl2, —CH2CHF2, —CH2CHCl2. In certain embodiments, R8 is perhaloalkyl, e.g., —CF3, —CF2CF3, —CCl3. In certain embodiments, R8 is optionally substituted carbocyclyl, e.g., optionally substituted C3-6 carbocyclyl, optionally substituted C3-4 carbocyclyl, optionally substituted C4-5 carbocyclyl, or optionally substituted C5-6 carbocyclyl. In certain embodiments, R is unsubstituted carbocyclyl, e.g., unsubstituted C3-6 carbocyclyl. In some embodiments, R8 is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl. In certain embodiments, R8 is optionally substituted heterocyclyl, e.g., optionally substituted 3-6 membered heterocyclyl, optionally substituted 3-4 membered heterocyclyl, optionally substituted 4-5 membered heterocyclyl, or optionally substituted 5-6 membered heterocyclyl. In certain embodiments, R8 is unsubstituted heterocyclyl, e.g., unsubstituted 3-6 membered heterocyclyl, unsubstituted 3-4 membered heterocyclyl, unsubstituted 4-5 membered heterocyclyl, or unsubstituted 5-6 membered heterocyclyl.
  • In certain embodiments, R8 is —C(═O)R8b, wherein R8b is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted acyl. In certain embodiments, R8 is —C(═O)R8b, wherein R8b is hydrogen, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted acyl. In certain embodiments, R8 is —C(═O)R8b, and R8b is optionally substituted alkyl, e.g., —C(═O)Me. In certain embodiments, R8 is —C(═O)R8b, and R8b is optionally substituted alkenyl. In certain embodiments, R8 is —C(═O)R8b, and R8b is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, R8 is —C(═O)R8b, wherein R8b is optionally substituted alkenyl. In certain embodiments, R8 is —C(═O)OR8a, wherein R8a is optionally substituted alkenyl.
  • In certain embodiments, R8 is —C(═O)OR8a, wherein R8a is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, or an oxygen protecting group. In certain embodiments, R8 is —C(═O)OR8a, and R8a is optionally substituted alkyl. In certain embodiments, R8 is —C(═O)OR8a, and R8a is optionally substituted alkenyl. In certain embodiments, R8 is —C(═O)OR8a, and R8a is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, R8 is —C(═O)N(R8a)2, wherein each R8a is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, a nitrogen protecting group, or two R8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring. In certain embodiments, R8 is —C(═O)N(R8a)2, and at least one R8a is optionally substituted alkyl. In certain embodiments, R8 is —C(═O)NHR8a, and R8a is optionally substituted alkyl. In certain embodiments, R8 is —C(═O)NHR8a, and R8a is optionally substituted alkenyl. In certain embodiments, R8 is —C(═O)NHR8a, and R8a is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, R8 is optionally substituted sulfonyl, e.g., —S(═O)2OH. In certain embodiments, R8 is —S(═O)2R8a, wherein R8a is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, R8 is —S(═O)2R8a, and R8a is optionally substituted alkyl, e.g., —S(═O)2Me. In certain embodiments, R8 is —S(═O)2R8a, and R8a is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, R8 is a nitrogen protecting group. In some embodiments, R is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • In certain embodiments, R8 is of formula:
  • Figure US20190389904A2-20191226-C00038
  • wherein each instance of RA is independently hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, cyano, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted acyl, or two RA attached to neighboring atoms are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • In certain embodiments, at least one RA is hydrogen. In certain embodiments, each RA is hydrogen. In certain embodiments, at least one RA is halogen. In certain embodiments, each RA is halogen. In certain embodiments, at least one RA is substituted or unsubstituted alkyl (e.g., substituted or unsubstituted C1-6 alkyl). In certain embodiments, each RA is independently hydrogen, halogen, or substituted or unsubstituted C1-6 alkyl. In certain embodiments, each RA is independently halogen or substituted or unsubstituted C1-6 alkyl.
  • In certain embodiments, R8 is of formula:
  • Figure US20190389904A2-20191226-C00039
  • wherein X is N or CRA; Y is O, S, NRA, or C(RA)2; and each occurrence of RA is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, or a nitrogen protecting group, or two RA attached to neighboring atoms are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • In certain embodiments, R8 is of formula:
  • Figure US20190389904A2-20191226-C00040
  • wherein X is N or CRA; Y is O, S, NRA, or C(RA)2; and each occurrence of RA is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, or a nitrogen protecting group, or two RA attached to neighboring atoms are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • In certain embodiments, R8 is of formula:
  • Figure US20190389904A2-20191226-C00041
    Figure US20190389904A2-20191226-C00042
  • In certain embodiments, R8 is of formula:
  • Figure US20190389904A2-20191226-C00043
    Figure US20190389904A2-20191226-C00044
  • In certain embodiments, R is of formula:
  • Figure US20190389904A2-20191226-C00045
  • As generally defined herein, L1 is a bond, an amino acid, or a dipeptide. In certain embodiments, L1 is an L natural amino acid. In certain embodiments, L1 is a D natural amino acid. In certain embodiments, L1 is an unnatural amino acid. In certain embodiments, L1 is a dipeptide of two natural amino acids that are independently L or D. In certain embodiments, R is -L1-R8a, and L1 is an amino acid (e.g., a peptidically bound amino acid). In certain embodiments, R8 is -L1-R8a, and L1 is a dipeptide (e.g., two peptidically bound amino acids joined by a peptide bond).
  • In certain embodiments, L1 is of formula:
  • Figure US20190389904A2-20191226-C00046
  • wherein a is attached to R8a and b is attached to the nitrogen attached to Rd, and RL is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In some embodiments, RL is a side chain of a naturally occurring amino acid selected from glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • In certain embodiments, L1 is of formula:
  • Figure US20190389904A2-20191226-C00047
  • wherein a is attached to R8 and b is attached to the nitrogen attached to Rd, and RL is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In some embodiments, RL is a side chain of a naturally occurring amino acid (e.g., glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate).
  • In certain embodiments, L1 is of formula:
  • Figure US20190389904A2-20191226-C00048
  • wherein a is attached to R8a and b is attached to the nitrogen attached to Rd, and each RL is independently hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In some embodiments, each RL is independently a side chain of a naturally occurring amino acid selected from glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate.
  • In certain embodiments, L1 is of formula:
  • Figure US20190389904A2-20191226-C00049
  • wherein a is attached to R8 and b is attached to the nitrogen attached to Rd, and each RL is independently hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In some embodiments, each RL is independently a side chain of a naturally occurring amino acid (e.g., glycine, cysteine, selenocysteine, serine, threonine, asparagine, glutamine, alanine, isoleucine, leucine, methionine, phenylalanine, tyrosine, tryptophan, arginine, histidine, lysine, aspartate, or glutamate). In certain embodiments, two instances of RL are the same. In certain embodiments, two instances of RL are different from each other.
  • As generally defined herein Rc and Rd is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group. In certain embodiments, Rc is hydrogen. In certain embodiments, Rd is hydrogen. In certain embodiments, both Rc and Rd are hydrogen. In certain embodiments, Rc is hydrogen and Rd is a non-hydrogen group (e.g., methyl). In certain embodiments, Rc is a non-hydrogen group (e.g., methyl) and Rd is hydrogen. In certain embodiments, both Rc and Rd are non-hydrogen group (e.g., methyl).
  • In certain embodiments, Rc is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, Rc is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, Rc is methyl. In certain embodiments, Rc is ethyl, propyl, or butyl.
  • In certain embodiments, Rd is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, Rd is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, Rd is methyl. In certain embodiments, Rd is ethyl, propyl, or butyl.
  • In certain embodiments, Rc is optionally substituted acyl, e.g., —CHO, —CO2H, or —C(═O)NH2. In certain embodiments, Rc is —C(═O)Rf, —C(═O)ORf, —C(═O)NH(R′), or —C(═O)N(Rf)2, wherein each occurrence of Rf is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two Rf are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring. In certain embodiments, Rc is —C(═O)Rf, and Rf is optionally substituted alkyl, e.g., —C(═O)Me. In certain embodiments, Rc is —C(═O)Rf, and Rf is optionally substituted alkenyl. In certain embodiments, Rc is —C(═O)Rf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, Rc is —C(═O)ORf, and Rf is optionally substituted alkyl. In certain embodiments, Rc is —C(═O)ORf, and Rf is optionally substituted alkenyl. In certain embodiments, Rc is —C(═O)ORf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, Rc is —C(═O)N(Rf)2, and at least one Rf is optionally substituted alkyl. In certain embodiments, Rc is —C(═O)NHRf, and Rf is optionally substituted alkyl. In certain embodiments, Rc is —C(═O)NHRf, and Rf is optionally substituted alkenyl. In certain embodiments, Rc is —C(═O)NHRf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, Rc is a nitrogen protecting group. In some embodiments, Rc is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • In certain embodiments, Rd is optionally substituted acyl, e.g., —CHO, —CO2H, or —C(═O)NH2. In certain embodiments, Rd is —C(═O)Rf, —C(═O)ORf, —C(═O)NH(Rf), or —C(═O)N(Rf)2, wherein each occurrence of Rf is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two Rf are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring. In certain embodiments, Rd is —C(═O)Rf, and Rf is optionally substituted alkyl, e.g., —C(═O)Me. In certain embodiments, Rd is —C(═O)Rf, and Rf is optionally substituted alkenyl. In certain embodiments, Rd is —C(═O)Rf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, Rd is —C(═O)ORf, and Rf is optionally substituted alkyl. In certain embodiments, Rd is —C(═O)ORf, and Rf is optionally substituted alkenyl. In certain embodiments, Rd is —C(═O)ORf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, Rd is —C(═O)N(Rf)2, and at least one Rf is optionally substituted alkyl. In certain embodiments, Rd is —C(═O)NHRf, and Rf is optionally substituted alkyl. In certain embodiments, Rd is —C(═O)NHRf, and Rf is optionally substituted alkenyl. In certain embodiments, Rd is —C(═O)NHRf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, Rd is a nitrogen protecting group. In some embodiments, Rd is Bn, Boc, Cbz, Fmoc, trifluoroacetyl, triphenylmethyl, acetyl, tosyl, nosyl, brosyl, mesyl, or triflyl.
  • As generally defined herein independently hydrogen, optionally substituted alkyl, optionally substituted acyl, optionally substituted sulfonyl, or a nitrogen protecting group, or any two of RA1, RA2, RA3, and RA4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
  • In certain embodiments, RA1 and RA2 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, RA1 and RA3 or RA4 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, RA2 and RA3 or RA4 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, RA3 and RA4 are joined to form an optionally substituted heterocyclic ring. In certain embodiments, none of RA1, RA2, RA3, and RA4 are joined to form a ring.
  • In certain embodiments, each of RA1, RA2, RA3, and RA4 is hydrogen. In certain embodiments, each of RA1, RA2, and RA3 is hydrogen, and RA4 is a non-hydrogen group. In certain embodiments, each of RA1, RA3, and RA4 is hydrogen, and RA2 is a non-hydrogen group. In certain embodiments, RA1 and RA3 are hydrogen, and RA2 and RA4 are non-hydrogen groups.
  • In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is optionally substituted alkyl, e.g., optionally substituted C1-6 alkyl, optionally substituted C1-2 alkyl, optionally substituted C2-3 alkyl, optionally substituted C3-4 alkyl, optionally substituted C4-5 alkyl, or optionally substituted C5-6 alkyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is unsubstituted alkyl, e.g., unsubstituted C1-6 alkyl, unsubstituted C1-2 alkyl, unsubstituted C2-3 alkyl, unsubstituted C3-4 alkyl, unsubstituted C4-5 alkyl, or unsubstituted C5-6 alkyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is methyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is ethyl, propyl, or butyl.
  • In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is optionally substituted acyl, e.g., —CHO, —CO2H, or —C(═O)NH2. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)Rf, —C(═O)ORf, —C(═O)NH(Rf), or —C(═O)N(Rf)2, wherein each occurrence of Rf is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two Rf are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)Rf, and Rf is optionally substituted alkyl, e.g., —C(═O)Me. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)Rf, and Rf is optionally substituted alkenyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)Rf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)ORf, and Rf is optionally substituted alkyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)ORf, and Rf is optionally substituted alkenyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)ORf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)N(Rf)2, and at least one Rf is optionally substituted alkyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)NHRf, and Rf is optionally substituted alkyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)NHRf, and Rf is optionally substituted alkenyl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —C(═O)NHRf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is optionally substituted sulfonyl, e.g., —S(═O)2OH. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —S(═O)2Rf, wherein Rf is hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —S(═O)2Rf, and Rf is optionally substituted alkyl, e.g., —S(═O)2Me. In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is —S(═O)2Rf, and Rf is optionally substituted carbocyclyl, heterocyclyl, aryl, or heteroaryl.
  • In certain embodiments, at least one of RA1, RA2, RA3, or RA4 is a nitrogen protecting group. In some embodiments, RA4 is a nitrogen protecting group. In some embodiments, RA2 is a nitrogen protecting group. In some embodiments, RA2 is a nitrogen protecting group, and RA4 is a nitrogen protecting group. In some embodiments, the nitrogen protecting group is selected from the group consisting of selected from the group consisting of tosyl, 2,2,5,7,8-pentamethylchroman-6-yl, 2,2,4,5,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl, mesityl-2-sulfonyl, 4-methoxy-2,3,6-trimethylphenylsulfonyl, 1,2-dimethylindole-3-sulfonyl, tert-butoxycarbonyl, 5-dibenzosuberenyl, 5-dibenzosuberyl, 2-methoxy-5-dibenzosuberyl, trifluoroacetyl, benzyloxycarbonyl, allyloxycarbonyl, and —NO2.
  • Figure US20190389904A2-20191226-C00050
  • In certain embodiments, the guanidine moiety is of formula:
  • Figure US20190389904A2-20191226-C00051
  • In certain embodiments, the guanidine moiety is of formula:
  • Figure US20190389904A2-20191226-C00052
  • In certain embodiments, the guanidine moiety is of formula:
  • Figure US20190389904A2-20191226-C00053
  • In certain embodiments, the guanidine moiety is of formula:
  • Figure US20190389904A2-20191226-C00054
  • In certain embodiments, the guanidine moiety is of formula:
  • Figure US20190389904A2-20191226-C00055
  • In certain embodiments, the guanidine moiety is of formula:
  • Figure US20190389904A2-20191226-C00056
  • In certain embodiments, the compound is a compound listed in Table 1, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • TABLE 1
    Exemplary compounds of Formula (I)
    Figure US20190389904A2-20191226-C00057
    101
    Figure US20190389904A2-20191226-C00058
    102
    Figure US20190389904A2-20191226-C00059
    103
    Figure US20190389904A2-20191226-C00060
    104
    Figure US20190389904A2-20191226-C00061
    105
    Figure US20190389904A2-20191226-C00062
    106
    Figure US20190389904A2-20191226-C00063
    107
    Figure US20190389904A2-20191226-C00064
    108
    Figure US20190389904A2-20191226-C00065
    109
    Figure US20190389904A2-20191226-C00066
    110
    Figure US20190389904A2-20191226-C00067
    111
    Figure US20190389904A2-20191226-C00068
    112
    Figure US20190389904A2-20191226-C00069
    113
    Figure US20190389904A2-20191226-C00070
    114
    Figure US20190389904A2-20191226-C00071
    115
    Figure US20190389904A2-20191226-C00072
    116
    Figure US20190389904A2-20191226-C00073
    117
    Figure US20190389904A2-20191226-C00074
    118
    Figure US20190389904A2-20191226-C00075
    119
    Figure US20190389904A2-20191226-C00076
    120
    Figure US20190389904A2-20191226-C00077
    121
    Figure US20190389904A2-20191226-C00078
    122
    Figure US20190389904A2-20191226-C00079
    123
    Figure US20190389904A2-20191226-C00080
    124
    Figure US20190389904A2-20191226-C00081
    125
    Figure US20190389904A2-20191226-C00082
    126
    Figure US20190389904A2-20191226-C00083
    127
    Figure US20190389904A2-20191226-C00084
    128
    Figure US20190389904A2-20191226-C00085
    129
    Figure US20190389904A2-20191226-C00086
    130
    Figure US20190389904A2-20191226-C00087
    201
    Figure US20190389904A2-20191226-C00088
    202
    Figure US20190389904A2-20191226-C00089
    203
    Figure US20190389904A2-20191226-C00090
    204
    Figure US20190389904A2-20191226-C00091
    205
  • In certain embodiments, the compound is a compound listed in Table 2, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • TABLE 2
    Exemplary compounds of Formula (I)
    Figure US20190389904A2-20191226-C00092
    131
    Figure US20190389904A2-20191226-C00093
    132
    Figure US20190389904A2-20191226-C00094
    133
    Figure US20190389904A2-20191226-C00095
    134
    Figure US20190389904A2-20191226-C00096
    135
    Figure US20190389904A2-20191226-C00097
    136
    Figure US20190389904A2-20191226-C00098
    137
    Figure US20190389904A2-20191226-C00099
    138
    Figure US20190389904A2-20191226-C00100
    139
    Figure US20190389904A2-20191226-C00101
    140
    Figure US20190389904A2-20191226-C00102
    141
    Figure US20190389904A2-20191226-C00103
    142
    Figure US20190389904A2-20191226-C00104
    143
    Figure US20190389904A2-20191226-C00105
    144
    Figure US20190389904A2-20191226-C00106
    145
    Figure US20190389904A2-20191226-C00107
    146
    Figure US20190389904A2-20191226-C00108
    147
    Figure US20190389904A2-20191226-C00109
    148
    Figure US20190389904A2-20191226-C00110
    149
    Figure US20190389904A2-20191226-C00111
    150
    Figure US20190389904A2-20191226-C00112
    151
    Figure US20190389904A2-20191226-C00113
    152
    Figure US20190389904A2-20191226-C00114
    153
    Figure US20190389904A2-20191226-C00115
    154
    Figure US20190389904A2-20191226-C00116
    155
    Figure US20190389904A2-20191226-C00117
    156
    Figure US20190389904A2-20191226-C00118
    157
    Figure US20190389904A2-20191226-C00119
    158
    Figure US20190389904A2-20191226-C00120
    159
    Figure US20190389904A2-20191226-C00121
    Figure US20190389904A2-20191226-C00122
    Figure US20190389904A2-20191226-C00123
    Figure US20190389904A2-20191226-C00124
    Figure US20190389904A2-20191226-C00125
    Figure US20190389904A2-20191226-C00126
    Figure US20190389904A2-20191226-C00127
    Figure US20190389904A2-20191226-C00128
    Figure US20190389904A2-20191226-C00129
    Figure US20190389904A2-20191226-C00130
    Figure US20190389904A2-20191226-C00131
    Figure US20190389904A2-20191226-C00132
    Figure US20190389904A2-20191226-C00133
    Figure US20190389904A2-20191226-C00134
    Figure US20190389904A2-20191226-C00135
    Figure US20190389904A2-20191226-C00136
    Figure US20190389904A2-20191226-C00137
    Figure US20190389904A2-20191226-C00138
    Figure US20190389904A2-20191226-C00139
    Figure US20190389904A2-20191226-C00140
    Figure US20190389904A2-20191226-C00141
    Figure US20190389904A2-20191226-C00142
    Figure US20190389904A2-20191226-C00143
    Figure US20190389904A2-20191226-C00144
    Figure US20190389904A2-20191226-C00145
    Figure US20190389904A2-20191226-C00146
  • In certain embodiments, the compound described herein is of the formula:
  • Figure US20190389904A2-20191226-C00147
    Figure US20190389904A2-20191226-C00148
    Figure US20190389904A2-20191226-C00149
    Figure US20190389904A2-20191226-C00150
    Figure US20190389904A2-20191226-C00151
    Figure US20190389904A2-20191226-C00152
    Figure US20190389904A2-20191226-C00153
  • or a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug thereof.
  • In certain embodiments, the compound described herein is compound 172, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 171, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 135, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 174, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 116, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 143, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 173, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 149, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 151, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound described herein is compound 177, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
  • In certain embodiments, a compound described herein is a pharmaceutically acceptable salt, stereoisomer, tautomer, solvate, hydrate, polymorph, co-crystal, or prodrug of a formula described herein.
  • Methods of Preparing the Compounds
  • Compounds described herein may be synthesized according to the schemes described below and procedures presented in the Examples. The reagents and conditions described are intended to be exemplary and are not limiting. As appreciated by one of skill in the art, various analogs may be prepared by modifying the synthetic reactions such as using different starting materials, different reagents, and different reaction conditions (e.g., temperature, solvent, concentration, etc.).
  • In one aspect, provided herein are methods for the preparation of a compound of Formula (I) and intermediates thereto. Exemplary synthetic methods are shown in Schemes 1 and 2. Unless otherwise stated, variables depicted in the schemes below are as generally described herein for compounds of Formula (I).
  • Figure US20190389904A2-20191226-C00154
  • P1 is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted acyl, or an oxygen protecting group.
  • Step S-1 comprises coupling an amino acid of Formula (B) with an amino acid ester of Formula (B), to form a dipeptide ester of Formula (C). All methods of peptide coupling are contemplated. In certain embodiments, the step of coupling is performed in the presence of a carboxyl activating agent. In certain embodiments, the carboxyl activating agent is a carbodiimide. In some embodiments, the carbodiimide is dicyclohexylcarbodiimide (DCC), diisoproylcarbodiimide (DIC), or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC), or a derivative thereof. In certain embodiments, the carboxyl activating agent is a triazole. In some embodiments, the triazole is 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), 2-cyano-2-(hydroxyimino)acetate), HBTU, HATU, HCTU, TBTU, or PyBOP, or a derivative thereof. In certain embodiments, the step of coupling is performed in the presence of a base. In some embodiments, the base is a non-nucleophilic base. In some embodiments, the base is an amine. In some embodiments, the base is trimethyl amine, triethyl amine, diisopropyl ethyl amine (DIPEA), tetramethylpiperidine, 1,8-diazabicycloundec-7-ene (DBU), lutidene, or 2,6-di-tert-butylpyridine. In some embodiments, the coupling is performed in a solvent comprising DMF. In certain embodiments, P1 is unsubstituted C1-6 alkyl. In certain embodiments, P1 is methyl, ethyl, propyl, or butyl. In some embodiments, P1 is methyl. In certain embodiments, P1 is an oxygen protecting group. In certain embodiments, the oxygen protecting group is silyl, TBDPS, TBDMS, TIPS, TES, TMS, MOM, THP, t-Bu, Bn, allyl, acetyl, pivaloyl, or benzoyl.
  • Step S-2 comprises converting the ester of a dipeptide ester of Formula (C) to a carboxylic acid of Formula (D). In certain embodiments, the step of converting is an acid hydrolysis of the ester. In certain embodiments, the step of converting is a base hydrolysis of the ester. In certain embodiments, the step of converting is performed in the presence of a base. In some embodiments, the base is a hydroxide, carbonate, or phosphate salt. In some embodiments, the base is lithium hydroxide, sodium hydroxide, or potassium hydroxide.
  • Figure US20190389904A2-20191226-C00155
  • Step S-3 comprises coupling a dipeptide ester of Formula (C) with an arginine analog of Formula (E). All methods of peptide coupling are contemplated. In some embodiments, the carbodiimide is dicyclohexylcarbodiimide (DCC), dissoproylcarbodiimide (DIC), or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC), or a derivative thereof. In certain embodiments, the carboxyl activating agent is a triazole. In some embodiments, the triazole is 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), 2-cyano-2-(hydroxyimino)acetate), HBTU, HATU, HCTU, TBTU, or PyBOP, or a derivative thereof. In certain embodiments, the step of coupling is performed in the presence of a base. In some embodiments, the base is a non-nucleophilic base. In some embodiments, the base is an amine. In some embodiments, the base is trimethyl amine, triethyl amine, diisopropyl ethyl amine (DIPEA), tetramethylpiperidine, 1,8-diazabicycloundec-7-ene (DBU), lutidene, or 2,6-di-tert-butylpyridine. In some embodiments, the coupling is performed in a solvent comprising DMF.
  • In certain embodiments, the arginine analog of Formula (E) is a protected arginine (e.g., RA4 is protecting group, RA4 and RA2 are protecting groups). In some embodiments, each of RA1, RA2, RA3, and RA4 is hydrogen. In some embodiments, at least one of RA1, RA2, RA3, and RA4 is a non-hydrogen group. In some embodiments, the step of coupling (D) and (E) further comprises deprotecting the guanidine group (i.e., removing a non-hydrogen group from RA1, RA2, RA3, or RA4, or a combination thereof). In some embodiments, the guanidine moiety (e.g., in a compound of Formula (E) is of formula:
  • Figure US20190389904A2-20191226-C00156
    Figure US20190389904A2-20191226-C00157
  • The method of preparing a compound of Formula (I) or an intermediate thereto may optionally further comprise one or more steps of protecting a nitrogen, oxygen, or sulfur atom, or deprotecting a nitrogen, oxygen, or sulfur atom. In certain embodiments, the step of deprotecting or protecting comprises replacing group R8 or -L1-R8. In certain embodiments, the step of deprotecting or protecting comprises replacing group RN. In certain embodiments, the step of deprotecting or protecting comprises replacing group Rc. In certain embodiments, the step of deprotecting or protecting comprises replacing group Rd. In certain embodiments, the step of deprotecting or protecting comprises replacing group RA1. In certain embodiments, the step of deprotecting or protecting comprises replacing group RA2. In certain embodiments, the step of deprotecting or protecting comprises replacing group RA3. In certain embodiments, the step of deprotecting or protecting comprises replacing group RA4.
  • In one aspect, provided herein is a method of preparing a compound of Formula (I):
  • Figure US20190389904A2-20191226-C00158
  • or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, the method comprising coupling a carboxylic acid of Formula (D):
  • Figure US20190389904A2-20191226-C00159
  • or a salt thereof, and a compound of Formula (E):
  • Figure US20190389904A2-20191226-C00160
  • or a salt thereof, wherein R3, R4, RN, R5, R6, R, L1, Rc, Rd, RA1, RA2, RA3, and RA4 are as defined herein.
  • In certain embodiments, the method of preparing a compound of Formula (I) further comprises converting an ester of Formula (C):
  • Figure US20190389904A2-20191226-C00161
  • or a salt thereof, to a carboxylic acid of Formula (D), wherein P1 is optionally substituted alkyl, optionally substituted acyl, or an oxygen protecting group.
  • In certain embodiments, the method of preparing a compound of Formula (I) further comprises coupling a compound of Formula (A):
  • Figure US20190389904A2-20191226-C00162
  • or a salt thereof, and a compound of Formula (B):
  • Figure US20190389904A2-20191226-C00163
  • or a salt thereof, to yield an ester of Formula (C).
  • Pharmaceutical Compositions and Administration
  • The present invention also provides pharmaceutical compositions comprising a compound described herein (e.g., a compound of Formula (I)), or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, or prodrug thereof, and optionally a pharmaceutically acceptable excipient. In certain embodiments, the pharmaceutical composition described herein comprises a compound of Formula (I), or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, and a pharmaceutically acceptable excipient. In certain embodiments, the pharmaceutical composition is useful for treating a patient with a proliferative disease. In certain embodiments, the pharmaceutical composition is useful for treating a patient with cancer. In certain embodiments, the pharmaceutical composition is useful for treating a patient with a lymphoma. In certain embodiments, the pharmaceutical composition is useful for treating a patient with a leukemia. In certain embodiments, the pharmaceutical composition is useful for treating a patient with Hodgkin's lymphoma, Burkitt's lymphoma, non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, or MALT lymphoma. In certain embodiments, the pharmaceutical composition is useful for treating a patient with diffuse large B-cell lymphoma.
  • In certain embodiments, the compound described herein is provided in an effective amount in the pharmaceutical composition. In certain embodiments, the effective amount is a therapeutically effective amount. In certain embodiments, the effective amount is a prophylactically effective amount. In certain embodiments, the effective amount is an amount effective for treating a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the effective amount is an amount effective for preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the effective amount is an amount effective for reducing the risk of developing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the effective amount is an amount effective for inhibiting MALT1 in a subject. In certain embodiments, the effective amount is an amount effective for inhibiting a MALT1 fusion protein (e.g. API2-MALT1) in a subject. In certain embodiments, the effective amount is an amount effective for inhibiting the cleavage of A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1α, or MALT1 in a subject. In certain embodiments, the effective amount is an amount effective for inhibiting secretion of IL-6 in a subject.
  • In certain embodiments, the effective amount is an amount effective for inhibiting MALT1 by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, or at least about 98%. In certain embodiments, the effective amount is an amount effective for inhibiting MALT1 by not more than 10%, not more than 20%, not more than 30%, not more than 40%, not more than 50%, not more than 60%, not more than 70%, not more than 80%, not more than 90%, not more than 95%, or not more than 98%. In certain embodiments, the effective amount is an amount effective for a range of inhibition between a percentage described in this paragraph and another percentage described in this paragraph, inclusive.
  • Pharmaceutical compositions described herein can be prepared by any method known in the art of pharmacology. In general, such preparatory methods include bringing the compound described herein (i.e., the “active ingredient”) into association with a carrier or excipient, and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping, and/or packaging the product into a desired single- or multi-dose unit.
  • Pharmaceutical compositions can be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. A “unit dose” is a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage, such as one-half or one-third of such a dosage.
  • Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition described herein will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. The composition may comprise between 0.1% and 100% (w/w) active ingredient.
  • Pharmaceutically acceptable excipients used in the manufacture of provided pharmaceutical compositions include inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and perfuming agents may also be present in the composition.
  • Exemplary diluents include calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, and mixtures thereof.
  • Exemplary granulating and/or dispersing agents include potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose, and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (Veegum), sodium lauryl sulfate, quaternary ammonium compounds, and mixtures thereof.
  • Exemplary surface active agents and/or emulsifiers include natural emulsifiers (e.g., acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g., bentonite (aluminum silicate) and Veegum (magnesium aluminum silicate)), long chain amino acid derivatives, high molecular weight alcohols (e.g., stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g., carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (e.g., carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan monolaurate (Tween® 20), polyoxyethylene sorbitan (Tween® 60), polyoxyethylene sorbitan monooleate (Tween® 80), sorbitan monopalmitate (Span® 40), sorbitan monostearate (Span® 60), sorbitan tristearate (Span® 65), glyceryl monooleate, sorbitan monooleate (Span® 80), polyoxyethylene esters (e.g., polyoxyethylene monostearate (Myrj® 45), polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and Solutol®), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e.g., Cremophor®), polyoxyethylene ethers, (e.g., polyoxyethylene lauryl ether (Brij® 30)), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, Pluronic® F-68, poloxamer P-188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docusate sodium, and/or mixtures thereof.
  • Exemplary binding agents include starch (e.g., cornstarch and starch paste), gelatin, sugars (e.g., sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol, etc.), natural and synthetic gums (e.g., acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (Veegum®), and larch arabogalactan), alginates, polyethylene oxide, polyethylene glycol, inorganic calcium salts, silicic acid, polymethacrylates, waxes, water, alcohol, and/or mixtures thereof.
  • Exemplary preservatives include antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, antiprotozoan preservatives, alcohol preservatives, acidic preservatives, and other preservatives. In certain embodiments, the preservative is an antioxidant. In other embodiments, the preservative is a chelating agent.
  • Exemplary antioxidants include alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and sodium sulfite.
  • Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA) and salts and hydrates thereof (e.g., sodium edetate, disodium edetate, trisodium edetate, calcium disodium edetate, dipotassium edetate, and the like), citric acid and salts and hydrates thereof (e.g., citric acid monohydrate), fumaric acid and salts and hydrates thereof, malic acid and salts and hydrates thereof, phosphoric acid and salts and hydrates thereof, and tartaric acid and salts and hydrates thereof. Exemplary antimicrobial preservatives include benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and thimerosal.
  • Exemplary antifungal preservatives include butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and sorbic acid.
  • Exemplary alcohol preservatives include ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and phenylethyl alcohol.
  • Exemplary acidic preservatives include vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and phytic acid.
  • Other preservatives include tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, Glydant® Plus, Phenonip®, methylparaben, Germall® 115, Germaben® II, Neolone®, Kathon®, and Euxyl®.
  • Exemplary buffering agents include citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, and mixtures thereof.
  • Exemplary lubricating agents include magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, and mixtures thereof.
  • Exemplary natural oils include almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki, vetiver, walnut, and wheat germ oils. Exemplary synthetic oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and mixtures thereof.
  • Liquid dosage forms for oral and parenteral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredients, the liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (e.g., cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. In certain embodiments for parenteral administration, the conjugates described herein are mixed with solubilizing agents such as Cremophor®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and mixtures thereof.
  • Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can be a sterile injectable solution, suspension, or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
  • The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
  • In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form may be accomplished by dissolving or suspending the drug in an oil vehicle.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, (c) humectants such as glycerol, (d) disintegrating agents such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (e) solution retarding agents such as paraffin, (f) absorption accelerators such as quaternary ammonium compounds, (g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, (h) absorbents such as kaolin and bentonite clay, and (i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets, and pills, the dosage form may include a buffering agent.
  • Solid compositions of a similar type can be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the art of pharmacology. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(S) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of encapsulating compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type can be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • The active ingredient can be in a micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings, and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active ingredient can be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may comprise buffering agents. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(S) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of encapsulating agents which can be used include polymeric substances and waxes.
  • Dosage forms for topical and/or transdermal administration of a compound described herein may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, and/or patches. Generally, the active ingredient is admixed under sterile conditions with a pharmaceutically acceptable carrier or excipient and/or any needed preservatives and/or buffers as can be required. Additionally, the present disclosure contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of an active ingredient to the body. Such dosage forms can be prepared, for example, by dissolving and/or dispensing the active ingredient in the proper medium. Alternatively or additionally, the rate can be controlled by either providing a rate controlling membrane and/or by dispersing the active ingredient in a polymer matrix and/or gel.
  • Formulations suitable for topical administration include, but are not limited to, liquid and/or semi-liquid preparations such as liniments, lotions, oil-in-water and/or water-in-oil emulsions such as creams, ointments, and/or pastes, and/or solutions and/or suspensions. Topically administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient can be as high as the solubility limit of the active ingredient in the solvent. Formulations for topical administration may further comprise one or more of the additional ingredients described herein.
  • A pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation suitable for pulmonary administration via the buccal cavity. Such a formulation may comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 to about 7 nanometers, or from about 1 to about 6 nanometers. Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant can be directed to disperse the powder and/or using a self-propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container. Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nanometers and at least 95% of the particles by number have a diameter less than 7 nanometers. Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nanometer and at least 90% of the particles by number have a diameter less than 6 nanometers. Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.
  • Low boiling propellants generally include liquid propellants having a boiling point of below 65° F. at atmospheric pressure. Generally the propellant may constitute 50 to 99.9% (w/w) of the composition, and the active ingredient may constitute 0.1 to 20% (w/w) of the composition. The propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).
  • Pharmaceutical compositions described herein formulated for pulmonary delivery may provide the active ingredient in the form of droplets of a solution and/or suspension. Such formulations can be prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising the active ingredient, and may conveniently be administered using any nebulization and/or atomization device. Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate. The droplets provided by this route of administration may have an average diameter in the range from about 0.1 to about 200 nanometers.
  • Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition described herein. Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 to 500 micrometers. Such a formulation is administered by rapid inhalation through the nasal passage from a container of the powder held close to the nares.
  • Formulations for nasal administration may, for example, comprise from about as little as 0.1% (w/w) to as much as 100% (w/w) of the active ingredient, and may comprise one or more of the additional ingredients described herein. A pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation for buccal administration. Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may contain, for example, 0.1 to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, formulations for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising the active ingredient. Such powdered, aerosolized, and/or aerosolized formulations, when dispersed, may have an average particle and/or droplet size in the range from about 0.1 to about 200 nanometers, and may further comprise one or more of the additional ingredients described herein.
  • A pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation for ophthalmic administration. Such formulations may, for example, be in the form of eye drops including, for example, a 0.1-1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid carrier or excipient. Such drops may further comprise buffering agents, salts, and/or one or more other of the additional ingredients described herein. Other opthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are also contemplated as being within the scope of this disclosure.
  • Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with ordinary experimentation.
  • Compounds provided herein are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions described herein will be decided by a physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular subject or organism will depend upon a variety of factors including the disease being treated and the severity of the disorder; the activity of the specific active ingredient employed; the specific composition employed; the age, body weight, general health, sex, and diet of the subject; the time of administration, route of administration, and rate of excretion of the specific active ingredient employed; the duration of the treatment; drugs used in combination or coincidental with the specific active ingredient employed; and like factors well known in the medical arts.
  • The compounds and compositions provided herein can be administered by any route, including enteral (e.g., oral), parenteral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, topical (as by powders, ointments, creams, and/or drops), mucosal, nasal, bucal, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; and/or as an oral spray, nasal spray, and/or aerosol. Specifically contemplated routes are oral administration, intravenous administration (e.g., systemic intravenous injection), regional administration via blood and/or lymph supply, and/or direct administration to an affected site. In general, the most appropriate route of administration will depend upon a variety of factors including the nature of the agent (e.g., its stability in the environment of the gastrointestinal tract), and/or the condition of the subject (e.g., whether the subject is able to tolerate oral administration). In certain embodiments, the compound or pharmaceutical composition described herein is suitable for topical administration to the eye of a subject.
  • The exact amount of a compound required to achieve an effective amount will vary from subject to subject, depending, for example, on species, age, and general condition of a subject, severity of the side effects or disorder, identity of the particular compound, mode of administration, and the like. An effective amount may be included in a single dose (e.g., single oral dose) or multiple doses (e.g., multiple oral doses). In certain embodiments, when multiple doses are administered to a subject or applied to a tissue or cell, any two doses of the multiple doses include different or substantially the same amounts of a compound described herein. In certain embodiments, when multiple doses are administered to a subject or applied to a tissue or cell, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is three doses a day, two doses a day, one dose a day, one dose every other day, one dose every third day, one dose every week, one dose every two weeks, one dose every three weeks, or one dose every four weeks. In certain embodiments, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is one dose per day. In certain embodiments, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is two doses per day. In certain embodiments, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is three doses per day. In certain embodiments, when multiple doses are administered to a subject or applied to a tissue or cell, the duration between the first dose and last dose of the multiple doses is one day, two days, four days, one week, two weeks, three weeks, one month, two months, three months, four months, six months, nine months, one year, two years, three years, four years, five years, seven years, ten years, fifteen years, twenty years, or the lifetime of the subject, tissue, or cell. In certain embodiments, the duration between the first dose and last dose of the multiple doses is three months, six months, or one year. In certain embodiments, the duration between the first dose and last dose of the multiple doses is the lifetime of the subject, tissue, or cell.
  • In certain embodiments, a dose (e.g., a single dose, or any dose of multiple doses) described herein includes independently between 0.1 ag and 1 ag, between 0.001 mg and 0.01 mg, between 0.01 mg and 0.1 mg, between 0.1 mg and 1 mg, between 1 mg and 3 mg, between 3 mg and 10 mg, between 10 mg and 30 mg, between 30 mg and 100 mg, between 100 mg and 300 mg, between 300 mg and 1,000 mg, or between 1 g and 10 g, inclusive, of a compound described herein. In certain embodiments, a dose described herein includes independently between 1 mg and 3 mg, inclusive, of a compound described herein. In certain embodiments, a dose described herein includes independently between 3 mg and 10 mg, inclusive, of a compound described herein. In certain embodiments, a dose described herein includes independently between 10 mg and 30 mg, inclusive, of a compound described herein. In certain embodiments, a dose described herein includes independently between 30 mg and 100 mg, inclusive, of a compound described herein.
  • Dose ranges as described herein provide guidance for the administration of provided pharmaceutical compositions to an adult. The amount to be administered to, for example, a child or an adolescent can be determined by a medical practitioner or person skilled in the art and can be lower or the same as that administered to an adult. In certain embodiments, a dose described herein is a dose to an adult human whose body weight is 70 kg.
  • A compound or composition, as described herein, can be administered in combination with one or more additional pharmaceutical agents (e.g., therapeutically and/or prophylactically active agents). The compounds or compositions can be administered in combination with additional pharmaceutical agents that improve their activity (e.g., activity (e.g., potency and/or efficacy) in treating a disease in a subject in need thereof, in preventing a disease in a subject in need thereof, in reducing the risk to develop a disease in a subject in need thereof, and/or in inhibiting MALT1), improve bioavailability, improve safety, reduce drug resistance, reduce and/or modify metabolism, inhibit excretion, and/or modify distribution in a subject or cell. It will also be appreciated that the therapy employed may achieve a desired effect for the same disorder, and/or it may achieve different effects. In certain embodiments, a pharmaceutical composition described herein including a compound described herein and an additional pharmaceutical agent shows a synergistic effect that is absent in a pharmaceutical composition including one of the compound and the additional pharmaceutical agent, but not both.
  • The compound or composition can be administered concurrently with, prior to, or subsequent to one or more additional pharmaceutical agents, which are different from the compound described herein and may be useful as, e.g., combination therapies. Pharmaceutical agents include therapeutically active agents. Pharmaceutical agents also include prophylactically active agents. Pharmaceutical agents include small organic molecules such as drug compounds (e.g., compounds approved for human or veterinary use by the U.S. Food and Drug Administration as provided in the Code of Federal Regulations (CFR)), peptides, proteins, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, nucleoproteins, mucoproteins, lipoproteins, synthetic polypeptides or proteins, small molecules linked to proteins, glycoproteins, steroids, nucleic acids, DNAs, RNAs, nucleotides, nucleosides, oligonucleotides, antisense oligonucleotides, lipids, hormones, vitamins, and cells.
  • DLBCLs display a large mutational burden that affects multiple protein coding genes. Because of that, single-agent therapy would not be expected to eradicate disease. ABC-DLBCLs are more resistant to current chemotherapy regimens. For instance, ABC-DLBCL is less responsive to the standard of care, R-CHOP, with 40% 3-year progression free survival versus 74% for GCB-DLBCL. Combination therapy, e.g. R-CHOP, may be useful for treating and/or preventing DLBCLs. It is possible that MALT1 inhibition could sensitize ABC-DLBCLs to R-CHOP by disrupting cell survival signaling through NF-κB. It is also possible that MALT1-targeted therapy could synergistically kill lymphoma cells when a MALT1 inhibitor is combined with other more upstream BCR pathway inhibitors that might complement MALT1 inhibition. For example, inhibiting phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), spleen tyrosine kinase (SYK), or Bruton's tyrosine kinase (BTK) could allow the inhibition of pathways parallel to NF-κB like mitogen-activated protein kinase (MAPK), JNK, or NFAT (nuclear factor of activated T cells) to further inhibit survival and proliferation signals. Inhibitors of these proteins include: PI3K inhibitors BEZ235, BKM120, GDC-0941, BYL719 or CAL-101; SYK inhibitors R-406 or Fostamatinib; BTK inhibitors Ibrutinib or CC-292. Other potential targets for MALT1 combination therapy in ABC-DLBCL include other oncogenes frequently deregulated in this subtype of lymphoma: BCL2, BCL6, and MYC. BCL2 is frequently amplified and overexpressed in ABC-DLBCL. Several agents have been developed to inhibit BCL2 and its antiapoptotic family members, including small-molecule BH3-mimetic compounds such as ABT-737 and obatoclax. Simultaneous inhibition of MALT1 and BCL2 would be expected to reduce NF-κB activation and induce apoptosis, with potential to synergistically kill lymphoma cells. The BCL6 gene is also frequently translocated or mutated, resulting in its deregulated expression in ABC-DLBCL, where it suppresses cell-cycle checkpoint genes as well as terminal differentiation through repression of PRDM1 and other genes. Peptidomimetic and small-molecule inhibitors of BCL6 that disrupt its ability to form repression complexes have potent antilymphoma activity against DLBCLs, including ABC-DLBCLs. BCL6 inhibitors do not seem to induce toxic effects in animals, supporting the suitability of their use in combinatorial regimens. Concurrent inhibition of MALT1 paracaspase activity and BCL6 would be expected to simultaneously attenuate NF-κB activation and promote checkpoint growth suppression and apoptosis. MYC is frequently overexpressed in DLBCL. Deregulated expression of MYC affects many cellular processes, including proliferation, differentiation, and metabolism. An inhibitor of the bromodomain-containing protein 4 (BRD4), JQ1 downregulates MYC transcription, resulting in downregulation of MYC-induced target genes. JQ1 caused cell-cycle arrest and cellular senescence in multiple myeloma, Burkitt lymphoma, and acute myeloid leukemia. Combination of MALT1 inhibition with JQ1 is expected to synergistically collaborate to kill lymphoma by concomitantly affecting fundamental pathways for cell proliferation. Around 30% of ABC-DLBCLs display activating mutations of MYD88 that in a large proportion of the cases coexist with B-cell receptor activating mutations, therefore combination of MALT1 inhibition with TLR 7/8/9 antagonist or inhibition of MYD88 or its downstream targets IRAK1 and IRAK4 is expected to synergistically kill lymphoma by parallel inhibition of the two pathways. Hsp90 is a heat shock protein required for survival of cancer cells and in particular DLBCL. There are several inhibitors of Hsp90 in clinical trials including 17-N-Allylamino-17-demethoxygeldanamycin (17AAG) and PUH71. Hsp90 inhibition has been shown to inhibit NF-κB signaling at various levels and concomitant treatment with MALT1 inhibition is expected to have additive or synergistic effect in killing DLBCL.
  • In certain embodiments, the additional pharmaceutical agent is a pharmaceutical agent useful for treating and/or preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease). Each additional pharmaceutical agent may be administered at a dose and/or on a time schedule determined for that pharmaceutical agent. The additional pharmaceutical agents may also be administered together with each other and/or with the compound or composition described herein in a single dose or administered separately in different doses. The particular combination to employ in a regimen will take into account compatibility of the compound described herein with the additional pharmaceutical agent(s) and/or the desired therapeutic and/or prophylactic effect to be achieved. In general, it is expected that the additional pharmaceutical agent(s) in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
  • The additional pharmaceutical agents include, but are not limited to, anti-diabetic agents, anti-proliferative agents, anti-cancer agents, anti-angiogenesis agents, anti-inflammatory agents, anti-bacterial agents, anti-viral agents, cardiovascular agents, and pain-relieving agents. In certain embodiments, the additional pharmaceutical agent is an anti-cancer agent. In certain embodiments, the additional pharmaceutical agent is an anti-proliferative agent. In certain embodiments, the additional pharmaceutical agent is an anti-angiogenesis agent. In certain embodiments, the additional pharmaceutical agent is an anti-inflammatory agent. In certain embodiments, the additional pharmaceutical agent inhibits MALT1.
  • In certain embodiments, the compounds described herein or pharmaceutical compositions can be administered in combination with an anti-cancer therapy including, but not limited to, transplantation (e.g., bone marrow transplantation, stem cell transplantation), surgery, radiation therapy, immunotherapy, and chemotherapy.
  • In certain embodiments, the additional pharmaceutical agent is an anti-proliferative agent (e.g., anti-cancer agent). In certain embodiments, the additional pharmaceutical agent is an anti-leukemia agent. In certain embodiments, the additional pharmaceutical agent is an anti-lymphoma agent. In certain embodiments, the additional pharmaceutical agent is an anti-myelodysplasia agent. In certain embodiments, the additional pharmaceutical agent is an agent listed elsewhere herein.
  • In certain embodiments, the additional pharmaceutical agent is rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone, prednisolone, lenalidomide, etoposide, or bortezomib, or a combination thereof. In certain embodiments, the additional pharmaceutical agent is a proteasome inhibitor (e.g., bortezomib). In certain embodiments, the compound or pharmaceutical composition described herein is administered in combination with a chemotherapy regimen, such as CHOP or R-CHOP. CHOP comprises administration of cyclophosphamide, hydroxydaunorubicin, vincristine (ONCOVIN), and prednisone or prednisolone. R-CHOP adds rituximab to the CHOP regimen.
  • In certain embodiments, the additional pharmaceutical agent is an upstream-BCR-pathway inhibitor. In certain embodiments, the additional pharmaceutical agent is a PI3K inhibitor (e.g., BEZ235, BKM120, GDC-0941, BYL719, CAL-101, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the PI3K inhibitor is tozasertib, GSK1059615, PX866, LY294002, SF1126, XL147, XL765, BGT226, BAY80946, BAY841236, GDC-0941, GDC-0032, GDC-0980, GDC-0941, PX-866, GSK2126458, INK1117, ZSTK474, PWT33597, AEZS-136, PKI-587, PF-4691502, PF-05212384, wortmannin, demethoxyviridin, pictilisib, idelalisib, IPI-145, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof. In certain embodiments, the additional pharmaceutical agent is a SYK inhibitor (e.g., Staurosporine (antibiotic AM-2282), BAY 61-3606 (SYK Inhibitor IV), Piceatannol (astringinin), R406, PKC-412, R788 (Fostamatinib), 2-(2-aminoethylamino)-4-(3-trifluoromethylanilino)-pyrimidine-5-carboxamide (SYK Inhibitor II), MNS (SYK Inhibitor III), (2-oxo-morpholin-4-yl)-acetic acid, PRT062607 (P505-15, BIIB057), Entospletinib (GS-9973), PRT318, P505-15, ER-27139, R112, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a BTK inhibitor (e.g., GDC-0834, CGI-560, CGI-1746, HM-71224, CC-292 (AVL-292), ONO-4059, CNX-774, LFM-A13, PCI-32765 (Imbruvica), QL47, BGB-3111, ACP-196, Ibrutinib, LMA-13 (α-cyano-β-hydroxy-β-methyl-N-(2,5dibromophenyl)propenamide), DDE11, CI32765, AVL-292, AVL-101, PRN1008, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a MAPK inhibitor (e.g., AMG548, AS1940477, CBS3830, Dilmapimod (SB-6813123), Doramapimod (BIRB-796), FR-167653, JLU1124, LASSBio-998, Losmapimod (GW856553), LY2228820, LY3007113, ML3403, Pamapimod, PD-98059 (PD098059), PD-169316, PH-797804, R-130823, RO3201195, RPR-200765A, RPR-203494, RWJ-67657, SB-202190, SB-203580, SB-239063, SB-242235, SCIO-323, SD-282, Semapimod (CNI-1493), Soblidotin (TZT-1027), TAK-715, Talmapimod (SCIO-469), UO126, UR-13756, VX-702, VX-745, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a JNK inhibitor (e.g., AS007149, AS601245, Berberine, CDDO-Me (Triterpenoid), Curcumin, DA-125, DIM, echinocystic acid, Eupalmerin acetate, Isoobtusilactone A, Mangostin, Norcantharidin, Plumbagin, Rocaglamide, SAMC, SP-600125 (anthrapyrazolone), SP600129, Tanzisertib (CC-930), Tetrahydroxyquinone, Vitamin E succinate, XG-102 (D-JNKI-1), RWJ 67657, CC-401, Bentamapimod, Aloisine A, AEG 3482, BI 78D3, SU 3327, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a NFAT inhibitor (e.g., VIVIT peptide, MAGPHPVIVITGPHEE (SEQ ID NO: 3), cyclosporin-A (CsA), FK506, Tacrolimus, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a BCL2 inhibitor (e.g., ABT-737, ABT 263 (Navitoclax), Gossypol, (−)-Epigallocatechin gallate, Obatoclax, Licochalcone A, HA14-1, TW-37, EM20-25, 4-methoxy-2-[2-(5-methoxy-2-nitrosophenyl)ethyl]-1-nitrosobenzene, Nilotinib-d3, YC137, ABT 737-d8, ABT 263-d8, 2-Methoxy-antimycin A3, ABT-199 (Venetoclax, GDC-0199), Gambogic acid, Nilotinib, Obatoclax (GX15-070), UMI-77, Sabutoclax, AT101, BAM7, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a BCL6 inhibitor (e.g., 2-((5Z)-5-(5-bromo-2-oxo-1H-indol-3-ylidene)-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)butanedioic acid (CID5721353), or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a MYC inhibitor (e.g., F3680 (10058-F4), Omomyc, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a bromodomain-containing protein inhibitor (e.g., bromodomain-containing protein 2 (BRD2) inhibitor, bromodomain-containing protein 3 (BRD3) inhibitor, bromodomain-containing protein 4 (BRD4) inhibitor, TBP (TATA box binding protein)-associated factor protein (TAF) inhibitor, CREB-binding protein (CBP) inhibitor, or E1A binding protein p300 (EP300) inhibitor). In certain embodiments, the bromodomain-containing protein inhibitor is JQ1, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof. In certain embodiments, the bromodomain-containing protein inhibitor is I-BET 151, I-BET 762, OTX-015, TEN-010, CPI-203, CPI-0610, RVX-208, LY294002, BMS-986158, GSK525762, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof. In certain embodiments, the additional pharmaceutical agent is a TLR 7/8/9 antagonist (e.g., IRS 661, IRS 954, Chloroquine (NBP2-29386), Quinacrine (NBP2-29385), IMO-8400, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a MYD88 inhibitor (e.g., Pepinh-MYD, ST 2825, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is an IRAK1 inhibitor (e.g., 1-(2-(4-Morpholinyl)ethyl)-2-(3-nitrobenzoylamino)benzimidazole, Pacritinib, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is an IRAK4 inhibitor (e.g., 1-(2-(4-Morpholinyl)ethyl)-2-(3-nitrobenzoylamino)benzimidazole, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is a Hsp90 inhibitor (e.g., Tanespimycin (17-N-allylamino-17-demethoxygeldanamycin (17-AAG)), Luminespib (AUY-922, NVP-AUY922), 17-DMAG (Alvespimycin), Ganetespib (STA-9090), VER155008, PUH71, HSP990 (NVP-HSP990), BIIBO21, AICAR, Geldanamycin, IPI-504, Radicicol, Herbimycin A, Gedunin, Celastrol, Celastrus scandens, NVP-AUY922, Novobiocin, Macbecin I, MPC-3100, CAY10607, 17-GMB-APA-GA, 17-AEP-GA, 17-DMAP-GA, KW-2478, NVP-BEP800, AT13387, Nelfinavir, Novobiocin, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof). In certain embodiments, the additional pharmaceutical agent is BEZ235, BKM120, GDC-0941, BYL719, CAL-101, R-406, Fostamatinib, Ibrutinib, CC-292, ABT-737, obatoclax, JQ1, 17AAG, PUH71, or a pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, isotopically labeled derivative, or prodrug thereof.
  • Also encompassed by the disclosure are kits (e.g., pharmaceutical packs). The kits provided may comprise a pharmaceutical composition or compound described herein and optionally a container (e.g., a vial, ampule, bottle, syringe, and/or dispenser package, or other suitable container). In some embodiments, provided kits may optionally further include a second container comprising a pharmaceutical excipient for dilution or suspension of a pharmaceutical composition or compound described herein. In some embodiments, the pharmaceutical composition or compound described herein provided in the first container and the second container are combined to form one unit dosage form.
  • Thus, in one aspect, provided are kits including a first container comprising a compound or pharmaceutical composition described herein. In certain embodiments, the kits are useful for treating a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the kits are useful for preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the kits are useful for reducing the risk of developing proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the kits are useful for inhibiting MALT1, or a MALT1 fusion protein (e.g., API2-MALT1) in a subject.
  • In certain embodiments, a kit described herein further includes instructions for using the kit (e.g., instructions for using the compound or pharmaceutical composition included in the kit, such as instructions for administering the compound or pharmaceutical composition to a subject in need thereof). A kit described herein may also include information as required by a regulatory agency such as the U.S. Food and Drug Administration (FDA). In certain embodiments, the information included in the kits is prescribing information. In certain embodiments, the kits and instructions provide for treating a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the kits and instructions provide for preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the kits and instructions provide for reducing the risk of developing proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) in a subject in need thereof. In certain embodiments, the kits and instructions provide for inhibiting MALT1 in a subject or in an infectious microorganism. A kit described herein may include one or more additional pharmaceutical agents described herein as a separate composition.
  • Methods of Treatment and Uses
  • The present invention also provides methods for the treatment or prevention of a proliferative disease. In certain embodiments, the proliferative disease is cancer. In certain embodiments, the disease in an autoimmune disease. In certain embodiments, the proliferative disease is benign neoplasm, a disease associated with angiogenesis, an inflammatory disease, an autoinflammatory disease, or an autoimmune disease. In certain embodiments, the cancer is a lymphoma. In certain embodiments, the cancer is a leukemia. In certain embodiments, the cancer is Hodgkin's lymphoma. In certain embodiments, the cancer is non-Hodgkin's lymphoma. In certain embodiments, the cancer is Burkitt's lymphoma. In certain embodiments, the cancer is diffuse large B-cell lymphoma (DLBCL). In certain embodiments, the cancer is MALT lymphoma. In some embodiments, the cancer is germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) or primary mediastinal B-cell lymphoma (PMBL). In some embodiments, the cancer is activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL).
  • The compounds described herein (e.g., compounds of Formula (I)) may exhibit a therapeutic and/or preventative effect in the treatment of proliferative diseases (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease) and/or may exhibit a therapeutic or preventative effect superior to existing agents for treatment of a proliferative disease. Additionally, the compounds described herein (e.g., compounds of Formula (I)) may exhibit inhibitory activity towards mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) or a MALT1 fusion protein (e.g., API2-MALT1); may exhibit the ability to inhibit cleavage of a peptide selected from A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1α, and MALT1; may exhibit the ability to inhibit activation of nuclear factor-κB (NF-κB); may exhibit the ability to down-regulate expression of a gene selected from FLIP, A1, A20, IL-2, IL-6, IL-10 or STAT3; may exhibit the ability to inhibit phosphorylation of STAT3; may inhibit T-cell or B-cell activation and/or may inhibit T-cell or B-cell proliferation.
  • The compounds described herein (e.g., compounds of Formula (I)) may exhibit selective inhibition of MALT1 or a MALT1 fusion protein (e.g., API2-MALT1) versus inhibition of other proteins. In certain embodiments, the compound of Formula (I) selectively inhibits MALT1 or API2-MALT1 over another protease. In certain embodiments, the compound of Formula (I) selectively inhibits MALT1 or API2-MALT1 over another paracaspase. In certain embodiments, the selectivity versus inhibition of another protein is between about 2 fold and about 10 fold. In certain embodiments, the selectivity is between about 10 fold and about 50 fold. In certain embodiments, the selectivity is between about 50 fold and about 100 fold. In certain embodiments, the selectivity is between about 100 fold and about 500 fold. In certain embodiments, the selectivity is between about 500 fold and about 1000 fold. In certain embodiments, the selectivity is between about 1000 fold and about 5000 fold. In certain embodiments. In certain embodiments, the selectivity is between about 5000 fold and about 10000 fold. In certain embodiments, or at least about 10000 fold.
  • The present invention provides methods that may be useful for the treatment of an proliferative disease by administering a compound described herein, or pharmaceutically acceptable salt, solvate, hydrate, polymorph, co-crystal, tautomer, stereoisomer, or prodrug thereof, or pharmaceutical composition thereof, to a subject in need thereof. In certain embodiments, the compound is administered as a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof. In certain embodiments, the compound is administered as a pharmaceutically acceptable salt of the compound. In certain embodiments, the compound is administered as a specific stereoisomer or mixture of stereoisomers of the compound. In certain embodiments, the compound is administered as a specific tautomer or mixture of tautomers of the compound. In certain embodiments, the compound is administered as a pharmaceutical composition as described herein comprising the compound.
  • The present invention also provides uses of the inventive compounds, and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, prodrugs, and pharmaceutical compositions thereof, in the manufacture of medicaments for the treatment and prevention of a proliferative disease. In certain embodiments, the proliferative disease is cancer. In certain embodiments, the proliferative disease is benign neoplasm, a disease associated with angiogenesis, an inflammatory disease, an autoinflammatory disease, or an autoimmune disease. In certain embodiments, the cancer is a lymphoma. In certain embodiments, the cancer is a leukemia. In certain embodiments, the cancer is Hodgkin's lymphoma. In certain embodiments, the cancer is non-Hodgkin's lymphoma. In certain embodiments, the cancer is Burkitt's lymphoma. In certain embodiments, the cancer is diffuse large B-cell lymphoma (DLBCL). In certain embodiments, the cancer is MALT lymphoma. In some embodiments, the cancer is germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) or primary mediastinal B-cell lymphoma (PMBL). In some embodiments, the cancer is activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL).
  • In certain embodiments, the subject is an animal. The animal may be of either sex and may be at any stage of development. In certain embodiments, the subject described herein is a human. In certain embodiments, the subject is a non-human animal. In certain embodiments, the subject is a mammal. In certain embodiments, the subject is a non-human mammal. In certain embodiments, the subject is a domesticated animal, such as a dog, cat, cow, pig, horse, sheep, or goat. In certain embodiments, the subject is a companion animal, such as a dog or cat. In certain embodiments, the subject is a livestock animal, such as a cow, pig, horse, sheep, or goat. In certain embodiments, the subject is a zoo animal. In another embodiment, the subject is a research animal, such as a rodent (e.g., mouse, rat), dog, pig, or non-human primate. In certain embodiments, the animal is a genetically engineered animal. In certain embodiments, the animal is a transgenic animal (e.g., transgenic mice and transgenic pigs). In certain embodiments, the subject is a fish or reptile.
  • In certain embodiments, the proliferative disease to be treated or prevented using the compounds described herein is cancer. All types of cancers disclosed herein or known in the art are contemplated as being within the scope of the invention. In certain embodiments, the proliferative disease is a cancer associated with or dependent on MALT1. In certain embodiments, the proliferative disease is a cancer associated with or dependent on a MALT1 fusion protein (e.g., API2-MALT1). In certain embodiments, the proliferative disease is a cancer associated with dependence on B-cell lymphoma 10 (Bcl10). In certain embodiments, the proliferative disease is a cancer associated with dependence on caspase recruitment domain-containing protein (CARD1). In certain embodiments, the proliferative disease is a cancer associated with dependence on NF-κB. Exemplary cancers include, but are not limited to, hematological malignancies. Additional exemplary cancers include, but are not limited to, acoustic neuroma; adenocarcinoma; adrenal gland cancer; anal cancer; angiosarcoma (e.g., lymphangiosarcoma, lymphangioendotheliosarcoma, hemangiosarcoma); appendix cancer; benign monoclonal gammopathy; biliary cancer (e.g., cholangiocarcinoma); bladder cancer; breast cancer (e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, mammary cancer, medullary carcinoma of the breast, triple negative breast cancer (TNBC)); brain cancer (e.g., meningioma, glioblastomas, glioma (e.g., astrocytoma, oligodendroglioma), medulloblastoma); bronchus cancer; carcinoid tumor; cervical cancer (e.g., cervical adenocarcinoma); choriocarcinoma; chordoma; craniopharyngioma; colorectal cancer (e.g., colon cancer, rectal cancer, colorectal adenocarcinoma); connective tissue cancer; epithelial carcinoma; ependymoma; endotheliosarcoma (e.g., Kaposi's sarcoma, multiple idiopathic hemorrhagic sarcoma); endometrial cancer (e.g., uterine cancer, uterine sarcoma); esophageal cancer (e.g., adenocarcinoma of the esophagus, Barrett's adenocarcinoma); Ewing's sarcoma; ocular cancer (e.g., intraocular melanoma, retinoblastoma); familiar hypereosinophilia; gall bladder cancer; gastric cancer (e.g., stomach adenocarcinoma); gastrointestinal stromal tumor (GIST); germ cell cancer; head and neck cancer (e.g., head and neck squamous cell carcinoma, oral cancer (e.g., oral squamous cell carcinoma), throat cancer (e.g., laryngeal cancer, pharyngeal cancer, nasopharyngeal cancer, oropharyngeal cancer)); heavy chain disease (e.g., alpha chain disease, gamma chain disease, mu chain disease; hemangioblastoma; hypopharynx cancer; inflammatory myofibroblastic tumors; immunocytic amyloidosis; kidney cancer (e.g., nephroblastoma a.k.a. Wilms' tumor, renal cell carcinoma); liver cancer (e.g., hepatocellular cancer (HCC), malignant hepatoma); lung cancer (e.g., bronchogenic carcinoma, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung); leiomyosarcoma (LMS); mastocytosis (e.g., systemic mastocytosis); muscle cancer; myelodysplastic syndrome (MDS); mesothelioma; myeloproliferative disorder (MPD) (e.g., polycythemia vera (PV), essential thrombocytosis (ET), agnogenic myeloid metaplasia (AMM) a.k.a. myelofibrosis (MF), chronic idiopathic myelofibrosis, chronic myelocytic leukemia (CML), chronic neutrophilic leukemia (CNL), hypereosinophilic syndrome (HES)); neuroblastoma; neurofibroma (e.g., neurofibromatosis (NF) type 1 or type 2, schwannomatosis); neuroendocrine cancer (e.g., gastroenteropancreatic neuroendocrine tumor (GEP-NET), carcinoid tumor); osteosarcoma (e.g., bone cancer); ovarian cancer (e.g., cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma); papillary adenocarcinoma; pancreatic cancer (e.g., pancreatic andenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), Islet cell tumors); penile cancer (e.g., Paget's disease of the penis and scrotum); pinealoma; primitive neuroectodermal tumor (PNT); plasma cell neoplasia; paraneoplastic syndromes; intraepithelial neoplasms; prostate cancer (e.g., prostate adenocarcinoma); rectal cancer; rhabdomyosarcoma; salivary gland cancer; skin cancer (e.g., squamous cell carcinoma (SCC), keratoacanthoma (KA), melanoma, basal cell carcinoma (BCC)); small bowel cancer (e.g., appendix cancer); soft tissue sarcoma (e.g., malignant fibrous histiocytoma (MFH), liposarcoma, malignant peripheral nerve sheath tumor (MPNST), chondrosarcoma, fibrosarcoma, myxosarcoma); sebaceous gland carcinoma; small intestine cancer; sweat gland carcinoma; synovioma; testicular cancer (e.g., seminoma, testicular embryonal carcinoma); thyroid cancer (e.g., papillary carcinoma of the thyroid, papillary thyroid carcinoma (PTC), medullary thyroid cancer); urethral cancer; vaginal cancer; and vulvar cancer (e.g., Paget's disease of the vulva).
  • In certain embodiments, the cancer is a hematological malignancy. Exemplary hematological malignancies include, but are not limited to, leukemia, such as acute lymphoblastic leukemia (ALL) (e.g., B-cell ALL, T-cell ALL), acute myelocytic leukemia (AML) (e.g., B-cell AML, T-cell AML), chronic myelocytic leukemia (CML) (e.g., B-cell CML, T-cell CML), and chronic lymphocytic leukemia (CLL) (e.g., B-cell CLL, T-cell CLL)); lymphoma, such as Hodgkin lymphoma (HL) (e.g., B-cell HL, T-cell HL) and non-Hodgkin lymphoma (NHL) (e.g., B-cell NHL, such as diffuse large cell lymphoma (DLCL) (e.g., diffuse large B-cell lymphoma (DLBCL, e.g., activated B-cell (ABC) DLBCL (ABC-DLBCL))), follicular lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), mantle cell lymphoma (MCL), marginal zone B-cell lymphoma (e.g., mucosa-associated lymphoid tissue (MALT) lymphoma, nodal marginal zone B-cell lymphoma, splenic marginal zone B-cell lymphoma), primary mediastinal B-cell lymphoma, Burkitt's lymphoma, Waldenstrim's macroglobulinemia (WM, lymphoplasmacytic lymphoma), hairy cell leukemia (HCL), immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, central nervous system (CNS) lymphoma (e.g., primary CNS lymphoma and secondary CNS lymphoma); and T-cell NHL, such as precursor T-lymphoblastic lymphoma/leukemia, peripheral T-cell lymphoma (PTCL) (e.g., cutaneous T-cell lymphoma (CTCL) (e.g., mycosis fungoides, Sezary syndrome), angioimmunoblastic T-cell lymphoma, extranodal natural killer T-cell lymphoma, enteropathy type T-cell lymphoma, subcutaneous panniculitis-like T-cell lymphoma, and anaplastic large cell lymphoma); lymphoma of an immune privileged site (e.g., cerebral lymphoma, ocular lymphoma, lymphoma of the placenta, lymphoma of the fetus, testicular lymphoma); a mixture of one or more leukemia/lymphoma as described above; myelodysplasia; and multiple myeloma (MM).
  • In certain embodiments, the disease is an autoimmune disease. Exemplary autoimmune diseases include, but are not limited to, glomerulonephritis, Goodpasture's syndrome, necrotizing vasculitis, lymphadenitis, peri-arteritis nodosa, systemic lupus erythematosis, rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosis, psoriasis, ulcerative colitis, systemic sclerosis, dermatomyositis/polymyositis, anti-phospholipid antibody syndrome, scleroderma, pemphigus vulgaris, ANCA-associated vasculitis (e.g., Wegener's granulomatosis, microscopic polyangiitis), uveitis, Sjogren's syndrome, Crohn's disease, Reiter's syndrome, ankylosing spondylitis, Lyme disease, Guillain-Barré syndrome, Hashimoto's thyroiditis, and cardiomyopathy.
  • In certain embodiments, the disease is a cancer associated with a viral infection. In some embodiments, the disease is a cancer resulting from infection with an oncovirus. In some embodiments, the oncovirus is hepatitis A, hepatitis B, hepatitis C, human T-lymphotropic virus (HTLV), human papillomavirus (HPV), Kaposi's sarcoma-associated herpesvirus (HHV-8), Merkel cell polyomavirus, or Epstein-Barr virus (EBV). In some embodiments, the disease is human T-lymphotropic virus. In some embodiments, the disease is Kaposi's sarcoma-associated herpesvirus. In some embodiments, the disease is Epstein-Barr virus. Leukemias and lymphomas which may be associated with an oncoviral include: for HTLV, adult T-cell leukemia; for HHV-8, Castleman's disease and primary effusion lymphoma; and for EBV, Burkitt's lymphoma, Hogdkin's lymphoma, and post-transplant lymphoproliferative disease.
  • In another aspect, provided herein are methods of down-regulating expression of a gene in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or down-regulating expression of a gene in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)). In some embodiments, the gene which is down-regulated is a NF-κB dependent gene. Genes which may be down-regulated include, but are not limited to, FLIP, A1, A20, IL-2, IL-6, IL-8, IL-10 and STAT3.
  • In another aspect, provided herein are methods of inhibiting cell proliferation in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting cell proliferation in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)). In some embodiments, cell proliferation is inhibited for T-cells. In some embodiments, cell proliferation is inhibited for B-cells. In some embodiments, cell proliferation is inhibited for T-cells and B-cells.
  • In another aspect, provided herein are methods of inducing apoptosis of a cell in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inducing apoptosis of a cell in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)). In some embodiments, cell is a tumor cell. In some embodiments, the cell is a lymphocyte. In some embodiments, the cell is a T-cell. In some embodiments, the cell is a B-cell.
  • In another aspect, provided herein are methods of inhibiting adhesion of a cell in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting adhesion of a cell in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)). In some embodiments, cell is a tumor cell. In some embodiments, the cell is a lymphocyte. In some embodiments, the cell is a T-cell. In some embodiments, the cell is a B-cell.
  • In another aspect, provided herein are methods of inhibiting activation of T-cells or B-cells in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting activation of T-cells or B-cells in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • In another aspect, provided herein are methods of inhibiting activation of nuclear factor κB (NF-κB) in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting activation of nuclear factor κB (NF-κB) in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • In another aspect, provided herein are methods of inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting the activity of mucosa-associated lymphoid tissue lymphoma translation protein 1 (MALT1) or a MALT1 fusion protein in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)). In certain embodiments, the method inhibits the protease activity of MALT1. In certain embodiments, the method inhibits the protease activity of a MALT1 fusion protein (e.g., API2-MALT1). In certain embodiments, the method inhibits the protease activity of MALT1 or a MALT1 fusion protein for cleavage of a peptide substrate. In certain embodiments, the peptide substrate is A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1α, or MALT1. The inhibitor may selectively inhibit the protease activity of MALT1 or a MALT1 fusion protein for cleavage of a first peptide substrate over protease activity for cleavage of a second peptide substrate. In some embodiments, the first and/or second substrate is A20, Bcl10, RelB, CYLD, NIK, regnase-1, roquin-1, roquin-2, LIMA1α, or MALT1. In certain embodiments, the selectivity is between about 1.25 fold and about 5 fold. In certain embodiments, the selectivity is between about 5 fold and about 10 fold. In certain embodiments, the selectivity is between about 10 fold and about 25 fold. In certain embodiments, the selectivity is between about 25 fold and about 50 fold. In certain embodiments, the selectivity is between about 50 fold and about 100 fold. In certain embodiments, the selectivity is between about 100 fold and about 250 fold. In certain embodiments. In certain embodiments, the selectivity is between about 250 fold and about 500 fold. In certain embodiments, the selectivity is between about 500 fold and about 1000 fold. In certain embodiments, or at least about 1000 fold.
  • In another aspect, provided herein are methods of modulating cytokine production in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or modulating cytokine production in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)). In some embodiments, the method inhibits production of a cytokine selected from IL-2, IL-6, IL-8, IL-10, or IL-17. In some embodiments, the method promotes production of a cytokine selected from IL-2, IL-6, IL-8, IL-10, or IL-17. In some embodiments, the method inhibits production of cytokines in T-cells. In some embodiments, the method inhibits production of cytokines in B-cells.
  • In another aspect, provided herein are methods of inhibiting phosphorylation of a c-Jun N-terminal kinase (JNK) in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting phosphorylation of a c-Jun N-terminal kinase (JNK) in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • In another aspect, provided herein are methods of inhibiting lymphocyte adhesion to fibronectin in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting lymphocyte adhesion to fibronectin in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • In another aspect, provided herein are methods of up-regulating expression of a gene by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or up-regulating expression of a gene in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)). In some embodiments, the gene encodes a transcription factor or transcriptional regulator. In some embodiments, the transcription factor is c-Rel or IRF4. In some embodiments, the transcription factor is IκBNS or IκBζ. In some embodiments, the gene encodes a cytokine (e.g., IL-17). In some embodiments, the gene is up-regulating by inhibiting degradation of a mRNA. In some embodiments, the mRNA is encoding a T-cell effector gene. In some embodiments, the mRNA is encoding a gene selected from IL-2, IL-6, c-Rel, or Ox40.
  • In another aspect, provided herein are methods of inhibiting phosphorylation of STAT3 in a subject by administering to the subject a compound described herein (e.g., a compound of Formula (I)), or inhibiting phosphorylation of STAT3 in a biological sample by contacting the biological sample with a compound described herein (e.g., a compound of Formula (I)).
  • Certain methods described herein, may further comprise administering one or more additional pharmaceutical agents in combination with the compounds described herein, or administration of the compounds described herein may be combined with other treatment methods, e.g., an anti-cancer therapy. In certain embodiments, the compounds described herein or pharmaceutical compositions can be administered in combination with an anti-cancer therapy including, but not limited to, transplantation (e.g., bone marrow transplantation, stem cell transplantation), surgery, radiation therapy, immunotherapy, and chemotherapy. Pharmaceutical agents include therapeutically active agents. Pharmaceutical agents also include prophylactically active agents. Pharmaceutical agents include small organic molecules such as drug compounds (e.g., compounds approved for human or veterinary use by the U.S. Food and Drug Administration as provided in the Code of Federal Regulations (CFR)), peptides, proteins, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, nucleoproteins, mucoproteins, lipoproteins, synthetic polypeptides or proteins, small molecules linked to proteins, glycoproteins, steroids, nucleic acids, DNAs, RNAs, nucleotides, nucleosides, oligonucleotides, antisense oligonucleotides, lipids, hormones, vitamins, and cells. In certain embodiments, the additional pharmaceutical agent is a pharmaceutical agent useful for treating and/or preventing a proliferative disease (e.g., cancer (e.g., non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, MALT lymphoma), benign neoplasm, a disease associated with angiogenesis, an autoimmune disease, an inflammatory disease, an autoinflammatory disease). Each additional pharmaceutical agent may be administered at a dose and/or on a time schedule determined for that pharmaceutical agent. The additional pharmaceutical agents may also be administered together with each other and/or with the compound or composition described herein in a single dose or administered separately in different doses. The particular combination to employ in a regimen will take into account compatibility of the compound described herein with the additional pharmaceutical agent(s) and/or the desired therapeutic and/or prophylactic effect to be achieved. In general, it is expected that the additional pharmaceutical agent(s) in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
  • The additional pharmaceutical agents include, but are not limited to, anti-diabetic agents, anti-proliferative agents, anti-cancer agents, anti-angiogenesis agents, anti-inflammatory agents, anti-bacterial agents, anti-viral agents, cardiovascular agents, and pain-relieving agents. In certain embodiments, the additional pharmaceutical agent is an anti-cancer agent. In certain embodiments, the additional pharmaceutical agent is an anti-proliferative agent. In certain embodiments, the additional pharmaceutical agent is an anti-angiogenesis agent. In certain embodiments, the additional pharmaceutical agent is an anti-inflammatory agent. In certain embodiments, the additional pharmaceutical agent inhibits MALT1. In certain embodiments, the additional pharmaceutical agent is an anti-cancer agent. In certain embodiments, the additional pharmaceutical agent is an anti-leukemia agent. In certain embodiments, the additional pharmaceutical agent is an anti-leukemia agent. In certain embodiments, the additional pharmaceutical agent is ABITREXATE (methotrexate), ADE, Adriamycin RDF (doxorubicin hydrochloride), Ambochlorin (chlorambucil), ARRANON (nelarabine), ARZERRA (ofatumumab), BOSULIF (bosutinib), BUSULFEX (busulfan), CAMPATH (alemtuzumab), CERUBIDINE (daunorubicin hydrochloride), CLAFEN (cyclophosphamide), CLOFAREX (clofarabine), CLOLAR (clofarabine), CVP, CYTOSAR-U (cytarabine), CYTOXAN (cyclophosphamide), ERWINAZE (Asparaginase Erwinia Chrysanthemi), FLUDARA (fludarabine phosphate), FOLEX (methotrexate), FOLEX PFS (methotrexate), GAZYVA (obinutuzumab), GLEEVEC (imatinib mesylate), Hyper-CVAD, ICLUSIG (ponatinib hydrochloride), IMBRUVICA (ibrutinib), LEUKERAN (chlorambucil), LINFOLIZIN (chlorambucil), MARQIBO (vincristine sulfate liposome), METHOTREXATE LPF (methorexate), MEXATE (methotrexate), MEXATE-AQ (methotrexate), mitoxantrone hydrochloride, MUSTARGEN (mechlorethamine hydrochloride), MYLERAN (busulfan), NEOSAR (cyclophosphamide), ONCASPAR (Pegaspargase), PURINETHOL (mercaptopurine), PURIXAN (mercaptopurine), Rubidomycin (daunorubicin hydrochloride), SPRYCEL (dasatinib), SYNRIBO (omacetaxine mepesuccinate), TARABINE PFS (cytarabine), TASIGNA (nilotinib), TREANDA (bendamustine hydrochloride), TRISENOX (arsenic trioxide), VINCASAR PFS (vincristine sulfate), ZYDELIG (idelalisib), or a combination thereof. In certain embodiments, the additional pharmaceutical agent is an anti-lymphoma agent. In certain embodiments, the additional pharmaceutical agent is ABITREXATE (methotrexate), ABVD, ABVE, ABVE-PC, ADCETRIS (brentuximab vedotin), ADRIAMYCIN PFS (doxorubicin hydrochloride), ADRIAMYCIN RDF (doxorubicin hydrochloride), AMBOCHLORIN (chlorambucil), AMBOCLORIN (chlorambucil), ARRANON (nelarabine), BEACOPP, BECENUM (carmustine), BELEODAQ (belinostat), BEXXAR (tositumomab and iodine I 131 tositumomab), BICNU (carmustine), BLENOXANE (bleomycin), CARMUBRIS (carmustine), CHOP, CLAFEN (cyclophosphamide), COPP, COPP-ABV, CVP, CYTOXAN (cyclophosphamide), DEPOCYT (liposomal cytarabine), DTIC-DOME (dacarbazine), EPOCH, FOLEX (methotrexate), FOLEX PFS (methotrexate), FOLOTYN (pralatrexate), HYPER-CVAD, ICE, IMBRUVICA (ibrutinib), INTRON A (recombinant interferon alfa-2b), ISTODAX (romidepsin), LEUKERAN (chlorambucil), LINFOLIZIN (chlorambucil), Lomustine, MATULANE (procarbazine hydrochloride), METHOTREXATE LPF (methotrexate), MEXATE (methotrexate), MEXATE-AQ (methotrexate), MOPP, MOZOBIL (plerixafor), MUSTARGEN (mechlorethamine hydrochloride), NEOSAR (cyclophosphamide), OEPA, ONTAK (denileukin diftitox), OPPA, R-CHOP, REVLIMID (lenalidomide), RITUXAN (rituximab), STANFORD V, TREANDA (bendamustine hydrochloride), VAMP, VELBAN (vinblastine sulfate), VELCADE (bortezomib), VELSAR (vinblastine sulfate), VINCASAR PFS (vincristine sulfate), ZEVALIN (ibritumomab tiuxetan), ZOLINZA (vorinostat), ZYDELIG (idelalisib), or a combination thereof. In certain embodiments, the additional pharmaceutical agent is an anti-myelodysplasia agent. In certain embodiments, the additional pharmaceutical agent is REVLIMID (lenalidomide), DACOGEN (decitabine), VIDAZA (azacitidine), CYTOSAR-U (cytarabine), IDAMYCIN (idarubicin), CERUBIDINE (daunorubicin), or a combination thereof.
  • In certain embodiments, the additional pharmaceutical agent is an anti-macroglobulinemia agent. In certain embodiments, the additional pharmaceutical agent is LEUKERAN (chlorambucil), NEOSAR (cyclophosphamide), FLUDARA (fludarabine), LEUSTATIN (cladribine), or a combination thereof. In certain embodiments, the additional pharmaceutical agent is ABITREXATE (methotrexate), ABRAXANE (paclitaxel albumin-stabilized nanoparticle formulation), AC, AC-T, ADE, ADRIAMYCIN PFS (doxorubicin hydrochloride), ADRUCIL (fluorouracil), AFINITOR (everolimus), AFINITOR DISPERZ (everolimus), ALDARA (imiquimod), ALIMTA (pemetrexed disodium), AREDIA (pamidronate disodium), ARIMIDEX (anastrozole), AROMASIN (exemestane), AVASTIN (bevacizumab), BECENUM (carmustine), BEP, BICNU (carmustine), BLENOXANE (bleomycin), CAF, CAMPTOSAR (irinotecan hydrochloride), CAPOX, CAPRELSA (vandetanib), CARBOPLATIN-TAXOL, CARMUBRIS (carmustine), CASODEX (bicalutamide), CEENU (lomustine), CERUBIDINE (daunorubicin hydrochloride), CERVARIX (recombinant HPV bivalent vaccine), CLAFEN (cyclophosphamide), CMF, COMETRIQ (cabozantinib-s-malate), COSMEGEN (dactinomycin), CYFOS (ifosfamide), CYRAMZA (ramucirumab), CYTOSAR-U (cytarabine), CYTOXAN (cyclophosphamide), DACOGEN (decitabine), DEGARELIX, DOXIL (doxorubicin hydrochloride liposome), DOXORUBICIN HYDROCHLORIDE, DOX-SL (doxorubicin hydrochloride liposome), DTIC-DOME (dacarbazine), EFUDEX (fluorouracil), ELLENCE (epirubicin hydrochloride), ELOXATIN (oxaliplatin), ERBITUX (cetuximab), ERIVEDGE (vismodegib), ETOPOPHOS (etoposide phosphate), EVACET (doxorubicin hydrochloride liposome), FARESTON (toremifene), FASLODEX (fulvestrant), FEC, FEMARA (letrozole), FLUOROPLEX (fluorouracil), FOLEX (methotrexate), FOLEX PFS (methotrexate), FOLFIRI, FOLFIRI-BEVACIZUMAB, FOLFIRI-CETUXIMAB, FOLFIRINOX, FOLFOX, FU-LV, GARDASIL (recombinant human papillomavirus (HPV) quadrivalent vaccine), GEMCITABINE-CISPLATIN, GEMCITABINE-OXALIPLATIN, GEMZAR (gemcitabine hydrochloride), GILOTRIF (afatinib dimaleate), GLEEVEC (imatinib mesylate), GLIADEL (carmustine implant), GLIADEL WAFER (carmustine implant), HERCEPTIN (trastuzumab), HYCAMTIN (topotecan hydrochloride), IFEX (ifosfamide), IFOSFAMIDUM (ifosfamide), INLYTA (axitinib), INTRON A (recombinant interferon alfa-2b), IRESSA (gefitinib), IXEMPRA (ixabepilone), JAKAFI (ruxolitinib phosphate), JEVTANA (cabazitaxel), KADCYLA (ado-trastuzumab emtansine), KEYTRUDA (pembrolizumab), KYPROLIS (carfilzomib), LIPODOX (doxorubicin hydrochloride liposome), LUPRON (leuprolide acetate), LUPRON DEPOT (leuprolide acetate), LUPRON DEPOT-3 MONTH (leuprolide acetate), LUPRON DEPOT-4 MONTH (leuprolide acetate), LUPRON DEPOT-PED (leuprolide acetate), MEGACE (megestrol acetate), MEKINIST (trametinib), METHAZOLASTONE (temozolomide), METHOTREXATE LPF (methotrexate), MEXATE (methotrexate), MEXATE-AQ (methotrexate), MITOXANTRONE HYDROCHLORIDE, MITOZYTREX (mitomycin c), MOZOBIL (plerixafor), MUSTARGEN (mechlorethamine hydrochloride), MUTAMYCIN (mitomycin c), MYLOSAR (azacitidine), NAVELBINE (vinorelbine tartrate), NEOSAR (cyclophosphamide), NEXAVAR (sorafenib tosylate), NOLVADEX (tamoxifen citrate), NOVALDEX (tamoxifen citrate), OFF, PAD, PARAPLAT (carboplatin), PARAPLATIN (carboplatin), PEG-INTRON (peginterferon alfa-2b), PEMETREXED DISODIUM, PERJETA (pertuzumab), PLATINOL (cisplatin), PLATINOL-AQ (cisplatin), POMALYST (pomalidomide), prednisone, PROLEUKIN (aldesleukin), PROLIA (denosumab), PROVENGE (sipuleucel-t), REVLIMID (lenalidomide), RUBIDOMYCIN (daunorubicin hydrochloride), SPRYCEL (dasatinib), STIVARGA (regorafenib), SUTENT (sunitinib malate), SYLATRON (peginterferon alfa-2b), SYLVANT (siltuximab), SYNOVIR (thalidomide), TAC, TAFINLAR (dabrafenib), TARABINE PFS (cytarabine), TARCEVA (erlotinib hydrochloride), TASIGNA (nilotinib), TAXOL (paclitaxel), TAXOTERE (docetaxel), TEMODAR (temozolomide), THALOMID (thalidomide), TOPOSAR (etoposide), TORISEL (temsirolimus), TPF, TRISENOX (arsenic trioxide), TYKERB (lapatinib ditosylate), VECTIBIX (panitumumab), VEIP, VELBAN (vinblastine sulfate), VELCADE (bortezomib), VELSAR (vinblastine sulfate), VEPESID (etoposide), VIADUR (leuprolide acetate), VIDAZA (azacitidine), VINCASAR PFS (vincristine sulfate), VOTRIENT (pazopanib hydrochloride), WELLCOVORIN (leucovorin calcium), XALKORI (crizotinib), XELODA (capecitabine), XELOX, XGEVA (denosumab), XOFIGO (radium 223 dichloride), XTANDI (enzalutamide), YERVOY (ipilimumab), ZALTRAP (ziv-aflibercept), ZELBORAF (vemurafenib), ZOLADEX (goserelin acetate), ZOMETA (zoledronic acid), ZYKADIA (ceritinib), ZYTIGA (abiraterone acetate), or a combination thereof.
  • In certain embodiments, the additional pharmaceutical agent is rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone, prednisolone, lenalidomide, etoposide, or bortezomib, or a combination thereof. In certain embodiments, the additional pharmaceutical agent is a proteasome inhibitor (e.g., bortezomib). In certain embodiments, the compound or pharmaceutical composition described herein is administered in combination with a chemotherapy regimen, such as CHOP or R-CHOP. CHOP comprises administration of cyclophosphamide, hydroxydaunorubicin, vincristine (ONCOVIN), prednisone, prednisolone, or rituximab.
  • EXAMPLES
  • In order that the invention described herein may be more fully understood, the following examples are set forth. The examples described in this application are offered to illustrate the compounds, pharmaceutical compositions, and methods provided herein and are not to be construed in any way as limiting their scope.
  • Synthesis of the Compounds
  • Exemplary compounds of Formula (I) were prepared according to the Schemes E1 to E4. Generally, the sequence begins with preparation of a dipeptide ester (e.g., DE-101) by coupling of two protected amino acids. Hydrolysis of the ester affords a dipeptide acid (e.g., DA-101), which is coupled with an arginine analog followed by deprotection to give the Compound of Formula (I) (e.g., 101).
  • Compounds 101-111 were prepared according to Scheme E1. For Compound 101, N-((benzyloxy)carbonyl) protected valine and proline methyl ester were combined, and the methyl ester deprotected with base to give the dipeptide acid Z-VP. The second peptide bond was formed by coupling Pmc-arginine-fmk with the dipeptide acid. Deprotection of the guanidine with TFA afforded compound 101 (Z-VPR-fmk). Compounds 102-111 were made by an analogous route with different amino acids in place of valine or proline, or both.
  • Figure US20190389904A2-20191226-C00164
  • Benzyl ((S)-1-((S)-2-(((S)-1-fluoro-6-guanidino-2-oxohexan-3-yl)carbamoyl)pyrrolidin-1-yl)-3-methyl-1-oxobutan-2-yl) carbamate 2,2,2-trifluoroacetate (Compound 101)
  • Figure US20190389904A2-20191226-C00165
  • (S)—N—(N-(4-amino-6-fluoro-5-oxohexyl)carbamimidoyl)-2,2,5,7,8-pentamethylchromane-6- sulfonamide 2,2,2-trifluoroacetate (PmcR-fmk, 0.10 g, 0.175 mmol), HATU (0.166 g, 0.438 mmol) and DIPEA (0.38 mL, 2.19 mmol) were added to a solution of ((benzyloxy)carbonyl)-L-valyl-L-proline (0.084 g, 0.241 mmol) in DMF (3 mL) and the mixture was stirred for 10 minutes. The reaction mixture was purified by reverse-phase HPLC (10-100% CH3CN in H2O) and the resulting brown oil was dissolved in a mixture of 90% TFA in DCM (30 mL) and stirred for 1 hour. The solvent was removed under reduced pressure and the residue purified by reverse-phase HPLC (1-50% CH3CN in H2O) to give a brown oil (0.018 g, 16% yield over 2 steps). 1H NMR (500 MHz, d6-DMSO) δ 8.51 (d, 1H), 7.48 (t, 1H), 7.42 (d, 1H), 7.36 (m, 5H), 5.21 (dd, 1H), 5.12 (dd, 1H), 5.05 (d, 1H), 4.99 (d, 1H), 4.31 (m, 1H), 4.20 (m, 1H), 4.05 (m, 1H), 3.75 (m, 1H), 3.58 (m, 1H), 3.09 (m, 2H), 2.09 (m, 1H), 1.90 (m, 3H), 1.78 (m, 2H), 1.48 (m, 3H), 0.91 (d, 3H), 0.88 (s, 3H); 19F NMR (500 MHz) δ −232.48 (t, 1F); MS (m/z): 521.4 [M+1]+.
  • ((Benzyloxy)carbonyl)-L-valyl-L-proline (DA-101)
  • Figure US20190389904A2-20191226-C00166
  • LiOH monohydrate (0.116 g, 2.76 mmol) in H2O (20 mL) was added to a solution of methyl ((benzyloxy)carbonyl)-L-valyl-L-prolinate (0.50 g, 1.38 mmol) in THF (50 mL). The reaction mixture was stirred for 4 hours, then diluted with H2O (50 mL), acidified to pH 4 with 3N HCl solution and extracted with EtOAc (3×50 mL). The combined organic layer was washed with brine, dried (MgSO4) and concentrated to give a white solid (0.45 g, 94% yield). MS (m/z): 348.3 [M+1]+.
  • Methyl ((benzyloxy)carbonyl)-L-valyl-L-prolinate (DE-101)
  • Figure US20190389904A2-20191226-C00167
  • HATU (3.03 g, 7.95 mmol) and DIPEA (3.46 mL, 19.9 mmol) were added to a solution of ((benzyloxy)carbonyl)-L-valine (1.0 g, 3.98 mmol) and methyl L-prolinate (0.51 g, 3.98 mmol) in DCM (75 mL). The reaction mixture was stirred for 30 minutes, then quenched with water (50 mL) and extracted with DCM (3×50 mL). The combined organic layer was washed with brine, dried (MgSO4) and concentrated. The residue was purified by column chromatography (10-40% EtOAc in Hexanes) to give a colorless oil (1.31 g, 91% yield). MS (m/z): 363.8 [M+1]+.
  • Figure US20190389904A2-20191226-C00168
  • Compound 112 was made according to Scheme E2. N-methyl-N-tert-butyloxycarbonyl was coupled with proline methyl ester. The Boc groups was removed and replaced with N-((benzyloxy)carbonyl). Base hydrolysis of the ester gave dipeptide acid DA-112, which was coupled with PmcR-fmk and deprotected to give compound 112 (Cbz-N-Me-VPR-fmk).
  • Compounds 113 to 130 with various R8 groups were made according to Scheme E3 (FIG. 4). N-tert-butyloxycarbonyl-valine and methyl L-prolinate were coupled and the Boc group removed to give methyl L-valyl-L-prolinate. Amides were formed by reaction with acids (RCO2H) or acyl chloride (RCOCl), ureas by reaction with isocyanates (RNCO), and sulfonamides by reaction with sulfonyl chloride (RSO2Cl). Analogously to Compound 101, the proline methyl ester was hydrolyzed and the dipeptide acids coupled with Pmc-R-fmk.
  • Compounds 131 to 159 were prepared by similar methods to those described in Schemes E2 and E3. Compounds 141 and 150 were prepared from the corresponding dipeptide acids and the Pmc-R-fmk intermediate prepared from the D-arginine.
  • Figure US20190389904A2-20191226-C00169
    Figure US20190389904A2-20191226-C00170
  • Figure US20190389904A2-20191226-C00171
  • Compounds 160 to 186 were prepared by similar methods to those described in Schemes E2, E3, and E13 from the corresponding dipeptide acids and (S)—N—(N-(4-amino-6-fluoro-5-oxohexyl)carbamimidoyl)-2,2,5,7,8-pentamethylchromane-6-sulfonamide or the Pbf-protected arginine fluoromethyl ketone: (S)—N—(N-(4-amino-6-fluoro-5-oxohexyl)carbamimidoyl)-2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonamide. Compounds 161 and 166 were prepared from the corresponding dipeptide acids and the Pbf-R-fmk intermediate derived from D-arginine. Compound 187 was prepared as described in Scheme E6.
  • Compounds 101 to 187 are listed in Table E1 with mass spectrometry data and the corresponding dipeptide acid or amine used in their preparation.
  • TABLE E1
    Characterization data for compounds 101 to 187.
    m/z
    Com- [M + Dipeptide
    pound Formula/Name 1]+ acid
    101
    Figure US20190389904A2-20191226-C00172
    521.4 DA-101
    102
    Figure US20190389904A2-20191226-C00173
    561.5 DA-102
    103
    Figure US20190389904A2-20191226-C00174
    535.5 DA-103
    104
    Figure US20190389904A2-20191226-C00175
    555.3 DA-104
    105
    Figure US20190389904A2-20191226-C00176
    556.6 DA-105
    106
    Figure US20190389904A2-20191226-C00177
    DA-105
    107
    Figure US20190389904A2-20191226-C00178
    535.9 DA-107
    108
    Figure US20190389904A2-20191226-C00179
    575.8 DA-108
    109
    Figure US20190389904A2-20191226-C00180
    537.7 DA-109
    110
    Figure US20190389904A2-20191226-C00181
    537.4 DA-110
    111
    Figure US20190389904A2-20191226-C00182
    535.7 DA-111
    112
    Figure US20190389904A2-20191226-C00183
    535.7 DA-112
    113
    Figure US20190389904A2-20191226-C00184
    491.3 DA-113
    114
    Figure US20190389904A2-20191226-C00185
    571.4 DA-114
    115
    Figure US20190389904A2-20191226-C00186
    569.3 DA-115
    116
    Figure US20190389904A2-20191226-C00187
    569.4 DA-116
    117
    Figure US20190389904A2-20191226-C00188
    505.4 DA-117
    118
    Figure US20190389904A2-20191226-C00189
    585.4 DA-118
    119
    Figure US20190389904A2-20191226-C00190
    519.6 DA-119
    120
    Figure US20190389904A2-20191226-C00191
    497.4 DA-120
    121
    Figure US20190389904A2-20191226-C00192
    521.5 DA-121
    122
    Figure US20190389904A2-20191226-C00193
    521.7 DA-122
    123
    Figure US20190389904A2-20191226-C00194
    521.6 DA-123
    124
    Figure US20190389904A2-20191226-C00195
    495.6 DA-124
    125
    Figure US20190389904A2-20191226-C00196
    521.5 DA-125
    126
    Figure US20190389904A2-20191226-C00197
    516.1 DA-126
    127
    Figure US20190389904A2-20191226-C00198
    576.8 DA-127
    128
    Figure US20190389904A2-20191226-C00199
    583.4 DA-128
    129
    Figure US20190389904A2-20191226-C00200
    506.3 DA-129
    130
    Figure US20190389904A2-20191226-C00201
    606.1 DA-130
    131
    Figure US20190389904A2-20191226-C00202
    576.8 DA-131
    132
    Figure US20190389904A2-20191226-C00203
    589.8 DA-132
    133
    Figure US20190389904A2-20191226-C00204
    548.5 DA-133
    134
    Figure US20190389904A2-20191226-C00205
    516.5 DA-134
    135
    Figure US20190389904A2-20191226-C00206
    559.6 DA-135
    136
    Figure US20190389904A2-20191226-C00207
    525.6 DA-136
    137
    Figure US20190389904A2-20191226-C00208
    567.7 DA-137
    138
    Figure US20190389904A2-20191226-C00209
    575.6 DA-138
    139
    Figure US20190389904A2-20191226-C00210
    574.7 DA-139
    140
    Figure US20190389904A2-20191226-C00211
    511.6 DA-140
    141
    Figure US20190389904A2-20191226-C00212
    521.6 DA-101
    142
    Figure US20190389904A2-20191226-C00213
    620.7 DA-142
    143
    Figure US20190389904A2-20191226-C00214
    609.7 DA-143
    144
    Figure US20190389904A2-20191226-C00215
    583.7 DA-144
    145
    Figure US20190389904A2-20191226-C00216
    575.6 DA-145
    146
    Figure US20190389904A2-20191226-C00217
    596.7 DA-146
    147
    Figure US20190389904A2-20191226-C00218
    550.7 DA-147
    148
    Figure US20190389904A2-20191226-C00219
    575.6 DA-148
    149
    Figure US20190389904A2-20191226-C00220
    559.5 DA-149
    150
    Figure US20190389904A2-20191226-C00221
    571.4 DA-116
    151
    Figure US20190389904A2-20191226-C00222
    589.6 DA-151
    152
    Figure US20190389904A2-20191226-C00223
    541.5 DA-152
    153
    Figure US20190389904A2-20191226-C00224
    541.4 DA-153
    154
    Figure US20190389904A2-20191226-C00225
    517.6 DA-154
    155
    Figure US20190389904A2-20191226-C00226
    542.7 DA-155
    156
    Figure US20190389904A2-20191226-C00227
    542.8 DA-156
    157
    Figure US20190389904A2-20191226-C00228
    542.7 DA-157
    158
    Figure US20190389904A2-20191226-C00229
    542.6 DA-158
    159
    Figure US20190389904A2-20191226-C00230
    542.5 DA-159
    160
    Figure US20190389904A2-20191226-C00231
    509.35 DA-160
    161
    Figure US20190389904A2-20191226-C00232
    DA-160
    162
    Figure US20190389904A2-20191226-C00233
    546.97 DA-162
    163
    Figure US20190389904A2-20191226-C00234
    532.73 DA-163
    164
    Figure US20190389904A2-20191226-C00235
    540.4 DA-164
    165
    Figure US20190389904A2-20191226-C00236
    540.55 DA-165
    166
    Figure US20190389904A2-20191226-C00237
    DA-165
    167
    Figure US20190389904A2-20191226-C00238
    539.69 DA-167
    168
    Figure US20190389904A2-20191226-C00239
    554.77 DA-168
    169
    Figure US20190389904A2-20191226-C00240
    555.50 DA-169
    170
    Figure US20190389904A2-20191226-C00241
    555.4 DA-170
    171
    Figure US20190389904A2-20191226-C00242
    587.5 DA-171
    172
    Figure US20190389904A2-20191226-C00243
    624.51 DA-172
    173
    Figure US20190389904A2-20191226-C00244
    601.5 DA-173
    174
    Figure US20190389904A2-20191226-C00245
    571.24 DA-174
    175
    Figure US20190389904A2-20191226-C00246
    587.34 DA-175
    176
    Figure US20190389904A2-20191226-C00247
    555.29 DA-176
    177
    Figure US20190389904A2-20191226-C00248
    594.34 DA-177
    178
    Figure US20190389904A2-20191226-C00249
    543.32 DA-178
    179
    Figure US20190389904A2-20191226-C00250
    587.3 DA-179
    180
    Figure US20190389904A2-20191226-C00251
    535.2 DA-180
    181
    Figure US20190389904A2-20191226-C00252
    533 DA-181
    182
    Figure US20190389904A2-20191226-C00253
    569.1 DA-182
    183
    Figure US20190389904A2-20191226-C00254
    583.4 DA-183
    184
    Figure US20190389904A2-20191226-C00255
    535.2 DA-184
    185
    Figure US20190389904A2-20191226-C00256
    583.4 DA-185
    186
    Figure US20190389904A2-20191226-C00257
    685.4 DA-186
    187
    Figure US20190389904A2-20191226-C00258
    623.4
    Figure US20190389904A2-20191226-C00259
  • The dipeptide acid intermediates were prepared in a similar manner to ((benzyloxy)carbonyl)-L-valyl-L-proline (DA-101), and are listed in Table E2, along with characterization data and the corresponding dipeptide ester from which they were prepared.
  • TABLE E2
    Characterization data for dipeptide acids intermediates.
    1H NMR
    (ppm; 500 MHz, d6-
    Dipeptide DMSO; or 400 MHz, m/z Dipeptide
    Acid Formula/Name CDCl3*) [M + 1]+ ester
    DA-101
    Figure US20190389904A2-20191226-C00260
    389.4 DE-101
    DA-102
    Figure US20190389904A2-20191226-C00261
    389.4 DE-102
    DA-103
    Figure US20190389904A2-20191226-C00262
    363.5 DE-103
    DA-104
    Figure US20190389904A2-20191226-C00263
    383.4 DE-104
    DA-105
    Figure US20190389904A2-20191226-C00264
    398.2 DE-105
    DA-107
    Figure US20190389904A2-20191226-C00265
    363.3 DE-107
    DA-108
    Figure US20190389904A2-20191226-C00266
    403.8 DE-108
    DA-109
    Figure US20190389904A2-20191226-C00267
    12.29 (br s, 1H), 7.47 (d, 1H), 7.35 (m, 5H), 5.04 (d, 1H), 4.98 (d, 1H), 4.29 (m, 2H), 4.01 (m, 2H), 3.30 (m, 1H), 2.31 (m, 1H), 1.94 (m, 1H), 1.80 (m, 1H), 0.95 (d, 3H), 0.89 (d, 3H) 365.8 DE-109
    DA-110
    Figure US20190389904A2-20191226-C00268
    12.37 (br s, 1H), 7.39 (d, 1H), 7.35 (m, 5H), 5.17 (d, 1H), 5.05 (d, 1H), 4.99 (d, 1H), 4.34 (m, 1H), 4.26 (m, 1H), 4.07 (m, 1H), 3.65 (m, 2H), 2.10 (m, 1H), 1.95 (m, 2H), 0.92 (d, 3H), 0.87 (d, 3H) 365.3 DE-110
    DA-111
    Figure US20190389904A2-20191226-C00269
    12.20 (br s, 1H), 7.42 (d, 1H), 7.32 (m, 5H), 5.02 (s, 2H), 3.99 (m, 1H), 3.86 (m, 1H), 3.60 (m, 1H), 2.02 (m, 1H), 1.94 (m, 3H), 1.81 (m, 1H), 1.37 (s, 3H), 0.90 (d, 3H), 0.87 (d, 3H) 363.1 DE-111
    DA-112
    Figure US20190389904A2-20191226-C00270
    363.5 DE-112
    DA-113
    Figure US20190389904A2-20191226-C00271
    319.3 DE-113
    DA-114
    Figure US20190389904A2-20191226-C00272
    397.3 DE-114
    DA-115
    Figure US20190389904A2-20191226-C00273
    399.3 DE-115
    DA-116
    Figure US20190389904A2-20191226-C00274
    397.3 DE-116
    DA-117
    Figure US20190389904A2-20191226-C00275
    333.3 DE-117
    DA-118
    Figure US20190389904A2-20191226-C00276
    411.3 DE-118
    DA-119
    Figure US20190389904A2-20191226-C00277
    347.4 DE-119
    DA-120
    Figure US20190389904A2-20191226-C00278
    325.4 DE-120
    DA-121
    Figure US20190389904A2-20191226-C00279
    349.3 DE-121
    DA-122
    Figure US20190389904A2-20191226-C00280
    349.5 DE-122
    DA-123
    Figure US20190389904A2-20191226-C00281
    349.3 DE-123
    DA-124
    Figure US20190389904A2-20191226-C00282
    8.21 (s, 1H), 8.14 (d, 1H), 7.91 (s, 1H), 4.42 (m, 1H), 4.24 (m, 1H), 3.92 (m, 1H), 3.84 (s, 3H), 3.63 (m, 1H), 2.15 (m, 1H), 2.10 (m, 1H), 1.91 (m, 2H), 1.86 (m, 1H), 0.97 (d, 3H), 0.92 (d, 3H) 323.7 DE-124
    DA-125
    Figure US20190389904A2-20191226-C00283
    12.50 (br s, 1H), 8.14 (s, 1H), 7.89 (d, 1H), 4.62 (m, 1H), 4.27 (m, 1H), 3.78 (m, 1H), 3.64 (m, 1H), 2.71 (s, 3H), 2.21 (m, 1H), 2.11 (m, 1H), 1.93 (m, 2H), 1.84 (m, 1H), 0.99 (d, 3H), 0.89 (d, 3H) 340.3 DE-125
    DA-126
    Figure US20190389904A2-20191226-C00284
    12.44 (br s, 1H), 8.86 (d, 1H), 8.04 (d, 2H), 7.95 (d, 2H), 4.47 (m, 1H), 4.25 (m, 1H), 3.95 (m, 1H), 3.67 (m, 1H), 2.17 (m, 2H), 1.95 (m, 2H), 1.86 (m, 1H), 1.02 (d, 3H), 0.97 (d, 3H) 344.4 DE-126
    DA-127
    Figure US20190389904A2-20191226-C00285
    12.25 (br s, 1H), 8.20 (d, 1H), 7.82 (d, 2H), 6.95 (d, 2H), 4.45 (m, 1H), 4.25 (m, 1H), 3.96 (m, 1H), 3.73 (m, 4H), 3.64 (m, 1H), 3.21 (m, 4H), 2.14 (m, 2H), 1.92 (m, 2H), 1.84 (m, 1H), 0.99 (d, 3H), 0.94 (d, 3H) 404.2 DE-127
    DA-128
    Figure US20190389904A2-20191226-C00286
    12.26 (br s, 1H), 7.77 (d, 1H), 7.49 (s, 1H), 4.57 (m, 1H), 4.26 (m, 1H), 3.80 (m, 1H), 3.72 (m, 4H), 3.63 (m, 1H), 3.43 (m, 4H), 2.18 (m, 1H), 2.09 (m, 1H), 1.93 (s, 2H), 1.84 (m, 1H), 0.97 (d, 3H), 0.87 (d, 3H) 411.5 DE-128
    DA-129
    Figure US20190389904A2-20191226-C00287
    12.13 (br s, 1H), 8.63 (s, 1H), 7.36 (d, 2H), 7.21 (m, 2H), 6.89 (m, 1H), 6.40 (d, 1H), 4.33 (m, 1H), 4.27 (m, 1H), 3.76 (m, 1H), 3.60 (m, 1H), 2.18 (m, 1H), 1.91 (m, 3H), 1.84 (m, 1H), 0.96 (d, 3H), 0.90 (d, 3H) 334.6 DE-129
    DA-130
    Figure US20190389904A2-20191226-C00288
    434.5 DE-130
    DA-131
    Figure US20190389904A2-20191226-C00289
    404.6 DE-131
    DA-132
    Figure US20190389904A2-20191226-C00290
    417.5 DE-132
    DA-133
    Figure US20190389904A2-20191226-C00291
    376.6 DE-133
    DA-134
    Figure US20190389904A2-20191226-C00292
    DE-134
    DA-135
    Figure US20190389904A2-20191226-C00293
    387.5 DE-135
    DA-136
    Figure US20190389904A2-20191226-C00294
    353.5 DE-136
    DA-137
    Figure US20190389904A2-20191226-C00295
    395.6 DE-137
    DA-138
    Figure US20190389904A2-20191226-C00296
    405.3 DE-138
    DA-139
    Figure US20190389904A2-20191226-C00297
    402.5 DE-139
    DA-140
    Figure US20190389904A2-20191226-C00298
    339.5 DE-140
    DA-142
    Figure US20190389904A2-20191226-C00299
    447.6 DE-142
    DA-143
    Figure US20190389904A2-20191226-C00300
    439.8 DE-143
    DA-144
    Figure US20190389904A2-20191226-C00301
    413.5 DE-144
    DA-145
    Figure US20190389904A2-20191226-C00302
    403.6 DE-145
    DA-146
    Figure US20190389904A2-20191226-C00303
    424.2 DE-146
    DA-147
    Figure US20190389904A2-20191226-C00304
    378.8 DE-147
    DA-148
    Figure US20190389904A2-20191226-C00305
    403.6 DE-148
    DA-149
    Figure US20190389904A2-20191226-C00306
    389.4 DE-149
    DA-151
    Figure US20190389904A2-20191226-C00307
    417.4 DE-151
    DA-152
    Figure US20190389904A2-20191226-C00308
    369.6 DE-152
    DA-153
    Figure US20190389904A2-20191226-C00309
    369.8 DE-153
    DA-154
    Figure US20190389904A2-20191226-C00310
    345.7 DE-154
    DA-155
    Figure US20190389904A2-20191226-C00311
    370.4 DE-155
    DA-156
    Figure US20190389904A2-20191226-C00312
    370.8 DE-156
    DA-157
    Figure US20190389904A2-20191226-C00313
    370.6 DE-157
    DA-158
    Figure US20190389904A2-20191226-C00314
    370.9 DE-158
    DA-159
    Figure US20190389904A2-20191226-C00315
    370.6 DE-159
    DA-160
    Figure US20190389904A2-20191226-C00316
    (400 MHz, CDCl3): 7.84 (m, 2H), 7.22 (d, 1H), 7.10 (m, 2H), 4.82 (m, 1H), 4.57 (m, 1H), 3.99 (m, 1H), 3.75 (m, 1H), 2.19 (m, 3H), 2.07 (m, 2H), 1.07 (d, 3H), 1.02 (d, 3H)* 337.41 DE-160
    DA-162
    Figure US20190389904A2-20191226-C00317
    (400 MHz, CDCl3): 7.77 (d, 2H), 7.44 (d, 2H), 7.25 (d, 1H), 4.83 (m, 1H), 4.57 (m, 1H), 4.01 (m, 1H), 3.75 (m, 1H), 2.17 (m, 3H), 2.05 (m, 2H), 1.34 (s, 9H), 1.07 (d, 3H), 1.00 (d, 3H)* 373.32 DE-162
    DA-163
    Figure US20190389904A2-20191226-C00318
    (400 MHz, CDCl3): 7.75 (d, 2H), 7.28 (d, 2H), 6.99 (d, 1H), 4.84 (m, 1H), 4.58 (m, 1H), 3.97 (m, 1H), 3.74 (m, 1H), 2.94 (m, 1H), 2.22 (m, 3H), 2.07 (m, 2H), 1.26 (d, 6H), 1.06 (d, 3H), 1.02 (d, 3H)* 361.46 DE-163
    DA-164
    Figure US20190389904A2-20191226-C00319
    (400 MHz, CDCl3): 9.37 (br, 1H), 7.69 (s, 1H), 7.22 (d, 2H), 7.14 (d, 2H), 6.70 (d, 1H), 4.52 (m, 1H), 4.45 (m, 1H), 3.95 (m, 1H), 3.68 (m, 1H), 2.20 (m, 1H), 2.01 (m, 4H), 1.01 (d, 3H), 0.93 (d, 3H)* DE-164
    DA-165
    Figure US20190389904A2-20191226-C00320
    (400 MHz, CDCl3): 7.65 (br, 1H), 7.43 (br, 1H), 7.10 (m, 2H), 6.91 (m, 1H), 6.67 (m, 1H), 4.54 (m, 1H), 4.48 (m, 1H), 3.95 (m, 1H), 3.70 (m, 1H), 2.22 (m, 1H), 2.04 (m, 4H), 1.02 (d, 3H), 0.94 (d, 3H)* DE-165
    DA-167
    Figure US20190389904A2-20191226-C00321
    (400 MHz, CDCl3): 8.06 (d, 1H), 7.41 (s, 1H), 7.24 (d, 2H), 7.15 (m, 1H), 6.89 (m, 1H), 4.59 (m, 1H), 4.53 (m, 1H), 3.92 (m, 1H), 3.71 (m, 1H), 2.17 (m, 1H), 2.03 (m, 4H), 1.02 (d, 3H), 0.95 (d, 3H)* DE167
    DA-168
    Figure US20190389904A2-20191226-C00322
    (400 MHz, CDCl3): 7.30 (m, 4H), 5.66 (d, 1H), 5.05 (s, 2H), 4.59 (m, 1H), 4.33 (m, 1H), 3.82 (m, 1H), 3.68 (m, 1H), 2.22 (m, 1H), 2.06 (m, 4H), 1.01 (d, 3H), 0.95 (d, 3H)* 383.52 DE-168
    DA-169
    Figure US20190389904A2-20191226-C00323
    (400 MHz, CDCl3): 7.26 (m, 4H), 5.77 (d, 1H), 5.07 (s, 2H), 4.59 (m, 1H), 4.33 (m, 1H), 3.84 (m, 1H), 3.67 (m, 1H), 2.20 (m, 2H), 2.04 (m, 3H), 0.96 (d, 3H), 0.91 (d, 3H)* 383.52 DE-169
    DA-170
    Figure US20190389904A2-20191226-C00324
    (400 MHz, CDCl3): 7.41 (m, 2H), 7.28 (m, 2H), 5.71 (d, 1H), 5.25 (d, 1H), 5.18 (d, 1H), 4.59 (m, 1H), 4.34 (m, 1H), 3.81 (m, 1H), 3.67 (m, 1H), 2.19 (m, 2H), 2.07 (m, 3H), 1.02 (d, 3H), 0.96 (d, 3H)* 383.53 DE-170
    DA-171
    Figure US20190389904A2-20191226-C00325
    12.47 (br, 1H), 8.64 (d, 1H), 7.85 (d, 2H), 7.67 (d, 2H), 5.19 (br, 1H), 4.49 (m, 1H), 4.36 (m, 1H), 4.26 (m, 1H), 3.81 (m, 1H), 3.73 (m, 1H), 2.14 (m, 2H), 1.89 (m, 1H), 0.98 (d, 3H), 0.93 (d, 3H)* 413.31 DE-171
    DA-172
    Figure US20190389904A2-20191226-C00326
    12.44 (br, 1H), 8.60 (d, 1H), 7.84 (d, 2H), 7.67 (d, 2H), 5.17 (br, 1H), 4.53 (m, 1H), 4.35 (m, 1H), 4.25 (m, 1H), 3.80 (m, 1H), 3.72 (m, 1H), 2.08 (m, 1H), 1.83 (m, 4H), 1.64 (m, 3H), 1.15 (m, 3H), 0.99 (m, 2H)* 453.32 DE-172
    DA-173
    Figure US20190389904A2-20191226-C00327
    12.52 (br, 1H), 8.40 (d, 1H), 8.20 (d, 1H), 7.82 (d, 2H), 7.67 (d, 2H), 4.95 (br, 1H), 4.43 (m, 1H), 4.26 (m, 1H), 3.69 (m, 2H), 1.54-1.83 (m, 6H), 0.96- 1.23 (m, 5H)* 429.32 DE-173
    DA-174
    Figure US20190389904A2-20191226-C00328
    12.86 (br, 1H), 8.22 (d, 1H), 7.86 (d, 2H), 7.68 (d, 2H), 5.49 (d, 1H), 5.11 (d, 1H), 4.45 (dd, 1H), 4.26 (dd, 1H), 4.11 (dd, 1H), 3.98 (dd, 1H), 2.21-2.12 (m, 1H), 1.02 (d, 3H), 0.98 (d, 3H)* 400.29 DE-174
    DA-175
    Figure US20190389904A2-20191226-C00329
    414.65 DE-175
    DA-176
    Figure US20190389904A2-20191226-C00330
    12.52 (br, 1H), 8.69 (d, 1H), 7.86 (d, 2H), 7.67 (d, 2H), 4.56 (dd, 1H), 4.39 (m, 1H), 4.26 (m, 1H), 4.13 (m, 1H), 2.58 (m, 1H), 2.13 (m, 2H), 1.01 (d, 3H), 0.96 (d, 3H)* 383.59 DE-176
    DA-177
    Figure US20190389904A2-20191226-C00331
    422.61 DE-177
    DA-178
    Figure US20190389904A2-20191226-C00332
    12.45 (br, 1H), 8.33 (dd, 2H), 7.83 (d, 2H), 7.67 (d, 2H), 4.33 (m, 1H), 4.18 (m, 1H), 2.11 (m, 1H), 1.28 (d, 3H), 0.96 (d, 3H), 0.91 (d, 3H)* 371.52 DE-178
    DA-179
    Figure US20190389904A2-20191226-C00333
    12.44 (br s, 1H), 8.47 (d, 1H), 7.64 (d, 1H), 7.51 (m, 2H), 4.52 (m, 1H), 4.26 (dd, 1H), 3.84 (m, 1H), 3.63 (m, 1H), 2.18 (m, 1H), 2.08 (m, 1H), 1.93 (m, 2H), 1.84 (m, 1H), 0.99 (d, 3H), 0.94 (d, 3H)* 415.5 DE-179
    DA-180
    Figure US20190389904A2-20191226-C00334
    12.42 (br s, 1H), 7.51 (d, 1H), 7.34 (m, 5H), 5.03 (d, 1H), 4.98 (d, 1H), 4.24 (m, 1H), 4.09 (t, 1H), 3.79 (m, 1H), 3.60 (m, 1H), 2.14 (m, 1H), 1.87 (m, 3H), 1.74 (m, 1H), 1.51 (m, 1H), 1.11 (m, 1H), 0.89 (d, 3H), 0.81 (t, 3H)* 363 DE-180
    DA-181
    Figure US20190389904A2-20191226-C00335
    361.3 DE-181
    DA-182
    Figure US20190389904A2-20191226-C00336
    12.50 (br s, 1H), 7.65 (d, 1H), 7.26 (m, 10H), 4.93 (s, 2H), 4.41 (m, 1H), 4.27 (dd, 1H), 3.68 (m, 1H), 3.56 (m, 1H), 2.93 (m, 1H), 2.77 (m, 1H), 2.15 (m, 1H), 1.93 (m, 2H), 1.85 (m, 1H)* 396.9 DE182
    DA-183
    Figure US20190389904A2-20191226-C00337
    12.43 (br s, 1H), 8.48 (d, 1H), 7.51 (m, 2H), 7.20 (d, 1H), 4.45 (t, 1H), 4.26 (dd, 1H), 3.89 (m, 1H), 3.63 (m, 1H), 2.29 (s, 3H), 2.17 (m, 1H), 2.07 (m, 1H), 1.94 (m, 2H), 1.85 (m, 1H), 0.99 (d, 3H), 0.95 (d, 3H)* 411.4 DE-183
    DA-184
    Figure US20190389904A2-20191226-C00338
    12.42 (br s, 1H), 7.50 (d, 1H), 7.34 (m, 5H), 5.00 (s, 2H), 4.28 (m, 2H), 3.68 (m, 1H), 3.50 (m, 1H), 2.13 (m, 1H), 1.93 (m, 2H), 1.83 (m, 1H), 1.67 (m, 1H), 1.47 (m, 1H), 1.37 (m, 1H), 0.89 (d, 6H)* 363 DE-184
    DA-185
    Figure US20190389904A2-20191226-C00339
    12.42 (br s, 1H), 8.68 (d, 1H), 7.84 (d, 2H), 7.67 (d, 2H), 4.74 (m, 1H), 4.26 (m, 1H), 3.78 (m, 1H), 3.56 (m, 1H), 2.16 (m, 1H), 1.93 (m, 2H), 1.83 (m, 1H), 1.71 (m, 2H), 1.47 (m, 1H), 0.91 (m, 6H)* 411.4 DE-185
    DA-186
    Figure US20190389904A2-20191226-C00340
    513.5 DE-186
  • Dipeptide esters DE-102-DE-105, DE-A1, and DE-A2 were prepared in a similar manner to methyl ((benzyloxy)carbonyl)-L-valyl-L-prolinate (DE-101) from the corresponding acid and methyl L-prolinate. Dipeptide esters DE-107 and DE-108 were prepared from the corresponding acid and methyl (S)-piperidine-2-carboxylate. Dipeptide esters DE-109-DE-111 and DE-140 were prepared from ((benzyloxy)carbonyl)-L-valine and the corresponding proline and serine esters. Dipeptide esters DE-113, DE-115 to DE-139, DE-145 to DE-148, and DE-151 to DE-159 were prepared in a similar manner to methyl (2-bromobenzoyl)-L-valyl-L-prolinate (DE-114) from methyl L-valyl-L-prolinate and the corresponding acid, acid chloride, isocyanate, or sulfonyl chloride. Dipeptide esters DE-142 to DE-144 and DE-149 were prepared from 4-bromobenzoyl chloride and the corresponding esters. Dipeptide esters DE-160, DE-162, DE-163 and DE-171 to DE-186 were prepared in a similar manner to DE-101 or DE-114 from the corresponding amine ester and acid or acid chloride in Table E3.
  • Dipeptide esters used as intermediates are summarized in Table E3 with characterization data and corresponding starting materials.
  • TABLE E3
    Characterization data for dipeptide ester intermediates.
    Dipep- 1H NMR m/z
    tide (ppm; 400 MHz, [M +
    Ester Formula/Name d6-DMSO) 1]+ Starting materials
    DE- 102
    Figure US20190389904A2-20191226-C00341
    7.45 (d, 1H), 7.34 (m, 5H), 5.04 (d, 1H), 4.98 (d, 1H), 4.32 (dd, 1H), 4.10 (t, 1H), 3.80 (m, 1H), 3.60 (s, 3H), 3.58 (m, 1H), 2.17 (m, 1H), 1.90 (m, 2H), 1.82 (m, 1H), 1.75 (m, 2H), 1.63 (m, 4H), 1.13 (m, 2H), 0.99 (m, 2H) 403.5 
    Figure US20190389904A2-20191226-C00342
    DE- 103
    Figure US20190389904A2-20191226-C00343
    7.36 (m, 6H), 5.05 (d, 1H), 4.99 (d, 1H), 4.33 (m, 1H), 4.23 (m, 1H), 3.76 (m, 1H), 3.63 (m, 1H), 3.61 (s, 3H), 2.18 (m, 1H), 1.91 (m, 2H), 1.81 (m, 1H), 0.97 (s, 9H) 377.4 
    Figure US20190389904A2-20191226-C00344
    DE- 104
    Figure US20190389904A2-20191226-C00345
    397.4 
    Figure US20190389904A2-20191226-C00346
    DE- 105
    Figure US20190389904A2-20191226-C00347
    384.5 
    Figure US20190389904A2-20191226-C00348
    DE- 107
    Figure US20190389904A2-20191226-C00349
    377.3 
    Figure US20190389904A2-20191226-C00350
    DE- 108
    Figure US20190389904A2-20191226-C00351
    417.4 
    Figure US20190389904A2-20191226-C00352
    DE- 109
    Figure US20190389904A2-20191226-C00353
    379.3 
    Figure US20190389904A2-20191226-C00354
    DE- 110
    Figure US20190389904A2-20191226-C00355
    379.6 
    Figure US20190389904A2-20191226-C00356
    DE- 111
    Figure US20190389904A2-20191226-C00357
    377.3 
    Figure US20190389904A2-20191226-C00358
    DE- 112
    Figure US20190389904A2-20191226-C00359
    377.3 
    DE- 113
    Figure US20190389904A2-20191226-C00360
    333.4  Benzoic acid
    DE- 114
    Figure US20190389904A2-20191226-C00361
    8.65 (d, 1H), 7.63 (dd, 1H), 7.41 (m, 1H), 7.34 (dd, 1H), 7.30 (m, 1H), 4.48 (t, 1H), 4.34 (m, 1H), 3.94 (m, 1H), 3.67 (m, 1H), 3.61 (s, 3H), 2.20 (m, 1H), 2.07 (m, 1H), 1.95 (m, 1H), 1.84 (m, 1H), 0.99 (d, 3H), 0.97 (d, 3H) 413.3  2-Bromobenzoyl chloride
    DE- 115
    Figure US20190389904A2-20191226-C00362
    8.72 (d, 1H), 8.11 (s, 1H), 7.89 (m, 1H), 7.75 (m, 1H), 7.44 (t, 1H), 4.47 (m, 1H), 4.34 (m, 1H), 3.96 (m, 1H), 3.67 (m, 1H), 3.63 (s, 3H), 2.19 (m, 2H), 1.95 (m, 1H), 1.85 (m, 1H), 1.00 (d, 3H), 0.97 (d, 3H) 413.3  3-Bromobenzoic acid
    DE- 116
    Figure US20190389904A2-20191226-C00363
    4-Bromobenzoyl chloride
    DE- 117
    Figure US20190389904A2-20191226-C00364
    8.28 (d, 1H), 7.25 (m, 5H), 4.30 (m, 2H), 3.77 (m, 1H), 3.61 (s, 3H), 3.59 (m, 1H), 3.52 (d, 1H), 3.42 (d, 1H), 2.16 (m, 1H), 1.97 (m, 1H), 1.85 (m, 3H), 0.90 (d, 3H), 0.86 (d, 3H) 347.4  2-Phenylacetic acid
    DE- 118
    Figure US20190389904A2-20191226-C00365
    8.36 (d, 1H), 7.47 (s, 1H), 7.41 (m, 1H), 7.25 (m, 2H), 4.31 (m, 2H), 3.75 (m, 1H), 3.61 (s, 3H), 3.59 (m, 1 H), 3.54 (d, 1H), 3.44 (d, 1H), 2.16 (m, 1H), 1.98 (m, 1H), 1.86 (m, 3H), 0.90 (d, 3H), 0.86 (d, 3H) 427.3  2-(3-Bromophenyl)acetic acid
    DE- 119
    Figure US20190389904A2-20191226-C00366
    8.07 (d, 1H), 7.20 (m, 5H), 4.31 (m, 2H), 3.80 (m, 1H), 3.61 (s, 3H), 3.59 (m, 1H), 2.80 (t, 2H), 2.50 (m, 1H), 2.44 (m, 1H), 2.15 (m, 1H), 1.88 (m, 4H), 0.88 (d, 3H), 0.81 (d, 3H) 361.4  3-Phenylpropanoic acid
    DE- 120
    Figure US20190389904A2-20191226-C00367
    7.82 (d, 1H), 4.30 (m, 2H), 3.79 (m, 1H), 3.61 (s, 3H), 3.58 (m, 1H), 2.20 (m, 2H), 1.91 (m, 3H), 1.80 (m, 1H), 1.68 (m, 3H), 1.59 (m, 2H), 1.28 (m, 2H), 1.16 (m, 3H), 0.90 (d, 3H), 0.86 (d, 3H) 339.3  Cyclohexanecarboxylic acid
    DE- 121
    Figure US20190389904A2-20191226-C00368
    363.5  2-Methoxybenzoyl chloride
    DE- 122
    Figure US20190389904A2-20191226-C00369
    363.6  3-Methoxybenzoyl chloride
    DE- 123
    Figure US20190389904A2-20191226-C00370
    363.4  4-Methoxybenzoyl chloride
    DE- 124
    Figure US20190389904A2-20191226-C00371
    337.4  1-Methyl-1H-pyrazole-4- carboxylic acid
    DE- 125
    Figure US20190389904A2-20191226-C00372
    354.5  2-Methylthiazole-4- carboxylic acid
    DE- 126
    Figure US20190389904A2-20191226-C00373
    358.6  4-Cyanobenzoic acid
    DE- 127
    Figure US20190389904A2-20191226-C00374
    418.4  4-Morpholinobenzoic acid
    DE- 128
    Figure US20190389904A2-20191226-C00375
    425.5  2-Morpholinothiazole-4- carboxylic acid
    DE- 129
    Figure US20190389904A2-20191226-C00376
    348.4  Phenyl isocyanate
    DE- 130
    Figure US20190389904A2-20191226-C00377
    448.8  4-Bromobenzenesulfonyl chloride
    DE- A1
    Figure US20190389904A2-20191226-C00378
    377.3 
    Figure US20190389904A2-20191226-C00379
    DE- A2
    Figure US20190389904A2-20191226-C00380
    329.2 
    Figure US20190389904A2-20191226-C00381
    DE- A3
    Figure US20190389904A2-20191226-C00382
    229.7 
    DE- 131
    Figure US20190389904A2-20191226-C00383
    418.6  3-Morpholinobenzoic acid
    DE- 132
    Figure US20190389904A2-20191226-C00384
    431.7  3-(4-Methylpiperazin-1- yl)benzoic acid
    DE- 133
    Figure US20190389904A2-20191226-C00385
    390.6  3-Acetamidobenzoic acid
    DE- 134
    Figure US20190389904A2-20191226-C00386
    358.4  3-Cyanobenzoic acid
    DE- 135
    Figure US20190389904A2-20191226-C00387
    401.4  4- (Trifluoromethyl)benzoyl chloride
    DE- 136
    Figure US20190389904A2-20191226-C00388
    367.5  4-Chlorobenzoyl chloride
    DE- 137
    Figure US20190389904A2-20191226-C00389
    409.5  [1,1′-Biphenyl]-4-carbonyl chloride
    DE- 138
    Figure US20190389904A2-20191226-C00390
    419.4  5-Bromothiophene-2- carboxylic acid
    DE- 139
    Figure US20190389904A2-20191226-C00391
    416.6  5-Phenylthiazole-2- carboxylic acid
    DE- 140
    Figure US20190389904A2-20191226-C00392
    353.7 
    Figure US20190389904A2-20191226-C00393
    DE- 142
    Figure US20190389904A2-20191226-C00394
    462.4  Methyl ((S)-2-amino-3- (pyridin-3-yl)propanoyl)- L-prolinate AE-1
    DE- 143
    Figure US20190389904A2-20191226-C00395
    452.6  Methyl ((S)-2-amino-2- cyclohexylacetyl)-L- prolinate AE-2
    DE- 144
    Figure US20190389904A2-20191226-C00396
    426.6  Methyl (S)-1-(L- valyl)piperidine-2- carboxylate AE-3
    DE- 145
    Figure US20190389904A2-20191226-C00397
    417.5  4- (Trifluoromethoxy)benzoyl chloride
    DE- 146
    Figure US20190389904A2-20191226-C00398
    437.9  4-Bromo-3-cyanobenzoic acid
    DE- 147
    Figure US20190389904A2-20191226-C00399
    392.6  4-Chloro-3-cyanobenzoic acid
    DE- 148
    Figure US20190389904A2-20191226-C00400
    417.3  3- (Trifluoromethoxy)benzoyl chloride
    DE- 149
    Figure US20190389904A2-20191226-C00401
    402.6  Methyl L-valyl-L-serinate AE-4
    DE- 151
    Figure US20190389904A2-20191226-C00402
    431.7  4-Bromo-3-fluorobenzoic acid
    DE- 152
    Figure US20190389904A2-20191226-C00403
    382.4  2-Naphthoyl chloride
    DE- 153
    Figure US20190389904A2-20191226-C00404
    382.4  1-Naphthoyl chloride
    DE- 154
    Figure US20190389904A2-20191226-C00405
    359.7  Cinnamoyl chloride
    DE- 155
    Figure US20190389904A2-20191226-C00406
    384.9  Quinoline-2-carboxylic acid
    DE- 156
    Figure US20190389904A2-20191226-C00407
    384.6  Quinoline-3-carboxylic acid
    DE- 157
    Figure US20190389904A2-20191226-C00408
    384.4  Isoquinoline-6-carboxylic acid
    DE- 158
    Figure US20190389904A2-20191226-C00409
    384.3  Isoquinoline-7-carboxylic acid
    DE- 159
    Figure US20190389904A2-20191226-C00410
    384.8  Quinoline-4-carboxylic acid
    DE- 160
    Figure US20190389904A2-20191226-C00411
    7.81 (m, 2H), 7.10 (m, 2H), 6.96 (d, 1H), 4.84 (m, 1H), 4.51 (m, 1H), 3.90 (m, 1H), 3.74 (s, 3H), 3.72 (m, 1H), 2.22 (m, 2H), 2.09 (m, 1H), 2.01 (m, 2H), 1.11 (d, 3H), 1.01 (d, 3H) 351.39 Methyl L-valyl-L-prolinate (dipeptide ester 32) and 4- fluorobenzoic acid
    DE- 162
    Figure US20190389904A2-20191226-C00412
    7.74 (d, 2H), 7.43 (d, 2H), 6.89 (d, 1H), 4.86 (m, 1H), 4.51 (m, 1H), 3.90 (m, 1H), 3.75 (s, 3H), 3.73 (m, 1H), 2.22 (m, 2H), 2.06 (m, 3H), 1.99 (s, 9H), 1.10 (d, 3H), 1.01 (d, 3H) 389.58 Methyl L-valyl-L-prolinate (dipeptide ester 32) and 4- (tert-butyl)benzoic acid
    DE- 163
    Figure US20190389904A2-20191226-C00413
    7.74 (d, 2H), 7.27 (d, 2H), 6.87 (d, 1H), 4.86 (m, 1H), 4.51 (m, 1H), 3.90 (m, 1H), 3.75 (s, 3H), 3.72 (m, 1H), 2.94 (m, 1H), 2.23 (m, 2H), 2.04 (m, 3H), 1.25 (d, 6H), 1.10 (d, 3H), 1.01 (d, 3H) 375.46 Methyl L-valyl-L-prolinate (dipeptide ester 32) and 4- isopropylbenzoic acid
    DE- 171
    Figure US20190389904A2-20191226-C00414
    7.61 (d, 2H), 7.54 (dd, 2H), 7.04 (br, 1H), 4.69 (m, 2H), 4.58 (m, 1H), 4.13 (m, 1H), 3.79 (m, 1H), 3.75 (s, 3H), 2.36 (m, 1H), 2.20 (m, 1H), 2.04 (m, 1H), 1.09 (d, 3H), 1.02 (d, 3H) 426.71 AE-5 Methyl (2S,4R)-1-(L- valyl)-4- hydroxypyrrolidine-2- carboxylate and 4- bromobenzoic acid
    DE- 172
    Figure US20190389904A2-20191226-C00415
    7.57 (dd, 2H), 7.50 (d, 2H), 7.16 (br, 1H), 4.68 (m, 2H), 4.58 (m, 1H), 4.18 (m, 1H), 3.77 (m, 1H), 3.75 (s, 3H), 2.38 (m, 2H), 2.04 (m, 1H), 1.73-1.96 (m, 5H), 1.04-1.28 (m, 5H) 468.55 AE-6 Methyl (2S,4R)-1-((S)-2- amino-2- cyclohexylacetyl)-4- hydroxypyrrolidine-2- carboxylate and 4- bromobenzoic acid
    DE- 173
    Figure US20190389904A2-20191226-C00416
    8.39 (m, 2H), 7.82 (d, 2H), 7.67 (d, 2H), 5.05 (br, 1H), 4.43 (m, 1H), 4.34 (m, 1H), 3.72 (m, 1H), 3.65 (s, 1H), 3.61 (s, 3H), 1.57- 1.86 (m, 6H), 0.95- 1.22 (m, 5H) 443.32 AE-7 Methyl ((S)-2-amino-2- cyclohexylacetyl)-L- serinate and 4- bromobenzoic acid
    DE- 174
    Figure US20190389904A2-20191226-C00417
    413.73 AE-8 Methyl (S)-3-(L- valyl)oxazolidine-4- carboxylate and 4- bromobenzoyl chloride
    DE- 175
    Figure US20190389904A2-20191226-C00418
    427.35 AE-9 Methyl (S)-4-(L- valyl)morpholine-3- carboxylate and 4- bromobenzoyl chloride
    DE- 176
    Figure US20190389904A2-20191226-C00419
    397.86 AE-10 Methyl (S)-1-(L- valyl)azetidine-2- carboxylate and 4- bromobenzoyl chloride
    DE- 177
    Figure US20190389904A2-20191226-C00420
    436.48 AE-11 Methyl (2S,4R)-1-(L- valyl)-4-cyanopyrrolidine- 2-carboxylate and 4- bromobenzoyl chloride
    DE- 178
    Figure US20190389904A2-20191226-C00421
    385.74 Acid 1 (4-Bromobenzoyl)-L- valine and methyl L- alaninate
    DE- 179
    Figure US20190389904A2-20191226-C00422
    429.4  Methyl L-valyl-L-prolinate (dipeptide ester 32) and 4- bromo-2-fluorobenzoic acid
    DE- 180
    Figure US20190389904A2-20191226-C00423
    377.2  ((Benzyloxy)carbonyl)-L- isoleucine and methyl L- prolinate
    DE- 181
    Figure US20190389904A2-20191226-C00424
    375.2  1- (((Benzyloxy)carbonyl) amino)cyclopentane-1- carboxylic acid and methyl L-prolinate
    DE- 182
    Figure US20190389904A2-20191226-C00425
    412.4  ((Benzyloxy)carbonyl)-L- phenylalanine and methyl L-prolinate
    DE- 183
    Figure US20190389904A2-20191226-C00426
    425.5  Methyl L-valyl-L-prolinate (dipeptide ester 32) and 4- bromo-2-fluorobenzoic acid
    DE- 184
    Figure US20190389904A2-20191226-C00427
    377.3  ((Benzyloxy)carbonyl)-L- leucine and methyl L- prolinate
    DE- 185
    Figure US20190389904A2-20191226-C00428
    425.4  Acid 2 (4-Bromobenzoyl)-L- leucine and methyl L- prolinate
    DE- 186
    Figure US20190389904A2-20191226-C00429
    527.4  Acid 3 (S)-2-(4- Bromobenzamido)-3-(4- (trifluoromethyl)phenyl) propanoic acid and methyl L-prolinate
  • Methyl N-((benzyloxy)carbonyl)-N-methyl-L-valyl-L-prolinate (DE-112)
  • Figure US20190389904A2-20191226-C00430
  • Methyl (tert-butoxycarbonyl)-L-valyl-L-prolinate (856 mg) was dissolved in 1,4-dioxane (10 mL). HCl in 1,4-dioxane (4 M, 5 mL) was added and the reaction stirred for 1 hour. The solvent was removed under reduced pressure to give a white solid (700 mg), used directly without purification. This compound was dissolved in DCM (50 mL) and cooled to 0° C. Benzyl chloroformate (0.48 mL) and triethylamine (2.14 mL) were added, and the mixture stirred for 1 hour. The reaction mixture was quenched with sat. aq. NaHCO3 and extracted with DCM (3×50 mL). The combined organic layer was washed with brine, dried (MgSO4) and concentrated, and the residue purified by column chromatography (50 to 70% EtOAc in hexanes) to give a colorless oil. MS (m/z): 377.3 [M+1]+.
  • Methyl (2-bromobenzoyl)-L-valyl-L-prolinate (DE-114)
  • Figure US20190389904A2-20191226-C00431
  • Triethylamine (1.21 mL, 8.76 mmol) was added to a solution of methyl L-valyl-L-prolinate (1.00 g, 4.38 mmol) and 2-bromobenzoyl chloride (961 mg, 4.38 mmol) in DCM (20 mL) at 0° C. After 30 minutes, the reaction mixture was diluted with DCM and washed with 1M HCl. The organic layer was dried (MgSO4), concentrated, and the residue purified by column chromatography (EtOAc in Hexanes, gradient) to give 1.20 g product. 1H NMR (400 MHz, d6-DMSO) δ 8.65 (d, 1H), 7.63 (dd, 1H), 7.41 (m, 1H), 7.34 (dd, 1H), 7.30 (m, 1H), 4.48 (t, 1H), 4.34 (m, 1H), 3.94 (m, 1H), 3.67 (m, 1H), 3.61 (s, 3H), 2.20 (m, 1H), 2.07 (m, 1H), 1.95 (m, 1H), 1.84 (m, 1H), 0.99 (d, 3H), 0.97 (d, 3H); MS (m/z): 413.3 [M+1]+.
  • Methyl (phenylcarbamoyl)-L-valyl-L-prolinate (DE-129)
  • Figure US20190389904A2-20191226-C00432
  • Phenyl isocyanate (0.23 mL, 1.89 mmol) and triethylamine (0.79 mL, 5.67 mmol) were added to a solution of methyl L-valyl-L-prolinate (0.50 g, 1.89 mmol) in DCM (25 mL) at 0° C. The mixture was warmed to RT and stirred for 1 hour. The reaction was quenched with H2O (10 mL) and extracted with DCM (3×50 mL). The combined organic layer was washed with brine, dried (MgSO4) and concentrated, and the residue purified by column chromatography (10-50% EtOAc in Hexanes) to give a colorless oil (0.57 g, 88% yield). MS (m/z): 348.4 [M+1]+.
  • Methyl ((4-bromophenyl)sulfonyl)-L-valyl-L-prolinate (DE-130)
  • Figure US20190389904A2-20191226-C00433
  • 4-Bromobenzenesulfonyl chloride (0.48 g, 1.89 mmol) and triethylamine (0.79 mL, 5.67 mmol) were added to a solution of methyl L-valyl-L-prolinate (0.50 g, 1.89 mmol) in DCM (25 mL) at 0° C. The mixture was warmed to RT and stirred for 1 hour. The reaction was quenched with H2O (10 mL) and extracted with DCM (3×50 mL). The combined organic layer was washed with brine, dried (MgSO4) and concentrated, and the residue purified by column chromatography (10-50% EtOAc in Hexanes) to give a colorless oil (0.80 g, 95% yield). MS (m/z): 448.8 [M+1]+.
  • Methyl L-valyl-L-prolinate HCl (DE-A3)
  • Figure US20190389904A2-20191226-C00434
  • Methyl (tert-butoxycarbonyl)-L-valyl-L-prolinate (1.0 g, 3.04 mmol) was dissolved in anhydrous 1,4-dioxane (10 mL) under an inert atmosphere. HCl in 1,4-dioxane (4 M, 7.5 mL, 30.4 mmol) was added and the mixture heated to 60° C. After 5 hours the solvent was removed under reduced pressure to give a white solid (0.8 g, 99% yield). MS (m/z): 229.7 [M+1]+.
  • Methyl ((4-chlorophenyl)carbamoyl)-L-valyl-L-prolinate (DE-164)
  • Figure US20190389904A2-20191226-C00435
  • Triphosgene (0.28 g, 0.94 mmol) was added to a solution of 3-chloroaniline (0.27 g, 2.1 mmol) and triethylamine (0.96 g, 9.5 mmol) in dichloromethane (10 mL) at 5° C. The reaction was stirred for 30 min at 5° C. and methyl L-valyl-L-prolinate (0.5 g, 1.9 mmol) was added. The reaction was stirred for another 30 min at 5° C., quenched with water (20 mL) and extracted with dichloromethane (3×20 mL). The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The residue was purified by silica chromatography (Hexanes:EA=3:1) to give the title compound (440 mg, 61% yield). MS (m/z): 382.39 [M+1]+.
  • Dipeptide Esters DE-165 and DE-167 were prepared in a similar manner to DE-164 from the corresponding aniline and methyl L-valyl-L-prolinate.
  • TABLE E4
    Characterization of Dipeptide Esters DE-165 and DE-167.
    Aniline
    Dipeptide 1H NMR m/z Starting
    Ester Formula/Name (ppm; 400 MHz, CDCl3) [M + 1]+ Material
    DE-165
    Figure US20190389904A2-20191226-C00436
    δ: 7.81 (br, 1H), 7.50 (s, 1H), 7.15 (m, 2H), 6.92 (m, 2H), 4.55 (m, 2H), 4.09 (m, 1H), 3.78 (m, 1H), 3.64 (s, 3H), 2.28 (m, 1H), 2.06 (m, 4H), 1.11 (d, 3H), 1.03 (d, 3H) 382.4 3-Chloro aniline
    DE-167
    Figure US20190389904A2-20191226-C00437
    δ: 7.88 (d, 1H), 7.40 (s, 1H), 7.25 (m, 1H), 7.21 (d, 1H), 7.06 (m, 1H), 6.86 (m, 1H), 4.62 (m, 1H), 4.57 (m, 1H), 3.96 (m, 1H), 3.71 (m, 1H), 3.64 (s, 3H), 2.23 (m, 1H), 2.04 (m, 4H), 1.11 (d, 3H), 1.02 (d, 3H) 382.4 2-Chloro aniline
  • Methyl (((4-chlorobenzyl)oxy)carbonyl)-L-valyl-L-prolinate (DE-168)
  • Figure US20190389904A2-20191226-C00438
  • A solution of methyl ((S)-2-isocyanato-3-methylbutanoyl)-L-prolinate (0.93 g, 3.6 mmol), 4-chlorobenzyl alcohol (0.54 g, 3.9 mmol), and triethylamine (0.75 g, 7.4 mmol) in acetonitrile (20 mL) was refluxed for 2 hours. The solvent was removed under reduced pressure, and the residue dissolved in ethyl acetate (20 mL) and washed with 5% KHSO4 solution. The organic layer was dried over anhydrous sodium sulfate, concentrated and the residue purified by silica chromatography (PE:EA=4:1) to give the title compound (0.78 g, 52%). 1H NMR (CDCl3, 400 MHz) δ: 7.32 (d, 2H), 7.28 (d, 2H), 5.47 (d, 1H), 5.04 (m, 2H), 4.52 (m, 1H), 4.33 (m, 1H), 3.73 (m, 1H), 3.71 (s, 3H), 3.66 (m, 1H), 2.24 (m, 1H), 2.03 (m, 4H), 1.05 (d, 3H), 0.94 (d, 3H). MS (m/z): 397.08 [M+1]+.
  • Dipeptide Esters DE-169 and DE-170 were prepared in a similar manner to DE-168 from the corresponding alcohol and methyl ((S)-2-isocyanato-3-methylbutanoyl)-L-prolinate.
  • TABLE E5
    Characterization of Dipeptide Esters DE-169 and DE-170.
    1H NMR Alcohol
    Dipeptide (ppm; 400 MHz, m/z Starting
    Ester Formula/Name CDCl3) [M + 1]+ Material
    DE-169
    Figure US20190389904A2-20191226-C00439
    δ: 7.34 (s, 1H), 7.28 (m, 2H), 7.22 (m, 1H), 5.53 (d, 1H), 5.05 (m, 2H), 4.53 (m, 1H), 4.33 (m, 1H), 3.78 (m, 1H), 3.73 (s, 3H), 3.70 (m, 1H), 2.23 (m, 1H), 2.01 (m, 4H), 1.05 (d, 3H), 0.95 (d, 3H) 397.09 3- Chlorobenzyl alcohol
    DE-170
    Figure US20190389904A2-20191226-C00440
    δ: 7.39 (m, 2H), 7.25 (m, 2H), 5.53 (d, 1H), 5.24 (d, 1H), 5.18 (d, 1H), 4.53 (m, 1H), 4.35 (m, 1H), 3.76 (m, 1H), 3.73 (s, 3H), 3.70 (m, 1H), 2.23 (m, 1H), 2.02 (m, 4H), 1.06 (d, 3H), 0.97 (d, 3H) 397.08 2- Chlorobenzyl alcohol
  • Methyl ((S)-2-isocyanato-3-methylbutanoyl)-L-prolinate
  • Figure US20190389904A2-20191226-C00441
  • Triphosgene (1.11 g, 3.7 mmol) was added in portions to a mixture of methyl L-valyl-L-prolinate (3 g, 11.4 mmol) and sodium bicarbonate (4.8 g, 56.8 mmol) in DCM/water (60 mL/45 mL) at 5° C. The reaction was stirred for 5 min at 5° C. The organic layer was separated and the water phase was re-extracted with dichloromethane (50 mL×2). The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated to give the title compound (2.8 g, 97%), which was used without further purification.
  • Amino Esters AE-1 to AE-11 were prepared in a similar manner to methyl L-valyl-L-prolinate (DE-A3), by deprotection of the coupling products of the corresponding acid starting materials and amine starting materials are shown in Table E6.
  • TABLE E6
    Characterization of Amino Esters AE-1 to AE-4.
    m/z
    Amino Ester Formula/Name [M + 1]+ Starting materials
    AE-1
    Figure US20190389904A2-20191226-C00442
    277.08 (S)-2-((tert- Butoxycarbonyl)amino)-3- (pyridin-3-yl)propanoic acid and methyl-L-prolinate
    AE-2
    Figure US20190389904A2-20191226-C00443
    (S)-2-((tert- Butoxycarbonyl)amino)-2- cyclohexylacetic acid and methyl L-prolinate
    AE-3
    Figure US20190389904A2-20191226-C00444
    243.46 (tert-Butoxycarbonyl)-L-valine and methyl (S)-piperidine-2- carboxylate
    AE-4
    Figure US20190389904A2-20191226-C00445
    219.28 (tert-Butoxycarbonyl)-L-valine and methyl L-serinate
    AE-5
    Figure US20190389904A2-20191226-C00446
    (tert-Butoxycarbonyl)-L-valine and methyl (2S,4R)-4- hydroxypyrrolidine-2- carboxylate
    AE-6
    Figure US20190389904A2-20191226-C00447
    (S)-2-((tert- Butoxycarbonyl)amino)-2- cyclohexylacetic acid and methyl (2S,4R)-4- hydroxypyrrolidine-2- carboxylate
    AE-7
    Figure US20190389904A2-20191226-C00448
    (S)-2-((tert- Butoxycarbonyl)amino)-2- cyclohexylacetic acid and methyl L-serinate
    AE-8
    Figure US20190389904A2-20191226-C00449
    231.05 (tert-Butoxycarbonyl)-L-valine and methyl (S)-oxazolidine-4- carboxylate
    AE-9
    Figure US20190389904A2-20191226-C00450
    245.14 (tert-Butoxycarbonyl)-L-valine and methyl (S)-morpholine-3- carboxylate
    AE-10
    Figure US20190389904A2-20191226-C00451
    215.01 (tert-Butoxycarbonyl)-L-valine and methyl (S)-azetidine-2- carboxylate
    AE-11
    Figure US20190389904A2-20191226-C00452
    254.18 (tert-Butoxycarbonyl)-L-valine and methyl (2S,4R)-4- cyanopyrrolidine-2-carboxylate
  • Acids 1 to 3 were prepared by coupling of 4-bromobenzoyl chloride and the corresponding amines, followed by hydrolysis of the methyl ester in the case of acid 1.
  • TABLE E7
    Characterization of Acids 1 to 3.
    m/z Starting
    Acid Formula/Name [M + 1]+ material
    Acid
    1
    Figure US20190389904A2-20191226-C00453
    300.16 Methyl L- valinate
    Acid
    2
    Figure US20190389904A2-20191226-C00454
    314.1  L-Leucine
    Acid 3
    Figure US20190389904A2-20191226-C00455
    415.9  (S)-2- Amino-3-(4- (trifluoro- methyl) phenyl) propanoic acid
  • (S)-1-((S)-2-Amino-3-cyclohexylpropanoyl)-N—((S)-1-fluoro-2-oxo-6-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)hexan-3-yl)pyrrolidine-2-carboxamide
  • Figure US20190389904A2-20191226-C00456
  • The title compound was prepared by coupling of ((S)-2-(((benzyloxy)carbonyl)amino)-3-cyclohexylpropanoyl)-L-proline (Acid 4) and (S)—N—(N-(4-amino-6-fluoro-5-oxohexyl)carbamimidoyl)-2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonamide. MS (m/z): 693.5 [M+1]+.
  • ((S)-2-(((Benzyloxy)carbonyl)amino)-3-cyclohexylpropanoyl)-L-proline (Acid 4)
  • Figure US20190389904A2-20191226-C00457
  • Acid 4 was prepared by coupling of (S)-2-(((benzyloxy)carbonyl)amino)-3-cyclohexylpropanoic acid (Acid 5) and methyl L-prolinate, followed by ester hydrolysis. MS (m/z): 403.2 [M+1]+.
  • (S)-2-(((Benzyloxy)carbonyl)amino)-3-cyclohexylpropanoic acid (Acid 5)
  • Figure US20190389904A2-20191226-C00458
  • Acid 5 was prepared by Cbz protection of (S)-2-amino-3-cyclohexylpropanoic acid. MS (m/z): 306.4 [M+1]+.
  • The synthesis of (Pmc)arginine-fmk is shown in Scheme E4 (FIG. 5), and described below. The reagent magnesium benzyl fluoromalonate is further described in U.S. Pat. No. 5,210,272 which is incorporated herein by reference.
  • (S)—N—(N-(4-Amino-6-fluoro-5-oxohexyl)carbamimidoyl)-2,2,5,7,8-pentamethylchromane-6- sulfonamide 2,2,2-trifluoroacetate
  • Figure US20190389904A2-20191226-C00459
  • tert-Butyl (S)-(1-fluoro-2-oxo-6-(3-((2,2,5,7,8-pentamethylchroman-6-yl)sulfonyl)guanidino) hexan-3-yl)carbamate (0.125 g, 0.225 mmol) was dissolved in DCM (10 mL). TFA (1 mL) was added and the mixture was stirred for 30 minutes. The solvent was removed under reduced pressure to give a brown oil (0.1 g, 98% yield). MS (m/z): 457.4 [M+1]+.
  • tert-Butyl (S)-(1-fluoro-2-oxo-6-(3-((2,2,5,7,8-pentamethylchroman-6-yl)sulfonyl)guanidino)hexan-3-yl)carbamate
  • Figure US20190389904A2-20191226-C00460
  • N-(tert-Butoxycarbonyl)-N-((2,2,5,7,8-pentamethylchroman-6-yl)sulfonyl)-L-arginine (1.0 g, 1.85 mmol) was dissolved in THF (75 mL) and cooled to 0° C. CDI (0.75 g, 4.63 mmol) was added and the reaction was stirred under N2 for 2 hours. Magnesium benzyl fluoromalonate (2.39 g, 5.55 mmol) was added and the mixture stirred at RT overnight. The reaction was quenched with sat. aq. NaHCO3 and extracted with EtOAc (3×100 mL). The combined organic layer was washed with brine, dried (MgSO4) and concentrated. The crude product was dissolved in EtOH (100 mL), Pd/C (0.25 g) was added and the reaction vessel was evacuated to hydrogen using a balloon. The mixture was stirred under hydrogen for 24 hours, then filtered through Celite, washing with EtOH (150 mL) and concentrated. The residue was purified by column chromatography (10-70% EtOAc in Hexanes) to give a colorless oil (0.63 g, 61% yield). 1H NMR (400 MHz, d6-DMSO) δ 7.28 (d, 1H), 6.68 (br s, 1H), 6.41 (br s, 2H), 5.18 (dd, 1H), 5.12 (dd, 1H), 4.00 (m, 1H), 3.02 (m, 2H), 2.59 (t, 2H), 2.47 (s, 6H), 2.03 (s, 3H), 1.78 (t, 2H), 1.64 (m, 1H), 1.41 (m, 3H), 1.39 (s, 9H), 1.26 (s, 6H); MS (m/z): 557.4 [M+1]+.
  • X-Ray Co-crystal Structure of Compound 101 and MALT1
  • Compound 101 was incubated with MALT1 to form a complex, and the complex was purified and crystallized for structure determination. X-ray diffraction data was collected, and the compound 101-MALT1 structure was solved in 2.0 angstrom resolution. Exemplary results are shown in FIG. 3. FIG. 3 indicates the formation of a covalent bond between: (1) the carbon atom to which the fluorine atom is directly attached in compound 101; and (2) the sulfur atom of the Cys464 residue of MALT1. Exemplary evidence for the formation of the covalent bond is the existence of continuous electron density from compound 101 to the Cys464 residue of MALT1. The electron density is 2Fo-Fc map contoured at 1.0 sigma.
  • Biological Assays of the Compounds Inhibition Constants (Ki's)
  • For exemplary compounds of the disclosure, Ki for inhibition of MALT1 was measured (Table E11). A concentration of 100 nM MALT1 was used for the assay.
  • Cell Growth Inhibition Assays
  • DLBCL cell lines were grown in exponential growth conditions during the 96 hours of treatment. Cells were treated twice: at t=0 and t=48 hours, and cell viability was determined by ATP quantification using a luminescent method (CELLTITER-GLO, Promega, Madison, Wis.). Cell viability in drug-treated cells was normalized to vehicle controls (fractional viability) and results are given as 1-fractional viability. PRISM GRAPHPAD software (Biosoft, Cambridge, UK) was used to determine the drug concentration that inhibits the growth of cell lines by 50% compared to control (GI50). Experiments were performed in triplicate.
  • Western blot: OCI-Ly3 cells (a line of human diffuse large B-cell lymphoma (ABC type)) were pre-treated for 30 minutes with indicated doses of MALT1 inhibitors followed by a 2-hour treatment with proteasome inhibitor MG-132 at 5 μM. Protein was then extracted in a PBS-based lysis buffer containing 1% NP-40. Equal amounts of total protein (50 to 75 μg) were separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and electrotransferred onto nitrocellulose membranes. Membranes were incubated with primary antibodies (MALT1, from Santa Cruz Biotechnologies, Santa Cruz, Calif.; RELB from Cell Signaling, Danvers, Mass., and α-Tubulin from Sigma), followed by secondary antibodies conjugated to horseradish peroxidase, which were detected by chemiluminescence (Pierce, Thermo Scientific, Rockford, Ill.).
  • Exemplary results of the cell growth inhibition assays are shown in Table E11.
  • TABLE E11
    Enzyme Ki and OCI-LY3 GI50 of exemplary compounds
    Compound MALT1 Ki (nM) OCI-LY3 GI50 (μM)
    101 40 8.52
    102 44 1.45
    103 43 1.44
    104 154 8.05
    105 55 4.26
    106 146 8.43
    107 40 0.73
    108 37 1.33
    109 53 0.29
    110 49 1.07
    111 158 10.5
    112 808 >20
    113 40 0.66
    114 105 4.24
    115 41 0.53
    116 10 0.13
    117 42 3.37
    118 46 2.91
    119 43 1.88
    120 56 0.94
    121 109 7.29
    122 75 2
    123 50 1.67
    124 100 16.8
    125 52 9.65
    126 60 6.66
    127 75 >20
    128 111 >20
    129 52 1.52
    130 66 3.72
    201 >5
    202 90 1.05
    203 0.819
    204 120
    205 >200
    131 58 14.5
    132 175 >20
    133 54 >20
    134 39 3.69
    135 132 0.12
    136 67 1.24
    137 30 0.55
    138 1.24
    139 121 1.75
    140 64 0.29
    141
    142 >1000 14.1
    143 45 0.13
    144 79 0.46
    145 27 0.7
    146 13 0.5
    147 24 0.55
    148 15 0.53
    149 64
    150
    151 78
    152 47
    153 102 0.16
    154 36 0.11
    155 55 0.57
    156 40 3.88
    157 59 0.63
    158 110 1.7
    159 139 4.22
    160 13 2.34
    161 346 0.91
    162 45 0.98
    163 22 0.27
    164 62 0.78
    165 27 0.52
    166 557
    167 24
    168 32
    169 22
    170 27
    171 50 0.07
    172 34 0.06
    173 46 0.24
    174 20 0.12
    175 70 0.46
    176 118 0.77
    177 28
    178 38
    179 71 0.81
    180 30 2.44
    181 1185 4.31
    182 76 2.30
    183 40 0.85
    184 93 5.49
    185 182 1.10
    186 448 1.37
    187 122
  • Maximum Killing Effects on Select Cell-Lines
  • The maximum killing effects on cell-lines OCI-LY3, TMD8, and OCI-LY1 were also measured for select compounds at inhibitor concentration of 20 μM and 5 μM. TMD8 is another line of ABC type diffuse large-B cell lymphoma, while OCI-LY1 is a DLBCL line of the germinal center B-cell subtype. Table E12 lists the measured killing effect for Z-VRPR-fmk, mepazine, and exemplary compounds of the disclosure at concentration of 20 μM or 5 μM.
  • TABLE E12
    Maximum killing effect for exemplary compounds with DLBCL cell lines.
    OCI-LY3 TMD8 OCI-LY1
    Compound
    20 μM 5 μM 20 μM 5 μM 20 μM 5 μM
    Z-VRPR-fmk 62% 42% 67% 27% <0% <0% 
    mepazine 97% 35% 99% 32% 82% 6%
    101 79% 70% 63% 50% 7% <0% 
    102 85% 54% 19%
    107 85% 38% 58% 29% 11% 3%
    112 51% 28% 66% 2% 5%
    114 80% 40% 9%
    115 84% 64% 15%
    116 90% 76% 19%
    120 81% 52% <0%
    202 87% 71% 59% <0% 6%
    203 79% 59% 3%
  • Western blots for RelB and MALT1 show inhibition of RelB cleavage by inhibitors 202, 109, 116, 203, 112, and 107. OCI-LY3 cells were pretreated with the an inhibitor at the desired concentration and subsequently treated with 5 μM MG-132, a proteasome inhibitor, for 2 hours. Results are shown in FIGS. 1A and 1B.
  • REFERENCES
    • 1. Swerdlow, S. H., Campo, E., Harris, N. L., Jaffe, E. S., Pileri, S. A., Stein, H., Thiele, J., Vardiman, J. W (2008). World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, (Lyon: IARC Press).
    • 2. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C, Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 403, 503-511.
    • 3. Rosenwald, A., Wright, G., Chan, W. C, Connors, J. M., Campo, E., Fisher, R. I., Gascoyne, R. D., Muller-Hermelink, H. K., Smeland, E. B., Giltnane, J. M., et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. New Eng. J. Med. 346, 1937-1947.
    • 4. Davis, R. E., Ngo, V. N., Lenz, G., Tolar, P., Young, R. M., Romesser, P. B., Kohlhammer, H., Lamy, L., Zhao, H., Yang, Y., et al. (2010). Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 463, 88-92.
    • 5. Afonina, I. S., Elton, L. Carpentier, I., Beyaert, R. (2015). FEBS Journal. DOI: 10.1111/febs.13325.
    • 6. Ruefli-Brasse, A. A., French, D. M., and Dixit, V. M. (2003). Regulation of NF-wB-dependent lymphocyte activation and development by paracaspase. Science. 302, 1581-1584.
    • 7. Ruland, J., Duncan, G. S., Wakeham, A., and Mak, T. W. (2003). Differential requirement for MALT1 in T and B cell antigen receptor signaling. Immunity. 19, 749-758.
    • 8. Rebeaud, F., Hailfinger, S., Posevitz-Fejfar, A., Tapernoux, M., Moser, R., Rueda, D., Gaide, O., Guzzardi, M., Iancu, E. M., Rufer, N., et al. (2008). The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 9, 272-281.
    • 9. Coornaert, B., Baens, M., Heyninck, K., Bekaert, T., Haegman, M., Staal, J., Sun, L., Chen, Z. J., Marynen, P., Beyaert, R. (2008) T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol. 9, 263-271.
    • 10. Staal, J., Driege, Y., Bekaert, T., Demeyer, A., Muyllaert, D., Van Damme, P., Gevaert, K., Beyaert, R. (2011) T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30, 1742-1752.
    • 11. Hailfinger, S., Nogai, H., Pelzer, C., Jaworski, M., Cabalzar, K., Charton, J. E., Guzzardi, M., Decaillet, C., Grau, M., Dorken, B., et al. (2011) Maltl-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. PNAS. 108, 14596-14601.
    • 12. Jeltsch, K. M., Hu, D., Brenner, S., Zoller, J., Heinz, G. A., Nagel, D., Vogel, K. U., Rehage, N., Warth, S. C., Edelmann, S. L. et al., (2014) Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat. Immunol. 15, 1079-1089.
    • 13. Uehata, T., Iwasaki, H., Vandenbon, A., Matsushita, K., Hernandez-Cuellar, E., Kuniyoshi, K., Satoh, T., Mino, T., Suzuki, Y., Standley, D. M. et al., (2013) Maltl-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell. 153, 1036-1049.
    • 14. Rosebeck, S., Madden, L., Jin, X., Gu, S., Apel, I. J., Appert, A., Hamoudi, R. A., Noels, H., Sagaert, X., Van Loo, P. et al., (2011) Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science. 331, 468-472.
    • 15. Nie, Z., Du, M. Q., McAllister-Lucas, L. M., Lucas, P. C., Bailey, N. G., Hogaboam, C. M., Lim, M. S., Elenitoba-Johnson, K. S. (2015) Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT lymphoma. Nat. Commun. 6, 5908.
    • 16. Baens, M., Bonsignore, L., Somers, R., Vanderheydt, C., Weeks, S. D., Gunnarsson, J., Nilsson, E., Roth, R. G., Thome, M., Marynen, P. (2014) MALT1 autoproteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes. PLoS ONE. 9, e103774.
    • 17. Farinha, P., Gascoyne, R. D. (2005). Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J. Clinical Oncology. 23, 6370-6378.
    • 18. Hailfinger, S., Lenz, G., Ngo, V., Posvitz-Fejfar, A., Rebeaud, F., Guzzardi, M., Penas, E. M., Dierlamm, J., Chan, W. C, Staudt, L. M., Thome, M. (2009). Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. PNAS. 106, 19946-19951.
    • 19. Nagel, D., Spranger, S., Vincendeau, M., Grau, M., Raffegerst, S., Kloo, B., Hlahla, D., Neuenschwander, M., von Kries J. P., Hadian, K., Dorken, B., Lenz, P., Lenz, G., Schendel, D., Krappmann, D. (2012) Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell. 22, 825-837.
    • 20. Fontan, L., Yang, C., Kabaleeswaran, V., Volpon, L., Osborne, M. J., Beltran, E., Garcia, M., Cerchietti, L., Shaknovich, R., Yang, S. N., Fang, F., Gascoyne, R. D., Martinez-Climent, J. A., Glickman, J. F., Borden, K., Wu, H., Melnick, A. (2012) MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell. 22, 812-824.
    EQUIVALENTS AND SCOPE
  • In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.
  • Furthermore, the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, and descriptive terms from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Where elements are presented as lists, e.g., in Markush group format, each subgroup of the elements is also disclosed, and any element(S) can be removed from the group. It should it be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements and/or features, certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements and/or features. For purposes of simplicity, those embodiments have not been specifically set forth in haec verba herein. It is also noted that the terms “comprising” and “containing” are intended to be open and permits the inclusion of additional elements or steps. Where ranges are given, endpoints are included. Furthermore, unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.
  • This application refers to various issued patents, published patent applications, journal articles, and other publications, all of which are incorporated herein by reference. If there is a conflict between any of the incorporated references and the instant specification, the specification shall control. In addition, any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Because such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the invention can be excluded from any claim, for any reason, whether or not related to the existence of prior art.
  • Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments described herein. The scope of the present embodiments described herein is not intended to be limited to the above Description, but rather is as set forth in the appended claims. Those of ordinary skill in the art will appreciate that various changes and modifications to this description may be made without departing from the spirit or scope of the present invention, as defined in the following claims.

Claims (30)

What is claimed is:
1. A compound of Formula (I):
Figure US20190389904A2-20191226-C00461
or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, wherein:
R3 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
R4 is hydrogen, halogen, or optionally substituted alkyl;
RN is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group;
or RN and either R3 or R4 are joined to form an optionally substituted heterocyclic ring, or R3 and R4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
R5 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
R6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
or R5 and R6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group;
each occurrence of R8a and R8b is independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
L1 is a bond, an amino acid, or a dipeptide;
each of Rc and Rd is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group; and
each of RA1, RA2, RA3, and RA4 is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, optionally substituted sulfonyl, or a nitrogen protecting group, or any two of RA1, RA2, RA3, and RA4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
provided the compound is not of formula:
Figure US20190389904A2-20191226-C00462
2. The compound of claim 1, wherein R5 is hydrogen, halogen, or optionally substituted alkyl.
3. The compound of claim 1, wherein the compound is of Formula (I):
Figure US20190389904A2-20191226-C00463
or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, wherein:
R3 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
R4 is hydrogen, halogen, or optionally substituted alkyl;
RN is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group;
or RN and either R3 or R4 are joined to form an optionally substituted heterocyclic ring, or R3 and R4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
R5 is hydrogen, halogen, or optionally substituted alkyl;
R6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
or R5 and R6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group;
each occurrence of R8a and R8b is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
L1 is a bond, an amino acid, or a dipeptide;
each of Rc and Rd is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group; and
each of RA1, RA2, RA3, and RA4 is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, optionally substituted sulfonyl, or a nitrogen protecting group, or any two of RA1, RA2, RA3, and RA4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
provided the compound is not of formula:
Figure US20190389904A2-20191226-C00464
4. The compound of claim 1, wherein the compound is of Formula (I-A), (I-B), (I-C), or (I-D):
Figure US20190389904A2-20191226-C00465
or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
5.-7. (canceled)
8. The compound of claim 1, wherein R3 and RN are joined to form an optionally substituted 4-6-membered heterocyclic ring.
9.-14. (canceled)
15. The compound of claim 1, wherein R3 is of formula:
Figure US20190389904A2-20191226-C00466
16. The compound of claim 1, wherein R4 and RN are joined to form an optionally substituted 5-membered heterocyclic ring.
17. The compound of claim 1, wherein R4 is hydrogen.
18. The compound of claim 1, wherein R5 and R6 are each unsubstituted C1-12 alkyl.
19. The compound of claim 1, wherein R5 and R6 are joined to form an optionally substituted 3-6-membered carbocyclic or optionally substituted 3-6-membered heterocyclic ring.
20. (canceled)
21. The compound of claim 1, wherein R6 is optionally substituted 5-6-membered carbocyclyl or optionally substituted 5-6-membered heterocyclyl.
22. The compound of claim 1, wherein R6 is unsubstituted C1-12 alkyl.
23. The compound of claim 1, wherein R6 is of formula:
Figure US20190389904A2-20191226-C00467
24.-25. (canceled)
26. The compound of claim 1, wherein R8 is —C(═O)R8b, —C(═O)OR8a, or —C(═O)N(R8a)2.
27.-34. (canceled)
35. The compound of claim 1, wherein the compound is of formula:
Figure US20190389904A2-20191226-C00468
Figure US20190389904A2-20191226-C00469
Figure US20190389904A2-20191226-C00470
Figure US20190389904A2-20191226-C00471
Figure US20190389904A2-20191226-C00472
Figure US20190389904A2-20191226-C00473
Figure US20190389904A2-20191226-C00474
Figure US20190389904A2-20191226-C00475
Figure US20190389904A2-20191226-C00476
Figure US20190389904A2-20191226-C00477
Figure US20190389904A2-20191226-C00478
Figure US20190389904A2-20191226-C00479
Figure US20190389904A2-20191226-C00480
Figure US20190389904A2-20191226-C00481
Figure US20190389904A2-20191226-C00482
Figure US20190389904A2-20191226-C00483
Figure US20190389904A2-20191226-C00484
Figure US20190389904A2-20191226-C00485
Figure US20190389904A2-20191226-C00486
Figure US20190389904A2-20191226-C00487
Figure US20190389904A2-20191226-C00488
Figure US20190389904A2-20191226-C00489
Figure US20190389904A2-20191226-C00490
or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
36.-38. (canceled)
39. A pharmaceutical composition comprising a compound of claim 1, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, and a pharmaceutically acceptable excipient.
40. A method of treating a proliferative disease comprising administering an effective amount of a compound of claim 1, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, to a subject in need thereof.
41.-54. (canceled)
55. A method of inhibiting MALT1 or API2-MALT1 in a subject, the method comprising administering to the subject a compound of claim 1, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
56. (canceled)
57. A method of inhibiting cleavage of A20, RelB, Bcl10, CYLD, regnase-1, roquin-1, roquin-2, NIK, LIMA1α, or MALT1 in a subject, the method comprising administering to the subject a compound of claim 1, or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof.
58.-59. (canceled)
60. A method of preparing a compound of Formula (I):
Figure US20190389904A2-20191226-C00491
or a pharmaceutically acceptable salt, stereoisomer, or tautomer thereof, the method comprising coupling a carboxylic acid of Formula (D):
Figure US20190389904A2-20191226-C00492
or a salt thereof, and a compound of Formula (E):
Figure US20190389904A2-20191226-C00493
or a salt thereof, wherein:
R3 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
R4 is hydrogen, halogen, or optionally substituted alkyl;
RN is hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group;
or RN and either R3 or R4 are joined to form an optionally substituted heterocyclic ring, or R3 and R4 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
R5 is hydrogen, halogen, or optionally substituted alkyl;
R6 is hydrogen, halogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl;
or R5 and R6 are joined to form an optionally substituted carbocyclic or optionally substituted heterocyclic ring;
R8 is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, —C(═O)R8b, —C(═O)OR8a, —C(═O)N(R8a)2, —S(═O)2R8a, or a nitrogen protecting group;
each occurrence of R8a and R8b is independently hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, an oxygen protecting group, or a nitrogen protecting group, or two R8a are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring;
L1 is a bond, an amino acid, or a dipeptide;
each of Rc and Rd is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, or a nitrogen protecting group; and
each of RA1, RA2, RA3, and RA4 is independently hydrogen, optionally substituted alkyl, optionally substituted acyl, optionally substituted sulfonyl, or a nitrogen protecting group, or any two of RA1, RA2, RA3, and RA4 are joined to form an optionally substituted heterocyclic or optionally substituted heteroaryl ring.
61.-62. (canceled)
US15/755,951 2015-08-28 2016-08-26 MALT1 inhibitors and uses thereof Active US10711036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/755,951 US10711036B2 (en) 2015-08-28 2016-08-26 MALT1 inhibitors and uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562211629P 2015-08-28 2015-08-28
US201562256672P 2015-11-17 2015-11-17
US15/755,951 US10711036B2 (en) 2015-08-28 2016-08-26 MALT1 inhibitors and uses thereof
PCT/US2016/049038 WO2017040304A1 (en) 2015-08-28 2016-08-26 Malt1 inhibitors and uses thereof

Publications (3)

Publication Number Publication Date
US20180251489A1 US20180251489A1 (en) 2018-09-06
US20190389904A2 true US20190389904A2 (en) 2019-12-26
US10711036B2 US10711036B2 (en) 2020-07-14

Family

ID=58188144

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/755,951 Active US10711036B2 (en) 2015-08-28 2016-08-26 MALT1 inhibitors and uses thereof

Country Status (4)

Country Link
US (1) US10711036B2 (en)
EP (1) EP3341007B1 (en)
JP (2) JP6989505B2 (en)
WO (1) WO2017040304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11571427B2 (en) * 2017-12-28 2023-02-07 The General Hospital Corporation Targeting the CBM signalosome complex induces regulatory T cells to inflame the tumor microenvironment

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018076800A2 (en) * 2016-07-29 2019-04-02 Toray Industries, Inc. guanidine derivative, medicament, protein 1 inhibitor of mucosal-associated lymphoid tissue lymphoma translocation, and therapeutic or prophylactic agent.
JP2019522035A (en) 2016-07-29 2019-08-08 ルピン・リミテッド Substituted thiazolo-pyridine compounds as MALT1 inhibitors
MA53299A (en) 2016-07-29 2022-02-23 Lupin Ltd SUBSTITUTED THIAZOLO-PYRIDINE COMPOUNDS AS MALT1 INHIBITORS
WO2019159097A1 (en) * 2018-02-14 2019-08-22 Sun Pharmaceutical Industries Limited Crystalline polymorphic forms of acalabrutinib
KR20210024548A (en) * 2018-06-18 2021-03-05 얀센 파마슈티카 엔.브이. Pyrazole derivatives as MALT1 inhibitors
CA3104055A1 (en) * 2018-06-18 2019-12-26 Janssen Pharmaceutica Nv Pyrazole derivatives as malt1 inhibitors
US20210346337A1 (en) * 2018-10-09 2021-11-11 The Research Institute At Nationwide Children's Hospital Anticancer rocaglamide derivatives
CN111358959B (en) * 2019-10-10 2021-03-26 鹿文葆 Application of Roquin1 protein and coding gene thereof in preparation of tumor inhibition drugs
CN111686111B (en) * 2020-06-09 2023-06-13 南方医科大学 Application of MALT1 protease inhibitor in preparation of non-small cell lung cancer therapeutic drug
CN113057957A (en) * 2021-03-30 2021-07-02 福建中医药大学 Application of gedunin and derivatives thereof in preparation of antioxidant drugs and/or cosmetics and drugs for treating rheumatoid arthritis
CN113024565B (en) * 2021-03-31 2022-09-13 上海启甄环境科技有限公司 Radioactive isotope carbon-14 labeled ibrutinib and synthesis method thereof
WO2023149945A1 (en) * 2022-02-03 2023-08-10 Purdue Research Foundation Peptidomimetic inhibitors of protein n-terminal methyltransferase 1, composition, and method of use

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210272A (en) 1990-02-16 1993-05-11 Prototek, Inc. Process for forming a fluoromethyl ketone
AU733562B2 (en) 1996-06-18 2001-05-17 Warner-Lambert Company Process for the preparation of chiral keto-heterocycles of basic amino acids
ATE375984T1 (en) 1999-07-07 2007-11-15 Astrazeneca Uk Ltd QUINAZOLINE DERIVATIVES
JP5479105B2 (en) 2007-11-05 2014-04-23 国立大学法人佐賀大学 Novel ubiquitin-binding small molecule
US8993758B2 (en) 2010-11-22 2015-03-31 Board Of Regents Of The University Of Nebraska Substituted quinoxalines and uses thereof
MX2015005744A (en) 2012-11-09 2016-02-10 Univ Cornell Small molecule inhibitors of malt1.
KR20170002446A (en) 2014-04-14 2017-01-06 아비나스 인코포레이티드 Imide-based modulators of proteolysis and associated methods of use
DK3149001T3 (en) 2014-05-28 2019-07-22 Novartis Ag New pyrazolopyrimidine derivatives and their use as MALT1 inhibitors
JP7097880B2 (en) 2016-11-01 2022-07-08 コーネル ユニバーシティー Compounds for MALT1 degradation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11571427B2 (en) * 2017-12-28 2023-02-07 The General Hospital Corporation Targeting the CBM signalosome complex induces regulatory T cells to inflame the tumor microenvironment

Also Published As

Publication number Publication date
JP2021193093A (en) 2021-12-23
US10711036B2 (en) 2020-07-14
JP6989505B2 (en) 2022-01-05
EP3341007A4 (en) 2019-05-01
US20180251489A1 (en) 2018-09-06
EP3341007A1 (en) 2018-07-04
JP2018531987A (en) 2018-11-01
WO2017040304A1 (en) 2017-03-09
EP3341007B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
US10711036B2 (en) MALT1 inhibitors and uses thereof
US10975055B2 (en) Inhibitors of interleukin-1 receptor-associated kinases and uses thereof
US11932625B2 (en) Inhibitors of cyclin-dependent kinase 12 (CDK12) and uses thereof
US20220227734A1 (en) Degraders of cyclin-dependent kinase 12 (cdk12) and uses thereof
US10865213B2 (en) Max binders as MYC modulators and uses thereof
US20220127284A1 (en) Benzothiazole derivatives and 7-aza-benzothiazole derivatives as janus kinase 2 inhibitors and uses thereof
US20220372017A1 (en) Hck degraders and uses thereof
US20220089611A1 (en) Inhibitors of cyclin-dependent kinase 7 and uses thereof
US20220395509A1 (en) A pyrazolopyrimidine derivative as a hck inhibitor for use in therapy, in particular myd88 mutated diseases
CN114401719A (en) Inhibitors of cyclin-dependent kinase 7 and uses thereof
AU2016306694B2 (en) Phenylsulfonamido-benzofuran derivatives and uses thereof in the treatment of proliferative diseases
US11702402B2 (en) Small molecules that block proteasome-associated ubiquitin receptor RPN13 function and uses thereof
US20230339865A1 (en) Quinazoline-derived hck inhibitors for use in the treatment of myd88 mutated diseases
AU2019318046A1 (en) Histone demethylase 5 inhibitors and uses thereof

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: CHILDREN'S MEDICAL CENTER CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, HAO;QIAO, QI;REEL/FRAME:048834/0728

Effective date: 20160907

Owner name: CHILDREN'S MEDICAL CENTER CORPORATION, MASSACHUSET

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, HAO;QIAO, QI;REEL/FRAME:048834/0728

Effective date: 20160907

Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRAY, NATHANAEL S.;SCOTT, DAVID A.;HATCHER, JOHN;AND OTHERS;SIGNING DATES FROM 20160907 TO 20160916;REEL/FRAME:048834/0402

Owner name: CORNELL UNIVERSITY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MELNICK, ARI M.;GABAS, LORENA FONTAN;SIGNING DATES FROM 20160920 TO 20160928;REEL/FRAME:048834/0520

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT, MARYLAND

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DANA-FARBER CANCER INST;REEL/FRAME:057494/0406

Effective date: 20190211

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4