US20190381259A1 - Syringe adapter for medication - Google Patents

Syringe adapter for medication Download PDF

Info

Publication number
US20190381259A1
US20190381259A1 US16/393,696 US201916393696A US2019381259A1 US 20190381259 A1 US20190381259 A1 US 20190381259A1 US 201916393696 A US201916393696 A US 201916393696A US 2019381259 A1 US2019381259 A1 US 2019381259A1
Authority
US
United States
Prior art keywords
syringe
syringe adapter
needle
medication
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/393,696
Other versions
US11173257B2 (en
Inventor
James T. Doubet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/010,155 external-priority patent/US11337894B2/en
Priority claimed from US16/166,111 external-priority patent/US11097058B2/en
Application filed by Individual filed Critical Individual
Priority to US16/393,696 priority Critical patent/US11173257B2/en
Publication of US20190381259A1 publication Critical patent/US20190381259A1/en
Application granted granted Critical
Publication of US11173257B2 publication Critical patent/US11173257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/34Constructions for connecting the needle, e.g. to syringe nozzle or needle hub
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/322Retractable needles, i.e. disconnected from and withdrawn into the syringe barrel by the piston
    • A61M5/3221Constructional features thereof, e.g. to improve manipulation or functioning
    • A61M2005/323Connection between plunger distal end and needle hub proximal end, e.g. stud protruding from the plunger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M2039/1033Swivel nut connectors, e.g. threaded connectors, bayonet-connectors

Definitions

  • the present invention relates to improved apparatus for use with medication, and method(s) of using same, particularly for higher-viscosity medication.
  • Medication is needed for various purposes, including illness treatment and illness prevention.
  • a syringe adapter for withdrawing fluid medication from a container comprises a sidewall extending between a proximal end and a distal end, the sidewall having an interior surface defining a chamber, the proximal end configured to be connected to a syringe while withdrawing at least a portion of the fluid medication from the container through the chamber and into a barrel of the syringe and the distal end configured for inserting into the container for the withdrawal, wherein an opening at the distal end is relatively large in diameter to facilitate withdrawing fluid medication having a relatively high viscosity and the syringe adapter is configured to be removed from the syringe and replaced with a needle prior to subsequently injecting (for example, into an animal) the fluid medication (or at least some portion thereof) withdrawn into the barrel.
  • the relatively large opening is directed toward improved
  • the syringe is preferably configured as a pistol-grip syringe or a tab-handled syringe, and may therefore provide improved leverage for the subsequent injection.
  • the diameter of the opening at the distal end of the syringe adapter is approximately 0.10 inches and the sidewall is approximately 0.05 inches in thickness at the distal end.
  • the syringe adapter further comprises a flanged area that extends perpendicularly from the proximal end.
  • the syringe adapter may further comprise a radial extension member that extends perpendicularly and radially outward from an exterior surface of the syringe adapter.
  • an outer shape of the syringe adapter is generally conical in a first portion and generally cylindrical in a second portion.
  • an inner shape of the syringe adapter, for at least a portion of the proximal end is generally conical.
  • the inner shape of the syringe adapter tapers from the proximal end toward the distal end, for at least a portion of the proximal end, at approximately 6 percent.
  • the syringe adapter preferably connects to the syringe using a Luer-type connection, the Luer-type connection selected from the group comprising a Luer-type lock and a Luer-type slip.
  • a method of administering fluid medication comprises: affixing a syringe adapter to a syringe, the syringe adapter comprising a sidewall extending between a proximal end and a distal end, the sidewall having an interior surface defining a chamber, the proximal end configured to be connected to a distal end of the syringe; inserting the distal end of the syringe adapter into a container of fluid medication having a relatively high viscosity; withdrawing, from the container, at least a portion of the fluid medication through the chamber and into a barrel of the syringe, wherein an opening at the distal end of the syringe adapter is relatively large in diameter to facilitate withdrawing the relatively-high-viscosity medication; removing the syringe adapter from the syringe subsequent to the withdrawing; affixing a needle to the distal end of the syring
  • the syringe adapter is configured for receiving a needle at its distal end, such that the needle is affixed to the distal end of the syringe adapter subsequent to withdrawing fluid medication into the barrel of the syringe, and the syringe adapter is configured to remain in place while injecting the fluid medication (or at least some portion thereof) into a recipient with the needle.
  • administering the fluid medication may be repeated (for example, for another recipient) by removing the needle, using the in-place syringe adapter for withdrawing more fluid medication (from the same or a different container), re-affixing the needle to the syringe adapter, and then injecting this medication (or some portion thereof).
  • the distal end of the syringe adapter preferably provides for a Luer-type connection with the needle, and the proximal end of the syringe adapter is preferably configured with a Luer-type locking member for connecting to the syringe.
  • the syringe adapter may further comprise an extension member that extends perpendicularly outward from an exterior surface of the syringe adapter.
  • a method of administering fluid medication comprises: affixing a syringe adapter to a syringe, the syringe adapter comprising a sidewall extending between a proximal end and a distal end and having an interior surface defining a chamber, the proximal end configured to be connected to a distal end of the syringe; inserting the distal end of the syringe adapter into a container of fluid medication having a relatively high viscosity; withdrawing, from the container, at least a portion of the fluid medication through the chamber and into a barrel of the syringe, wherein an opening at the distal end of the syringe adapter is relatively large in diameter to facilitate withdrawing the relatively-high-viscosity medication; affixing a needle to the distal end of the syringe adapter, subsequent to the withdrawing from the container; and injecting, into a recipient with the needle, at least a portion of the fluid
  • a system for administering higher-viscosity fluid medication comprises: a syringe; a syringe adapter comprising a sidewall extending between a proximal end and a distal end, the sidewall having an interior surface defining a chamber, the proximal end configured to be connected to the syringe while withdrawing at least a portion of the fluid medication from a container through the chamber and into a barrel of the syringe and the distal end configured for inserting into the container for the withdrawal, wherein an opening at the distal end is relatively large in diameter to facilitate withdrawing the higher-viscosity fluid medication from the container; and a needle, the needle configured for connecting to the syringe adapter subsequent to use of the syringe adapter for the withdrawing and while the syringe adapter remains connected to the syringe, the needle further configured for injecting, into a recipient, at least a portion of the fluid medication withdrawn into the barrel.
  • the needle is removably affixed to a needle holder that, in turn, is removably affixed to the in-place syringe adapter for the injection.
  • the needle holder affixes to the syringe adapter using a Luer-type locking connection
  • the syringe adapter is configured with a support hub member for removably receiving the needle holder, the support hub member radially surrounding at least a portion of a length of a sidewall of the syringe adapter.
  • the needle remains affixed to the needle holder following an injection, whereby the needle may be removed from the syringe adapter (for example, in preparation for withdrawing additional fluid medication from a container) by removing, as a single unit, the needle holder and the needle affixed thereto.
  • a method of administering fluid medication comprises: inserting a distal end of a syringe adapter into a container of fluid medication having a relatively high viscosity, the syringe adapter being affixed to a syringe, the syringe adapter comprising a support hub member radially surrounding at least a portion of a length of a sidewall, the sidewall extending between a proximal end and a distal end and having an interior surface defining a chamber, the proximal end of the sidewall configured to be connected to a distal end of the syringe; withdrawing, from the container, at least a portion of the fluid medication through the chamber and into a barrel of the syringe, wherein an opening at the distal end of the sidewall is relatively large in diameter to facilitate withdrawing the relatively-high-viscosity medication; affixing a proximal end of a needle holder to the distal end of the support hub member,
  • FIGS. 1-3 depict examples of prior art syringes
  • FIG. 4 depicts an example of a prior art needle
  • FIGS. 4A and 4B illustrate bottom views showing how a proximal end of a needle may be configured for securable attachment to a syringe
  • FIGS. 5-6 illustrate first and second preferred embodiments of the syringe adapter disclosed herein;
  • FIGS. 7-8 illustrate alternative embodiments of the syringe adapter disclosed herein;
  • FIG. 9 illustrates a still further embodiment of the syringe adapter disclosed herein.
  • FIG. 10 illustrates a syringe adapter placed upon a syringe
  • FIG. 11 illustrates a needle placed upon a syringe adapter
  • FIGS. 12 and 13 illustrate yet other embodiments of the syringe adapter disclosed herein, and also illustrate placement thereof upon a syringe;
  • FIG. 14 illustrates a further embodiment of the disclosed syringe adapter, showing an exterior view as well as cross-sectional views of placement thereof upon a syringe and as exploded;
  • FIG. 15 illustrates a still further embodiment of the disclosed syringe adapter that includes a needle holder to which a needle may be removably affixed, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded;
  • FIGS. 16 and 17 illustrate yet other embodiments of the disclosed syringe adapter that include a needle holder to which a needle may be removably affixed, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded, where FIG. 17 shows a syringe adapter having a sharp tip and both figures illustrate a needle holder adapted for a locking connection with the needle;
  • FIGS. 18 and 19 illustrate embodiments of the disclosed syringe adapter that replace a conventional syringe tip, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded, and FIGS. 20-21 illustrate alternative approaches for a portion of the syringe adapters shown in FIGS. 18 and 19 ;
  • FIG. 22 presents tables containing measurements from tests conducted to compare use of a sample version of the disclosed syringe adapter to use of conventional needles.
  • medication is needed for various purposes, including illness treatment and illness prevention. Discussions are presented herein with reference to medication used for animals, primarily in terms of livestock animals; this is by way of illustration and not of limitation, however, and it should be noted that the disclosed syringe adapter may be beneficial with medication used for all types of animal life, including humans.
  • Treatment of animals using medication may be desired whether the animal is a family pet, part of a livestock operation, is the subject of research, and so forth.
  • Examples of medicating animals for illness treatment will be obvious, and may span a wide variety of illnesses.
  • One example of medicating an animal for illness prevention is a proactive vaccination; another example is to proactively administer an antibiotic.
  • animals may be proactively medicated before they are introduced into another group of livestock, for example to guard against introducing an illness that they may carry or simply to ensure that all animals in the group have received an identical medication regimen.
  • Medication might also be administered in anticipation of, or in response to, a change in weather conditions or a change in geographical location for an animal (such as moving from one climate to another).
  • animal medications are discussed without differentiation of the purpose for such medication.
  • Medication may be found in various forms, including solid and fluid. Solid substances may be ingestible, for example, while fluids may be injectable or may be administered orally or nasally. Embodiments of the present invention are directed toward improved apparatus for use with medication in fluid form, and the scope of the present invention also includes method(s) for using such apparatus.
  • Medications provided in fluid form may vary widely in their viscosity, depending upon their chemical formulation. Viscosity is sometimes defined as the resistance of a substance to flow. The viscosity of water is relatively low, for example, while the viscosity of honey is relatively high. The viscosity of some substances can be changed by applying heat; for example, melting butter increases its ability to flow. Some fluid medications may have a viscosity that is relatively low and is similar to that of water, for example, and thus will flow quite easily. Other fluid medications are known that have a viscosity that is markedly different from water.
  • Fluid medications intended for use with animals are commonly marketed in multi-dose packaging, such as bottles that hold enough fluid for administering several doses.
  • a bottle of medication might hold 500 milliliters, for example (equivalently, 500 cubic centimeters), which is roughly equivalent to 16.9 ounces.
  • the bottle might be made of glass or plastic, and a container having a configuration other than a bottle might be used.
  • the term “bottle” is used for ease of reference, and by way of illustration and not of limitation, as a container type in which medication may be contained.
  • the cost of the medication may be reduced, for example, by selling a larger quantity container and thereby reducing the relative cost of the packaging.
  • Another reason for marketing animal medication in multi-dose bottles is that the dosage of many (if not all) medications is prescribed with regard to the animal's body weight. Accordingly, the correct amount of medication to use on a particular animal can be calculated and then withdrawn from the multi-dose bottle, after which it may be injected into the animal, and the remaining medication is then available for subsequent use.
  • a multi-dose bottle of fluid medication is typically marketed with a rubber membrane covering at least a portion of an opening at the top of the bottle.
  • the fluid medication is withdrawn from such bottle by placing a needle onto the tip of a syringe, inserting a tip of the needle into the rubber membrane, and withdrawing a plunger of the syringe until an appropriate amount of fluid is pulled into the syringe body (referred to herein as the syringe “barrel”); this same needle is then used for injecting the medication from the syringe into the animal.
  • FIG. 1 shows an example of a prior art syringe 100 , and illustrates how the hollow barrel 130 of syringe 100 is commonly marked with fill lines 110 that are provided for measuring the amount of fluid contained therein.
  • a needle is placed over (or inside) the tip 140 , and fluid enters through an opening or eye of the needle and into the syringe barrel 130 .
  • the syringe includes a retractable plunger, a terminal end of which is shown at 120 . (As will be obvious, as fluid medication is withdrawn from the bottle into the barrel 130 , the plunger 120 movably extends outward from the proximal end of the syringe 100 , although this is not illustrated in FIG. 1 .)
  • a syringe as illustrated in FIG. 1 is constructed of plastic, making it relatively cheap to purchase.
  • a tab-shaped member 150 is also provided on syringe 100 .
  • a person's index finger is placed on the tab-shaped member 150 at one side of barrel 130 and the person's middle finger is placed on the tab-shaped member 150 at the opposing side of barrel 130 , and the person's thumb is then used to depress the terminal end of plunger 120 into the barrel in order to expel the medication from the barrel.
  • FIG. 2 an example of a so-called “pistol-grip” syringe is illustrated in FIG. 2 .
  • Fluid medication is drawn into a syringe of this type by pulling plunger 220 outwardly from the barrel 230 .
  • a tab-shaped member is not provided on a syringe of this type, as compressing or squeezing the handles 210 serves to expel medication from the barrel of a syringe having a pistol-grip configuration.
  • FIG. 3 illustrates yet another prior art syringe 300 , and is referred to herein as a “tab-handled” syringe.
  • the syringe has a tabbed member 350 near the proximal end of barrel 330 , and includes a handle-style tabbed member 320 affixed to the terminal end of the plunger.
  • the tabbed member 350 is used in a similar manner to tab-shaped member 150 of FIG. 1 , whereby a person places fingers on the tabbed member 350 on opposing sides of barrel 330 ; the person then presses down on tabbed member 320 using the person's palm to depress the terminal end of the plunger into the barrel in order to expel the medication from the barrel.
  • the tabbed members 320 , 350 of FIG. 3 typically provide improved comfort for the person using the tab-handled syringe.
  • the tips 240 , 340 may be generally on the order of 3 ⁇ 8 to 7/16 inch in diameter and generally of similar height (and similarly, tip 140 ), and are generally constructed of metal. An interior area of this tip is intended for securably attaching a needle and is generally threaded for at least a portion thereof. A height of this threaded area is generally on the order of 1 ⁇ 8 inch to 1 ⁇ 4 inch. While not illustrated in detail on tips 240 , 340 of FIGS. 2 and 3 , the syringe tip also typically includes a protrusion (illustrated herein in FIGS. 14-17 ; see reference number 341 ) that is centered within the exterior wall of the tip and that provides the opening through which a substance enters into the syringe barrel. (Notably, tips 140 , 240 , 340 are not designed for inserting through the rubber membrane of a medicine bottle.)
  • Syringes 200 , 300 are often constructed, at least in part, of metal. Glass or plastic might be used for the syringe barrel.
  • a metal commonly used for syringes, by way of example, is stainless steel; another example is aluminum.
  • FIG. 4 illustrates an example of a prior art needle 400 , which may be affixed to the distal end of syringes 100 , 200 , or 300 .
  • Needles are typically sold in standardized sizes, and thus the distal syringe ends 140 , 240 , 340 typically conform to the standard size of the proximal end of a needle.
  • FIGS. 4A and 4B illustrate bottom views showing examples of how a proximal end of needle 400 may be configured for securable attachment to the distal end of a syringe that has an internal threaded portion.
  • an approach 410 as shown in FIG.
  • a flanged area 420 extends radially outward from the proximal end of the needle (as is generally illustrated in FIG. 4 ).
  • Reference number 440 depicts the opening in the tip of the needle, and reference number 430 generally depicts the sidewall of needle 400 .
  • a flanged area 460 extends perpendicularly outward from the proximal end of the needle, but in this configuration, is fashioned as having side edges that are not generally round.
  • Reference number 480 depicts the opening in the tip of the needle, and reference number 470 generally depicts the sidewall of needle 400 .
  • a flanged area 420 , 460 on the proximal end of a needle is designed to securably attach to a corresponding receiving area on the distal end of a syringe.
  • the securable attachment of a needle to a syringe tip relies on friction instead of an exterior flanged area, whereby the proximal end of needle 400 is placed over an exterior of the distal end (e.g., tip 140 of FIG. 1 ) of a syringe.
  • These approaches are commonly referred to as a Luer-style lock approach and a Luer-style slip approach, respectively, as is discussed in further detail below.
  • flanged area 420 is configured to extend perpendicularly outward as illustrated in FIG. 4A , it is preferably intended for use in a Luer-type slip connection rather than a Luer-type lock connection, due to the so-called “double start” or double helix configuration that is described for the internal threads of a Luer-type lock hub according to International Standard ISO 594-2:1998(E), which is discussed in further detail below.
  • tabs may be added to the outer edge of flanged area 420 , where these tabs are configured for engaging the internal threads of the Luer-type lock hub.
  • the sharp tip at the distal end of the needle 400 is inserted through the rubber membrane of the bottle.
  • the sharp tip of that same needle is inserted into an animal's body, and the person holds tab-shaped member 150 while simultaneously depressing plunger 120 of syringe 100 , squeezes the handles 210 of pistol-grip syringe 200 , or holds tabbed member 350 while simultaneously depressing handle-style tabbed member 320 of tab-handled syringe 300 .
  • the higher viscosity of the medication makes the injection process more time-consuming and physically more difficult for the person tasked with medicating the animal.
  • the general configuration of a plastic syringe as illustrated in FIG. 1 does not enable a person using the syringe to have sufficient leverage when attempting to inject the medication into an animal.
  • Tab-shaped member 150 is known to collapse or break in some instances, due to the physical force that must be exerted while depressing plunger 120 .
  • the plunger shaft is also known to break in some instances, for example due to misalignment as it moves within the barrel or due to age-related brittleness.
  • the needle may also be forced off the syringe when attached thereto by a friction-based Luer-type slip connection, which may in turn lead to leakage and/or waste of the medication through the now-opened end of the syringe.
  • the syringe tip of plastic syringes are known to break off while medicating an animal (for example, due to the animal moving or thrashing about), which can lead to waste of medication in the syringe.
  • the syringes 200 , 300 of FIGS. 2-3 are better adapted for withstanding the physical force required for expelling a higher-viscosity medication from the syringe barrel and for allowing the person using the syringe to have better leverage during the injection process. (Because the leverage is improved, the time required to complete the injection may be shortened as compared to use of a plastic syringe configured as shown at 100 of FIG. 1 , which benefits the person and the animal.)
  • preferred embodiments of the present invention are directed toward improved syringeability of medications having a relatively high viscosity.
  • the disclosed syringe adapter may function suitably with lower-viscosity medications as well, and is therefore not deemed to be limited to use with particular medications.
  • a preferred embodiment of the present invention provides a new tip that operates as a syringe adapter for withdrawing medication from a bottle.
  • This tip is preferably affixed to a pistol-grip syringe of the type illustrated in FIG. 2 or a tab-handled syringe of the type illustrated in FIG. 3 .
  • the pistol-grip or tab-handled syringe may be formed from plastic, metal, or other substance(s), as noted earlier. Accordingly, use of an embodiment of the present invention addresses the issue of drawing a higher-viscosity fluid from a bottle as well as the issue of providing sufficient leverage for subsequent injection.
  • the larger opening of the disclosed syringe adapter addresses syringeability issues by improving draw time of higher-viscosity medications and, when this adapter is affixed to a pistol-grip or tab-handled syringe, the medication withdrawn into the pistol-grip or tab-handled syringe can be more easily administered from the syringe barrel (noting that, in some embodiments, the syringe adapter will be replaced with a needle prior to injecting the medication).
  • FIG. 5 illustrates one embodiment of the syringe adapter disclosed herein.
  • the syringe adapter has a sidewall extending between a proximal end and a distal end, and the interior surface of the sidewall defines a chamber through which fluid medication flows.
  • the length and shape of the syringe adapter, as well as the thickness of portions of the sidewall and the width of its interior chamber, may vary from illustrations depicted herein without deviating from the scope of the present invention.
  • the shape of the syringe adapter 500 is generally conical in an upper portion and generally cylindrical in a lower portion. While not illustrated in FIG.
  • a preferred diameter of the hole in the distal end of the tip of the syringe adapter is on the order of 0.10 inches, although embodiments are not limited to this diameter.
  • Thickness of the sidewall of the syringe adapter is preferably on the order of 0.050 inches, although embodiments are not limited to this thickness. Using a sidewall thickness of 0.050 inches and an opening of 0.10 inches results in a syringe adapter having an overall diameter of 0.20 inches at the end to be inserted into the bottle of medication, in this example configuration.
  • the proximal end of the disclosed syringe adapter attaches to a syringe using a Luer-type lock or a Luer-type slip.
  • Luer-type locks and Luer-type slips are known approaches for making leak-free connections on fluid fittings, and are described in the above-cited International Standards.
  • a Luer-type lock provides a threaded attachment, whereby two pieces of a configuration are held together by rotating a flanged area (such as flanged area 420 of FIG. 4A when augmented with tabs or flanged area 460 of FIG. 4B ) of one piece within threads of the other piece, whereas a Luer-type slip is non-threaded and provides attachment using friction.
  • a conventional height for this internal threaded portion of a pistol-grip or tab-handled syringe tip is approximately 1 ⁇ 8 inch to 1 ⁇ 4 inch in length, and accordingly, a flanged area 510 on the proximal end of syringe adapter 500 is preferably on the order of at least 1/16 to 1 ⁇ 8 inch in height.
  • the shape of flanged area 510 may correspond generally to flanged area 420 or 460 (for example, by extending perpendicularly and radially from the proximal end of the syringe adapter, although a strictly circular shape is not required), although another shape providing for a securable attachment may be used without deviating from the scope of the present invention.
  • the proximal end of the syringe adapter 500 may omit the flanged area shown at 510 and is attached and held to the distal end of the syringe by friction in a Luer-type slip approach.
  • FIG. 6 illustrates another embodiment of the syringe adapter disclosed herein.
  • syringe adapter 600 includes a radial extension feature 610 , which is preferably configured as extending perpendicularly and radially outward from the body of the syringe adapter and is shown in FIG. 6 as being located relatively near to the proximal end of syringe adapter 600 .
  • radial extension feature 610 may be placed at another location on the syringe adapter, for example being located closer to the conical portion thereof.)
  • the radial extension feature 610 also serves to prevent inserting the syringe into the medication bottle far enough that the attachment point (e.g., Luer-type slip or lock) between the syringe and the syringe adapter would come into contact with the medication.
  • a diameter of radial extension feature 610 is sufficiently large as to exceed the diameter of a conventional rubber membrane on a medicine bottle.
  • the diameter of radial extension feature 610 may be, by way of example, on the order of twice the diameter of the cylindrical portion of syringe adapter 600 .
  • Syringe adapter 600 may omit the flanged area 620 when relying on a Luer-type slip attachment, and is depicted without tabs extending from the outer edge for drafting convenience, as was discussed above with reference to flanged area 510 .
  • An extension feature might alternatively be used that is not round, although this has not been illustrated in FIG. 6 .
  • a hexagonal shape might be used for an extension feature, and thus references herein to a “radial” extension feature are by way of illustration but not of limitation and are not to be construed as requiring the extension feature to have a round outer edge.
  • a preferred material for the disclosed syringe adapter is plastic, which will allow it to be economically produced as a disposable item, although another material may be used without deviating from the scope of the present invention.
  • the syringe adapter or portion(s) thereof may be constructed from stainless steel, aluminum, or another metal (or combinations thereof), noting that metal generally provides increased strength and durability as compared to plastic.
  • the disclosed syringe adapter does not need to come into physical contact with a particular animal (i.e., because the physical contact occurs at the needle used to inject the medication), and thus re-use of the syringe adapter for medicating multiple animals need not introduce cross-contamination concerns.
  • FIGS. 5 and 6 illustrate a syringe adapter shape that is generally conical in an upper portion and generally cylindrical in a lower portion, this is by way of illustration and not of limitation.
  • an outer shape of the syringe adapter may be generally cylindrical while preferably having a tapered interior shape for at least a portion of the proximal end, noting that such interior taper enables the syringe adapter to comply with the above-cited International Standards.
  • FIG. 7 where dotted lines are used to illustrate a general shape of the interior.
  • an outer shape of the syringe adapter may be generally conical in an upper portion and generally cylindrical in a lower portion, and in this alternative, the relative length of the upper and lower portions varies from the embodiments illustrated in FIGS. 5 and 6 (and again, at least a portion of such configuration preferably has a tapered interior shape at the proximal end, as shown by the dotted lines, to thereby conform to the above-cited International Standards).
  • the exterior taper of the upper portion as illustrated in FIGS. 5-6 and 8 may tend to provide a better seal, and thus be less likely to leak, during such time as the syringe adapter is inserted through the rubber membrane of a bottle.
  • a radial extension member (such as that shown at reference number 610 of FIG. 6 ) may be added to these configurations if desired.
  • FIG. 9 illustrates yet another embodiment of the disclosed syringe adapter.
  • syringe adapter 900 includes a radial extension feature 910 , similar to the previously-discussed radial extension feature 610 of FIG. 6 .
  • FIG. 9 depicts radial extension feature 910 as being located approximately midway along the length of the syringe adapter, by way of illustration but not of limitation. Whereas the radial extension feature illustrated at 610 of FIG. 6 is illustrated as having a disk-like shape with generally flat upper and lower surfaces, FIG. 9 illustrates an alternative shape where an upper surface of the radial extension feature 910 has a somewhat domed or tapered shape.
  • This tapered or domed portion is shown at reference number 920 and sits atop a disk-like portion 930 .
  • the lower surface of the radial extension feature may taper in addition to, or instead of, the upper surface thereof, although this has not been illustrated. (Note that the particular shape and dimensions of portions 920 , 930 may vary, and thus FIG. 9 provides one example by way of illustration but not of limitation.)
  • FIG. 9 also illustrates the upper portion 940 of the syringe adapter 900 as having a generally conical shape which is somewhat less tapered than the upper portion as illustrated for the syringe adapters 500 , 600 of FIGS. 5 and 6 , and having a generally cylindrical shape for the lower portion 950 .
  • a length of the conical portion 940 may be 0.32 inches; a length of the cylindrical portion 950 may be 0.48 inches; a height or thickness of portion 930 may be 0.07 inches; a diameter of radial extension feature 910 may be 0.75 inches; a diameter of the distal and proximal ends of conical portion 940 may be 0.156 inches and 0.174 inches, respectively; and a diameter of cylindrical portion 950 may be 0.24 inches.
  • Syringe tip 340 ′ provides a point of attachment for the syringe adapter 900 , and syringe tip 340 ′ is shown as being generally cylindrical; as contrasted with syringe tip 340 as earlier illustrated, syringe tip 340 ′ is shown with a ribbed exterior mid-section 345 that may provide for a person to securely grip the syringe tip 340 ′ while the syringe adapter 900 is being inserted therein (or removed therefrom).
  • the connection between syringe tip 340 ′ and syringe adapter 900 is preferably a Luer-type lock, but a Luer-type slip may be used alternatively without deviating from the scope of the present invention. (It will be understood that in FIG. 10 , a portion of the proximal end of syringe adapter 900 is located inside the distal end of tip 340 ′, following the connection.)
  • FIG. 12 illustrates still another embodiment of the disclosed syringe adapter, and its placement on a syringe.
  • syringe adapter 1200 includes a radial extension feature 1210 with a tapered or domed upper surface, similar to the previously-discussed radial extension feature 910 of FIG. 9 .
  • the conical portion of the syringe adapter 1200 is somewhat longer (and it should be noted that embodiments of the present invention are not limited to a specific dimension, as has been discussed).
  • Luer-type lock connection is made by inserting connecting member 1220 into syringe tip 340 ′ and then twisting the syringe adapter 1200 until the flanged area locks into place in the internal threaded portion of the syringe tip 340 ′.
  • This type of connection is deemed beneficial for providing a more secure attachment between the syringe and the syringe adapter.
  • FIG. 13 illustrates yet another embodiment of the disclosed syringe adapter and its placement on a syringe.
  • syringe adapter 1300 differs from syringe adapter 1200 of FIG. 12 in that a Luer-type connecting member 1320 affixed to the proximal end of syringe adapter 1300 uses a different configuration.
  • connecting member 1320 has a multi-sided exterior shape, shown by way of illustration as being hexagonal in at least a portion thereof. More particularly, in the example shown in FIG. 13 , connecting member 1320 has a hexagonal upper portion 1322 and a cylindrical lower portion 1321 .
  • FIG. 14 illustrates a further embodiment of the disclosed syringe adapter, showing an exterior view as well as cross-sectional views of placement thereof upon a syringe and as exploded.
  • the syringe in FIG. 14 corresponds to the tab-handled syringe 300 of FIG. 3 with its syringe tip 340 .
  • Syringe adapter 1400 in this embodiment, includes a radial extension member 1410 and the proximal end as denoted by reference number 1420 includes a Luer-type connecting member, where connecting member 1420 in turn includes a flanged area 1421 at its proximal end (such as flanged area 460 of FIG.
  • syringe adapter 1400 for removably attaching syringe adapter 1400 to the distal end of syringe 300 .
  • the Luer-type lock connection is made by inserting connecting member 1420 into syringe tip 340 and then twisting the syringe adapter 1400 until the flanged area 1421 locks into place in the internal threaded portion of the syringe tip 340 (as illustrated in the non-exploded cross-sectional view) to thereby provide a secure attachment between the syringe and the syringe adapter.
  • FIG. 15 illustrates a still further embodiment of the disclosed syringe adapter, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded.
  • the embodiment illustrated in FIG. 15 includes a needle holder to which a needle may be removably affixed.
  • a needle 400 ′ (illustrated as having an outer shape somewhat different from needle 400 , by way of illustration but not of limitation) is removably affixed to a needle holder 1510 that, in turn, is removably affixed to a syringe adapter 1500 that is removably affixed to a syringe 300 for the injection of medication into a recipient.
  • the needle 400 ′ When the injection is completed, the needle 400 ′ preferably remains affixed to the needle holder 1510 , enabling needle 400 ′ and needle holder 1510 to be removed from syringe adapter 1500 as a single unit (for example, in preparation for withdrawing additional fluid medication from a container). This enables the combination of needle holder and needle to be quickly and easily re-installed on the syringe adapter, after the syringe adapter is used for withdrawing a next dosage of medication, for administering that next dosage. (It should be noted that the cross-sectional views in FIG. 15 illustrate a preferred interior and exterior shape of components 1500 , 1510 , but embodiments are not limited to the specific shapes and/or relative dimensions as shown except as otherwise noted herein.)
  • an outer wall of support hub member 1501 is shaped as a cylinder.
  • the outer wall may be configured to have a multi-sided exterior shape (such as, for example, a hexagonal shape).
  • a distal end of support hub member 1501 is preferably configured with an internal threaded portion to facilitate removably attaching needle holder 1510 .
  • the threads are illustrated in FIG. 15 generally by small extensions 1503 on the interior wall of support hub member 1501 , and this internal threaded portion receives a flanged area 1511 (similar to the above-described flanged area 460 of FIG. 4B ) that is located at the proximal end of needle holder 1510 .
  • the threads illustrated by extensions 1503 correspond to a double-helix configuration as described in the above-cited International Standards. Needle holder 1510 thereby makes a Luer-type lock connection with syringe adapter 1500 .
  • support hub member 1501 also provides additional support for needle holder 1510 . See the non-exploded cross-sectional view.
  • syringe adapter 1500 and needle holder 1510 are constructed from a plastic or a composite.
  • Syringe adapter 1500 and/or needle holder 1510 may alternatively be constructed from another material, such as stainless steel, aluminum, or another metal (or a combination thereof), without deviating from the scope of the present invention.
  • needle holder 1510 and needle 400 ′ may be removed as a unit from the syringe adapter 1500 , this is by way of example; alternatively the needle may be removed from the needle holder and the needle holder may then be removed from the syringe adapter, without deviating from the scope of the present invention.
  • FIG. 16 illustrates yet another embodiment of the disclosed syringe adapter, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded.
  • the embodiment illustrated in FIG. 16 includes a needle holder to which a needle may be removably affixed.
  • a needle 400 is removably affixed to a needle holder 1610 that, in turn, is removably affixed to a syringe adapter 1600 that is removably affixed to a syringe 300 for the injection of medication into a recipient.
  • the needle 400 When the injection is completed, the needle 400 preferably remains affixed to the needle holder 1610 , enabling needle 400 and needle holder 1610 to be removed from syringe adapter 1600 as a single unit (for example, in preparation for withdrawing additional fluid medication from a container). This enables the combination of needle holder and needle to be quickly and easily re-installed on the syringe adapter, after the syringe adapter is used for withdrawing a next dosage of medication, for administering that next dosage. (It should be noted that the cross-sectional views in FIG. 16 illustrate a preferred interior and exterior shape of components 1600 , 1610 , but embodiments are not limited to the specific shapes and/or relative dimensions as shown except as otherwise noted herein.)
  • syringe adapter 1600 is configured with a support hub member 1601 that radially surrounds at least a portion of the length of the syringe adapter sidewall 1602 .
  • the exterior of the outer wall of support hub member 1601 has a hexagonal shape. This hexagonal shape may enable a person to have a better grasp when connecting or disconnecting the syringe adapter 1600 to syringe 300 and/or needle holder 1610 .
  • FIG. 16 illustrates the exterior of support hub member 1601 as being hexagonal in shape, this is by way of illustration but not of limitation, and the exterior may be configured to have a different shape without deviating from the scope of the present invention.
  • a Luer-type lock connection between syringe adapter 1600 and syringe tip 340 is preferably made in the manner discussed above with reference to FIG. 15 , and accordingly, details of the connection are not repeated here. A result of the connection is illustrated in the non-exploded cross-sectional view in FIG. 16 .
  • the distal end of sidewall 1602 is approximately 0.10 inches in inside diameter, and this distal end of sidewall 1602 extends beyond the distal end of support hub member 1601 to allow the distal end of sidewall 1602 to penetrate the rubber membrane on the medication bottle.
  • syringe adapter 1600 and needle holder 1610 are constructed from a plastic or a composite.
  • Syringe adapter 1600 and/or needle holder 1610 may alternatively be constructed from another material, such as stainless steel, aluminum, or another metal (or a combination thereof), without deviating from the scope of the present invention.
  • a length of an inner chamber 1613 of needle holder 1610 extends from the attachment point in support hub member 1601 to cover the distal end of syringe adapter 1600 (as illustrated in the non-exploded cross-sectional view in FIG. 16 ).
  • the needle holder 1610 and needle 400 may be removed as a unit from the syringe adapter 1600 , this is by way of example; alternatively the needle may be removed from the needle holder and the needle holder may then be removed from the syringe adapter, without deviating from the scope of the present invention.
  • an exterior wall of needle holder 1710 is preferably hexagonal in shape in a lower portion and cylindrical in shape in an upper portion, as shown in the isometric view, with exception of the proximal end where flange 1711 is located (and the protrusion at the distal end).
  • the proximal end immediately above the flange 1711 has a conical shape, by way of illustration but not of limitation; as one alternative, the shape may be cylindrical and still engage the threads on 1700 properly. Needle holder 1710 may serve to provide additional strength for the assembly, and thus may reduce the likelihood of a physical failure during use.
  • FIGS. 18 and 19 illustrate additional embodiments of the disclosed syringe adapter, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded.
  • FIGS. 18 and 19 are similar, and thus will be described together.
  • the embodiments illustrated in FIGS. 18 and 19 include a needle holder to which a needle may be removably affixed.
  • a needle 400 is removably affixed to a needle holder 1810 or 1910 that, in turn, is removably affixed to a syringe adapter 1800 or 1900 that is removably affixed to a syringe 300 ′ for the injection of medication into a recipient.
  • syringe adapters 1800 , 1900 are preferably configured with a support hub member 1801 , 1901 that is a solid piece surrounding an inner chamber, in contrast to the approach of the support hub members shown in FIGS. 15-17 , with an extension from the proximal end and an extension from the distal end of this support hub member.
  • the exterior of the support hub members 1801 , 1901 have a generally hexagonal shape, although another shape (such as cylindrical) may be used without deviating from the scope of the present invention.
  • syringe adapters 1800 , 1900 and needle holders 1810 , 1910 are constructed from a plastic or a composite.
  • Syringe adapters 1800 , 1900 and/or needle holders 1810 , 1910 may alternatively be constructed from another material, such as stainless steel, aluminum, or another metal (or a combination thereof), without deviating from the scope of the present invention.
  • the syringe adapter is affixed to a syringe (which, as noted earlier, is preferably a pistol-grip or tab-handled syringe); the syringe adapter is inserted into a bottle of medication; the plunger of the syringe is pulled back to withdraw the desired dosage of medication from the bottle into the syringe barrel; the syringe adapter is removed from the bottle, while the plunger remains stationary; the syringe adapter is replaced with a needle; and the medication (or some portion thereof) is then injected by pushing the plunger forward (for example, by squeezing the pistol-grip handles or pressing down on the tabbed handle) to expel medication from the syringe barrel.
  • a syringe which, as noted earlier, is preferably a pistol-grip or tab-handled syringe
  • the syringe adapter is inserted into a bottle of medication
  • the needle is removed from the syringe, after which the above process is repeated.
  • the disclosed syringe adapter is not limited to use with medication intended for any particular type of animal life, and therefore the medication may be injected more generally into a “target” or a “recipient”.
  • An embodiment of the present invention is believed to be advantageous for fluid medications having a viscosity of at least 50 to 100 cps at a temperature of at least 5 degrees Celsius, as well as for fluid medications having a higher cps at this temperature (noting, as stated above, that viscosity varies with temperature).
  • the bottle of medication was placed upon a table and the syringe adapter was already mounted upon a syringe held by the tester, and the elapsed withdrawal times include picking up the bottle and inserting the syringe adapter into the bottle.
  • withdrawing 30 cc of Resflor Gold® in this test environment required 3 minutes 50.30 seconds using the 18-gauge needle and 35 seconds using the 16-gauge needle, as compared to 8 seconds using the syringe adapter.
  • Time to expel the 30 cc of medication was also tested in this first test. Expelling the medication in this test environment required 35 seconds using the 18-gauge needle and 11 seconds using the 16-gauge needle. (Time to expel the medication was not measured using the syringe adapter, because the expel time depends on the needle used for injecting the medication.)
  • an embodiment of the present invention improves syringeability of higher-viscosity medications, allowing such medication to be withdrawn from a bottle in much less time as compared to the known approach of withdrawal using a needle. More animals may therefore be medicated in a given period of time, leading to improved productivity of persons caring for the animals as well as enabling overall improved health for the animals. No longer will higher viscosity be a barrier to the market, and because medication of this type will be more readily administered when using a syringe adapter as disclosed herein, improvement may be expected in animal health, and market share and/or market presence for the medication may improve as well.

Abstract

Apparatus for use with medication in fluid form, which is particularly beneficial for medications having a relatively high viscosity. The disclosed syringe adapter has an opening that is relatively large, as compared to a conventional needle, and thus affixing the disclosed syringe adapter to a syringe improves syringeability of higher-viscosity medications. When the disclosed syringe adapter is affixed to a pistol-grip or tab-handled syringe, the medication withdrawn into the pistol-grip syringe can be more easily administered from the syringe barrel. In some embodiments, the syringe adapter will be replaced with a needle prior to injecting the medication, while in some other embodiments, the needle is affixed to the in-place syringe adapter for the injection. In yet other embodiments, the needle is affixed to a needle holder that, in turn, is affixed to the in-place syringe adapter for the injection.

Description

    BACKGROUND
  • The present invention relates to improved apparatus for use with medication, and method(s) of using same, particularly for higher-viscosity medication.
  • Medication is needed for various purposes, including illness treatment and illness prevention.
  • BRIEF SUMMARY
  • The present invention is directed to improved apparatus for use with medication, and method(s) of using same, and is particularly useful for medication having a relatively high viscosity. In one aspect, a syringe adapter for withdrawing fluid medication from a container comprises a sidewall extending between a proximal end and a distal end, the sidewall having an interior surface defining a chamber, the proximal end configured to be connected to a syringe while withdrawing at least a portion of the fluid medication from the container through the chamber and into a barrel of the syringe and the distal end configured for inserting into the container for the withdrawal, wherein an opening at the distal end is relatively large in diameter to facilitate withdrawing fluid medication having a relatively high viscosity and the syringe adapter is configured to be removed from the syringe and replaced with a needle prior to subsequently injecting (for example, into an animal) the fluid medication (or at least some portion thereof) withdrawn into the barrel. The relatively large opening is directed toward improved syringeability of the fluid medication. The viscosity of the fluid medication is preferably greater than or equal to 50 centipoise units when a temperature of the fluid medication is at least 5 degrees Celsius.
  • The syringe is preferably configured as a pistol-grip syringe or a tab-handled syringe, and may therefore provide improved leverage for the subsequent injection. In an embodiment, the diameter of the opening at the distal end of the syringe adapter is approximately 0.10 inches and the sidewall is approximately 0.05 inches in thickness at the distal end. Optionally, the syringe adapter further comprises a flanged area that extends perpendicularly from the proximal end. Optionally, the syringe adapter may further comprise a radial extension member that extends perpendicularly and radially outward from an exterior surface of the syringe adapter. In an embodiment, an outer shape of the syringe adapter is generally conical in a first portion and generally cylindrical in a second portion. In an embodiment, an inner shape of the syringe adapter, for at least a portion of the proximal end, is generally conical. In an embodiment, the inner shape of the syringe adapter tapers from the proximal end toward the distal end, for at least a portion of the proximal end, at approximately 6 percent. The syringe adapter preferably connects to the syringe using a Luer-type connection, the Luer-type connection selected from the group comprising a Luer-type lock and a Luer-type slip.
  • In another aspect, a method of administering fluid medication (for example, to an animal) comprises: affixing a syringe adapter to a syringe, the syringe adapter comprising a sidewall extending between a proximal end and a distal end, the sidewall having an interior surface defining a chamber, the proximal end configured to be connected to a distal end of the syringe; inserting the distal end of the syringe adapter into a container of fluid medication having a relatively high viscosity; withdrawing, from the container, at least a portion of the fluid medication through the chamber and into a barrel of the syringe, wherein an opening at the distal end of the syringe adapter is relatively large in diameter to facilitate withdrawing the relatively-high-viscosity medication; removing the syringe adapter from the syringe subsequent to the withdrawing; affixing a needle to the distal end of the syringe, subsequent to the removing; and injecting (for example, into an animal) the fluid medication (or at least some portion thereof) previously withdrawn into the barrel.
  • In yet another aspect, the syringe adapter is configured for receiving a needle at its distal end, such that the needle is affixed to the distal end of the syringe adapter subsequent to withdrawing fluid medication into the barrel of the syringe, and the syringe adapter is configured to remain in place while injecting the fluid medication (or at least some portion thereof) into a recipient with the needle. In this aspect, administering the fluid medication may be repeated (for example, for another recipient) by removing the needle, using the in-place syringe adapter for withdrawing more fluid medication (from the same or a different container), re-affixing the needle to the syringe adapter, and then injecting this medication (or some portion thereof). In this aspect, the distal end of the syringe adapter preferably provides for a Luer-type connection with the needle, and the proximal end of the syringe adapter is preferably configured with a Luer-type locking member for connecting to the syringe. The syringe adapter may further comprise an extension member that extends perpendicularly outward from an exterior surface of the syringe adapter.
  • In still another aspect, a method of administering fluid medication comprises: affixing a syringe adapter to a syringe, the syringe adapter comprising a sidewall extending between a proximal end and a distal end and having an interior surface defining a chamber, the proximal end configured to be connected to a distal end of the syringe; inserting the distal end of the syringe adapter into a container of fluid medication having a relatively high viscosity; withdrawing, from the container, at least a portion of the fluid medication through the chamber and into a barrel of the syringe, wherein an opening at the distal end of the syringe adapter is relatively large in diameter to facilitate withdrawing the relatively-high-viscosity medication; affixing a needle to the distal end of the syringe adapter, subsequent to the withdrawing from the container; and injecting, into a recipient with the needle, at least a portion of the fluid medication previously withdrawn into the barrel.
  • In a further aspect, a system for administering higher-viscosity fluid medication comprises: a syringe; a syringe adapter comprising a sidewall extending between a proximal end and a distal end, the sidewall having an interior surface defining a chamber, the proximal end configured to be connected to the syringe while withdrawing at least a portion of the fluid medication from a container through the chamber and into a barrel of the syringe and the distal end configured for inserting into the container for the withdrawal, wherein an opening at the distal end is relatively large in diameter to facilitate withdrawing the higher-viscosity fluid medication from the container; and a needle, the needle configured for connecting to the syringe adapter subsequent to use of the syringe adapter for the withdrawing and while the syringe adapter remains connected to the syringe, the needle further configured for injecting, into a recipient, at least a portion of the fluid medication withdrawn into the barrel.
  • In another aspect, the needle is removably affixed to a needle holder that, in turn, is removably affixed to the in-place syringe adapter for the injection. In an embodiment, the needle holder affixes to the syringe adapter using a Luer-type locking connection, and the syringe adapter is configured with a support hub member for removably receiving the needle holder, the support hub member radially surrounding at least a portion of a length of a sidewall of the syringe adapter. Preferably, the needle remains affixed to the needle holder following an injection, whereby the needle may be removed from the syringe adapter (for example, in preparation for withdrawing additional fluid medication from a container) by removing, as a single unit, the needle holder and the needle affixed thereto.
  • In an aspect, a method of administering fluid medication comprises: inserting a distal end of a syringe adapter into a container of fluid medication having a relatively high viscosity, the syringe adapter being affixed to a syringe, the syringe adapter comprising a support hub member radially surrounding at least a portion of a length of a sidewall, the sidewall extending between a proximal end and a distal end and having an interior surface defining a chamber, the proximal end of the sidewall configured to be connected to a distal end of the syringe; withdrawing, from the container, at least a portion of the fluid medication through the chamber and into a barrel of the syringe, wherein an opening at the distal end of the sidewall is relatively large in diameter to facilitate withdrawing the relatively-high-viscosity medication; affixing a proximal end of a needle holder to the distal end of the support hub member, subsequent to the withdrawing from the container, the needle holder adapted for removably affixing a needle to a distal end thereof; and injecting, into a recipient with the needle affixed to the needle holder, at least a portion of the fluid medication previously withdrawn into the barrel.
  • Various embodiments of these and other aspects of the present invention may be provided in view of the present disclosure. It should be noted that the foregoing is a summary and thus contains, by necessity, simplifications, generalizations, and omissions of detail; consequently, those of ordinary skill in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the present invention, as defined by the appended claims, will become apparent in the non-limiting detailed description set forth below.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The present invention will be described with reference to the following drawings, in which like reference numbers denote the same element throughout.
  • FIGS. 1-3 depict examples of prior art syringes;
  • FIG. 4 depicts an example of a prior art needle;
  • FIGS. 4A and 4B illustrate bottom views showing how a proximal end of a needle may be configured for securable attachment to a syringe;
  • FIGS. 5-6 illustrate first and second preferred embodiments of the syringe adapter disclosed herein;
  • FIGS. 7-8 illustrate alternative embodiments of the syringe adapter disclosed herein;
  • FIG. 9 illustrates a still further embodiment of the syringe adapter disclosed herein;
  • FIG. 10 illustrates a syringe adapter placed upon a syringe, and FIG. 11 illustrates a needle placed upon a syringe adapter;
  • FIGS. 12 and 13 illustrate yet other embodiments of the syringe adapter disclosed herein, and also illustrate placement thereof upon a syringe;
  • FIG. 14 illustrates a further embodiment of the disclosed syringe adapter, showing an exterior view as well as cross-sectional views of placement thereof upon a syringe and as exploded;
  • FIG. 15 illustrates a still further embodiment of the disclosed syringe adapter that includes a needle holder to which a needle may be removably affixed, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded;
  • FIGS. 16 and 17 illustrate yet other embodiments of the disclosed syringe adapter that include a needle holder to which a needle may be removably affixed, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded, where FIG. 17 shows a syringe adapter having a sharp tip and both figures illustrate a needle holder adapted for a locking connection with the needle;
  • FIGS. 18 and 19 illustrate embodiments of the disclosed syringe adapter that replace a conventional syringe tip, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded, and FIGS. 20-21 illustrate alternative approaches for a portion of the syringe adapters shown in FIGS. 18 and 19; and
  • FIG. 22 presents tables containing measurements from tests conducted to compare use of a sample version of the disclosed syringe adapter to use of conventional needles.
  • DETAILED DESCRIPTION
  • As noted earlier, medication is needed for various purposes, including illness treatment and illness prevention. Discussions are presented herein with reference to medication used for animals, primarily in terms of livestock animals; this is by way of illustration and not of limitation, however, and it should be noted that the disclosed syringe adapter may be beneficial with medication used for all types of animal life, including humans.
  • Treatment of animals using medication may be desired whether the animal is a family pet, part of a livestock operation, is the subject of research, and so forth. Examples of medicating animals for illness treatment will be obvious, and may span a wide variety of illnesses. One example of medicating an animal for illness prevention is a proactive vaccination; another example is to proactively administer an antibiotic. In a commercial livestock operation, animals may be proactively medicated before they are introduced into another group of livestock, for example to guard against introducing an illness that they may carry or simply to ensure that all animals in the group have received an identical medication regimen. Medication might also be administered in anticipation of, or in response to, a change in weather conditions or a change in geographical location for an animal (such as moving from one climate to another). Hereinafter, animal medications are discussed without differentiation of the purpose for such medication.
  • Medication may be found in various forms, including solid and fluid. Solid substances may be ingestible, for example, while fluids may be injectable or may be administered orally or nasally. Embodiments of the present invention are directed toward improved apparatus for use with medication in fluid form, and the scope of the present invention also includes method(s) for using such apparatus.
  • Medications provided in fluid form may vary widely in their viscosity, depending upon their chemical formulation. Viscosity is sometimes defined as the resistance of a substance to flow. The viscosity of water is relatively low, for example, while the viscosity of honey is relatively high. The viscosity of some substances can be changed by applying heat; for example, melting butter increases its ability to flow. Some fluid medications may have a viscosity that is relatively low and is similar to that of water, for example, and thus will flow quite easily. Other fluid medications are known that have a viscosity that is markedly different from water.
  • Fluid medications intended for use with animals are commonly marketed in multi-dose packaging, such as bottles that hold enough fluid for administering several doses. A bottle of medication might hold 500 milliliters, for example (equivalently, 500 cubic centimeters), which is roughly equivalent to 16.9 ounces. The bottle might be made of glass or plastic, and a container having a configuration other than a bottle might be used. Hereinafter, the term “bottle” is used for ease of reference, and by way of illustration and not of limitation, as a container type in which medication may be contained.
  • One reason for marketing animal medication in multi-dose bottles is economic. The cost of the medication may be reduced, for example, by selling a larger quantity container and thereby reducing the relative cost of the packaging. Another reason for marketing animal medication in multi-dose bottles is that the dosage of many (if not all) medications is prescribed with regard to the animal's body weight. Accordingly, the correct amount of medication to use on a particular animal can be calculated and then withdrawn from the multi-dose bottle, after which it may be injected into the animal, and the remaining medication is then available for subsequent use.
  • A multi-dose bottle of fluid medication is typically marketed with a rubber membrane covering at least a portion of an opening at the top of the bottle. Conventionally, the fluid medication is withdrawn from such bottle by placing a needle onto the tip of a syringe, inserting a tip of the needle into the rubber membrane, and withdrawing a plunger of the syringe until an appropriate amount of fluid is pulled into the syringe body (referred to herein as the syringe “barrel”); this same needle is then used for injecting the medication from the syringe into the animal. FIG. 1 shows an example of a prior art syringe 100, and illustrates how the hollow barrel 130 of syringe 100 is commonly marked with fill lines 110 that are provided for measuring the amount of fluid contained therein. A needle is placed over (or inside) the tip 140, and fluid enters through an opening or eye of the needle and into the syringe barrel 130. The syringe includes a retractable plunger, a terminal end of which is shown at 120. (As will be obvious, as fluid medication is withdrawn from the bottle into the barrel 130, the plunger 120 movably extends outward from the proximal end of the syringe 100, although this is not illustrated in FIG. 1.) Commonly, a syringe as illustrated in FIG. 1 is constructed of plastic, making it relatively cheap to purchase.
  • A tab-shaped member 150 is also provided on syringe 100. When administering the medication from the barrel 130, a person's index finger is placed on the tab-shaped member 150 at one side of barrel 130 and the person's middle finger is placed on the tab-shaped member 150 at the opposing side of barrel 130, and the person's thumb is then used to depress the terminal end of plunger 120 into the barrel in order to expel the medication from the barrel.
  • As an alternative to the syringe 100 of FIG. 1, an example of a so-called “pistol-grip” syringe is illustrated in FIG. 2. Fluid medication is drawn into a syringe of this type by pulling plunger 220 outwardly from the barrel 230. A tab-shaped member is not provided on a syringe of this type, as compressing or squeezing the handles 210 serves to expel medication from the barrel of a syringe having a pistol-grip configuration.
  • FIG. 3 illustrates yet another prior art syringe 300, and is referred to herein as a “tab-handled” syringe. In this configuration, the syringe has a tabbed member 350 near the proximal end of barrel 330, and includes a handle-style tabbed member 320 affixed to the terminal end of the plunger. The tabbed member 350 is used in a similar manner to tab-shaped member 150 of FIG. 1, whereby a person places fingers on the tabbed member 350 on opposing sides of barrel 330; the person then presses down on tabbed member 320 using the person's palm to depress the terminal end of the plunger into the barrel in order to expel the medication from the barrel. As compared to tab-shaped member 150 and plunger end 120 of FIG. 1, the tabbed members 320, 350 of FIG. 3 typically provide improved comfort for the person using the tab-handled syringe.
  • The tips 240, 340 may be generally on the order of ⅜ to 7/16 inch in diameter and generally of similar height (and similarly, tip 140), and are generally constructed of metal. An interior area of this tip is intended for securably attaching a needle and is generally threaded for at least a portion thereof. A height of this threaded area is generally on the order of ⅛ inch to ¼ inch. While not illustrated in detail on tips 240, 340 of FIGS. 2 and 3, the syringe tip also typically includes a protrusion (illustrated herein in FIGS. 14-17; see reference number 341) that is centered within the exterior wall of the tip and that provides the opening through which a substance enters into the syringe barrel. (Notably, tips 140, 240, 340 are not designed for inserting through the rubber membrane of a medicine bottle.)
  • Syringes 200, 300 are often constructed, at least in part, of metal. Glass or plastic might be used for the syringe barrel. A metal commonly used for syringes, by way of example, is stainless steel; another example is aluminum.
  • FIG. 4 illustrates an example of a prior art needle 400, which may be affixed to the distal end of syringes 100, 200, or 300. Needles are typically sold in standardized sizes, and thus the distal syringe ends 140, 240, 340 typically conform to the standard size of the proximal end of a needle. FIGS. 4A and 4B illustrate bottom views showing examples of how a proximal end of needle 400 may be configured for securable attachment to the distal end of a syringe that has an internal threaded portion. In an approach 410 as shown in FIG. 4A, a flanged area 420 extends radially outward from the proximal end of the needle (as is generally illustrated in FIG. 4). Reference number 440 depicts the opening in the tip of the needle, and reference number 430 generally depicts the sidewall of needle 400. In another approach 450 as shown in FIG. 4B, a flanged area 460 extends perpendicularly outward from the proximal end of the needle, but in this configuration, is fashioned as having side edges that are not generally round. Reference number 480 depicts the opening in the tip of the needle, and reference number 470 generally depicts the sidewall of needle 400. In either case, a flanged area 420, 460 on the proximal end of a needle is designed to securably attach to a corresponding receiving area on the distal end of a syringe. In yet another approach (not illustrated), the securable attachment of a needle to a syringe tip relies on friction instead of an exterior flanged area, whereby the proximal end of needle 400 is placed over an exterior of the distal end (e.g., tip 140 of FIG. 1) of a syringe. These approaches are commonly referred to as a Luer-style lock approach and a Luer-style slip approach, respectively, as is discussed in further detail below. (Note that if flanged area 420 is configured to extend perpendicularly outward as illustrated in FIG. 4A, it is preferably intended for use in a Luer-type slip connection rather than a Luer-type lock connection, due to the so-called “double start” or double helix configuration that is described for the internal threads of a Luer-type lock hub according to International Standard ISO 594-2:1998(E), which is discussed in further detail below. As an alternative, tabs may be added to the outer edge of flanged area 420, where these tabs are configured for engaging the internal threads of the Luer-type lock hub.)
  • For withdrawing fluid medication from a bottle into the barrel of syringe 100, 200, or 300 using known techniques, the sharp tip at the distal end of the needle 400 is inserted through the rubber membrane of the bottle. For subsequently administering the fluid medication from the barrel of the syringe, the sharp tip of that same needle is inserted into an animal's body, and the person holds tab-shaped member 150 while simultaneously depressing plunger 120 of syringe 100, squeezes the handles 210 of pistol-grip syringe 200, or holds tabbed member 350 while simultaneously depressing handle-style tabbed member 320 of tab-handled syringe 300.
  • This known approach of withdrawing fluid medication from a bottle using a needle and then administering the medication using the same needle works well for fluids having a low viscosity. (Consider, by way of reference, the relative ease of drawing a low-viscosity fluid such as water through the tip/opening of a needle 400 affixed to a syringe.) However, animal medications are marketed that have a relatively high viscosity (that is, they are relatively thick in consistency), and this higher viscosity makes the medications very difficult to withdraw from a bottle using a needle, and also typically more difficult to expel from the syringe. Stated another way, such higher-viscosity medications are not readily “syringeable”.
  • When a medication is not readily syringeable, it may take a considerable amount of time for the person tasked with withdrawing the medication from the bottle to withdraw even a small amount of medication. When a large amount of such medication must be administered, and/or when the higher-viscosity medication must be administered to multiple animals, the person may experience frustration or even fatigue due to this long withdrawal time. As a result, use of the higher-viscosity medication by animal care-givers may be diminished, which may lead to the medication failing to reach its potential market share. Thinning the medication is undesirable as an answer to improving the syringeability problem, as the effectiveness of the medication could be altered.
  • In addition to the above-described issues with withdrawing higher-viscosity medication into a syringe, the higher viscosity of the medication makes the injection process more time-consuming and physically more difficult for the person tasked with medicating the animal. In particular, the general configuration of a plastic syringe as illustrated in FIG. 1 does not enable a person using the syringe to have sufficient leverage when attempting to inject the medication into an animal. Tab-shaped member 150 is known to collapse or break in some instances, due to the physical force that must be exerted while depressing plunger 120. The plunger shaft is also known to break in some instances, for example due to misalignment as it moves within the barrel or due to age-related brittleness. The needle may also be forced off the syringe when attached thereto by a friction-based Luer-type slip connection, which may in turn lead to leakage and/or waste of the medication through the now-opened end of the syringe. Additionally, the syringe tip of plastic syringes are known to break off while medicating an animal (for example, due to the animal moving or thrashing about), which can lead to waste of medication in the syringe. These problems are more likely to occur with the increased physical force required for injecting higher-viscosity medications.
  • In sharp contrast to use of a plastic syringe, the syringes 200, 300 of FIGS. 2-3 are better adapted for withstanding the physical force required for expelling a higher-viscosity medication from the syringe barrel and for allowing the person using the syringe to have better leverage during the injection process. (Because the leverage is improved, the time required to complete the injection may be shortened as compared to use of a plastic syringe configured as shown at 100 of FIG. 1, which benefits the person and the animal.)
  • In view of the above-described issues, preferred embodiments of the present invention are directed toward improved syringeability of medications having a relatively high viscosity. (The disclosed syringe adapter may function suitably with lower-viscosity medications as well, and is therefore not deemed to be limited to use with particular medications.)
  • A preferred embodiment of the present invention provides a new tip that operates as a syringe adapter for withdrawing medication from a bottle. This tip is preferably affixed to a pistol-grip syringe of the type illustrated in FIG. 2 or a tab-handled syringe of the type illustrated in FIG. 3. The pistol-grip or tab-handled syringe may be formed from plastic, metal, or other substance(s), as noted earlier. Accordingly, use of an embodiment of the present invention addresses the issue of drawing a higher-viscosity fluid from a bottle as well as the issue of providing sufficient leverage for subsequent injection. That is, the larger opening of the disclosed syringe adapter addresses syringeability issues by improving draw time of higher-viscosity medications and, when this adapter is affixed to a pistol-grip or tab-handled syringe, the medication withdrawn into the pistol-grip or tab-handled syringe can be more easily administered from the syringe barrel (noting that, in some embodiments, the syringe adapter will be replaced with a needle prior to injecting the medication).
  • While discussions herein refer to preferably using the disclosed syringe adapter with a pistol-grip or tab-handled syringe, it should be noted that the disclosed syringe adapter may also be used advantageously with a syringe of the type shown in FIG. 1 (and such usage is within the scope of the present invention).
  • FIG. 5 illustrates one embodiment of the syringe adapter disclosed herein. The syringe adapter has a sidewall extending between a proximal end and a distal end, and the interior surface of the sidewall defines a chamber through which fluid medication flows. The length and shape of the syringe adapter, as well as the thickness of portions of the sidewall and the width of its interior chamber, may vary from illustrations depicted herein without deviating from the scope of the present invention. In the embodiment illustrated in FIG. 5, the shape of the syringe adapter 500 is generally conical in an upper portion and generally cylindrical in a lower portion. While not illustrated in FIG. 5, an interior of at least a portion of the lower portion is preferably tapered, with a 6 percent taper extending from the proximal end toward the distal end. This tapered shape conforms the interior surface to International Standard ISO 594-2:1998(E) and its replacement ISO 80369-7:2016, which are directed toward conical fittings for health-care applications. Preferably, the overall length of the syringe adapter is not shorter than ⅜ to ½ inch, by way of illustration but not of limitation, as this length will enable the syringe adapter to sufficiently extend into a bottle of medication to be withdrawn. An upper range of the overall length, conversely, may be on the order of 1 to 2 inches, by way of illustration but not of limitation.
  • A preferred diameter of the hole in the distal end of the tip of the syringe adapter is on the order of 0.10 inches, although embodiments are not limited to this diameter. Thickness of the sidewall of the syringe adapter is preferably on the order of 0.050 inches, although embodiments are not limited to this thickness. Using a sidewall thickness of 0.050 inches and an opening of 0.10 inches results in a syringe adapter having an overall diameter of 0.20 inches at the end to be inserted into the bottle of medication, in this example configuration.
  • Preferably, the proximal end of the disclosed syringe adapter attaches to a syringe using a Luer-type lock or a Luer-type slip. Luer-type locks and Luer-type slips are known approaches for making leak-free connections on fluid fittings, and are described in the above-cited International Standards. A Luer-type lock provides a threaded attachment, whereby two pieces of a configuration are held together by rotating a flanged area (such as flanged area 420 of FIG. 4A when augmented with tabs or flanged area 460 of FIG. 4B) of one piece within threads of the other piece, whereas a Luer-type slip is non-threaded and provides attachment using friction. In one approach for securably attaching syringe adapter 500 using a Luer-type lock, the syringe adapter 500 as illustrated in FIG. 5 has an external flanged area 510 on the proximal end (shown without tabs extending from the outer edge, for drafting convenience), and a two-part connection is made by inserting this flanged end into corresponding internal threads on a distal end of a syringe (as discussed above with reference to the syringe tips illustrated at 240, 340). As noted earlier, a conventional height for this internal threaded portion of a pistol-grip or tab-handled syringe tip is approximately ⅛ inch to ¼ inch in length, and accordingly, a flanged area 510 on the proximal end of syringe adapter 500 is preferably on the order of at least 1/16 to ⅛ inch in height. The shape of flanged area 510 may correspond generally to flanged area 420 or 460 (for example, by extending perpendicularly and radially from the proximal end of the syringe adapter, although a strictly circular shape is not required), although another shape providing for a securable attachment may be used without deviating from the scope of the present invention.
  • In another approach, the proximal end of the syringe adapter 500 may omit the flanged area shown at 510 and is attached and held to the distal end of the syringe by friction in a Luer-type slip approach.
  • FIG. 6 illustrates another embodiment of the syringe adapter disclosed herein. In this embodiment, syringe adapter 600 includes a radial extension feature 610, which is preferably configured as extending perpendicularly and radially outward from the body of the syringe adapter and is shown in FIG. 6 as being located relatively near to the proximal end of syringe adapter 600. (Alternatively, radial extension feature 610 may be placed at another location on the syringe adapter, for example being located closer to the conical portion thereof.) In addition to enabling a person to more easily grasp the syringe adapter 600, the radial extension feature 610 also serves to prevent inserting the syringe into the medication bottle far enough that the attachment point (e.g., Luer-type slip or lock) between the syringe and the syringe adapter would come into contact with the medication. Accordingly, in a preferred embodiment, a diameter of radial extension feature 610 is sufficiently large as to exceed the diameter of a conventional rubber membrane on a medicine bottle. The diameter of radial extension feature 610 may be, by way of example, on the order of twice the diameter of the cylindrical portion of syringe adapter 600. (Syringe adapter 600 may omit the flanged area 620 when relying on a Luer-type slip attachment, and is depicted without tabs extending from the outer edge for drafting convenience, as was discussed above with reference to flanged area 510.)
  • An extension feature might alternatively be used that is not round, although this has not been illustrated in FIG. 6. (For example, a hexagonal shape might be used for an extension feature, and thus references herein to a “radial” extension feature are by way of illustration but not of limitation and are not to be construed as requiring the extension feature to have a round outer edge.)
  • A preferred material for the disclosed syringe adapter is plastic, which will allow it to be economically produced as a disposable item, although another material may be used without deviating from the scope of the present invention. As one alternative to use of plastic, the syringe adapter or portion(s) thereof may be constructed from stainless steel, aluminum, or another metal (or combinations thereof), noting that metal generally provides increased strength and durability as compared to plastic. Notably, the disclosed syringe adapter does not need to come into physical contact with a particular animal (i.e., because the physical contact occurs at the needle used to inject the medication), and thus re-use of the syringe adapter for medicating multiple animals need not introduce cross-contamination concerns.
  • While FIGS. 5 and 6 illustrate a syringe adapter shape that is generally conical in an upper portion and generally cylindrical in a lower portion, this is by way of illustration and not of limitation. As one alternative embodiment, an outer shape of the syringe adapter may be generally cylindrical while preferably having a tapered interior shape for at least a portion of the proximal end, noting that such interior taper enables the syringe adapter to comply with the above-cited International Standards. This alternative embodiment is illustrated in FIG. 7, where dotted lines are used to illustrate a general shape of the interior. FIG. 8 provides another alternative embodiment, where an outer shape of the syringe adapter may be generally conical in an upper portion and generally cylindrical in a lower portion, and in this alternative, the relative length of the upper and lower portions varies from the embodiments illustrated in FIGS. 5 and 6 (and again, at least a portion of such configuration preferably has a tapered interior shape at the proximal end, as shown by the dotted lines, to thereby conform to the above-cited International Standards). Notably, as compared to the cylindrical exterior shape as illustrated in FIG. 7, the exterior taper of the upper portion as illustrated in FIGS. 5-6 and 8 may tend to provide a better seal, and thus be less likely to leak, during such time as the syringe adapter is inserted through the rubber membrane of a bottle. While not illustrated in FIG. 7 or 8, a radial extension member (such as that shown at reference number 610 of FIG. 6) may be added to these configurations if desired.
  • FIG. 9 illustrates yet another embodiment of the disclosed syringe adapter. In this embodiment, syringe adapter 900 includes a radial extension feature 910, similar to the previously-discussed radial extension feature 610 of FIG. 6. FIG. 9 depicts radial extension feature 910 as being located approximately midway along the length of the syringe adapter, by way of illustration but not of limitation. Whereas the radial extension feature illustrated at 610 of FIG. 6 is illustrated as having a disk-like shape with generally flat upper and lower surfaces, FIG. 9 illustrates an alternative shape where an upper surface of the radial extension feature 910 has a somewhat domed or tapered shape. This tapered or domed portion is shown at reference number 920 and sits atop a disk-like portion 930. Optionally, the lower surface of the radial extension feature may taper in addition to, or instead of, the upper surface thereof, although this has not been illustrated. (Note that the particular shape and dimensions of portions 920, 930 may vary, and thus FIG. 9 provides one example by way of illustration but not of limitation.)
  • FIG. 9 also illustrates the upper portion 940 of the syringe adapter 900 as having a generally conical shape which is somewhat less tapered than the upper portion as illustrated for the syringe adapters 500, 600 of FIGS. 5 and 6, and having a generally cylindrical shape for the lower portion 950.
  • By way of illustration but not of limitation, a length of the conical portion 940 may be 0.32 inches; a length of the cylindrical portion 950 may be 0.48 inches; a height or thickness of portion 930 may be 0.07 inches; a diameter of radial extension feature 910 may be 0.75 inches; a diameter of the distal and proximal ends of conical portion 940 may be 0.156 inches and 0.174 inches, respectively; and a diameter of cylindrical portion 950 may be 0.24 inches.
  • FIG. 10 illustrates placement of a syringe adapter on a syringe. By way of illustration but not of limitation, the syringe in FIG. 10 corresponds to the tab-handled syringe 300 of FIG. 3 and the syringe adapter corresponds to the embodiment shown at 900 of FIG. 9. Syringe tip 340′ provides a point of attachment for the syringe adapter 900, and syringe tip 340′ is shown as being generally cylindrical; as contrasted with syringe tip 340 as earlier illustrated, syringe tip 340′ is shown with a ribbed exterior mid-section 345 that may provide for a person to securely grip the syringe tip 340′ while the syringe adapter 900 is being inserted therein (or removed therefrom). The connection between syringe tip 340′ and syringe adapter 900 is preferably a Luer-type lock, but a Luer-type slip may be used alternatively without deviating from the scope of the present invention. (It will be understood that in FIG. 10, a portion of the proximal end of syringe adapter 900 is located inside the distal end of tip 340′, following the connection.)
  • FIG. 11 illustrates one example of placement of a needle on a syringe adapter, for an embodiment in which the syringe adapter remains in place while medication is administered through an attached needle. By way of illustration but not of limitation, the syringe adapter in FIG. 11 corresponds to the embodiment shown at 900 of FIG. 9, the attachment between the syringe and syringe adapter 900 corresponds to the attachment illustrated in FIG. 10, and the needle corresponds to the needle 400 of FIG. 4. In FIG. 11, needle 400 is shown as having its proximal end placed over the distal end of the syringe adapter. In this example, needle 400 includes a small flanged area 420 that enables it to securably attach to the interior of a Luer-type lock, although the illustrated attachment in FIG. 11 is a Luer-type slip connection. Accordingly, the needle 400 may be attached to, and removed from, the syringe adapter with relative ease (e.g., by pushing the proximal end of the needle onto the distal end of the syringe adapter and pulling it therefrom, respectively). Note that while flanged area 420 is shown as directly abutting the portion of the syringe adapter shown as having a domed shape, this is by way of illustration: alternatively, there may be a gap beneath flanged area 420.
  • FIG. 12 illustrates still another embodiment of the disclosed syringe adapter, and its placement on a syringe. In this embodiment, syringe adapter 1200 includes a radial extension feature 1210 with a tapered or domed upper surface, similar to the previously-discussed radial extension feature 910 of FIG. 9. As contrasted to syringe adapter 900, the conical portion of the syringe adapter 1200 is somewhat longer (and it should be noted that embodiments of the present invention are not limited to a specific dimension, as has been discussed).
  • FIG. 12 also illustrates a Luer-type connecting member 1220 affixed to the proximal end of syringe adapter 1200 (where 2 horizontally-oriented “ribs” are illustrated on the surface of member 1220, by way of illustration but not of limitation). This connecting member 1220 is shown in FIG. 12 as connecting syringe adapter 1200 to a syringe, which may be syringe 300 of FIG. 3 (by way of illustration but not of limitation). The point of connection on syringe 300 is shown in FIG. 12 as comprising a syringe tip 340′, similar to that which was discussed above with reference to FIG. 10 by way of illustration, into which connecting member 1220 of syringe adapter 1200 is removably inserted. In one approach, connecting member 1220 is made from metal while remaining portions of syringe adapter 1200 are made from plastic, and a bond is made between the metal and plastic during manufacturing. Preferably, connecting member 1220 attaches to syringe tip 340′ with a Luer-type lock connection (rather than a Luer-type slip connection). While not shown in FIG. 12, connecting member 1220 preferably includes a flanged area at its proximal end (such as flanged area 460 of FIG. 4B), and the Luer-type lock connection is made by inserting connecting member 1220 into syringe tip 340′ and then twisting the syringe adapter 1200 until the flanged area locks into place in the internal threaded portion of the syringe tip 340′. This type of connection is deemed beneficial for providing a more secure attachment between the syringe and the syringe adapter.
  • FIG. 13 illustrates yet another embodiment of the disclosed syringe adapter and its placement on a syringe. In this embodiment, syringe adapter 1300 differs from syringe adapter 1200 of FIG. 12 in that a Luer-type connecting member 1320 affixed to the proximal end of syringe adapter 1300 uses a different configuration. As shown in FIG. 13, connecting member 1320 has a multi-sided exterior shape, shown by way of illustration as being hexagonal in at least a portion thereof. More particularly, in the example shown in FIG. 13, connecting member 1320 has a hexagonal upper portion 1322 and a cylindrical lower portion 1321. In one approach, connecting member 1320 is made from metal while remaining portions of syringe adapter 1300 are made from plastic, and a bond is made between the metal and plastic during manufacturing. Preferably, connecting member 1320 attaches to syringe tip 340′ with a Luer-type lock connection (rather than a Luer-type slip connection). While not shown in FIG. 13, connecting member 1320 preferably includes a flanged area at its proximal end (such as flanged area 460 of FIG. 4B), and the Luer-type lock connection is made by inserting connecting member 1320 into syringe tip 340′ and then twisting the syringe adapter 1300 until the flanged area locks into place in the internal threaded portion of the syringe tip 340′. As noted above, the Luer-type lock connection is deemed beneficial for providing a more secure attachment between the syringe and the syringe adapter.
  • FIG. 14 illustrates a further embodiment of the disclosed syringe adapter, showing an exterior view as well as cross-sectional views of placement thereof upon a syringe and as exploded. By way of illustration but not of limitation, the syringe in FIG. 14 corresponds to the tab-handled syringe 300 of FIG. 3 with its syringe tip 340. Syringe adapter 1400, in this embodiment, includes a radial extension member 1410 and the proximal end as denoted by reference number 1420 includes a Luer-type connecting member, where connecting member 1420 in turn includes a flanged area 1421 at its proximal end (such as flanged area 460 of FIG. 4B) for removably attaching syringe adapter 1400 to the distal end of syringe 300. The Luer-type lock connection is made by inserting connecting member 1420 into syringe tip 340 and then twisting the syringe adapter 1400 until the flanged area 1421 locks into place in the internal threaded portion of the syringe tip 340 (as illustrated in the non-exploded cross-sectional view) to thereby provide a secure attachment between the syringe and the syringe adapter.
  • FIG. 15 illustrates a still further embodiment of the disclosed syringe adapter, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded. The embodiment illustrated in FIG. 15 includes a needle holder to which a needle may be removably affixed. In this embodiment, a needle 400′ (illustrated as having an outer shape somewhat different from needle 400, by way of illustration but not of limitation) is removably affixed to a needle holder 1510 that, in turn, is removably affixed to a syringe adapter 1500 that is removably affixed to a syringe 300 for the injection of medication into a recipient. When the injection is completed, the needle 400′ preferably remains affixed to the needle holder 1510, enabling needle 400′ and needle holder 1510 to be removed from syringe adapter 1500 as a single unit (for example, in preparation for withdrawing additional fluid medication from a container). This enables the combination of needle holder and needle to be quickly and easily re-installed on the syringe adapter, after the syringe adapter is used for withdrawing a next dosage of medication, for administering that next dosage. (It should be noted that the cross-sectional views in FIG. 15 illustrate a preferred interior and exterior shape of components 1500, 1510, but embodiments are not limited to the specific shapes and/or relative dimensions as shown except as otherwise noted herein.)
  • Preferably, syringe adapter 1500 is configured with a support hub member 1501 that radially surrounds at least a portion of the length of the syringe adapter sidewall 1502. Preferably, the connection of syringe adapter 1500 to syringe tip 340 is made as a Luer-type lock by inserting a flanged proximal end 1504 of syringe adapter sidewall 1502 into an internal threaded portion of syringe tip 340 and then twisting the syringe adapter 1500 until the flanged area locks into place in the internal threaded portion of the syringe tip 340. A proximal end of support hub member 1501 is preferably sized so as to slip over the exterior of syringe tip 340, while the proximal end of syringe adapter sidewall 1502 is sized so as to fit within the threaded interior of syringe tip 340 and to receive protrusion 341 of the syringe tip 340 within the chamber defined by the interior surface of sidewall 1502. This is illustrated in the non-exploded cross-sectional view.
  • In an embodiment, the distal end of sidewall 1502 is approximately 0.10 inches in inside diameter, and this distal end of sidewall 1502 extends beyond the distal end of support hub member 1501 to allow the distal end of sidewall 1502 to penetrate the rubber membrane on the medication bottle. In an embodiment, an outer wall of support hub member 1501 is shaped as a cylinder. In another embodiment, by way of illustration but not of limitation, the outer wall may be configured to have a multi-sided exterior shape (such as, for example, a hexagonal shape).
  • A distal end of support hub member 1501 is preferably configured with an internal threaded portion to facilitate removably attaching needle holder 1510. The threads are illustrated in FIG. 15 generally by small extensions 1503 on the interior wall of support hub member 1501, and this internal threaded portion receives a flanged area 1511 (similar to the above-described flanged area 460 of FIG. 4B) that is located at the proximal end of needle holder 1510. In an embodiment, the threads illustrated by extensions 1503 correspond to a double-helix configuration as described in the above-cited International Standards. Needle holder 1510 thereby makes a Luer-type lock connection with syringe adapter 1500. In a configuration as illustrated in FIG. 15, support hub member 1501 also provides additional support for needle holder 1510. See the non-exploded cross-sectional view.
  • Needle holder 1510 preferably includes a radial extension feature 1512, which may be located (by way of example) near the proximal end of the needle holder. Radial extension feature 1512 may enable a person to more easily grasp the needle holder 1510. In a configuration as illustrated in FIG. 15, radial extension feature 1512 also serves to provide additional strength for the needle holder 1510, and thus may reduce the likelihood of a physical failure during use.
  • Needle holder 1510 is configured for removably attaching a needle 400′, and is illustrated in FIG. 15 as using a Luer-type slip connection that makes the attachment by placing the proximal end of needle 400′ over the distal end of needle holder 1510. Needle holder 1510 may alternatively be configured to support a Luer-type lock connection with needle 400′ without deviating from the scope of the present invention, although this is not illustrated in FIG. 15. Such alternative configuration for a needle holder may be used with syringe adapter 1500, in place of needle holder 1510, within the scope of the present invention. (FIGS. 16-21, discussed below, illustrate embodiments that use Luer-type lock connections between a needle and needle holder.)
  • Preferably, syringe adapter 1500 and needle holder 1510 are constructed from a plastic or a composite. Syringe adapter 1500 and/or needle holder 1510 may alternatively be constructed from another material, such as stainless steel, aluminum, or another metal (or a combination thereof), without deviating from the scope of the present invention.
  • Syringe adapter 1500 may optionally be configured as a permanent attachment to (or replacement for) syringe tip 340, rather than being removably affixed thereto. (See the discussion of FIGS. 18-21, below, which depict embodiments that replace a conventional syringe tip.) A distal end of the sidewall 1502 of syringe adapter 1500 may be relatively sharp, for ease of inserting this distal end into a bottle of medication (for example). (See the discussion of FIGS. 17-19, below, which depict embodiments having a relatively sharp tip on the distal end of a syringe adapter.)
  • In an embodiment, the opening at the distal end of needle holder 1510 is approximately 0.08 inches in inside diameter, and the outside diameter conforms to suggested dimensions for a Luer-type tip in the above-cited International Standards. In an embodiment as illustrated in FIG. 15, an outer wall of needle holder 1510 has a conical shape at the distal end and a similar shape at the proximal end, where both the proximal end and the distal end are generally conical in shape. Preferably, a length of an inner chamber 1513 of needle holder 1510 extends from the attachment point in support hub member 1501 to cover the distal end of syringe adapter 1500 (as illustrated in the non-exploded cross-sectional view in FIG. 15). Note that while the needle holder 1510 and needle 400′ may be removed as a unit from the syringe adapter 1500, this is by way of example; alternatively the needle may be removed from the needle holder and the needle holder may then be removed from the syringe adapter, without deviating from the scope of the present invention.
  • FIG. 16 illustrates yet another embodiment of the disclosed syringe adapter, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded. The embodiment illustrated in FIG. 16 includes a needle holder to which a needle may be removably affixed. In this embodiment, a needle 400 is removably affixed to a needle holder 1610 that, in turn, is removably affixed to a syringe adapter 1600 that is removably affixed to a syringe 300 for the injection of medication into a recipient. When the injection is completed, the needle 400 preferably remains affixed to the needle holder 1610, enabling needle 400 and needle holder 1610 to be removed from syringe adapter 1600 as a single unit (for example, in preparation for withdrawing additional fluid medication from a container). This enables the combination of needle holder and needle to be quickly and easily re-installed on the syringe adapter, after the syringe adapter is used for withdrawing a next dosage of medication, for administering that next dosage. (It should be noted that the cross-sectional views in FIG. 16 illustrate a preferred interior and exterior shape of components 1600, 1610, but embodiments are not limited to the specific shapes and/or relative dimensions as shown except as otherwise noted herein.)
  • Preferably, syringe adapter 1600 is configured with a support hub member 1601 that radially surrounds at least a portion of the length of the syringe adapter sidewall 1602. In an embodiment as illustrated in FIG. 16, the exterior of the outer wall of support hub member 1601 has a hexagonal shape. This hexagonal shape may enable a person to have a better grasp when connecting or disconnecting the syringe adapter 1600 to syringe 300 and/or needle holder 1610. (Note that while FIG. 16 illustrates the exterior of support hub member 1601 as being hexagonal in shape, this is by way of illustration but not of limitation, and the exterior may be configured to have a different shape without deviating from the scope of the present invention.)
  • A Luer-type lock connection between syringe adapter 1600 and syringe tip 340 is preferably made in the manner discussed above with reference to FIG. 15, and accordingly, details of the connection are not repeated here. A result of the connection is illustrated in the non-exploded cross-sectional view in FIG. 16.
  • In an embodiment, the distal end of sidewall 1602 is approximately 0.10 inches in inside diameter, and this distal end of sidewall 1602 extends beyond the distal end of support hub member 1601 to allow the distal end of sidewall 1602 to penetrate the rubber membrane on the medication bottle.
  • A distal end of support hub member 1601 is preferably configured with an internal threaded portion, similar to the threaded portion discussed above with reference to support hub member 1501 of FIG. 15, and a Luer-type lock connection between syringe adapter 1600 and needle holder 1610 is preferably made using the threads (illustrated in FIG. 16 generally by small extensions 1603) and the flanged area 1611 of needle holder 1600 in the manner discussed above with reference to FIG. 15. See the non-exploded cross-sectional view in FIG. 16.
  • Needle holder 1610 is configured for removably attaching a needle 400. Needle holder 1610 includes an internal threaded portion (see reference number 1612) on its distal end, where these threads are configured to provide a Luer-type lock connection with the flange 460 at the proximal end of needle 400, thus providing a relatively secure connection with the needle. More particularly, the connection between needle holder 1610 and needle 400 is preferably made by inserting the flanged proximal end 460 into internal threaded portion 1612 and then twisting the needle until the flanged area locks into place in the internal threaded portion of the needle holder.
  • In an embodiment as depicted in FIG. 16, an exterior wall of needle holder 1610 is preferably hexagonal in shape in a lower portion and cylindrical in shape in an upper portion, as shown in the isometric view, with exception of the proximal end where flange 1611 is located (and the protrusion at the distal end). As shown in FIG. 16, the proximal end immediately above the flange 1611 has a conical shape, by way of illustration but not of limitation; as one alternative, the shape may be cylindrical and still engage the threads on 1600 properly. Needle holder 1610 may serve to provide additional strength for the assembly, and thus may reduce the likelihood of a physical failure during use.
  • Preferably, syringe adapter 1600 and needle holder 1610 are constructed from a plastic or a composite. Syringe adapter 1600 and/or needle holder 1610 may alternatively be constructed from another material, such as stainless steel, aluminum, or another metal (or a combination thereof), without deviating from the scope of the present invention.
  • Syringe adapter 1600 may optionally be configured as a permanent attachment to (or replacement for) syringe tip 340, rather than being removably affixed thereto. (See the discussion of FIGS. 18-21, below, which depict embodiments that replace a conventional syringe tip.) While not illustrated in FIG. 16, the distal end of the sidewall 1602 of syringe adapter 1600 may be relatively sharp, for ease of inserting this distal end into a bottle of medication (for example). (See the discussion of FIGS. 17-19, below, which depict embodiments having a relatively sharp tip on the distal end of a syringe adapter.)
  • Preferably, a length of an inner chamber 1613 of needle holder 1610 extends from the attachment point in support hub member 1601 to cover the distal end of syringe adapter 1600 (as illustrated in the non-exploded cross-sectional view in FIG. 16). Note that while the needle holder 1610 and needle 400 may be removed as a unit from the syringe adapter 1600, this is by way of example; alternatively the needle may be removed from the needle holder and the needle holder may then be removed from the syringe adapter, without deviating from the scope of the present invention.
  • FIG. 17 illustrates still another embodiment of the disclosed syringe adapter, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded. The embodiment illustrated in FIG. 17 includes a needle holder to which a needle may be removably affixed. In this embodiment, a needle 400 is removably affixed to a needle holder 1710 that, in turn, is removably affixed to a syringe adapter 1700 that is removably affixed to a syringe 300 for the injection of medication into a recipient. When the injection is completed, the needle 400 preferably remains affixed to the needle holder 1710, enabling needle 400 and needle holder 1710 to be removed from syringe adapter 1700 as a single unit (for example, in preparation for withdrawing additional fluid medication from a container). This enables the combination of needle holder and needle to be quickly and easily re-installed on the syringe adapter, after the syringe adapter is used for withdrawing a next dosage of medication, for administering that next dosage. (It should be noted that the cross-sectional views in FIG. 17 illustrate a preferred interior and exterior shape of components 1700, 1710, but embodiments are not limited to the specific shapes and/or relative dimensions as shown except as otherwise noted herein.)
  • Preferably, syringe adapter 1700 is configured with a support hub member 1701 that radially surrounds at least a portion of the length of the syringe adapter sidewall 1702. In an embodiment as illustrated in FIG. 17, the exterior of the outer wall of support hub member 1701 has a hexagonal shape. This hexagonal shape may enable a person to have a better grasp when connecting or disconnecting the syringe adapter 1700 to syringe 300 and/or needle holder 1710. (Note that while FIG. 17 illustrates the exterior of support hub member 1701 as being hexagonal in shape, this is by way of illustration but not of limitation, and the exterior may be configured to have a different shape without deviating from the scope of the present invention.)
  • Notably, a tip at the distal end of sidewall 1702 is shown in FIG. 17 as having a relatively sharp point. The sharp point, or tip, is designed to assist in inserting the syringe adapter 1700 into the rubber membrane on a medicine bottle. The particular taper illustrated in FIG. 17 for this sharp point may be adjusted, thereby altering the degree of sharpness, without deviating from the scope of the present invention.
  • A Luer-type lock connection between syringe adapter 1700 and syringe tip 340 is preferably made in the manner discussed above with reference to FIG. 15, and accordingly, details of the connection are not repeated here. A result of the connection is illustrated in the non-exploded cross-sectional view in FIG. 17.
  • In an embodiment, the distal end of sidewall 1702 is approximately .10 inches in inside diameter. In the illustration as shown, the distal end of sidewall 1702 extends beyond the distal end of support hub member 1701 to allow the distal end of sidewall 1702 to penetrate the rubber membrane on the medication bottle.
  • A distal end of support hub member 1701 is preferably configured with an internal threaded portion, similar to the threaded portion discussed above with reference to support hub member 1501 of FIG. 15, and a Luer-type lock connection between syringe adapter 1700 and needle holder 1710 is preferably made using the threads (illustrated in FIG. 17 generally by small extensions 1703) and the flanged area 1711 of needle holder 1700 in the manner discussed above with reference to FIG. 15. See the non-exploded cross-sectional view in FIG. 17.
  • Needle holder 1710 is configured for removably attaching a needle 400. Needle holder 1710 includes an internal threaded portion (see reference number 1712) on its distal end, where these threads are configured to provide a Luer-type lock connection with the flange 460 at the proximal end of needle 400, thus providing a relatively secure connection with the needle. More particularly, the connection between needle holder 1710 and needle 400 is preferably made by inserting the flanged proximal end 460 into internal threaded portion 1712 and then twisting the needle until the flanged area locks into place in the internal threaded portion of the needle holder.
  • In an embodiment as depicted in FIG. 17, an exterior wall of needle holder 1710 is preferably hexagonal in shape in a lower portion and cylindrical in shape in an upper portion, as shown in the isometric view, with exception of the proximal end where flange 1711 is located (and the protrusion at the distal end). As shown in FIG. 17, the proximal end immediately above the flange 1711 has a conical shape, by way of illustration but not of limitation; as one alternative, the shape may be cylindrical and still engage the threads on 1700 properly. Needle holder 1710 may serve to provide additional strength for the assembly, and thus may reduce the likelihood of a physical failure during use.
  • As contrasted to the inner chamber 1613 of needle holder 1610, it will be noted that the inner chamber 1713 of needle holder 1710 is approximately twice as long as chamber 1613. This added length serves to accept the full length of the elongated tip 1702 of syringe adapter 1700, as can be seen in the non-exploded cross-sectional view in FIG. 17, and thus the length of inner chamber 1713 extends from the attachment point in support hub member 1701 to cover the distal end of syringe adapter 1700.
  • Preferably, syringe adapter 1700 and needle holder 1710 are constructed from a plastic or a composite. Syringe adapter 1700 and/or needle holder 1710 may alternatively be constructed from another material, such as stainless steel, aluminum, or another metal (or a combination thereof), without deviating from the scope of the present invention.
  • Syringe adapter 1700 may optionally be configured as a permanent attachment to (or replacement for) syringe tip 340, rather than being removably affixed thereto. (See the discussion of FIGS. 18-21, below, which depict embodiments that replace a conventional syringe tip.)
  • Note that while the needle holder 1710 and needle 400 may be removed as a unit from the syringe adapter 1700, this is by way of example; alternatively the needle may be removed from the needle holder and the needle holder may then be removed from the syringe adapter, without deviating from the scope of the present invention.
  • FIGS. 18 and 19 illustrate additional embodiments of the disclosed syringe adapter, showing exterior views as well as cross-sectional views of placement thereof upon a syringe and as exploded. FIGS. 18 and 19 are similar, and thus will be described together. The embodiments illustrated in FIGS. 18 and 19 include a needle holder to which a needle may be removably affixed. In these embodiments, a needle 400 is removably affixed to a needle holder 1810 or 1910 that, in turn, is removably affixed to a syringe adapter 1800 or 1900 that is removably affixed to a syringe 300′ for the injection of medication into a recipient. When the injection is completed, the needle 400 preferably remains affixed to the needle holder 1810 or 1910, enabling needle 400 and needle holder 1810 or 1910 to be removed from syringe adapter 1800 or 1900 as a single unit (for example, in preparation for withdrawing additional fluid medication from a container). This enables the combination of needle holder and needle to be quickly and easily re-installed on the syringe adapter, after the syringe adapter is used for withdrawing a next dosage of medication, for administering that next dosage. (It should be noted that the cross-sectional views in FIGS. 18 and 19 illustrate a preferred interior and exterior shape of components 1800, 1810, 1900, 1910, but embodiments are not limited to the specific shapes and/or relative dimensions as shown except as otherwise noted herein.)
  • As shown in FIGS. 18 and 19, syringe adapters 1800, 1900 are preferably configured with a support hub member 1801, 1901 that is a solid piece surrounding an inner chamber, in contrast to the approach of the support hub members shown in FIGS. 15-17, with an extension from the proximal end and an extension from the distal end of this support hub member. In embodiments as illustrated in FIGS. 18 and 19, the exterior of the support hub members 1801, 1901 have a generally hexagonal shape, although another shape (such as cylindrical) may be used without deviating from the scope of the present invention.
  • FIGS. 18 and 19 depict a tip 1802, 1902 extending from the distal end of support hub members 1801, 1901, where these tips are shown as having a relatively sharp point. As discussed above, the sharp point is designed to assist in inserting the syringe adapter 1800, 1900 into the rubber membrane on a medicine bottle, and the particular taper may be adjusted from the angle shown in the figures, thereby altering the degree of sharpness, without deviating from the scope of the present invention. (It should also be noted that the sharp point may be eliminated, using instead a tip generally similar to the shape illustrated in FIGS. 15-16, and such alternative shape is deemed to be within the scope of the present invention. See FIGS. 20 and 21, which correspond to FIGS. 18 and 19, respectively, but show an alternative approach where the sharp point is not used.)
  • FIGS. 18 and 19 also depict a change to how the syringe adapter 1800, 1900 attaches to a syringe. Rather than forming a Luer-type lock connection between syringe adapter 1800, 1900 and a syringe tip such as tip 340, the approach shown in FIGS. 18 and 19 is to remove the syringe tip from the syringe (or equivalently, to use a syringe which has not been fitted with a syringe tip). In a preferred approach, connection between the syringe adapter 1800, 1900 and a syringe is made by inserting an extension 1804, 1904 at the proximal end of the syringe adapter into a cavity 342 where the syringe tip would have been located. Notably, conventional syringe tips are made to be removable in some syringes, allowing for cleaning (for example). Accordingly, threads into which such removable syringe tips are connected may be leveraged for connecting the extensions 1804, 1904. The syringe adapters 1800, 1900 may therefore serve as a permanent attachment to a syringe, or as a replacement for a syringe tip. The syringe adapters 1800, 1900 may alternatively be viewed and/or configured as a semi-permanent attachment or replacement, in that it can be removed if desired. Preferably, syringe adapters 1800, 1900 include a rubber gasket (or similar fitting) on an underside of the support hub member 1801, 1901, as shown by reference numbers 1806, 1906. A result of the connection is illustrated in the non-exploded cross-sectional views in FIGS. 18 and 19.
  • Syringe adapters 1800, 1900 differ in the width of extensions 1804, 1904. A corresponding width is used for cavity 342. FIGS. 18 and 19 both illustrate the exterior of support hub members 1801, 1901 as being generally hexagonal in shape, although this is by way of illustration but not of limitation and the exterior may be configured to have a different shape without deviating from the scope of the present invention.
  • A distal end of support hub members 1801, 1901 is preferably configured with an internal threaded portion, similar to the threaded portion discussed above with reference to support hub member 1501 of FIG. 15, and a Luer-type lock connection between syringe adapter 1800, 1900 and needle holder 1810, 1910 is made using the threads (illustrated in FIGS. 18 and 19 generally by small extensions 1803, 1903) and flanged area 1811, 1911 of needle holder 1800, 1900 in the manner discussed above with reference to FIG. 15. See the non-exploded cross-sectional views in FIGS. 18 and 19.
  • Needle holders 1810, 1910 are configured for removably attaching a needle 400 using a Luer-type lock connection between an internal threaded portion 1812, 1912 on the distal end of the needle holder and a flanged area 460 of needle 400 in the manner discussed above with reference to FIGS. 16 and 17, and accordingly, details of the connection are not repeated here. A result of the connection is illustrated in the non-exploded cross-sectional views in FIGS. 18 and 19.
  • In embodiments as depicted in FIGS. 18 and 19, an exterior wall of needle holders 1810, 1910 is preferably hexagonal in shape in a lower portion and cylindrical in shape in an upper portion, as shown in the isometric view, with exception of the proximal end where flange 1811, 1911 is located (and the protrusion at the distal end). As shown in FIGS. 18 and 19, the proximal end immediately above the flange 1811, 1911 has a conical shape, by way of illustration but not of limitation; as one alternative, the shape may be cylindrical and still engage the threads on 1800, 1900 properly. Needle holder 1810, 1910 may serve to provide additional strength for the assembly, and thus may reduce the likelihood of a physical failure during use.
  • The length of inner chambers 1813, 1913 of needle holders 1810, 1910 preferably extends from the attachment point in support hub member 1801, 1901 to cover the distal end of syringe adapter 1800, 1900, thus accepting the full length of the elongated tips 1802, 1902 of syringe adapters 1800, 1900, as can be seen in the non-exploded cross-sectional views in FIGS. 18 and 19.
  • Preferably, syringe adapters 1800, 1900 and needle holders 1810, 1910 are constructed from a plastic or a composite. Syringe adapters 1800, 1900 and/or needle holders 1810, 1910 may alternatively be constructed from another material, such as stainless steel, aluminum, or another metal (or a combination thereof), without deviating from the scope of the present invention.
  • Note that while the needle holders 1810, 1910 and needle 400 may be removed as a unit from the syringe adapters 1800, 1900, this is by way of example; alternatively the needle may be removed from the needle holder and the needle holder may then be removed from the syringe adapter, without deviating from the scope of the present invention.
  • It should be noted that while discussions herein refer primarily to making a locking connection by twisting a first feature within a second feature, it will be obvious that the second feature may be twisted within the first feature or that both features may be twisted, without deviating from the scope of the present invention.
  • Use of the disclosed syringe adapter while medicating an animal operates, in some embodiments, as follows: the syringe adapter is affixed to a syringe (which, as noted earlier, is preferably a pistol-grip or tab-handled syringe); the syringe adapter is inserted into a bottle of medication; the plunger of the syringe is pulled back to withdraw the desired dosage of medication from the bottle into the syringe barrel; the syringe adapter is removed from the bottle, while the plunger remains stationary; the syringe adapter is replaced with a needle; and the medication (or some portion thereof) is then injected by pushing the plunger forward (for example, by squeezing the pistol-grip handles or pressing down on the tabbed handle) to expel medication from the syringe barrel. If it is desired to reuse the syringe adapter, then the needle is removed from the syringe, after which the above process is repeated. (As noted earlier, the disclosed syringe adapter is not limited to use with medication intended for any particular type of animal life, and therefore the medication may be injected more generally into a “target” or a “recipient”.)
  • Use of the disclosed syringe adapter operates, in some other embodiments, as follows: the syringe adapter is affixed to a syringe (preferably a pistol-grip or tab-handled syringe); the syringe adapter is inserted into a bottle of medication; the plunger of the syringe is pulled back to withdraw the desired dosage of medication from the bottle into the syringe barrel; the syringe adapter (which remains attached to the syringe) is removed from the bottle, while the plunger remains stationary; a needle is affixed to the syringe adapter (and note that the syringe adapter remains affixed to the syringe); and the medication (or some portion thereof) is then injected by pushing the plunger forward (for example, by squeezing the pistol-grip handles or pressing down on the tabbed handle) to expel medication from the syringe barrel. If it is desired to reuse the syringe adapter (for example, for medicating another animal), then the needle is removed from the syringe adapter, after which the above process of withdrawing medication using the syringe adapter, affixing a needle thereto, and then injecting the medication (or some portion thereof) is repeated.
  • Use of the disclosed syringe adapter operates, in still other embodiments, as follows: the syringe adapter is affixed to a syringe (preferably a pistol-grip or tab-handled syringe), and this attachment may be temporary (i.e., removable), permanent, or semi-permanent (that is, intended as a permanent replacement for a conventional syringe tip, although being configured to be removable, such as for cleaning); the syringe adapter is inserted into a bottle of medication; the plunger of the syringe is pulled back to withdraw the desired dosage of medication from the bottle into the syringe barrel; the syringe adapter (which remains attached to the syringe) is removed from the bottle, while the plunger remains stationary; a needle holder, to which a needle is affixed (either before or after connecting the needle holder and the syringe adapter), is affixed to the syringe adapter (and note that the syringe adapter remains affixed to the syringe); and the medication (or some portion thereof) is then injected by pushing the plunger forward (for example, by squeezing the pistol-grip handles or pressing down on the tabbed handle) to expel medication from the syringe barrel. If it is desired to reuse the syringe adapter (for example, for medicating another animal), then the needle holder and its affixed needle are removed from the syringe adapter (preferably as a single unit), after which the above process of withdrawing medication using the syringe adapter, affixing a needle holder with needle to the syringe adapter, and then injecting the medication (or some portion thereof) is repeated.
  • It should be noted that while embodiments are described herein as conforming to the above-cited International Standards and/or as using Luer-type connections to a syringe, this is by way of illustration but not of limitation. It should also be noted that the figures are directed toward illustrating aspects of the present invention, in combination with descriptions herein, and aspects shown therein (for example, length, width, and/or taper) are not necessarily drawn to scale.
  • While medications have been discussed herein as commonly being sold in a multi-dose bottle, this is by way of illustration and not of limitation. The disclosed syringe adapter may be used beneficially for medication that is sold in a single-use dosage. Also, it should be noted that while some discussions herein refer to expelling “the withdrawn medication” or “emptying” the syringe, this is by way of illustration and not of limitation: the scope of the present invention does not require withdrawn medication to be expelled in full nor does it require a syringe to be fully emptied.
  • Advantageously, the disclosed syringe adapter may be included with purchase (e.g., within the packaging) of a higher-viscosity medication. As one alternative, a multi-pack of the disclosed syringe adapter may be included with such purchase, particularly when the medication is sold in a multi-dose bottle. The disclosed syringe adapter may also be sold separately from medication.
  • Examples of higher-viscosity animal medications with which the disclosed syringe adapter may be used beneficially include Nuflor®, Nuflor Gold®, and Resflor Gold®. (“Nuflor”, “Nuflor Gold”, and “Resflor Gold” are registered trademarks of Intervet Inc. in the United States, other countries, or both. Intervet is now known as “Merck Animal Health”.) These medications are commonly sold in 500-milliliter multi-dose bottles and may be administered, by way of example, in dosages of 36 to 60 milliliters per animal. Accordingly, a single multi-dose bottle may be used to treat generally 8 to 14 animals at this dosage range.
  • As noted earlier, viscosity of a substance may vary with temperature. Viscosity is commonly measured in units termed “centipoise”, which may be abbreviated as “cP” or “cps”. Water, at 70 degrees Fahrenheit, has a viscosity of approximately 1 cps, and by way of comparison, blood generally has a viscosity of about 10 cps. By convention, a temperature of 70 degrees Fahrenheit is used as a reference point for measuring cps, and thus when a temperature is not mentioned for a particular cps measurement, it should be assumed that the temperature associated with the stated measurement is 70 degrees Fahrenheit.
  • According to a study documented in “Syringeability and Viscosity Comparative of Different Florfenicol Formulations” by S. Colomer, et al., date unknown, the viscosity of Nuflor® at 5 degrees Celsius (which is approximately 41 degrees Fahrenheit) was 321 cps. U.S. Pat. No. 8,034,845, titled “Compositions and Method for Treating Infection in Cattle and Swine”, discusses a formulation believed to correspond to Nuflor Gold® and states that formulations of the invention disclosed therein preferably “have a viscosity of less than about 125 cps”.
  • An embodiment of the present invention is believed to be advantageous for fluid medications having a viscosity of at least 50 to 100 cps at a temperature of at least 5 degrees Celsius, as well as for fluid medications having a higher cps at this temperature (noting, as stated above, that viscosity varies with temperature).
  • FIG. 22 presents tables containing measurements from tests conducted to compare use of a sample version of the disclosed syringe adapter to use of conventional needles. The tested medication was Resflor Gold®, and a withdrawn quantity thereof was 30 cc (computed as a desired volume for treating an animal with a body weight of 500 pounds). Results of these tests will now be discussed.
  • In a first test (denoted “Test #1” in FIG. 22), the medication was at room temperature. A withdrawal rate was measured using an 18-gauge needle having a 1-inch length, a 16-gauge needle having a ⅝-inch length, and the syringe adapter. A 16-gauge needle has a larger tip opening (i.e., a larger inside) than an 18-gauge needle, and will therefore withdraw a solution faster than the 18-gauge, although the 16-gauge needle is thought to be disfavored for at least some situations because it may allow the (relatively expensive) medication to leak out during the medicating process. In addition, a 16-gauge needle is thought to be too large to use on smaller animals. In the sample version, the diameter of the opening in the distal end of the syringe adapter was approximately 0.094 inches.
  • In this first test, the bottle of medication was placed upon a table and the syringe adapter was already mounted upon a syringe held by the tester, and the elapsed withdrawal times include picking up the bottle and inserting the syringe adapter into the bottle. As shown in FIG. 22, withdrawing 30 cc of Resflor Gold® in this test environment required 3 minutes 50.30 seconds using the 18-gauge needle and 35 seconds using the 16-gauge needle, as compared to 8 seconds using the syringe adapter.
  • Time to expel the 30 cc of medication was also tested in this first test. Expelling the medication in this test environment required 35 seconds using the 18-gauge needle and 11 seconds using the 16-gauge needle. (Time to expel the medication was not measured using the syringe adapter, because the expel time depends on the needle used for injecting the medication.)
  • In a second test (denoted “Test #2” in FIG. 22), the medication was again at room temperature, but the bottle of medication was now held by the tester to eliminate time required to pick up the bottle. Accordingly, the elapsed withdrawal times in this test begin with inserting the syringe adapter into the bottle. As shown in FIG. 22, withdrawing 30 cc of Resflor Gold® in this test environment required an average of 5.54 seconds when using the syringe adapter, where this average was computed by taking measurements 6 times and discarding a time that appeared to be an outlier. (Because slightly more than 2 seconds were gained by omitting the “pick up” time of the bottle, this test was not performed using the needles: it may be assumed that the withdrawal times using needles in the first test would be approximately 2 seconds less under the environment of this second test.)
  • In a third test (denoted “Test #3” in FIG. 22), the medication was now at a temperature of approximately 38 to 40 degrees Fahrenheit, having just been removed from refrigeration (noting that this temperature was intended to simulate a cold weather environment in which the tested medication might be used). The bottle of medication and syringe with affixed syringe adapter were again held by the tester (and the elapsed times began with inserting the syringe adapter into the bottle), as in the second test. As shown in FIG. 22, withdrawing 30 cc of the now-cooler-temperature Resflor Gold® in this test environment required 3 minutes 42.27 seconds using the 16-gauge needle, as compared to 1 minute 1 second using the syringe adapter. Note that this third test was not conducted using the smaller 18-gauge needle, but by comparison to the results of the first test, it can be seen that the withdrawal time using the smaller needle may be expected to greatly exceed the nearly 4-minute withdrawal time for the 16-gauge needle.
  • As has been demonstrated, an embodiment of the present invention improves syringeability of higher-viscosity medications, allowing such medication to be withdrawn from a bottle in much less time as compared to the known approach of withdrawal using a needle. More animals may therefore be medicated in a given period of time, leading to improved productivity of persons caring for the animals as well as enabling overall improved health for the animals. No longer will higher viscosity be a barrier to the market, and because medication of this type will be more readily administered when using a syringe adapter as disclosed herein, improvement may be expected in animal health, and market share and/or market presence for the medication may improve as well.
  • It should be noted that various features discussed herein with reference to “an embodiment”, “one embodiment”, “a preferred embodiment”, and so forth should not be construed as suggesting that each such feature is present in a single embodiment, or in every embodiment, of the present invention. Instead, it should be understood that there may be various combinations of the disclosed features present in any particular embodiment.
  • While embodiments of the present invention have been described, additional variations and modifications in those embodiments may occur to those of ordinary skill in the art once they learn of the basic inventive concepts. Therefore, it is intended that the appended claims shall be construed to include the described embodiments and all such variations and modifications as fall within the spirit and scope of the invention.

Claims (21)

1: A syringe adapter for withdrawing fluid medication from a container, comprising:
a sidewall extending between a proximal end and a distal end opposite the proximal end, the sidewall having an interior surface defining a chamber, a terminal end of the sidewall at the distal end defining an opening, the proximal end configured to be connected to a syringe while withdrawing at least a portion of the fluid medication from the container through the opening and into the chamber and then into a barrel of the syringe and the distal end configured for inserting into the container for the withdrawal, wherein:
the opening at the distal end is approximately 0.10 inches in diameter to facilitate withdrawing the fluid medication, the fluid medication having a relatively high viscosity; and
the syringe adapter is configured to be removed from the syringe and replaced with a needle prior to subsequently injecting, into a recipient, at least a portion of the fluid medication withdrawn into the barrel.
2: The syringe adapter according to claim 1, wherein the opening improves syringeability of the fluid medication.
3: The syringe adapter according to claim 1, wherein the relatively high viscosity of the fluid medication is at least approximately 50 centipoise units when a temperature of the fluid medication is approximately 5 degrees Celsius.
4: The syringe adapter according to claim 1, wherein the relatively high viscosity of the fluid medication is greater than or equal to 50 centipoise units when a temperature of the fluid medication is at least 5 degrees Celsius.
5: The syringe adapter according to claim 1, wherein the syringe is configured as a pistol-grip syringe.
6: The syringe adapter according to claim 5, wherein the pistol-grip syringe improves leverage for the subsequently injecting.
7: The syringe adapter according to claim 1, wherein the syringe is configured as a tab-handled syringe.
8. (canceled)
9: The syringe adapter according to claim 1, wherein the syringe adapter connects to the syringe using a Luer-type connection, the Luer-type connection selected from the group consisting of a Luer-type lock and a Luer-type slip.
10: The syringe adapter according to claim 1, wherein the container is a multi-dose container.
11: The syringe adapter according to claim 1, wherein the sidewall is approximately 0.05 inches in thickness at the distal end.
12: The syringe adapter according to claim 1, further comprising a flanged area that extends perpendicularly from the proximal end.
13: The syringe adapter according to claim 1, further comprising a radial extension member that extends perpendicularly and radially outward from an exterior surface of the syringe adapter.
14: The syringe adapter according to claim 1, wherein an outer shape of the syringe adapter is generally conical in a first portion and generally cylindrical in a second portion.
15: The syringe adapter according to claim 1, wherein an outer shape of the syringe adapter tapers, for at least a portion thereof, from the proximal end toward the distal end.
16: The syringe adapter according to claim 1, wherein an inner shape of the syringe adapter, for at least a portion of the proximal end, is generally conical.
17: The syringe adapter according to claim 1, wherein an inner shape of the syringe adapter tapers from the proximal end toward the distal end, for at least a portion of the proximal end, at approximately 6 percent.
18: A method of administering fluid medication, comprising:
affixing, to a syringe, a syringe adapter as recited in claim 1;
inserting the distal end of the syringe adapter into a container of fluid medication having a relatively high viscosity;
withdrawing, from the container, at least a portion of the fluid medication through the opening and into the chamber and then into a barrel of the syringe.
removing the syringe adapter from the syringe subsequent to the withdrawing;
affixing a needle to the distal end of the syringe, subsequent to the removing; and
injecting, into a recipient with the needle, at least a portion of the fluid medication withdrawn into the barrel.
19: The method according to claim 18, wherein the syringe is selected from the group consisting of a pistol-grip syringe and a tab-handled syringe.
20: A system for administering higher-viscosity fluid medication, comprising:
a syringe;
a syringe adapter as recited in claim 1; and
a needle, the needle configured for connecting to a distal end of the syringe subsequent to use of the syringe adapter for the withdrawing and subsequent to removal of the syringe adapter from the distal end of the syringe, the needle further configured for injecting, into a recipient, at least a portion of the fluid medication withdrawn into the barrel.
21. The syringe adapter according to claim 1, wherein an outer shape of the syringe adapter is generally conical at the distal end and generally cylindrical for at least a portion of the proximal end.
US16/393,696 2018-06-15 2019-04-24 Syringe adapter for medication Active US11173257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/393,696 US11173257B2 (en) 2018-06-15 2019-04-24 Syringe adapter for medication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/010,155 US11337894B2 (en) 2018-06-15 2018-06-15 Syringe adapter for animal medication
US16/166,111 US11097058B2 (en) 2018-06-15 2018-10-21 Syringe adapter for medication
US16/203,858 US11090444B2 (en) 2018-06-15 2018-11-29 Syringe adapter for medication
US16/393,696 US11173257B2 (en) 2018-06-15 2019-04-24 Syringe adapter for medication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/203,858 Continuation US11090444B2 (en) 1991-06-14 2018-11-29 Syringe adapter for medication

Publications (2)

Publication Number Publication Date
US20190381259A1 true US20190381259A1 (en) 2019-12-19
US11173257B2 US11173257B2 (en) 2021-11-16

Family

ID=68838899

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/203,858 Active US11090444B2 (en) 1991-06-14 2018-11-29 Syringe adapter for medication
US16/393,696 Active US11173257B2 (en) 2018-06-15 2019-04-24 Syringe adapter for medication
US29/715,259 Active USD884888S1 (en) 1991-06-14 2019-11-29 Syringe adapter and needle holder for medication
US29/731,533 Active USD925034S1 (en) 1991-06-14 2020-04-15 Syringe adapter and needle holder for medication

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/203,858 Active US11090444B2 (en) 1991-06-14 2018-11-29 Syringe adapter for medication

Family Applications After (2)

Application Number Title Priority Date Filing Date
US29/715,259 Active USD884888S1 (en) 1991-06-14 2019-11-29 Syringe adapter and needle holder for medication
US29/731,533 Active USD925034S1 (en) 1991-06-14 2020-04-15 Syringe adapter and needle holder for medication

Country Status (1)

Country Link
US (4) US11090444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103641B1 (en) 2020-04-26 2021-08-31 Paul D. Doubet Container adapter for removably attachable syringe

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10709850B2 (en) 2018-06-15 2020-07-14 James T. Doubet Syringe adapter for medication
US11337894B2 (en) 2018-06-15 2022-05-24 James T. Doubet Syringe adapter for animal medication
US11090444B2 (en) 2018-06-15 2021-08-17 James T. Doubet Syringe adapter for medication
USD890925S1 (en) 2018-06-15 2020-07-21 James T. Doubet Syringe adapter for medication
US20190388625A1 (en) 2018-06-15 2019-12-26 James T. Doubet Syringe adapter for medication
USD1010118S1 (en) * 2019-10-04 2024-01-02 Shukla Medical Connector hub for a surgical instrument
USD1022182S1 (en) * 2020-06-15 2024-04-09 Jessica Stuart Breathing tool
USD979750S1 (en) * 2020-09-17 2023-02-28 Medapti Ltd Adapter for oral syringes
USD958304S1 (en) * 2021-03-02 2022-07-19 Bridgeport Fittings, Llc Liquid tight non-metallic connector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046145A (en) * 1976-06-29 1977-09-06 American Hospital Supply Corporation Syringe connector
US4316462A (en) * 1980-05-21 1982-02-23 Siloam, Inc. Filtering device for an injection device
US4338925A (en) * 1979-12-20 1982-07-13 Jo Miller Pressure injection of bone cement apparatus and method
US4758158A (en) * 1983-10-21 1988-07-19 Sol Belport Company, Inc. Hydrocolloid injection system
US20030236501A1 (en) * 1998-09-04 2003-12-25 Donnan Jeremy Francis Retractable needle syringe including a sheath and an intravenous adapter
US20040068266A1 (en) * 2002-10-04 2004-04-08 Yves Delmotte Devices and methods for mixing and extruding medically useful compositions
US6981618B2 (en) * 2001-10-18 2006-01-03 Ivoclar Vivadent Ag Container assembly for a substance to be applied
US20070060898A1 (en) * 2005-09-07 2007-03-15 Shaughnessy Michael C Enteral medical treatment assembly having a safeguard against erroneous connection with an intravascular treatment system
US20070203451A1 (en) * 2006-02-24 2007-08-30 Mitsuo Murakami Minute quantity medicine administration set
US7699609B2 (en) * 2002-03-29 2010-04-20 Orapharma, Inc. Dispensing apparatus and cartridge with deformable tip

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US822079A (en) 1905-05-11 1906-05-29 Louis Roussy Hypodermic syringe.
US2626603A (en) 1950-09-29 1953-01-27 Gabriel Daniel Hypodermic syringe
US2752919A (en) 1953-03-26 1956-07-03 Gabriel Daniel Hypodermic syringes
US3320954A (en) 1963-12-30 1967-05-23 Pharmaseal Lab Hypodermic syringe with breakable polypropylene needle adaptor
US3436828A (en) 1966-04-07 1969-04-08 William B Dragan Dental gun
US3958570A (en) 1974-09-03 1976-05-25 Vogelman Joseph H Syringes and syringe capsules
US4294250A (en) 1979-12-07 1981-10-13 Baxter Travenol Laboratories, Inc. Luer lock connection device
US4472141A (en) 1981-10-26 1984-09-18 Dragan William B All purpose dental syringe
USD297262S (en) 1984-08-23 1988-08-16 Ivac Corporation Combined spike and drop former housing for enteric set
US4758234A (en) 1986-03-20 1988-07-19 Norman Orentreich High viscosity fluid delivery system
US4664655A (en) 1986-03-20 1987-05-12 Norman Orentreich High viscosity fluid delivery system
USD297365S (en) 1987-07-14 1988-08-23 Stik-Guard, Inc. Needle guard
USD315583S (en) * 1988-03-15 1991-03-19 Healthscan, Inc. Inspiratory muscle exerciser or similar article
USD320082S (en) 1988-03-21 1991-09-17 Migada Inc. Combined guard and injection site for intravenous infusion or the like
US4927417A (en) 1988-07-07 1990-05-22 Schneider Medical Technologies, Inc. Safety sleeve adapter
US4852584A (en) 1988-10-11 1989-08-01 Selby Charles R Fluid collection tube with a safety funnel at its open end
US5858000A (en) 1988-12-14 1999-01-12 Inviro Medical Devices Ltd. Safety syringe needle device with interchangeable and retractable needle platform
USD310722S (en) 1988-12-22 1990-09-18 Bengt-Inge Broden Cannula for withdrawing a test sample from a test tube
US5047021A (en) 1989-08-29 1991-09-10 Utterberg David S Male luer lock medical fitting
ATE106758T1 (en) 1989-11-21 1994-06-15 Andreas Lindner INJECTION DEVICE.
US5195985A (en) 1990-05-25 1993-03-23 Hall John E Syringe having a retractable needle
USD338531S (en) 1991-03-18 1993-08-17 Howell Edward B Combined disposable baby bottle stand and air extruder
US11090444B2 (en) 2018-06-15 2021-08-17 James T. Doubet Syringe adapter for medication
US10709850B2 (en) 2018-06-15 2020-07-14 James T. Doubet Syringe adapter for medication
US5509911A (en) 1992-11-27 1996-04-23 Maxxim Medical, Inc. Rotating adapter for a catheterization system
USD358882S (en) * 1993-09-01 1995-05-30 Hollister Incorporated Combined male urinary catheter and applicator tube
US5445523A (en) 1993-09-03 1995-08-29 Ultradent Products, Inc. Syringe apparatus and methods for dispensing viscous materials
US5746733A (en) 1994-05-19 1998-05-05 Becton, Dickinson And Company Syringe filling and delivery device
USD368304S (en) * 1994-12-19 1996-03-26 Australasian Steel Products Pty. Ltd. Combined hose and flow line coupling member
USD380037S (en) * 1995-08-14 1997-06-17 Vapor Systems Technologies, Inc. Coaxial hose fitting
US5733258A (en) 1995-09-22 1998-03-31 Lane; Donovan R. Livestock biological and vaccine handling system to include pistol grip syringe and cartridge
USD381425S (en) * 1995-10-31 1997-07-22 Smith & Nephew Endoscopy Inc. Hub for a surgical instrument
USD382639S (en) 1996-02-29 1997-08-19 Becton Dickinson And Company Barbed luer
USD395502S (en) * 1996-03-19 1998-06-23 Mcgaw, Inc. Catheter plug
USD413967S (en) * 1996-10-30 1999-09-14 Yuen Po S Coupling and nut assembly for a fluid purification system
USD435652S (en) 1999-03-30 2000-12-26 Alcon Laboratories, Inc. Shielded female connector
WO2000071196A1 (en) 1999-05-21 2000-11-30 Micro Therapeutics, Inc. Interface needle and method for creating a blunt interface between delivered liquids
US6706022B1 (en) * 1999-07-27 2004-03-16 Alaris Medical Systems, Inc. Needleless medical connector with expandable valve mechanism
US6840291B2 (en) * 1999-10-15 2005-01-11 Becton Dickinson And Company Attachment for a medical device
US6787568B1 (en) 2000-11-27 2004-09-07 Phoenix Scientific, Inc. Antibiotic/analgesic formulation and a method of making this formulation
US7316679B2 (en) 2001-01-22 2008-01-08 Venetec International, Inc. Medical device connector fitting
US7041084B2 (en) 2001-05-24 2006-05-09 Fojtik Shawn P Hand-held, hand operated power syringe and methods
USD473646S1 (en) 2001-12-21 2003-04-22 Microsurgical Technology, Inc. Irrigation/aspiration instrument connector
USD473305S1 (en) * 2002-03-25 2003-04-15 Thor R. Halseth Hypodermic injection syringe luer
USD474839S1 (en) * 2002-03-26 2003-05-20 Becton, Dickinson And Company Adaptor for point of care testing cartridge
US6790867B2 (en) 2002-05-20 2004-09-14 Schering-Plough Animal Health Corporation Compositions and method for treating infection in cattle and swine
JP4427965B2 (en) 2002-07-02 2010-03-10 ニプロ株式会社 Chemical container with communication means
US20060047251A1 (en) * 2002-10-22 2006-03-02 Philip Bickford Smith Medical small-bore tubing system and kit
PE20050386A1 (en) 2003-05-29 2005-06-23 Schering Plough Ltd PHARMACEUTICAL COMPOSITIONS OF FLORPHENICOL
USD529603S1 (en) 2003-10-17 2006-10-03 Ferndale Laboratories, Inc. Dispenser tip assembly for applying a medication to mucosal tissue
DE202004012714U1 (en) 2004-08-12 2004-11-04 Smiths Medical Deutschland Gmbh Luer lock connector for medical devices
USD517667S1 (en) * 2004-09-04 2006-03-21 Gilmour, Inc. Coupler for water hose
US7255689B2 (en) 2004-10-29 2007-08-14 Safety Syringes, Inc. Syringe with anti-rotation for luer lock
US7347458B2 (en) 2005-01-14 2008-03-25 C. R. Bard, Inc. Locking luer fitting
US7740288B2 (en) * 2005-05-09 2010-06-22 Northgate Technologies Inc. High-flow luer lock connector for a luer lock connection
US20070088294A1 (en) 2005-07-06 2007-04-19 Fangrow Thomas F Jr Medical connector with closeable male luer
US20070183986A1 (en) 2006-02-06 2007-08-09 Ultradent Products, Inc. Methods and systems for mixing a multi-part fluoride varnish composition
US20080015539A1 (en) 2006-02-28 2008-01-17 Robert Pieroni Bottle with adapter for receiving needleless syringe
US7534234B2 (en) 2006-05-09 2009-05-19 Fojtik Shawn P Hand-held aspiration syringe and methods
JP4895767B2 (en) 2006-11-15 2012-03-14 株式会社アルテ Luer lock tube tip of syringe
US20080287884A1 (en) 2007-04-17 2008-11-20 Warden Matthew P Convertible syringe system
JP5202537B2 (en) * 2007-10-02 2013-06-05 テルモ株式会社 Puncture set
WO2009090499A2 (en) 2008-01-11 2009-07-23 Ucb Pharma Sa Systems for administering medication for rheumatoid arthritis patients
USD617429S1 (en) 2009-05-29 2010-06-08 Govoni Arthur S Coupler for plumbing fixtures
US8915890B2 (en) 2009-07-30 2014-12-23 Becton, Dickinson And Company Medical device assembly
USD655814S1 (en) 2009-08-21 2012-03-13 Circle Biologics, Inc. Fluid management connector
IL201323A0 (en) 2009-10-01 2010-05-31 Medimop Medical Projects Ltd Fluid transfer device for assembling a vial with pre-attached female connector
USD672052S1 (en) 2010-02-15 2012-12-04 Roche Diagnostics Operations, Inc. Sample cup
US8882726B2 (en) * 2010-03-10 2014-11-11 Becton Dickinson France Drug delivery device with safe connection means
RU2595865C2 (en) 2010-08-20 2016-08-27 Др. Редди'З Лабораториз, Лтд. Phospholipid depot preparation
US8961490B2 (en) 2010-09-10 2015-02-24 National Jewish Health Disposable vial holder and method to prevent needle stick injuries
USD831202S1 (en) 2010-09-23 2018-10-16 Mercury Enterprises, Inc. Gas connector
US9295788B2 (en) 2011-03-04 2016-03-29 Anestaweb, Inc. Syringe with integrated cannula
USD693923S1 (en) 2011-03-17 2013-11-19 Fresenius Medical Care Holdings, Inc. Visual aid transducer protector
KR20120107161A (en) 2011-03-21 2012-10-02 휴먼티슈코리아주식회사 Medical syringe set, high pressable syringe parts and lock up accessories for anti-separation needle to syringe
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
WO2013155005A1 (en) 2012-04-09 2013-10-17 Becton, Dickinson And Company Drug vial safety device
USD709187S1 (en) 2012-05-08 2014-07-15 Maymom Tubing connector for breast pumps
US9233776B2 (en) 2012-06-07 2016-01-12 Bayer Healthcare Llc Molecular imaging vial transport container and fluid injection system interface
USD716916S1 (en) * 2012-10-18 2014-11-04 Merit Medical Systems, Inc. Valved connector assembly
USD731647S1 (en) * 2013-01-10 2015-06-09 Fuso Pharmaceutical Industries, Ltd. Syringe
USD714935S1 (en) * 2013-01-10 2014-10-07 Fuso Pharmaeutical Industries, Ltd. Adapter for connecting a needle to a syringe
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
US9345642B2 (en) 2013-03-14 2016-05-24 Pharmajet, Inc. Vial adapter for a needle-free syringe
WO2014145959A1 (en) 2013-03-15 2014-09-18 Windgap Medical, Inc. Portable detachable drug mixing and delivery system and method
USD739523S1 (en) 2013-07-31 2015-09-22 Intersurgical Ag Respiratory equipment
AU355744S (en) * 2014-01-06 2014-05-28 Laerdal Medical As Upright newborn bag-mask
USD736915S1 (en) 2014-01-29 2015-08-18 Joseph P. Schultz Double shielded medical connector
USD773659S1 (en) 2014-08-06 2016-12-06 Huntleigh Technology Limited Tri pulse connector
USD757233S1 (en) * 2015-04-24 2016-05-24 Teknor Apex Company Male hose fitting
USD792586S1 (en) * 2015-05-18 2017-07-18 Fresenius Kabi Deutschland Gmbh Enteral feeding connector female component
AU367143S (en) * 2015-08-05 2016-02-15 Borla Ind Valved connector for medical lines
USD777888S1 (en) * 2015-09-01 2017-01-31 Teknor Apex Company Male hose fitting
CN113456488A (en) 2015-11-25 2021-10-01 拜耳医药保健有限公司 Syringe filling adapter
US9808416B2 (en) 2015-12-09 2017-11-07 Colgate-Palmolive Company Oral care compositions and methods
EP3402454A2 (en) * 2016-01-15 2018-11-21 Neomed, Inc. Large bore enteral connector
USD811586S1 (en) 2016-01-21 2018-02-27 Nuova Ompi S.R.L. Medicine injector
USD818580S1 (en) * 2016-02-16 2018-05-22 Babak KHABIRI Nasal cannula holder
US11166876B2 (en) 2016-02-24 2021-11-09 Neomed, Inc. Fluid transfer connector
US20180050183A1 (en) 2016-08-17 2018-02-22 Kristine Marie Taylor Internal bottle adapter for material transfer
USD851240S1 (en) 2017-02-02 2019-06-11 Poly Medicure Limited Dispensing port
JP1587723S (en) 2017-02-17 2017-10-10
CA176931S (en) 2017-04-04 2018-07-24 Dentsply Ih Ab Catheter
USD841499S1 (en) * 2017-06-09 2019-02-26 Ocean Optics, Inc. In-line filter holder
USD851759S1 (en) * 2018-01-17 2019-06-18 Site Saver, Inc. Breakaway connector for medical lines
USD865954S1 (en) * 2018-03-30 2019-11-05 Merit Medical Systems, Inc. Breakaway connector
JP1625171S (en) 2018-05-30 2019-02-25 Electric unicycle with training wheels
KR102047319B1 (en) 2019-06-04 2019-11-21 박목순 Cap preventing separation for needle-hub of syringe having easy installation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046145A (en) * 1976-06-29 1977-09-06 American Hospital Supply Corporation Syringe connector
US4338925A (en) * 1979-12-20 1982-07-13 Jo Miller Pressure injection of bone cement apparatus and method
US4316462A (en) * 1980-05-21 1982-02-23 Siloam, Inc. Filtering device for an injection device
US4758158A (en) * 1983-10-21 1988-07-19 Sol Belport Company, Inc. Hydrocolloid injection system
US20030236501A1 (en) * 1998-09-04 2003-12-25 Donnan Jeremy Francis Retractable needle syringe including a sheath and an intravenous adapter
US6981618B2 (en) * 2001-10-18 2006-01-03 Ivoclar Vivadent Ag Container assembly for a substance to be applied
US7699609B2 (en) * 2002-03-29 2010-04-20 Orapharma, Inc. Dispensing apparatus and cartridge with deformable tip
US20040068266A1 (en) * 2002-10-04 2004-04-08 Yves Delmotte Devices and methods for mixing and extruding medically useful compositions
US20070060898A1 (en) * 2005-09-07 2007-03-15 Shaughnessy Michael C Enteral medical treatment assembly having a safeguard against erroneous connection with an intravascular treatment system
US20070203451A1 (en) * 2006-02-24 2007-08-30 Mitsuo Murakami Minute quantity medicine administration set

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103641B1 (en) 2020-04-26 2021-08-31 Paul D. Doubet Container adapter for removably attachable syringe

Also Published As

Publication number Publication date
USD925034S1 (en) 2021-07-13
USD884888S1 (en) 2020-05-19
US11173257B2 (en) 2021-11-16
US11090444B2 (en) 2021-08-17
US20190381258A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US11173257B2 (en) Syringe adapter for medication
US11707579B2 (en) Syringe adapter for medication
US11446450B2 (en) Syringe adapter for medication
US11097058B2 (en) Syringe adapter for medication
CA3103933C (en) Syringe adapter for animal medication
US8529521B2 (en) Low-dosage syringe
JP2007130488A (en) Needle assembly and intradermal delivery device including the same
US4784641A (en) Article and method for the oral dosing of fluidic material to patients
US20230139411A1 (en) Container adapter for removably attachable syringe
US20200405978A1 (en) Syringe adapter for medication
CA3110931A1 (en) Syringe adapter for medication
US20140124514A1 (en) Method and apparatus for adding buffers and other substances to medical cartridges
CA3158155A1 (en) Syringe adapter for medication
CN205379469U (en) Ware is prepared to skin test liquid
CA3121133A1 (en) Syringe adapter for medication
US20120214124A1 (en) High Volume Carpule System
WO2021046071A1 (en) Syringe adapter for medication
US10500368B2 (en) Dental syringe
EP2952217A1 (en) Medicinal cefoxitin vial, and dispensing apparatus and injection apparatus thereof
CN210844579U (en) Enema administration device and set thereof
US20140224376A1 (en) Methods and systems for buffering solutions with controlled tonicity
US10206856B1 (en) Apparatus for fluid administration to an individual
WO2004062565A2 (en) Device and method for vaccination

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE