US20190376513A1 - Co-rotating scroll compressor and method of assembling the same - Google Patents

Co-rotating scroll compressor and method of assembling the same Download PDF

Info

Publication number
US20190376513A1
US20190376513A1 US16/485,601 US201816485601A US2019376513A1 US 20190376513 A1 US20190376513 A1 US 20190376513A1 US 201816485601 A US201816485601 A US 201816485601A US 2019376513 A1 US2019376513 A1 US 2019376513A1
Authority
US
United States
Prior art keywords
driving
driven
side wall
scroll
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/485,601
Inventor
Hirofumi Hirata
Takahide Ito
Makoto Takeuchi
Takuma YAMASHITA
Keita Kitaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Assigned to MITSUBISHI HEAVY INDUSTRIES, LTD. reassignment MITSUBISHI HEAVY INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRATA, HIROFUMI, ITO, TAKAHIDE, KITAGUCHI, Keita, TAKEUCHI, MAKOTO, YAMASHITA, Takuma
Publication of US20190376513A1 publication Critical patent/US20190376513A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving
    • F04C18/0238Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/007Sealings for working fluid between radially and axially moving parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/066Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with an intermediate piece sliding along perpendicular axes, e.g. Oldham coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a co-rotating scroll compressor and a method of assembling the co-rotating scroll compressor.
  • a co-rotating scroll compressor has been well-known (refer to PTL 1).
  • the co-rotating scroll compressor includes a driving-side scroll and a driven-side scroll that rotates in synchronization with the driving-side scroll, and causes a drive shaft causing the driving-side scroll to rotate and a driven shaft supporting rotation of the driven-side scroll to rotate in the same direction at the same angular velocity while the driven-shaft is offset by a revolving radius from the drive shaft.
  • the co-rotating scroll compressor adopts a configuration in which each of the driving-side scroll and the driven-side scroll is divided in an axis direction in some cases. Further, the co-rotating scroll compressor adopts a configuration in which a front end of a spiral wall of each of the driving-side scroll and the driven-side scroll is supported by a support member in some cases. In a case where such a configuration is adopted, it is necessary to accurately position phases of the driving-side scroll and the driven-side scroll around a rotation axis in order to ensure engagement of the spiral walls. Such a configuration to perform positioning of the phase is provided at each of at least two positions around the rotation axis. A centroid may be deviated from the rotation axis depending on an installing way of the positioning configuration, which causes noise and vibration.
  • the present invention is made in consideration of such circumstances, and an object of the present invention is to provide a co-rotating scroll compressor that can suppress generation of noise and vibration caused by centroid deviation of the scroll member as much as possible, and to provide a method of assembling the co-rotating scroll compressor.
  • a co-rotating scroll compressor a method of assembling the co-rotating scroll compressor according to the present invention adopts the following solutions.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity.
  • Positioning pins that position a phase of the driving-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driving-side wall in an axis direction, and dummy pins that are provided at equal angular intervals around the rotation axis with the positioning pins are provided at one or more positions, and/or positioning pins that position a phase of the driven-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driven-side wall in an axis direction, and dummy pins that are provided at equal angular intervals around the rotation axis with the positioning pins are provided at one or more positions.
  • the driving-side scroll member is rotationally driven by the driving unit, and the driving force transmitted to the driving-side scroll member is transmitted to the driven-side scroll member through the synchronous driving mechanism.
  • the driven-side scroll member rotates as well as performs rotational movement in the same direction at the same angular velocity with respect to the driving-side scroll member.
  • the co-rotating scroll compressor in which both of the driving-side scroll member and the driven-side scroll member rotate is provided.
  • the positioning of the phase around the rotation axis is performed by using the positioning pins at two positions. Further, the dummy pins are provided at equal angular intervals around the rotation axis with the positioning pins, which makes it possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity.
  • Assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driving-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driving-side wall in an axis direction, and dummy holes that are provided at equal angular intervals around the rotation axis with the assembly reference holes are provided at one or more positions, and/or assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driven-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driven-side wall in an axis direction, and dummy holes that are provided at equal angular intervals around the rotation axis with the assembly reference holes are provided at one or more positions.
  • the positioning of the phase around the rotation axis is performed by using the two assembly reference holes in assembly. Further, the dummy holes are provided at equal angular intervals around the rotation axis with the assembly reference holes, which makes it possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity.
  • Positioning pins that position a phase of the driving-side scroll member around a rotation axis and are made of a material same as a material of the driving-side wall are provided at two positions around the rotation axis at a front end of the driving-side wall in an axis direction, and/or positioning pins that position a phase of the driven-side scroll member around a rotation axis and are made of a material same as a material of the driven-side wall are provided at two positions around the rotation axis at a front end of the driven-side wall in an axis direction.
  • the positioning of the phase around the rotation axis is performed by using the two positioning pins. Since the positioning pins are made of the material same as the material of the wall, it is possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • a co-rotating scroll compressor includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity.
  • Assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driving-side scroll member around a rotation axis are provided at two positions symmetric with respect to the rotation axis on a surface opposite to a surface provided with the driving-side wall of the driving-side end plate, and/or assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driven-side scroll member around a rotation axis are provided at two positions symmetric with respect to the rotation axis on a surface opposite to a surface provided with the driven-side wall of the driven-side end plate.
  • the two assembly reference holes are provided on the surface of the end plate opposite to the surface provided with the wall, the positioning of the phase around the rotation axis is performed in assembly. Further, since the assembly reference holes are provided symmetrically with respect to the rotation axis, it is possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • the assembly reference holes are provided on the end plate, which eliminates necessity of providing the assembly reference holes on the wall. Accordingly, it is possible to optionally determine the positions of the assembly reference holes irrespective of the shape of the wall.
  • the driving-side scroll member includes a first driving-side scroll portion and a second driving-side scroll portion.
  • the first driving-side scroll portion includes a first driving-side end plate and a first driving-side wall and is driven by the driving unit.
  • the second driving-side scroll portion includes a second driving-side end plate and a second driving-side wall. Positioning of the phase of the driving-side scroll member around the rotation axis is performed between a front end of the first driving-side wall in the axis direction and a front end of the second driving-side wall in the axis direction.
  • the positioning pins and the dummy pins are provided at the front end of the driving-side wall. Further, the assembly reference holes and the dummy holes are provided at the front end of the driving-side wall.
  • the driven-side scroll member includes a first driven-side wall and a second driven-side wall.
  • the first driven-side wall is provided on one side surface of the driven-side end plate and engages with the first driving-side wall
  • the second driven-side wall is provided on another side surface of the driven-side end plate and engages with the second driving-side wall.
  • the co-rotating scroll compressor includes a first support member and a second support member. The first support member is fixed to a front end side of the first driven-side wall in the axis direction with the first driving-side end plate in between and rotates together with the first driven-side wall.
  • the second support member is fixed to a front end side of the second driven-side wall in the axis direction with the second driving-side end plate in between and rotates together with the second driven-side wall.
  • the positioning of the phase of the driven-side scroll member around the rotation axis is performed between the first driven-side wall and the first support member and between the second driven-side wall and the second support member.
  • the positioning pins and the dummy pins are provided between the driven-side wall and the support member. Further, the assembly reference holes and the dummy holes are provided between the driven-side wall and the support member.
  • a method of assembling a co-rotating scroll compressor according to an aspect of the present invention is a method of assembling any of the above-described co-rotating scroll compressors, and the method includes: performing positioning by inserting the assembly pins into the respective assembly reference holes; assembling the driving-side scroll member and/or the driven-side scroll member in a positioned state; and removing the assembly pins.
  • the assembly pins are removed after the assembly pins are inserted into the respective assembly reference holes to perform positioning in assembly. Accordingly, the pins are not inserted into the assembly reference holes and the dummy holes in the assembled co-rotating scroll compressor.
  • centroid of each of the scroll members is located on the rotation axis, which makes it possible to suppress generation of noise and vibration as much as possible.
  • FIG. 1 is a vertical cross-sectional view illustrating a co-rotating scroll compressor according to one embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a driving-side scroll portion according to a first embodiment.
  • FIG. 3 is a side view as viewed from an arrow III-III in FIG. 1 .
  • FIG. 4 is a plan view illustrating a driving-side scroll portion according to a second embodiment.
  • FIG. 5 is a side view corresponding to FIG. 3 , according to the second embodiment.
  • FIG. 6 is a plan view illustrating a driving-side scroll portion according to a third embodiment.
  • FIG. 7 is a side view corresponding to FIG. 3 , according to the third embodiment.
  • FIG. 8A is a back view illustrating a first driving-side scroll portion according to a fourth embodiment.
  • FIG. 8B is a back view illustrating a second driving-side scroll portion according to a fourth embodiment.
  • FIG. 1 illustrates a co-rotating scroll compressor 1 according to a first embodiment.
  • the co-rotating scroll compressor 1 can be used as, for example, a supercharger that compresses combustion air (fluid) to be supplied to an internal combustion engine such as a vehicle engine.
  • the co-rotating scroll compressor 1 includes a housing 3 , a motor (driving unit) 5 accommodated on one end side in the housing 3 , and a driving-side scroll member 70 and a driven-side scroll member 90 that are accommodated on the other end side in the housing 3 .
  • the housing 3 has a substantially cylindrical shape, and includes a motor accommodation portion 3 a that accommodates the motor 5 , and a scroll accommodation portion 3 b that accommodates the scroll members 70 and 90 .
  • a cooling fin 3 c to cool the motor 5 is provided on an outer periphery of the motor accommodation portion 3 a .
  • a discharge opening 3 d from which compressed air (working fluid) is discharged is provided at an end part of the scroll accommodation portion 3 b . Note that, although not illustrated in FIG. 1 , the housing 3 includes an air suction opening from which air (working fluid) is sucked in.
  • the motor 5 is driven by being supplied with power from an unillustrated power supply source. Rotation of the motor 5 is controlled by an instruction from an unillustrated control unit.
  • a stator 5 a of the motor 5 is fixed to an inner periphery of the housing 3 .
  • a rotor 5 b of the motor 5 rotates around a driving-side rotation axis CL 1 .
  • a driving shaft 6 that extends on the driving-side rotation axis CL 1 is connected to the rotor 5 b .
  • the driving shaft 6 is connected to a first driving-side shaft portion 7 c of the driving-side scroll member 70 .
  • the driving-side scroll member 70 includes the first driving-side scroll portion 71 on the motor 5 side, and the second driving-side scroll portion 72 on the discharge opening 3 d side.
  • the first driving-side scroll portion 71 includes the first driving-side end plate 71 a and the first driving-side walls 71 b.
  • the first driving-side end plate 71 a is connected to the first driving-side shaft portion 7 c connected to the driving shaft 6 , and extends in a direction orthogonal to the driving-side rotation axis CL 1 .
  • the first driving-side shaft portion 7 c is provided so as to be rotatable with respect to the housing 3 through the first driving-side bearing 11 that is a ball bearing.
  • the first driving-side end plate 71 a has a substantially disc shape in a planar view.
  • the plurality of first driving-side walls 71 b each formed in a spiral shape are provided on the first driving-side end plate 71 a .
  • the first driving-side walls 71 b are disposed at equal intervals around the driving-side rotation axis CL 1 .
  • the second driving-side scroll portion 72 includes the second driving-side end plate 72 a and the second driving-side walls 72 b .
  • the plurality of second driving-side walls 72 b each formed in a spiral shape are provided similarly to the above-described first driving-side walls 71 b.
  • the cylindrical second driving-side shaft portion 72 c that extends in the driving-side rotation axis CL 1 is connected to the second driving-side end plate 72 a .
  • the second driving-side shaft portion 72 c is provided so as to be rotatable with respect to the housing 3 through the second driving-side bearing 14 that is a ball bearing.
  • the second driving-side end plate 72 a includes the discharge port 72 d extending along the driving-side rotation axis CL 1 .
  • Two seal members 16 are provided on a front end side (left side in FIG. 1 ) of the second driving-side shaft portion 72 c relative to the second driving-side bearing 14 , between the second driving-side shaft portion 72 c and the housing 3 .
  • the two seal members 16 and the second driving-side bearing 14 are disposed to include a predetermined interval in the driving side rotation axis CL 1 .
  • a lubricant that is a grease as a semi-solid lubricant is sealed between the two seal members 16 .
  • only one seal member 16 may be provided. In this case, the lubricant is sealed between the seal member 16 and the second driving-side bearing 14 .
  • the first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed while the front ends (free ends) of the walls 71 b and 72 b corresponding to each other face each other.
  • the first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed by the wall fixing bolts (wall fixing parts) 31 that are fastened to the flange portions 73 provided at a plurality of positions in the circumferential direction.
  • the flange portions 73 are provided so as to protrude outward in the radial direction.
  • FIG. 2 is a plan view illustrating the first driving-side scroll portion 71 .
  • the second driving-side scroll portion 71 also has a similar shape.
  • a bolt hole 31 a into which a wall fixing bolt 31 is inserted is provided at a winding end of each of the walls 71 b . Since the three walls 71 b are provided in the present embodiment, the wall fixing bolt 31 is provided at each of three positions.
  • a positioning pin hole 40 a into which a positioning pin 40 is fitted is provided at a side of each of two of the three bolt holes 31 a .
  • a dummy pin hole 41 a into which a dummy pin 41 is inserted is provided at a side of one remaining bolt hole 31 a .
  • the dummy pin 41 is made of the material same as the material of the positioning pins 40 , and the dummy pin 41 is loosely fitted into the dummy pin hole 41 a so as not to perform positioning.
  • the two positioning pins 40 and the one dummy pin 41 are provided at equal intervals around the driving-side rotation axis CL 1 .
  • the driven-side scroll member 90 includes the driven-side end plate 90 a that is located at a substantially center in the axis direction (horizontal direction in figure).
  • the discharge through hole (through hole) 90 h is provided at a center of the driven-side end plate 90 a , and causes the compressed air to flow toward the discharge port 72 d.
  • the first driven-side walls 91 b are provided on one side surface of the driven-side end plate 90 a
  • the second driven-side walls 92 b are provided on the other side surface of the driven-side end plate 90 a .
  • the first driven-side walls 91 b provided on the motor 5 side from the driven-side end plate 90 a engage with the first driving-side walls 71 b of the first driving-side scroll portion 71 .
  • the second driven-side walls 92 b provided on the discharge opening 3 d side from the driven-side end plate 90 a engage with the second driving-side walls 72 b of the second driving-side scroll portion 72 .
  • a first support member 33 and a second support member 35 are provided at respective ends of the driven-side scroll member 90 in the axis direction (horizontal direction in figure).
  • the first support member 33 is disposed on the motor 5 side, and the second support member 35 is disposed on the discharge opening 3 d side.
  • the first support member 33 is fixed to the front ends (free ends) of the respective first driven-side walls 91 b on the outer peripheral side by first support fixing bolts 34
  • the second support member 35 is fixed to the front ends (free ends) of the respective second driven-side walls 92 b on the outer peripheral side by second support fixing bolts 36 .
  • the shaft portion 33 a is provided on the center axis side of the first support member 33 , and the shaft portion 33 a is fixed to the housing 3 through the first support member bearing 37 .
  • the shaft portion 35 a is provided on the center axis side of the second support member 35 , and the shaft portion 35 a is fixed to the housing 3 through the second support member bearing 38 .
  • the driven-side scroll member 90 rotates around the driven-side rotation axis CL 2 through the support members 33 and 35 .
  • the pin-ring mechanism (synchronous driving mechanism) 15 is provided between the first support member 33 and the first driving-side end plate 71 a . More specifically, a rolling bearing (ring) is provided on the first driving-side end plate 71 a , and the pin member 15 b is provided on the first support member 33 .
  • the pin-ring mechanism 15 transmits the driving force from the driving-side scroll member 70 to the driven-side scroll member 90 , and causes the scroll members 70 and 90 to perform rotational movement in the same direction at the same angular velocity.
  • FIG. 3 is a side view as viewed from an arrow III-III in FIG. 1 .
  • the first support fixing bolts 34 are provided at three positions on the first support member 33 .
  • a positioning pin hole 42 a into which a positioning pin 42 is fitted is provided at a side of each of two of the three first support fixing bolts 34 .
  • a dummy pin hole 43 a into which a dummy pin 43 is inserted is provided at a side of one remaining first support fixing bolt 34 .
  • the dummy pin 43 is made of the material same as the material of the positioning pins 42 , and the dummy pin 43 is loosely fitted into the dummy pin hole 43 a so as not to perform positioning.
  • the two positioning pins 42 and the one dummy pin 43 are provided at equal intervals around the driven-side rotation axis CL 2 .
  • the second support member 35 also has a similar configuration.
  • the co-rotating scroll compressor 1 including the above-described configuration operates in the following manner.
  • the driving shaft 6 rotates around the driving-side rotation axis CL 1 by the motor 5
  • the first driving-side shaft portion 7 c connected to the driving shaft 6 also rotates, and the driving-side scroll member 70 accordingly rotates around the driving-side rotation axis CL 1 .
  • the driving-side scroll member 70 rotates, the driving force is transmitted from the support members 33 and 35 to the driven-side scroll member 90 through the pin-ring mechanism 15 , and the driven-side scroll member 90 rotates around the driven-side rotation axis CL 2 .
  • the pin member 15 b of the pin-ring mechanism 15 moves while being in contact with the inner peripheral surface of the circular hole, the both scroll members 70 and 90 perform rotational movement in the same direction at the same angular velocity.
  • the air sucked through the air suction opening of the housing 3 is sucked in from outer peripheral side of each of the scroll members 70 and 90 , and is taken into the compression chambers formed by the scroll members 70 and 90 . Further, compression is separately performed in the compression chambers formed by the first driving-side walls 71 b and the first driven-side walls 91 b and in the compression chambers formed by the second driving-side walls 72 b and the second driven-side walls 92 b . A volume of each of the compression chambers is reduced as each of the compression chambers moves toward the center, which compresses the air.
  • the air compressed by the first driving-side walls 71 b and the first driven-side walls 91 b passes through the discharge through hole 90 h provided in the driven-side end plate 90 a , and is joined with the air compressed by the second driving-side walls 72 b and the second driven-side walls 92 b .
  • the resultant air passes through the discharge port 72 d and is discharged to outside from the discharge opening 3 d of the housing 3 .
  • the discharged compressed air is guided to an unillustrated internal combustion engine, and is used as combustion air.
  • the present embodiment achieves the following action effects.
  • the positioning of the phase around the driving-side rotation axis CL 1 is performed by using the positioning pins 40 at the two positions on the driving-side scroll member 70 . Further, the centroid is fixed around the driving-side rotation axis CL 1 by providing the dummy pin 41 at the equal angular intervals around the driving-side rotation axis CL 1 with the positioning pins 40 .
  • the positioning of the phase around the driven-side rotation axis CL 2 is performed by using the positioning pins 42 at the two positions on the driven-side scroll member 90 . Further, the centroid is fixed around the driven-side rotation axis CL 2 by providing the dummy pin 43 at the equal angular intervals around the driven-side rotation axis CL 2 with the positioning pins 42 .
  • a second embodiment is different from the first embodiment in that no positioning pin is provided in the second embodiment, and the other configurations of the second embodiment are similar to the configurations of the first embodiment. Therefore, only difference is described.
  • an assembly reference hole 44 a is provided at a side of each of the three wall fixing bolts 31 .
  • the three assembly reference holes 44 a are provided at equal angular intervals around the driving-side rotation axis CL 1 .
  • the assembly reference holes 44 a are holes into which respective assembly pins are inserted when the first driving-side scroll portion 71 and the second driving-side scroll portion 72 are assembled. Since the positioning around the driving-side rotation axis CL 1 is performed by the two assembly pins, one of the three assembly reference holes 44 a becomes a dummy hole not used in assembly. Note that the three assembly reference holes 44 a have the same shape.
  • the assembly pins are first inserted into the two assembly reference holes 44 a , and the both scroll portions 71 and 72 are combined and positioned. The both scroll portions 71 and 72 are then fixed by the wall fixing bolts 31 . Thereafter, the assembly pins are removed to complete assembly of the both scroll portions 71 and 72 .
  • an assembly reference hole 45 a is provided at a side of each of the three first support fixing bolts 34 .
  • the three assembly reference holes 45 a are provided at equal angular intervals around the driven-side rotation axis CL 2 .
  • the assembly reference holes 45 a are holes into which the respective assembly pins are inserted when the first support member 33 and the driven-side scroll member 90 are assembled. Since the positioning around the driven-side rotation axis CL 2 is performed by the two assembly pins, one of the three assembly reference holes 45 a becomes a dummy hole not used in assembly. Note that the three assembly reference holes 45 a have the same shape.
  • the second support member 35 also has a similar configuration.
  • the assembly pins are first inserted into the two assembly reference holes 45 a , and the driven-side scroll member 90 and the first support member 33 are combined and positioned.
  • the driven-side scroll member 90 and the first support member 33 are then fixed by the first support fixing bolts 34 . Thereafter, the assembly pins are removed to complete assembly of the driven-side scroll member 90 and the first support member 33 .
  • the driven-side scroll member 90 and the second support member 35 are assembled in a similar manner.
  • the present embodiment achieves the following action effects.
  • the positioning of the phases around the rotation axes CL 1 and CL 2 is performed in assembly by respectively using the two assembly reference holes 44 a and the two assembly reference holes 45 a . Further, the centroids around the rotation axes CL 1 and CL 2 can be fixed by providing the dummy holes (holes same as assembly reference holes 44 a and 45 a ) at equal angular intervals around the rotation axes CL 1 and CL 2 with the assembly reference holes 44 a and 45 a , respectively. This makes it possible to achieve low noise and low vibration.
  • a third embodiment is different from the first embodiment in configuration of each of the positioning pins, and the other configurations of the third embodiment are similar to the configurations of the first embodiment. Therefore, only difference is described.
  • the positioning pin 40 is provided at a side of each of two of the three wall fixing bolts 31 , as with the first embodiment. No positioning pin 40 is provided at a side of one remaining wall fixing bolt 31 and no pin hole is provided.
  • the positioning pins 40 are made of the material same as the material of the driving-side scroll member 70 . In other words, when the driving-side scroll member 70 is made of an aluminum alloy, the positioning pins 40 are also made of the aluminum alloy.
  • the positioning pin 42 is provided at a side of each of two of the three first support fixing bolts 34 , as with the first embodiment. No positioning pin 42 is provided at a side of one remaining first support fixing bolt 34 , and no pin hole is provided.
  • the positioning pins 42 are made of the material same as the material of the driven-side scroll member 90 . In other words, when the driven-side scroll member 90 is made of an aluminum alloy, the positioning pins 42 are also made of the aluminum alloy.
  • the present embodiment achieves the following action effects.
  • the positioning of the phases around the rotation axes CL 1 and CL 2 are performed by respectively using the two positioning pins 40 and the two positioning pins 42 .
  • the positioning pins 40 and 42 are respectively made of the materials same as the materials of the scroll members 70 and 90 , which make it possible to fix the centroids around of the rotation axes CL and CL 2 . As a result, it is possible to achieve low noise and low vibration.
  • a fourth embodiment is different from the first embodiment in that the positioning is performed at the front end of each of the walls 71 b , 72 b , 91 b , and 92 b in the first embodiment whereas the positioning is performed with the end plates in the fourth embodiment.
  • the other configurations of the fourth embodiment are similar to the configurations of the first embodiment. Therefore, only difference is described.
  • two assembly reference holes 46 a are provided with the driving-side rotation axis CL 1 in between, on a surface opposite to the surface provided with the walls 71 b , of the end plate 71 a of the first driven-side scroll portion 71 .
  • the bolt holes 31 a are provided at three positions on the first driven-side scroll portion 71 ; however, the positioning pin hole 40 a and the dummy pin hole 41 a are not provided at the sides of the respective bolt holes 31 a , unlike the first embodiment.
  • a reference numeral 15 b 1 in the figure indicates a pin hole into which the pin member 15 b illustrated in FIG. 1 is inserted.
  • the two assembly reference holes 46 a are provided with the driving-side rotation axis CL 1 in between, on a surface opposite to the surface provided with the walls 72 b , of the end plate 72 a of the second driven-side scroll portion 72 .
  • the bolt holes 31 a are provided at three positions on the second driven-side scroll portion 72 ; however, the positioning pin hole 40 a and the dummy pin hole 41 a are not provided at the sides of the respective bolt holes 31 a , unlike the first embodiment.
  • the assembly pins are first inserted into the two assembly reference holes 46 a , and the both scroll portions 71 and 72 are combined and positioned. The both scroll portions 71 and 72 are then fixed by the wall fixing bolts 31 . Thereafter, the assembly pins are removed to complete assembly of the both scroll portions 71 and 72 .
  • the present embodiment achieves the following action effects.
  • the assembly reference holes 46 a are provided at the two positions on the surface of each of the end plates 71 a and 72 a opposite to the surface provided with the walls 71 b and 72 b . Therefore, the positioning of the phase around the rotation axis CL 1 is performed in assembly. Further, since the assembly reference holes 46 a are provided symmetrically with respect to the rotation axis CL 1 , it is possible to fix the centroid around the rotation axis CL 1 . This makes it possible to achieve low noise and low vibration.
  • the assembly reference holes 46 a are provided on each of the end plates 71 a and 72 a , which eliminates necessity of providing the assembly reference holes on the walls 71 b and 72 b . Accordingly, it is possible to optionally determine the positions of the assembly reference holes irrespective of the shapes of the walls 71 b and 72 b.
  • the present invention is not limited thereto.
  • the present invention is applicable to a scroll compressor that includes three or more walls, preferably, an odd number of walls on which the positioning pins cannot be provided symmetrically with respect to the rotation axis.
  • the co-rotating scroll compressor is used as the supercharger; however, the present invention is not limited thereto.
  • the co-rotating scroll compressor is widely used to compress fluid, and for example, can be used as a refrigerant compressor used in air conditioner.
  • the scroll compressor 1 according to the present invention is applicable to an air brake device using air force, as a brake system for a railway vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A co-rotating scroll compressor includes a driving-side scroll member (70) that is rotationally driven by a driving unit and includes a spiral driving-side wall (71 b) disposed on a driving-side end plate (71 a), and a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall (71 b), the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall (71 b) to form a compression chamber. Positioning pins (40) that position a phase of the driving-side scroll member (70) around a driving-side rotation axis (CL1) are provided at two positions around the driving-side rotation axis (CL1) at a front end of the driving-side wall (71 b) in an axis direction, and dummy pins (41) that are provided at equal angular intervals around the driving-side rotation axis (CL1) with the positioning pins (40) are provided.

Description

    TECHNICAL FIELD
  • The present invention relates to a co-rotating scroll compressor and a method of assembling the co-rotating scroll compressor.
  • BACKGROUND ART
  • A co-rotating scroll compressor has been well-known (refer to PTL 1). The co-rotating scroll compressor includes a driving-side scroll and a driven-side scroll that rotates in synchronization with the driving-side scroll, and causes a drive shaft causing the driving-side scroll to rotate and a driven shaft supporting rotation of the driven-side scroll to rotate in the same direction at the same angular velocity while the driven-shaft is offset by a revolving radius from the drive shaft.
  • CITATION LIST Patent Literature
  • [PTL 1] the Publication of Japanese Patent No. 5443132
  • SUMMARY OF INVENTION Technical Problem
  • The co-rotating scroll compressor adopts a configuration in which each of the driving-side scroll and the driven-side scroll is divided in an axis direction in some cases. Further, the co-rotating scroll compressor adopts a configuration in which a front end of a spiral wall of each of the driving-side scroll and the driven-side scroll is supported by a support member in some cases. In a case where such a configuration is adopted, it is necessary to accurately position phases of the driving-side scroll and the driven-side scroll around a rotation axis in order to ensure engagement of the spiral walls. Such a configuration to perform positioning of the phase is provided at each of at least two positions around the rotation axis. A centroid may be deviated from the rotation axis depending on an installing way of the positioning configuration, which causes noise and vibration.
  • The present invention is made in consideration of such circumstances, and an object of the present invention is to provide a co-rotating scroll compressor that can suppress generation of noise and vibration caused by centroid deviation of the scroll member as much as possible, and to provide a method of assembling the co-rotating scroll compressor.
  • Solution to Problem
  • To solve the above-described issues, a co-rotating scroll compressor a method of assembling the co-rotating scroll compressor according to the present invention adopts the following solutions.
  • A co-rotating scroll compressor according to an aspect of the present invention includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity. Positioning pins that position a phase of the driving-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driving-side wall in an axis direction, and dummy pins that are provided at equal angular intervals around the rotation axis with the positioning pins are provided at one or more positions, and/or positioning pins that position a phase of the driven-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driven-side wall in an axis direction, and dummy pins that are provided at equal angular intervals around the rotation axis with the positioning pins are provided at one or more positions.
  • The driving-side wall disposed on the end plate of the driving-side scroll member and the corresponding driven-side wall of the driven-side scroll member engage with each other. The driving-side scroll member is rotationally driven by the driving unit, and the driving force transmitted to the driving-side scroll member is transmitted to the driven-side scroll member through the synchronous driving mechanism. As a result, the driven-side scroll member rotates as well as performs rotational movement in the same direction at the same angular velocity with respect to the driving-side scroll member. As described above, the co-rotating scroll compressor in which both of the driving-side scroll member and the driven-side scroll member rotate is provided.
  • The positioning of the phase around the rotation axis is performed by using the positioning pins at two positions. Further, the dummy pins are provided at equal angular intervals around the rotation axis with the positioning pins, which makes it possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • A co-rotating scroll compressor according to another aspect of the present invention includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity. Assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driving-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driving-side wall in an axis direction, and dummy holes that are provided at equal angular intervals around the rotation axis with the assembly reference holes are provided at one or more positions, and/or assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driven-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driven-side wall in an axis direction, and dummy holes that are provided at equal angular intervals around the rotation axis with the assembly reference holes are provided at one or more positions.
  • The positioning of the phase around the rotation axis is performed by using the two assembly reference holes in assembly. Further, the dummy holes are provided at equal angular intervals around the rotation axis with the assembly reference holes, which makes it possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • A co-rotating scroll compressor according to still another aspect of the present invention includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity. Positioning pins that position a phase of the driving-side scroll member around a rotation axis and are made of a material same as a material of the driving-side wall are provided at two positions around the rotation axis at a front end of the driving-side wall in an axis direction, and/or positioning pins that position a phase of the driven-side scroll member around a rotation axis and are made of a material same as a material of the driven-side wall are provided at two positions around the rotation axis at a front end of the driven-side wall in an axis direction.
  • The positioning of the phase around the rotation axis is performed by using the two positioning pins. Since the positioning pins are made of the material same as the material of the wall, it is possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • A co-rotating scroll compressor according to still another aspect of the present invention includes: a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate; a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity. Assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driving-side scroll member around a rotation axis are provided at two positions symmetric with respect to the rotation axis on a surface opposite to a surface provided with the driving-side wall of the driving-side end plate, and/or assembly reference holes into which respective assembly pins are inserted in assembly to position a phase of the driven-side scroll member around a rotation axis are provided at two positions symmetric with respect to the rotation axis on a surface opposite to a surface provided with the driven-side wall of the driven-side end plate.
  • Since the two assembly reference holes are provided on the surface of the end plate opposite to the surface provided with the wall, the positioning of the phase around the rotation axis is performed in assembly. Further, since the assembly reference holes are provided symmetrically with respect to the rotation axis, it is possible to fix the centroid around the rotation axis. This makes it possible to achieve low noise and low vibration.
  • Further, the assembly reference holes are provided on the end plate, which eliminates necessity of providing the assembly reference holes on the wall. Accordingly, it is possible to optionally determine the positions of the assembly reference holes irrespective of the shape of the wall.
  • Further, in any of the co-rotating scroll compressors according to the respective aspects of the present invention, the driving-side scroll member includes a first driving-side scroll portion and a second driving-side scroll portion. The first driving-side scroll portion includes a first driving-side end plate and a first driving-side wall and is driven by the driving unit. The second driving-side scroll portion includes a second driving-side end plate and a second driving-side wall. Positioning of the phase of the driving-side scroll member around the rotation axis is performed between a front end of the first driving-side wall in the axis direction and a front end of the second driving-side wall in the axis direction.
  • The positioning pins and the dummy pins are provided at the front end of the driving-side wall. Further, the assembly reference holes and the dummy holes are provided at the front end of the driving-side wall.
  • Further, in the co-rotating scroll compressor according to the aspect of the present invention, the driven-side scroll member includes a first driven-side wall and a second driven-side wall. The first driven-side wall is provided on one side surface of the driven-side end plate and engages with the first driving-side wall, and the second driven-side wall is provided on another side surface of the driven-side end plate and engages with the second driving-side wall. The co-rotating scroll compressor includes a first support member and a second support member. The first support member is fixed to a front end side of the first driven-side wall in the axis direction with the first driving-side end plate in between and rotates together with the first driven-side wall. The second support member is fixed to a front end side of the second driven-side wall in the axis direction with the second driving-side end plate in between and rotates together with the second driven-side wall. The positioning of the phase of the driven-side scroll member around the rotation axis is performed between the first driven-side wall and the first support member and between the second driven-side wall and the second support member.
  • The positioning pins and the dummy pins are provided between the driven-side wall and the support member. Further, the assembly reference holes and the dummy holes are provided between the driven-side wall and the support member.
  • A method of assembling a co-rotating scroll compressor according to an aspect of the present invention is a method of assembling any of the above-described co-rotating scroll compressors, and the method includes: performing positioning by inserting the assembly pins into the respective assembly reference holes; assembling the driving-side scroll member and/or the driven-side scroll member in a positioned state; and removing the assembly pins.
  • The assembly pins are removed after the assembly pins are inserted into the respective assembly reference holes to perform positioning in assembly. Accordingly, the pins are not inserted into the assembly reference holes and the dummy holes in the assembled co-rotating scroll compressor.
  • Advantageous Effects of Invention
  • The centroid of each of the scroll members is located on the rotation axis, which makes it possible to suppress generation of noise and vibration as much as possible.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a vertical cross-sectional view illustrating a co-rotating scroll compressor according to one embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a driving-side scroll portion according to a first embodiment.
  • FIG. 3 is a side view as viewed from an arrow III-III in FIG. 1.
  • FIG. 4 is a plan view illustrating a driving-side scroll portion according to a second embodiment.
  • FIG. 5 is a side view corresponding to FIG. 3, according to the second embodiment.
  • FIG. 6 is a plan view illustrating a driving-side scroll portion according to a third embodiment.
  • FIG. 7 is a side view corresponding to FIG. 3, according to the third embodiment.
  • FIG. 8A is a back view illustrating a first driving-side scroll portion according to a fourth embodiment.
  • FIG. 8B is a back view illustrating a second driving-side scroll portion according to a fourth embodiment.
  • DESCRIPTION OF EMBODIMENTS
  • Some embodiments of the present invention are described below.
  • First Embodiment
  • FIG. 1 illustrates a co-rotating scroll compressor 1 according to a first embodiment. The co-rotating scroll compressor 1 can be used as, for example, a supercharger that compresses combustion air (fluid) to be supplied to an internal combustion engine such as a vehicle engine.
  • The co-rotating scroll compressor 1 includes a housing 3, a motor (driving unit) 5 accommodated on one end side in the housing 3, and a driving-side scroll member 70 and a driven-side scroll member 90 that are accommodated on the other end side in the housing 3.
  • The housing 3 has a substantially cylindrical shape, and includes a motor accommodation portion 3 a that accommodates the motor 5, and a scroll accommodation portion 3 b that accommodates the scroll members 70 and 90.
  • A cooling fin 3 c to cool the motor 5 is provided on an outer periphery of the motor accommodation portion 3 a. A discharge opening 3 d from which compressed air (working fluid) is discharged is provided at an end part of the scroll accommodation portion 3 b. Note that, although not illustrated in FIG. 1, the housing 3 includes an air suction opening from which air (working fluid) is sucked in.
  • The motor 5 is driven by being supplied with power from an unillustrated power supply source. Rotation of the motor 5 is controlled by an instruction from an unillustrated control unit. A stator 5 a of the motor 5 is fixed to an inner periphery of the housing 3. A rotor 5 b of the motor 5 rotates around a driving-side rotation axis CL1. A driving shaft 6 that extends on the driving-side rotation axis CL1 is connected to the rotor 5 b. The driving shaft 6 is connected to a first driving-side shaft portion 7 c of the driving-side scroll member 70.
  • The driving-side scroll member 70 includes the first driving-side scroll portion 71 on the motor 5 side, and the second driving-side scroll portion 72 on the discharge opening 3 d side.
  • The first driving-side scroll portion 71 includes the first driving-side end plate 71 a and the first driving-side walls 71 b.
  • The first driving-side end plate 71 a is connected to the first driving-side shaft portion 7 c connected to the driving shaft 6, and extends in a direction orthogonal to the driving-side rotation axis CL1. The first driving-side shaft portion 7 c is provided so as to be rotatable with respect to the housing 3 through the first driving-side bearing 11 that is a ball bearing.
  • The first driving-side end plate 71 a has a substantially disc shape in a planar view. The plurality of first driving-side walls 71 b each formed in a spiral shape are provided on the first driving-side end plate 71 a. The first driving-side walls 71 b are disposed at equal intervals around the driving-side rotation axis CL1.
  • The second driving-side scroll portion 72 includes the second driving-side end plate 72 a and the second driving-side walls 72 b. The plurality of second driving-side walls 72 b each formed in a spiral shape are provided similarly to the above-described first driving-side walls 71 b.
  • The cylindrical second driving-side shaft portion 72 c that extends in the driving-side rotation axis CL1 is connected to the second driving-side end plate 72 a. The second driving-side shaft portion 72 c is provided so as to be rotatable with respect to the housing 3 through the second driving-side bearing 14 that is a ball bearing. The second driving-side end plate 72 a includes the discharge port 72 d extending along the driving-side rotation axis CL1.
  • Two seal members 16 are provided on a front end side (left side in FIG. 1) of the second driving-side shaft portion 72 c relative to the second driving-side bearing 14, between the second driving-side shaft portion 72 c and the housing 3. The two seal members 16 and the second driving-side bearing 14 are disposed to include a predetermined interval in the driving side rotation axis CL1. For example, a lubricant that is a grease as a semi-solid lubricant is sealed between the two seal members 16. Note that only one seal member 16 may be provided. In this case, the lubricant is sealed between the seal member 16 and the second driving-side bearing 14.
  • The first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed while the front ends (free ends) of the walls 71 b and 72 b corresponding to each other face each other. The first driving-side scroll portion 71 and the second driving-side scroll portion 72 are fixed by the wall fixing bolts (wall fixing parts) 31 that are fastened to the flange portions 73 provided at a plurality of positions in the circumferential direction. The flange portions 73 are provided so as to protrude outward in the radial direction.
  • FIG. 2 is a plan view illustrating the first driving-side scroll portion 71. Note that the second driving-side scroll portion 71 also has a similar shape. As illustrated in the figure, a bolt hole 31 a into which a wall fixing bolt 31 is inserted is provided at a winding end of each of the walls 71 b. Since the three walls 71 b are provided in the present embodiment, the wall fixing bolt 31 is provided at each of three positions.
  • A positioning pin hole 40 a into which a positioning pin 40 is fitted is provided at a side of each of two of the three bolt holes 31 a. A dummy pin hole 41 a into which a dummy pin 41 is inserted is provided at a side of one remaining bolt hole 31 a. The dummy pin 41 is made of the material same as the material of the positioning pins 40, and the dummy pin 41 is loosely fitted into the dummy pin hole 41 a so as not to perform positioning.
  • The two positioning pins 40 and the one dummy pin 41 are provided at equal intervals around the driving-side rotation axis CL1.
  • As illustrated in FIG. 1, the driven-side scroll member 90 includes the driven-side end plate 90 a that is located at a substantially center in the axis direction (horizontal direction in figure). The discharge through hole (through hole) 90 h is provided at a center of the driven-side end plate 90 a, and causes the compressed air to flow toward the discharge port 72 d.
  • The first driven-side walls 91 b are provided on one side surface of the driven-side end plate 90 a, and the second driven-side walls 92 b are provided on the other side surface of the driven-side end plate 90 a. The first driven-side walls 91 b provided on the motor 5 side from the driven-side end plate 90 a engage with the first driving-side walls 71 b of the first driving-side scroll portion 71. The second driven-side walls 92 b provided on the discharge opening 3 d side from the driven-side end plate 90 a engage with the second driving-side walls 72 b of the second driving-side scroll portion 72.
  • A first support member 33 and a second support member 35 are provided at respective ends of the driven-side scroll member 90 in the axis direction (horizontal direction in figure). The first support member 33 is disposed on the motor 5 side, and the second support member 35 is disposed on the discharge opening 3 d side.
  • The first support member 33 is fixed to the front ends (free ends) of the respective first driven-side walls 91 b on the outer peripheral side by first support fixing bolts 34, and the second support member 35 is fixed to the front ends (free ends) of the respective second driven-side walls 92 b on the outer peripheral side by second support fixing bolts 36.
  • The shaft portion 33 a is provided on the center axis side of the first support member 33, and the shaft portion 33 a is fixed to the housing 3 through the first support member bearing 37. The shaft portion 35 a is provided on the center axis side of the second support member 35, and the shaft portion 35 a is fixed to the housing 3 through the second support member bearing 38. As a result, the driven-side scroll member 90 rotates around the driven-side rotation axis CL2 through the support members 33 and 35.
  • The pin-ring mechanism (synchronous driving mechanism) 15 is provided between the first support member 33 and the first driving-side end plate 71 a. More specifically, a rolling bearing (ring) is provided on the first driving-side end plate 71 a, and the pin member 15 b is provided on the first support member 33. The pin-ring mechanism 15 transmits the driving force from the driving-side scroll member 70 to the driven-side scroll member 90, and causes the scroll members 70 and 90 to perform rotational movement in the same direction at the same angular velocity.
  • FIG. 3 is a side view as viewed from an arrow III-III in FIG. 1. The first support fixing bolts 34 are provided at three positions on the first support member 33. A positioning pin hole 42 a into which a positioning pin 42 is fitted is provided at a side of each of two of the three first support fixing bolts 34. A dummy pin hole 43 a into which a dummy pin 43 is inserted is provided at a side of one remaining first support fixing bolt 34. The dummy pin 43 is made of the material same as the material of the positioning pins 42, and the dummy pin 43 is loosely fitted into the dummy pin hole 43 a so as not to perform positioning.
  • The two positioning pins 42 and the one dummy pin 43 are provided at equal intervals around the driven-side rotation axis CL2.
  • Note that the second support member 35 also has a similar configuration.
  • The co-rotating scroll compressor 1 including the above-described configuration operates in the following manner.
  • When the driving shaft 6 rotates around the driving-side rotation axis CL1 by the motor 5, the first driving-side shaft portion 7 c connected to the driving shaft 6 also rotates, and the driving-side scroll member 70 accordingly rotates around the driving-side rotation axis CL1. When the driving-side scroll member 70 rotates, the driving force is transmitted from the support members 33 and 35 to the driven-side scroll member 90 through the pin-ring mechanism 15, and the driven-side scroll member 90 rotates around the driven-side rotation axis CL2. At this time, when the pin member 15 b of the pin-ring mechanism 15 moves while being in contact with the inner peripheral surface of the circular hole, the both scroll members 70 and 90 perform rotational movement in the same direction at the same angular velocity.
  • When the scroll members 70 and 90 perform rotational movement, the air sucked through the air suction opening of the housing 3 is sucked in from outer peripheral side of each of the scroll members 70 and 90, and is taken into the compression chambers formed by the scroll members 70 and 90. Further, compression is separately performed in the compression chambers formed by the first driving-side walls 71 b and the first driven-side walls 91 b and in the compression chambers formed by the second driving-side walls 72 b and the second driven-side walls 92 b. A volume of each of the compression chambers is reduced as each of the compression chambers moves toward the center, which compresses the air. The air compressed by the first driving-side walls 71 b and the first driven-side walls 91 b passes through the discharge through hole 90 h provided in the driven-side end plate 90 a, and is joined with the air compressed by the second driving-side walls 72 b and the second driven-side walls 92 b. The resultant air passes through the discharge port 72 d and is discharged to outside from the discharge opening 3 d of the housing 3. The discharged compressed air is guided to an unillustrated internal combustion engine, and is used as combustion air.
  • The present embodiment achieves the following action effects.
  • As illustrated in FIG. 2, the positioning of the phase around the driving-side rotation axis CL1 is performed by using the positioning pins 40 at the two positions on the driving-side scroll member 70. Further, the centroid is fixed around the driving-side rotation axis CL1 by providing the dummy pin 41 at the equal angular intervals around the driving-side rotation axis CL1 with the positioning pins 40.
  • As illustrated in FIG. 3, the positioning of the phase around the driven-side rotation axis CL2 is performed by using the positioning pins 42 at the two positions on the driven-side scroll member 90. Further, the centroid is fixed around the driven-side rotation axis CL2 by providing the dummy pin 43 at the equal angular intervals around the driven-side rotation axis CL2 with the positioning pins 42.
  • As a result, it is possible to achieve low noise and low vibration.
  • Second Embodiment
  • A second embodiment is different from the first embodiment in that no positioning pin is provided in the second embodiment, and the other configurations of the second embodiment are similar to the configurations of the first embodiment. Therefore, only difference is described.
  • As illustrated in FIG. 4, an assembly reference hole 44 a is provided at a side of each of the three wall fixing bolts 31. The three assembly reference holes 44 a are provided at equal angular intervals around the driving-side rotation axis CL1. The assembly reference holes 44 a are holes into which respective assembly pins are inserted when the first driving-side scroll portion 71 and the second driving-side scroll portion 72 are assembled. Since the positioning around the driving-side rotation axis CL1 is performed by the two assembly pins, one of the three assembly reference holes 44 a becomes a dummy hole not used in assembly. Note that the three assembly reference holes 44 a have the same shape.
  • To assemble the first driving-side scroll portion 71 and the second driving-side scroll portion 72, the assembly pins are first inserted into the two assembly reference holes 44 a, and the both scroll portions 71 and 72 are combined and positioned. The both scroll portions 71 and 72 are then fixed by the wall fixing bolts 31. Thereafter, the assembly pins are removed to complete assembly of the both scroll portions 71 and 72.
  • As illustrated in FIG. 5, an assembly reference hole 45 a is provided at a side of each of the three first support fixing bolts 34. The three assembly reference holes 45 a are provided at equal angular intervals around the driven-side rotation axis CL2. The assembly reference holes 45 a are holes into which the respective assembly pins are inserted when the first support member 33 and the driven-side scroll member 90 are assembled. Since the positioning around the driven-side rotation axis CL2 is performed by the two assembly pins, one of the three assembly reference holes 45 a becomes a dummy hole not used in assembly. Note that the three assembly reference holes 45 a have the same shape.
  • Note that the second support member 35 also has a similar configuration.
  • To assemble the driven-side scroll member 90 and the first support member 33, the assembly pins are first inserted into the two assembly reference holes 45 a, and the driven-side scroll member 90 and the first support member 33 are combined and positioned. The driven-side scroll member 90 and the first support member 33 are then fixed by the first support fixing bolts 34. Thereafter, the assembly pins are removed to complete assembly of the driven-side scroll member 90 and the first support member 33. Note that the driven-side scroll member 90 and the second support member 35 are assembled in a similar manner.
  • The present embodiment achieves the following action effects.
  • The positioning of the phases around the rotation axes CL1 and CL2 is performed in assembly by respectively using the two assembly reference holes 44 a and the two assembly reference holes 45 a. Further, the centroids around the rotation axes CL1 and CL2 can be fixed by providing the dummy holes (holes same as assembly reference holes 44 a and 45 a) at equal angular intervals around the rotation axes CL1 and CL2 with the assembly reference holes 44 a and 45 a, respectively. This makes it possible to achieve low noise and low vibration.
  • Third Embodiment
  • A third embodiment is different from the first embodiment in configuration of each of the positioning pins, and the other configurations of the third embodiment are similar to the configurations of the first embodiment. Therefore, only difference is described.
  • As illustrated in FIG. 6, the positioning pin 40 is provided at a side of each of two of the three wall fixing bolts 31, as with the first embodiment. No positioning pin 40 is provided at a side of one remaining wall fixing bolt 31 and no pin hole is provided. The positioning pins 40 are made of the material same as the material of the driving-side scroll member 70. In other words, when the driving-side scroll member 70 is made of an aluminum alloy, the positioning pins 40 are also made of the aluminum alloy.
  • As illustrated in FIG. 7, the positioning pin 42 is provided at a side of each of two of the three first support fixing bolts 34, as with the first embodiment. No positioning pin 42 is provided at a side of one remaining first support fixing bolt 34, and no pin hole is provided. The positioning pins 42 are made of the material same as the material of the driven-side scroll member 90. In other words, when the driven-side scroll member 90 is made of an aluminum alloy, the positioning pins 42 are also made of the aluminum alloy.
  • The present embodiment achieves the following action effects.
  • The positioning of the phases around the rotation axes CL1 and CL2 are performed by respectively using the two positioning pins 40 and the two positioning pins 42. The positioning pins 40 and 42 are respectively made of the materials same as the materials of the scroll members 70 and 90, which make it possible to fix the centroids around of the rotation axes CL and CL2. As a result, it is possible to achieve low noise and low vibration.
  • Fourth Embodiment
  • A fourth embodiment is different from the first embodiment in that the positioning is performed at the front end of each of the walls 71 b, 72 b, 91 b, and 92 b in the first embodiment whereas the positioning is performed with the end plates in the fourth embodiment. The other configurations of the fourth embodiment are similar to the configurations of the first embodiment. Therefore, only difference is described.
  • As illustrated in FIG. 8A, two assembly reference holes 46 a are provided with the driving-side rotation axis CL1 in between, on a surface opposite to the surface provided with the walls 71 b, of the end plate 71 a of the first driven-side scroll portion 71. The bolt holes 31 a are provided at three positions on the first driven-side scroll portion 71; however, the positioning pin hole 40 a and the dummy pin hole 41 a are not provided at the sides of the respective bolt holes 31 a, unlike the first embodiment. Note that a reference numeral 15 b 1 in the figure indicates a pin hole into which the pin member 15 b illustrated in FIG. 1 is inserted.
  • As illustrated in FIG. 8B, the two assembly reference holes 46 a are provided with the driving-side rotation axis CL1 in between, on a surface opposite to the surface provided with the walls 72 b, of the end plate 72 a of the second driven-side scroll portion 72. The bolt holes 31 a are provided at three positions on the second driven-side scroll portion 72; however, the positioning pin hole 40 a and the dummy pin hole 41 a are not provided at the sides of the respective bolt holes 31 a, unlike the first embodiment.
  • To assemble the first driving-side scroll portion 71 and the second driving-side scroll portion 72, the assembly pins are first inserted into the two assembly reference holes 46 a, and the both scroll portions 71 and 72 are combined and positioned. The both scroll portions 71 and 72 are then fixed by the wall fixing bolts 31. Thereafter, the assembly pins are removed to complete assembly of the both scroll portions 71 and 72.
  • The present embodiment achieves the following action effects.
  • The assembly reference holes 46 a are provided at the two positions on the surface of each of the end plates 71 a and 72 a opposite to the surface provided with the walls 71 b and 72 b. Therefore, the positioning of the phase around the rotation axis CL1 is performed in assembly. Further, since the assembly reference holes 46 a are provided symmetrically with respect to the rotation axis CL1, it is possible to fix the centroid around the rotation axis CL1. This makes it possible to achieve low noise and low vibration.
  • Further, the assembly reference holes 46 a are provided on each of the end plates 71 a and 72 a, which eliminates necessity of providing the assembly reference holes on the walls 71 b and 72 b. Accordingly, it is possible to optionally determine the positions of the assembly reference holes irrespective of the shapes of the walls 71 b and 72 b.
  • Although the case where the number of each of walls 71 b, 72 b, 91 b, and 92 b is three has been described as an example in the above-described embodiments, the present invention is not limited thereto. The present invention is applicable to a scroll compressor that includes three or more walls, preferably, an odd number of walls on which the positioning pins cannot be provided symmetrically with respect to the rotation axis.
  • Note that, in the above-described embodiment, the co-rotating scroll compressor is used as the supercharger; however, the present invention is not limited thereto. The co-rotating scroll compressor is widely used to compress fluid, and for example, can be used as a refrigerant compressor used in air conditioner. In addition, the scroll compressor 1 according to the present invention is applicable to an air brake device using air force, as a brake system for a railway vehicle.
  • REFERENCE SIGNS LIST
    • 1 Co-rotating scroll compressor
    • 3 Housing
    • 3 a Motor accommodation portion
    • 3 b Scroll accommodation portion (housing)
    • 3 c Cooling fin
    • 3 d Discharge opening
    • 5 Motor (driving unit)
    • 5 a Stator
    • 5 b Rotor
    • 6 Driving shaft
    • 7 c First driving-side shaft portion
    • 11 First driving-side bearing
    • 14 Second driving-side bearing
    • 15 Pin-ring mechanism (synchronous driving mechanism)
    • 15 b Pin member
    • 16 Seal member
    • 31 Wall fixing bolt (wall fixing part)
    • 31 a Bolt hole
    • 33 First support member
    • 33 a Shaft portion
    • 34 First support fixing bolt
    • 35 Second support member
    • 35 a Shaft portion
    • 36 Second support fixing bolt
    • 37 First support member bearing
    • 38 Second support member bearing
    • 40 Positioning pin
    • 40 a Positioning pin hole
    • 41 Dummy pin
    • 41 a Dummy pin hole
    • 42 Positioning pin
    • 42 a Positioning pin hole
    • 43 Dummy pin
    • 43 a Dummy pin hole
    • 44 a Assembly reference hole
    • 45 a Assembly reference hole
    • 46 a Assembly reference hole
    • 70 Driving-side scroll member
    • 71 First driving-side scroll portion
    • 71 a First driving-side end plate
    • 71 b First driving-side wall
    • 72 Second driving-side scroll portion
    • 72 a Second driving-side end plate
    • 72 b Second driving-side wall
    • 72 c Second driving-side shaft portion
    • 72 d Discharge port
    • 73 Flange portion
    • 90 Driven-side scroll member
    • 90 a Driven-side end plate
    • 90 h Discharge through hole (through hole)
    • 91 b First driven-side wall
    • 92 b Second driven-side wall
    • CL1 Driving-side rotation axis
    • CL2 Driven-side rotation axis

Claims (4)

1-7. (canceled)
8. A co-rotating scroll compressor, comprising:
a driving-side scroll member that is rotationally driven by a driving unit and includes a spiral driving-side wall disposed on a driving-side end plate;
a driven-side scroll member that includes a driven-side wall corresponding to the driving-side wall, the driven-side wall being disposed on a driven-side end plate and engaging with the driving-side wall to form a compression chamber; and
a synchronous driving mechanism that transmits driving force from the driving-side scroll member to the driven-side scroll member to cause the driving-side scroll member and the driven-side scroll member to perform rotational movement in a same direction at a same angular velocity, wherein
positioning pins that position a phase of the driving-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driving-side wall in an axis direction, and dummy pins that are provided at equal angular intervals around the rotation axis with the positioning pins are provided at one or more positions, and/or
positioning pins that position a phase of the driven-side scroll member around a rotation axis are provided at two positions around the rotation axis at a front end of the driven-side wall in an axis direction, and dummy pins that are provided at equal angular intervals around the rotation axis with the positioning pins are provided at one or more positions.
9. The co-rotating scroll compressor according to claim 8, wherein
the driving-side scroll member includes a first driving-side scroll portion and a second driving-side scroll portion, the first driving-side scroll portion including a first driving-side end plate and a first driving-side wall and being driven by the driving unit, and the second driving-side scroll portion including a second driving-side end plate and a second driving-side wall, and
positioning of the phase of the driving-side scroll member around the rotation axis is performed between a front end of the first driving-side wall in the axis direction and a front end of the second driving-side wall in the axis direction.
10. The co-rotating scroll compressor according to claim 9, wherein
the driven-side scroll member includes a first driven-side wall and a second driven-side wall, the first driven-side wall being provided on one side surface of the driven-side end plate and engaging with the first driving-side wall, and the second driven-side wall being provided on another side surface of the driven-side end plate and engaging with the second driving-side wall,
the co-rotating scroll compressor includes a first support member and a second support member, the first support member being fixed to a front end side of the first driven-side wall in the axis direction with the first driving-side end plate in between and rotating together with the first driven-side wall, and the second support member being fixed to a front end side of the second driven-side wall in the axis direction with the second driving-side end plate in between and rotating together with the second driven-side wall, and
positioning of the phase of the driven-side scroll member around the rotation axis is performed between the first driven-side wall and the first support member and between the second driven-side wall and the second support member.
US16/485,601 2017-02-17 2018-02-07 Co-rotating scroll compressor and method of assembling the same Abandoned US20190376513A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017028083A JP6787814B2 (en) 2017-02-17 2017-02-17 Double rotation scroll type compressor and its assembly method
JP2017-028083 2017-02-17
PCT/JP2018/004225 WO2018150977A1 (en) 2017-02-17 2018-02-07 Two-way-rotating scroll compressor and method for assembling same

Publications (1)

Publication Number Publication Date
US20190376513A1 true US20190376513A1 (en) 2019-12-12

Family

ID=63169309

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/485,601 Abandoned US20190376513A1 (en) 2017-02-17 2018-02-07 Co-rotating scroll compressor and method of assembling the same

Country Status (5)

Country Link
US (1) US20190376513A1 (en)
EP (1) EP3569862A4 (en)
JP (1) JP6787814B2 (en)
CN (1) CN110337543B (en)
WO (1) WO2018150977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023081001A1 (en) * 2021-11-05 2023-05-11 Emerson Climate Technologies, Inc. Co-rotating scroll compressor having synchronization mechanism
US11994128B2 (en) 2021-11-05 2024-05-28 Copeland Lp Co-rotating scroll compressor with Oldham couplings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017240B2 (en) * 2018-10-09 2022-02-08 有限会社スクロール技研 Scroll compressor
US20230147568A1 (en) * 2021-11-05 2023-05-11 Emerson Climate Technologies, Inc. Co-Rotating Compressor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360443A (en) 1976-11-10 1978-05-31 Hitachi Ltd Shaft bearing device
JPH0347492A (en) * 1989-07-12 1991-02-28 Mitsubishi Electric Corp Assembling method for scroll fluid machine
CN2143678Y (en) * 1992-12-19 1993-10-13 西安交通大学 Wortex flow liquid machinery with self-turning-proof mechanism
JP3016113B2 (en) * 1994-06-17 2000-03-06 株式会社アスカジャパン Scroll type fluid machine
US6672846B2 (en) * 2001-04-25 2004-01-06 Copeland Corporation Capacity modulation for plural compressors
TWI221502B (en) * 2002-04-11 2004-10-01 Shimao Ni Scroll type fluid displacement apparatus with fully compliant floating scrolls
JP5252281B2 (en) * 2008-09-19 2013-07-31 有限会社スクロール技研 Scroll fluid machinery
JP5443132B2 (en) * 2009-11-05 2014-03-19 有限会社スクロール技研 Scroll fluid machinery
GB2500003B (en) * 2012-03-06 2014-02-19 Richstone Ltd Scroll fluid machine
JP5931563B2 (en) * 2012-04-25 2016-06-08 アネスト岩田株式会社 Scroll expander
JP5931564B2 (en) * 2012-04-25 2016-06-08 アネスト岩田株式会社 Double-rotating scroll expander and power generation device including the expander
JP6161407B2 (en) * 2013-05-28 2017-07-12 有限会社スクロール技研 Scroll fluid machinery
JP6279926B2 (en) * 2014-02-17 2018-02-14 三菱重工業株式会社 Scroll compressor
JP6345081B2 (en) * 2014-10-31 2018-06-20 アネスト岩田株式会社 Scroll expander

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023081001A1 (en) * 2021-11-05 2023-05-11 Emerson Climate Technologies, Inc. Co-rotating scroll compressor having synchronization mechanism
US11732713B2 (en) 2021-11-05 2023-08-22 Emerson Climate Technologies, Inc. Co-rotating scroll compressor having synchronization mechanism
US11994128B2 (en) 2021-11-05 2024-05-28 Copeland Lp Co-rotating scroll compressor with Oldham couplings

Also Published As

Publication number Publication date
CN110337543A (en) 2019-10-15
EP3569862A4 (en) 2020-06-17
CN110337543B (en) 2021-05-28
WO2018150977A1 (en) 2018-08-23
EP3569862A1 (en) 2019-11-20
JP2018132036A (en) 2018-08-23
JP6787814B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
US20190376513A1 (en) Co-rotating scroll compressor and method of assembling the same
US11041494B2 (en) Co-rotating scroll compressor
EP3093493B1 (en) Electric scroll compressor
US11015599B2 (en) Co-rotating scroll compressor and method for designing the same
EP3489514B1 (en) Bidirectional-rotation-type scroll compressor
US8348650B2 (en) Root pump
EP2410181B1 (en) Vane compressor
US20190178249A1 (en) Co-rotating scroll compressor
EP3567252B1 (en) Two-way-rotating scroll compressor
US20190368492A1 (en) Co-rotating scroll compressor and method of assembling the same
US20200378383A1 (en) Co-rotating scroll compressor
US10995755B2 (en) Co-rotating scroll compressor
US20180328361A1 (en) Scroll fluid machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRATA, HIROFUMI;ITO, TAKAHIDE;TAKEUCHI, MAKOTO;AND OTHERS;REEL/FRAME:050039/0403

Effective date: 20190807

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION