US20190376390A1 - Method for manufacturing a turbine wheel - Google Patents

Method for manufacturing a turbine wheel Download PDF

Info

Publication number
US20190376390A1
US20190376390A1 US16/528,736 US201916528736A US2019376390A1 US 20190376390 A1 US20190376390 A1 US 20190376390A1 US 201916528736 A US201916528736 A US 201916528736A US 2019376390 A1 US2019376390 A1 US 2019376390A1
Authority
US
United States
Prior art keywords
turbine wheel
mpa
turbine
plastically deformed
isostatic pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/528,736
Inventor
Katie Rhodes
Sean Winwood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cummins Ltd
Original Assignee
Cummins Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cummins Ltd filed Critical Cummins Ltd
Priority to US16/528,736 priority Critical patent/US20190376390A1/en
Assigned to CUMMINS LTD reassignment CUMMINS LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RHODES, KATIE, WINWOOD, Sean
Publication of US20190376390A1 publication Critical patent/US20190376390A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • F05D2230/42Heat treatment by hot isostatic pressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys

Definitions

  • the present disclosure relates to a method for manufacturing a turbine wheel, particularly but not exclusively a turbine wheel suitable for use in a variable geometry turbocharger.
  • Turbochargers are well known devices for supplying air to the intake of an internal combustion engine at pressures above atmospheric pressure (boost pressures).
  • a conventional turbocharger essentially comprises a housing in which is provided an exhaust gas driven turbine wheel mounted on a rotatable shaft connected downstream of an engine outlet manifold. Rotation of the turbine wheel rotates a compressor wheel mounted on the other end of the shaft. The compressor wheel delivers compressed air to the engine intake manifold.
  • Turbines may be of a fixed or variable geometry type. Variable geometry turbines differ from fixed geometry turbines in that the size of the turbine inlet passage can be varied to optimize gas flow velocities over a range of mass flow rates so that the power output of the turbine can be varied to suit varying engine demands.
  • a method for manufacturing a turbine wheel comprising casting the turbine wheel from an austenitic nickel-chromium-based superalloy, subjecting the cast turbine wheel to hot isostatic pressing and then subjecting a surface of the hot isostatically pressed turbine wheel to plastic deformation, wherein said hot isostatic pressing is effected at a pressure of 98 to 200 MPa and a temperature of 1160 to 1220° C. for a time period of 225 to 300 minutes.
  • the present disclosure addresses problems associated with turbine wheel fatigue life and provides a turbine wheel exhibiting enhanced fatigue resistance and durability as compared to turbine wheels manufactured from the same type of superalloy but that have not been subjected to hot isostatic pressing (HIP) followed by plastic deformation of a surface of the turbine wheel.
  • HIP hot isostatic pressing
  • Said hot isostatic pressing may be effected at a pressure of 98 to 150 MPa, 98 to 125 MPa or 98 to 108 MPa.
  • Said hot isostatic pressing may be effected at a temperature of 1170 to 1215° C., 1180 to 1215° C. or 1190 to 1210° C.
  • Said hot isostatic pressing may be effect for a time period of 225 to 280 minutes, 225 to 265 minutes or 225 to 255 minutes.
  • said hot isostatic pressing is effected at a pressure of 98 to 150 MPa and a temperature of 1170 to 1215° C. for a time period of 225 to 280 minutes.
  • said hot isostatic pressing is effected at a pressure of 98 to 125 MPa and a temperature of 1180 to 1215° C. for a time period of 225 to 265 minutes.
  • said hot isostatic pressing is effected at a pressure of 98 to 108 MPa and a temperature of 1190 to 1210° C. for a time period of 225 to 255 minutes.
  • the turbine wheel may be cooled after said hot isostatic pressing and before said plastic deformation.
  • the turbine wheel may be cooled to any desirable temperature to permit subsequent processing steps, particularly but not limited to a temperature at which said surface of the turbine wheel can be subjected to plastic deformation.
  • the turbine wheel may be cooled to around room temperature after said hot isostatic pressing so that the subsequent plastic deformation process can be carried out accurately and effectively.
  • the turbine wheel is preferably cooled to a temperature of around 18 to 25° C. after said hot isostatic pressing and before said plastic deformation.
  • the turbine wheel may be cooled at a rate of less than or equal to around 100° C. per minute after said hot isostatic pressing and before said plastic deformation, at a rate of less than or equal to around 50° C. per minute after said hot isostatic pressing and before said plastic deformation or at a rate of less than or equal to around 10° C. per minute after said hot isostatic pressing and before said plastic deformation.
  • the plastic deformation may be achieved using any appropriate process, such as laser peening, sand blasting, shot blasting etc, although it is preferred that shot peening is employed.
  • the shot peening may employ high carbon cast steel shot conforming to SAEJ827. Cut wire, ceramic particles and/or glass beads may be used instead of or in addition to steel shot.
  • the shot may have a minimum size of S070 to S240 in accordance with SAEJ444.
  • the shot has a minimum size of S110 in accordance with SAEJ444, the physical and chemical characteristics of which are set out below in the description of a specific embodiment.
  • the shot peening may be effected at an intensity to achieve an Almen ‘A’ strip arc height of 0.127 to 0.305 mm, 0.127 to 0.255 mm or 0.127 to 0.203 mm measured in accordance with SAEJ442.
  • a hot isostatically pressed cast turbine wheel manufactured from an austenitic nickel-chromium-based superalloy, the turbine wheel having a plastically deformed surface.
  • the turbine wheel according to the second aspect of the present disclosure may be conveniently manufactured using a method according to the first aspect of the present disclosure.
  • a third aspect of the present disclosure provides a turbocharger comprising: a housing; a turbine wheel supported on a shaft within said housing for rotation about a turbine axis; and a compressor wheel supported on said shaft within said housing, wherein said turbine wheel is a hot isostatically pressed cast turbine wheel manufactured from an austenitic nickel-chromium-based superalloy, the turbine wheel having a plastically deformed surface.
  • the turbine wheel employed in the turbocharger according to the third aspect of the present disclosure may be conveniently manufactured using a method according to the first aspect of the present disclosure.
  • a turbine wheel by a process according to the present disclosure involving hot isostatic pressing followed by plastic deformation of a surface of the turbine wheel results in a turbine wheel where the plastically deformed surface exhibits different surface characteristics, such as surface finish, surface roughness and/or color, as compared to a turbine wheel manufactured from the same or a similar superalloy but which has not been subjected to hot isostatic pressing followed by plastic deformation in accordance with the present disclosure. It will be appreciated that this provides a convenient means to characterize and thereby identify a turbine wheel that has been manufactured in accordance with the present disclosure.
  • a plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of ⁇ 1000 to ⁇ 1500 MPa or ⁇ 1100 to ⁇ 1500 MPa at a depth of 25 to 90 microns below said surface of the turbine wheel or a residual compressive stress of ⁇ 1100 to ⁇ 1500 MPa or ⁇ 1200 to ⁇ 1400 MPa at a depth of 30 to 60 microns below said surface of the turbine wheel.
  • a plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of around ⁇ 1300 MPa at a depth of around 48 microns below said surface of the turbine wheel and/or or a residual compressive stress of around ⁇ 1150 MPa at a depth of around 80 microns below said surface of the turbine wheel.
  • a plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of ⁇ 500 to ⁇ 1200 MPa or ⁇ 500 to ⁇ 1000 MPa at a depth of 100 to 190 microns below said surface of the turbine wheel or a residual compressive stress of ⁇ 600 to ⁇ 900 MPa at a depth of 112 to 160 microns below said surface of the turbine wheel.
  • a plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of around ⁇ 950 MPa at a depth of around 112 microns below said surface of the turbine wheel and/or or a residual compressive stress of around ⁇ 600 MPa at a depth of around 160 microns below said surface of the turbine wheel.
  • turbine wheels and turbochargers of the above-defined aspects of the present disclosure are eminently suitable for use with any type of turbocharged internal combustion engine, such as a diesel, gasoline direct injection or conventional petrol engine, where a more durable turbine wheel is desired or needed.
  • any type of turbocharged internal combustion engine such as a diesel, gasoline direct injection or conventional petrol engine, where a more durable turbine wheel is desired or needed.
  • HIP is a form of heat treatment of a component at high pressure, which is applied to the component by an inert gas. It produces a component comprised of a fully dense bonded material. The time at elevated temperature and pressure allows plastic deformation, creep and diffusion to occur within the material of the component, which eliminates internal voids (i.e. porosity) that are inherently present in components manufactured by casting.
  • Shot peening is a cold working process where shot bombards a surface of a component to create a dimple. To create the dimple the surface must yield in tension, resulting in sub-surface compressive stresses.
  • the HIP process reduces the opportunity for fatigue initiation in the turbine wheel by removing internal porosity while simultaneously removing inconsistent residual stress effects resulting from the casting process used to produce the turbine wheel.
  • Subsequently subjecting a surface of the turbine wheel to plastic deformation induces a residual compressive stress in the treated surface which reduces or prevents cracks from forming and/or propagating throughout the wheel structure. Removal of the casting residual stresses allows for an improved level of compressive residual stress to be achieved through a subsequent surface plastic deformation, e.g. shot peening, process, which ultimately results in improved fatigue durability.
  • the turbine wheel may be manufactured from any suitable austenitic nickel-chromium-based superalloy, for example one of the InconelTM family of superalloys, such as Inconel 713C.
  • a further aspect of the present disclosure thus relates to a method for manufacturing a component comprising casting the component, subjecting the cast component to hot isostatic pressing and then subjecting a surface of the hot isostatically pressed component to plastic deformation, wherein said hot isostatic pressing is effected at a pressure and a temperature for a sufficient period of time to reduce or remove internal porosity in the cast component and to provide the component with improved fatigue durability as compared to the cast component before being subjected to said combined HIP and surface plastic deformation process.
  • FIG. 1 is an axial cross-section through a variable geometry turbocharger incorporating a turbine wheel according to a first aspect of the present disclosure
  • FIG. 2 is a flow diagram illustrating steps involved in the manufacture of a turbine wheel by a method in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a graph of residual compressive stress against depth below a surface of turbine wheels subjected to (a) HIP alone, (b) HIP and shot peen combined in accordance with the present disclosure, (c) shot blasting alone, and (d) shot and sand blasting.
  • FIG. 1 illustrates a variable geometry turbocharger comprising a housing incorporating a variable geometry turbine housing 1 and a compressor housing 2 interconnected by a central bearing housing 3 .
  • a turbocharger shaft 4 extends from the turbine housing 1 to the compressor housing 2 through the bearing housing 3 .
  • a turbine wheel 5 is mounted on one end of the shaft 4 for rotation within the turbine housing 1
  • a compressor wheel 6 is mounted on the other end of the shaft 4 for rotation within the compressor housing 2 .
  • the shaft 4 rotates about turbocharger axis 4 a on bearing assemblies located in the bearing housing 3 .
  • the turbine housing 1 defines an inlet volute 7 to which gas from an internal combustion engine (not shown) is delivered.
  • the exhaust gas flows from the inlet volute 7 to an axial outlet passage 8 via an annular inlet passage 9 and the turbine wheel 5 .
  • the inlet passage 9 is defined on one side by a face 10 of a radial wall of a movable annular wall member 11 , commonly referred to as a “nozzle ring”, and on the opposite side by an annular shroud 12 which forms the wall of the inlet passage 9 facing the nozzle ring 11 .
  • the shroud 12 covers the opening of an annular recess 13 in the turbine housing 1 .
  • the nozzle ring 11 supports an array of circumferentially and equally spaced inlet vanes 14 each of which extends across the inlet passage 9 .
  • the vanes 14 are orientated to deflect gas flowing through the inlet passage 9 towards the direction of rotation of the turbine wheel 5 .
  • the vanes 14 project through suitably configured slots in the shroud 12 , into the recess 13 .
  • the position of the nozzle ring 11 is controlled by an actuator assembly of the type disclosed in U.S. Pat. No. 5,868,552.
  • An actuator (not shown) is operable to adjust the position of the nozzle ring 11 via an actuator output shaft (not shown), which is linked to a yoke 15 .
  • the yoke 15 in turn engages axially extending actuating rods 16 that support the nozzle ring 11 .
  • the actuator which may for instance be pneumatic or electric
  • the speed of the turbine wheel 5 is dependent upon the velocity of the gas passing through the annular inlet passage 9 .
  • the gas velocity is a function of the width of the inlet passage 9 , the width being adjustable by controlling the axial position of the nozzle ring 11 .
  • FIG. 1 shows the annular inlet passage 9 fully open. The inlet passage 9 may be closed to a minimum by moving the face 10 of the nozzle ring 11 towards the shroud 12 .
  • the nozzle ring 11 has axially extending radially inner and outer annular flanges 17 and 18 that extend into an annular cavity 19 provided in the turbine housing 1 .
  • Inner and outer sealing rings 20 and 21 are provided to seal the nozzle ring 11 with respect to inner and outer annular surfaces of the annular cavity 19 respectively, whilst allowing the nozzle ring 11 to slide within the annular cavity 19 .
  • the inner sealing ring 20 is supported within an annular groove formed in the radially inner annular surface of the cavity 19 and bears against the inner annular flange 17 of the nozzle ring 11 .
  • the outer sealing ring 21 is supported within an annular groove formed in the radially outer annular surface of the cavity 19 and bears against the outer annular flange 18 of the nozzle ring 11 .
  • the turbine wheel 5 shown in FIG. 1 was manufactured as explained below with reference to FIG. 2 .
  • step 201 the turbine wheel is cast, using a conventional investment casting process, from a suitable austenitic nickel-chromium-based superalloy, such as Inconel 713C.
  • step 202 the cast turbine wheel is subjected to hot isostatic pressing at a pressure of 103 ⁇ 5 MPa and a temperature of 1200 ⁇ 10° C. for a time period of 240 ⁇ 15 minutes.
  • step 203 the turbine wheel is cooled to 18 to 25° C. at a rate of less than 10° C. per minute.
  • a surface of the turbine wheel is shot peened using high carbon cast steel shot conforming to SAEJ827, having a minimum size of S110 in accordance with SAEJ444 and at an intensity to achieve an Almen ‘A’ strip arc height of 0.127 to 0.203 mm measured in accordance with SAEJ442.
  • SAE J827 is the international standard which describes the chemical composition, hardness, microstructure and physical characteristic requirements for high carbon steel shot to be used for shot peening applications.
  • the properties of shot conforming to SAEJ827 and having a minimum size of S110 in line with SAEJ444 are set out below.
  • Microstructure Uniform tempered martensite.
  • FIG. 3 The residual stress at different depths below the surface of turbine wheels subjected to (a) HIP alone, (b) HIP and shot peening combined in accordance with the present disclosure, (c) shot blasting alone, and (d) shot and sand blasting, is illustrated in FIG. 3 .
  • the turbine wheel manufactured according to the present disclosure exhibited a residual stress greater in magnitude than the three turbine wheels manufactured using alternative methods involving just HIP or plastic deformation alone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Forging (AREA)

Abstract

A method for manufacturing a turbine wheel comprising casting the turbine wheel from an austenitic nickel-chromium-based superalloy, subjecting the cast turbine wheel to hot isostatic pressing and then subjecting a surface of the hot isostatically pressed turbine wheel to plastic deformation, wherein said hot isostatic pressing is effected at a pressure of 98 to 200 MPa and a temperature of 1160 to 1220° C. for a time period of 225 to 300 minutes. There is further described a hot isostatically pressed cast turbine wheel manufactured from an austenitic nickel-chromium-based superalloy, the turbine wheel having a plastically deformed surface; and a turbocharger incorporating such a turbine wheel.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a divisional application of U.S. Pat. No. 10,370,972, titled “A METHOD FOR MANUFACTURING A TURBINE WHEEL,” filed on Jul. 12, 2017, which is a national phase filing under 35 U.S.C. § 371 of International Application No. PCT/GB2016/050063, titled “A METHOD FOR MANUFACTURING A TURBINE WHEEL,” filed on Jan. 16, 2016, which claims the benefit of priority to British Patent Application No. 1500713.1, filed with the United Kingdom Intellectual Property Office on Jan. 16, 2015, the entire disclosures of which being expressly incorporated herein by reference.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to a method for manufacturing a turbine wheel, particularly but not exclusively a turbine wheel suitable for use in a variable geometry turbocharger.
  • BACKGROUND
  • Turbochargers are well known devices for supplying air to the intake of an internal combustion engine at pressures above atmospheric pressure (boost pressures). A conventional turbocharger essentially comprises a housing in which is provided an exhaust gas driven turbine wheel mounted on a rotatable shaft connected downstream of an engine outlet manifold. Rotation of the turbine wheel rotates a compressor wheel mounted on the other end of the shaft. The compressor wheel delivers compressed air to the engine intake manifold. Turbines may be of a fixed or variable geometry type. Variable geometry turbines differ from fixed geometry turbines in that the size of the turbine inlet passage can be varied to optimize gas flow velocities over a range of mass flow rates so that the power output of the turbine can be varied to suit varying engine demands.
  • As a result of the operating conditions to which conventional turbine wheels are exposed during use they can fail due to fatigue. It would therefore be desirable to improve the fatigue resistance or fatigue durability of turbine wheels.
  • SUMMARY
  • It is an object of the present disclosure to manufacture a turbine wheel exhibiting improved fatigue resistance or durability.
  • According to a first aspect of the present disclosure there is provided a method for manufacturing a turbine wheel comprising casting the turbine wheel from an austenitic nickel-chromium-based superalloy, subjecting the cast turbine wheel to hot isostatic pressing and then subjecting a surface of the hot isostatically pressed turbine wheel to plastic deformation, wherein said hot isostatic pressing is effected at a pressure of 98 to 200 MPa and a temperature of 1160 to 1220° C. for a time period of 225 to 300 minutes.
  • By manufacturing the turbine wheel in this way the present disclosure addresses problems associated with turbine wheel fatigue life and provides a turbine wheel exhibiting enhanced fatigue resistance and durability as compared to turbine wheels manufactured from the same type of superalloy but that have not been subjected to hot isostatic pressing (HIP) followed by plastic deformation of a surface of the turbine wheel. The results of comparative testing presented below demonstrate that it is the combination of HIP and plastic deformation that provides the improvement in fatigue performance, performing one or other process alone does not provide the same level of improvement in performance.
  • Said hot isostatic pressing may be effected at a pressure of 98 to 150 MPa, 98 to 125 MPa or 98 to 108 MPa.
  • Said hot isostatic pressing may be effected at a temperature of 1170 to 1215° C., 1180 to 1215° C. or 1190 to 1210° C.
  • Said hot isostatic pressing may be effect for a time period of 225 to 280 minutes, 225 to 265 minutes or 225 to 255 minutes.
  • In a preferred embodiment, said hot isostatic pressing is effected at a pressure of 98 to 150 MPa and a temperature of 1170 to 1215° C. for a time period of 225 to 280 minutes.
  • In one embodiment, said hot isostatic pressing is effected at a pressure of 98 to 125 MPa and a temperature of 1180 to 1215° C. for a time period of 225 to 265 minutes.
  • In a yet another embodiment, said hot isostatic pressing is effected at a pressure of 98 to 108 MPa and a temperature of 1190 to 1210° C. for a time period of 225 to 255 minutes.
  • The turbine wheel may be cooled after said hot isostatic pressing and before said plastic deformation. The turbine wheel may be cooled to any desirable temperature to permit subsequent processing steps, particularly but not limited to a temperature at which said surface of the turbine wheel can be subjected to plastic deformation. For example, the turbine wheel may be cooled to around room temperature after said hot isostatic pressing so that the subsequent plastic deformation process can be carried out accurately and effectively. The turbine wheel is preferably cooled to a temperature of around 18 to 25° C. after said hot isostatic pressing and before said plastic deformation. The turbine wheel may be cooled at a rate of less than or equal to around 100° C. per minute after said hot isostatic pressing and before said plastic deformation, at a rate of less than or equal to around 50° C. per minute after said hot isostatic pressing and before said plastic deformation or at a rate of less than or equal to around 10° C. per minute after said hot isostatic pressing and before said plastic deformation.
  • The plastic deformation may be achieved using any appropriate process, such as laser peening, sand blasting, shot blasting etc, although it is preferred that shot peening is employed. The shot peening may employ high carbon cast steel shot conforming to SAEJ827. Cut wire, ceramic particles and/or glass beads may be used instead of or in addition to steel shot. The shot may have a minimum size of S070 to S240 in accordance with SAEJ444. Preferably the shot has a minimum size of S110 in accordance with SAEJ444, the physical and chemical characteristics of which are set out below in the description of a specific embodiment. The shot peening may be effected at an intensity to achieve an Almen ‘A’ strip arc height of 0.127 to 0.305 mm, 0.127 to 0.255 mm or 0.127 to 0.203 mm measured in accordance with SAEJ442.
  • According to a second aspect of the present disclosure there is provided a hot isostatically pressed cast turbine wheel manufactured from an austenitic nickel-chromium-based superalloy, the turbine wheel having a plastically deformed surface.
  • The turbine wheel according to the second aspect of the present disclosure may be conveniently manufactured using a method according to the first aspect of the present disclosure.
  • A third aspect of the present disclosure provides a turbocharger comprising: a housing; a turbine wheel supported on a shaft within said housing for rotation about a turbine axis; and a compressor wheel supported on said shaft within said housing, wherein said turbine wheel is a hot isostatically pressed cast turbine wheel manufactured from an austenitic nickel-chromium-based superalloy, the turbine wheel having a plastically deformed surface.
  • The turbine wheel employed in the turbocharger according to the third aspect of the present disclosure may be conveniently manufactured using a method according to the first aspect of the present disclosure.
  • Manufacturing a turbine wheel by a process according to the present disclosure involving hot isostatic pressing followed by plastic deformation of a surface of the turbine wheel results in a turbine wheel where the plastically deformed surface exhibits different surface characteristics, such as surface finish, surface roughness and/or color, as compared to a turbine wheel manufactured from the same or a similar superalloy but which has not been subjected to hot isostatic pressing followed by plastic deformation in accordance with the present disclosure. It will be appreciated that this provides a convenient means to characterize and thereby identify a turbine wheel that has been manufactured in accordance with the present disclosure.
  • A plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of −1000 to −1500 MPa or −1100 to −1500 MPa at a depth of 25 to 90 microns below said surface of the turbine wheel or a residual compressive stress of −1100 to −1500 MPa or −1200 to −1400 MPa at a depth of 30 to 60 microns below said surface of the turbine wheel. A plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of around −1300 MPa at a depth of around 48 microns below said surface of the turbine wheel and/or or a residual compressive stress of around −1150 MPa at a depth of around 80 microns below said surface of the turbine wheel.
  • A plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of −500 to −1200 MPa or −500 to −1000 MPa at a depth of 100 to 190 microns below said surface of the turbine wheel or a residual compressive stress of −600 to −900 MPa at a depth of 112 to 160 microns below said surface of the turbine wheel. A plastically deformed surface of the turbine wheel may exhibit a residual compressive stress of around −950 MPa at a depth of around 112 microns below said surface of the turbine wheel and/or or a residual compressive stress of around −600 MPa at a depth of around 160 microns below said surface of the turbine wheel.
  • The turbine wheels and turbochargers of the above-defined aspects of the present disclosure are eminently suitable for use with any type of turbocharged internal combustion engine, such as a diesel, gasoline direct injection or conventional petrol engine, where a more durable turbine wheel is desired or needed.
  • HIP is a form of heat treatment of a component at high pressure, which is applied to the component by an inert gas. It produces a component comprised of a fully dense bonded material. The time at elevated temperature and pressure allows plastic deformation, creep and diffusion to occur within the material of the component, which eliminates internal voids (i.e. porosity) that are inherently present in components manufactured by casting.
  • Shot peening is a cold working process where shot bombards a surface of a component to create a dimple. To create the dimple the surface must yield in tension, resulting in sub-surface compressive stresses.
  • Without wishing to be bound by any particular theory, it is believed that the HIP process reduces the opportunity for fatigue initiation in the turbine wheel by removing internal porosity while simultaneously removing inconsistent residual stress effects resulting from the casting process used to produce the turbine wheel. Subsequently subjecting a surface of the turbine wheel to plastic deformation induces a residual compressive stress in the treated surface which reduces or prevents cracks from forming and/or propagating throughout the wheel structure. Removal of the casting residual stresses allows for an improved level of compressive residual stress to be achieved through a subsequent surface plastic deformation, e.g. shot peening, process, which ultimately results in improved fatigue durability.
  • The turbine wheel may be manufactured from any suitable austenitic nickel-chromium-based superalloy, for example one of the Inconel™ family of superalloys, such as Inconel 713C.
  • While the manufacturing method of the present disclosure has been described hereinbefore in relation to the production of turbine wheels, it is envisaged that the methodology of combining HIP with surface plastic deformation, e.g. shot peening, may be advantageous in the manufacture of other types of components made using additive manufacturing techniques where porosity can have deleterious effects. A further aspect of the present disclosure thus relates to a method for manufacturing a component comprising casting the component, subjecting the cast component to hot isostatic pressing and then subjecting a surface of the hot isostatically pressed component to plastic deformation, wherein said hot isostatic pressing is effected at a pressure and a temperature for a sufficient period of time to reduce or remove internal porosity in the cast component and to provide the component with improved fatigue durability as compared to the cast component before being subjected to said combined HIP and surface plastic deformation process.
  • Other advantageous and features of the disclosure will be apparent from the following description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Specific embodiments of the present disclosure will now be described, by way of example only, with reference to the accompanying drawings, in which:
  • FIG. 1 is an axial cross-section through a variable geometry turbocharger incorporating a turbine wheel according to a first aspect of the present disclosure;
  • FIG. 2 is a flow diagram illustrating steps involved in the manufacture of a turbine wheel by a method in accordance with an embodiment of the present disclosure; and
  • FIG. 3 is a graph of residual compressive stress against depth below a surface of turbine wheels subjected to (a) HIP alone, (b) HIP and shot peen combined in accordance with the present disclosure, (c) shot blasting alone, and (d) shot and sand blasting.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • FIG. 1 illustrates a variable geometry turbocharger comprising a housing incorporating a variable geometry turbine housing 1 and a compressor housing 2 interconnected by a central bearing housing 3. A turbocharger shaft 4 extends from the turbine housing 1 to the compressor housing 2 through the bearing housing 3. A turbine wheel 5 is mounted on one end of the shaft 4 for rotation within the turbine housing 1, and a compressor wheel 6 is mounted on the other end of the shaft 4 for rotation within the compressor housing 2. The shaft 4 rotates about turbocharger axis 4 a on bearing assemblies located in the bearing housing 3.
  • The turbine housing 1 defines an inlet volute 7 to which gas from an internal combustion engine (not shown) is delivered. The exhaust gas flows from the inlet volute 7 to an axial outlet passage 8 via an annular inlet passage 9 and the turbine wheel 5. The inlet passage 9 is defined on one side by a face 10 of a radial wall of a movable annular wall member 11, commonly referred to as a “nozzle ring”, and on the opposite side by an annular shroud 12 which forms the wall of the inlet passage 9 facing the nozzle ring 11. The shroud 12 covers the opening of an annular recess 13 in the turbine housing 1.
  • The nozzle ring 11 supports an array of circumferentially and equally spaced inlet vanes 14 each of which extends across the inlet passage 9. The vanes 14 are orientated to deflect gas flowing through the inlet passage 9 towards the direction of rotation of the turbine wheel 5. When the nozzle ring 11 is proximate to the annular shroud 12, the vanes 14 project through suitably configured slots in the shroud 12, into the recess 13.
  • The position of the nozzle ring 11 is controlled by an actuator assembly of the type disclosed in U.S. Pat. No. 5,868,552. An actuator (not shown) is operable to adjust the position of the nozzle ring 11 via an actuator output shaft (not shown), which is linked to a yoke 15. The yoke 15 in turn engages axially extending actuating rods 16 that support the nozzle ring 11. Accordingly, by appropriate control of the actuator (which may for instance be pneumatic or electric), the axial position of the rods 16 and thus of the nozzle ring 11 can be controlled. The speed of the turbine wheel 5 is dependent upon the velocity of the gas passing through the annular inlet passage 9. For a fixed rate of mass of gas flowing into the inlet passage 9, the gas velocity is a function of the width of the inlet passage 9, the width being adjustable by controlling the axial position of the nozzle ring 11. FIG. 1 shows the annular inlet passage 9 fully open. The inlet passage 9 may be closed to a minimum by moving the face 10 of the nozzle ring 11 towards the shroud 12.
  • The nozzle ring 11 has axially extending radially inner and outer annular flanges 17 and 18 that extend into an annular cavity 19 provided in the turbine housing 1. Inner and outer sealing rings 20 and 21 are provided to seal the nozzle ring 11 with respect to inner and outer annular surfaces of the annular cavity 19 respectively, whilst allowing the nozzle ring 11 to slide within the annular cavity 19. The inner sealing ring 20 is supported within an annular groove formed in the radially inner annular surface of the cavity 19 and bears against the inner annular flange 17 of the nozzle ring 11. The outer sealing ring 21 is supported within an annular groove formed in the radially outer annular surface of the cavity 19 and bears against the outer annular flange 18 of the nozzle ring 11.
  • Gas flowing from the inlet volute 7 to the outlet passage 8 passes over the turbine wheel 5 and as a result torque is applied to the shaft 4 to drive the compressor wheel 6. Rotation of the compressor wheel 6 within the compressor housing 2 pressurises ambient air present in an air inlet 22 and delivers the pressurised air to an air outlet volute 23 from which it is fed to an internal combustion engine (not shown).
  • The turbine wheel 5 shown in FIG. 1 was manufactured as explained below with reference to FIG. 2. In step 201 the turbine wheel is cast, using a conventional investment casting process, from a suitable austenitic nickel-chromium-based superalloy, such as Inconel 713C. In step 202, the cast turbine wheel is subjected to hot isostatic pressing at a pressure of 103±5 MPa and a temperature of 1200±10° C. for a time period of 240±15 minutes. In step 203, the turbine wheel is cooled to 18 to 25° C. at a rate of less than 10° C. per minute. In step 204, a surface of the turbine wheel is shot peened using high carbon cast steel shot conforming to SAEJ827, having a minimum size of S110 in accordance with SAEJ444 and at an intensity to achieve an Almen ‘A’ strip arc height of 0.127 to 0.203 mm measured in accordance with SAEJ442. In step 204, it is preferred that as close as possible to 100% of the external surface of the turbine wheel is subjected to shot peening, except for the back face weld boss area of the turbine wheel, which ideally is not shot peened, for example by some form of suitable masking applied to that region of the turbine wheel prior to shot peening.
  • SAE J827 is the international standard which describes the chemical composition, hardness, microstructure and physical characteristic requirements for high carbon steel shot to be used for shot peening applications. The properties of shot conforming to SAEJ827 and having a minimum size of S110 in line with SAEJ444 are set out below.
  • Chemical Composition:
  • Element %
    Carbon 0.8-1.2
    Manganese 0.6-1.2
    Silicon  0.4 minimum
    Sulphur 0.05 maximum
    Phosphorous 0.05 maximum
  • Microstructure: Uniform tempered martensite.
  • Hardness; SAE J827 specification. 40 to 51 HRC.
  • Apparent Density; 7 glee minimum
  • Defects: To meet the requirement of ISO 11124/3 and SAEJ827.
  • Nominal Size: 0.30 mm
  • Tolerance Screen Number mm
    All pass 30 screen 0.600
    10% min retained 35 screen 0.500
    80% min retained 50 screen 0.300
    90% min retained 80 screen 0.180
  • The residual stress at different depths below the surface of turbine wheels subjected to (a) HIP alone, (b) HIP and shot peening combined in accordance with the present disclosure, (c) shot blasting alone, and (d) shot and sand blasting, is illustrated in FIG. 3. As can be seen, across a wide range of depths, from 16 to 224 microns (μm), the turbine wheel manufactured according to the present disclosure exhibited a residual stress greater in magnitude than the three turbine wheels manufactured using alternative methods involving just HIP or plastic deformation alone.
  • A comparative test of turbine wheels manufactured using different methods was carried out to investigate the approximate high cycle fatigue (HCF) life. The results are presented below. The results for the turbine wheel manufactured according to the method of the present disclosure are underlined and clearly demonstrate an improvement in fatigue durability.
  • ~Min ~Max ~Mean
    Manufacturing life life life
    Method (hrs) (hrs) (hrs) No. data points
    No HIP or Shot Peen   1.5 18 10   30
    HIP Alone 2  9 5.5 10
    Shot Peen Alone <1  12 6.5 10
    HIP & Shot Peen 4 40 22   20
  • It will be appreciated that numerous modifications may be made to the preferred embodiments described above without departing from the underlying inventive concepts defined in the various aspects of the present disclosure. Moreover, any one or more of the above described preferred embodiments could be combined with one or more of the other preferred embodiments to suit a particular application.
  • The described and illustrated embodiments are to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the scope of the inventions as defined in the claims are desired to be protected. It should be understood that while the use of words such as “preferable”, “preferably”, “preferred” or “more preferred” in the description suggest that a feature so described may be desirable, it may nevertheless not be necessary and embodiments lacking such a feature may be contemplated as within the scope of the invention as defined in the appended claims. In relation to the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used to preface a feature there is no intention to limit the claim to only one such feature unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.

Claims (7)

What is claimed is:
1. A hot isostatically pressed cast turbine wheel manufactured from an austenitic nickel-chromium-based superalloy, wherein the hot isostatic pressing is effected at a pressure of 98 to 200 MPa and a temperature of 1160 to 1220° C. for a time period of 225 to 300 minutes, and wherein the turbine wheel has a plastically deformed surface.
2. A turbine wheel according to claim 1, wherein the plastically deformed surface of the turbine wheel exhibits a residual compressive stress of −1000 to −1500 MPa at a depth of 25 to 90 microns below said surface of the turbine wheel.
3. A turbine wheel according to claim 1, wherein the plastically deformed surface of the turbine wheel exhibits a residual compressive stress of −1100 to −1500 MPa at a depth of 30 to 60 microns below said surface of the turbine wheel.
4. A turbine wheel according to claim 1, wherein the plastically deformed surface of the turbine wheel exhibits a residual compressive stress of −500 to −1200 MPa at a depth of 100 to 190 microns below said surface of the turbine wheel.
5. A turbine wheel according to claim 1, wherein the plastically deformed surface of the turbine wheel exhibits a residual compressive stress of −600 to −900 MPa at a depth of 112 to 160 microns below said surface of the turbine wheel.
6. A turbocharger comprising: a housing; a turbine wheel supported on a shaft within said housing for rotation about a turbine axis; and a compressor wheel supported on said shaft within said housing, wherein said turbine wheel is a hot isostatically pressed cast turbine wheel manufactured from an austenitic nickel-chromium-based superalloy, wherein the hot isostatic pressing is effected at a pressure of 98 to 200 MPa and a temperature of 1160 to 1220° C. for a time period of 225 to 300 minutes, and wherein the turbine wheel has a plastically deformed surface.
7. A turbocharger according to claim 6, wherein the turbine wheel is in accordance with any one of claims 2 to 5.
US16/528,736 2015-01-16 2019-08-01 Method for manufacturing a turbine wheel Abandoned US20190376390A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/528,736 US20190376390A1 (en) 2015-01-16 2019-08-01 Method for manufacturing a turbine wheel

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB1500713.1A GB201500713D0 (en) 2015-01-16 2015-01-16 A method for manufacturing a turbine wheel
GB1500713.1 2015-01-16
PCT/GB2016/050063 WO2016113552A1 (en) 2015-01-16 2016-01-12 A method for manufacturing a turbine wheel
US15/543,145 US10370972B2 (en) 2015-01-16 2016-01-12 Method for manufacturing a turbine wheel
US16/528,736 US20190376390A1 (en) 2015-01-16 2019-08-01 Method for manufacturing a turbine wheel

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/543,145 Division US10370972B2 (en) 2015-01-16 2016-01-12 Method for manufacturing a turbine wheel
PCT/GB2016/050063 Division WO2016113552A1 (en) 2015-01-16 2016-01-12 A method for manufacturing a turbine wheel

Publications (1)

Publication Number Publication Date
US20190376390A1 true US20190376390A1 (en) 2019-12-12

Family

ID=52630674

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/543,145 Active 2036-05-23 US10370972B2 (en) 2015-01-16 2016-01-12 Method for manufacturing a turbine wheel
US16/528,736 Abandoned US20190376390A1 (en) 2015-01-16 2019-08-01 Method for manufacturing a turbine wheel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/543,145 Active 2036-05-23 US10370972B2 (en) 2015-01-16 2016-01-12 Method for manufacturing a turbine wheel

Country Status (4)

Country Link
US (2) US10370972B2 (en)
DE (1) DE112016000230T5 (en)
GB (2) GB201500713D0 (en)
WO (1) WO2016113552A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017007801A1 (en) * 2017-08-17 2019-02-21 Linde Aktiengesellschaft Method and apparatus for solidification blasting or solidification rolling
DE102018127708A1 (en) * 2018-11-07 2020-05-07 Man Energy Solutions Se Process for machining a turbocharger housing
US11648632B1 (en) 2021-11-22 2023-05-16 Garrett Transportation I Inc. Treatment process for a centrifugal compressor wheel to extend low-cycle fatigue life

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021910A (en) * 1974-07-03 1977-05-10 Howmet Turbine Components Corporation Method for treating superalloy castings
US4662951A (en) 1983-12-27 1987-05-05 United Technologies Corporation Pre-HIP heat treatment of superalloy castings
SE9200692D0 (en) 1992-03-06 1992-03-06 Asea Cerama Ab SET TO LEAVE SURFACE DEFECTS IN CASTING GOODS
JPH07100629A (en) 1993-09-30 1995-04-18 Kobe Steel Ltd Production of high-density material
FR2722510B1 (en) * 1994-07-13 1996-08-14 Snecma PROCESS FOR THE PREPARATION OF 718 ALLOY SHEETS AND FOR THE SUPERPLASTIC FORMING OF SAME
DE19756354B4 (en) 1997-12-18 2007-03-01 Alstom Shovel and method of making the blade
EP1456430A1 (en) 2001-11-23 2004-09-15 Integran Technologies Inc. Surface treatment of austenitic ni-fe-cr based alloys
JP4833961B2 (en) 2005-02-22 2011-12-07 株式会社日立メタルプレシジョン Impeller for supercharger and method for manufacturing the same
GB2478501B (en) * 2008-12-18 2013-05-01 Nelson Stud Welding Inc Turbine wheel and shaft joining processes
GB2519190B (en) 2012-02-24 2016-07-27 Malcolm Ward-Close Charles Processing of metal or alloy objects
CN103433435B (en) 2013-08-13 2015-05-13 苏州欧拉工程技术有限公司 Manufacturing process of overall titanium alloy impeller
WO2015116352A1 (en) 2014-01-28 2015-08-06 United Technologies Corporation Enhanced surface structure

Also Published As

Publication number Publication date
GB201500713D0 (en) 2015-03-04
GB201711294D0 (en) 2017-08-30
US10370972B2 (en) 2019-08-06
GB2548776A (en) 2017-09-27
GB2548776B (en) 2021-05-26
DE112016000230T5 (en) 2017-09-14
US20180283176A1 (en) 2018-10-04
WO2016113552A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
US20190376390A1 (en) Method for manufacturing a turbine wheel
US6969238B2 (en) Tri-property rotor assembly of a turbine engine, and method for its preparation
KR102386762B1 (en) Turbine wastegate
US9079245B2 (en) Turbine shroud segment with inter-segment overlap
US10472971B2 (en) Method of manufacture of a turbine component
US6918743B2 (en) Sheet metal turbine or compressor static shroud
US20060032604A1 (en) Casting mold
JP2011080463A (en) Turbine rotor fabrication using cold spraying
JP2003526037A (en) Spring loaded vane diffuser
US9702252B2 (en) Turbine nozzles with slip joints and methods for the production thereof
US10738625B2 (en) Bladed disc and method of manufacturing the same
US10302011B2 (en) Exhaust gas variable turbine assembly
US11105212B2 (en) Gas turbine engines including tangential on-board injectors and methods for manufacturing the same
JP6446267B2 (en) Rotor seal wire groove repair
CA2603503C (en) Annular gas turbine engine case and method of manufacturing
GB2462275A (en) A method of connection a turbine shaft to a rotor
CN102149911A (en) Turbocharger and adjustment ring therefor
US10184485B2 (en) Method of manufacturing a compressor housing
EP2230037A1 (en) Method of manufacture of a dual microstructure impeller
US11661861B2 (en) Bi-metal variable geometry turbocharger vanes and methods for manufacturing the same using laser cladding
JPS59180007A (en) Turbosupercharger and manufacture thereof
US10351940B2 (en) Method of manufacturing a component from a nickel-based superalloy
KR102192894B1 (en) A method for manufacturing of turbo charger impeller using forged process
US20220163047A1 (en) Cold spray reinforced impeller shroud
US20240326162A1 (en) Turbocharger turbine assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: CUMMINS LTD, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RHODES, KATIE;WINWOOD, SEAN;REEL/FRAME:049927/0542

Effective date: 20160505

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION