US20190370145A1 - System, method and computer program product for monitoring data activity utilizing a shared data store - Google Patents

System, method and computer program product for monitoring data activity utilizing a shared data store Download PDF

Info

Publication number
US20190370145A1
US20190370145A1 US16/546,133 US201916546133A US2019370145A1 US 20190370145 A1 US20190370145 A1 US 20190370145A1 US 201916546133 A US201916546133 A US 201916546133A US 2019370145 A1 US2019370145 A1 US 2019370145A1
Authority
US
United States
Prior art keywords
data
information
data activity
database system
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/546,133
Inventor
Scott YANCEY, III
Scott Hansma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salesforce Inc
Original Assignee
Salesforce com Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salesforce com Inc filed Critical Salesforce com Inc
Priority to US16/546,133 priority Critical patent/US20190370145A1/en
Assigned to SALESFORCE.COM, INC. reassignment SALESFORCE.COM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANSMA, SCOTT, YANCEY, SCOTT W.
Publication of US20190370145A1 publication Critical patent/US20190370145A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3438Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment monitoring of user actions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3006Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0806Multiuser, multiprocessor or multiprocessing cache systems
    • G06F12/0813Multiuser, multiprocessor or multiprocessing cache systems with a network or matrix configuration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/219Managing data history or versioning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/23Updating
    • G06F16/2358Change logging, detection, and notification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • G06F16/252Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L67/22
    • H04L67/2842
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/535Tracking the activity of the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/60Details of cache memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/62Details of cache specific to multiprocessor cache arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/067Generation of reports using time frame reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/30Profiles
    • H04L67/306User profiles

Definitions

  • One or more implementations relate generally to activity associated with data, and more particularly to monitoring that activity.
  • mechanisms and methods for monitoring data activity utilizing a shared data store can enable enhanced data monitoring, more efficient data storage, improved system resource utilization, etc.
  • a method for monitoring, data activity utilizing a shared data store is provided.
  • data activity is monitored within a system. Additionally, the monitored data activity is stored within a shared data store. Further, one or more actions are performed, based on the stored data activity.
  • While one or more implementations and techniques are described with reference to an embodiment in which monitoring data activity utilizing a shared data store is implemented in a system having an application server providing a front end for an on-demand database system capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Embodiments may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the embodiments claimed.
  • any of the above embodiments may be used alone or together with one another in any combination.
  • the one or more implementations encompassed within this specification may also include embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract.
  • FIG. 1 illustrates a method for monitoring data activity utilizing a shared data store, in accordance with one embodiment
  • FIG. 2 illustrates a method for handling concurrent requests utilizing a shared data store, in accordance wish another embodiment
  • FIG. 3 illustrates a method for performing tracking with limiting utilizing a shared data store, in accordance with another embodiment
  • FIG. 4 illustrates a method for performing persistent data storage utilizing a shared data store, in accordance with another embodiment
  • FIG. 5 illustrates a block diagram of an example of an environment wherein an on-demand database system might be used.
  • FIG. 6 illustrates a block diagram of in embodiment of elements of FIG. 4 and various possible interconnections between these elements.
  • Systems and methods are provided for monitoring data activity utilizing a shared data store.
  • multi-tenant database system refers to those systems in which various elements of hardware and software of the database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
  • FIG. 1 illustrates a method 100 for monitoring data activity utilizing a shared data store, in accordance with one embodiment.
  • data activity is monitored within a system.
  • the data activity may be associated with one or more users of the system.
  • the data activity may be associated with a user of the system, a customer of the system, etc.
  • the data activity may be associated with an application.
  • the data activity may be associated with a client function, an application provided by the system, etc.
  • the system may include one or more clients and/or servers, a multi-tenant on-demand database system, etc.
  • the system may include a plurality of servers (e.g., application servers, etc.) within a cluster.
  • the data activity may include an amount of data that is transferred utilizing the system.
  • the data activity may include a number of bytes of data transferred between the system and a customer.
  • the data activity may include a number of application programming interface (API) calls made to the system by a customer.
  • API application programming interface
  • the data activity may include an amount of processing being performed by one or more servers of the system.
  • the data activity may include a number of data requests received from a customer that are currently being serviced by one or more application servers of the system.
  • the data activity may be monitored for a predetermined amount of time.
  • the data activity may be monitored for a time period of a month, a week, twenty-four hours, etc.
  • the data activity may be monitored for any period of time.
  • the data activity may include data usage at a particular point in time (e.g., a snapshot of the current activity within the system, etc.).
  • such multi-tenant on-demand database system may include any service that relies on a database system that is accessible over a network, in which various elements of hardware and software of the database system may be shared by one or more customers (e.g. tenants). For instance, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
  • customers e.g. tenants
  • a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
  • the monitored data activity is stored within a shared data store.
  • the shared data store may include an open data store.
  • the shared data store may include a general purpose distributed memory caching system (e.g., memcached, etc.).
  • one or more actions are performed, based on the stored data activity.
  • the one or more actions may include creating a billing statement.
  • the one or more actions may include creating a bill and sending the bill to a customer of the system based on their monitored data activity within the system.
  • the one or more actions may include blocking or redirecting one or more elements within the system.
  • the one or more actions may include denying a request for data from a customer or function, queuing the request for data from the customer or function, etc.
  • the shared data store may be used instead of a database to store the monitored data activity. Additionally, the shared data store may provide a simple, easy to understand framework that may enable developers to easily meter and profile features or sub-systems of the system.
  • FIG. 2 illustrates a method 200 for handling concurrent requests utilizing a shared data store, in accordance with another embodiment.
  • the present method 200 may be carried out in the context of the functionality of FIG. 1 .
  • the method 200 may be carried out in any desired environment.
  • the aforementioned definitions may apply during the present description.
  • each application server within a system stores a key containing a hash of a list of all running applicator servers within the system.
  • each application server may be aware of all other application servers within the system that are currently operational, and may store the key containing a hash of a list of all application servers within the system based on that knowledge.
  • the application server stores the key in association with a customer request count within the shared data store.
  • the customer request count may include a value indicative of a number of requests made to the application servers by a particular customer.
  • the customer request count is incremented.
  • the customer request count is decremented.
  • one of the plurality of application servers within the system is lost. For example, an application server may shut down, may be non-responsive, may crash, etc.
  • the hash of the list of all running application servers is altered, thereby altering the corresponding key containing the hash.
  • the customer request count is reset to zero in response to the alteration of the hash.
  • FIG. 3 illustrates a method 300 for performing tracking with limiting utilizing a shared data store, in accordance with another embodiment.
  • the present method 300 may be carried out in the context of the functionality of FIGS. 1-2 .
  • the method 300 may be carried out in any desired environment.
  • the aforementioned definitions may apply during the present description.
  • a customer count value is determined for a current predetermined time period. For example, a count value indicative of a number of requests made by a customer for a current hour time period may be determined.
  • an aggregate key is determined for a second time period by concatenating a predetermined amount of earlier customer count values with the current customer count value. For example, an aggregate key may be compiled for a twenty-four hour time period by concatenating the last twenty-three customer count values with the current customer count value. In this way, a rolling twenty-four hour window may be created.
  • the aggregate key may be recalculated utilizing the predetermined amount of earlier customer count values as well as the current customer count value. In this way, tracking of customer requests may be performed without persistence. Further still, a customer may be limited to a predetermined amount of requests (e.g., API calls, data requests, processing requests, etc.) over a predetermined period of time utilizing the aggregate key.
  • a predetermined amount of requests e.g., API calls, data requests, processing requests, etc.
  • FIG. 4 illustrates a method 400 for performing persistent data storage utilizing a shared data store, in accordance with another embodiment.
  • the present method 400 may be carried out in the context of the functionality of FIGS. 1-3 .
  • the method 400 may be carried out in any desired environment.
  • the aforementioned definitions may apply during the present description.
  • every application server of a system identifies a list of keys stored to the shared data store within a predetermined time interval.
  • the time interval may be one minute, five minutes, an hour, a day, etc.
  • each application server agrees on a particular key or set of keys to append to.
  • each of the application servers append to the particular key the names of all keys that have been updated within the other predetermined time interval.
  • a designated persister is determined from the application servers.
  • the designated persister may be elected by all of the application servers.
  • all application servers may attempt to perform as the designated persister and may become the designated persister if no other application server has indicated an attempt to become the designated persister.
  • the designated persister selects the particular key, retrieves values for all the listed keys within the particular key, and persists such values to the shared data store. In this way, a list of keys that have not been persisted may be stored on each application server. Additionally, a total count of activity may be stored persistently for a customer of the system during a predetermined time period for purposes of billing the customer for such activity.
  • a cluster aware data store may be moved from a database to memcached. Additionally, a new, simple, easy-to-understand framework may be provided that developers may use to meter and profile features or sub-systems.
  • interval based limiting maybe performed in order to measure an amount of activity occurring within a predetermined time interval, and may provide ways for clients to ask for permission to perform the activity. Additionally, this data may be aggregated across all servers in a cluster. Further, when an amount of activity within a predetermined interval surpasses a threshold, then some type of policy may be enforced. For example, when an organization exceeds a predetermined number of API requests in an hour time period, then all further API requests may be blocked until the number of requests drops below the threshold again. In another embodiment, the captured data may be persisted to a database for historical or auditing purposes.
  • concurrent based activity may measure concurrent activity, and may provide ways for clients to ask for permission to perform the activity.
  • this data may need to be aggregated across all servers in a cluster. For example, an amount of concurrent long running requests may be monitored for a given organization, and when the limit is exceeded, further requests may be denied until the amount of requests drops below the threshold.
  • limits may be elastic and not static. For example, an unbounded number of reports may be allowed to be concurrently run when database CPU utilization is low, but as utilization grows higher, much lower concurrent numbers may be enforced.
  • historical profiling may not include a notion of “limiting” or “restricting.” Rather, it may only care about capturing events or data, possibly by time interval, that may be persisted for use by others. This data may not need to be aggregated across all servers in a cluster—rather, each server in the cluster may only need to capture and then flush its own data to some central data store. This may be thought of as a feature of resource profiling, and an example today may include capturing knowledge base article views that may only be used for reporting purposes.
  • one implementation may be decomposed into a manageable set of interfaces and base implementations, all of which may be hidden to clients. Rather clients may be able to use any of the supported use cases via implementations already provided, and they may customize those implementations via framework specific objects passed to constructor calls and/or factory methods. A developer wanting to track some activity, possibly with limits enforced, may code this up in minutes, not hours or days, with very few lines of new code.
  • the central data store to synchronize data across servers in the cluster may no longer be the database. For example, using clustered memcached may result in removing much of the heavy load that older designs pull on a database.
  • all working transient data seeded to make limiting decisions may be pushed to memcached. Oracle may no longer be involved, such that locally collected data may be flushed to memcached, and when cluster-wide data is needed to make a decision it may be retrieved from memcached.
  • the memory footprint of metered data may be reduced in app servers. Additionally, all data may never be synchronized back into all application servers, but instead when a request for data is made on a giver application server the values in the local data cache may be summed with the cluster's values stored in memcached, which may eliminate the need to store all cluster-wide data on each app server.
  • the shared data store (e.g., memcached, etc.) may be a transient data store. For example, when a given memcached server in the cluster goes down, all data that was being kept on that server may be lost. In another embodiment, if an implementation cannot tolerate lossy behavior, then an Oracle specific clustered data store implementation may be used. In yet another embodiment, for implementations that may require permanent storage of their data, they may flush to Oracle from the app server's local cache independently of the flush and usage of memcached and therefore may not be affected by memcached server crashes.
  • implementations may require interaction with Oracle. These implementations may want to preserve their data permanently (or at least for a longer period of time than the current time interval they're working in). This may apply to some “Interval Activity” and all “Historical Profiling” use case implementations. For these implementations, their flush to Oracle may not be frequent (lessening the excessive churn seen in the current RL design), and it may be a one way push (meaning they don't need to retrieve data to sync up cluster-wide activity, since cluster-wide data usage may be handled through memcached).
  • the “Historical Profiling” use case may include flushing local cache data to Oracle once every 10 minutes.
  • the “Interval Activity” use case may need persistence. For example, it may frequently (e.g., every 30 seconds, 2 minutes, etc.) flush a local cache data to memcached, but may flush this same local data to Oracle once over 10 minutes.
  • “sleeping” or purging their old data may be performed.
  • a simple interface may be provided into defining the sweeping interval for the client's data and then handling the scheduling and executing of their data's sweeping on their behalf.
  • a concurrent based activity model may be introduced with elastic permitting that may enable a self-protecting system. For example, under normal load, requests to run reports may always be approved. However, as database CPU utilization on a given node climbs to a predetermined level, one or more reporting requests may be shed or delayed in response. Also, classifications and priorities of reports and customers may also be supported, such that lower priority organizations and/or historically more expensive reports may be may be shed or delayed first.
  • Apex activity may be metered within hour intervals, and limits may be enforced after a predetermined threshold is exceeded for that time interval.
  • metering may be utilized to capture and/or monitor system activity.
  • the metering framework may take care of periodically flushing data from the appservers where activity occurs to memcached (thus adding those local values to the overall count for entire cluster).
  • the Metering framework may also periodically flush data to Oracle, and it may reside in core.metering_count. The default flush to memcached interval may be two minutes, and to Oracle every twenty minutes. These intervals may be overridden by using methods within CountMeteringFactory that may expose these parameters.
  • metrics may be tracked over a particular time interval. For example, metrics may be tracked over a fixed day, a rolling twenty-four hour period, etc. Additionally, a rolling interval may include a period chopped into various sub-units of time, where when a new unit is “rolled into” the oldest unit “rolls off.” For example, in a rolling twenty-four hour period, activity may be tracked each hour for the past twenty-four hours. Additionally, when a new hour is “rolled into” then all activity on the now twenty-fifth hour no longer counts towards the twenty four hour total.
  • data may be permanently persisted.
  • data may be flushed to a database so that it may be used for other purposes, such as historical reporting, billing, etc.
  • static limits may be used in order to enforce a fixed number of concurrent activity (e.g., an organization may only have five instances of an action occurring at any point in time, etc.).
  • fixed limits may vary by another condition.
  • elastic limits may be used that vary over time. For example, a varying number of concurrent reports may be allowed to be executed based on a utilization level of a targeted node.
  • usage of computational resources may be metered to provide a general purpose resource metering framework. For example, metering may count, sum, etc. some type of activity occurring within the service, possibly on a per customer/tenant basis. It may then make this data available to all machines in the service, allowing action to be taken when thresholds are met or exceeded. This data may be made available to the service through a shared memory architecture, which may be provided via a clustered memcached caching layer. The facility may be provided to flush activity to the database in case historical records of the activity is needed.
  • the limit may either by statically defined or be “elastic”.
  • the elastic version it may vary the amount of allowed concurrent activity based on the current levels of resource utilization for some resource that is measured. For example, the number of concurrent reports that can be running may be varied based on the current level of utilization of the database CPU. Hence, when utilization is low more reports may be allowed to be concurrently running, but when utilization is high less reports may be allowed to be concurrently running.
  • activity tracking and concurrent (static or elastic) activity tracking may be provided.
  • the metering may be performed in association with a multi-tenant on-demand database system.
  • FIG. 5 illustrates a block diagram of an environment 510 wherein an on-demand database system might be used.
  • Environment 510 may include user systems 512 , network 514 , system 516 , processor system 517 , application platform 518 , network interlace 520 , tenant data storage 522 , system data storage 524 , program code 526 , and process space 528 .
  • environment 510 may not have all of the components listed and/or may have other elements instead of, or in addition to, those listed above.
  • Environment 510 is an environment in which an on-demand database system exists.
  • User system 512 may be any machine or system that is used by a user to access a database user system.
  • any of user systems 512 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices.
  • user systems 512 might interact via a network 514 with an on-demand database system, which is system 516 .
  • An on-demand database system such as system 516
  • system 516 is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users).
  • Some on-demand database systems may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS).
  • MTS multi-tenant database system
  • “on-demand database system 516 ” and “system 516 ” will be used interchangeably herein.
  • a database image may include one or more database objects.
  • Application platform 518 may be a framework that allows the applications of system 516 to run, such as the hardware and/or software, e.g., the operating system.
  • on-demand database system 516 may include an application platform 518 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database system, users accessing the on-demand database system via user systems 512 , or third party application developers accessing the on-demand database system via user systems 512 .
  • the users of user systems 512 may differ in their respective capacities, and the capacity of a particular user system 512 might be entirely determined by permissions (permission levels) tor the current user. For example, where a salesperson is using a particular user system 512 to interact with system 516 , that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 516 , that user system has the capacities allotted to that administrator.
  • users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
  • Network 514 is any network or combination of networks of devices that communicate with one another.
  • network 514 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration.
  • LAN local area network
  • WAN wide area network
  • telephone network wireless network
  • point-to-point network star network
  • token ring network token ring network
  • hub network or other appropriate configuration.
  • TCP/IP Transfer Control Protocol and Internet Protocol
  • User systems 512 might communicate with system 516 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc.
  • HTTP HyperText Transfer Protocol
  • user system 512 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 516 .
  • HTTP server might be implemented as the sole network interface between system 516 and network 514 , but other techniques might be used us well or instead.
  • the interface between system 516 and network 514 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
  • system 516 implements a web-based customer relationship management (CRM) system.
  • system 516 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, webpages and other information to and from user systems 512 and to store to, and retrieve from, a database system related data, objects, and Webpage content.
  • CRM customer relationship management
  • data for multiple tenants may be stored in the same physical database object, however, tenant data typically is arranged so that data of one tenant is kept logically separate from that of other tenants to that one tenant does not have access to another tenant's data, unless such data is expressly shared.
  • system 516 implements applications other than, or in addition to, a CRM application.
  • system 516 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application.
  • User (or third party developer) applications which may or may not include CRM, may be supported by the application platform 518 , which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 516 .
  • FIG. 5 One arrangement for elements of system 516 is shown in FIG. 5 , including a network interface 520 , application platform 518 , tenant data storage 522 for tenant data 523 , system data storage 524 for system data 525 accessible to system 516 and possibly multiple tenants, program code 526 for implementing various functions of system 516 , and a process space 528 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 516 include database indexing processes.
  • each user system 512 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection.
  • WAP wireless access protocol
  • User system 512 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the ease of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 512 to access, process and view information, pages and applications available to it from system 516 over network 514 .
  • HTTP client e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the ease of a cell phone, PDA or other wireless device, or the like.
  • Each user system 512 also typically includes one or more user interface devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (e.g., a monitor screen, LCD display, etc.) in conjunction with pages, forms, applications and other information provided by system 516 or other systems or servers.
  • GUI graphical user interface
  • the user interface device can be used to access data and applications hosted by system 516 , and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be prevented to a user.
  • the Internet which refers to a specific global internetwork of networks. However, it should be understood that other networks can be used instead of the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
  • VPN virtual private network
  • non-TCP/IP based network any LAN or
  • each user system 512 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like.
  • system 516 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 517 , which may include an Intel Pentium® processor or the like, and/or multiple processor units.
  • a computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon in which can be used to program a computer to perform any of the processes of the embodiments described herein.
  • Computer code for operating and configuring system 516 to intercommunicate and to process webpages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
  • any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
  • the entire program code, or portions thereof may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g. TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known.
  • a transmission medium e.g., over the Internet
  • any other conventional network connection e.g., extranet, VPN, LAN, etc.
  • any communication medium and protocols e.g. TCP/IP, HTTP, HTTPS, Ethernet, etc.
  • computer code for implementing embodiments can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, JavaTM, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are Well known may be used.
  • JavaTM is a trademark of Sun Microsystems, Inc.
  • each system 516 is configured to provide webpages, forms, applications, data and media content to user (client) systems 512 to support the access by user systems 512 as tenants of system 516 .
  • system 516 provides security mechanisms to keep each tenant's data separate unless the data is shared.
  • the MTS may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B).
  • each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations.
  • server is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein.
  • database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
  • FIG. 6 also illustrates environment 510 . However, in FIG. 6 elements of system 516 and various interconnections in an embodiment are further illustrated.
  • user system 512 may include processor system 512 A, memory system 512 B, input system 512 C, and output system 512 D.
  • FIG. 6 shows network 514 and system 516 .
  • system 516 may include tenant data storage 522 , tenant data 523 , system data storage 524 , system data 525 , User Interface (UI) 630 , Application Program Interface (API) 632 , PL/SOQL 634 , save routines 636 , application setup mechanism 638 , applications servers 600 1 - 600 N , system process space 602 , tenant process spaces 604 , tenant management process space 610 , tenant storage area 612 , user storage 614 , and application metadata 616 .
  • environment 510 may not have the same elements to those lifted above and/or may have other elements instead of, or in addition to, those listed above.
  • processor system 512 A may be any combination of one or more processors.
  • Memory system 512 B may be any combination of one or more memory devices, short term, and/or long term memory.
  • Input system 512 C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks.
  • Output system 512 D may be any combination of output devices, such as one or more monitors, printers, and or interfaces to networks.
  • system 516 may include a network interface 520 (of FIG.
  • Each application server 600 may be configured to tenant data storage 522 and the tenant data 523 therein, and system data storage 524 and the system data 525 therein to serve requests of user systems 512 .
  • the tenant data 523 might be divided into individual tenant storage areas 612 , which can be either a physical arrangement and/or a logical arrangement of data.
  • user storage 614 and application metadata 616 might be similarly allocated for each user.
  • a UI 630 provides a user interface and an API 632 provides an application programmer interface to system 516 resident processes to users and/or developers at user systems 512 .
  • the tenant data and the system data may be stored in various databases, such as one or more OracleTM databases.
  • Application platform 518 includes an application setup mechanism 638 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 522 by save routines 636 for execution by subscribers as one or more tenant process spaces 604 managed by tenant management process 610 for example. Invocations to such applications may be coded using PL/SOQL 634 that provides a programming language style interface extension to API 632 . A detailed description of some PL/SOQL language embodiments is discussed in commonly owned co-pending U.S. Provisional Patent Application 60/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by ore or more system processes, which manages retrieving application metadata 616 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
  • Each application server 600 may be communicably coupled to database systems, e.g., having access to system data 525 and tenant data 523 , via a different network connection.
  • one application server 600 1 might be coupled via the network 514 (e.g., the Internet)
  • another application server 600 N-1 might be coupled via a direct network link
  • another application server 600 N might be coupled by yet a different network connection.
  • Transfer Control Protocol and Internet Protocol TCP/IP
  • TCP/IP Transfer Control Protocol and Internet Protocol
  • each application server 600 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 600 .
  • an interface system implementing a load balancing function e.g., an F5 Big-IP load balancer
  • the load balancer uses a least connections algorithm to route user requests to the application servers 600 .
  • Other examples of load balancing algorithms such as round robin and observed response time, also can be used.
  • system 516 is multi-tenant, wherein system 516 handles storage of, and access to, different objects, data and application across disparate users and organizations.
  • one tenant might be a company that employs a sales force where each salesperson uses system 516 to manage their sales process.
  • a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 522 ).
  • tenant data storage 522 e.g., in tenant data storage 522 .
  • the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
  • user systems 512 (which may be client systems) communicate with application servers 600 to request and update system-level and tenant-level data from system 516 that may require sending one or more queries to tenant data storage 522 and/or system data storage 524 .
  • System 516 e.g., an application server 600 in system 516
  • SQF statements e.g., one or more SQL queries
  • System data storage 524 may generate query plans to access the requested data from the database.
  • Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data filled into predefined categories.
  • a “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects. It should be understood that “table” and “object” may be used interchangeably herein.
  • Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema, each row or record of a table contains an instance of data for each category defined by the fields.
  • a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc.
  • Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc.
  • standard entity tables might be provided for use by all tenants.
  • such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
  • tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields.
  • all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Environmental & Geological Engineering (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

In accordance with embodiments, there are provided mechanisms and methods for monitoring data activity utilizing a shared data store. These mechanisms and methods for monitoring data activity utilizing a shared data store can enable enhanced data monitoring, more efficient data storage, improved system resource utilization, etc.

Description

    CLAIM OF PRIORITY
  • This application is a continuation of U.S. application Ser. No. 13/865,870, filed Apr. 18, 2013 and U.S. application Ser. No. 13/865,879, filed Apr. 18, 2013, which are continuations of U.S. application Ser. No. 13/034,690, filed Feb. 24, 2011, which claims the benefit of U.S. Provisional Patent Application No. 61/307,790, filed Feb. 24, 2010, the entire contents of which are incorporated herein by reference.
  • COPYRIGHT NOTICE
  • A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
  • FIELD OF THE INVENTION
  • One or more implementations relate generally to activity associated with data, and more particularly to monitoring that activity.
  • BACKGROUND
  • The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
  • Conventional systems (e.g., multi-tenant on-demand database systems, etc.) commonly perform monitoring of data activity within the system. For example, local data within the system may be collected and stored to a local database. Unfortunately, techniques for storing and utilizing the collected data have been associated with various limitations.
  • Just by way of example, traditional methods of collecting and storing monitored data in a local database create a considerable load on the database and result in the retrieval of data that may be stale and less useful. Accordingly, it is desirable to provide techniques that improve the storage and utilization of monitored system data.
  • BRIEF SUMMARY
  • In accordance with embodiments, there are provided mechanisms and methods for monitoring data activity utilizing a shared data store. These mechanisms and methods for monitoring data activity utilizing a shared data store can enable enhanced data monitoring, more efficient data storage, improved system resource utilization, etc.
  • In an embodiment and by way of example, a method for monitoring, data activity utilizing a shared data store is provided. In one embodiment, data activity is monitored within a system. Additionally, the monitored data activity is stored within a shared data store. Further, one or more actions are performed, based on the stored data activity.
  • While one or more implementations and techniques are described with reference to an embodiment in which monitoring data activity utilizing a shared data store is implemented in a system having an application server providing a front end for an on-demand database system capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Embodiments may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the embodiments claimed.
  • Any of the above embodiments may be used alone or together with one another in any combination. The one or more implementations encompassed within this specification may also include embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract. Although various embodiments may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments do not necessarily address any of these deficiencies. In other words, different embodiments may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following drawings like reference numbers are used to refer to like elements. Although the following figures depict various examples, the one or more implementations are not limited to the examples depicted in the figures.
  • FIG. 1 illustrates a method for monitoring data activity utilizing a shared data store, in accordance with one embodiment;
  • FIG. 2 illustrates a method for handling concurrent requests utilizing a shared data store, in accordance wish another embodiment;
  • FIG. 3 illustrates a method for performing tracking with limiting utilizing a shared data store, in accordance with another embodiment;
  • FIG. 4 illustrates a method for performing persistent data storage utilizing a shared data store, in accordance with another embodiment;
  • FIG. 5 illustrates a block diagram of an example of an environment wherein an on-demand database system might be used; and
  • FIG. 6 illustrates a block diagram of in embodiment of elements of FIG. 4 and various possible interconnections between these elements.
  • DETAILED DESCRIPTION General Overview
  • Systems and methods are provided for monitoring data activity utilizing a shared data store.
  • As used herein, the term multi-tenant database system refers to those systems in which various elements of hardware and software of the database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
  • Next, mechanisms and methods for monitoring data activity utilizing a shared data store will be described with reference to example embodiments.
  • FIG. 1 illustrates a method 100 for monitoring data activity utilizing a shared data store, in accordance with one embodiment. As shown in operation 102, data activity is monitored within a system. In one embodiment, the data activity may be associated with one or more users of the system. For example, the data activity may be associated with a user of the system, a customer of the system, etc. In another embodiment, the data activity may be associated with an application. For example, the data activity may be associated with a client function, an application provided by the system, etc. In yet another embodiment, the system may include one or more clients and/or servers, a multi-tenant on-demand database system, etc. For example, the system may include a plurality of servers (e.g., application servers, etc.) within a cluster.
  • Additionally, in another embodiment, the data activity may include an amount of data that is transferred utilizing the system. For example, the data activity may include a number of bytes of data transferred between the system and a customer. In another example, the data activity may include a number of application programming interface (API) calls made to the system by a customer. In yet another embodiment, the data activity may include an amount of processing being performed by one or more servers of the system. For example, the data activity may include a number of data requests received from a customer that are currently being serviced by one or more application servers of the system.
  • Further, in one embodiment, the data activity may be monitored for a predetermined amount of time. For example, the data activity may be monitored for a time period of a month, a week, twenty-four hours, etc. Of course, however, the data activity may be monitored for any period of time. In another embodiment, the data activity may include data usage at a particular point in time (e.g., a snapshot of the current activity within the system, etc.).
  • Additionally, it should be noted that, as described above, such multi-tenant on-demand database system may include any service that relies on a database system that is accessible over a network, in which various elements of hardware and software of the database system may be shared by one or more customers (e.g. tenants). For instance, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers. Various examples of such a multi-tenant on-demand database system will be set forth in the context of different embodiments that will be described during reference to subsequent figures.
  • Furthermore, as shown in operation 104, the monitored data activity is stored within a shared data store. In one embodiment, the shared data store may include an open data store. For example, the shared data store may include a general purpose distributed memory caching system (e.g., memcached, etc.).
  • Further still, as shown in operation 106, one or more actions are performed, based on the stored data activity. In one embodiment, the one or more actions may include creating a billing statement. For example, the one or more actions may include creating a bill and sending the bill to a customer of the system based on their monitored data activity within the system. In another embodiment, the one or more actions may include blocking or redirecting one or more elements within the system. For example, the one or more actions may include denying a request for data from a customer or function, queuing the request for data from the customer or function, etc.
  • In this way, the shared data store may be used instead of a database to store the monitored data activity. Additionally, the shared data store may provide a simple, easy to understand framework that may enable developers to easily meter and profile features or sub-systems of the system.
  • FIG. 2 illustrates a method 200 for handling concurrent requests utilizing a shared data store, in accordance with another embodiment. As an option, the present method 200 may be carried out in the context of the functionality of FIG. 1. Of course, however, the method 200 may be carried out in any desired environment. The aforementioned definitions may apply during the present description.
  • As shown in operation 202, each application server within a system stores a key containing a hash of a list of all running applicator servers within the system. In one embodiment, each application server may be aware of all other application servers within the system that are currently operational, and may store the key containing a hash of a list of all application servers within the system based on that knowledge.
  • Additionally, as shown in operation 204, the application server stores the key in association with a customer request count within the shared data store. In one embodiment, the customer request count may include a value indicative of a number of requests made to the application servers by a particular customer. In another embodiment, what a request is received and started by an application server, the customer request count is incremented. Also, in yet another embodiment, when a request is completed and ended by the application server, the customer request count is decremented.
  • Further, as shown in operation 206, one of the plurality of application servers within the system is lost. For example, an application server may shut down, may be non-responsive, may crash, etc. Further still, as shown in operation 208, in response to losing the application server, the hash of the list of all running application servers is altered, thereby altering the corresponding key containing the hash. Also, as shown in operation 210, the customer request count is reset to zero in response to the alteration of the hash.
  • In this way, if an application server that starts a request is lost, that request may not count against the customer request count, and the customer who sent the request may not be unjustly blocked due to lost updates. Additionally, if the customer request count within the shared data store is lost before one or more requests have ended, the customer request count may not be decremented below zero. This may enable the system to determine a number of outstanding requests from each customer that are being serviced by application servers of the system, and regulate the number of allowable customer requests accordingly.
  • FIG. 3 illustrates a method 300 for performing tracking with limiting utilizing a shared data store, in accordance with another embodiment. As an option, the present method 300 may be carried out in the context of the functionality of FIGS. 1-2. Of course, however, the method 300 may be carried out in any desired environment. The aforementioned definitions may apply during the present description.
  • As shown in operation 302, a customer count value is determined for a current predetermined time period. For example, a count value indicative of a number of requests made by a customer for a current hour time period may be determined. Additionally, as shown in operation 304, an aggregate key is determined for a second time period by concatenating a predetermined amount of earlier customer count values with the current customer count value. For example, an aggregate key may be compiled for a twenty-four hour time period by concatenating the last twenty-three customer count values with the current customer count value. In this way, a rolling twenty-four hour window may be created.
  • Further, in one embodiment, if the shared data store loses an aggregate value, the aggregate key may be recalculated utilizing the predetermined amount of earlier customer count values as well as the current customer count value. In this way, tracking of customer requests may be performed without persistence. Further still, a customer may be limited to a predetermined amount of requests (e.g., API calls, data requests, processing requests, etc.) over a predetermined period of time utilizing the aggregate key.
  • FIG. 4 illustrates a method 400 for performing persistent data storage utilizing a shared data store, in accordance with another embodiment. As an option, the present method 400 may be carried out in the context of the functionality of FIGS. 1-3. Of course, however, the method 400 may be carried out in any desired environment. The aforementioned definitions may apply during the present description.
  • As shown in operation 402, every application server of a system identifies a list of keys stored to the shared data store within a predetermined time interval. In one embodiment, the time interval may be one minute, five minutes, an hour, a day, etc. Additionally, as shown in operation 404, during another predetermined time interval, each application server agrees on a particular key or set of keys to append to. Further, as shown in operation 406, each of the application servers append to the particular key the names of all keys that have been updated within the other predetermined time interval.
  • Further still, as shown in operation 408, a designated persister is determined from the application servers. In one embodiment, the designated persister may be elected by all of the application servers. In another embodiment, all application servers may attempt to perform as the designated persister and may become the designated persister if no other application server has indicated an attempt to become the designated persister.
  • Also, as shown in operation 410, the designated persister selects the particular key, retrieves values for all the listed keys within the particular key, and persists such values to the shared data store. In this way, a list of keys that have not been persisted may be stored on each application server. Additionally, a total count of activity may be stored persistently for a customer of the system during a predetermined time period for purposes of billing the customer for such activity.
  • Additionally, in one embodiment, a cluster aware data store may be moved from a database to memcached. Additionally, a new, simple, easy-to-understand framework may be provided that developers may use to meter and profile features or sub-systems. In another embodiment, interval based limiting maybe performed in order to measure an amount of activity occurring within a predetermined time interval, and may provide ways for clients to ask for permission to perform the activity. Additionally, this data may be aggregated across all servers in a cluster. Further, when an amount of activity within a predetermined interval surpasses a threshold, then some type of policy may be enforced. For example, when an organization exceeds a predetermined number of API requests in an hour time period, then all further API requests may be blocked until the number of requests drops below the threshold again. In another embodiment, the captured data may be persisted to a database for historical or auditing purposes.
  • Further still, in one embodiment, concurrent based activity may measure concurrent activity, and may provide ways for clients to ask for permission to perform the activity. In another embodiment, this data may need to be aggregated across all servers in a cluster. For example, an amount of concurrent long running requests may be monitored for a given organization, and when the limit is exceeded, further requests may be denied until the amount of requests drops below the threshold. In yet another embodiment, limits may be elastic and not static. For example, an unbounded number of reports may be allowed to be concurrently run when database CPU utilization is low, but as utilization grows higher, much lower concurrent numbers may be enforced.
  • Also, in another embodiment, historical profiling may not include a notion of “limiting” or “restricting.” Rather, it may only care about capturing events or data, possibly by time interval, that may be persisted for use by others. This data may not need to be aggregated across all servers in a cluster—rather, each server in the cluster may only need to capture and then flush its own data to some central data store. This may be thought of as a feature of resource profiling, and an example today may include capturing knowledge base article views that may only be used for reporting purposes.
  • Additionally, in one embodiment, one implementation may be decomposed into a manageable set of interfaces and base implementations, all of which may be hidden to clients. Rather clients may be able to use any of the supported use cases via implementations already provided, and they may customize those implementations via framework specific objects passed to constructor calls and/or factory methods. A developer wanting to track some activity, possibly with limits enforced, may code this up in minutes, not hours or days, with very few lines of new code.
  • Further, in another embodiment, the central data store to synchronize data across servers in the cluster may no longer be the database. For example, using clustered memcached may result in removing much of the heavy load that older designs pull on a database. In yet another embodiment, all working transient data seeded to make limiting decisions may be pushed to memcached. Oracle may no longer be involved, such that locally collected data may be flushed to memcached, and when cluster-wide data is needed to make a decision it may be retrieved from memcached.
  • In yet another embodiment, the memory footprint of metered data may be reduced in app servers. Additionally, all data may never be synchronized back into all application servers, but instead when a request for data is made on a giver application server the values in the local data cache may be summed with the cluster's values stored in memcached, which may eliminate the need to store all cluster-wide data on each app server.
  • Further still, in one embodiment, the shared data store (e.g., memcached, etc.) may be a transient data store. For example, when a given memcached server in the cluster goes down, all data that was being kept on that server may be lost. In another embodiment, if an implementation cannot tolerate lossy behavior, then an Oracle specific clustered data store implementation may be used. In yet another embodiment, for implementations that may require permanent storage of their data, they may flush to Oracle from the app server's local cache independently of the flush and usage of memcached and therefore may not be affected by memcached server crashes.
  • In another embodiment, there may be implementations that may require interaction with Oracle. These implementations may want to preserve their data permanently (or at least for a longer period of time than the current time interval they're working in). This may apply to some “Interval Activity” and all “Historical Profiling” use case implementations. For these implementations, their flush to Oracle may not be frequent (lessening the excessive churn seen in the current RL design), and it may be a one way push (meaning they don't need to retrieve data to sync up cluster-wide activity, since cluster-wide data usage may be handled through memcached).
  • For example, the “Historical Profiling” use case may include flushing local cache data to Oracle once every 10 minutes. Additionally, the “Interval Activity” use case may need persistence. For example, it may frequently (e.g., every 30 seconds, 2 minutes, etc.) flush a local cache data to memcached, but may flush this same local data to Oracle once over 10 minutes.
  • Also, in one embodiment, for implementations that need to persist their data to Oracle, “sleeping” or purging their old data may be performed. In another embodiment, instead of requiring the client implementation to manage and write the code for this, a simple interface may be provided into defining the sweeping interval for the client's data and then handling the scheduling and executing of their data's sweeping on their behalf.
  • Additionally, in one embodiment, a concurrent based activity model may be introduced with elastic permitting that may enable a self-protecting system. For example, under normal load, requests to run reports may always be approved. However, as database CPU utilization on a given node climbs to a predetermined level, one or more reporting requests may be shed or delayed in response. Also, classifications and priorities of reports and customers may also be supported, such that lower priority organizations and/or historically more expensive reports may be may be shed or delayed first.
  • In another embodiment, Apex activity may be metered within hour intervals, and limits may be enforced after a predetermined threshold is exceeded for that time interval. Additionally, metering may be utilized to capture and/or monitor system activity. In yet another embodiment, the metering framework may take care of periodically flushing data from the appservers where activity occurs to memcached (thus adding those local values to the overall count for entire cluster). In still another embodiment, the Metering framework may also periodically flush data to Oracle, and it may reside in core.metering_count. The default flush to memcached interval may be two minutes, and to Oracle every twenty minutes. These intervals may be overridden by using methods within CountMeteringFactory that may expose these parameters.
  • Further, in one embodiment, metrics may be tracked over a particular time interval. For example, metrics may be tracked over a fixed day, a rolling twenty-four hour period, etc. Additionally, a rolling interval may include a period chopped into various sub-units of time, where when a new unit is “rolled into” the oldest unit “rolls off.” For example, in a rolling twenty-four hour period, activity may be tracked each hour for the past twenty-four hours. Additionally, when a new hour is “rolled into” then all activity on the now twenty-fifth hour no longer counts towards the twenty four hour total.
  • In another embodiment, data may be permanently persisted. For example, data may be flushed to a database so that it may be used for other purposes, such as historical reporting, billing, etc. Also, in one embodiment, static limits may be used in order to enforce a fixed number of concurrent activity (e.g., an organization may only have five instances of an action occurring at any point in time, etc.). In another embodiment, fixed limits may vary by another condition. In yet another embodiment, elastic limits may be used that vary over time. For example, a varying number of concurrent reports may be allowed to be executed based on a utilization level of a targeted node.
  • Further, in one embodiment, usage of computational resources may be metered to provide a general purpose resource metering framework. For example, metering may count, sum, etc. some type of activity occurring within the service, possibly on a per customer/tenant basis. It may then make this data available to all machines in the service, allowing action to be taken when thresholds are met or exceeded. This data may be made available to the service through a shared memory architecture, which may be provided via a clustered memcached caching layer. The facility may be provided to flush activity to the database in case historical records of the activity is needed.
  • Further still, in one embodiment, two primary methods of tracking activity are supported—an aggregate count over some window of time (say over an hour period, or rolling 24 hour period, etc.), and the amount of activity happening concurrently. For concurrent activity implementations, the limit may either by statically defined or be “elastic”. For the elastic version, it may vary the amount of allowed concurrent activity based on the current levels of resource utilization for some resource that is measured. For example, the number of concurrent reports that can be running may be varied based on the current level of utilization of the database CPU. Hence, when utilization is low more reports may be allowed to be concurrently running, but when utilization is high less reports may be allowed to be concurrently running. Thus, activity tracking and concurrent (static or elastic) activity tracking may be provided. Also, in one embodiment, the metering may be performed in association with a multi-tenant on-demand database system.
  • System Overview
  • FIG. 5 illustrates a block diagram of an environment 510 wherein an on-demand database system might be used. Environment 510 may include user systems 512, network 514, system 516, processor system 517, application platform 518, network interlace 520, tenant data storage 522, system data storage 524, program code 526, and process space 528. In other embodiments, environment 510 may not have all of the components listed and/or may have other elements instead of, or in addition to, those listed above.
  • Environment 510 is an environment in which an on-demand database system exists. User system 512 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 512 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated in FIG. 5 (and in more detail in FIG. 6) user systems 512 might interact via a network 514 with an on-demand database system, which is system 516.
  • An on-demand database system, such as system 516, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database systems may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database system 516” and “system 516” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 518 may be a framework that allows the applications of system 516 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database system 516 may include an application platform 518 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database system, users accessing the on-demand database system via user systems 512, or third party application developers accessing the on-demand database system via user systems 512.
  • The users of user systems 512 may differ in their respective capacities, and the capacity of a particular user system 512 might be entirely determined by permissions (permission levels) tor the current user. For example, where a salesperson is using a particular user system 512 to interact with system 516, that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 516, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
  • Network 514 is any network or combination of networks of devices that communicate with one another. For example, network 514 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I,” that network will be used in many of the examples herein. However, it should be understood that the networks that the one or more implementations might use are not so limited, although TCP/IP is a frequently implemented protocol.
  • User systems 512 might communicate with system 516 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used user system 512 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 516. Such an HTTP server might be implemented as the sole network interface between system 516 and network 514, but other techniques might be used us well or instead. In some implementations, the interface between system 516 and network 514 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
  • In one embodiment, system 516, shown in FIG. 5, implements a web-based customer relationship management (CRM) system. For example, in one embodiment, system 516 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, webpages and other information to and from user systems 512 and to store to, and retrieve from, a database system related data, objects, and Webpage content. With a multi-tenant system, data for multiple tenants may be stored in the same physical database object, however, tenant data typically is arranged so that data of one tenant is kept logically separate from that of other tenants to that one tenant does not have access to another tenant's data, unless such data is expressly shared. In certain embodiments, system 516 implements applications other than, or in addition to, a CRM application. For example, system 516 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application. User (or third party developer) applications, which may or may not include CRM, may be supported by the application platform 518, which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 516.
  • One arrangement for elements of system 516 is shown in FIG. 5, including a network interface 520, application platform 518, tenant data storage 522 for tenant data 523, system data storage 524 for system data 525 accessible to system 516 and possibly multiple tenants, program code 526 for implementing various functions of system 516, and a process space 528 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 516 include database indexing processes.
  • Several elements in the system shown in FIG. 5 include conventional, well-known elements that are explained only briefly here. For example, each user system 512 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection. User system 512 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the ease of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 512 to access, process and view information, pages and applications available to it from system 516 over network 514. Each user system 512 also typically includes one or more user interface devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (e.g., a monitor screen, LCD display, etc.) in conjunction with pages, forms, applications and other information provided by system 516 or other systems or servers. For example, the user interface device can be used to access data and applications hosted by system 516, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be prevented to a user. As discussed above embodiments are suitable for use with the Internet, which refers to a specific global internetwork of networks. However, it should be understood that other networks can be used instead of the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
  • According to one embodiment, each user system 512 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 516 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 517, which may include an Intel Pentium® processor or the like, and/or multiple processor units. A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 516 to intercommunicate and to process webpages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g. TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for implementing embodiments can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are Well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
  • According to one embodiment, each system 516 is configured to provide webpages, forms, applications, data and media content to user (client) systems 512 to support the access by user systems 512 as tenants of system 516. As such, system 516 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, the may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
  • FIG. 6 also illustrates environment 510. However, in FIG. 6 elements of system 516 and various interconnections in an embodiment are further illustrated. FIG. 6 shows that user system 512 may include processor system 512A, memory system 512B, input system 512C, and output system 512D. FIG. 6 shows network 514 and system 516. FIG. 6 also shows that system 516 may include tenant data storage 522, tenant data 523, system data storage 524, system data 525, User Interface (UI) 630, Application Program Interface (API) 632, PL/SOQL 634, save routines 636, application setup mechanism 638, applications servers 600 1-600 N, system process space 602, tenant process spaces 604, tenant management process space 610, tenant storage area 612, user storage 614, and application metadata 616. In other embodiments, environment 510 may not have the same elements to those lifted above and/or may have other elements instead of, or in addition to, those listed above.
  • User system 512, network 514, system 516, tenant data storage 522, and system data storage 524 were discussed above in FIG. 5. Regarding user system 512, processor system 512A may be any combination of one or more processors. Memory system 512B may be any combination of one or more memory devices, short term, and/or long term memory. Input system 512C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks. Output system 512D may be any combination of output devices, such as one or more monitors, printers, and or interfaces to networks. As shown by FIG. 6, system 516 may include a network interface 520 (of FIG. 5) implemented as a set of HTTP application servers 600, an application platform 518, tenant data storage 522, and system data storage 524. Also shown is system process space 602, including individual tenant process spaces 604 and a tenant management process space 610. Each application server 600 may be configured to tenant data storage 522 and the tenant data 523 therein, and system data storage 524 and the system data 525 therein to serve requests of user systems 512. The tenant data 523 might be divided into individual tenant storage areas 612, which can be either a physical arrangement and/or a logical arrangement of data. Within each tenant storage area 612, user storage 614 and application metadata 616 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 614. Similarly, a copy of MRU items for an entire organization that is a tenant might be stored to tenant storage area 612. A UI 630 provides a user interface and an API 632 provides an application programmer interface to system 516 resident processes to users and/or developers at user systems 512. The tenant data and the system data may be stored in various databases, such as one or more Oracle™ databases.
  • Application platform 518 includes an application setup mechanism 638 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 522 by save routines 636 for execution by subscribers as one or more tenant process spaces 604 managed by tenant management process 610 for example. Invocations to such applications may be coded using PL/SOQL 634 that provides a programming language style interface extension to API 632. A detailed description of some PL/SOQL language embodiments is discussed in commonly owned co-pending U.S. Provisional Patent Application 60/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by ore or more system processes, which manages retrieving application metadata 616 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
  • Each application server 600 may be communicably coupled to database systems, e.g., having access to system data 525 and tenant data 523, via a different network connection. For example, one application server 600 1 might be coupled via the network 514 (e.g., the Internet), another application server 600 N-1 might be coupled via a direct network link, and another application server 600 N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 600 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
  • In certain embodiments, each application server 600 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 600. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 600 and the user systems 512 to distribute requests to the application servers 600. In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 600. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 600, and three requests from different users could hit the same application server 600. In this manner, system 516 is multi-tenant, wherein system 516 handles storage of, and access to, different objects, data and application across disparate users and organizations.
  • As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 516 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 522). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
  • While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Then, there might be some data structures managed by system 516 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 516 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
  • In certain embodiments, user systems 512 (which may be client systems) communicate with application servers 600 to request and update system-level and tenant-level data from system 516 that may require sending one or more queries to tenant data storage 522 and/or system data storage 524. System 516 (e.g., an application server 600 in system 516) automatically generates one or more SQF statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 524 may generate query plans to access the requested data from the database.
  • Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data filled into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema, each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
  • In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. patent application Ser. No. 10/817,161, filed Apr. 2, 2004, entitled “Custom Entities and Fields in a Multi-Tenant Database System”, and which is hereby incorporated herein by reference, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain embodiments, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
  • While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (19)

1. A computer program product, comprising a non-transitory computer usable medium having a computer readable program code embodied therein, the computer readable program code adapted to be executed by a computer to implement a method comprising:
identifying, by a database system that includes a plurality of servers and a distributed memory cache shared by the servers, data activity performed across the servers, the data activity including events associated with a user system coupled to the database system, wherein identifying the data activity comprises activity tracking using a request count within the distributed memory cache,
storing, by the database system, first information indicating the identified data activity;
following the storing of the first information, moving a portion of the first information to the distributed memory cache;
generating, by the database system, second information associated with the data activity from contents of the distributed memory cache, wherein the generated second information is based on a total count of activity indicated by the request count; and
providing the user system with access to the generated second information.
2. The computer program product of claim 1, wherein the data activity is associated with one or more users associated with the user system.
3. The computer program product of claim 1, wherein the data activity is associated with an application available to the user system from the database system.
4. The computer program product of claim 1, wherein the database system includes a multi-tenant database system.
5. The computer program product of claim 1, wherein the data activity relates to data that is transferred to the database system.
6. The computer program product of claim 1, wherein the data activity relates to application programming interface (API) calls made to the database system.
7. The computer program product of claim 1, wherein the portion of the first information includes data activity performed during a most recent predetermined period of time.
8. The computer program product of claim 1, further comprising:
storing, within a database of the database system, the first information; and
moving the portion of the first information from the database to the distributed memory cache.
9. A method, comprising:
identifying, by a database system that includes a plurality of servers and a distributed memory cache shared by the servers, data activity performed across the servers, the data activity including events associated with a user system coupled to the database system, wherein identifying the data activity comprises activity tracking using a request count within the distributed memory cache;
storing, by the database system, first information indicating the identified data activity;
following the storing of the first information, moving a portion of the first information to the distributed memory cache;
generating, by the database system, second information associated with the data activity from contents of the distributed memory cache, wherein the generated second information is based on a total count of activity indicated by the request count; and
providing the user system with access to the generated second information.
10. The method of claim 9, wherein the portion of the first information includes data activity performed during a most recent predetermined period of time.
11. The method of claim 10, further comprising:
storing, within a database of the database system, the first information; and
moving the portion of the first information from the database to the distributed memory cache.
12. An apparatus, comprising:
a processor of a database system, the database system including a plurality of servers and a distributed memory cache shared by the servers, the processor to:
identify data activity performed across the servers, the data activity including events associated with a user system coupled to the database system, wherein identity the data activity comprises activity tracking using a request count within the distributed memory cache;
store first information indicating the identified data activity;
following storage of the first information, move a portion of the first information to the distributed memory cache;
generate second information associated with the data activity from contents of the distributed memory cache, wherein the generated second information is based on a total count of activity indicated by the request count; and
provide the user system with access to the generated second information.
13. The apparatus of claim 12, wherein the data activity is associated with one or more users associated with the user system.
14. The apparatus of claim 12, wherein the data activity is associated with an application available to the user system from the database system.
15. The apparatus of claim 12, wherein the database system includes a multi-tenant database system.
14. The apparatus of claim 12, wherein the data activity relates to data that is transferred to the database system.
17. The apparatus of claim 12, wherein the data activity relates to application programming interface (API) calls made to the database system.
18. The apparatus of claim 12, wherein the portion of the first information includes data activity performed during a most recent predetermined period of time.
19. The apparatus of claim 10, the processor further to:
store, within a database of the database system, the first information; and
move the portion of the first information from the database to the distributed memory cache.
US16/546,133 2010-02-24 2019-08-20 System, method and computer program product for monitoring data activity utilizing a shared data store Abandoned US20190370145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/546,133 US20190370145A1 (en) 2010-02-24 2019-08-20 System, method and computer program product for monitoring data activity utilizing a shared data store

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US30779010P 2010-02-24 2010-02-24
US13/034,690 US8898287B2 (en) 2010-02-24 2011-02-24 System, method and computer program product for monitoring data activity utilizing a shared data store
US13/865,879 US9237080B2 (en) 2010-02-24 2013-04-18 System, method and computer program product for monitoring data activity utilizing a shared data store
US13/865,870 US9178788B2 (en) 2010-02-24 2013-04-18 System, method and computer program product for monitoring data activity utilizing a shared data store
US14/868,185 US9607034B2 (en) 2010-02-24 2015-09-28 System, method and computer program product for monitoring data activity utilizing a shared data store
US15/470,858 US10055328B2 (en) 2010-02-24 2017-03-27 System, method and computer program product for monitoring data activity utilizing a shared data store
US16/017,232 US10423513B2 (en) 2010-02-24 2018-06-25 System, method and computer program product for monitoring data activity utilizing a shared data store
US16/546,133 US20190370145A1 (en) 2010-02-24 2019-08-20 System, method and computer program product for monitoring data activity utilizing a shared data store

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/017,232 Continuation US10423513B2 (en) 2010-02-24 2018-06-25 System, method and computer program product for monitoring data activity utilizing a shared data store

Publications (1)

Publication Number Publication Date
US20190370145A1 true US20190370145A1 (en) 2019-12-05

Family

ID=44477424

Family Applications (7)

Application Number Title Priority Date Filing Date
US13/034,690 Active 2031-05-21 US8898287B2 (en) 2010-02-24 2011-02-24 System, method and computer program product for monitoring data activity utilizing a shared data store
US13/865,879 Active 2031-09-19 US9237080B2 (en) 2010-02-24 2013-04-18 System, method and computer program product for monitoring data activity utilizing a shared data store
US13/865,870 Active 2031-10-13 US9178788B2 (en) 2010-02-24 2013-04-18 System, method and computer program product for monitoring data activity utilizing a shared data store
US14/868,185 Active US9607034B2 (en) 2010-02-24 2015-09-28 System, method and computer program product for monitoring data activity utilizing a shared data store
US15/470,858 Active US10055328B2 (en) 2010-02-24 2017-03-27 System, method and computer program product for monitoring data activity utilizing a shared data store
US16/017,232 Active US10423513B2 (en) 2010-02-24 2018-06-25 System, method and computer program product for monitoring data activity utilizing a shared data store
US16/546,133 Abandoned US20190370145A1 (en) 2010-02-24 2019-08-20 System, method and computer program product for monitoring data activity utilizing a shared data store

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US13/034,690 Active 2031-05-21 US8898287B2 (en) 2010-02-24 2011-02-24 System, method and computer program product for monitoring data activity utilizing a shared data store
US13/865,879 Active 2031-09-19 US9237080B2 (en) 2010-02-24 2013-04-18 System, method and computer program product for monitoring data activity utilizing a shared data store
US13/865,870 Active 2031-10-13 US9178788B2 (en) 2010-02-24 2013-04-18 System, method and computer program product for monitoring data activity utilizing a shared data store
US14/868,185 Active US9607034B2 (en) 2010-02-24 2015-09-28 System, method and computer program product for monitoring data activity utilizing a shared data store
US15/470,858 Active US10055328B2 (en) 2010-02-24 2017-03-27 System, method and computer program product for monitoring data activity utilizing a shared data store
US16/017,232 Active US10423513B2 (en) 2010-02-24 2018-06-25 System, method and computer program product for monitoring data activity utilizing a shared data store

Country Status (1)

Country Link
US (7) US8898287B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8898287B2 (en) 2010-02-24 2014-11-25 Salesforce.Com, Inc. System, method and computer program product for monitoring data activity utilizing a shared data store
US8839209B2 (en) 2010-05-12 2014-09-16 Salesforce.Com, Inc. Software performance profiling in a multi-tenant environment
US8595207B2 (en) 2010-06-14 2013-11-26 Salesforce.Com Methods and systems for dynamically suggesting answers to questions submitted to a portal of an online service
US10324946B2 (en) 2011-06-23 2019-06-18 Salesforce.Com Inc. Methods and systems for caching data shared between organizations in a multi-tenant database system
US20120331084A1 (en) * 2011-06-24 2012-12-27 Motorola Mobility, Inc. Method and System for Operation of Memory System Having Multiple Storage Devices
US8930489B2 (en) * 2011-10-11 2015-01-06 Rakspace US, Inc. Distributed rate limiting of handling requests
CN106557272B (en) * 2015-09-30 2019-07-30 中国科学院软件研究所 A kind of efficient sensor historic data archiving method
CN107942986A (en) * 2017-12-21 2018-04-20 东莞科耀机电设备有限公司 A kind of production monitoring method
US11055162B2 (en) * 2018-10-31 2021-07-06 Salesforce.Com, Inc. Database system performance degradation detection
US11379483B1 (en) * 2021-03-30 2022-07-05 Sap Se Routing SQL statements to elastic compute nodes using workload class

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040044731A1 (en) * 2002-03-22 2004-03-04 Kailai Chen System and method for optimizing internet applications
US6782350B1 (en) * 2001-04-27 2004-08-24 Blazent, Inc. Method and apparatus for managing resources
US7058826B2 (en) * 2000-09-27 2006-06-06 Amphus, Inc. System, architecture, and method for logical server and other network devices in a dynamically configurable multi-server network environment
US7093004B2 (en) * 2002-02-04 2006-08-15 Datasynapse, Inc. Using execution statistics to select tasks for redundant assignment in a distributed computing platform
US7165041B1 (en) * 1999-05-27 2007-01-16 Accenture, Llp Web-based architecture sales tool
US7246159B2 (en) * 2002-11-01 2007-07-17 Fidelia Technology, Inc Distributed data gathering and storage for use in a fault and performance monitoring system
US20070260641A1 (en) * 2006-05-02 2007-11-08 Mypoints.Com Inc. Real-time aggregate counting in a distributed system architecture
US7302425B1 (en) * 2003-06-09 2007-11-27 Microsoft Corporation Distributed pre-cached query results and refresh method
US7325047B2 (en) * 2001-05-23 2008-01-29 International Business Machines Corporation Dynamic undeployment of services in a computing network
US20080052384A1 (en) * 2004-12-07 2008-02-28 Brett Marl Network administration tool
US7383191B1 (en) * 2000-11-28 2008-06-03 International Business Machines Corporation Method and system for predicting causes of network service outages using time domain correlation
US20080177994A1 (en) * 2003-01-12 2008-07-24 Yaron Mayer System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows
US20080215736A1 (en) * 2005-07-19 2008-09-04 Bo Astrom Method and Apparatus for Allocating a Server in an Ims Network
US7430641B2 (en) * 2004-08-09 2008-09-30 Xiv Ltd. System method and circuit for retrieving into cache data from one or more mass data storage devices
US7493655B2 (en) * 2000-03-22 2009-02-17 Comscore Networks, Inc. Systems for and methods of placing user identification in the header of data packets usable in user demographic reporting and collecting usage data
US7526479B2 (en) * 2003-12-30 2009-04-28 Sap Ag Configuration manager in enterprise computing system
US7617201B1 (en) * 2001-06-20 2009-11-10 Microstrategy, Incorporated System and method for analyzing statistics in a reporting system
US20090292803A1 (en) * 2008-05-21 2009-11-26 James Paul Schneider Method for measuring web visitors
US7650505B1 (en) * 2005-06-17 2010-01-19 Sun Microsystems, Inc. Methods and apparatus for persistence of authentication and authorization for a multi-tenant internet hosted site using cookies
US20100106764A1 (en) * 2008-10-29 2010-04-29 The Go Daddy Group, Inc. Datacenter hosting multiple online data management solutions
US7777648B2 (en) * 2005-04-21 2010-08-17 Microsoft Corporation Mode information displayed in a mapping application
US7886033B2 (en) * 2004-12-07 2011-02-08 Cisco Technology, Inc. Network administration tool employing a network administration protocol
US7930285B2 (en) * 2000-03-22 2011-04-19 Comscore, Inc. Systems for and methods of user demographic reporting usable for identifying users and collecting usage data
US8041897B2 (en) * 2006-02-22 2011-10-18 Arm Limited Cache management within a data processing apparatus
US8086480B2 (en) * 2008-09-25 2011-12-27 Ebay Inc. Methods and systems for activity-based recommendations
US8204986B2 (en) * 2007-07-27 2012-06-19 Vmware, Inc. Multi-hierarchy latency measurement in data centers
US8275815B2 (en) * 2008-08-25 2012-09-25 International Business Machines Corporation Transactional processing for clustered file systems
US8341595B2 (en) * 2007-05-30 2012-12-25 Roam Data Inc System and method for developing rich internet applications for remote computing devices
US8612569B2 (en) * 2005-12-12 2013-12-17 Ebay Inc. Method and system for proxy tracking of third party interactions
US8818975B2 (en) * 2009-12-18 2014-08-26 Sap Ag Data model access configuration and customization
US8880636B2 (en) * 2010-03-25 2014-11-04 Telefonaktiebolaget L M Ericsson (Publ) Caching in mobile networks
US8880524B2 (en) * 2009-07-17 2014-11-04 Apple Inc. Scalable real time event stream processing
US8886760B2 (en) * 2009-06-30 2014-11-11 Sandisk Technologies Inc. System and method of predictive data acquisition
US9058416B2 (en) * 2000-12-11 2015-06-16 Peter K. Trzyna System and method for detecting and reporting online activity using real-time content-based network monitoring
US10142392B2 (en) * 2007-01-24 2018-11-27 Icontrol Networks, Inc. Methods and systems for improved system performance

Family Cites Families (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4626893A (en) * 1992-09-14 1994-03-24 Aprex Corporation Contactless communication system
US5649104A (en) * 1993-03-19 1997-07-15 Ncr Corporation System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers
US5608872A (en) * 1993-03-19 1997-03-04 Ncr Corporation System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters
US7991347B1 (en) 1994-04-07 2011-08-02 Data Innovation Llc System and method for accessing set of digital data at a remote site
US5577188A (en) * 1994-05-31 1996-11-19 Future Labs, Inc. Method to provide for virtual screen overlay
US7181758B1 (en) 1994-07-25 2007-02-20 Data Innovation, L.L.C. Information distribution and processing system
GB2300991B (en) * 1995-05-15 1997-11-05 Andrew Macgregor Ritchie Serving signals to browsing clients
WO1996042172A2 (en) 1995-06-09 1996-12-27 Philips Electronics N.V. Method for enabling a user to fetch a specific information item from a set of information items, and a system for carrying out such a method
US5715450A (en) * 1995-09-27 1998-02-03 Siebel Systems, Inc. Method of selecting and presenting data from a database using a query language to a user of a computer system
US5831610A (en) * 1996-02-23 1998-11-03 Netsuite Development L.P. Designing networks
US5821937A (en) * 1996-02-23 1998-10-13 Netsuite Development, L.P. Computer method for updating a network design
US6604117B2 (en) 1996-03-19 2003-08-05 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US5873096A (en) * 1997-10-08 1999-02-16 Siebel Systems, Inc. Method of maintaining a network of partially replicated database system
US5956400A (en) * 1996-07-19 1999-09-21 Digicash Incorporated Partitioned information storage systems with controlled retrieval
AU6440398A (en) * 1997-02-26 1998-09-18 Siebel Systems, Inc. Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions
AU6654798A (en) * 1997-02-26 1998-09-18 Siebel Systems, Inc. Method of determining visibility to a remote database client of a plurality of database transactions using a networked proxy server
AU6183698A (en) * 1997-02-26 1998-09-18 Siebel Systems, Inc. Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths
AU6336698A (en) * 1997-02-26 1998-09-29 Siebel Systems, Inc. Distributed relational database
JP2002511164A (en) * 1997-02-26 2002-04-09 シーベル システムズ,インコーポレイティド How to determine the visibility of a remote database client for multiple database transactions for use in simplified visibility rules
JP2001514776A (en) * 1997-02-27 2001-09-11 シーベル システムズ,インコーポレイティド A method of continuous level transport of software distribution incorporating local modifications.
WO1998040805A2 (en) * 1997-02-27 1998-09-17 Siebel Systems, Inc. Method of synchronizing independently distributed software and database schema
AU6669198A (en) * 1997-02-28 1998-09-18 Siebel Systems, Inc. Partially replicated distributed database with multiple levels of remote clients
US5852714A (en) * 1997-05-21 1998-12-22 Eten Information System Co., Ltd. Real time broadcasting system on an internet
US5983227A (en) 1997-06-12 1999-11-09 Yahoo, Inc. Dynamic page generator
US6169534B1 (en) * 1997-06-26 2001-01-02 Upshot.Com Graphical user interface for customer information management
US5918159A (en) * 1997-08-04 1999-06-29 Fomukong; Mundi Location reporting satellite paging system with optional blocking of location reporting
US6560461B1 (en) * 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
US6236978B1 (en) 1997-11-14 2001-05-22 New York University System and method for dynamic profiling of users in one-to-one applications
US20020059095A1 (en) 1998-02-26 2002-05-16 Cook Rachael Linette System and method for generating, capturing, and managing customer lead information over a computer network
US6732111B2 (en) 1998-03-03 2004-05-04 Siebel Systems, Inc. Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database
US6772229B1 (en) 2000-11-13 2004-08-03 Groupserve, Inc. Centrifugal communication and collaboration method
US6161149A (en) * 1998-03-13 2000-12-12 Groupserve, Inc. Centrifugal communication and collaboration method
US5963953A (en) * 1998-03-30 1999-10-05 Siebel Systems, Inc. Method, and system for product configuration
JP2002523842A (en) * 1998-08-27 2002-07-30 アップショット・コーポレーション Method and apparatus for network-based sales force management
WO2000022551A1 (en) 1998-10-13 2000-04-20 Chris Cheah Method and system for controlled distribution of information over a network
US6601087B1 (en) 1998-11-18 2003-07-29 Webex Communications, Inc. Instant document sharing
US6549908B1 (en) * 1998-11-18 2003-04-15 Siebel Systems, Inc. Methods and apparatus for interpreting user selections in the context of a relation distributed as a set of orthogonalized sub-relations
US6728960B1 (en) 1998-11-18 2004-04-27 Siebel Systems, Inc. Techniques for managing multiple threads in a browser environment
JP2002531890A (en) * 1998-11-30 2002-09-24 シーベル システムズ,インコーポレイティド Development tools, methods and systems for client-server applications
AU2707200A (en) 1998-11-30 2000-06-19 Siebel Systems, Inc. Assignment manager
JP2002531899A (en) 1998-11-30 2002-09-24 シーベル システムズ,インコーポレイティド State model for process monitoring
WO2000033226A1 (en) * 1998-11-30 2000-06-08 Siebel Systems, Inc. Smart scripting call centers
US7937325B2 (en) * 1998-12-08 2011-05-03 Yodlee.Com, Inc. Interactive bill payment center
US7356482B2 (en) 1998-12-18 2008-04-08 Alternative Systems, Inc. Integrated change management unit
US6839739B2 (en) * 1999-02-09 2005-01-04 Hewlett-Packard Development Company, L.P. Computer architecture with caching of history counters for dynamic page placement
US6574635B2 (en) * 1999-03-03 2003-06-03 Siebel Systems, Inc. Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components
US20020072951A1 (en) * 1999-03-03 2002-06-13 Michael Lee Marketing support database management method, system and program product
US6288717B1 (en) 1999-03-19 2001-09-11 Terry Dunkle Headline posting algorithm
US6907566B1 (en) 1999-04-02 2005-06-14 Overture Services, Inc. Method and system for optimum placement of advertisements on a webpage
US8095413B1 (en) 1999-05-07 2012-01-10 VirtualAgility, Inc. Processing management information
US7698160B2 (en) 1999-05-07 2010-04-13 Virtualagility, Inc System for performing collaborative tasks
US6408362B1 (en) * 1999-06-24 2002-06-18 International Business Machines Corporation Data processing system, cache, and method that select a castout victim in response to the latencies of memory copies of cached data
US6442653B1 (en) * 1999-06-24 2002-08-27 International Business Machines Corporation Data processing system, cache, and method that utilize a coherency state to indicate the latency of cached data
US6765864B1 (en) * 1999-06-29 2004-07-20 Cisco Technology, Inc. Technique for providing dynamic modification of application specific policies in a feedback-based, adaptive data network
US6411949B1 (en) 1999-08-12 2002-06-25 Koninklijke Philips Electronics N.V., Customizing database information for presentation with media selections
US6621834B1 (en) 1999-11-05 2003-09-16 Raindance Communications, Inc. System and method for voice transmission over network protocols
US6535909B1 (en) * 1999-11-18 2003-03-18 Contigo Software, Inc. System and method for record and playback of collaborative Web browsing session
US6671714B1 (en) 1999-11-23 2003-12-30 Frank Michael Weyer Method, apparatus and business system for online communications with online and offline recipients
US6324568B1 (en) 1999-11-30 2001-11-27 Siebel Systems, Inc. Method and system for distributing objects over a network
US6654032B1 (en) 1999-12-23 2003-11-25 Webex Communications, Inc. Instant sharing of documents on a remote server
US7136860B2 (en) 2000-02-14 2006-11-14 Overture Services, Inc. System and method to determine the validity of an interaction on a network
US6983317B1 (en) * 2000-02-28 2006-01-03 Microsoft Corporation Enterprise management system
US8010703B2 (en) * 2000-03-30 2011-08-30 Prashtama Wireless Llc Data conversion services and associated distributed processing system
US7266502B2 (en) * 2000-03-31 2007-09-04 Siebel Systems, Inc. Feature centric release manager method and system
US6577726B1 (en) * 2000-03-31 2003-06-10 Siebel Systems, Inc. Computer telephony integration hotelling method and system
US6336137B1 (en) * 2000-03-31 2002-01-01 Siebel Systems, Inc. Web client-server system and method for incompatible page markup and presentation languages
US6732100B1 (en) 2000-03-31 2004-05-04 Siebel Systems, Inc. Database access method and system for user role defined access
US6665655B1 (en) 2000-04-14 2003-12-16 Rightnow Technologies, Inc. Implicit rating of retrieved information in an information search system
US6842748B1 (en) 2000-04-14 2005-01-11 Rightnow Technologies, Inc. Usage based strength between related information in an information retrieval system
US6434550B1 (en) * 2000-04-14 2002-08-13 Rightnow Technologies, Inc. Temporal updates of relevancy rating of retrieved information in an information search system
US7730072B2 (en) * 2000-04-14 2010-06-01 Rightnow Technologies, Inc. Automated adaptive classification system for knowledge networks
US8135796B1 (en) * 2000-05-09 2012-03-13 Oracle America, Inc. Mechanism and apparatus for accessing and addressing services in a distributed computing environment
US6763501B1 (en) 2000-06-09 2004-07-13 Webex Communications, Inc. Remote document serving
JP4236922B2 (en) 2000-07-11 2009-03-11 ヤフー! インコーポレイテッド Online playback system with community bias
US7069231B1 (en) 2000-07-20 2006-06-27 Oracle International Corporation Methods and systems for defining, applying and executing customer care relationship plans
US9171851B2 (en) * 2000-08-08 2015-10-27 The Directv Group, Inc. One click web records
US7124252B1 (en) * 2000-08-21 2006-10-17 Intel Corporation Method and apparatus for pipelining ordered input/output transactions to coherent memory in a distributed memory, cache coherent, multi-processor system
US9525696B2 (en) * 2000-09-25 2016-12-20 Blue Coat Systems, Inc. Systems and methods for processing data flows
KR100365357B1 (en) * 2000-10-11 2002-12-18 엘지전자 주식회사 Method for data communication of mobile terminal
US8868448B2 (en) * 2000-10-26 2014-10-21 Liveperson, Inc. Systems and methods to facilitate selling of products and services
US7865596B2 (en) * 2000-11-02 2011-01-04 Oracle America, Inc. Switching system for managing storage in digital networks
US7581230B2 (en) * 2001-02-06 2009-08-25 Siebel Systems, Inc. Adaptive communication application programming interface
USD454139S1 (en) * 2001-02-20 2002-03-05 Rightnow Technologies Display screen for a computer
US7310687B2 (en) 2001-03-23 2007-12-18 Cisco Technology, Inc. Methods and systems for managing class-based condensation
US6829655B1 (en) 2001-03-28 2004-12-07 Siebel Systems, Inc. Method and system for server synchronization with a computing device via a companion device
US7174514B2 (en) * 2001-03-28 2007-02-06 Siebel Systems, Inc. Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site
US7363388B2 (en) * 2001-03-28 2008-04-22 Siebel Systems, Inc. Method and system for direct server synchronization with a computing device
US20030206192A1 (en) 2001-03-31 2003-11-06 Mingte Chen Asynchronous message push to web browser
US20030018705A1 (en) * 2001-03-31 2003-01-23 Mingte Chen Media-independent communication server
US6732095B1 (en) 2001-04-13 2004-05-04 Siebel Systems, Inc. Method and apparatus for mapping between XML and relational representations
US7761288B2 (en) * 2001-04-30 2010-07-20 Siebel Systems, Inc. Polylingual simultaneous shipping of software
US6782383B2 (en) 2001-06-18 2004-08-24 Siebel Systems, Inc. System and method to implement a persistent and dismissible search center frame
US6711565B1 (en) 2001-06-18 2004-03-23 Siebel Systems, Inc. Method, apparatus, and system for previewing search results
US6728702B1 (en) 2001-06-18 2004-04-27 Siebel Systems, Inc. System and method to implement an integrated search center supporting a full-text search and query on a database
US6763351B1 (en) 2001-06-18 2004-07-13 Siebel Systems, Inc. Method, apparatus, and system for attaching search results
US20030004971A1 (en) * 2001-06-29 2003-01-02 Gong Wen G. Automatic generation of data models and accompanying user interfaces
US7761535B2 (en) 2001-09-28 2010-07-20 Siebel Systems, Inc. Method and system for server synchronization with a computing device
US6993712B2 (en) * 2001-09-28 2006-01-31 Siebel Systems, Inc. System and method for facilitating user interaction in a browser environment
US6978445B2 (en) * 2001-09-28 2005-12-20 Siebel Systems, Inc. Method and system for supporting user navigation in a browser environment
US6724399B1 (en) 2001-09-28 2004-04-20 Siebel Systems, Inc. Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser
US6826582B1 (en) 2001-09-28 2004-11-30 Emc Corporation Method and system for using file systems for content management
US8359335B2 (en) * 2001-09-29 2013-01-22 Siebel Systems, Inc. Computing system and method to implicitly commit unsaved data for a world wide web application
US7962565B2 (en) * 2001-09-29 2011-06-14 Siebel Systems, Inc. Method, apparatus and system for a mobile web client
US6901595B2 (en) * 2001-09-29 2005-05-31 Siebel Systems, Inc. Method, apparatus, and system for implementing a framework to support a web-based application
US7146617B2 (en) * 2001-09-29 2006-12-05 Siebel Systems, Inc. Method, apparatus, and system for implementing view caching in a framework to support web-based applications
US7289949B2 (en) * 2001-10-09 2007-10-30 Right Now Technologies, Inc. Method for routing electronic correspondence based on the level and type of emotion contained therein
US7062502B1 (en) 2001-12-28 2006-06-13 Kesler John N Automated generation of dynamic data entry user interface for relational database management systems
US6804330B1 (en) 2002-01-04 2004-10-12 Siebel Systems, Inc. Method and system for accessing CRM data via voice
US7058890B2 (en) 2002-02-13 2006-06-06 Siebel Systems, Inc. Method and system for enabling connectivity to a data system
US7131071B2 (en) 2002-03-29 2006-10-31 Siebel Systems, Inc. Defining an approval process for requests for approval
US7672853B2 (en) 2002-03-29 2010-03-02 Siebel Systems, Inc. User interface for processing requests for approval
US7266541B2 (en) * 2002-04-12 2007-09-04 International Business Machines Corporation Adaptive edge processing of application data
US6850949B2 (en) 2002-06-03 2005-02-01 Right Now Technologies, Inc. System and method for generating a dynamic interface via a communications network
US9171049B2 (en) * 2002-06-13 2015-10-27 Salesforce.Com, Inc. Offline simulation of online session between client and server
US7437720B2 (en) 2002-06-27 2008-10-14 Siebel Systems, Inc. Efficient high-interactivity user interface for client-server applications
US8639542B2 (en) 2002-06-27 2014-01-28 Siebel Systems, Inc. Method and apparatus to facilitate development of a customer-specific business process model
US7594181B2 (en) 2002-06-27 2009-09-22 Siebel Systems, Inc. Prototyping graphical user interfaces
US20040010489A1 (en) 2002-07-12 2004-01-15 Rightnow Technologies, Inc. Method for providing search-specific web pages in a network computing environment
US8612404B2 (en) * 2002-07-30 2013-12-17 Stored Iq, Inc. Harvesting file system metsdata
US8417678B2 (en) * 2002-07-30 2013-04-09 Storediq, Inc. System, method and apparatus for enterprise policy management
US7251787B2 (en) 2002-08-28 2007-07-31 Siebel Systems, Inc. Method and apparatus for an integrated process modeller
US7069497B1 (en) 2002-09-10 2006-06-27 Oracle International Corp. System and method for applying a partial page change
US9448860B2 (en) 2003-03-21 2016-09-20 Oracle America, Inc. Method and architecture for providing data-change alerts to external applications via a push service
JP2006523353A (en) 2003-03-24 2006-10-12 シーベル システムズ,インコーポレイティド Common common object
US7904340B2 (en) 2003-03-24 2011-03-08 Siebel Systems, Inc. Methods and computer-readable medium for defining a product model
US7406501B2 (en) 2003-03-24 2008-07-29 Yahoo! Inc. System and method for instant messaging using an e-mail protocol
WO2004086197A2 (en) 2003-03-24 2004-10-07 Siebel Systems, Inc. Custom common object
US8762415B2 (en) 2003-03-25 2014-06-24 Siebel Systems, Inc. Modeling of order data
US7685515B2 (en) 2003-04-04 2010-03-23 Netsuite, Inc. Facilitating data manipulation in a browser-based user interface of an enterprise business application
US7209929B2 (en) * 2003-04-17 2007-04-24 Salesforce.Com, Inc. Java object cache server for databases
US7412455B2 (en) 2003-04-30 2008-08-12 Dillon David M Software framework that facilitates design and implementation of database applications
US7620655B2 (en) 2003-05-07 2009-11-17 Enecto Ab Method, device and computer program product for identifying visitors of websites
US7409336B2 (en) 2003-06-19 2008-08-05 Siebel Systems, Inc. Method and system for searching data based on identified subset of categories and relevance-scored text representation-category combinations
US20040260659A1 (en) 2003-06-23 2004-12-23 Len Chan Function space reservation system
US7237227B2 (en) 2003-06-30 2007-06-26 Siebel Systems, Inc. Application user interface template with free-form layout
US7937493B2 (en) * 2003-08-14 2011-05-03 Oracle International Corporation Connection pool use of runtime load balancing service performance advisories
US7694314B2 (en) 2003-08-28 2010-04-06 Siebel Systems, Inc. Universal application network architecture
US7779039B2 (en) * 2004-04-02 2010-08-17 Salesforce.Com, Inc. Custom entities and fields in a multi-tenant database system
US7529728B2 (en) * 2003-09-23 2009-05-05 Salesforce.Com, Inc. Query optimization in a multi-tenant database system
US20050177635A1 (en) * 2003-12-18 2005-08-11 Roland Schmidt System and method for allocating server resources
US7269590B2 (en) 2004-01-29 2007-09-11 Yahoo! Inc. Method and system for customizing views of information associated with a social network user
US8983966B2 (en) * 2004-02-27 2015-03-17 Ebay Inc. Method and system to monitor a diverse heterogeneous application environment
US8949395B2 (en) * 2004-06-01 2015-02-03 Inmage Systems, Inc. Systems and methods of event driven recovery management
US8533229B2 (en) * 2004-06-16 2013-09-10 Salesforce.Com, Inc. Soap-based web services in a multi-tenant database system
US8607322B2 (en) 2004-07-21 2013-12-10 International Business Machines Corporation Method and system for federated provisioning
US7289976B2 (en) 2004-12-23 2007-10-30 Microsoft Corporation Easy-to-use data report specification
US7747648B1 (en) 2005-02-14 2010-06-29 Yahoo! Inc. World modeling using a relationship network with communication channels to entities
US7774366B2 (en) * 2005-03-08 2010-08-10 Salesforce.Com, Inc. Systems and methods for implementing multi-application tabs and tab sets
US9471925B2 (en) * 2005-09-14 2016-10-18 Millennial Media Llc Increasing mobile interactivity
US7827208B2 (en) 2006-08-11 2010-11-02 Facebook, Inc. Generating a feed of stories personalized for members of a social network
US7945653B2 (en) 2006-10-11 2011-05-17 Facebook, Inc. Tagging digital media
US8150816B2 (en) * 2005-12-29 2012-04-03 Nextlabs, Inc. Techniques of optimizing policies in an information management system
US9407662B2 (en) * 2005-12-29 2016-08-02 Nextlabs, Inc. Analyzing activity data of an information management system
US8677499B2 (en) * 2005-12-29 2014-03-18 Nextlabs, Inc. Enforcing access control policies on servers in an information management system
US7502889B2 (en) * 2005-12-30 2009-03-10 Intel Corporation Home node aware replacement policy for caches in a multiprocessor system
US7660296B2 (en) * 2005-12-30 2010-02-09 Akamai Technologies, Inc. Reliable, high-throughput, high-performance transport and routing mechanism for arbitrary data flows
US9135228B2 (en) 2006-05-01 2015-09-15 Domo, Inc. Presentation of document history in a web browsing application
US8209308B2 (en) 2006-05-01 2012-06-26 Rueben Steven L Method for presentation of revisions of an electronic document
US8566301B2 (en) 2006-05-01 2013-10-22 Steven L. Rueben Document revisions in a collaborative computing environment
US7853881B1 (en) 2006-07-03 2010-12-14 ISQ Online Multi-user on-line real-time virtual social networks based upon communities of interest for entertainment, information or e-commerce purposes
US8935295B2 (en) * 2006-07-13 2015-01-13 Riverbed Technology, Inc. Identifying and reporting differences in network activity data files
US7779475B2 (en) 2006-07-31 2010-08-17 Petnote Llc Software-based method for gaining privacy by affecting the screen of a computing device
US8255489B2 (en) * 2006-08-18 2012-08-28 Akamai Technologies, Inc. Method of data collection among participating content providers in a distributed network
WO2008033346A2 (en) * 2006-09-12 2008-03-20 Morgan Stanley Systems and methods for establishing rules for communication with a host
US8095531B2 (en) 2006-10-03 2012-01-10 Salesforce.Com, Inc. Methods and systems for controlling access to custom objects in a database
US7730478B2 (en) 2006-10-04 2010-06-01 Salesforce.Com, Inc. Method and system for allowing access to developed applications via a multi-tenant on-demand database service
US20080091806A1 (en) * 2006-10-11 2008-04-17 Jinmei Shen Dynamic On-Demand Clustering
US8082301B2 (en) 2006-11-10 2011-12-20 Virtual Agility, Inc. System for supporting collaborative activity
US8954500B2 (en) 2008-01-04 2015-02-10 Yahoo! Inc. Identifying and employing social network relationships
US8073850B1 (en) 2007-01-19 2011-12-06 Wordnetworks, Inc. Selecting key phrases for serving contextually relevant content
US8374929B1 (en) * 2007-08-06 2013-02-12 Gogrid, LLC System and method for billing for hosted services
US8719287B2 (en) 2007-08-31 2014-05-06 Business Objects Software Limited Apparatus and method for dynamically selecting componentized executable instructions at run time
US9270552B2 (en) * 2007-09-07 2016-02-23 Power Measurement Ltd. Energy monitoring system using network management protocols
US20090070786A1 (en) * 2007-09-11 2009-03-12 Bea Systems, Inc. Xml-based event processing networks for event server
US8135824B2 (en) * 2007-10-01 2012-03-13 Ebay Inc. Method and system to detect a network deficiency
US20090100342A1 (en) 2007-10-12 2009-04-16 Gabriel Jakobson Method and system for presenting address and mapping information
US8239227B2 (en) * 2007-10-17 2012-08-07 Microsoft Corporation Executive reporting
US20090106571A1 (en) * 2007-10-21 2009-04-23 Anthony Low Systems and Methods to Adaptively Load Balance User Sessions to Reduce Energy Consumption
US20090150511A1 (en) * 2007-11-08 2009-06-11 Rna Networks, Inc. Network with distributed shared memory
US9215217B2 (en) * 2008-12-05 2015-12-15 Suhayya Abu-Hakima and Kenneth E. Grigg Auto-discovery of diverse communications devices for alert broadcasting
US9391789B2 (en) * 2007-12-14 2016-07-12 Qualcomm Incorporated Method and system for multi-level distribution information cache management in a mobile environment
US9130968B2 (en) * 2008-01-16 2015-09-08 Netapp, Inc. Clustered cache appliance system and methodology
US8805949B2 (en) * 2008-01-16 2014-08-12 Netapp, Inc. System and method for populating a cache using behavioral adaptive policies
US9449333B2 (en) 2008-02-01 2016-09-20 Gabriel Jakobson Online advertising associated with electronic mapping systems
US8504945B2 (en) 2008-02-01 2013-08-06 Gabriel Jakobson Method and system for associating content with map zoom function
US8490025B2 (en) 2008-02-01 2013-07-16 Gabriel Jakobson Displaying content associated with electronic mapping systems
US8082400B1 (en) * 2008-02-26 2011-12-20 Hewlett-Packard Development Company, L.P. Partitioning a memory pool among plural computing nodes
US8065327B2 (en) * 2008-03-15 2011-11-22 Microsoft Corporation Management of collections of websites
US9203928B2 (en) * 2008-03-20 2015-12-01 Callahan Cellular L.L.C. Data storage and retrieval
US8219752B1 (en) * 2008-03-31 2012-07-10 Amazon Technologies, Inc. System for caching data
US7895320B1 (en) * 2008-04-02 2011-02-22 Cisco Technology, Inc. Method and system to monitor network conditions remotely
EP2272009A4 (en) * 2008-04-24 2011-11-16 Movideo Pty Ltd System and method for tracking usage
US20090276527A1 (en) * 2008-05-02 2009-11-05 Mcclain John Wesley Ferguson Light Weight Process Abstraction For Distributed Systems
US8032297B2 (en) 2008-05-08 2011-10-04 Gabriel Jakobson Method and system for displaying navigation information on an electronic map
US8014943B2 (en) 2008-05-08 2011-09-06 Gabriel Jakobson Method and system for displaying social networking navigation information
US8413250B1 (en) * 2008-06-05 2013-04-02 A9.Com, Inc. Systems and methods of classifying sessions
US8839387B2 (en) * 2009-01-28 2014-09-16 Headwater Partners I Llc Roaming services network and overlay networks
US8392561B1 (en) * 2008-06-20 2013-03-05 Arrayent, Inc. Wireless internet product system
US8646103B2 (en) 2008-06-30 2014-02-04 Gabriel Jakobson Method and system for securing online identities
US20100010987A1 (en) * 2008-07-01 2010-01-14 Barry Smyth Searching system having a server which automatically generates search data sets for shared searching
US8694623B1 (en) * 2008-07-23 2014-04-08 Oracle America, Inc. Methods and apparatuses for remote caching
US8015343B2 (en) * 2008-08-08 2011-09-06 Amazon Technologies, Inc. Providing executing programs with reliable access to non-local block data storage
EP2319229B1 (en) * 2008-08-26 2018-09-12 British Telecommunications public limited company Operation of a content distribution network
US8737989B2 (en) * 2008-08-29 2014-05-27 Apple Inc. Methods and apparatus for machine-to-machine based communication service classes
US9009725B2 (en) * 2008-09-02 2015-04-14 At&T Mobility Ii Llc System of growth and automated migration
US8510664B2 (en) 2008-09-06 2013-08-13 Steven L. Rueben Method and system for displaying email thread information
US8869256B2 (en) * 2008-10-21 2014-10-21 Yahoo! Inc. Network aggregator
US9892417B2 (en) * 2008-10-29 2018-02-13 Liveperson, Inc. System and method for applying tracing tools for network locations
US8661056B1 (en) 2008-11-03 2014-02-25 Salesforce.Com, Inc. System, method and computer program product for publicly providing web content of a tenant using a multi-tenant on-demand database service
US8069242B2 (en) * 2008-11-14 2011-11-29 Cisco Technology, Inc. System, method, and software for integrating cloud computing systems
US8706836B2 (en) * 2008-12-15 2014-04-22 Shara Susznnah Vincent Live streaming media and data communication hub
US8799409B2 (en) * 2009-01-15 2014-08-05 Ebay Inc. Server side data cache system
US8762642B2 (en) * 2009-01-30 2014-06-24 Twinstrata Inc System and method for secure and reliable multi-cloud data replication
US10445781B2 (en) * 2009-03-06 2019-10-15 Xandr Inc. Advertising platform user data store management
US10074095B2 (en) * 2009-04-17 2018-09-11 At&T Intellectual Property I, L.P. System and method for sending data to end user data delivery vehicles
US8161244B2 (en) * 2009-05-13 2012-04-17 Microsoft Corporation Multiple cache directories
US20100333116A1 (en) * 2009-06-30 2010-12-30 Anand Prahlad Cloud gateway system for managing data storage to cloud storage sites
US8271653B2 (en) * 2009-08-31 2012-09-18 Red Hat, Inc. Methods and systems for cloud management using multiple cloud management schemes to allow communication between independently controlled clouds
US20110055386A1 (en) * 2009-08-31 2011-03-03 Level 3 Communications, Llc Network analytics management
EP2486491A4 (en) * 2009-10-06 2013-10-23 Unwired Planet Llc Managing network traffic by editing a manifest file and/or using intermediate flow control
US8880682B2 (en) * 2009-10-06 2014-11-04 Emc Corporation Integrated forensics platform for analyzing IT resources consumed to derive operational and architectural recommendations
US9767070B2 (en) * 2009-11-06 2017-09-19 Hewlett Packard Enterprise Development Lp Storage system with a memory blade that generates a computational result for a storage device
US8930652B2 (en) * 2009-11-11 2015-01-06 Red Hat Israel, Ltd. Method for obtaining a snapshot image of a disk shared by multiple virtual machines
US8949169B2 (en) * 2009-11-17 2015-02-03 Jerome Naifeh Methods and apparatus for analyzing system events
US9866426B2 (en) * 2009-11-17 2018-01-09 Hawk Network Defense, Inc. Methods and apparatus for analyzing system events
US7970861B2 (en) * 2009-11-18 2011-06-28 Microsoft Corporation Load balancing in a distributed computing environment
US9100550B2 (en) * 2009-11-20 2015-08-04 At&T Intellectual Property I, L.P. Apparatus and method for managing a social network
US9749441B2 (en) * 2009-12-08 2017-08-29 Sap Se Application server runlevel framework
US8037187B2 (en) * 2009-12-11 2011-10-11 International Business Machines Corporation Resource exchange management within a cloud computing environment
US8230046B2 (en) * 2009-12-15 2012-07-24 Facebook, Inc. Setting cookies in conjunction with phased delivery of structured documents
US8510045B2 (en) 2009-12-22 2013-08-13 Steven L. Rueben Digital maps displaying search-resulting points-of-interest in user delimited regions
US20120084349A1 (en) * 2009-12-30 2012-04-05 Wei-Yeh Lee User interface for user management and control of unsolicited server operations
US20110276685A1 (en) * 2010-01-22 2011-11-10 Brutesoft, Inc. Cloud computing as a service for enterprise software and data provisioning
US9495338B1 (en) * 2010-01-28 2016-11-15 Amazon Technologies, Inc. Content distribution network
US8898287B2 (en) 2010-02-24 2014-11-25 Salesforce.Com, Inc. System, method and computer program product for monitoring data activity utilizing a shared data store
US8583587B2 (en) 2010-03-08 2013-11-12 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions utilizing a uniform resource locator
US8925041B2 (en) 2010-04-01 2014-12-30 Salesforce.Com, Inc. System, method and computer program product for performing one or more actions based on a determined access permissions for a plurality of users
GB2495455B (en) * 2010-07-26 2013-11-13 Seven Networks Inc Prediction of activity session for mobile network use optimization and user experience enhancement
US8566654B2 (en) 2010-08-13 2013-10-22 Salesforce.Com, Inc. Debugging site errors by an admin as a guest user in a multi-tenant database environment
US8799987B2 (en) * 2011-12-05 2014-08-05 Facebook, Inc. Updating system behavior dynamically using feature expressions and feature loops
US8943002B2 (en) 2012-02-10 2015-01-27 Liveperson, Inc. Analytics driven engagement
US8769004B2 (en) 2012-02-17 2014-07-01 Zebedo Collaborative web browsing system integrated with social networks
US8756275B2 (en) 2012-02-17 2014-06-17 Zebedo Variable speed collaborative web browsing system
US8769017B2 (en) 2012-02-17 2014-07-01 Zebedo Collaborative web browsing system having document object model element interaction detection
US20140350985A1 (en) * 2013-05-24 2014-11-27 Construx Solutions Advisory Group Llc Systems, methods, and computer programs for providing integrated critical path method schedule management & data analytics
US20150007050A1 (en) 2013-07-01 2015-01-01 Gabriel Jakobson Method and system for processing and displaying email thread information
US20150006289A1 (en) 2013-07-01 2015-01-01 Gabriel Jakobson Advertising content in regions within digital maps
US20150095162A1 (en) 2013-09-27 2015-04-02 Gabriel Jakobson Method and systems for online advertising to users using fictitious user idetities
US20150112791A1 (en) * 2013-10-19 2015-04-23 Quettra, Inc. Mobile user, activity and application profiling
US20150142596A1 (en) 2013-11-18 2015-05-21 Gabriel Jakobson Commercial transactions via a wearable computer with a display
US20150172563A1 (en) 2013-12-18 2015-06-18 Gabriel Jakobson Incorporating advertising content into a digital video
EP3268873B1 (en) * 2015-03-09 2020-06-24 Intel Corporation Memcached systems having local caches

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165041B1 (en) * 1999-05-27 2007-01-16 Accenture, Llp Web-based architecture sales tool
US7930285B2 (en) * 2000-03-22 2011-04-19 Comscore, Inc. Systems for and methods of user demographic reporting usable for identifying users and collecting usage data
US7493655B2 (en) * 2000-03-22 2009-02-17 Comscore Networks, Inc. Systems for and methods of placing user identification in the header of data packets usable in user demographic reporting and collecting usage data
US7058826B2 (en) * 2000-09-27 2006-06-06 Amphus, Inc. System, architecture, and method for logical server and other network devices in a dynamically configurable multi-server network environment
US7383191B1 (en) * 2000-11-28 2008-06-03 International Business Machines Corporation Method and system for predicting causes of network service outages using time domain correlation
US9058416B2 (en) * 2000-12-11 2015-06-16 Peter K. Trzyna System and method for detecting and reporting online activity using real-time content-based network monitoring
US6782350B1 (en) * 2001-04-27 2004-08-24 Blazent, Inc. Method and apparatus for managing resources
US7325047B2 (en) * 2001-05-23 2008-01-29 International Business Machines Corporation Dynamic undeployment of services in a computing network
US7617201B1 (en) * 2001-06-20 2009-11-10 Microstrategy, Incorporated System and method for analyzing statistics in a reporting system
US7093004B2 (en) * 2002-02-04 2006-08-15 Datasynapse, Inc. Using execution statistics to select tasks for redundant assignment in a distributed computing platform
US20040044731A1 (en) * 2002-03-22 2004-03-04 Kailai Chen System and method for optimizing internet applications
US7246159B2 (en) * 2002-11-01 2007-07-17 Fidelia Technology, Inc Distributed data gathering and storage for use in a fault and performance monitoring system
US20080177994A1 (en) * 2003-01-12 2008-07-24 Yaron Mayer System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows
US7302425B1 (en) * 2003-06-09 2007-11-27 Microsoft Corporation Distributed pre-cached query results and refresh method
US7526479B2 (en) * 2003-12-30 2009-04-28 Sap Ag Configuration manager in enterprise computing system
US7430641B2 (en) * 2004-08-09 2008-09-30 Xiv Ltd. System method and circuit for retrieving into cache data from one or more mass data storage devices
US7886033B2 (en) * 2004-12-07 2011-02-08 Cisco Technology, Inc. Network administration tool employing a network administration protocol
US20080052384A1 (en) * 2004-12-07 2008-02-28 Brett Marl Network administration tool
US7777648B2 (en) * 2005-04-21 2010-08-17 Microsoft Corporation Mode information displayed in a mapping application
US7650505B1 (en) * 2005-06-17 2010-01-19 Sun Microsystems, Inc. Methods and apparatus for persistence of authentication and authorization for a multi-tenant internet hosted site using cookies
US20080215736A1 (en) * 2005-07-19 2008-09-04 Bo Astrom Method and Apparatus for Allocating a Server in an Ims Network
US8612569B2 (en) * 2005-12-12 2013-12-17 Ebay Inc. Method and system for proxy tracking of third party interactions
US8041897B2 (en) * 2006-02-22 2011-10-18 Arm Limited Cache management within a data processing apparatus
US20070260641A1 (en) * 2006-05-02 2007-11-08 Mypoints.Com Inc. Real-time aggregate counting in a distributed system architecture
US10142392B2 (en) * 2007-01-24 2018-11-27 Icontrol Networks, Inc. Methods and systems for improved system performance
US8341595B2 (en) * 2007-05-30 2012-12-25 Roam Data Inc System and method for developing rich internet applications for remote computing devices
US8204986B2 (en) * 2007-07-27 2012-06-19 Vmware, Inc. Multi-hierarchy latency measurement in data centers
US20090292803A1 (en) * 2008-05-21 2009-11-26 James Paul Schneider Method for measuring web visitors
US8275815B2 (en) * 2008-08-25 2012-09-25 International Business Machines Corporation Transactional processing for clustered file systems
US8086480B2 (en) * 2008-09-25 2011-12-27 Ebay Inc. Methods and systems for activity-based recommendations
US20100106764A1 (en) * 2008-10-29 2010-04-29 The Go Daddy Group, Inc. Datacenter hosting multiple online data management solutions
US8886760B2 (en) * 2009-06-30 2014-11-11 Sandisk Technologies Inc. System and method of predictive data acquisition
US8880524B2 (en) * 2009-07-17 2014-11-04 Apple Inc. Scalable real time event stream processing
US8818975B2 (en) * 2009-12-18 2014-08-26 Sap Ag Data model access configuration and customization
US8880636B2 (en) * 2010-03-25 2014-11-04 Telefonaktiebolaget L M Ericsson (Publ) Caching in mobile networks

Also Published As

Publication number Publication date
US20190102275A1 (en) 2019-04-04
US9237080B2 (en) 2016-01-12
US20130238671A1 (en) 2013-09-12
US10055328B2 (en) 2018-08-21
US9607034B2 (en) 2017-03-28
US10423513B2 (en) 2019-09-24
US20110208858A1 (en) 2011-08-25
US9178788B2 (en) 2015-11-03
US20130254387A1 (en) 2013-09-26
US8898287B2 (en) 2014-11-25
US20160019255A1 (en) 2016-01-21
US20170212823A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
US10423513B2 (en) System, method and computer program product for monitoring data activity utilizing a shared data store
US9934473B2 (en) Selecting a synchronous or asynchronous process to determine a forecast
US8738970B2 (en) Generating performance alerts
US11232102B2 (en) Background processing to provide automated database query tuning
US8875152B2 (en) System, method and computer program product for dynamically increasing resources utilized for processing tasks
US20120016681A1 (en) System, method and computer program product for analyzing monitored usage of a resource
US10235081B2 (en) Provisioning timestamp-based storage units for time series data
US9418003B2 (en) System, method and computer program product for conditionally performing garbage collection
US10776506B2 (en) Self-monitoring time series database system that enforces usage policies
US10409701B2 (en) Per-statement monitoring in a database environment
US10282361B2 (en) Transforming time series data points from concurrent processes
US8688647B2 (en) System, method and computer program product for calculating a size of an entity
US10963311B2 (en) Techniques and architectures for protection of efficiently allocated under-utilized resources
US20140067760A1 (en) Systems and methods for batch processing of data records in an on-demand system
US8589540B2 (en) System, method and computer program product for determining a rate at which an entity is polled

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: SALESFORCE.COM, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANCEY, SCOTT W.;HANSMA, SCOTT;SIGNING DATES FROM 20170411 TO 20170412;REEL/FRAME:050679/0576

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION