US20190344144A1 - Sports ball having electronics and method of use - Google Patents

Sports ball having electronics and method of use Download PDF

Info

Publication number
US20190344144A1
US20190344144A1 US16/403,548 US201916403548A US2019344144A1 US 20190344144 A1 US20190344144 A1 US 20190344144A1 US 201916403548 A US201916403548 A US 201916403548A US 2019344144 A1 US2019344144 A1 US 2019344144A1
Authority
US
United States
Prior art keywords
bladder
ball
sports
sports ball
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/403,548
Inventor
Nicolas San Juan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/403,548 priority Critical patent/US20190344144A1/en
Publication of US20190344144A1 publication Critical patent/US20190344144A1/en
Priority to US17/074,625 priority patent/US20210138308A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B43/00Balls with special arrangements
    • A63B43/004Balls with special arrangements electrically conductive, e.g. for automatic arbitration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/002Training appliances or apparatus for special sports for football
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0625Emitting sound, noise or music
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • A63B2220/35Spin
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/51Force
    • A63B2220/53Force of an impact, e.g. blow or punch
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/62Time or time measurement used for time reference, time stamp, master time or clock signal
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0025Football
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0037Basketball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0066Rugby; American football
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0066Rugby; American football
    • A63B2243/007American football
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0095Volleyball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user

Definitions

  • the present invention relates to a sports ball having electronics. More specifically, the present invention relates to sports balls which have electronics to assist in monitoring the performance of users of the ball.
  • U.S. Pat. No. 9,662,556 teaches an electronic sports tracking and coaching system which includes a ball with a variety of electronics, such as accelerometers, gyroscope and other sensors.
  • the sensors can be used to monitor force, spin and flight time of the ball.
  • This information can then be coordinated with sensors worn by an athlete to determine the athlete's skill in performing a particular part of the sport.
  • the sensors can determine the speed of rotation of a football to determine if a quarterback is properly executing the release of the football to have a tight spiral.
  • U.S. Pat. No. 9,662,556 teaches the use of a speaker in the outside of the ball which may be used to provide instructions and feedback to the athlete.
  • the speaker may indicate when something was executed well or how improvement can be made.
  • the invention may comprise a ball having a bladder and one or more circuits or microprocessors attached to or embedded in the bladder.
  • the bladder may hold the microprocessor(s) in place and prevent it (them) from moving around within the ball while the ball is being hit, kicked, thrown, etc.
  • the bladder also has one or more batteries attached to or embedded disposed therein.
  • the battery may be held in place by the bladder and an independent wire, or a lead formed on the bladder may connect the battery to the microprocessor to provide power to the microprocessor.
  • a charging element such as an inductive charging coil
  • the charging element may be disposed in electrical communication with the batteries, such as by an independent wire or by a lead formed on the bladder, and configured so that no external sockets or ports are necessary in order to generate electricity in the charging element and thereby recharge the batteries.
  • a speaker may be attached to or embedded in the bladder.
  • the speaker may be configured so that a portion of the speaker is disposed outside the enclosure formed by the bladder, but within the general sphere created by the bladder. This may include the speaker not extending beyond the general sphere or other shape created by the bladder when pressurized with air. Additionally, the outer layer of the ball may have holes to conduct sound out of the ball when the speaker is used.
  • the bladder may include at least one weighting structure which may have a weight approximately the same of that of a battery, charging element, microprocessor or speaker.
  • the weighting structure may be formed from the material which makes the bladder, or may be attached to or embedded in the bladder.
  • the battery, charging element, microprocessor, speaker, etc. may be positioned within the bladder so as to minimize imbalance in the ball.
  • the different inserts may be disposed at approximately 109.5 degrees from a center point within the bladder, effectively forming the points of a tetrahedron.
  • each insert would be disposed at approximately a 90 degree angle from the closest four inserts and on the opposite side of the other insert. In such a manner, the weight of each insert tends to offset the other inserts and allows a ball to be used with little difference in performance from a conventional sports ball.
  • a plurality of sensors may be disposed at various locations around the ball.
  • the sensors may include accelerometers or other sensors which can measure changes in force or impact. By positioning multiple sensors around the ball, the sensors can be used to determine where the ball was kicked, hit, etc., as the location closest to the point of impact will detect greater force than a more remote portion. Multiple sensors can also be used to determine the spin rate of the ball, orientation of the ball on impact and other desired information.
  • the ball may include transmitters or transceivers which communicate with a remote node, which may be, for example, a hub device running hub server software or a Wi-Fi access point or other communications protocol which allows the information from one or more balls to be transmitted to a device having a screen for viewing data received from the ball so that coaches, etc., can monitor the progress of the athlete.
  • a remote node which may be, for example, a hub device running hub server software or a Wi-Fi access point or other communications protocol which allows the information from one or more balls to be transmitted to a device having a screen for viewing data received from the ball so that coaches, etc., can monitor the progress of the athlete.
  • FIG. 1 illustrates a side cross-sectional view of a sports ball disposed on a charging station in accordance with teachings of the present disclosure
  • FIG. 2 shows a bladder having a plurality of inserts attached thereto
  • FIG. 3 shows another sports ball made in accordance with the present disclosure
  • FIG. 4 shows yet another configuration of a sports ball made in accordance with the present disclosure
  • FIG. 5 shows view of a system utilizing sports balls as described above and further including a hub for collecting feedback from multiple balls and for conveying the information to one or more remote devices, such as a computer, a tablet or a smart phone;
  • a hub for collecting feedback from multiple balls and for conveying the information to one or more remote devices, such as a computer, a tablet or a smart phone;
  • FIG. 6 shows another sports ball made in accordance with the present disclosure
  • FIG. 7 shows a communications system for monitoring the data received from the balls.
  • FIG. 8 shows an alternate communications system for monitoring data received from the balls.
  • references in the specification to “one embodiment,” “one configuration,” “an embodiment,” or “a configuration” means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment, etc.
  • the appearances of the phrase “in one embodiment” in various places may not necessarily limit the inclusion of a particular element of the invention to a single embodiment; rather, the element may be included in other or all embodiments discussed herein.
  • bracket may include an embodiment having one or more of such brackets
  • target plate may include reference to one or more of such target plates.
  • the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result to function as indicated.
  • an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed.
  • the exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context, such that enclosing the nearly all of the length of a lumen would be substantially enclosed, even if the distal end of the structure enclosing the lumen had a slit or channel formed along a portion thereof.
  • the term “generally” refers to something that has characteristics of a quality without being exactly that quality.
  • a structure said to be generally vertical would be at least as vertical as horizontal, i.e. would extend 45 degrees or greater from horizontal.
  • something said to be generally circular may be rounded like an oval but need not have a consistent diameter in every direction.
  • the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint while still accomplishing the function associated with the range.
  • the ball 4 includes a cover 8 , a lining 12 and a bladder 16 . While the cover 8 , the lining 12 and the bladder 16 would typically be disposed immediately adjacent one another, the outer two layers have been expanded outwardly to improve visualization of the bladder 16 .
  • the inserts may include one or more batteries 20 , one or more microprocessors or sensors 24 , one or more charging elements 28 , one or more speakers 32 and one or more weighting elements 36 .
  • the battery 20 is attached to the bladder 12 and is attached electrically via electrical lines or leads 40 to a microprocessor 24 (which may also serve as a sensor and/or a transmitter or transceiver) and a charging element 28 .
  • the charging station When the ball 4 is placed on a charging stand 50 which is supplied power via a power cord 54 , the charging station generates energy in the charging element 28 (typically formed by an inductive coil) which powers the batteries. Thus, there is no need to remove the batteries or to have a socket formed in the ball. Rather, the ball may be charged by simply placing it on the charging stand 50 . To facilitate charging, the ball may have a marking which may be placed on the ball adjacent the charging element to ensure proper alignment on the stand 50 .
  • the charging element 28 typically formed by an inductive coil
  • the wires 40 may be attached for redundancy.
  • the ball 4 will still be able to function as desired.
  • some functions may be performed without wires, such as by Bluetooth or other wireless communication between the microprocessor 24 and the speaker 32 and/or between the microprocessor (transceiver) and some external receiver or transceiver.
  • the microprocessor 24 may communicate with structures such as computers, mobile phones data gathering devices and the like using Wi-Fi, Bluetooth, near field communications and other wireless protocols.
  • the microprocessor 24 may include a variety of sensors, such as one or more accelerometer, one or more gyroscope and other sensors which can be used to determine the force with which the ball 4 is kicked, hit or thrown, as well as other factors such as time of flight, spin (which can indicate if the kick is proper) and force on impact when the ball lands. These different readings can be assembled together to determine, or at least approximate depending on the processing power of the microprocessor and accuracy of the sensors, how hard the ball was kicked, etc., whether it was done properly, and whether the ball landed near a target zone indicated by a post, etc.
  • sensors such as one or more accelerometer, one or more gyroscope and other sensors which can be used to determine the force with which the ball 4 is kicked, hit or thrown, as well as other factors such as time of flight, spin (which can indicate if the kick is proper) and force on impact when the ball lands.
  • the microprocessor may process the data received, or the data may be sent out via a wireless signal to a remote microprocessor which can analyze the data and convert it into usable form.
  • a remote microprocessor which can analyze the data and convert it into usable form.
  • the ball may provide information on how much spin the player was able to put on the ball and how close the ball came to the goal.
  • a coach can then look at the information and determine what adjustments are necessary. For example, the athlete may be able to place the proper amount of spin on a soccer ball, but she may be routinely kicking the ball short of the goal. The coach can then work with the athlete to increase leg strength and kicking technique to improve placement.
  • a young basketball player may have sufficient strength to project the basketball above the rim, but may lack consistency in making free-throws because he is not putting enough spin on the ball to ensure a consistent path of travel.
  • the present invention allows the coach to observe a larger data set and determine things to watch for. For example, the basketball player may have hit the top of the rim 95 out of 100 times, but the ball shows very little rotation. The coach can promptly determine that arm strength is not the issue, but rather the release of the ball to apply the proper spin. After teaching the proper technique, the coach can check back 15 minutes later and determine whether the athlete has made the proper adjustments.
  • the various inserts may be equally spaced around the bladder, so that they balance one another.
  • the battery 20 is spaced opposite the weight 36 and the charging element 28 is disposed opposite the microprocessor 24 .
  • another battery, microprocessor, speaker or insert may be spaced opposite speaker 32 to provide balance to the ball, thereby preventing the sensors from altering the path of the ball when it is hit, kicked, thrown, etc.
  • the sensors may be disposed substantially opposite from one another so as to form the ends of X, Y and Z axes passing through the middle of the ball.
  • the position of the remaining inserts can be adjusted to compensate for the weight or weights may be added to keep the weight relatively consistent within the ball. For example, if the charging element 28 were twice the weight of the other inserts, the inserts to the side of the charging element could be moved toward the microprocessor to achieve a more balanced weight. Alternatively, weighting material could be used adjacent each lighter insert to balance the ball.
  • the inserts could be disposed at the ends of a tetrahedral shape so they are equally spaced apart.
  • the term insert suggests something embedded in or attached to the bladder 16 . It will also be appreciated that a weight could be formed by simply having a much thicker area in the wall of the bladder, such as a spot where the bladder wall is 5 or more times as thick as the bladder wall over most of its surface, to thereby provide a weight that helps balance the ball.
  • FIG. 2 there is shown a bladder 16 having a battery 20 , a microprocessor 24 , a speaker 32 and a weighting portion 36 , along with fragmented pieces of the liner 12 and cover 8 .
  • the battery 20 is disposed in communication with the microprocessor 24 and the speaker 32 via wires 40 or leads.
  • the wires 40 may also pass through the weighting portion 36 if desired, though the weighting portion 36 may be either thickened bladder wall or some other weighting material added to balance the ball.
  • the bladder may include one or more pockets 60 or depressions. As shown in FIG. 2 , pockets 60 a are recessed into the bladder 16 , but are open to the outside. In this manner, the speaker 32 and microprocessor 24 (or battery, etc.) can be within the general volume of the bladder (i.e., the out circumference of the bladder if the pockets were not there) where the inserts are protected from impact with the liner ( 12 , FIG. 1 ) and cover ( 8 , FIG.
  • the ball 4 could have a battery disposed in one of the pockets in alignment with a small hole in the cover of the ball so that the battery could be recharged by a small power jack (such as micro-usb head or even a single, double, etc. prong charger so that the ball could be recharged in the field without needing a wireless charger.
  • a small power jack such as micro-usb head or even a single, double, etc. prong charger so that the ball could be recharged in the field without needing a wireless charger.
  • a plurality of holes 64 could be formed in the liner 12 and the cover 8 so as to facilitate the transfer of sound out of the ball.
  • the bladder 16 is typically made from an elastic material like rubber, etc.
  • the structure forming the pockets 60 will tend to dampen vibrational energy developed by kicking, bouncing, hitting or throwing the ball, while preventing the inserts from bouncing around inside the bladder 16 .
  • the speaker 32 and/or wires can be glued in place to prevent any air escaping from the bladder 16 via holes around the wires 40 .
  • the other pockets 60 and the weighting portion 36 can be formed on the inside of the bladder 16 during the molding process.
  • the battery and other internal inserts, along with the wires, can be added prior to inversion of the bladder before it is sealed and filled with air.
  • the ball can be constructed so some parts are accessible or at least can be heard clearly outside the bladder 16 .
  • FIG. 3 there is shown a top view of a sports ball, generally indicated at 4 .
  • the sports ball 4 has one or more holes 64 in the outer cover 8 to allow sound from a speaker 32 to be heard outside the ball and/or to provide a small recharging port which is recessed in the ball so it would not injure an athlete even if struck with the ball at that location.
  • the ball 4 may also include one or more each of a microprocessor 24 , a battery 20 and a charging element 28 . While the microprocessor may have one or more accelerometers and/or gyroscopes disposed thereon, it will also be appreciated that such components could be simply sensors which are physically separate from the microprocessor and may communicate via wires of a wireless protocol such as Wi-Fi or Bluetooth.
  • the ball 4 may include a charging element 28 , a battery 20 , a speaker 32 and a microprocessor or sensors 24 .
  • the microprocessor 24 may include a data gathering and processing unit 24 a, along with a memory 24 b, and/or a receiver or transceiver 24 c. If provided, the memory 24 b may record information obtained by data gathering and processing unit 24 a.
  • any amount of spin detected after the ball was impacted may be sensed by one or more of an accelerometer 24 d, a gyroscope 24 e and the data correlated with data from a timekeeping element 24 f. By correlating this data, an estimate may be obtained about how far the ball 4 traveled from the point of impact until contacting the ground, etc., or how quickly a basketball player was dribbling. This information may be conveyed by an audibly perceptible signal sent via the speaker 32 , or may be sent to a remote device by the transceiver 24 c.
  • the player is able to receive feedback on his or her performance and comparisons can be made as to whether the player is improving on a particular skill over a given period of time. For example, repeated kicks can be monitored to see if the player is getting more power into the ball and thereby causing the ball to travel further.
  • objective data can be recorded as to whether the player is able to develop spin on the ball so as to cause the ball to curve toward a desired location. Data can be recorded and compared to new data to document improvement, continued need to work on a skill, or whether a player is actually making modifications which are bringing undesirable results.
  • the inserts 20 , 24 , 28 and 32 are spread out so as to be evenly spaced around the sphere and effectively form a tetrahedron between them. In such a configuration the ball remains balanced provided that each of the inserts is approximately the same weight.
  • FIG. 5 shows a view of a system, generally indicated at 68 , utilizing sports balls 4 as described above and further including a hub 70 .
  • the hub 70 may contain a transceiver or other wireless communication device which conveys information relating to the ball 4 to a remote location where it may be processed and visualized by a coach or player.
  • the hub 70 may be in communication with a smart phone 78 , a tablet 82 , and/or a computer 86 .
  • the hub 70 and/or the ball 4 may be in communication with wireless headphones 90 so that information may be sent wirelessly to the headphones.
  • the headphones may be worn by the player kicking the ball, etc., or worn by a coach who can monitor input received from the ball 4 or the hub 70 .
  • Information may be conveyed to the player, such as: “You are not getting enough spin on the ball. Try kicking the ball a little further to the outside.” The player can then attempt to make the adjustments and the data sets developed will record whether he or she was able to make the improvements.
  • the hub 70 may be used as part of an exercise to determine the location of a ball relative to a desired location or may contain sensors to simply indicate if the ball has crossed the goal line. For example, in soccer it is desirable to kick the ball into the goal as close as possible to one of the corners, thereby making it more difficult for the goalie to intercept the ball.
  • hubs have been placed in the upper right, upper left and lower left corners of the goal 74 . A player may be given an exercise wherein he or she is told to kick the ball as close as possible to the upper right corner of the goal.
  • the hub 70 may also be able to detect how close the ball has come to the hub, thereby providing information on how accurately the player was able to kick the ball correlated with speed of the ball.
  • the hub 70 may need to work on his or her accuracy and placement of the ball, another player may need to work on the velocity of the ball, as both speed and placement are critical to scoring goals in soccer.
  • hubs may be used together to allow them to triangulate the position of the ball.
  • a plurality of hubs 70 could be placed on a football field (not shown in FIG. 5 ).
  • a kicker could attempt to kick a football at a point equidistant from the hubs (e.g., near the side line inside the 5 yard line).
  • the hubs 70 could then indicate how close the kicker came to placing the ball in the desired location.
  • the ball 4 may continuously broadcast information regarding force applied spin, etc. or the information may be stored in memory and provided only in response to a communication from the hub 70 , etc.
  • the hub 70 may communicate the information provided by the ball 4 to the smart phone 78 , the tablet 82 , the computer 86 , and/or the wireless headphones 90 .
  • the hub may also record the information associated with the ball and may simply forward the data to one of the processing devices 78 , 82 , 86 and/or 90 which can put the data in more human perceptible form.
  • the hub 70 may communicate with multiple different devices about multiple different balls 4 . Additionally, the hub may correlate information related to a player, such as may be present due to a sensor worn by the player or disposed in the wireless headphones so that player's progress may be tracked regardless of which ball he or she is using at the time. This could be accomplished, for example, by the ball detecting via Bluetooth, etc. that player 1 is engaging the ball. All of the data for the ball over the next 10 seconds could be correlated with player one, unless the ball detects another player is engaging the ball, in which case the data would then start being applied to player 2 , etc. Thus, for example, in a shooting drill player 1 may kick the ball.
  • Player 2 the goalie, may impact the ball and the ball did not cross into the goal, indicating a save by the goalie. Player 3 may then engage the ball and score a goal. After repeated attempts a coach may determine that the goalie is doing a good job of stopping the initial kick, but deflecting the ball in such a manner than it place him at risk for being scored on by another player.
  • the present system allows a coach to obtain and consider a substantial amount of data which may provide answers not readily discernable from watching each player for a few minutes during practice.
  • the bladder 16 may be covered with a touch-sensitive material 44 , or may simply be covered with a cover and lining (not shown).
  • the bladder 16 may include a number of inserts such as a charging element 28 , a battery 20 , a speaker 32 and one or more microprocessors or sensors 24 .
  • the inserts may be one or more data gathering and processing unit 24 a, memory 24 b, and/or a receiver or transceiver 24 c.
  • the memory 24 b may record information obtained by data gathering and processing unit 24 a in the event that the transceiver and hub are out of range or otherwise unable to communicate the data in real time via the desired communications protocol.
  • the recorded data may include, for example, the amount of force applied to the ball, any amount of spin detected after the ball was impacted, and the time until the next impact was sensed.
  • the bladder 16 may include a plurality of accelerometers 24 d, or gyroscopes 24 e and the data collected may be correlated with data from a timekeeping element 24 f. By correlating this data, an estimate may be as to location at which the player's foot impacted the ball, the amount of spin generated, the time of flight of the ball and thus the likely distance traveled.
  • the microprocessors may be programmed to relate the information in multiple languages—either to assist coaches and players having different language abilities or to help players learn relevant terminology in another language. Thus, a soccer player from Mexico could learn the terminology of the game in French while practicing to facilitate coaching from French speaking coaches or to play soccer games in France.
  • FIG. 7 there is shown a single hub 70 which may run hub server software.
  • the balls 4 communicate with the hub 70 via an APi.
  • the hub 70 can communicate with a plurality of client devices, such as one or more smart phones 78 , tablets 82 and/or the wireless headphones 90 , via Wi-Fi or some other communications protocol.
  • the system may simply use a ball APi communicated over Wi-Fi, Bluetooth, etc. to convey the data.
  • the transfer of information could occur in real time or could be stored on the ball 4 and then downloaded when one of the smart phones 78 , tablets 82 and/or the wireless headphones 90 is within range.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A sports ball may include a bladder having one or more inserts attached to or imbedded therein. The inserts may include a battery, a charging element, one or more microprocessors/sensors, memory and/or a speaker. The bladder may include pockets formed into the bladder either extending from the outside into the bladder and/or pockets disposed on the inside of the bladder. A hub for communicating with several balls and/or display devices may also be included.

Description

    BACKGROUND State of the Art
  • The present invention relates to a sports ball having electronics. More specifically, the present invention relates to sports balls which have electronics to assist in monitoring the performance of users of the ball.
  • Field of Art
  • With the growing popularity of sports, there has been an increase in the use of monitoring equipment to help improve training of athletes. Various wearable sensors are usable by athletes and those attempting to lose weight to track heart rate, distance walked, stairs climbed and calories burned. While such sensors are able to track the physical exertion of the person being monitored, they generally cannot tell if an athlete is performing a sport properly. For example, while the sensors will tell the physical level at which the athlete is performing, it will not tell if the athlete is dribbling, kicking or throwing a ball properly.
  • Efforts have been made to obtain enhanced information by placing sensors within a ball used in athletics. For example, U.S. Pat. No. 9,662,556 teaches an electronic sports tracking and coaching system which includes a ball with a variety of electronics, such as accelerometers, gyroscope and other sensors. The sensors can be used to monitor force, spin and flight time of the ball. This information can then be coordinated with sensors worn by an athlete to determine the athlete's skill in performing a particular part of the sport. For example, the sensors can determine the speed of rotation of a football to determine if a quarterback is properly executing the release of the football to have a tight spiral.
  • In addition to sensors, U.S. Pat. No. 9,662,556 teaches the use of a speaker in the outside of the ball which may be used to provide instructions and feedback to the athlete. For example, the speaker may indicate when something was executed well or how improvement can be made.
  • While U.S. Pat. No. 9,662,556 provides a marked improvement in monitoring, the design of the ball as shown in the patent has drawbacks. The speaker is shown as being outside the ball where it can be damaged. Also the sensors are susceptible to damage as the ball is repeatedly kicked, thrown, hit, etc. Thus, there is a need for an improved sports ball having electronics and a method of using the same.
  • SUMMARY OF THE INVENTION
  • The following summary of the present invention is not intended to describe each illustrated embodiment or every possible implementation of the invention, but rather to give illustrative examples of application of principles of the invention.
  • In some configurations, the invention may comprise a ball having a bladder and one or more circuits or microprocessors attached to or embedded in the bladder. The bladder may hold the microprocessor(s) in place and prevent it (them) from moving around within the ball while the ball is being hit, kicked, thrown, etc.
  • In accordance with one aspect of the present disclosure, the bladder also has one or more batteries attached to or embedded disposed therein. The battery may be held in place by the bladder and an independent wire, or a lead formed on the bladder may connect the battery to the microprocessor to provide power to the microprocessor.
  • In accordance with another aspect of the present disclosure, a charging element, such as an inductive charging coil, may be attached to the bladder. The charging element may be disposed in electrical communication with the batteries, such as by an independent wire or by a lead formed on the bladder, and configured so that no external sockets or ports are necessary in order to generate electricity in the charging element and thereby recharge the batteries.
  • In accordance with another aspect of the present disclosure, a speaker may be attached to or embedded in the bladder. The speaker may be configured so that a portion of the speaker is disposed outside the enclosure formed by the bladder, but within the general sphere created by the bladder. This may include the speaker not extending beyond the general sphere or other shape created by the bladder when pressurized with air. Additionally, the outer layer of the ball may have holes to conduct sound out of the ball when the speaker is used.
  • In accordance with another aspect of the present disclosure, the bladder may include at least one weighting structure which may have a weight approximately the same of that of a battery, charging element, microprocessor or speaker. The weighting structure may be formed from the material which makes the bladder, or may be attached to or embedded in the bladder.
  • In accordance with still yet another aspect of the present disclosure, the battery, charging element, microprocessor, speaker, etc. may be positioned within the bladder so as to minimize imbalance in the ball. Thus, for example, if a battery, charging element, microprocessor and speaker were being used, the different inserts may be disposed at approximately 109.5 degrees from a center point within the bladder, effectively forming the points of a tetrahedron. In contrast, if six inserts are used, each insert would be disposed at approximately a 90 degree angle from the closest four inserts and on the opposite side of the other insert. In such a manner, the weight of each insert tends to offset the other inserts and allows a ball to be used with little difference in performance from a conventional sports ball.
  • In accordance with yet another aspect of the present disclosure, a plurality of sensors may be disposed at various locations around the ball. The sensors may include accelerometers or other sensors which can measure changes in force or impact. By positioning multiple sensors around the ball, the sensors can be used to determine where the ball was kicked, hit, etc., as the location closest to the point of impact will detect greater force than a more remote portion. Multiple sensors can also be used to determine the spin rate of the ball, orientation of the ball on impact and other desired information.
  • In accordance with another aspect of the present disclosure, the ball may include transmitters or transceivers which communicate with a remote node, which may be, for example, a hub device running hub server software or a Wi-Fi access point or other communications protocol which allows the information from one or more balls to be transmitted to a device having a screen for viewing data received from the ball so that coaches, etc., can monitor the progress of the athlete.
  • It will be appreciated that various embodiments of the invention may not include each aspect set forth above, and aspects discussed above shall not be read into the claims unless specifically set forth therein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments of the present disclosure are shown and described in reference to the numbered drawings wherein:
  • FIG. 1 illustrates a side cross-sectional view of a sports ball disposed on a charging station in accordance with teachings of the present disclosure;
  • FIG. 2 shows a bladder having a plurality of inserts attached thereto;
  • FIG. 3 shows another sports ball made in accordance with the present disclosure;
  • FIG. 4 shows yet another configuration of a sports ball made in accordance with the present disclosure;
  • FIG. 5 shows view of a system utilizing sports balls as described above and further including a hub for collecting feedback from multiple balls and for conveying the information to one or more remote devices, such as a computer, a tablet or a smart phone;
  • FIG. 6 shows another sports ball made in accordance with the present disclosure;
  • FIG. 7 shows a communications system for monitoring the data received from the balls; and
  • FIG. 8 shows an alternate communications system for monitoring data received from the balls.
  • It will be appreciated that the drawings are illustrative and not limiting of the scope of the invention which is defined by the appended claims. The embodiments shown accomplish various aspects and objects of the invention. It will be appreciated that it is not possible to clearly show each element and aspect of the present disclosure in a single figure, and as such, multiple figures are presented to separately illustrate the various details of different aspects of the invention in greater clarity. Similarly, not all configurations or embodiments described herein or covered by the appended claims will include all of the aspects of the present disclosure as discussed above.
  • DETAILED DESCRIPTION
  • Various aspects of the invention and accompanying drawings will now be discussed in reference to the numerals provided therein so as to enable one skilled in the art to practice the present invention. The skilled artisan will understand, however, that the methods described below can be practiced without employing these specific details, or that they can be used for purposes other than those described herein. Indeed, they can be modified and can be used in conjunction with products and techniques known to those of skill in the art in light of the present disclosure. The drawings and the descriptions thereof are intended to be exemplary of various aspects of the invention and are not intended to narrow the scope of the appended claims. Furthermore, it will be appreciated that the drawings may show aspects of the invention in isolation and the elements in one figure may be used in conjunction with elements shown in other figures.
  • Reference in the specification to “one embodiment,” “one configuration,” “an embodiment,” or “a configuration” means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment, etc. The appearances of the phrase “in one embodiment” in various places may not necessarily limit the inclusion of a particular element of the invention to a single embodiment; rather, the element may be included in other or all embodiments discussed herein.
  • Furthermore, the described features, structures, or characteristics of embodiments of the present disclosure may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details may be provided, such as examples of products or manufacturing techniques that may be used, to provide a thorough understanding of embodiments incorporating aspects of the invention. One skilled in the relevant art will recognize, however, that embodiments discussed in the disclosure may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations may not be shown or described in detail to avoid obscuring aspects of the invention.
  • Before the present invention is disclosed and described in detail, it should be understood that the present invention is not limited to any particular structures, process steps, or materials discussed or disclosed herein, but is extended to include equivalents thereof as would be recognized by those of ordinarily skill in the relevant art. More specifically, the invention is defined by the terms set forth in the claims. It should also be understood that terminology contained herein is used for the purpose of describing particular aspects of the invention only and is not intended to limit the invention to the aspects or embodiments shown unless expressly indicated as such. Likewise, the discussion of any particular aspect of the invention is not to be understood as a requirement that such aspect is required to be present apart from an express inclusion of that aspect in the claims.
  • It should also be noted that, as used in this specification and the appended claims, singular forms such as “a,” “an,” and “the” may include the plural unless the context clearly dictates otherwise. Thus, for example, reference to “a bracket” may include an embodiment having one or more of such brackets, and reference to “the target plate” may include reference to one or more of such target plates.
  • As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result to function as indicated. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context, such that enclosing the nearly all of the length of a lumen would be substantially enclosed, even if the distal end of the structure enclosing the lumen had a slit or channel formed along a portion thereof. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, structure which is “substantially free of” a bottom would either completely lack a bottom or so nearly completely lack a bottom that the effect would be effectively the same as if it completely lacked a bottom.
  • As used herein, the term “generally” refers to something that has characteristics of a quality without being exactly that quality. For example, a structure said to be generally vertical would be at least as vertical as horizontal, i.e. would extend 45 degrees or greater from horizontal. Likewise, something said to be generally circular may be rounded like an oval but need not have a consistent diameter in every direction.
  • As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint while still accomplishing the function associated with the range.
  • As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member.
  • Concentrations, amounts, proportions and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually. This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
  • Turning now to FIG. 1, there is shown a ball, generally indicated at 4. The ball 4 includes a cover 8, a lining 12 and a bladder 16. While the cover 8, the lining 12 and the bladder 16 would typically be disposed immediately adjacent one another, the outer two layers have been expanded outwardly to improve visualization of the bladder 16.
  • Embedded in or attached to the bladder are a plurality of inserts, preferably at least three and typically ranging from four to twelve. The inserts may include one or more batteries 20, one or more microprocessors or sensors 24, one or more charging elements 28, one or more speakers 32 and one or more weighting elements 36. As shown in FIG. 1, the battery 20 is attached to the bladder 12 and is attached electrically via electrical lines or leads 40 to a microprocessor 24 (which may also serve as a sensor and/or a transmitter or transceiver) and a charging element 28. When the ball 4 is placed on a charging stand 50 which is supplied power via a power cord 54, the charging station generates energy in the charging element 28 (typically formed by an inductive coil) which powers the batteries. Thus, there is no need to remove the batteries or to have a socket formed in the ball. Rather, the ball may be charged by simply placing it on the charging stand 50. To facilitate charging, the ball may have a marking which may be placed on the ball adjacent the charging element to ensure proper alignment on the stand 50.
  • As shown in FIG. 1, the wires 40 may be attached for redundancy. Thus, in the event one of the wires breaks or pulls loose from the charging element 28, the battery 20, the microprocessor 24 or the speaker 32, the ball 4 will still be able to function as desired. It will also be appreciated that some functions may be performed without wires, such as by Bluetooth or other wireless communication between the microprocessor 24 and the speaker 32 and/or between the microprocessor (transceiver) and some external receiver or transceiver. Likewise, the microprocessor 24 may communicate with structures such as computers, mobile phones data gathering devices and the like using Wi-Fi, Bluetooth, near field communications and other wireless protocols.
  • The microprocessor 24 may include a variety of sensors, such as one or more accelerometer, one or more gyroscope and other sensors which can be used to determine the force with which the ball 4 is kicked, hit or thrown, as well as other factors such as time of flight, spin (which can indicate if the kick is proper) and force on impact when the ball lands. These different readings can be assembled together to determine, or at least approximate depending on the processing power of the microprocessor and accuracy of the sensors, how hard the ball was kicked, etc., whether it was done properly, and whether the ball landed near a target zone indicated by a post, etc. The microprocessor may process the data received, or the data may be sent out via a wireless signal to a remote microprocessor which can analyze the data and convert it into usable form. Thus, for example, when a soccer player is practicing a corner kick, the ball may provide information on how much spin the player was able to put on the ball and how close the ball came to the goal. A coach can then look at the information and determine what adjustments are necessary. For example, the athlete may be able to place the proper amount of spin on a soccer ball, but she may be routinely kicking the ball short of the goal. The coach can then work with the athlete to increase leg strength and kicking technique to improve placement.
  • Likewise, a young basketball player may have sufficient strength to project the basketball above the rim, but may lack consistency in making free-throws because he is not putting enough spin on the ball to ensure a consistent path of travel. Rather than requiring a coach to stand there watching the player shoot free throw after free throw, the present invention allows the coach to observe a larger data set and determine things to watch for. For example, the basketball player may have hit the top of the rim 95 out of 100 times, but the ball shows very little rotation. The coach can promptly determine that arm strength is not the issue, but rather the release of the ball to apply the proper spin. After teaching the proper technique, the coach can check back 15 minutes later and determine whether the athlete has made the proper adjustments.
  • As shown in FIG. 1, the various inserts may be equally spaced around the bladder, so that they balance one another. The battery 20 is spaced opposite the weight 36 and the charging element 28 is disposed opposite the microprocessor 24. If a complete ball were shown, another battery, microprocessor, speaker or insert may be spaced opposite speaker 32 to provide balance to the ball, thereby preventing the sensors from altering the path of the ball when it is hit, kicked, thrown, etc. When six sensors or other inserts are used in a round ball, the sensors may be disposed substantially opposite from one another so as to form the ends of X, Y and Z axes passing through the middle of the ball. If one of the inserts weighs more than the others, the position of the remaining inserts can be adjusted to compensate for the weight or weights may be added to keep the weight relatively consistent within the ball. For example, if the charging element 28 were twice the weight of the other inserts, the inserts to the side of the charging element could be moved toward the microprocessor to achieve a more balanced weight. Alternatively, weighting material could be used adjacent each lighter insert to balance the ball.
  • If other numbers of sensors are used, a different geometric disposition could be used. For example if four inserts were to be used, the inserts could be disposed at the ends of a tetrahedral shape so they are equally spaced apart. Also, as used herein the term insert suggests something embedded in or attached to the bladder 16. It will also be appreciated that a weight could be formed by simply having a much thicker area in the wall of the bladder, such as a spot where the bladder wall is 5 or more times as thick as the bladder wall over most of its surface, to thereby provide a weight that helps balance the ball.
  • Turning now to FIG. 2, there is shown a bladder 16 having a battery 20, a microprocessor 24, a speaker 32 and a weighting portion 36, along with fragmented pieces of the liner 12 and cover 8. The battery 20 is disposed in communication with the microprocessor 24 and the speaker 32 via wires 40 or leads.
  • The wires 40 may also pass through the weighting portion 36 if desired, though the weighting portion 36 may be either thickened bladder wall or some other weighting material added to balance the ball. Because having the speaker 32 disposed inside the wall of the bladder would tend to interfere with a user hearing what is broadcasting from the speaker, the bladder may include one or more pockets 60 or depressions. As shown in FIG. 2, pockets 60a are recessed into the bladder 16, but are open to the outside. In this manner, the speaker 32 and microprocessor 24 (or battery, etc.) can be within the general volume of the bladder (i.e., the out circumference of the bladder if the pockets were not there) where the inserts are protected from impact with the liner (12, FIG. 1) and cover (8, FIG. 1) of the ball, but may still be accessible from the outside if needed. Alternatively, the ball 4 could have a battery disposed in one of the pockets in alignment with a small hole in the cover of the ball so that the battery could be recharged by a small power jack (such as micro-usb head or even a single, double, etc. prong charger so that the ball could be recharged in the field without needing a wireless charger.
  • Likewise, a plurality of holes 64 could be formed in the liner 12 and the cover 8 so as to facilitate the transfer of sound out of the ball. Because the bladder 16 is typically made from an elastic material like rubber, etc., the structure forming the pockets 60 will tend to dampen vibrational energy developed by kicking, bouncing, hitting or throwing the ball, while preventing the inserts from bouncing around inside the bladder 16. The speaker 32 and/or wires can be glued in place to prevent any air escaping from the bladder 16 via holes around the wires 40.
  • The other pockets 60 and the weighting portion 36 can be formed on the inside of the bladder 16 during the molding process. The battery and other internal inserts, along with the wires, can be added prior to inversion of the bladder before it is sealed and filled with air. Thus, depending on the desired use of the ball 4, the ball can be constructed so some parts are accessible or at least can be heard clearly outside the bladder 16.
  • Turning now to FIG. 3, there is shown a top view of a sports ball, generally indicated at 4. The sports ball 4 has one or more holes 64 in the outer cover 8 to allow sound from a speaker 32 to be heard outside the ball and/or to provide a small recharging port which is recessed in the ball so it would not injure an athlete even if struck with the ball at that location.
  • The ball 4 may also include one or more each of a microprocessor 24, a battery 20 and a charging element 28. While the microprocessor may have one or more accelerometers and/or gyroscopes disposed thereon, it will also be appreciated that such components could be simply sensors which are physically separate from the microprocessor and may communicate via wires of a wireless protocol such as Wi-Fi or Bluetooth.
  • Turning now to FIG. 4, there is shown a cross-sectional view of a ball 4 having an alternate layout of the inserts. The ball 4 may include a charging element 28, a battery 20, a speaker 32 and a microprocessor or sensors 24. The microprocessor 24 may include a data gathering and processing unit 24 a, along with a memory 24 b, and/or a receiver or transceiver 24 c. If provided, the memory 24 b may record information obtained by data gathering and processing unit 24 a. In this may be, for example, the amount of force applied to the ball 4, any amount of spin detected after the ball was impacted, and the time until the next impact may be sensed by one or more of an accelerometer 24 d, a gyroscope 24 e and the data correlated with data from a timekeeping element 24 f. By correlating this data, an estimate may be obtained about how far the ball 4 traveled from the point of impact until contacting the ground, etc., or how quickly a basketball player was dribbling. This information may be conveyed by an audibly perceptible signal sent via the speaker 32, or may be sent to a remote device by the transceiver 24 c. In such a manner, the player is able to receive feedback on his or her performance and comparisons can be made as to whether the player is improving on a particular skill over a given period of time. For example, repeated kicks can be monitored to see if the player is getting more power into the ball and thereby causing the ball to travel further. Likewise, objective data can be recorded as to whether the player is able to develop spin on the ball so as to cause the ball to curve toward a desired location. Data can be recorded and compared to new data to document improvement, continued need to work on a skill, or whether a player is actually making modifications which are bringing undesirable results.
  • As shown in FIG. 4, the inserts 20, 24, 28 and 32 are spread out so as to be evenly spaced around the sphere and effectively form a tetrahedron between them. In such a configuration the ball remains balanced provided that each of the inserts is approximately the same weight.
  • FIG. 5 shows a view of a system, generally indicated at 68, utilizing sports balls 4 as described above and further including a hub 70. The hub 70 may contain a transceiver or other wireless communication device which conveys information relating to the ball 4 to a remote location where it may be processed and visualized by a coach or player. For example, the hub 70 may be in communication with a smart phone 78, a tablet 82, and/or a computer 86. Likewise, the hub 70 and/or the ball 4 may be in communication with wireless headphones 90 so that information may be sent wirelessly to the headphones. The headphones may be worn by the player kicking the ball, etc., or worn by a coach who can monitor input received from the ball 4 or the hub 70. Information may be conveyed to the player, such as: “You are not getting enough spin on the ball. Try kicking the ball a little further to the outside.” The player can then attempt to make the adjustments and the data sets developed will record whether he or she was able to make the improvements.
  • As shown in FIG. 5, the hub 70 may be used as part of an exercise to determine the location of a ball relative to a desired location or may contain sensors to simply indicate if the ball has crossed the goal line. For example, in soccer it is desirable to kick the ball into the goal as close as possible to one of the corners, thereby making it more difficult for the goalie to intercept the ball. In FIG. 5 hubs have been placed in the upper right, upper left and lower left corners of the goal 74. A player may be given an exercise wherein he or she is told to kick the ball as close as possible to the upper right corner of the goal. As the ball is kicked, not only can the hub 70 pass data regarding the force applied to the ball and any spin, etc., the hub may also be able to detect how close the ball has come to the hub, thereby providing information on how accurately the player was able to kick the ball correlated with speed of the ball. Thus, while one player may need to work on his or her accuracy and placement of the ball, another player may need to work on the velocity of the ball, as both speed and placement are critical to scoring goals in soccer.
  • Multiple hubs may be used together to allow them to triangulate the position of the ball. For example, a plurality of hubs 70 could be placed on a football field (not shown in FIG. 5). A kicker could attempt to kick a football at a point equidistant from the hubs (e.g., near the side line inside the 5 yard line). The hubs 70 could then indicate how close the kicker came to placing the ball in the desired location. The ball 4 may continuously broadcast information regarding force applied spin, etc. or the information may be stored in memory and provided only in response to a communication from the hub 70, etc. The hub 70 may communicate the information provided by the ball 4 to the smart phone 78, the tablet 82, the computer 86, and/or the wireless headphones 90. The hub may also record the information associated with the ball and may simply forward the data to one of the processing devices 78, 82, 86 and/or 90 which can put the data in more human perceptible form.
  • It will be appreciated that the hub 70 may communicate with multiple different devices about multiple different balls 4. Additionally, the hub may correlate information related to a player, such as may be present due to a sensor worn by the player or disposed in the wireless headphones so that player's progress may be tracked regardless of which ball he or she is using at the time. This could be accomplished, for example, by the ball detecting via Bluetooth, etc. that player 1 is engaging the ball. All of the data for the ball over the next 10 seconds could be correlated with player one, unless the ball detects another player is engaging the ball, in which case the data would then start being applied to player 2, etc. Thus, for example, in a shooting drill player 1 may kick the ball. Player 2, the goalie, may impact the ball and the ball did not cross into the goal, indicating a save by the goalie. Player 3 may then engage the ball and score a goal. After repeated attempts a coach may determine that the goalie is doing a good job of stopping the initial kick, but deflecting the ball in such a manner than it place him at risk for being scored on by another player. The present system allows a coach to obtain and consider a substantial amount of data which may provide answers not readily discernable from watching each player for a few minutes during practice.
  • Turning now to FIG. 6, there is show a bladder 16. The bladder may be covered with a touch-sensitive material 44, or may simply be covered with a cover and lining (not shown). The bladder 16 may include a number of inserts such as a charging element 28, a battery 20, a speaker 32 and one or more microprocessors or sensors 24. Among the inserts may be one or more data gathering and processing unit 24 a, memory 24 b, and/or a receiver or transceiver 24 c. If provided, the memory 24 b may record information obtained by data gathering and processing unit 24 a in the event that the transceiver and hub are out of range or otherwise unable to communicate the data in real time via the desired communications protocol. The recorded data may include, for example, the amount of force applied to the ball, any amount of spin detected after the ball was impacted, and the time until the next impact was sensed.
  • The bladder 16 may include a plurality of accelerometers 24 d, or gyroscopes 24 e and the data collected may be correlated with data from a timekeeping element 24 f. By correlating this data, an estimate may be as to location at which the player's foot impacted the ball, the amount of spin generated, the time of flight of the ball and thus the likely distance traveled. The microprocessors may be programmed to relate the information in multiple languages—either to assist coaches and players having different language abilities or to help players learn relevant terminology in another language. Thus, a soccer player from Mexico could learn the terminology of the game in French while practicing to facilitate coaching from French speaking coaches or to play soccer games in France.
  • Turning now to FIG. 7 there is shown a single hub 70 which may run hub server software. The balls 4 communicate with the hub 70 via an APi. The hub 70, in turn, can communicate with a plurality of client devices, such as one or more smart phones 78, tablets 82 and/or the wireless headphones 90, via Wi-Fi or some other communications protocol.
  • In FIG. 8 the system may simply use a ball APi communicated over Wi-Fi, Bluetooth, etc. to convey the data. The transfer of information could occur in real time or could be stored on the ball 4 and then downloaded when one of the smart phones 78, tablets 82 and/or the wireless headphones 90 is within range.
  • While discussed herein primarily relating to a soccer ball, those of skill in the art will appreciate that the principles discussed herein can be used with any sports ball containing a bladder, including, but not limited to, basketballs, dodge balls footballs, rugby balls, volleyballs, etc. It is intended that any references in the claims cover such balls unless expressly excluded by the claim language.
  • Thus, there is disclosed a sports ball having electronics and method of use. It will be appreciated that numerous modifications may be made without departing from the scope and spirit of this disclosure. The appended claims are intended to cover such modifications.

Claims (20)

What is claimed is:
1. A sports ball comprising a bladder and at least one insert attached to or imbedded in the bladder, wherein the insert comprises at least one of a microprocessor, a battery, a speaker, and a charging element.
2. The sports ball of claim 1, wherein the bladder has a battery attached to an interior portion of the bladder.
3. The sports ball of claim 1, wherein the bladder has one or more pockets formed therein.
4. The sports ball of claim 3, wherein at least one pocket extends into the bladder, such is open to outside the bladder.
5. The sports ball of claim 3, wherein the at least one pocket has a speaker formed therein.
6. The sports ball of claim 5, wherein the bladder is disposed inside a cover and wherein the cover has at least one hole there through adjacent the speaker.
7. The sports ball of claim 1, wherein the ball has a plurality of inserts disposed therein and wherein the inserts are generally evenly spaced so as to balance the inserts within the ball.
8. The sports ball of claim 1, wherein the bladder includes at least one weighted portion disposed to balance the sports ball with respect to one of the inserts.
9. The sports ball of claim 1, wherein the bladder is covered with a touch sensitive liner.
10. The sports ball of claim 1, wherein a plurality of accelerometers are disposed in the bladder.
11. A bladder for a sports ball, the bladder comprising a wall and at least one insert attached to the wall, and wherein the at least one insert comprises a battery.
12. The bladder for a sports ball of claim 11, wherein at least one insert comprises a microprocessor.
13. The bladder for a sports ball of claim 11, wherein the at least one insert comprises a speaker.
14. The bladder for a sports ball of claim 11, wherein the at least one insert comprises a charging element.
15. The bladder for a sports ball of claim 14, wherein the charging element comprises an induction coil.
16. The bladder for a sports ball of claim 11, wherein a plurality of accelerometers are disposed within the bladder in spaced apart locations.
17. A system for training a player of a sport comprising:
a plurality of sports balls formed in accordance with claim 1, wherein the sports balls have wireless communication transmitters; and
a hub disposed in wireless communication with the plurality of sports balls for collecting data from the sports balls and wirelessly transmitting the data to at least one of display device selected from a smart phone, a tablet, a computer, and wireless headphones.
18. The system according to claim 17, wherein the hub comprises a plurality of hubs and wherein the hubs can determine the location of a ball disposed between the hubs.
19. The system according to claim 17, wherein the hub communicates with a plurality of display devices.
20. The system according to claim 17, wherein the hub receives communication from a plurality of sports balls.
US16/403,548 2018-05-09 2019-05-05 Sports ball having electronics and method of use Abandoned US20190344144A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/403,548 US20190344144A1 (en) 2018-05-09 2019-05-05 Sports ball having electronics and method of use
US17/074,625 US20210138308A1 (en) 2018-05-09 2020-10-19 Sports ball having electronics and method for making

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862669260P 2018-05-09 2018-05-09
US16/403,548 US20190344144A1 (en) 2018-05-09 2019-05-05 Sports ball having electronics and method of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/074,625 Continuation-In-Part US20210138308A1 (en) 2018-05-09 2020-10-19 Sports ball having electronics and method for making

Publications (1)

Publication Number Publication Date
US20190344144A1 true US20190344144A1 (en) 2019-11-14

Family

ID=68464959

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/403,548 Abandoned US20190344144A1 (en) 2018-05-09 2019-05-05 Sports ball having electronics and method of use

Country Status (1)

Country Link
US (1) US20190344144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111643869A (en) * 2020-05-20 2020-09-11 辛长成 Physical training device is used in teaching of multi-functional football
US11083951B2 (en) * 2018-06-11 2021-08-10 Diamond Kinetics, Inc. Ball spin rate measurement system and method

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577865A (en) * 1983-06-16 1986-03-25 Molten Corporation Athletic ball
US4595200A (en) * 1983-06-21 1986-06-17 Molten Corporation Sound emitting ball
US20080088303A1 (en) * 2006-10-12 2008-04-17 Walter Englert Concept for detecting a contact with a game device
US20080274844A1 (en) * 2007-05-03 2008-11-06 Emd3 False activation reducing centrifugal activation system
US20100069181A1 (en) * 2008-09-15 2010-03-18 Keng-Hsien Lin Light-emitting ball
US20100130314A1 (en) * 2008-10-22 2010-05-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Oval ball, especially rugby ball or football
US20110077112A1 (en) * 2009-09-30 2011-03-31 Richard Erario Electronics module support system for use with sports objects
US20110118062A1 (en) * 2009-11-19 2011-05-19 Krysiak Kevin L American-style football including improved bladder construction for mounting of electronics
US20110218065A1 (en) * 2010-03-04 2011-09-08 Cavallaro Richard H Ball
US20120295740A1 (en) * 2011-05-18 2012-11-22 Thomas Creguer Sports training system
US20130274040A1 (en) * 2012-04-13 2013-10-17 Adidas Ag Sport Ball Athletic Activity Monitoring Methods And Systems
US20150196811A1 (en) * 2013-11-15 2015-07-16 Jakks Pacific, Inc. Interactive ball
US20160001136A1 (en) * 2012-07-02 2016-01-07 Infomotion Sports Technologies, Inc. Operations with instrumented game ball
US20170100644A1 (en) * 2015-10-13 2017-04-13 Lawrence Maxwell Monari Instrumented Sports Paraphernalia System
US20170246513A1 (en) * 2016-02-26 2017-08-31 Pegatron Corporation Ball
US20180154222A1 (en) * 2009-11-19 2018-06-07 Wilson Sporting Goods Co. Football sensing
US20180193694A1 (en) * 2017-01-06 2018-07-12 Rick C. Bergman Rfid-based location identification in athletic equipment and athletic playing fields
US20180200582A1 (en) * 2009-11-19 2018-07-19 Wilson Sporting Goods Co. Football sensing
US20190091520A1 (en) * 2017-09-27 2019-03-28 Pacers Basketball, LLC Technologies for a sport ball and for evaluation of handling a sport ball
US20190282884A1 (en) * 2018-03-14 2019-09-19 Paul Steven Barber Training Sports Ball

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577865A (en) * 1983-06-16 1986-03-25 Molten Corporation Athletic ball
US4595200A (en) * 1983-06-21 1986-06-17 Molten Corporation Sound emitting ball
US20080088303A1 (en) * 2006-10-12 2008-04-17 Walter Englert Concept for detecting a contact with a game device
US20080274844A1 (en) * 2007-05-03 2008-11-06 Emd3 False activation reducing centrifugal activation system
US20100069181A1 (en) * 2008-09-15 2010-03-18 Keng-Hsien Lin Light-emitting ball
US20100130314A1 (en) * 2008-10-22 2010-05-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Oval ball, especially rugby ball or football
US20110077112A1 (en) * 2009-09-30 2011-03-31 Richard Erario Electronics module support system for use with sports objects
US8512177B2 (en) * 2009-11-19 2013-08-20 Wilson Sporting Goods Co. American-style football including improved bladder construction for mounting of electronics
US20180154222A1 (en) * 2009-11-19 2018-06-07 Wilson Sporting Goods Co. Football sensing
US20110118062A1 (en) * 2009-11-19 2011-05-19 Krysiak Kevin L American-style football including improved bladder construction for mounting of electronics
US20180200582A1 (en) * 2009-11-19 2018-07-19 Wilson Sporting Goods Co. Football sensing
US20110218065A1 (en) * 2010-03-04 2011-09-08 Cavallaro Richard H Ball
US20120295740A1 (en) * 2011-05-18 2012-11-22 Thomas Creguer Sports training system
US20130274040A1 (en) * 2012-04-13 2013-10-17 Adidas Ag Sport Ball Athletic Activity Monitoring Methods And Systems
US20160001136A1 (en) * 2012-07-02 2016-01-07 Infomotion Sports Technologies, Inc. Operations with instrumented game ball
US20150196811A1 (en) * 2013-11-15 2015-07-16 Jakks Pacific, Inc. Interactive ball
US20170100644A1 (en) * 2015-10-13 2017-04-13 Lawrence Maxwell Monari Instrumented Sports Paraphernalia System
US20170246513A1 (en) * 2016-02-26 2017-08-31 Pegatron Corporation Ball
US20180193694A1 (en) * 2017-01-06 2018-07-12 Rick C. Bergman Rfid-based location identification in athletic equipment and athletic playing fields
US20190091520A1 (en) * 2017-09-27 2019-03-28 Pacers Basketball, LLC Technologies for a sport ball and for evaluation of handling a sport ball
US20190282884A1 (en) * 2018-03-14 2019-09-19 Paul Steven Barber Training Sports Ball

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11083951B2 (en) * 2018-06-11 2021-08-10 Diamond Kinetics, Inc. Ball spin rate measurement system and method
CN111643869A (en) * 2020-05-20 2020-09-11 辛长成 Physical training device is used in teaching of multi-functional football

Similar Documents

Publication Publication Date Title
US12070655B2 (en) Sport ball athletic activity monitoring methods and systems
JP6416322B2 (en) System and method for monitoring athletic performance in a team sports environment
US20190134488A1 (en) System for collecting data for golf
US10737165B2 (en) Smart system for display of dynamic movement parameters in sport and training
US8353791B2 (en) Tracking balls in sports
US20200078639A1 (en) Systems and Methods for Storing and Analyzing Golf Data, Including Community and Individual Golf Data Collection and Storage at a Central Hub
JP6285106B2 (en) Method and system for monitoring exercise
US10232225B1 (en) Systems and methods for obtaining sports-related data
US20100285903A1 (en) Apparatus for Measuring the Stimp and Other Characteristics of a Putting Green
US20130225335A1 (en) Systems and methods for measuring and/or analyzing swing information
JP2014171907A (en) Method for determining performance information about individual and sport object
KR20140012742A (en) Systems and methods for storing and analyzing golf data, including community and individual golf data collection and storage at a central hub
US20190344144A1 (en) Sports ball having electronics and method of use
US20210138308A1 (en) Sports ball having electronics and method for making
US20210113892A1 (en) Bluetooth Enabled Ball Analyzer and Locator
US10864410B2 (en) Bluetooth enabled ball analyzer and locator
EP4112136A1 (en) Ball and ball gaming system
US20200289887A1 (en) System and method for officiating in a game of sport
GB2538496A (en) Smart sports equipment
US20180264319A1 (en) System and method for detecting and analyzing plurality of play item
WO2019043526A1 (en) System and method for analysing sports-related performance
US20210093937A1 (en) Smart system for display of dynamic movement parameters in sport and training
US20210086050A1 (en) Finger Pressure Sensing Device for a Sports Implement
KR20150115310A (en) Golf Putting Training System using 3 - Axis Sensor
TWM325849U (en) Computer scoring display for the golf practice field

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION