US20190329215A1 - Sorbents for the oxidation and removal of mercury - Google Patents

Sorbents for the oxidation and removal of mercury Download PDF

Info

Publication number
US20190329215A1
US20190329215A1 US16/509,146 US201916509146A US2019329215A1 US 20190329215 A1 US20190329215 A1 US 20190329215A1 US 201916509146 A US201916509146 A US 201916509146A US 2019329215 A1 US2019329215 A1 US 2019329215A1
Authority
US
United States
Prior art keywords
mercury
sorbent
carbon
containing gas
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/509,146
Inventor
Edwin S. Olson
Michael J. Holmes
John H. Pavlish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midwest Energy Emissions Corp
Original Assignee
Midwest Energy Emissions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35994906&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20190329215(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US12/429,058 external-priority patent/US8652235B2/en
Application filed by Midwest Energy Emissions Corp filed Critical Midwest Energy Emissions Corp
Priority to US16/509,146 priority Critical patent/US20190329215A1/en
Assigned to ENERGY AND ENVIRONMENTAL RESEARCH CENTER FOUNDATION reassignment ENERGY AND ENVIRONMENTAL RESEARCH CENTER FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLSON, EDWIN S., PAVLISH, JOHN H., HOLMES, MICHAEL J.
Assigned to MIDWEST ENERGY EMISSIONS CORP. reassignment MIDWEST ENERGY EMISSIONS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENERGY AND ENVIRONMENTAL RESEARCH CENTER FOUNDATION
Publication of US20190329215A1 publication Critical patent/US20190329215A1/en
Assigned to MIDWEST ENERGY EMISSIONS CORP. reassignment MIDWEST ENERGY EMISSIONS CORP. CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECT THE ASSIGNEE ADDRESS PREVIOUSLY RECORDED AT REEL: 050690 FRAME: 0873. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ENERGY AND ENVIRONMENTAL RESEARCH CENTER FOUNDATION
Priority to US16/993,361 priority patent/US20210170332A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/027Compounds of F, Cl, Br, I
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • B01J20/106Perlite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent
    • Y10S95/901Activated carbon

Definitions

  • the present invention relates to methods and materials for the removal of pollutants from flue gas or product gas from a gasification system.
  • mercury is removed from gas streams generated during the burning or gasification of fossil fuels by highly reactive regenerable sorbents.
  • Mercury removal applications include, without limitation, flue gas from coal (or other fossil fuel) combustion, waste incineration, product gas from gasification, as well as off gases from mineral processing, metal refining, retorting, cement manufacturing, chloralkali plants, dental facilities, and crematories.
  • Fine-particle injection sorbents include activated carbon, metal oxide sorbent, sodium sulfide particles, and basic silicate or oxide sorbents.
  • a particulate control device such as a baghouse or electrostatic precipitator (ESP) and collected along with ash particulate.
  • ESP electrostatic precipitator
  • sorbent is relatively unreactive toward mercury. Consequently, these sorbents must be used in large amounts, at high sorbent-to-mercury ratios, to effectively capture the mercury. These sorbents tend to be relatively expensive and cannot be easily separated from the ash for regeneration and reuse. The collection of carbon in the ash also creates solid waste disposal problems, and the spent sorbent may contaminate the collected ash, preventing its use in various applications.
  • an oxidative sorbent comprising an aluminosilicate material impregnated with a very heavy dosage of one or more oxidative metal halides plus activated carbon.
  • oxidative metal halides plus activated carbon.
  • the amounts of metal salts required for Hg oxidation are generally relatively large and expensive.
  • the salts that can be used in such a process are highly toxic.
  • activated carbon is essential for getting adsorption of the Hg. As such, there is no synergistic role for the aluminosilicates as they appear to be only a support for the oxidizing salts.
  • halogen forms initially introduced or generated are far more reactive to the large concentrations of SO 2 and moisture in the flue gas, and so gas-phase reactions of the halogens with Hg are hindered.
  • the present invention takes advantage of the Lewis acid complexes that rapidly form on the sorbent surface to effect the Hg oxidation, rather than rely on gas phase reactions for oxidation.
  • HCl, HBr, SO 2 Br, and other gas-phase products all festoon the surface and promote the activity of the sorbent by forming complexes with the sorbent to form a promoted sorbent.
  • This invention provides for cost-effective removal of pollutants, including mercury, using sorbent enhancement additives and/or highly reactive sorbents, with contact times of seconds (or less), and that may be regenerated and reused.
  • the various embodiments of the present invention overcome the various aspects of the deficiencies of the prior art and provide new and economical methods for the removal of mercury from the gases produced in the utilization of fossil fuels.
  • a halogen/halide-promoted sorbent is described that is highly effective for the removal of mercury from flue gas streams.
  • the sorbent comprises any activated carbon and/or non-carbon compound, such as porous or vesicular felsic or basaltic materials, clay-based compounds, alkaline compounds, calcium hydroxide compounds, sodium acetate compounds, and/or bicarbonate compounds, or a combination thereof.
  • Optional secondary components and alkali may be added to further increase reactivity and mercury capacity.
  • Mercury removal efficiencies obtained exceed or match conventional methods with added benefits such as reduced costs.
  • the promoted sorbent can be regenerated and reused. Sorbent treatment and/or preparation methods are also described. Methods for in-flight preparation, introduction, and control of the sorbent, promoter and promoted sorbent into the mercury contaminated gas stream are described.
  • a mercury/sorbent chemical composition is formed and, in the case of elemental mercury reacting with the promoted base sorbent, the mercury is oxidized.
  • the base sorbent may be either a carbon or a non-carbon material or a combination thereof.
  • the mercury/sorbent chemical composition may be comprised of covalent bonds, ionic bonds and/or chemical complexes between the promoted or non-promoted base sorbent and the oxidized mercury.
  • the Lewis basic groups on the non-promoted base sorbent, or the non-promoted portions of a promoted base sorbent, are available for reaction with the Lewis acid groups of already existing oxidized mercury in the mercury containing gas.
  • mercury may be removed from the mercury containing gas stream through the formation of multiple and various mercury/sorbent chemical compositions even within the same process.
  • multiple sites on a sorbent particulate can form multiple and various mercury/sorbent chemical compositions in the case where only a portion of the sites on the base sorbent particulate are promoted.
  • a carbon and/or non-carbon promoted sorbent and/or a combination thereof comprising a sorbent structure that has reacted with a promoter selected from the group consisting of halides, halogens, and combinations thereof, such that the reaction product is effective for the removal of mercury from a gas stream.
  • the carbon sorbent comprises reactive Lewis acid groups/sites; the non-carbon sorbent comprises reactive Lewis basic groups/sites.
  • a promoted carbon and/or non-carbon sorbent wherein the base sorbent is selected from the group consisting of carbon, activated carbon, porous or vesicular felsic and basaltic materials, clay-based compounds, alkaline compounds, calcium hydroxide compounds, sodium acetate compounds, and/or bicarbonate compounds, or a combination thereof, with an average particle size similar to that of fly ash produced from a thermal process (combustion or gasification) or greater than that of fly ash produced such that it is physically separable therefrom, and combinations thereof, and the promoter is selected from the group consisting of molecular halogens, Group V (CAS nomenclature is used throughout) halides, Group VI halides, hydrohalides, and combinations thereof.
  • the base sorbent is selected from the group consisting of carbon, activated carbon, porous or vesicular felsic and basaltic materials, clay-based compounds, alkaline compounds, calcium hydroxide compounds, sodium acetate compounds, and/or bicarbonate compounds
  • the promoted sorbent (carbon, non-carbon, or their combination) may have a mass mean particle diameter such that it can be substantially separated by physical means from entrained ash in the gas stream from which mercury is to be removed.
  • the base sorbent (carbon, non-carbon, or their combination) may have a mass mean particle diameter greater than about 40 micrometers.
  • the promoted sorbent comprises from about 1 to about 30 grams of promoter per 100 grams of base sorbent.
  • Another embodiment further comprises an optional secondary component comprising a halogen or a hydrohalide such that the reactivity and mercury capacity of the promoted sorbent are enhanced.
  • the concentration of the optional secondary component on the finished sorbent is within the range of from about 1 to about 15 wt % of the concentration of the promoter on the finished sorbent.
  • an optional alkali component may preferably be added to provide a synergistic effect through combination of this alkali with the base sorbent.
  • the optional secondary component is selected from the group consisting of Group V halides, Group VI halides, HI, HBr, HCl, and combinations thereof.
  • the promoter is substantially in vapor form when combined with the base sorbent.
  • the promoter is combined with an organic solvent prior to reaction with the base sorbent.
  • the promoter and optional secondary component are combined with the base sorbentsubstantially simultaneously.
  • Another embodiment further comprises adding a mercury-stabilizing reagent selected from the group consisting of S, Se, H 2 S, SO 2 , H 2 Se, SeO 2 , CS 2 , P 2 S 5 , and combinations thereof.
  • Another embodiment further comprises adding an optional alkali component.
  • a method comprising providing a granular base sorbent and reacting the base sorbent with a promoter selected from the group consisting of halogens, halides, and combinations thereof, such that the reaction product comprises a promoted sorbent effective for removal of mercury from a gas stream.
  • the reaction product comprises from about 1 to about 30 grams of promoter per 100 grams of base sorbent.
  • the reaction product has an average particle-size distribution greater than the average size of entrained ash particles in the gas stream from which mercury is to be removed, such that the reaction product can be substantially removed from the entrained ash particles by physical means.
  • the reaction product has a mass mean particle diameter greater than about 40 micrometers.
  • the promoter is selected from the group consisting of molecular halogens, hydrohalides, Group V halides, Group VI halides, and combinations thereof.
  • the promoter is in the gas phase when contacting the base sorbent (carbon, non-carbon, or their combination).
  • the promoter is in an organic solvent when contacting the base sorbent (carbon, non-carbon, or their combination).
  • the promoter is selected from the group consisting of Br 2 , a Group V bromide, a Group VI bromide, and combinations thereof.
  • the method further comprises reacting the granular non-carbon with an optional secondary component comprising a halogen or a hydrohalide such that the reactivity and mercury capacity of the promoted sorbent are enhanced.
  • the promoter and optional secondary component are contacted simultaneously with the non-carbon base sorbent.
  • the method further comprises adding a mercury-stabilizing reagent selected from the group consisting of S, Se, H 2 S, SO 2 , H 2 Se, SeO 2 , CS 2 , P 2 S 5 , and combinations thereof.
  • a method is provided for control of mercury in a flue gas with substantially lower sorbent requirements. Through enhanced sorbent reactivity, mercury removal per gram of sorbent is increased, thereby decreasing the capital and operating costs by decreasing sorbent requirements.
  • the promoted sorbent is introduced by direct injection into the flue gas stream. In another embodiment, the base sorbent is promoted within the flue gas stream
  • a method for reducing mercury in flue gas comprising providing a base sorbent, either by injection or in situ creation, into a mercury-containing flue gas stream, collecting greater than 70 wt % of the mercury in the flue gas on the promoted sorbent to produce a cleaned flue gas, and substantially recovering the promoted sorbent from the cleaned flue gas.
  • the required removal is attained using less base sorbent as would be required with standard base sorbent.
  • the method further comprises monitoring the mercury content of the clean flue gas, regenerating the recovered promoted sorbent, and using the monitored mercury content of the cleaned flue gas to control the rate of base sorbent and promoter.
  • the injected promoted sorbent is prepared in-flight by reacting a base sorbent (carbon, non-carbon, or their combination) and a promoter within a pneumatic transport line from which the reaction product is injected to the mercury-containing flue gas stream.
  • the promoter is selected from the group consisting of molecular halogens, halides, and combinations thereof. In another embodiment, the promoter is reacted in the gas phase or as a vapor. In another embodiment, the promoter is added at from about 1 to about 30 grams per 100 grams of the base sorbent (carbon, non-carbon, or their combination).
  • the injected promoted sorbent is prepared in-flight by reacting a base sorbent (carbon, non-carbon, or their combination), a promoter, and an optional secondary component to enhance the reactivity and capacity of the promoted sorbent within a pneumatic transport line from which the reaction product is injected to the mercury-containing flue gas stream.
  • a base sorbent carbon, non-carbon, or their combination
  • a promoter carbon, non-carbon, or their combination
  • an optional secondary component to enhance the reactivity and capacity of the promoted sorbent within a pneumatic transport line from which the reaction product is injected to the mercury-containing flue gas stream.
  • the optional secondary component is selected from the group consisting of iodine, hydrohalides, Group V halides, Group VI halides, and combinations thereof. In another embodiment, the optional secondary component is added at from about 1 to about 15 wt % of the promoter content. In another embodiment, the method further comprises adding to the promoted sorbent a mercury-stabilizing reagent selected from the group consisting of S, Se, H 2 S, SO 2 , H 2 Se, SeO 2 , CS 2 , P 2 S 5 , and combinations thereof.
  • the method further comprises coinjecting an optional alkaline material, including without limitation alkaline and alkaline-earth components, to improve the efficiency of mercury capture by capturing oxidized mercury and/or capturing gaseous components that might otherwise reduce promoted sorbent capacity.
  • an optional alkaline material may preferably comprise calcium oxide, sodium carbonate, and the like, as are known in the art.
  • the method further comprises using the monitored mercury content of the cleaned flue gas to control the composition of the promoted sorbent.
  • the promoted sorbent is prepared in-flight by reacting a base sorbent (carbon, non-carbon, or their combination) and a promoter within the flue gas stream or in a transport line from which the reaction product is injected to the mercury-containing flue gas stream, wherein the promoter is selected from the group consisting of molecular halogens, halides, and combinations thereof, wherein the promoter is reacted in the gas phase or as a vapor, wherein the promoter is added at from about 1 to about 30 grams per 100 grams of the base sorbent (carbon, non-carbon, or their combination), wherein the rate at which the promoter is added and the rate of promoted sorbent injection are determined by a digital computer based, at least in part, on the monitored mercury content of the cleaned flue gas.
  • a method for reducing the mercury content of a mercury and ash-containing gas stream wherein particulate carbon and/or non-carbon promoted sorbent with a mass mean size greater than 40 ⁇ m is injected into the gas stream, mercury is removed from the gas by the promoted sorbent particles, the promoted sorbent particles are separated from the ash particles on the basis of size, and the promoted sorbent particles are reinjected to the gas stream.
  • the mercury-containing promoted sorbent particles are regenerated to remove some or substantially all of the mercury.
  • an alkaline component is coinjected into the gas stream.
  • the promoted sorbent may further comprise a promoter.
  • the promoter may preferably comprise a halide, a halogen, or both.
  • a method for reducing mercury in a mercury-containing gas to a desired level comprises reacting a carbon base sorbent with at least one promoter selected from the group consisting of molecular halogens, halides, and combinations thereof to produce a promoted carbon sorbent; allowing said promoted carbon sorbent to interact with a mercury-containing gas to capture mercury in the mercury-containing gas on the promoted sorbent to produce a cleaned gas; and monitoring the mercury content of the cleaned gas.
  • the carbon base sorbent and the promoter are introduced into the mercury-containing gas at the same location or at separate locations.
  • the carbon base sorbent or promoter or combination thereof is introduced into the mercury-containing gas at one or more locations.
  • the rate at which the carbon base sorbent is introduced or the rate at which the promoter is introduced or combination thereof is adjusted according to the monitored mercury content of the cleaned gas so that the mercury content of the cleaned gas is maintained at substantially the desired level with minimal operating cost.
  • the method comprises reacting a non-carbon base sorbent with at least one promoter selected from the group consisting of molecular halogens, halides, and combinations thereof to produce a promoted non-carbon sorbent; allowing said promoted non-carbon sorbent to interact with a mercury-containing gas to capture mercury in the mercury-containing gas on the promoted sorbent to produce a cleaned gas; and monitoring the mercury content of the cleaned gas.
  • the non-carbon base sorbent and the promoter are introduced into the mercury-containing gas at the same location or at separate locations.
  • the non-carbon base sorbent or promoter or combination thereof is introduced into the mercury-containing gas at one or more locations.
  • the rate at which the non-carbon base sorbent is introduced or the rate at which the promoter is introduced or combination thereof is adjusted according to the monitored mercury content of the cleaned gas so that the mercury content of the cleaned gas is maintained at substantially the desired level with minimal operating cost.
  • a method for reducing mercury in a mercury-containing gas to a desired level comprises reacting a base sorbent with at least one promoter selected from the group consisting of molecular halogens, halides, and combinations thereof to produce a promoted sorbent, wherein said base sorbent is selected from the group consisting of a non-carbon material, a carbon material, and combination thereof; allowing said promoted sorbent to interact with a mercury-containing gas to capture mercury in the mercury-containing gas on the promoted sorbent to produce a cleaned gas; and monitoring the mercury content of the cleaned gas.
  • the base sorbent and the promoter are introduced into the mercury-containing gas at the same location or at separate locations. In some embodiments, the base sorbent or promoter or combination thereof is introduced into the mercury-containing gas at one or more locations. In some embodiments, introducing the base sorbent and the promoter comprises injecting the base sorbent and the promoter into the mercury-containing gas. In some embodiments, the promoter is introduced into the mercury-containing gas upstream of the introduction of the base sorbent. In some embodiments, the promoter is introduced upstream of a boiler or a combustion chamber. In an embodiment, the rate at which the base sorbent is introduced or the rate at which the promoter is introduced or combination thereof is adjusted according to the monitored mercury content of the cleaned gas so that the mercury content of the cleaned gas is maintained at substantially the desired level with minimal operating cost.
  • the base sorbent for the promoted sorbent is selected from the group consisting of carbon, activated carbon, porous felsic materials, vesicular felsic materials, porous basaltic materials, vesicular basaltic materials, clay-based compounds, alkaline compounds, calcium hydroxide compounds, sodium acetate compounds, bicarbonate compounds, and combinations thereof.
  • the non-carbon material comprises Lewis basic groups and the carbon material comprises Lewis acid groups.
  • the non-carbon material comprises amorphous forms of tectosilicates comprising nanoscale cavities lined with Lewis basic oxygen associated with alkaline-earth metals.
  • the alkaline-earth metals comprise Group I and Group II alkaline-earth metals.
  • the non-carbon material comprises amorphous forms of phyllosilicates comprising nanoscale cavities lined with Lewis basic oxygen.
  • the promoted sorbent comprises metastable complexes formed between the promoter of this disclosure and inorganic species on the non-carbon base sorbent.
  • the inorganic species is selected from the group consisting of sodium compounds, calcium compounds, magnesium compounds, aluminum compounds, iron compounds, and combinations thereof.
  • the promoted sorbent comprises metastable complexes formed between the promoter of this disclosure and metal-oxygen-metal structures on the non-carbon base sorbent.
  • the promoter after being complexed with the metal-oxygen-metal structures is in the form selected from the group consisting of a dihalogen group, a halogen atom, a hydrohalogen group, a Group V halide, a Group VI halide, and combinations thereof.
  • the promoted sorbent comprises activated Lewis basic groups or activated Lewis acid groups or combination thereof.
  • the interaction between promoted sorbent and said mercury-containing gas stream comprises mercury diffusing from the gas phase onto said promoted sorbent surface; and reacting with the activated Lewis basic groups or activated Lewis acid groups or combination thereof to cause chemisorption on the promoted sorbent surface.
  • the method for reducing mercury in a mercury-containing gas to a desired level further comprises pretreating the base sorbent to increase the number of Lewis basic groups or Lewis acid groups or combination thereof.
  • the pretreating methods comprise chemical treatment, thermal treatment, vacuum treatment, and combinations thereof.
  • chemical treatment comprises acid treatment and alkaline treatment.
  • the method for reducing mercury in a mercury-containing gas to a desired level further comprises introducing an alkali component into the mercury-containing gas.
  • the present invention thus provides several advantages over previously known techniques, including significantly more effective and economical mercury sorbents for effluent gases, advantageously applicable to treating gas streams from combustion and gasification systems.
  • FIG. 1 schematically illustrates methods for preparation of promoted carbon and/or non-carbon sorbents in accordance with the present invention.
  • FIG. 2 illustrates a proposed mechanistic model of the chemical reactions resulting in the oxidation and capture of mercury.
  • FIG. 3 schematically illustrates preparation of promoted carbon and/or non-carbon sorbents and processes for flue gas mercury reduction in flue gases and/or product gases from a gasification system in accordance with the present invention, including in-flight preparation of promoted carbon and/or non-carbon sorbent.
  • FIG. 4 illustrates a mechanism for promotion of metal oxide base sorbent via formation of a reactive halogen complex sorbent and subsequent capture of elemental mercury on the promoted sorbent.
  • FIG. 5A schematically illustrates an exemplary process flow diagram for in-flight preparation of a promoted carbon and/or non-carbon sorbent.
  • FIG. 5B schematically illustrates an exemplary process flow diagram for in-flight preparation of a promoted carbon and/or non-carbon sorbent.
  • FIG. 6 is a block diagram illustrating the use of the invention in a coal fueled facility.
  • the present invention provides a cost-effective way to capture pollutants by utilizing exceptionally reactive halogen/halide-promoted sorbents using a bromide (or other halogen/halide) treatment of the promoted sorbent, that capture mercury via mercury-sorbent surface reactions, at very short contact times of seconds or less.
  • the reactivity of the promoted sorbent toward the pollutants (i.e., mercury) is greatly enhanced, and the sorption capacity can be regenerated; i.e., the promoted sorbent may be regenerated, recycled and/or reused.
  • treated base sorbents carbon, non-carbon, or their combination
  • treatment techniques, and optional additives discussed herein have applicability to mercury control from the product or effluent gas or gases from gasification systems, syngas generators, and other mercury-containing gas streams, in addition to the flue gas from combustion systems.
  • combustion system and flue gas as used throughout this description may apply equally to gasification systems and syngas or fuel gas, as will be understood by those skilled in the art.
  • FIG. 1 there is shown a block flow diagram illustrating some preferred embodiments of the process of the present invention to prepare promoted sorbents useful for mercury capture in a mercury containing gas, such as a flue gas and/or product gas from gasification system streams.
  • block 10 illustrates providing a base sorbent while block 20 illustrates adding a halogen or halide promoter that reacts with the base sorbent to produce a product-promoted sorbent.
  • the halogen or halide is added, for example, as a vapor, no further steps may be necessary.
  • the halogen or halide is added in, for example, a solvent, it may be desirable to employ solvent removal as illustrated by block 20 A to produce a product-promoted sorbent suitable for injection.
  • path 10 - 20 - 30 another preferred embodiment of the process of the present invention is illustrated by path 10 - 20 - 30 , comprising providing a base sorbent as shown by block 10 , adding a halogen or halide promoter that reacts with the base sorbent, illustrated at block 20 , and adding a secondary component illustrated at block 30 that reacts with the result of block 20 to produce a product-promoted sorbent.
  • both the halogen or halide promoter and the secondary component are added, for example, as a vapor, no further steps may be necessary.
  • the halogen or halide promoter and/or secondary component are added in, for example, a solvent, it may be desirable to employ solvent removal as illustrated by block 30 A to produce a product-promoted sorbent suitable for injection.
  • path 10 - 40 another preferred embodiment of the process of the present invention is illustrated by path 10 - 40 , comprising providing a base sorbent as illustrated at block 10 and adding a halogen or halide promoter and a secondary component to the base sorbent together, with which they react to produce a product-promoted sorbent as illustrated by block 40 .
  • a solvent removal step may be provided as illustrated by block 40 A to produce a product-promoted sorbent suitable for injection.
  • path 10 - 50 another preferred embodiment of the process of the present invention is illustrated by path 10 - 50 in combination with path 20 - 50 .
  • a base sorbent as illustrated by block 10 is introduced to the mercury containing gas as illustrated by block 50 while a halogen or halide promoter as illustrated by block 20 is introduced to the mercury containing gas stream.
  • the base sorbent and promoter react at block 50 to produce a product-promoted sorbent.
  • a secondary component as illustrated by block 30 may be added to the halogen or halide promoter as illustrated by block 20 and introduced into the mercury containing gas as illustrated by block 50 .
  • halogen or halide promoter and secondary component are added, for example, by vapor, no further steps may be taken.
  • the halogen or halide and/or secondary component are added in, for example, a solvent, it may be desirable to employ solvent removal as illustrated by block 20 A and/or block 30 A.
  • a mercury containing gas stream is treated with product-promoted carbon sorbent prepared as described above.
  • the carbon base sorbent provided may preferably be any of several types, as understood by those skilled in the art.
  • the carbon base sorbent may include powdered activated carbon, granular activated carbon, carbon black, unburned carbon, carbon fiber, carbon honeycomb or plate structure, aerogel carbon film, pyrolysis char, regenerated activated carbon from product-promoted carbon sorbent, or other types as known in the art.
  • the carbon base sorbent provided may preferably have a mass mean particle size greater than the fly ash in a mercury containing gas, such as a flue gas stream, to be treated.
  • the carbon base sorbent provided may preferably have a mass mean particle diameter preferably greater than 40 micrometers, more preferably greater than 60 micrometers, or a particle-size distribution greater than that of the fly ash or entrained ash in a flue gas stream, or other mercury containing gas, to be treated, such that the activated carbon and ash can be separated by physical means.
  • the halogen or halide promoter that is added to, and reacts with, the carbon base sorbent may preferably comprise, by way of illustration and not limitation, a molecular halogen in vapor or gaseous form, a molecular halogen in an organic solvent, a Group V or Group VI halide, such as PBr 3 or SCl 2 , respectively, in vapor, liquid, or solution form (though not in an aqueous solvent).
  • the organic solvent may preferably comprise a chlorinated hydrocarbon, such as dichloromethane, a hydrocarbon solvent, including for example, petroleum ether, ligroin, pentane, hexane, toluene, and benzene, carbon disulfide, a waste solvent, an ether, a recycled solvent, a supercritical solvent, such as supercritical CO 2 , water (though not in the case of a Group V or Group VI halide), and others as will be apparent to those of skill in the art.
  • a chlorinated hydrocarbon such as dichloromethane
  • a hydrocarbon solvent including for example, petroleum ether, ligroin, pentane, hexane, toluene, and benzene
  • carbon disulfide e.g., a waste solvent, an ether, a recycled solvent
  • a supercritical solvent such as supercritical CO 2
  • water though not in the case of a Group V or Group VI halide
  • a molecular bromine molecule forms a complex with the surface of the base sorbent comprising a high surface area form of a metal oxide.
  • Complexing with bromine can occur at surface and defect sites on the surface of the glassy amorphous tectosilicates by association with the Lewis basic oxygen lining the interstitial cavities and the alkali actions on the surface.
  • Molecular hydrogen bromide or an electrophilic or Lewis acid bromine compound react to form a similar structure.
  • the formation of the new bromide complex with the metal oxide surface increases the surface reactivity toward mercury and other pollutants.
  • the resulting bromide compound is uniquely suited to facilitate oxidation of the mercury.
  • the effectiveness of the oxidation apparently results from the promotion effect of the halide, exerted on the developing positive charge on the mercury during the oxidation, known in the chemical art as a specific catalytic effect.
  • the halide anion electrons are pushing in from the other side, stabilizing the positive charge developing on the mercury and lowering the energy requirement for the oxidation process.
  • Bromide is especially reactive, owing to the highly polarizable electrons in the outer 4p orbitals of the ion.
  • adding HBr or Br 2 to the appropriate metal oxide forms a similar surface bromide complex, in which the positive oxygen oxidizes the mercury with the assistance of the bromide ion.
  • a non-carbon base sorbent with Lewis basic sites/groups comprising metal-oxygen-metal structures is activated by a promoter of this disclosure, forming a promoted sorbent.
  • the promoter and the metal-oxygen-metal structures of the non-carbon base sorbent form metastable complexes, which are responsible for mercury capture via chemisorption.
  • metastable complexes may form between a halogen promoter and inorganic species on a non-carbon base sorbent, wherein inorganic species include sodium (Na), calcium (Ca), magnesium (Mg), aluminum (Al), iron (Fe) compounds, and combinations thereof.
  • the metastable complexes comprise a dihalogen group, such as Br—Cl, Br—Br, complexed with metal-oxygen-metal structures of the base sorbent. In some embodiments, the metastable complexes comprise a halogen atom, complexed with metal-oxygen-metal structures of the base sorbent. In some embodiments, the metastable complexes comprise a hydrohalogen group, complexed with metal-oxygen-metal structures of the base sorbent. In some embodiments, the metastable complexes comprise a Group V or Group VI halide, complexed with metal-oxygen-metal structures of the base sorbent.
  • the metal-oxygen-metal structures of the base sorbent are complexed with combinations of the functional groups disclosed herein. Without wishing to be limited by a theory, it is believed that mercury capture via chemisorption takes place through the action of mercury oxidation provided by these metastable complexes.
  • a carbon base sorbent with Lewis acid sites/groups comprising graphene sheets is activated by a promoter of this disclosure, forming a promoted sorbent.
  • the promoter and the grapheme sheets of the carbon base sorbent form stable compounds, which are responsible for mercury capture via chemisorption. Without being limited by a theory, it is believed that mercury capture via chemisorption takes place through the action of mercury oxidation provided by these stable compounds.
  • the versatility of chemistry associated with the base sorbent (carbon, non-carbon, or combination thereof) and the promoter of this disclosure enables versatile applications of the promoted sorbent system for mercury capture. This is especially advantageous because mercury content in flue gases varies from facility to facility, from operation to operation, and from day to day.
  • non-carbon base sorbents are amorphous forms of tectosilicates that comprise nanoscale cavities lined with Lewis basic oxygen associated with Group I alkali metals and Group II alkaline-earth metals. Such tectosilicates can be found in naturally occurring minerals, including, but not limited to, perlite and pumacite. Examples of non-carbon base sorbents also include amorphous forms of phyllosilicates. It is appreciated that other minerals may be used and also treated chemically and thermally to increase the activity of the base sorbent materials, such as phyllosilicates in the amorphous forms.
  • the base sorbents are treated chemically and/or thermally to increase their activity.
  • perlite as a base sorbent may go through vacuum treatment and then thermal treatment so as to reduce the moisture contained therein, increase its activity, and potentially alter its morphology.
  • Other treatment processes include chemical treatment, such acid treatment and alkaline treatment. These treatment methods may be combined to achieve desired effects as known to one skilled in the art.
  • One of the desired effects is to increase the number of available Lewis acid sites/groups in the carbon base sorbent and/or the number of available Lewis basic sites/groups in the non-carbon base sorbent for subsequent activation via reaction with a promoter disclosed herein.
  • FIG. 3 a schematic flow diagram is provided of mercury control system 100 comprising preparation of promoted base sorbents and flue gas mercury reduction in accordance with preferred embodiments of the present invention.
  • a base sorbent reservoir 110 there is provided a base sorbent reservoir 110 , a halogen/halide promoter reservoir 120 , a secondary component reservoir 130 , and an alkali component reservoir 180 , each of which with corresponding flow control device(s) 201 , 202 , 203 , and 208 / 209 , respectively.
  • flow control devices 208 and 209 can be used independently, together, or not at all.
  • reservoirs 110 , 120 , 130 and 180 are optional and can be used in any combination, or not at all, whereby the otherwise stored components can be introduced into the system by other means either together or independently. Further, the alkali and secondary components may not be used at all within the system, if so desired.
  • reservoirs 110 , 120 , 130 , and 180 connect through their respective flow control devices and via associated piping, to transport line 115 .
  • Alkali component reservoir 180 may also connect, through respective flow control devices and via associated piping, to transport line 118 .
  • a source of air, nitrogen, or other transport gas(es) is provided by gas source 170 to transport line 115 for the purpose of entraining materials discharged from reservoirs 110 , 120 , 130 , and 180 and injecting such materials, via injection point 116 , into contaminated flue gas stream 15 .
  • a source of air, nitrogen, or other transport gas(es) may be provided by gas source 171 to transport line 118 for the purpose of entraining materials discharged from reservoirs 180 and injecting such materials, via injection point 119 , into flue gas stream 15 .
  • Gas sources 170 and 171 may be the same or different, as desired.
  • transport gas(es) may be provided to both transport lines 115 and 118 by gas source 170 (connection from source 170 to line 118 not shown).
  • gas sources 170 and 171 are shown in FIG. 3 as compressors or blowers, any source of transport energy known in the art may be acceptable, as will be appreciated by those of skill in the art.
  • an optional optical density measuring device(s) 204 is connected to transport line 115 and/or 118 to provide signals representative of the optical density inside transport line 115 and/or 118 as a function of time.
  • particulate separator 140 Downstream from injection point 116 and 119 is provided particulate separator 140 .
  • particulate separator 140 may comprise one or more fabric filters, one or more ESPs, or other particulate removal devices as are known in the art. It should be further noted that more than one particulate separator 140 may exist, sequentially or in parallel, and that injection point 116 and 119 may be at multiple locations upstream and/or downstream of 140 when parallel, sequential, or combinations thereof exist.
  • Particulate separator 140 produces at least a predominantly gaseous (“clean”) stream 142 and a stream 141 comprising separated solid materials.
  • a sorbent/ash separator 150 separates stream 141 into a largely ash stream 152 and a largely sorbent stream 151 . Stream 151 may then preferably be passed to an optional sorbent regenerator 160 , which yields a regenerated sorbent stream 161 and a waste stream 162 .
  • An optional continuous emission monitor (hereinafter “CEM”) 205 for mercury is provided in exhaust gas stream 35 to provide electrical signals representative of the mercury concentration in exhaust stream 35 as a function of time.
  • the optional mercury CEM 205 and flow controllers 201 , 202 , 203 , 208 , and 209 are electrically connected via optional lines 207 (or wirelessly) to an optional digital computer (or controller) 206 , which receives and processes signals and preferably controls the preparation and injection of promoted carbon sorbent into contaminated flue gas stream 15 .
  • Logic and optimization signals from 206 then adjust flow controllers 201 , 202 , 203 , 208 , and 209 to maintain the mercury concentration in exhaust stream 35 within desired limits, according to control algorithms well known in the art.
  • Flow controllers 201 , 202 , 203 , 208 , and 209 can also be adjusted manually or by some other automated means to maintain the mercury concentration in exhaust stream 35 within desired limits, according to control algorithms well known in the art.
  • Stream 111 provides for introduction of base sorbent from reservoir 110 , as metered by flow controller 201 manually or under the direction of computer 206 .
  • the halogen/halide may be combined and react with the base sorbent according to any of several provided methods.
  • the halogen/halide may preferably be combined via line 121 directly into transport line 115 , within which it contacts and reacts with the base sorbent prior to injection point 116 or downstream at point 116 . This results in in-flight preparation of a promoted sorbent in accordance with the invention.
  • the halogen/halide may be combined via line 121 b with the base sorbent prior to entering transport line 115 . Still further, the halogen/halide may be contacted and react with the base sorbent by introduction via line 121 c into reservoir 110 . This option is preferably employed when, for example, reservoir 110 comprises an ebulliated or fluidized bed of base sorbent, through which halogen/halide flows in gaseous form or as a vapor.
  • the halogen/halide may also preferably be contacted with the base sorbent in liquid form or in a solvent, as discussed previously, and solvent removal (not shown in FIG. 3 ) may then be provided if necessary as mentioned with respect to embodiments discussed with reference to FIG. 1 .
  • the optional secondary component may be contacted and react directly in transport line 115 via line 131 , or optionally as described above with respect to the halogen/halide, via lines 131 b and 131 c.
  • the optional alkali component from 180 may either be added in transport line 115 directly, or may be injected separately by transport line 118 , combining downstream in flue gas 15 for synergistic effects with the base sorbent, promoted sorbent, or optional secondary components. Being able to vary on-site the amount of the optional alkali component relative to base sorbent, promoted sorbent, or optional secondary components is a key feature to overcome and optimize for site-specific operating and flue gas conditions.
  • contacting between components and reaction is performed in a liquid or solvent phase
  • stirring of such liquid and/or slurry mixtures may be provided.
  • the halogen/halide promoter and optional secondary component(s) may preferably be sprayed in solution form into or on the base sorbent.
  • drying, filtering, centrifugation, settling, decantation, or other solvent removal methods as are known in the art may then be provided.
  • the secondary component(s) may preferably comprise iodine or other halogens, hydrohalides, including without limitation HI, HBr, HCl, a Group V or Group VI element with a molecular halogen, such as SC 2 and others.
  • the promoted sorbent may comprise from about 1 to about 30 g of halogen/halide per 100 g of base sorbent.
  • the promoted sorbent may comprise a secondary component in concentration of from about 1 to about 15 wt % of the concentration of the halogen/halide component.
  • the product-promoted sorbent may be applied to a substrate.
  • such prepared substrate(s) may be caused to contact a contaminated flue gas or gasification system product gas stream for mercury reduction purposes.
  • Such substrates may be monolithic, rotating, or exposed to the gas stream in any number of ways known to those skilled in the art.
  • a method whereby a mercury stabilizing reagent is added to a promoted sorbent to produce a bifunctional sorbent.
  • Such stabilizing reagent(s) may be sequentially added, either before or after the addition and reaction of the halogen/halide.
  • the halogen/halide preferably comprises Br or HBr
  • the mercury-stabilizing reagent may comprise S, Se, H 2 S, SO 2 , H 2 Se, SeO 2 , CS 2 , P 2 S, and combinations thereof.
  • halogen is defined as a member of the very active elements comprising Group VIIA (CAS nomenclature is used throughout; Group VIIA (CAS) corresponds to Group VIIB (IUPAC)) of the periodic table.
  • Group VIIA CAS
  • IUPAC Group VIIB
  • the atomic elemental halogen form which includes the flueorine, chlorine, bromine, and iodine atoms, is about a million times more reactive to mercury, but the concentration of the atomic forms is typically extremely low. In a large portion of electric utility coal combustion facilities, the concentrations are generally not sufficient to oxidize a significant amount of mercury.
  • halide as used herein is defined as a compound formed from the reaction of a halogen with another element or radical. In general, halide compounds are much less reactive than the molecular halogens, having a low chemical potential. Halides are considered reduced forms that do not, alone, oxidize other compounds. In the conventional view, therefore, a halide salt-treated sorbent will not effectively oxidize elemental mercury and capture elemental mercury.
  • the promoted sorbent described here has a very high initial reactivity for oxidizing mercury and therefore, can be used in very small amounts to achieve very high capture efficiencies, thus lowering operation costs and lessening waste disposal problems. In addition, further disposal reductions are obtainable by regenerating and reusing the promoted sorbents produced using the inventive technology.
  • the time interval required for the mercury and the promoted sorbents of the present invention to successfully interact in a flue gas duct, with subsequent collection of the mercury on the promoted sorbent and ash, is very short—less than seconds. Clearly, such collection times require the promoted sorbent to have both high capacity and high reactivity toward mercury.
  • the promoted sorbent can be utilized in a very finely powdered form to minimize mass-transfer limitations.
  • One feature of this invention is the process to prepare a promoted sorbent containing a halide component formed on and/or within the base sorbent structure that provides a sorbent that is highly active on initial contact with the mercury-contaminated gas stream, which allows for very effective capture of the mercury.
  • the inventive sorbents chemically combine bromine species with Lewis acid/basic sites on the base sorbent.
  • x-ray photoelectron spectroscopy has established that the addition of bromine, chlorine, HBr, or HCl formed a chemical compound in the carbon structure.
  • the promoted sorbent produced from halogen and base sorbent does not represent a molecular halogen form, but rather a new chemically modified structure. This phenomenon may not occur with the less reactive iodine, where an I 2 molecular complex can exist on the carbon basal plane.
  • modified cationic carbon has a high chemical potential for oxidation of mercury.
  • the reactive carbon form can preferably be generated by the addition of bromine, hydrogen bromide, or combinations of bromine and other elements, as described herein.
  • Halogen treatment resulted in higher-activity carbons because the halide anions (especially bromide and iodide) were effective in promoting oxidation by stabilizing the developing positive charge on the mercury in the transition state for oxidation. Based on this model, several innovative, inexpensive, activity-enhancing features have been developed.
  • the second compound comprises either a second halogen or a compound derived from a second halogen, such as HI.
  • the second component generates a Lewis base with greater ability to stabilize the developing positive charge on the mercury.
  • the second component is an element with more polarized electrons (4p and 5p).
  • AC activated carbon
  • Sulfates sulfur species
  • other flue gas contaminants arsenates, selenates, etc.
  • standard AC will continue to oxidize mercury, even though the binding sites are fully consumed. This oxidized mercury can then react with alkali material and subsequently be captured by particulate control devices.
  • alkali acts to protect mercury-binding sites and capture oxidized mercury, thereby resulting in improved mercury reduction at lower cost.
  • Alkali is generally much lower in cost (an order of magnitude less) than AC; thus more of it can be used, still resulting in overall lower costs.
  • the halogen promoted sorbent can be readily produced in-flight. This is accomplished by, for example, contacting the vapors of any combination of halogens and, optionally, a second component, in-flight, with base sorbent particles.
  • the particles may be dispersed in a stream of transport air (or other gas, such as the flue gas itself), which also conveys the halogen/halide-promoted sorbent particles to the flue gas duct, or other contaminated gas stream, from which mercury is to then be removed. There is no particular temperature requirement for this contact. This technology is obviously very simple to implement, and results in a great cost savings to facilities using this technology for mercury capture.
  • gas inlet stream 501 passes through chamber 301 and enters air heater 302 as stream 502 ; then it exits air heater 302 as stream 503 and passes through particulate control device 303 and enters scrubber 304 as stream 504 ; finally it exits scrubber 304 as stream 505 .
  • chamber 301 is a boiler, however, one skilled in the art will appreciate that chamber 301 can also be the combustion chamber of a coal fired boiler, a stand alone combustion chamber or any other chamber in which mercury containing gas is either generated or passed through.
  • Injection streams 401 , 402 , 403 and 404 in addition to stream 501 , are multiple locations wherein promoter, base sorbent, or a combination of promoter and base sorbent may be introduced.
  • FIG. 5B shows an embodiment similar to that of FIG. A, but with the position of the scrubber and particulate control device switched. Specifically, gas inlet stream 501 ′ passes through chamber 301 ′ and enters air heater 302 ′ as stream 502 ′; then it exits air heater 302 ′ as stream 503 ′ and passes through scrubber 304 ′ and enters particulate control device 303 ′ as stream 504 ′; finally it exits particulate control device 303 ′ as stream 505 ′.
  • chamber 301 is a boiler, however, one skilled in the art will appreciate that chamber 301 can also be the combustion chamber of a coal fired boiler, a stand alone combustion chamber or any other chamber in which mercury containing gas is either generated or passed through.
  • Injection stream locations 401 ′, 402 ′, 403 ′ and 404 ′, in addition to stream 501 ′, represent multiple locations wherein promoter, base sorbent, or a combination of promoter and base sorbent may be introduced.
  • a promoter is introduced to chamber 301 at location 401 .
  • a base sorbent (carbon, non-carbon, or their combination) is introduced at location 402 upstream of air heater 302 .
  • a promoter is introduced to at location 402 upstream of air heater 302 .
  • a base sorbent (carbon, non-carbon, or their combination) is also introduced at location 402 either as a separate stream or as a mixed single stream with the promoter.
  • a promoter is introduced at locations 401 and 402 .
  • a base sorbent (carbon, non-carbon, or their combination) is introduced at location 402 either as a separate stream or as a mixed single stream with the promoter.
  • the treatment system can be combined with the base sorbent injection system at the end-use site.
  • the halogen/halide is introduced to the base sorbent air (or other gas, including to the flue gas or other mercury containing gas) mixture in a transport line (or flue gas duct part of the base sorbent storage and injection system).
  • the inventive process uses existing hardware and operation procedures.
  • the inventive technology ensures that the sorbent is always fresh and, thus, more reactive.
  • the inventive process allows rapid on-site tailoring of additive-sorbent ratios in order to match the requirements of flue gas changes, such as may be needed when fuels are changed or loads are reduced, thus further optimizing the economics.
  • the inventive technology reduces the amount of spent sorbents that are disposed.
  • embodiments including a process for preparing and regenerating halogen/halide-promoted sorbents, whose activity for mercury capture is enhanced by the addition of halogen (e.g., bromine) to the base sorbent structure.
  • halogen e.g., bromine
  • a halogen-promoted sorbent in a powdered form that has been injected into a flue gas stream before or after ash particulates have been removed.
  • inventive composition of the halogen-promoted sorbent comprise a powdered modified AC prepared by adding Br 2 or HBr plus a second optional component.
  • Other embodiments allow the addition of the optional alkali component in conjunction with a base AC and/or with the use of a halogen-based sorbent and any other combinations of the sorbent technologies provided in this patent.
  • Other embodiments allow for in-flight preparation of promoted sorbents by using and combining the promoters and base sorbents.
  • embodiments include methods wherein the base sorbent is on a moving contactor consisting of particles or fibers containing one or more of the compositions listed above.
  • any of the above embodiments of the halogen/halide-promoted carbon and/or non-carbon sorbent can be easily regenerated; the poisoning contaminants from the flue gas are preferably removed, and an inexpensive promoting agent added, to restore mercury sorption activity.
  • This process of promoting the activity of the carbon and/or non-carbon itself contrasts with the earlier, more expensive, conventional methods of adding a reagent (such as peroxide, gold, triiodide, etc.) to a base sorbent.
  • a reagent such as peroxide, gold, triiodide, etc.
  • sorbent regeneration techniques are described in copending, commonly owned PCT Patent Application No. PCT/US04/12828, titled “PROCESS FOR REGENERATING A SPENT SORBENT,” which is hereby incorporated by reference in its entirety.
  • the mercury control technology of the present invention may preferably utilize continuous measurement of mercury emissions as feedback to assist in control of the sorbent injection rate. Tighter control on the sorbent and optional component(s) levels can be achieved in this way, which will ensure mercury removal requirements are met with minimal material requirements, thus minimizing the associated costs.
  • the mercury emissions are continuously measured downstream of the injection location, preferably in the exhaust gas at the stack.
  • the flue gas flow rate for the test was approximately 23 million dsft 3 /hr with a corresponding mercury flow rate of 0.0097 lbs Hg/hr.
  • Initial mercury concentration in the flue gas prior to the introduction of the base sorbent or promoted sorbent was approximately 0.000417 lbs Hg/million dsff 3 .
  • each base sorbent was injected at three different test rates: about 100 lb/hr (“Low”), about 150 lb/hr (“Ave.”) and about 200 lb/hr (“High”).
  • the mercury removal rate was measured both with and without the use of a promoter to show the relative benefit of introducing the promoter into the flue gas stream.
  • promoter was injected at about 20 lb/hr for the “Low” tests, at about 25 lb/hr for the “Ave.” tests and from about 30 to about 50 lb/hr for the “High” tests.
  • the percent mercury removal for each test was calculated based on measurements taken from the inlet flue gas and the outlet flue gas.
  • the results as shown in Table 1 clearly show a significant improvement in mercury capture when a promoter and base sorbent are injected, as compared to the injection of a base sorbent alone.
  • a reactive sorbent material is described for capture of mercury in a vapor stream.
  • the vapor stream includes flue gas from coal combustion or incineration, synthesis gas from gasification, as well as off gases from mineral processing, metal refining, retorting, cement manufacturing, chloralkali plants, dental facilities, and crematories.
  • the sorbent is especially suited to, but not limited to, use in low-chlorine flue or exhaust gases where the mercury is mainly elemental.
  • the sorbent comprises a bromide-modified carbon form containing a reactive compound produced by the reaction of bromine with the carbon. Other additional promoting substances can be added in smaller amounts to increase the reactivity with and sorption of elemental mercury.
  • the sorbent consists of a fine or coarse powdered material for injection into the gas stream or a granular or fibrous material for use in a fixed or moving bed.
  • the sorbent does not require in situ activation (an induction period) in a flue gas stream as do conventional activated carbon sorbents.
  • sorbent may be added to flue gas as a sorbent mixture, or co-injected to selectively sorb acid gases or other flue gas constituents to keep available reactive sites for mercury oxidation and subsequent capture.
  • the sorbent can be regenerated by washing off contaminating components derived from flue gas that poison the spent sorbent. Novel methods for introduction of the sorbent dispersion into the mercury contaminated gas stream are described.
  • a modified carbon sorbent was prepared by reacting the carbon with molecular bromine by applying a solution of molecular bromine in an organic solvent to the carbon, followed by removal of the modified carbon from the bulk of solvent and further removal of solvent from the pores by drying the carbon in air or nitrogen.
  • the solution may also contain an additional promoting substance in small amounts.
  • the amount of bromine taken up by the carbon ranges from ⁇ 1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • carbon is powdered activated carbon.
  • Carbon is granular activated carbon.
  • Carbon is very fine carbon black.
  • Carbon is very fine carbon fiber.
  • Carbon is aerogel carbon film.
  • Carbon is char recovered from pyrolysis process.
  • Carbon is powdered activated carbon of size distribution larger than fly ash size distribution, so that it can be physically separated from the ash and regenerated for reuse.
  • Carbon is regenerated from previous usage cycle and recycled.
  • Solvent is chlorinated hydrocarbon such as dichloromethane.
  • Solvent is hydrocarbon solvent such as petroleum ether or ligroin or pentane or hexane or toluene or benzene.
  • Solvent is a waste solvent.
  • Solvent is supercritical solvent such as CO 2 .
  • Solvents may also be used.
  • solution of bromine is applied by stirring the carbon in the bromine solution.
  • solution of bromine is applied by spraying a solution of molecular bromine in an organic solvent, followed by removal of solvent from the pores by drying the carbon in air or nitrogen.
  • the bromine may also be applied using other desired techniques.
  • removal of solvent is by filtration, centrifugation, settling, and decantation and drying in vacuum, air, or other gas.
  • the solvent may also be removed using other desired techniques.
  • hydrohalide HI, HBr, HCl
  • additional substance is a compound comprised of a Group V or VI element or combination of Group V or VI with Group VII element, such as SCl 2 , 1-10 wt % of bromine.
  • a modified carbon sorbent was prepared by reacting the carbon with molecular bromine by contacting the carbon with a gas containing molecular bromine.
  • the amount of bromine taken up by the carbon ranges from ⁇ 1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • Contacting is by passing the Br 2 gas through a bed of the carbon.
  • Contacting is by admitting Br 2 gas to a duct through which the carbon is transported from a reservoir to the flue gas duct via an air-driven entrainment method, thus promoting the activity of the carbon in-flight.
  • a modified activated carbon sorbent was prepared by reacting the carbon with hydrogen bromide (HBr) by stirring the carbon in a solution of HBr in an organic solvent or in water, followed by removal of the modified carbon from the bulk of solvent and further removal of solvent from the pores by drying the carbon in air or nitrogen.
  • HBr hydrogen bromide
  • the amount of bromine taken up by the carbon ranges from ⁇ 1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • An activated carbon sorbent was prepared by impregnating hydrogen bromide by passing a gas composition containing hydrogen bromide diluted with nitrogen or air through a fluidized bed or ebullated bed of the carbon.
  • the amount of bromine taken up by the carbon ranges from ⁇ 1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • Group V or VI element combined with Group VII element, such as PBr 3 or SCl 2 .
  • the amount of Group V or VI halide is 1-30 wt % of the carbon.
  • solvent is hydrocarbon, chlorinated hydrocarbon, or other solvent as described in 1B, but not water, since the compound is destroyed in water solution).
  • additives (1-8) in conjunction with sorbents to capture acid gases and other flue gas constituents that block oxidation reactions or consume sorbent sites that would otherwise capture mercury.
  • the additive is a compound comprised of Group I or II elements, such as Ca, Na, and others.
  • These additives of base chemistry may be added to flue gas as a sorbent mixture or co-injected to selectively sorb acid gases or other gas constituents that compete for mercury reactive/sorption sites, thereby improving the effectiveness of activated carbon to capture mercury.
  • the base additives can augment the treated activated carbon by helping to capture oxidized mercury forms in the flue gas, such as mercuric chloride, or that are produced on the carbon sorbent, such as mercuric bromide, but are released to the gas phase as the sorbent becomes saturated or capacity limited.
  • the larger sorbent size thus will allow easy mechanical/physical separation so that sorbent can be regenerated, recycled, and reused, and the ash can be sold as a low-carbon cementatious byproduct for concrete.
  • the separation can be effected by various methods, such as density (gravity), floatation, or sieving methods.
  • the bromine reagents promote metal oxidation activity by creating cationic or radical character on the carbon edge structure that attracts mercury atoms and extracts electrons from said mercury atoms, resulting in oxidized mercury, which is more easily captured on a sorbent.
  • a similar mechanism applies to oxidation and capture of reduced arsenic and other pollutant species.
  • the invention relates to the process for the removal of mercury and other pollutant species from gas streams generated during the burning of fossil fuels, such as in a coal-fired utility or synthesis gas from gasification facilities.
  • This removal process would utilize a sorbent and/or a combination of additives to remove pollutants from the gas stream, which are at the same time interacting with other gas components that result in poisoning or deactivating the sorbent and reducing its capacity or reaction rates with the targeted pollutant species.
  • the present invention provides a cost-effective way to capture the pollutants by utilizing exceptionally active carbon sorbents and promoting mercury sorbent surface reactions, containing a bromide form of the carbon, that capture mercury with high kinetic chemisorption (oxidation) activity, so that capture can occur during contact times of seconds or less.
  • the sorbent does not require in situ activation (induction period) in the gas stream to achieve high activity as do conventional activated carbon sorbents.
  • the reactivity of the sorbent toward the pollutants and the sorption capacity can be regenerated, recycled, and reused.
  • Fine-particle injection sorbents include activated carbon, metal oxide sorbent, sodium sulfide particles (for example, see U.S. Pat. No. 6,214,304), and basic silicate or oxide sorbents (for example, see the Ghorishi reference (Ghorishi, B.; Gullet, B. K. Waste Manage Res. 1993, 16, 582). and Lancia references).
  • the mercury chemisorbed to the sorbent particle is removed from the gas stream in a bag house or ESP and collected along with ash particulates (for example, see U.S. Pat. Nos. 4,889,698, 4,956,162, 5,672,323, 5,827,352, 6,027,551, and 5,505,766).
  • the sulfide and basic silicate and oxide particles are effective only for the oxidized mercury, and the metal oxide sorbents exhibit slower capture kinetics than the carbon particles.
  • injection of fine carbon particles into the flue gas stream has been only partially successful in removing mercury, especially elemental mercury, where effective removal of approximately 60% was attained with a baghouse to collect carbon and ash. Even lower removal rates have been observed when using an ESP to collect the carbon, since the contact time of the carbon with the gas is very short.
  • a major problem with existing carbon injection systems is that the sorbent is initially unreactive, and only after exposure to the flue gas for about 20 minutes does the seasoned sorbent become effective and provide capture of 60% of the mercury in the gas. Consequently, these sorbents must be used in large amounts (high sorbent-to-mercury ratios) to effectively capture the mercury. These sorbents can be relatively expensive and cannot be easily separated from the ash, regenerated and reused. The collection of carbon in the ash also creates solid waste disposal problems, and the spent sorbent may contaminate the collected ash for use in various applications.
  • Halogen is defined as a member of the very active elements comprising Group VII-A of the periodic table.
  • the reaction with elemental mercury is not fast enough to result in the formation of oxidized mercury in a coal combustion flue gas with conventional ash control technology.
  • the atomic elemental halogen form which includes F atom, Cl atom, Br atom, and I atom, is about a million times more reactive to mercury, but the concentrations of these forms are extremely low, and also, therefore, cannot result in oxidation of mercury in a utility flue gas.
  • a halide is a compound formed from reaction of a halogen with another element or radical.
  • the halide compounds are normally very much less reactive than the molecular halogens, having expended their high chemical potential in forming the low energy halide.
  • the halide is considered a reduced form and cannot therefore oxidize anything by itself. It is for this reason that it is not obvious that a halide-halogen treated activated carbon would be effective at oxidizing elemental mercury and provide effective capture of elemental mercury.
  • analytical data show the addition of bromine to an activated carbon or carbon black or soot does form a compound by reacting with the unsaturated groups on the carbon. By applying x-ray photoelectron spectroscopy, it has been determined that bromine or HBr added to carbon black forms chemical compounds within a carbon structure.
  • step 1 shows the reaction of the hydrogen bromide with the unsaturated structure of the activated carbon.
  • This may be a carbene species on the edge of the graphene sheets structures of the carbon.
  • Molecular bromine or a bromine compound reacts to form a similar structure, with a positive carbon that is active for oxidizing the mercury.
  • the resulting bromide compound is uniquely suited to facilitate oxidation of the mercury.
  • the effectiveness of the oxidation results from the promotion effect of the halide exerted on the developing positive charge on the mercury during the oxidation, known in the chemical art as a specific catalytic effect.
  • the halide anion electrons are pushing in from the other side, which stabilizes the positive charge developing on the mercury and lowers the energy requirement for the oxidation process.
  • Bromide is especially reactive, owing to the highly polarizable electrons in the outer 4p orbitals of the ion.
  • adding HBr or Br 2 to the carbon forms a similar carbon bromide, in which the positive carbon oxidizes the mercury with the assistance of the bromide ion.
  • Japanese Patent JP 49-43197 describes the treatment of Hg-contaminated electrolysis cell gas using a metal iodide salt on a support. A similar treatment using a resin impregnated with a metal iodide is described in JP 50-6438. These patents do not appear to represent a carbon bromide compound as specified in this patent application.
  • U.S. Pat. No. 5,891,324 describes an activated carbon containing an acid (HCl, H 2 SO 4 , or H 3 PO 4 ) for the removal of mercury contained in a liquid phase, such as would occur in a process steam in the oil industry.
  • an acid HCl, H 2 SO 4 , or H 3 PO 4
  • the model presented was that mercury is adsorbed from the liquid into the solid carbon phase at relatively low temperatures.
  • the Nelson method lacks many of the features described in this application that impart exceptional activity to the sorbent in a convenient way, for example, the addition of smaller amount of a second more powerful promoting agent, the use of facile solvent systems, including aqueous bromine, and the use of in-flight bromine treatment. Additionally, the patent application does not mention regeneration, recycling, or reuse, or the use of moving contactors or larger particle size to facilitate sorbent-ash separation.
  • a sorbent that is initially very reactive in oxidizing mercury can be used in very small amounts to achieve high capture efficiencies, thus lowering operation costs and lessening the disposal problem. In addition, further disposal reduction is made possible by recycling and reusing the sorbent that is produced using this technology.
  • the time interval for the mercury and sorbent to interact in a flue gas duct and the subsequent collection of the mercury on the sorbent and ash may be very short—only seconds. This requires the sorbent to have high capacity and be very reactive toward mercury.
  • a sorbent can be utilized in a very finely powdered form (e.g., 1-10 ⁇ m) to minimize mass transfer limitations. But, again, the reactivity should be very high to capture all of the mercury encountered by the fine particles.
  • One feature of this invention is the process to prepare a sorbent containing a bromide compound formed on the carbon structure that provides a sorbent that is highly active on initial contact with the mercury contaminated gas stream, which allows for effective capture of the mercury.
  • Chlorine treatment resulted in lower-activity carbons because the chloride anion was less effective in promoting the oxidation by stabilizing the developing positive charge on the mercury in the transition state for oxidation. Based on this model, several innovative, inexpensive, activity-enhancing features have been developed.
  • the second compound comprises either a second halogen or a compound from a second halogen, such as HBr.
  • the second component in addition to having a reactive carbon form present, the second component generates a Lewis base with greater ability to stabilize the developing positive charge on the mercury.
  • the second component is an element with more polarized electrons (4p and 5p).
  • the sorbent can be readily treated with any combination of bromine and the second component in-flight using vapors of these components contacting the very fine carbon particles dispersed in air or other gas stream that conveys the particles to the flue gas duct. There is no particular temperature requirement for this contact. This technology is very simple to implement, so it will result in a great cost savings to the utility using this technology for mercury capture.
  • a unique, nonobvious technique for preparation of the treated carbon is through combining the treatment system with the carbon injection system at the end-use site.
  • the halogen is introduced to the carbon-air mixture in the transport line (or other part of the sorbent storage and injection system).
  • Benefits over current concepts to treat sorbents off-site include the following:
  • the invention applies to use of a sorbent in a powdered form that has been injected into a flue gas stream before or after ash particulates have been removed.
  • a sorbent in a powdered form that has been injected into a flue gas stream before or after ash particulates have been removed.
  • the composition of the sorbent are a powdered modified activated carbon prepared by adding Br 2 or HBr plus a second optional component.
  • the sorbent is on a moving contactor consisting of particles or fibers containing the compositions listed in the previous sentence. Either type can be regenerated, the poisoning contaminants from the flue gas are removed and an inexpensive promoting agent added to restore mercury sorption activity.
  • FIG. 6 is a block diagram illustrating the use of the invention in a coal fueled facility.
  • the invention can also be used in any other desired type of facility.
  • FIG. 6 shows a boiler for burning pulverized coal.
  • the facility utilizes various devices to clean the exhaust of the boiler.
  • a baghouse or ESP is used to collect particulates in the exhaust.
  • a scrubber and sorbent bed are also used to remove undesired constituents from the flue gas stream, before being fed to the stack.
  • the sorbent is injected into the flue gas after the boiler.
  • the additive can be injected where desired (e.g., before, after, or within the boiler).
  • Another advantage of the present invention relates to the use of a feedback system to more efficiently utilize the invention.
  • the mercury control technology of the present invention will utilize measurement of mercury emissions as feedback to assist in control of the sorbent injection rate. Tighter control on the sorbent levels in this way will ensure mercury removal requirements are met with the minimal sorbent requirements and therefore the associated costs will be minimized.
  • the emissions are measured at the stack.
  • Reactions of halogens and acidic species with the basic binding sites on the activated carbon sorbent create sites for oxidizing mercury.
  • Other metal ions such as boron, tin, arsenic, galium, Sb, Pb, Bi, Cd, Ag, Cu, Zn, or other contaminants, will also react with the oxidation sites generated on the carbon.
  • adding the bromine from the bromine reagent or a proton from a hydrogen halide acid to a basic carbene site on the carbon edge structure forms a carbocation that accept electrons from the neutral mercury atom forming the oxidized mercury species that is bound to the sorbent surface.
  • the reactive site may also generate reactive bromine radicals or carbon radicals at the active sites on the carbon.
  • the activated carbon serves to stabilize the bromine, yet provides a highly reactive bromine—containing reagent that can oxidize the mercury and promote its capture on the activated carbon.
  • the sorbent that contains bromine is expected to be more reactive than the corresponding sorbent containing chlorine and much less expensive than the sorbent containing iodine.
  • Bromine-treated carbons were prepared by impregnation of the powdered activated carbon precursors in a stirred solution of bromine in carbon tetrachloride or methylene chloride, or alternatively, in an aqueous solution of HBr, followed by drying in air at ambient temperature and drying in an oven at 100° C. in air or nitrogen. Bromine-treated carbons were also prepared by impregnating bromine from the gas phase by passing the gas through a rotating dry bed of the activated carbon precursor. Adding a second component to the solution was demonstrated to improve the capacity of the sorbent.
  • the carbons were initially tested in a heated bed, where a synthetic flue gas stream containing elemental mercury (11 ⁇ g/m 3 ) was passed through the bed. Concentrations of total and elemental Hg in the effluent gas were determined using a Sir Galahad mercury CEM. The powdered sorbent was supported on a quartz filter during the test, and the other sorbents were tested as a triple layer.
  • a comparison of the sorbent after subsequent regeneration with HBr indicates that it not only captures mercury at the same level as before (100% capture) but is enhanced such that its capacity is prolonged by several minutes. Similar results were obtained with the carbon film and carbon fiber sorbents by treatment with molecular bromine in solution or in dry beds as described above.
  • An activated carbon sorbent was prepared by treating the carbon by impregnating molecular bromine from a gas composition containing molecular bromine by flowing the gas through a liquid bromine reservoir in series with a fluidized bed of ebullated bed of the carbon.
  • the amount of bromine taken up by the carbon ranges (in one example) from ⁇ 1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • the flue gas phase mercury (elemental) concentration was between 10 and 11 ⁇ g/m 3 .
  • the ash and injected carbons were collected in the baghouse at 350E to 375EF.
  • Injection of commercial-grade activated carbon powder (untreated) at a rate of 1.0 lb/Macf resulted in mercury effluent concentrations of 3.8-4.2 ⁇ g/m 3 (representing 62%-58% removal of the mercury from the gas), and at 2.0 lb/Macf, gave 74%-71% removal.
  • Injection of the bromine-treated carbon at 1.0 lb/Macf resulted in 73%-69% removal and at 2.0 lb/Macf gave 86%-84% removal.
  • a significant increase in the mercury capture was exhibited during use of the bromine-treated carbon.
  • Carbon beds have also been utilized for mercury capture in flue gas.
  • the German Patent 34 26 059 describes the use of a very thick carbon bed for treatment of flue gases containing polyhalogenated compounds.
  • Hg removal for example, see the Streng reference
  • Spent sorbent is burned and not regenerated. The carbons are not pretreated.
  • the GE-Mitsui-BF system (Tsuji, K.; Shiraishi, I.; Dague, R. F. Proceedings, Sixth International Symposium, Air & Water Management Assoc., New Orleans, La., Mar. 10-12, 1993) employs a recirculating carbon bed, where mercury is removed along with acid gases (as ammonium salts) and the carbon is regenerated at high temperatures where ammonium sulfate is decomposed to SO 2 and N 2 and mercury is converted to the elemental form, which desorbs from the sorbent. Attrition of the sorbent results in a significant sorbent cost. The carbons are not pretreated.
  • a process of injecting manganese oxide sorbent particles is described in U.S. Patent Application 2002/0150516. Regeneration is claimed by removal of spent oxide particles from the reaction zone and rinsing with dilute aqueous acid.
  • U.S. Pat. No. 5,607,496 teaches the oxidation of mercury on a metal oxide sorbent bed and subsequent absorption to sorbent.
  • the sorbent bed follows the particulate-removal equipment and, thus, the gas still contains the SO and NO x , which react with the metal oxide sorbent to form the metal sulfates, which poison the bed.
  • High temperatures are proposed to regenerate the bed.
  • Hg is only partially removed from the sorbent at temperatures up to 500° C.
  • the sorbents do not work effectively after regeneration using this technique; the problem may be that manganese sulfate formed during the sorption cycle does not completely decompose back to an active manganese oxide form.
  • Porous beds containing a mercury oxidizing reagent on a solid support are described in several patents for removal of mercury from gas streams. These include peroxomonosulfate (for example, see U.S. Pat. No. 4,786,483), triiodide or other mixed halogens (for example, see U.S. Pat. Nos. 3,194,629; 3,662,523), or sulfur (for example, see U.S. Pat. Nos. 3,194,629, 4,101,631, 4,708,853, 6,258,334).
  • the reagent material is destroyed either by reaction with the flue gas during sorption or by attempts to regenerate the sorbent; there is no way to regenerate these sorbents, except by reimpregnation of the expensive reagent.
  • Amalgamating noble metals (gold, silver) on a suitable support can be regenerated by microwave heating (for example, see U.S. Pat. No. 6,136,072), but they are expensive and not especially active for sorption in flue gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A promoted carbon and/or non-carbon base sorbent are described that are highly effective for the removal of mercury from flue gas streams. The promoted sorbent comprises a carbon and/or non-carbon base sorbent that has reacted with and contains forms of halogen and halides. Optional components may be added to increase and/or preserve reactivity and mercury capacity. These may be added directly with the base sorbent, or in-flight within a gas stream (air, flue gas, etc.), to enhance base sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The promoted sorbent can be regenerated and reused. Base sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active base sorbent into the mercury contaminated gas stream are described.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/295,594, filed Oct. 17, 2016, which is a continuation of U.S. patent application Ser. No. 14/102,896 filed on Dec. 11, 2013 (now U.S. Pat. No. 9,468,886), which is a continuation of U.S. patent application Ser. No. 12/429,058 filed on Apr. 23, 2009 (now U.S. Pat. No. 8,652,235), which is a continuation-in-part of U.S. patent application Ser. No. 12/201,595 filed on Aug. 29, 2008 (abandoned), which is a divisional of U.S. patent application Ser. No. 11/209,163 filed on Aug. 22, 2005 (now U.S. Pat. No. 7,435,286), which claims priority from provisional application Ser. No. 60/605,640 filed on Aug. 30, 2004. The disclosures of U.S. patent application Ser. Nos. 14/102,896; 12/429,058; 12/201,595; 11/209,163; and 60/605,640 are hereby incorporated herein by reference to the extent appropriate.
  • BACKGROUND OF THE INVENTION Technical Field of the Invention
  • The present invention relates to methods and materials for the removal of pollutants from flue gas or product gas from a gasification system. In particular, mercury is removed from gas streams generated during the burning or gasification of fossil fuels by highly reactive regenerable sorbents.
  • Background of the Invention
  • The combustion and gasification of fossil fuel such as coal generates flue gas that contains mercury and other trace elements that originate from the fuel. The release of the mercury (and other pollutants) to the environment must be controlled by use of sorbents, scrubbers, filters, precipitators, and other removal technologies. Mercury is initially present in the elemental form during combustion and gasification. In downstream process sections, such as in the ducts and stack of a combustion system, some of the elemental mercury is oxidized. The amount that is oxidized depends on the amount of acid gases present in the flue gas and other factors. Amounts of mercury vary with the fuel, but concentrations of mercury in the stream of flue gas from coal combustion are typically less than 5 parts per billion (ppb). Large coal combustion facilities such as electric utilities may emit a pound of mercury, or more, a day. Mercury removal applications include, without limitation, flue gas from coal (or other fossil fuel) combustion, waste incineration, product gas from gasification, as well as off gases from mineral processing, metal refining, retorting, cement manufacturing, chloralkali plants, dental facilities, and crematories.
  • Mercury Sorbent Technologies
  • Several types of mercury control methods for flue gas have been investigated, including injection of fine sorbent particles into a flue gas duct and passing the flue gas through a sorbent bed. Fine-particle injection sorbents include activated carbon, metal oxide sorbent, sodium sulfide particles, and basic silicate or oxide sorbents. When particle injection is employed, the mercury captured on the sorbent particles is removed from the gas stream in a particulate control device such as a baghouse or electrostatic precipitator (ESP) and collected along with ash particulate. The sulfide and basic silicate and oxide particles are effective only for the oxidized mercury, and the metal oxide sorbents exhibit slower capture kinetics than the carbon particles. Additionally, injection of fine carbon particles into the flue gas stream has been only partially successful in removing mercury, especially elemental mercury, where effective removal of only about 60% is attained for some applications with a FF (fabric filter) to collect carbon and ash. Even lower removal rates have been observed when an ESP is used to collect the carbon because the contact time of the carbon with the gas is very short.
  • A major problem with existing carbon injection systems is that the sorbent is relatively unreactive toward mercury. Consequently, these sorbents must be used in large amounts, at high sorbent-to-mercury ratios, to effectively capture the mercury. These sorbents tend to be relatively expensive and cannot be easily separated from the ash for regeneration and reuse. The collection of carbon in the ash also creates solid waste disposal problems, and the spent sorbent may contaminate the collected ash, preventing its use in various applications.
  • One solution has been to add an oxidative sorbent comprising an aluminosilicate material impregnated with a very heavy dosage of one or more oxidative metal halides plus activated carbon. For example, refer to Varma et al. (20070140940). However, the amounts of metal salts required for Hg oxidation are generally relatively large and expensive. Also, several of the salts that can be used in such a process are highly toxic. Although the metal salts are present for oxidation in this process, activated carbon is essential for getting adsorption of the Hg. As such, there is no synergistic role for the aluminosilicates as they appear to be only a support for the oxidizing salts.
  • Another approach has been the injection of aluminosilicate particulate such as bentonite, which contains neither oxidizing salts nor halogen complexes with a Lewis base site, and thus lacks the more powerful oxidizing capability of the said complexes as described in this application. For example, see U.S. Pat. No. 7,413,719. Additionally, the injection of an aluminosilicate (kaolin or metakaolin) containing calcium hypochlorite which thermally decomposes to form halogen is also known. For example, see U.S. Patent Application No. 20030103882. Thus these and similar impregnated aluminosilicate technologies require time in flight at appropriate high temperatures to heat the impregnated salt(s) to generate an oxidation site. This clearly represents a kinetic barrier to activation in contrast to the extremely fast complexing reaction of the Lewis acid on the surface of the appropriate Lewis base sorbent described in the present patent. The kinetic barrier is only for heating up the calcium hypochlorite to decompose it to Cl atoms or molecules. Halogen (bimolecular or atomic) would complex with carbon or noncarbon at any lower temperature to form reactive oxidation sites. Also, halide would require a very high temp or strong acid to form reactive halogen or halogen complex.
  • Yet another approach is the injection of bentonite plus a metal sulfide and a metal salt, none of which is oxidizing to elemental mercury and would require a slow thermal activation step. For example, see U.S. Patent Application No. 20070119300.
  • The injection of halogen or halogen precursors in a hot zone, followed by contact with an alkaline material in a wet or dry scrubber is another approach known in the art. With such an approach, elemental mercury is claimed to be oxidized by the halogen to Hg(II) which is collected by the alkaline material in the scrubber. For example, see U.S. Pat. No. 6,808,692 (Oehr), U.S. Pat. No. 3,849,267 (Hilgen), U.S. Pat. No. 5,435,980 (Felsvang), U.S. Pat. No. 6,375,909 (Dangtran), U.S. Patent Application No. 20020114749 (Cole), U.S. Pat. No. 6,638,485 (Iida), U.S. Patent Application No. 20030185718 (Sellakumar), U.S. Patent Application No. 20030147793 (Breen), and U.S. Pat. No. 6,878,358 (Vosteen). However, even though it is known to inject halogen forms at some stage of the combustion process, such a process does not utilize a complexing method on a sorbent surface for conducting the oxidation and capture. Further, the alkaline material is rapidly surface-coated by the large concentrations of acid gases, lowering its capacity for adsorption of Hg(II). It is also recognized that the halogen forms initially introduced or generated are far more reactive to the large concentrations of SO2 and moisture in the flue gas, and so gas-phase reactions of the halogens with Hg are hindered. In contrast, the present invention takes advantage of the Lewis acid complexes that rapidly form on the sorbent surface to effect the Hg oxidation, rather than rely on gas phase reactions for oxidation. Thus HCl, HBr, SO2Br, and other gas-phase products all festoon the surface and promote the activity of the sorbent by forming complexes with the sorbent to form a promoted sorbent.
  • Accordingly, there remains a need for more economical and effective mercury removal technology. This invention provides for cost-effective removal of pollutants, including mercury, using sorbent enhancement additives and/or highly reactive sorbents, with contact times of seconds (or less), and that may be regenerated and reused.
  • SUMMARY
  • The various embodiments of the present invention overcome the various aspects of the deficiencies of the prior art and provide new and economical methods for the removal of mercury from the gases produced in the utilization of fossil fuels.
  • A halogen/halide-promoted sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises any activated carbon and/or non-carbon compound, such as porous or vesicular felsic or basaltic materials, clay-based compounds, alkaline compounds, calcium hydroxide compounds, sodium acetate compounds, and/or bicarbonate compounds, or a combination thereof. Optional secondary components and alkali may be added to further increase reactivity and mercury capacity. Mercury removal efficiencies obtained exceed or match conventional methods with added benefits such as reduced costs. Optionally, the promoted sorbent can be regenerated and reused. Sorbent treatment and/or preparation methods are also described. Methods for in-flight preparation, introduction, and control of the sorbent, promoter and promoted sorbent into the mercury contaminated gas stream are described.
  • When a promoted or a non-promoted base sorbent reacts with elemental or oxidized mercury, a mercury/sorbent chemical composition is formed and, in the case of elemental mercury reacting with the promoted base sorbent, the mercury is oxidized. As discussed in further detail in other portions of the specification, the base sorbent may be either a carbon or a non-carbon material or a combination thereof. Additionally, the mercury/sorbent chemical composition may be comprised of covalent bonds, ionic bonds and/or chemical complexes between the promoted or non-promoted base sorbent and the oxidized mercury. The Lewis basic groups on the non-promoted base sorbent, or the non-promoted portions of a promoted base sorbent, are available for reaction with the Lewis acid groups of already existing oxidized mercury in the mercury containing gas. Thus, mercury may be removed from the mercury containing gas stream through the formation of multiple and various mercury/sorbent chemical compositions even within the same process. For example, multiple sites on a sorbent particulate can form multiple and various mercury/sorbent chemical compositions in the case where only a portion of the sites on the base sorbent particulate are promoted.
  • In some embodiments, a carbon and/or non-carbon promoted sorbent and/or a combination thereof is provided comprising a sorbent structure that has reacted with a promoter selected from the group consisting of halides, halogens, and combinations thereof, such that the reaction product is effective for the removal of mercury from a gas stream. The carbon sorbent comprises reactive Lewis acid groups/sites; the non-carbon sorbent comprises reactive Lewis basic groups/sites.
  • In an embodiment, a promoted carbon and/or non-carbon sorbent is provided wherein the base sorbent is selected from the group consisting of carbon, activated carbon, porous or vesicular felsic and basaltic materials, clay-based compounds, alkaline compounds, calcium hydroxide compounds, sodium acetate compounds, and/or bicarbonate compounds, or a combination thereof, with an average particle size similar to that of fly ash produced from a thermal process (combustion or gasification) or greater than that of fly ash produced such that it is physically separable therefrom, and combinations thereof, and the promoter is selected from the group consisting of molecular halogens, Group V (CAS nomenclature is used throughout) halides, Group VI halides, hydrohalides, and combinations thereof. In an embodiment, the promoted sorbent (carbon, non-carbon, or their combination) may have a mass mean particle diameter such that it can be substantially separated by physical means from entrained ash in the gas stream from which mercury is to be removed. In an embodiment, the base sorbent (carbon, non-carbon, or their combination) may have a mass mean particle diameter greater than about 40 micrometers.
  • In another embodiment, the promoted sorbent comprises from about 1 to about 30 grams of promoter per 100 grams of base sorbent. Another embodiment further comprises an optional secondary component comprising a halogen or a hydrohalide such that the reactivity and mercury capacity of the promoted sorbent are enhanced.
  • In another embodiment, the concentration of the optional secondary component on the finished sorbent is within the range of from about 1 to about 15 wt % of the concentration of the promoter on the finished sorbent.
  • In another embodiment, an optional alkali component may preferably be added to provide a synergistic effect through combination of this alkali with the base sorbent.
  • In another embodiment, the optional secondary component is selected from the group consisting of Group V halides, Group VI halides, HI, HBr, HCl, and combinations thereof. In another embodiment, the promoter is substantially in vapor form when combined with the base sorbent. In another embodiment, the promoter is combined with an organic solvent prior to reaction with the base sorbent. In another embodiment, the promoter and optional secondary component are combined with the base sorbentsubstantially simultaneously. Another embodiment further comprises adding a mercury-stabilizing reagent selected from the group consisting of S, Se, H2S, SO2, H2Se, SeO2, CS2, P2S5, and combinations thereof. Another embodiment further comprises adding an optional alkali component.
  • In an embodiment, a method is provided comprising providing a granular base sorbent and reacting the base sorbent with a promoter selected from the group consisting of halogens, halides, and combinations thereof, such that the reaction product comprises a promoted sorbent effective for removal of mercury from a gas stream. In a further embodiment, the reaction product comprises from about 1 to about 30 grams of promoter per 100 grams of base sorbent. In another embodiment the reaction product has an average particle-size distribution greater than the average size of entrained ash particles in the gas stream from which mercury is to be removed, such that the reaction product can be substantially removed from the entrained ash particles by physical means. In another embodiment, the reaction product has a mass mean particle diameter greater than about 40 micrometers.
  • In another embodiment, the promoter is selected from the group consisting of molecular halogens, hydrohalides, Group V halides, Group VI halides, and combinations thereof. In another embodiment, the promoter is in the gas phase when contacting the base sorbent (carbon, non-carbon, or their combination). In another embodiment, the promoter is in an organic solvent when contacting the base sorbent (carbon, non-carbon, or their combination).
  • In another embodiment, the promoter is selected from the group consisting of Br2, a Group V bromide, a Group VI bromide, and combinations thereof.
  • In another embodiment, the method further comprises reacting the granular non-carbon with an optional secondary component comprising a halogen or a hydrohalide such that the reactivity and mercury capacity of the promoted sorbent are enhanced. In another embodiment, the promoter and optional secondary component are contacted simultaneously with the non-carbon base sorbent. In another embodiment, the method further comprises adding a mercury-stabilizing reagent selected from the group consisting of S, Se, H2S, SO2, H2Se, SeO2, CS2, P2S5, and combinations thereof. In an embodiment, a method is provided for control of mercury in a flue gas with substantially lower sorbent requirements. Through enhanced sorbent reactivity, mercury removal per gram of sorbent is increased, thereby decreasing the capital and operating costs by decreasing sorbent requirements.
  • In an embodiment, the promoted sorbent is introduced by direct injection into the flue gas stream. In another embodiment, the base sorbent is promoted within the flue gas stream
  • In an embodiment, a method is provided for reducing mercury in flue gas comprising providing a base sorbent, either by injection or in situ creation, into a mercury-containing flue gas stream, collecting greater than 70 wt % of the mercury in the flue gas on the promoted sorbent to produce a cleaned flue gas, and substantially recovering the promoted sorbent from the cleaned flue gas. In embodiments where less than 70 wt % mercury removal is desired, the required removal is attained using less base sorbent as would be required with standard base sorbent. In a further embodiment, the method further comprises monitoring the mercury content of the clean flue gas, regenerating the recovered promoted sorbent, and using the monitored mercury content of the cleaned flue gas to control the rate of base sorbent and promoter. In another embodiment the injected promoted sorbent is prepared in-flight by reacting a base sorbent (carbon, non-carbon, or their combination) and a promoter within a pneumatic transport line from which the reaction product is injected to the mercury-containing flue gas stream.
  • In another embodiment, the promoter is selected from the group consisting of molecular halogens, halides, and combinations thereof. In another embodiment, the promoter is reacted in the gas phase or as a vapor. In another embodiment, the promoter is added at from about 1 to about 30 grams per 100 grams of the base sorbent (carbon, non-carbon, or their combination).
  • In another embodiment, the injected promoted sorbent is prepared in-flight by reacting a base sorbent (carbon, non-carbon, or their combination), a promoter, and an optional secondary component to enhance the reactivity and capacity of the promoted sorbent within a pneumatic transport line from which the reaction product is injected to the mercury-containing flue gas stream.
  • In another embodiment, the optional secondary component is selected from the group consisting of iodine, hydrohalides, Group V halides, Group VI halides, and combinations thereof. In another embodiment, the optional secondary component is added at from about 1 to about 15 wt % of the promoter content. In another embodiment, the method further comprises adding to the promoted sorbent a mercury-stabilizing reagent selected from the group consisting of S, Se, H2S, SO2, H2Se, SeO2, CS2, P2S5, and combinations thereof.
  • In an embodiment, the method further comprises coinjecting an optional alkaline material, including without limitation alkaline and alkaline-earth components, to improve the efficiency of mercury capture by capturing oxidized mercury and/or capturing gaseous components that might otherwise reduce promoted sorbent capacity. In another embodiment, the optional alkaline material may preferably comprise calcium oxide, sodium carbonate, and the like, as are known in the art.
  • In another embodiment, the method further comprises using the monitored mercury content of the cleaned flue gas to control the composition of the promoted sorbent. In another embodiment, the promoted sorbent is prepared in-flight by reacting a base sorbent (carbon, non-carbon, or their combination) and a promoter within the flue gas stream or in a transport line from which the reaction product is injected to the mercury-containing flue gas stream, wherein the promoter is selected from the group consisting of molecular halogens, halides, and combinations thereof, wherein the promoter is reacted in the gas phase or as a vapor, wherein the promoter is added at from about 1 to about 30 grams per 100 grams of the base sorbent (carbon, non-carbon, or their combination), wherein the rate at which the promoter is added and the rate of promoted sorbent injection are determined by a digital computer based, at least in part, on the monitored mercury content of the cleaned flue gas.
  • In an embodiment, a method for reducing the mercury content of a mercury and ash-containing gas stream is provided wherein particulate carbon and/or non-carbon promoted sorbent with a mass mean size greater than 40 μm is injected into the gas stream, mercury is removed from the gas by the promoted sorbent particles, the promoted sorbent particles are separated from the ash particles on the basis of size, and the promoted sorbent particles are reinjected to the gas stream. In another embodiment, the mercury-containing promoted sorbent particles are regenerated to remove some or substantially all of the mercury. In another embodiment, an alkaline component is coinjected into the gas stream. In another embodiment, the promoted sorbent may further comprise a promoter. The promoter may preferably comprise a halide, a halogen, or both.
  • In an embodiment, a method for reducing mercury in a mercury-containing gas to a desired level is disclosed. The method comprises reacting a carbon base sorbent with at least one promoter selected from the group consisting of molecular halogens, halides, and combinations thereof to produce a promoted carbon sorbent; allowing said promoted carbon sorbent to interact with a mercury-containing gas to capture mercury in the mercury-containing gas on the promoted sorbent to produce a cleaned gas; and monitoring the mercury content of the cleaned gas. In some embodiments, the carbon base sorbent and the promoter are introduced into the mercury-containing gas at the same location or at separate locations. In some embodiments, the carbon base sorbent or promoter or combination thereof is introduced into the mercury-containing gas at one or more locations. In an embodiment, the rate at which the carbon base sorbent is introduced or the rate at which the promoter is introduced or combination thereof is adjusted according to the monitored mercury content of the cleaned gas so that the mercury content of the cleaned gas is maintained at substantially the desired level with minimal operating cost.
  • In a further embodiment, the method comprises reacting a non-carbon base sorbent with at least one promoter selected from the group consisting of molecular halogens, halides, and combinations thereof to produce a promoted non-carbon sorbent; allowing said promoted non-carbon sorbent to interact with a mercury-containing gas to capture mercury in the mercury-containing gas on the promoted sorbent to produce a cleaned gas; and monitoring the mercury content of the cleaned gas. In some embodiments, the non-carbon base sorbent and the promoter are introduced into the mercury-containing gas at the same location or at separate locations. In some embodiments, the non-carbon base sorbent or promoter or combination thereof is introduced into the mercury-containing gas at one or more locations. In an embodiment, the rate at which the non-carbon base sorbent is introduced or the rate at which the promoter is introduced or combination thereof is adjusted according to the monitored mercury content of the cleaned gas so that the mercury content of the cleaned gas is maintained at substantially the desired level with minimal operating cost.
  • In a further embodiment, a method for reducing mercury in a mercury-containing gas to a desired level is presented. The method comprises reacting a base sorbent with at least one promoter selected from the group consisting of molecular halogens, halides, and combinations thereof to produce a promoted sorbent, wherein said base sorbent is selected from the group consisting of a non-carbon material, a carbon material, and combination thereof; allowing said promoted sorbent to interact with a mercury-containing gas to capture mercury in the mercury-containing gas on the promoted sorbent to produce a cleaned gas; and monitoring the mercury content of the cleaned gas.
  • In some embodiments, the base sorbent and the promoter are introduced into the mercury-containing gas at the same location or at separate locations. In some embodiments, the base sorbent or promoter or combination thereof is introduced into the mercury-containing gas at one or more locations. In some embodiments, introducing the base sorbent and the promoter comprises injecting the base sorbent and the promoter into the mercury-containing gas. In some embodiments, the promoter is introduced into the mercury-containing gas upstream of the introduction of the base sorbent. In some embodiments, the promoter is introduced upstream of a boiler or a combustion chamber. In an embodiment, the rate at which the base sorbent is introduced or the rate at which the promoter is introduced or combination thereof is adjusted according to the monitored mercury content of the cleaned gas so that the mercury content of the cleaned gas is maintained at substantially the desired level with minimal operating cost.
  • In an embodiment, the base sorbent for the promoted sorbent is selected from the group consisting of carbon, activated carbon, porous felsic materials, vesicular felsic materials, porous basaltic materials, vesicular basaltic materials, clay-based compounds, alkaline compounds, calcium hydroxide compounds, sodium acetate compounds, bicarbonate compounds, and combinations thereof. In embodiments, the non-carbon material comprises Lewis basic groups and the carbon material comprises Lewis acid groups. In some cases, the non-carbon material comprises amorphous forms of tectosilicates comprising nanoscale cavities lined with Lewis basic oxygen associated with alkaline-earth metals. The alkaline-earth metals comprise Group I and Group II alkaline-earth metals. In some other cases, the non-carbon material comprises amorphous forms of phyllosilicates comprising nanoscale cavities lined with Lewis basic oxygen.
  • In an embodiment, the promoted sorbent comprises metastable complexes formed between the promoter of this disclosure and inorganic species on the non-carbon base sorbent. In some embodiments, the inorganic species is selected from the group consisting of sodium compounds, calcium compounds, magnesium compounds, aluminum compounds, iron compounds, and combinations thereof. In an embodiment, the promoted sorbent comprises metastable complexes formed between the promoter of this disclosure and metal-oxygen-metal structures on the non-carbon base sorbent. In some embodiments, the promoter after being complexed with the metal-oxygen-metal structures is in the form selected from the group consisting of a dihalogen group, a halogen atom, a hydrohalogen group, a Group V halide, a Group VI halide, and combinations thereof. In an embodiment, the promoted sorbent comprises activated Lewis basic groups or activated Lewis acid groups or combination thereof. In some embodiments, the interaction between promoted sorbent and said mercury-containing gas stream comprises mercury diffusing from the gas phase onto said promoted sorbent surface; and reacting with the activated Lewis basic groups or activated Lewis acid groups or combination thereof to cause chemisorption on the promoted sorbent surface.
  • In an embodiment, the method for reducing mercury in a mercury-containing gas to a desired level further comprises pretreating the base sorbent to increase the number of Lewis basic groups or Lewis acid groups or combination thereof. In some cases, the pretreating methods comprise chemical treatment, thermal treatment, vacuum treatment, and combinations thereof. In some embodiments, chemical treatment comprises acid treatment and alkaline treatment. In an embodiment, the method for reducing mercury in a mercury-containing gas to a desired level further comprises introducing an alkali component into the mercury-containing gas.
  • As will be described in more detail below, the present invention thus provides several advantages over previously known techniques, including significantly more effective and economical mercury sorbents for effluent gases, advantageously applicable to treating gas streams from combustion and gasification systems.
  • The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more detailed description of the preferred embodiments of the present invention, reference will now be made to the accompanying drawings.
  • FIG. 1 schematically illustrates methods for preparation of promoted carbon and/or non-carbon sorbents in accordance with the present invention.
  • FIG. 2 illustrates a proposed mechanistic model of the chemical reactions resulting in the oxidation and capture of mercury.
  • FIG. 3 schematically illustrates preparation of promoted carbon and/or non-carbon sorbents and processes for flue gas mercury reduction in flue gases and/or product gases from a gasification system in accordance with the present invention, including in-flight preparation of promoted carbon and/or non-carbon sorbent.
  • FIG. 4 illustrates a mechanism for promotion of metal oxide base sorbent via formation of a reactive halogen complex sorbent and subsequent capture of elemental mercury on the promoted sorbent.
  • FIG. 5A schematically illustrates an exemplary process flow diagram for in-flight preparation of a promoted carbon and/or non-carbon sorbent.
  • FIG. 5B schematically illustrates an exemplary process flow diagram for in-flight preparation of a promoted carbon and/or non-carbon sorbent.
  • FIG. 6 is a block diagram illustrating the use of the invention in a coal fueled facility.
  • DETAILED DESCRIPTION
  • Herein will be described in detail specific preferred embodiments of the present invention, with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the invention to that illustrated and described herein. The present invention is susceptible to preferred embodiments of different forms or order and should not be interpreted to be limited to the specifically expressed methods or compositions contained herein. In particular, various preferred embodiments of the present invention provide a number of different configurations and applications of the inventive method, compositions, and their uses.
  • The present invention provides a cost-effective way to capture pollutants by utilizing exceptionally reactive halogen/halide-promoted sorbents using a bromide (or other halogen/halide) treatment of the promoted sorbent, that capture mercury via mercury-sorbent surface reactions, at very short contact times of seconds or less. The reactivity of the promoted sorbent toward the pollutants (i.e., mercury) is greatly enhanced, and the sorption capacity can be regenerated; i.e., the promoted sorbent may be regenerated, recycled and/or reused.
  • The treated base sorbents (carbon, non-carbon, or their combination), treatment techniques, and optional additives discussed herein have applicability to mercury control from the product or effluent gas or gases from gasification systems, syngas generators, and other mercury-containing gas streams, in addition to the flue gas from combustion systems. Thus it should be understood that the terms combustion system and flue gas as used throughout this description may apply equally to gasification systems and syngas or fuel gas, as will be understood by those skilled in the art.
  • Hereinafter the disclosure may at times discuss the use of carbon base sorbents in further details; however the use of non-carbon base sorbents and a combination of carbon and non-carbon base sorbents is also contemplated to at least the same degree as carbon base sorbents.
  • Referring now to FIG. 1, there is shown a block flow diagram illustrating some preferred embodiments of the process of the present invention to prepare promoted sorbents useful for mercury capture in a mercury containing gas, such as a flue gas and/or product gas from gasification system streams. In a preferred embodiment illustrated by path 10-20, block 10 illustrates providing a base sorbent while block 20 illustrates adding a halogen or halide promoter that reacts with the base sorbent to produce a product-promoted sorbent. In embodiments where the halogen or halide is added, for example, as a vapor, no further steps may be necessary. In embodiments where the halogen or halide is added in, for example, a solvent, it may be desirable to employ solvent removal as illustrated by block 20A to produce a product-promoted sorbent suitable for injection.
  • Referring still to FIG. 1, another preferred embodiment of the process of the present invention is illustrated by path 10-20-30, comprising providing a base sorbent as shown by block 10, adding a halogen or halide promoter that reacts with the base sorbent, illustrated at block 20, and adding a secondary component illustrated at block 30 that reacts with the result of block 20 to produce a product-promoted sorbent. In embodiments where both the halogen or halide promoter and the secondary component are added, for example, as a vapor, no further steps may be necessary. In embodiments where the halogen or halide promoter and/or secondary component are added in, for example, a solvent, it may be desirable to employ solvent removal as illustrated by block 30A to produce a product-promoted sorbent suitable for injection.
  • Referring still to FIG. 1, another preferred embodiment of the process of the present invention is illustrated by path 10-40, comprising providing a base sorbent as illustrated at block 10 and adding a halogen or halide promoter and a secondary component to the base sorbent together, with which they react to produce a product-promoted sorbent as illustrated by block 40. As above, in embodiments where vapor additions are made to the base sorbent, no further steps may be desired. In embodiments where one or more components are added in solvent, a solvent removal step may be provided as illustrated by block 40A to produce a product-promoted sorbent suitable for injection.
  • Referring still to FIG. 1, another preferred embodiment of the process of the present invention is illustrated by path 10-50 in combination with path 20-50. In this embodiment, a base sorbent as illustrated by block 10 is introduced to the mercury containing gas as illustrated by block 50 while a halogen or halide promoter as illustrated by block 20 is introduced to the mercury containing gas stream. Thus the base sorbent and promoter react at block 50 to produce a product-promoted sorbent. In a similar manner, a secondary component as illustrated by block 30 may be added to the halogen or halide promoter as illustrated by block 20 and introduced into the mercury containing gas as illustrated by block 50. In embodiments where both the halogen or halide promoter and secondary component are added, for example, by vapor, no further steps may be taken. In embodiments where the halogen or halide and/or secondary component are added in, for example, a solvent, it may be desirable to employ solvent removal as illustrated by block 20A and/or block 30A.
  • Referring still to FIG. 1, also illustrated are preferred embodiments in which, as illustrated by block 50, a mercury containing gas stream is treated with product-promoted carbon sorbent prepared as described above.
  • In some preferred embodiments, the carbon base sorbent provided may preferably be any of several types, as understood by those skilled in the art. For example, the carbon base sorbent may include powdered activated carbon, granular activated carbon, carbon black, unburned carbon, carbon fiber, carbon honeycomb or plate structure, aerogel carbon film, pyrolysis char, regenerated activated carbon from product-promoted carbon sorbent, or other types as known in the art.
  • In some preferred embodiments, the carbon base sorbent provided may preferably have a mass mean particle size greater than the fly ash in a mercury containing gas, such as a flue gas stream, to be treated.
  • In some preferred embodiments, the carbon base sorbent provided may preferably have a mass mean particle diameter preferably greater than 40 micrometers, more preferably greater than 60 micrometers, or a particle-size distribution greater than that of the fly ash or entrained ash in a flue gas stream, or other mercury containing gas, to be treated, such that the activated carbon and ash can be separated by physical means.
  • In some preferred embodiments, the halogen or halide promoter that is added to, and reacts with, the carbon base sorbent may preferably comprise, by way of illustration and not limitation, a molecular halogen in vapor or gaseous form, a molecular halogen in an organic solvent, a Group V or Group VI halide, such as PBr3 or SCl2, respectively, in vapor, liquid, or solution form (though not in an aqueous solvent).
  • Embodiments are also provided in which the organic solvent may preferably comprise a chlorinated hydrocarbon, such as dichloromethane, a hydrocarbon solvent, including for example, petroleum ether, ligroin, pentane, hexane, toluene, and benzene, carbon disulfide, a waste solvent, an ether, a recycled solvent, a supercritical solvent, such as supercritical CO2, water (though not in the case of a Group V or Group VI halide), and others as will be apparent to those of skill in the art.
  • Referring now to FIG. 4, a theory is illustrated developed from scientific evidence to explain the nature of the promoting compounds. For example, as illustrated in FIG. 4, a molecular bromine molecule forms a complex with the surface of the base sorbent comprising a high surface area form of a metal oxide. Complexing with bromine can occur at surface and defect sites on the surface of the glassy amorphous tectosilicates by association with the Lewis basic oxygen lining the interstitial cavities and the alkali actions on the surface. Molecular hydrogen bromide or an electrophilic or Lewis acid bromine compound react to form a similar structure. The precedence for this promotion of a metal oxide surface complex with an acidic species is described in a paper by Stark and Klabunde (Klabunde, K. J. Chem. Mater. 1996, 8, 1913-1918) who showed addition of acids, HCl, SO3, and NO, to a MgO surface to form a surface complex. In U.S. Pat. No. 6,517,423 to Koper et al. the described surface complexes were active for destroying biological agents and toxins. As shown in FIG. 4, addition of halogens to a metal oxide surface (A) can form a complex that could be described as a bromide-oxybromide species (B), in which electrophilic reactivity is maintained, owing to the formation of positive charges on the surface. The electrophilic complex formed on the metal oxide base sorbent comprises an active site for oxidation of elemental mercury. Addition of mercury to the complex results in formation of a mercury oxygen bond and, simultaneously, a mercury bromine bond as shown in complex C in FIG. 4. Thus the final structure is a stable oxidized Hg form (D) described as a metaloxymercuric bromide.
  • In summary, it has now been found that the formation of the new bromide complex with the metal oxide surface increases the surface reactivity toward mercury and other pollutants. Additionally, the resulting bromide compound is uniquely suited to facilitate oxidation of the mercury. The effectiveness of the oxidation apparently results from the promotion effect of the halide, exerted on the developing positive charge on the mercury during the oxidation, known in the chemical art as a specific catalytic effect. Thus as the mercury electrons are drawn toward the positive surface oxygen, the halide anion electrons are pushing in from the other side, stabilizing the positive charge developing on the mercury and lowering the energy requirement for the oxidation process. Bromide is especially reactive, owing to the highly polarizable electrons in the outer 4p orbitals of the ion. Thus adding HBr or Br2 to the appropriate metal oxide forms a similar surface bromide complex, in which the positive oxygen oxidizes the mercury with the assistance of the bromide ion.
  • In embodiments, a non-carbon base sorbent with Lewis basic sites/groups comprising metal-oxygen-metal structures is activated by a promoter of this disclosure, forming a promoted sorbent. The promoter and the metal-oxygen-metal structures of the non-carbon base sorbent form metastable complexes, which are responsible for mercury capture via chemisorption. For example, metastable complexes may form between a halogen promoter and inorganic species on a non-carbon base sorbent, wherein inorganic species include sodium (Na), calcium (Ca), magnesium (Mg), aluminum (Al), iron (Fe) compounds, and combinations thereof. In some embodiments, the metastable complexes comprise a dihalogen group, such as Br—Cl, Br—Br, complexed with metal-oxygen-metal structures of the base sorbent. In some embodiments, the metastable complexes comprise a halogen atom, complexed with metal-oxygen-metal structures of the base sorbent. In some embodiments, the metastable complexes comprise a hydrohalogen group, complexed with metal-oxygen-metal structures of the base sorbent. In some embodiments, the metastable complexes comprise a Group V or Group VI halide, complexed with metal-oxygen-metal structures of the base sorbent. In some embodiments, the metal-oxygen-metal structures of the base sorbent are complexed with combinations of the functional groups disclosed herein. Without wishing to be limited by a theory, it is believed that mercury capture via chemisorption takes place through the action of mercury oxidation provided by these metastable complexes.
  • In embodiments, a carbon base sorbent with Lewis acid sites/groups comprising graphene sheets is activated by a promoter of this disclosure, forming a promoted sorbent. The promoter and the grapheme sheets of the carbon base sorbent form stable compounds, which are responsible for mercury capture via chemisorption. Without being limited by a theory, it is believed that mercury capture via chemisorption takes place through the action of mercury oxidation provided by these stable compounds. As one skilled in the art would appreciate, the versatility of chemistry associated with the base sorbent (carbon, non-carbon, or combination thereof) and the promoter of this disclosure enables versatile applications of the promoted sorbent system for mercury capture. This is especially advantageous because mercury content in flue gases varies from facility to facility, from operation to operation, and from day to day.
  • Examples of non-carbon base sorbents are amorphous forms of tectosilicates that comprise nanoscale cavities lined with Lewis basic oxygen associated with Group I alkali metals and Group II alkaline-earth metals. Such tectosilicates can be found in naturally occurring minerals, including, but not limited to, perlite and pumacite. Examples of non-carbon base sorbents also include amorphous forms of phyllosilicates. It is appreciated that other minerals may be used and also treated chemically and thermally to increase the activity of the base sorbent materials, such as phyllosilicates in the amorphous forms.
  • In some embodiments, bentonites are used as non-carbon base sorbents, including sodium bentonite and calcium bentonite. The use of other types of bentonites is contemplated as is known to one skilled in the art. The application of bentonite base sorbents is by introducing them into the flue gas at a location of the mercury capture system wherein the temperature of that location is below 800° C.
  • In some embodiments, the base sorbents are treated chemically and/or thermally to increase their activity. For example, perlite as a base sorbent may go through vacuum treatment and then thermal treatment so as to reduce the moisture contained therein, increase its activity, and potentially alter its morphology. Other treatment processes include chemical treatment, such acid treatment and alkaline treatment. These treatment methods may be combined to achieve desired effects as known to one skilled in the art. One of the desired effects is to increase the number of available Lewis acid sites/groups in the carbon base sorbent and/or the number of available Lewis basic sites/groups in the non-carbon base sorbent for subsequent activation via reaction with a promoter disclosed herein.
  • Referring now to FIG. 3, a schematic flow diagram is provided of mercury control system 100 comprising preparation of promoted base sorbents and flue gas mercury reduction in accordance with preferred embodiments of the present invention. In the exemplary embodiment shown, there is provided a base sorbent reservoir 110, a halogen/halide promoter reservoir 120, a secondary component reservoir 130, and an alkali component reservoir 180, each of which with corresponding flow control device(s) 201, 202, 203, and 208/209, respectively. In conjunction with the alkali component reservoir 180, flow control devices 208 and 209 can be used independently, together, or not at all. Further, reservoirs 110, 120, 130 and 180 are optional and can be used in any combination, or not at all, whereby the otherwise stored components can be introduced into the system by other means either together or independently. Further, the alkali and secondary components may not be used at all within the system, if so desired.
  • As shown, reservoirs 110, 120, 130, and 180 connect through their respective flow control devices and via associated piping, to transport line 115. Alkali component reservoir 180 may also connect, through respective flow control devices and via associated piping, to transport line 118. A source of air, nitrogen, or other transport gas(es) is provided by gas source 170 to transport line 115 for the purpose of entraining materials discharged from reservoirs 110, 120, 130, and 180 and injecting such materials, via injection point 116, into contaminated flue gas stream 15. A source of air, nitrogen, or other transport gas(es) may be provided by gas source 171 to transport line 118 for the purpose of entraining materials discharged from reservoirs 180 and injecting such materials, via injection point 119, into flue gas stream 15. Gas sources 170 and 171 may be the same or different, as desired. Alternatively, transport gas(es) may be provided to both transport lines 115 and 118 by gas source 170 (connection from source 170 to line 118 not shown). Although gas sources 170 and 171 are shown in FIG. 3 as compressors or blowers, any source of transport energy known in the art may be acceptable, as will be appreciated by those of skill in the art.
  • For clarity, single injection points 116 or 119 are shown in FIG. 3, although one skilled in the art will understand that multiple injection points and/or locations are within the scope of the present invention. In the embodiment shown, transport line 15 comprises multiple lines allowing for multiple injections and separate and/or combined injections of base sorbent 110 and promoter 120 and/or 130. One mode of operation, by example, comprises providing base sorbent 110 in a common line which is promoted inline “in-flight” using promoter 120 and/or 130 and injected at point 116. Another mode of operation, by example, comprises transport and injection of a base sorbent 110 in a separate line to a point downstream of the injection of promoter 120 and/or 130 in a line at point 116 which is upstream of injection of base sorbent 110, resulting in in-flight preparation at a promoted sorbent within stream 15.
  • In the exemplary embodiment shown, an optional optical density measuring device(s) 204 is connected to transport line 115 and/or 118 to provide signals representative of the optical density inside transport line 115 and/or 118 as a function of time.
  • Downstream from injection point 116 and 119 is provided particulate separator 140. By way of illustration and not limitation, particulate separator 140 may comprise one or more fabric filters, one or more ESPs, or other particulate removal devices as are known in the art. It should be further noted that more than one particulate separator 140 may exist, sequentially or in parallel, and that injection point 116 and 119 may be at multiple locations upstream and/or downstream of 140 when parallel, sequential, or combinations thereof exist. Particulate separator 140 produces at least a predominantly gaseous (“clean”) stream 142 and a stream 141 comprising separated solid materials. A sorbent/ash separator 150 separates stream 141 into a largely ash stream 152 and a largely sorbent stream 151. Stream 151 may then preferably be passed to an optional sorbent regenerator 160, which yields a regenerated sorbent stream 161 and a waste stream 162.
  • An optional continuous emission monitor (hereinafter “CEM”) 205 for mercury is provided in exhaust gas stream 35 to provide electrical signals representative of the mercury concentration in exhaust stream 35 as a function of time. The optional mercury CEM 205 and flow controllers 201, 202, 203, 208, and 209 are electrically connected via optional lines 207 (or wirelessly) to an optional digital computer (or controller) 206, which receives and processes signals and preferably controls the preparation and injection of promoted carbon sorbent into contaminated flue gas stream 15.
  • In operation, as example, promoted sorbent and/or an optional alkali component is injected into contaminated flue gas stream 15. After contacting the injected material with the contaminated flue gas stream 15, the injected material reduces the mercury concentration, transforming contaminated flue gas into reduced mercury flue gas, 25. The injected material is removed from the flue gas 25 by separator 140, disposed of or further separated by optional separator 150, and disposed of or regenerated by an optional regenerator 160, respectively. The reduced mercury clean flue gas stream 142 is then monitored for mercury content by an optional CEM 205, which provides corresponding signals to an optional computer/controller 206. Logic and optimization signals from 206 then adjust flow controllers 201, 202, 203, 208, and 209 to maintain the mercury concentration in exhaust stream 35 within desired limits, according to control algorithms well known in the art. Flow controllers 201, 202, 203, 208, and 209 can also be adjusted manually or by some other automated means to maintain the mercury concentration in exhaust stream 35 within desired limits, according to control algorithms well known in the art.
  • Referring still to FIG. 3, several embodiments are illustrated for preparation and injection of promoted sorbents and/or alkali components in accordance with the present invention. Stream 111 provides for introduction of base sorbent from reservoir 110, as metered by flow controller 201 manually or under the direction of computer 206. The halogen/halide may be combined and react with the base sorbent according to any of several provided methods. The halogen/halide may preferably be combined via line 121 directly into transport line 115, within which it contacts and reacts with the base sorbent prior to injection point 116 or downstream at point 116. This results in in-flight preparation of a promoted sorbent in accordance with the invention. Further, the halogen/halide may be combined via line 121 b with the base sorbent prior to entering transport line 115. Still further, the halogen/halide may be contacted and react with the base sorbent by introduction via line 121 c into reservoir 110. This option is preferably employed when, for example, reservoir 110 comprises an ebulliated or fluidized bed of base sorbent, through which halogen/halide flows in gaseous form or as a vapor. Of course, the halogen/halide may also preferably be contacted with the base sorbent in liquid form or in a solvent, as discussed previously, and solvent removal (not shown in FIG. 3) may then be provided if necessary as mentioned with respect to embodiments discussed with reference to FIG. 1.
  • Similarly, the optional secondary component may be contacted and react directly in transport line 115 via line 131, or optionally as described above with respect to the halogen/halide, via lines 131 b and 131 c.
  • Similarly, the optional alkali component from 180 may either be added in transport line 115 directly, or may be injected separately by transport line 118, combining downstream in flue gas 15 for synergistic effects with the base sorbent, promoted sorbent, or optional secondary components. Being able to vary on-site the amount of the optional alkali component relative to base sorbent, promoted sorbent, or optional secondary components is a key feature to overcome and optimize for site-specific operating and flue gas conditions.
  • In some preferred embodiments wherein contacting between components and reaction is performed in a liquid or solvent phase, stirring of such liquid and/or slurry mixtures may be provided. In other embodiments, the halogen/halide promoter and optional secondary component(s) may preferably be sprayed in solution form into or on the base sorbent. In some such embodiments, drying, filtering, centrifugation, settling, decantation, or other solvent removal methods as are known in the art may then be provided.
  • In embodiments wherein the halogen/halide promoter is in gaseous or vapor form, it may be diluted in air, nitrogen, or other gas as appropriate. The halide/halogen gas, for example, gaseous HBr or Br2, may be passed through an ebulliated or fluidized bed of granular or fibrous base sorbent, with the promoted sorbent so produced removed from the top of the bed via gas entrainment for injection.
  • In some embodiments, the secondary component(s) may preferably comprise iodine or other halogens, hydrohalides, including without limitation HI, HBr, HCl, a Group V or Group VI element with a molecular halogen, such as SC2 and others. In some preferred embodiments, the promoted sorbent may comprise from about 1 to about 30 g of halogen/halide per 100 g of base sorbent. In some preferred embodiments, the promoted sorbent may comprise a secondary component in concentration of from about 1 to about 15 wt % of the concentration of the halogen/halide component.
  • In still other embodiments, the product-promoted sorbent may be applied to a substrate. In other embodiments, such prepared substrate(s) may be caused to contact a contaminated flue gas or gasification system product gas stream for mercury reduction purposes. Such substrates may be monolithic, rotating, or exposed to the gas stream in any number of ways known to those skilled in the art.
  • In some embodiments, a method is provided whereby a mercury stabilizing reagent is added to a promoted sorbent to produce a bifunctional sorbent. Such stabilizing reagent(s) may be sequentially added, either before or after the addition and reaction of the halogen/halide. In some preferred embodiments, the halogen/halide preferably comprises Br or HBr, and the mercury-stabilizing reagent may comprise S, Se, H2S, SO2, H2Se, SeO2, CS2, P2S, and combinations thereof.
  • Halogens in Mercury Capture
  • Methodologies for using halogens for the treatment of flue gas have been problematic, owing to their reactivity with other gases and metals, resulting in corrosion and health issues. A “halogen” is defined as a member of the very active elements comprising Group VIIA (CAS nomenclature is used throughout; Group VIIA (CAS) corresponds to Group VIIB (IUPAC)) of the periodic table. In the molecular elemental form of the halogens, including F2, Cl2, Br2, and I2, the reaction with hot flue gas components leaves little to react with elemental mercury. The atomic elemental halogen form, which includes the flueorine, chlorine, bromine, and iodine atoms, is about a million times more reactive to mercury, but the concentration of the atomic forms is typically extremely low. In a large portion of electric utility coal combustion facilities, the concentrations are generally not sufficient to oxidize a significant amount of mercury.
  • The term “halide” as used herein is defined as a compound formed from the reaction of a halogen with another element or radical. In general, halide compounds are much less reactive than the molecular halogens, having a low chemical potential. Halides are considered reduced forms that do not, alone, oxidize other compounds. In the conventional view, therefore, a halide salt-treated sorbent will not effectively oxidize elemental mercury and capture elemental mercury.
  • Halogen-Promoted Sorbent Characteristics
  • The promoted sorbent described here has a very high initial reactivity for oxidizing mercury and therefore, can be used in very small amounts to achieve very high capture efficiencies, thus lowering operation costs and lessening waste disposal problems. In addition, further disposal reductions are obtainable by regenerating and reusing the promoted sorbents produced using the inventive technology. The time interval required for the mercury and the promoted sorbents of the present invention to successfully interact in a flue gas duct, with subsequent collection of the mercury on the promoted sorbent and ash, is very short—less than seconds. Clearly, such collection times require the promoted sorbent to have both high capacity and high reactivity toward mercury. The promoted sorbent can be utilized in a very finely powdered form to minimize mass-transfer limitations. However, again, the reactivity should be very high to capture all of the mercury encountered by the fine particles. Additionally, use of these enhancement technologies allows capture to be effective for larger sorbent particles which also allows separation of the promoted sorbent from the ash to enable subsequent regeneration as well as ash utilization. One feature of this invention is the process to prepare a promoted sorbent containing a halide component formed on and/or within the base sorbent structure that provides a sorbent that is highly active on initial contact with the mercury-contaminated gas stream, which allows for very effective capture of the mercury.
  • The inventive sorbents chemically combine bromine species with Lewis acid/basic sites on the base sorbent. For example, x-ray photoelectron spectroscopy has established that the addition of bromine, chlorine, HBr, or HCl formed a chemical compound in the carbon structure. Thus the promoted sorbent produced from halogen and base sorbent does not represent a molecular halogen form, but rather a new chemically modified structure. This phenomenon may not occur with the less reactive iodine, where an I2 molecular complex can exist on the carbon basal plane. In the case of bromine, modified cationic carbon has a high chemical potential for oxidation of mercury. Thus an entirely new model is presented for the reactivity of the bromine-treated carbon with mercury shown in FIG. 2. The reactive carbon form can preferably be generated by the addition of bromine, hydrogen bromide, or combinations of bromine and other elements, as described herein. Halogen treatment resulted in higher-activity carbons because the halide anions (especially bromide and iodide) were effective in promoting oxidation by stabilizing the developing positive charge on the mercury in the transition state for oxidation. Based on this model, several innovative, inexpensive, activity-enhancing features have been developed.
  • Optional Second Component
  • It has been demonstrated that addition of an optional second component, in addition to the bromine, results in improved reactivity and capacity for the promoted sorbent, typically exceeding that of both the untreated base sorbent and the brominated carbon. The second compound comprises either a second halogen or a compound derived from a second halogen, such as HI. Thus in addition to having a reactive carbon form present, the second component generates a Lewis base with greater ability to stabilize the developing positive charge on the mercury. Thus the second component is an element with more polarized electrons (4p and 5p).
  • Optional Alkali Component
  • It has been demonstrated that addition of an optional alkali component with a base or promoted activated carbon results in improved mercury capture, typically exceeding that of both the untreated carbon and the promoted carbon. Test data indicate that flue gas contaminants, flue gas constituents (SO2, NOx, HCl, etc), operating temperature, mercury form, and mercury concentration may impact the effectiveness of the alkali addition. This suggests the need to be able to adjust and tailor the alkali-to-activated-carbon ratio on-site in order to overcome and optimize for a given set of site conditions.
  • The synergy that can be gained when coinjecting the two materials can be explained as follows. First, testing shows that binding sites on activated carbon (hereinafter “AC”) can be consumed by chlorine species, sulfur species (i.e., sulfates), and other flue gas contaminants (arsenates, selenates, etc). The addition of optional alkali material will interact and react with these species/contaminants, thus minimizing their consumption of AC mercury binding sites. Second, testing also shows that standard AC will continue to oxidize mercury, even though the binding sites are fully consumed. This oxidized mercury can then react with alkali material and subsequently be captured by particulate control devices. Consequently, the addition of the optional alkali component acts to protect mercury-binding sites and capture oxidized mercury, thereby resulting in improved mercury reduction at lower cost. Alkali is generally much lower in cost (an order of magnitude less) than AC; thus more of it can be used, still resulting in overall lower costs.
  • In-Flight Sorbent Preparation
  • As stated previously, the halogen promoted sorbent can be readily produced in-flight. This is accomplished by, for example, contacting the vapors of any combination of halogens and, optionally, a second component, in-flight, with base sorbent particles. The particles may be dispersed in a stream of transport air (or other gas, such as the flue gas itself), which also conveys the halogen/halide-promoted sorbent particles to the flue gas duct, or other contaminated gas stream, from which mercury is to then be removed. There is no particular temperature requirement for this contact. This technology is obviously very simple to implement, and results in a great cost savings to facilities using this technology for mercury capture.
  • Referring to FIGS. 5A and 5B, process flow diagrams are shown as examples of the process for mercury removal from a mercury containing gas, such as a flue gas. In an embodiment shown at FIG. 5A, gas inlet stream 501 passes through chamber 301 and enters air heater 302 as stream 502; then it exits air heater 302 as stream 503 and passes through particulate control device 303 and enters scrubber 304 as stream 504; finally it exits scrubber 304 as stream 505. As shown, chamber 301 is a boiler, however, one skilled in the art will appreciate that chamber 301 can also be the combustion chamber of a coal fired boiler, a stand alone combustion chamber or any other chamber in which mercury containing gas is either generated or passed through. Injection streams 401, 402, 403 and 404, in addition to stream 501, are multiple locations wherein promoter, base sorbent, or a combination of promoter and base sorbent may be introduced.
  • FIG. 5B shows an embodiment similar to that of FIG. A, but with the position of the scrubber and particulate control device switched. Specifically, gas inlet stream 501′ passes through chamber 301′ and enters air heater 302′ as stream 502′; then it exits air heater 302′ as stream 503′ and passes through scrubber 304′ and enters particulate control device 303′ as stream 504′; finally it exits particulate control device 303′ as stream 505′. As shown, chamber 301 is a boiler, however, one skilled in the art will appreciate that chamber 301 can also be the combustion chamber of a coal fired boiler, a stand alone combustion chamber or any other chamber in which mercury containing gas is either generated or passed through. Injection stream locations 401′, 402′, 403′ and 404′, in addition to stream 501′, represent multiple locations wherein promoter, base sorbent, or a combination of promoter and base sorbent may be introduced.
  • At each of the aforementioned injection stream locations 401, 401′, 402, 402′, 403, 403′, 404 and 404′, 501, 501′ multiple injection points are contemplated so that promoter and base sorbent may be injected as a single injection stream or as separate injection streams, as further illustrated in the following exemplary embodiments.
  • In an embodiment, a promoter is introduced to chamber 301 at location 401. A base sorbent (carbon, non-carbon, or their combination) is introduced at location 402 upstream of air heater 302. In a further embodiment, a promoter is introduced to at location 402 upstream of air heater 302. A base sorbent (carbon, non-carbon, or their combination) is also introduced at location 402 either as a separate stream or as a mixed single stream with the promoter. In another embodiment, a promoter is introduced at locations 401 and 402. A base sorbent (carbon, non-carbon, or their combination) is introduced at location 402 either as a separate stream or as a mixed single stream with the promoter.
  • With the aid of this disclosure, one of ordinary skill in the art will be able to configure the process in many different fashions for mercury removal using the promoted sorbent. All these configurations are considered equivalents of the disclosed process and therefore are within the scope of the claimed invention.
  • Advantages of On-Site Preparation
  • In-flight preparation of the halogen/halide-promoted sorbent on location produces certain advantages. For example, the treatment system can be combined with the base sorbent injection system at the end-use site. With this technique, the halogen/halide is introduced to the base sorbent air (or other gas, including to the flue gas or other mercury containing gas) mixture in a transport line (or flue gas duct part of the base sorbent storage and injection system). This provides the following benefits over current conventional concepts for treating sorbents off-site:
  • Capital equipment costs at a treatment facility are eliminated.
  • Costs to operate the treatment facility are eliminated.
  • There are no costs for transporting carbon and additive to a treatment facility.
  • The inventive process uses existing hardware and operation procedures.
  • The inventive technology ensures that the sorbent is always fresh and, thus, more reactive.
  • No new handling concerns are introduced.
  • There are no costs for removing carbon from treatment system.
  • The inventive process allows rapid on-site tailoring of additive-sorbent ratios in order to match the requirements of flue gas changes, such as may be needed when fuels are changed or loads are reduced, thus further optimizing the economics.
  • The inventive technology reduces the amount of spent sorbents that are disposed.
  • With the foregoing and other features in view, there is provided, in accordance with the present invention, embodiments including a process for preparing and regenerating halogen/halide-promoted sorbents, whose activity for mercury capture is enhanced by the addition of halogen (e.g., bromine) to the base sorbent structure.
  • Sorbent Injection Location
  • Some of the preferred embodiments contemplate the use of a halogen-promoted sorbent in a powdered form that has been injected into a flue gas stream before or after ash particulates have been removed. Other embodiments of the inventive composition of the halogen-promoted sorbent comprise a powdered modified AC prepared by adding Br2 or HBr plus a second optional component. Other embodiments allow the addition of the optional alkali component in conjunction with a base AC and/or with the use of a halogen-based sorbent and any other combinations of the sorbent technologies provided in this patent. Other embodiments allow for in-flight preparation of promoted sorbents by using and combining the promoters and base sorbents. Alternatively, embodiments include methods wherein the base sorbent is on a moving contactor consisting of particles or fibers containing one or more of the compositions listed above.
  • Sorbent Regeneration
  • Any of the above embodiments of the halogen/halide-promoted carbon and/or non-carbon sorbent can be easily regenerated; the poisoning contaminants from the flue gas are preferably removed, and an inexpensive promoting agent added, to restore mercury sorption activity. This process of promoting the activity of the carbon and/or non-carbon itself contrasts with the earlier, more expensive, conventional methods of adding a reagent (such as peroxide, gold, triiodide, etc.) to a base sorbent. The halogen/halide-promoted carbon sorbent of the present invention, treated with bromine and/or optional components, is noncorrosive. Detailed examples of sorbent regeneration techniques are described in copending, commonly owned PCT Patent Application No. PCT/US04/12828, titled “PROCESS FOR REGENERATING A SPENT SORBENT,” which is hereby incorporated by reference in its entirety.
  • Sorbent Injection Control Schemes
  • Another advantage of the present invention relates to the use of a feedback system to more efficiently utilize certain aspects of the invention. Where possible and desirable, the mercury control technology of the present invention may preferably utilize continuous measurement of mercury emissions as feedback to assist in control of the sorbent injection rate. Tighter control on the sorbent and optional component(s) levels can be achieved in this way, which will ensure mercury removal requirements are met with minimal material requirements, thus minimizing the associated costs. In an embodiment, the mercury emissions are continuously measured downstream of the injection location, preferably in the exhaust gas at the stack.
  • EXAMPLES
  • To more clearly illustrate the present invention, an example is presented below. This example is intended to be illustrative, and no limitations to the present invention should be drawn or inferred from the example presented herein.
  • Example 1—Non-Carbon-Promoted Sorbent Tests at Full-Scale Plants
  • Full-scale commercial tests were conducted at several coal-burning facilities equipped with ESPs wherein three types of pre-cursers were injected upstream of an ESP at 325° F. In all, more than thirty tests were performed with variations in base sorbent material, base sorbent material injection rates and promoter injection rates. Promoters were halogen-based materials. Base sorbents were clay-based materials such as perlite and pumacite, which are vesicular forms of tectosilicates comprising silicates and aluminate tetrahedra with alkali metals in the interstitual spaces. Each base sorbent was injected upstream from the ESP.
  • The flue gas flow rate for the test was approximately 23 million dsft3/hr with a corresponding mercury flow rate of 0.0097 lbs Hg/hr. Initial mercury concentration in the flue gas prior to the introduction of the base sorbent or promoted sorbent was approximately 0.000417 lbs Hg/million dsff3.
  • As shown in Table 1, each base sorbent was injected at three different test rates: about 100 lb/hr (“Low”), about 150 lb/hr (“Ave.”) and about 200 lb/hr (“High”). At each test rate, the mercury removal rate was measured both with and without the use of a promoter to show the relative benefit of introducing the promoter into the flue gas stream. For the tests where promoter was injected into the flue gas stream, promoter was injected at about 20 lb/hr for the “Low” tests, at about 25 lb/hr for the “Ave.” tests and from about 30 to about 50 lb/hr for the “High” tests. The percent mercury removal for each test was calculated based on measurements taken from the inlet flue gas and the outlet flue gas. The results as shown in Table 1 clearly show a significant improvement in mercury capture when a promoter and base sorbent are injected, as compared to the injection of a base sorbent alone.
  • TABLE 1
    Test Data for Non Carbon-Promoted Sorbents
    Base Sorbent Promoter Percent Removal
    Base Injection Rate Injection Rate of Mercury
    Sorbent (lb/hr) (lb/hr) (%)
    Material Low Ave. High Low Ave. High Low Ave. High
    Perlite
    100 150 200 0 0 0 37 40 43
    100 150 200 20 25 35 55 72 74
    Pumacite 100 150 200 0 0 0 25 25 25
    100 150 200 20 25 50 52 60 65
    Clay- 100 150 200 0 0 0 50 52 54
    Based Mix 100 150 200 20 25 30 58 65 74
    of Silica
    and
    Alumina
  • Provisional Application
  • A reactive sorbent material is described for capture of mercury in a vapor stream. The vapor stream includes flue gas from coal combustion or incineration, synthesis gas from gasification, as well as off gases from mineral processing, metal refining, retorting, cement manufacturing, chloralkali plants, dental facilities, and crematories. The sorbent is especially suited to, but not limited to, use in low-chlorine flue or exhaust gases where the mercury is mainly elemental. The sorbent comprises a bromide-modified carbon form containing a reactive compound produced by the reaction of bromine with the carbon. Other additional promoting substances can be added in smaller amounts to increase the reactivity with and sorption of elemental mercury. This combination results in a carbon bromide structure in the carbon lattice that can oxidize the mercury to a species that is strongly bonded to the carbon structure and, therefore, easily retained on the sorbent at higher temperatures in the presence of flue gas constituents. In some examples, the sorbent consists of a fine or coarse powdered material for injection into the gas stream or a granular or fibrous material for use in a fixed or moving bed. In some examples, the sorbent does not require in situ activation (an induction period) in a flue gas stream as do conventional activated carbon sorbents. Other additives of base chemistry (Ca, Na, and others) may be added to flue gas as a sorbent mixture, or co-injected to selectively sorb acid gases or other flue gas constituents to keep available reactive sites for mercury oxidation and subsequent capture. The sorbent can be regenerated by washing off contaminating components derived from flue gas that poison the spent sorbent. Novel methods for introduction of the sorbent dispersion into the mercury contaminated gas stream are described.
  • Following is an outline of examples of the invention. The invention may also take on various other examples or embodiments, as a person skilled in the art would understand.
  • 1. A modified carbon sorbent was prepared by reacting the carbon with molecular bromine by applying a solution of molecular bromine in an organic solvent to the carbon, followed by removal of the modified carbon from the bulk of solvent and further removal of solvent from the pores by drying the carbon in air or nitrogen. The solution may also contain an additional promoting substance in small amounts. In one example, the amount of bromine taken up by the carbon ranges from <1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • 1A. (Dependent)
  • Same as 1, carbon is powdered activated carbon.
  • Carbon is granular activated carbon.
  • Carbon is very fine carbon black.
  • Carbon is very fine carbon fiber.
  • Carbon is aerogel carbon film.
  • Carbon is char recovered from pyrolysis process.
  • Carbon is powdered activated carbon of size distribution larger than fly ash size distribution, so that it can be physically separated from the ash and regenerated for reuse.
  • Carbon is regenerated from previous usage cycle and recycled.
  • Other desired types of carbon may also be used.
  • 1B. (Dependent)
  • Same as 1, Solvent is chlorinated hydrocarbon such as dichloromethane.
  • Same as 1, Solvent is hydrocarbon solvent such as petroleum ether or ligroin or pentane or hexane or toluene or benzene.
  • Same as 1, Solvent is water.
  • Same as 1, Solvent is carbon disulfide.
  • Same as 1, Solvent is a waste solvent.
  • Same as 1, Solvent is an ether.
  • Same as 1, Solvent is recycled from previous batch.
  • Same as 1, Solvent is supercritical solvent such as CO2.
  • Other desired types of Solvents may also be used.
  • 1C. (Dependent)
  • Same as 1, solution of bromine is applied by stirring the carbon in the bromine solution.
  • Same as 1, solution of bromine is applied by spraying a solution of molecular bromine in an organic solvent, followed by removal of solvent from the pores by drying the carbon in air or nitrogen.
  • The bromine may also be applied using other desired techniques.
  • 1D. (Dependent)
  • Same as 1, removal of solvent is by filtration, centrifugation, settling, and decantation and drying in vacuum, air, or other gas.
  • Same as 1, when sprayed or minimal volume, removal of solvent is by drying in air, vacuum, or other gas.
  • The solvent may also be removed using other desired techniques.
  • 1E. (Dependent)
  • Same as 1, additional substance is iodine, at 1%-10% of the bromine concentration added.
  • Same as 1, additional substance is hydrohalide (HI, HBr, HCl), etc: 1%-10% of bromine.
  • Same as 1, additional substance is a compound comprised of a Group V or VI element or combination of Group V or VI with Group VII element, such as SCl2, 1-10 wt % of bromine.
  • 2. A modified carbon sorbent was prepared by reacting the carbon with molecular bromine by contacting the carbon with a gas containing molecular bromine. In one example, the amount of bromine taken up by the carbon ranges from <1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • Contacting is by passing the Br2 gas through a bed of the carbon.
      • Bed is ebullated or fluidized.
      • Bed is moving bed of granules or fibers.
  • Contacting is by admitting Br2 gas to a duct through which the carbon is transported from a reservoir to the flue gas duct via an air-driven entrainment method, thus promoting the activity of the carbon in-flight.
  • Same additives as 1E, except these are added in the gas phase, and added in-flight as in 2 above.
  • 3. A modified activated carbon sorbent was prepared by reacting the carbon with hydrogen bromide (HBr) by stirring the carbon in a solution of HBr in an organic solvent or in water, followed by removal of the modified carbon from the bulk of solvent and further removal of solvent from the pores by drying the carbon in air or nitrogen. In one example, the amount of bromine taken up by the carbon ranges from <1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • Same dependent clauses as in 1A with regard to carbon forms. Same solutions and treatment as 1B, 1C, 1D.
  • Same additives as LE, added into the solution phase or later in the gas phase, and added in-flight as in 2 above.
  • 4. An activated carbon sorbent was prepared by impregnating hydrogen bromide by passing a gas composition containing hydrogen bromide diluted with nitrogen or air through a fluidized bed or ebullated bed of the carbon. In one example, the amount of bromine taken up by the carbon ranges from <1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • Same dependent clauses as in 1A with regard to carbon forms.
  • Contacting options are similar to 2.
  • 5. Sequential treatment of activated carbon with bromine or HBr, followed by another mercury stabilizing reagent to generate a highly reactive bifunctional sorbent, the reagent to include sulfur and selenium species, such as H2S, SO2, H2Se, Se, SeO2, CS2, P2S5.
  • 6. Sequential treatment of activated carbon with mercury stabilizing reagent, followed by bromine or HBr to generate a highly reactive bifunctional sorbent, the reagent to include sulfur and selenium species, such as H2S, SO2, H2Se, Se, SeO2, CS2, P2S5.
  • 7. Treatment of a carbon with a Group V or VI element combined with Group VII element, such as PBr3 or SCl2. In one example, the amount of Group V or VI halide is 1-30 wt % of the carbon. The compound is added in vapor phase or in solution (solvent is hydrocarbon, chlorinated hydrocarbon, or other solvent as described in 1B, but not water, since the compound is destroyed in water solution).
  • 8. The process for preparing the bromine-containing activated carbon sorbent as described in Examples 1-6 and coupled with the injection of the bromine-containing fine-particle sorbent into the contaminated gas stream and subsequent removal of the fine particles of sorbent from the gas stream in a collection device, such as bag filtration of electrostatic precipitator (ESP).
  • 9. The process of using additives (1-8) in conjunction with sorbents to capture acid gases and other flue gas constituents that block oxidation reactions or consume sorbent sites that would otherwise capture mercury. The additive is a compound comprised of Group I or II elements, such as Ca, Na, and others. These additives of base chemistry may be added to flue gas as a sorbent mixture or co-injected to selectively sorb acid gases or other gas constituents that compete for mercury reactive/sorption sites, thereby improving the effectiveness of activated carbon to capture mercury. In addition, the base additives can augment the treated activated carbon by helping to capture oxidized mercury forms in the flue gas, such as mercuric chloride, or that are produced on the carbon sorbent, such as mercuric bromide, but are released to the gas phase as the sorbent becomes saturated or capacity limited.
  • 10. The process of preparing a larger-than-normal (>40 rpm) sorbent particle size, promoting with the halogen treatment as described in 1-8, using the treated sorbent for capture of mercury by injecting in the flue gas, and finally separating and recovering the sorbent from the ash particles. The larger sorbent size thus will allow easy mechanical/physical separation so that sorbent can be regenerated, recycled, and reused, and the ash can be sold as a low-carbon cementatious byproduct for concrete. The separation can be effected by various methods, such as density (gravity), floatation, or sieving methods.
  • 11. The process for preparing the bromine-containing activated carbon sorbent as described in Example 1-10, coupled with the direct injection of the slurry of the prepared fine-particle sorbent in the solvent or aqueous phase, so that the aerosol particles of the slurry achieve a high degree of dispersion in the gas stream and evaporation of the solvent in the hot gas occurs rapidly. The amount of slurry added is flow-controlled, and the concentration of particles in the slurry is monitored by optical density measurements prior to injection. Collection of particles is performed.
  • 12. The process for preparing the bromine-containing activated carbon sorbent, as described in Examples 2 and 4, coupled where the fine-particle dispersion of brominated sorbent in the gas stream at the top of the ebullated bed is led to the flue gas or offgas duct where the said dispersion is contacted with mercury-contaminated flue gas or offgas stream. The amount of aerosol dispersion added is controlled by the gas flow to the ebullated bed, and the concentration of particles in the dispersion can be monitored by optical density measurements prior to injection. Collection of particles is performed by the existing particulate-collection equipment.
  • 13. The process for preparing the bromine-containing activated carbon sorbent bed, coupled with contacting the bed with the mercury-contaminated flue gas or offgas.
  • 14. The process for preparing the bromine-containing activated carbonBsorbent, as described in Examples 2 and 4, or untreated activated carbon, coated on a substrate or as activated carbon material. This material is placed in a moving system that geometrically allows for control of rate of exposure, sorption, and exchange of material in a continuous or semicontinuous manner.
  • 15. In the sorbent and mercury removal process outlined in paragraphs above, the bromine reagents promote metal oxidation activity by creating cationic or radical character on the carbon edge structure that attracts mercury atoms and extracts electrons from said mercury atoms, resulting in oxidized mercury, which is more easily captured on a sorbent. A similar mechanism applies to oxidation and capture of reduced arsenic and other pollutant species.
  • The invention relates to the process for the removal of mercury and other pollutant species from gas streams generated during the burning of fossil fuels, such as in a coal-fired utility or synthesis gas from gasification facilities. This removal process would utilize a sorbent and/or a combination of additives to remove pollutants from the gas stream, which are at the same time interacting with other gas components that result in poisoning or deactivating the sorbent and reducing its capacity or reaction rates with the targeted pollutant species. The present invention provides a cost-effective way to capture the pollutants by utilizing exceptionally active carbon sorbents and promoting mercury sorbent surface reactions, containing a bromide form of the carbon, that capture mercury with high kinetic chemisorption (oxidation) activity, so that capture can occur during contact times of seconds or less. The sorbent does not require in situ activation (induction period) in the gas stream to achieve high activity as do conventional activated carbon sorbents. The reactivity of the sorbent toward the pollutants and the sorption capacity can be regenerated, recycled, and reused.
  • Burning fossil fuels generates a flue gas that contains mercury (and other trace elements) that was in the coal, plus oxides of sulfur and nitrogen (acid gas emissions) and particulates whose release to the environment must be controlled by use of sorbents, scrubbers, filters, precipitators, and other removal technologies. While control of other elements and/or flue gas pollutants may apply, the discussion provided is focused on mercury. Initially, mercury is released in the elemental form during combustion/gasification, but downstream of the boiler, in the ducts and stack of the combustion system, part of the elemental mercury is oxidized. The amount oxidized depends on the amount of acid gases present in the flue gas and other factors. Amounts of mercury vary with the coal, but a typical concentration of mercury in the stream of combustion gas is about 5 parts per billion (ppb). A pound of mercury or more per day may be emitted in some utilities.
  • Discussion of Sorbent Technologies
  • Several types of mercury control methods for flue gas have been investigated, including injection of fine sorbent particles into a flue gas duct and passing the flue gas through a sorbent bed. Fine-particle injection sorbents include activated carbon, metal oxide sorbent, sodium sulfide particles (for example, see U.S. Pat. No. 6,214,304), and basic silicate or oxide sorbents (for example, see the Ghorishi reference (Ghorishi, B.; Gullet, B. K. Waste Manage Res. 1993, 16, 582). and Lancia references). When particle injection is employed, the mercury chemisorbed to the sorbent particle is removed from the gas stream in a bag house or ESP and collected along with ash particulates (for example, see U.S. Pat. Nos. 4,889,698, 4,956,162, 5,672,323, 5,827,352, 6,027,551, and 5,505,766). The sulfide and basic silicate and oxide particles are effective only for the oxidized mercury, and the metal oxide sorbents exhibit slower capture kinetics than the carbon particles. Additionally, injection of fine carbon particles into the flue gas stream has been only partially successful in removing mercury, especially elemental mercury, where effective removal of approximately 60% was attained with a baghouse to collect carbon and ash. Even lower removal rates have been observed when using an ESP to collect the carbon, since the contact time of the carbon with the gas is very short.
  • A major problem with existing carbon injection systems is that the sorbent is initially unreactive, and only after exposure to the flue gas for about 20 minutes does the seasoned sorbent become effective and provide capture of 60% of the mercury in the gas. Consequently, these sorbents must be used in large amounts (high sorbent-to-mercury ratios) to effectively capture the mercury. These sorbents can be relatively expensive and cannot be easily separated from the ash, regenerated and reused. The collection of carbon in the ash also creates solid waste disposal problems, and the spent sorbent may contaminate the collected ash for use in various applications.
  • Use of Halogens in Mercury Capture
  • Methodologies for using halogens for the treatment of flue gas have not previously been effective. Halogen is defined as a member of the very active elements comprising Group VII-A of the periodic table. In the molecular elemental halogen form, including F2, Cl2, Br2, and I2, the reaction with elemental mercury is not fast enough to result in the formation of oxidized mercury in a coal combustion flue gas with conventional ash control technology. The atomic elemental halogen form, which includes F atom, Cl atom, Br atom, and I atom, is about a million times more reactive to mercury, but the concentrations of these forms are extremely low, and also, therefore, cannot result in oxidation of mercury in a utility flue gas.
  • A halide is a compound formed from reaction of a halogen with another element or radical. In general, the halide compounds are normally very much less reactive than the molecular halogens, having expended their high chemical potential in forming the low energy halide. The halide is considered a reduced form and cannot therefore oxidize anything by itself. It is for this reason that it is not obvious that a halide-halogen treated activated carbon would be effective at oxidizing elemental mercury and provide effective capture of elemental mercury. In fact, for tests with salts, analytical data show the addition of bromine to an activated carbon or carbon black or soot does form a compound by reacting with the unsaturated groups on the carbon. By applying x-ray photoelectron spectroscopy, it has been determined that bromine or HBr added to carbon black forms chemical compounds within a carbon structure.
  • A body of theory has been developed from scientific evidence to explain the nature of the promotion effect of the bromine compounds. This principle is illustrated in FIG. 2, which in step 1 shows the reaction of the hydrogen bromide with the unsaturated structure of the activated carbon. This may be a carbene species on the edge of the graphene sheets structures of the carbon. Molecular bromine or a bromine compound reacts to form a similar structure, with a positive carbon that is active for oxidizing the mercury.
  • We now teach that the formation of the new bromide compound with carbon increases the reactivity of the carbon forms toward mercury and other pollutants. The resulting bromide compound is uniquely suited to facilitate oxidation of the mercury. The effectiveness of the oxidation results from the promotion effect of the halide exerted on the developing positive charge on the mercury during the oxidation, known in the chemical art as a specific catalytic effect. Thus, as the mercury electrons are drawn toward the positive carbon, the halide anion electrons are pushing in from the other side, which stabilizes the positive charge developing on the mercury and lowers the energy requirement for the oxidation process. Bromide is especially reactive, owing to the highly polarizable electrons in the outer 4p orbitals of the ion. Thus, adding HBr or Br2 to the carbon forms a similar carbon bromide, in which the positive carbon oxidizes the mercury with the assistance of the bromide ion.
  • Prior Art Publications
  • The earliest patents that relate to mercury capture on a sorbent are actually not for flue gas mercury control but for capture of mercury from air or other gas mixtures on a carbon or other sorbent. These patents were based on a model that recognized the affinity of halogens for mercury, rather than the formation of a reactive carbon. These patents are discussed below according to the type of halogen used for impregnation.
  • One patent that teaches a halogen impregnation (Stock, U.S. Pat. No. 1,984,164, issued in 1934) describes the use of activated carbon or other solid impregnated with a halogen for removing Hg from air. The impregnation method is not specified. This seems to be the most general claim with respect to halogen impregnation. All the statements and claims appear to refer to halogen or iodine, but the patent does not appear to address bromides or other halides or bromide compounds or even specifically iodide or an iodine compound. The only example in the description is iodine impregnation. The patent also is restricted to air systems and did not pertain to flue gas systems with reactive acid gases. The description did not assume that the iodine formed a reactive carbon species.
  • Japanese Patent JP 49-43197 describes the treatment of Hg-contaminated electrolysis cell gas using a metal iodide salt on a support. A similar treatment using a resin impregnated with a metal iodide is described in JP 50-6438. These patents do not appear to represent a carbon bromide compound as specified in this patent application.
  • Another early patent (Hilgen, U.S. Pat. No. 3,849,267, issued in 1974) describes a method for Hg removal from a gas which claims mixing molecular chlorine (Cl2) with the gas to be cleaned and passing it through a nonporous sorbent such as glass wool and NaCl (not carbon). This was evidently not an obvious extension of the Stock patent, since a halogen was introduced as part of the gas phase being cleaned.
  • A later patent (deJong, et al., U.S. Pat. No. 4,196,173, issued in 1980) describes a method for Hg removal in air which claims using a bed of activated carbon impregnated with halogen-only Cl2 is specified in the other claims and examples, and it is prepared by flowing the Cl2 stream through a carbon bed.
  • An improved sorbent for mercury in air was patented by Revoir and Jones (U.S. Pat. No. 3,662,523, issued in 1972), in which ICl and ICl3 vapors were impregnated into the activated carbon. No explanation of the increased activity was provided. Since these compounds are interhalogen compounds, the patent did not infringe Stock.
  • U.S. Pat. No. 5,891,324 describes an activated carbon containing an acid (HCl, H2SO4, or H3PO4) for the removal of mercury contained in a liquid phase, such as would occur in a process steam in the oil industry. In this case, the model presented was that mercury is adsorbed from the liquid into the solid carbon phase at relatively low temperatures.
  • In U.S. Patent Application 2004/0003716, a method is described for removing mercury from a combustion gas. This method employs an exposure of a finely powdered activated carbon to a molecular bromine gas at an elevated temperature or to HBr to produce a sorbent with good mercury removal ability when injected into the flue gas duct. The model for the efficacy of the Nelson sorbent is not clearly stated, so it can be presumed that the reasoning for using bromine is the simple premise that some bromine form will help capture the mercury, as does iodine and chlorine. The methods for incorporation of the bromine in the Nelson application are not the same as with the present invention, and the Nelson method will not produce the identical carbon bromide species that are obtained in the art described in this application. The Nelson method lacks many of the features described in this application that impart exceptional activity to the sorbent in a convenient way, for example, the addition of smaller amount of a second more powerful promoting agent, the use of facile solvent systems, including aqueous bromine, and the use of in-flight bromine treatment. Additionally, the patent application does not mention regeneration, recycling, or reuse, or the use of moving contactors or larger particle size to facilitate sorbent-ash separation.
  • Embodiments of the Invention
  • A sorbent that is initially very reactive in oxidizing mercury can be used in very small amounts to achieve high capture efficiencies, thus lowering operation costs and lessening the disposal problem. In addition, further disposal reduction is made possible by recycling and reusing the sorbent that is produced using this technology. The time interval for the mercury and sorbent to interact in a flue gas duct and the subsequent collection of the mercury on the sorbent and ash may be very short—only seconds. This requires the sorbent to have high capacity and be very reactive toward mercury. A sorbent can be utilized in a very finely powdered form (e.g., 1-10 μm) to minimize mass transfer limitations. But, again, the reactivity should be very high to capture all of the mercury encountered by the fine particles. One feature of this invention is the process to prepare a sorbent containing a bromide compound formed on the carbon structure that provides a sorbent that is highly active on initial contact with the mercury contaminated gas stream, which allows for effective capture of the mercury.
  • One possible way to do this is to chemically combine molecular bromine from solution with activated carbon (edge sites). X-ray photoelectron spectroscopy established that the addition of bromine formed a chemical compound in the carbon structure. Thus, the sorbent does not represent a molecular bromine halogen form but a new chemically modified carbon structure. This may not occur with the less reactive iodine, where an I2-molecular complex can exist on the carbon basal plane. In the bromine case, it is actually the carbon that oxidizes the mercury. Thus, an entirely new model is presented for the reactivity of the bromine-treated carbon with mercury. The reactive carbon form can be generated by the addition of bromine, hydrogen bromide, or combinations of bromine and other elements as described herein. Chlorine treatment resulted in lower-activity carbons because the chloride anion was less effective in promoting the oxidation by stabilizing the developing positive charge on the mercury in the transition state for oxidation. Based on this model, several innovative, inexpensive, activity-enhancing features have been developed.
  • It has been demonstrated that addition of an optional second component, in addition to the bromine, results in improved reactivity and capacity for the sorbent, exceeding that of both the untreated carbon and the brominated carbon. The second compound comprises either a second halogen or a compound from a second halogen, such as HBr. Thus, in addition to having a reactive carbon form present, the second component generates a Lewis base with greater ability to stabilize the developing positive charge on the mercury. Thus the second component is an element with more polarized electrons (4p and 5p).
  • Furthermore, we demonstrated that the sorbent can be readily treated with any combination of bromine and the second component in-flight using vapors of these components contacting the very fine carbon particles dispersed in air or other gas stream that conveys the particles to the flue gas duct. There is no particular temperature requirement for this contact. This technology is very simple to implement, so it will result in a great cost savings to the utility using this technology for mercury capture.
  • A unique, nonobvious technique for preparation of the treated carbon is through combining the treatment system with the carbon injection system at the end-use site. With this technique, the halogen is introduced to the carbon-air mixture in the transport line (or other part of the sorbent storage and injection system). Benefits over current concepts to treat sorbents off-site include the following:
      • Capital equipment costs at a treatment facility are eliminated.
      • Costs to operate the treatment facility are eliminated.
      • There are no costs for transporting carbon and additive to a treatment facility.
      • This process uses existing hardware and operation procedures.
      • This technology ensures that the sorbent is always fresh, and thus, more reactive.
      • No new handling concerns are introduced.
      • There are no costs for removing carbon from treatment system.
      • This process allows rapid on-site tailoring of additive-sorbent ratios in order to match the requirements of flue gas changes, such as needed when changing fuels or reducing loads, thus further optimizing the economics.
      • This technology reduces the amount of spent sorbents that are disposed.
  • With the foregoing and other features in view, there is provided, in accordance with the invention, a process for preparing and regenerating carbon sorbents whose activity for mercury capture is promoted by the addition of bromine to the carbon structure.
  • The invention applies to use of a sorbent in a powdered form that has been injected into a flue gas stream before or after ash particulates have been removed. Examples of the composition of the sorbent are a powdered modified activated carbon prepared by adding Br2 or HBr plus a second optional component. Alternatively, the sorbent is on a moving contactor consisting of particles or fibers containing the compositions listed in the previous sentence. Either type can be regenerated, the poisoning contaminants from the flue gas are removed and an inexpensive promoting agent added to restore mercury sorption activity. This process of promoting the activity of the carbon itself contrasts with the earlier, more expensive art of adding a reagent (such as peroxide, gold, triiodide, etc.) to the sorbent. The activated carbon sorbent treated with bromine and/or the other components is noncorrosive.
  • Detailed examples of sorbent regeneration techniques are described in co-pending, commonly-owned PCT patent application No. PCT/US04/12828, titled “PROCESS FOR REGENERATING A SPENT SORBENT”, which is incorporated by reference herein.
  • Although the invention is described herein as a sorbent material, it is nevertheless not intended to be limited to the details described, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
  • The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific exemplary embodiments.
  • FIG. 6 is a block diagram illustrating the use of the invention in a coal fueled facility. Of course, the invention can also be used in any other desired type of facility. FIG. 6 shows a boiler for burning pulverized coal. The facility utilizes various devices to clean the exhaust of the boiler. In this example, a baghouse or ESP is used to collect particulates in the exhaust. A scrubber and sorbent bed are also used to remove undesired constituents from the flue gas stream, before being fed to the stack. In the example shown, the sorbent is injected into the flue gas after the boiler. The additive can be injected where desired (e.g., before, after, or within the boiler).
  • Another advantage of the present invention relates to the use of a feedback system to more efficiently utilize the invention. Where possible, the mercury control technology of the present invention will utilize measurement of mercury emissions as feedback to assist in control of the sorbent injection rate. Tighter control on the sorbent levels in this way will ensure mercury removal requirements are met with the minimal sorbent requirements and therefore the associated costs will be minimized. In one example, the emissions are measured at the stack.
  • Carbon Sorbent
  • Reactions of halogens and acidic species with the basic binding sites on the activated carbon sorbent create sites for oxidizing mercury. Other metal ions, such as boron, tin, arsenic, galium, Sb, Pb, Bi, Cd, Ag, Cu, Zn, or other contaminants, will also react with the oxidation sites generated on the carbon.
  • According to our model, adding the bromine from the bromine reagent or a proton from a hydrogen halide acid to a basic carbene site on the carbon edge structure forms a carbocation that accept electrons from the neutral mercury atom forming the oxidized mercury species that is bound to the sorbent surface. The reactive site may also generate reactive bromine radicals or carbon radicals at the active sites on the carbon. Thus, the activated carbon serves to stabilize the bromine, yet provides a highly reactive bromine—containing reagent that can oxidize the mercury and promote its capture on the activated carbon. The sorbent that contains bromine is expected to be more reactive than the corresponding sorbent containing chlorine and much less expensive than the sorbent containing iodine.
  • A bench-scale procedure based on the above description was used to test the initial activities and capacities of several powdered carbon sorbents, including the bromine-containing activated carbons prepared from a commercially available sorbent and an aerogel carbon film sorbent, as well as the original precursor carbons for comparison. Bromine-treated carbons were prepared by impregnation of the powdered activated carbon precursors in a stirred solution of bromine in carbon tetrachloride or methylene chloride, or alternatively, in an aqueous solution of HBr, followed by drying in air at ambient temperature and drying in an oven at 100° C. in air or nitrogen. Bromine-treated carbons were also prepared by impregnating bromine from the gas phase by passing the gas through a rotating dry bed of the activated carbon precursor. Adding a second component to the solution was demonstrated to improve the capacity of the sorbent.
  • The carbons were initially tested in a heated bed, where a synthetic flue gas stream containing elemental mercury (11 μg/m3) was passed through the bed. Concentrations of total and elemental Hg in the effluent gas were determined using a Sir Galahad mercury CEM. The powdered sorbent was supported on a quartz filter during the test, and the other sorbents were tested as a triple layer.
  • A comparison of the original commercial-grade powdered carbon sorbent with the sorbent after it has been treated with 0.1 N HBr, collecting the powder by centrifugation and drying, revealed that the mercury capture activity is increased from an initial capture efficiency of about 50% of the Hg in the inlet to 100% capture. A comparison of the sorbent after subsequent regeneration with HBr indicates that it not only captures mercury at the same level as before (100% capture) but is enhanced such that its capacity is prolonged by several minutes. Similar results were obtained with the carbon film and carbon fiber sorbents by treatment with molecular bromine in solution or in dry beds as described above.
  • An activated carbon sorbent was prepared by treating the carbon by impregnating molecular bromine from a gas composition containing molecular bromine by flowing the gas through a liquid bromine reservoir in series with a fluidized bed of ebullated bed of the carbon. The amount of bromine taken up by the carbon ranges (in one example) from <1 to about 30 g per 100 g of activated carbon, depending on the proportions used.
  • In one exemplary test conducted at a facility fired with lignite coal, the flue gas phase mercury (elemental) concentration was between 10 and 11 μg/m3. The ash and injected carbons were collected in the baghouse at 350E to 375EF. Injection of commercial-grade activated carbon powder (untreated) at a rate of 1.0 lb/Macf resulted in mercury effluent concentrations of 3.8-4.2 μg/m3 (representing 62%-58% removal of the mercury from the gas), and at 2.0 lb/Macf, gave 74%-71% removal. Injection of the bromine-treated carbon at 1.0 lb/Macf resulted in 73%-69% removal and at 2.0 lb/Macf gave 86%-84% removal. Thus, a significant increase in the mercury capture was exhibited during use of the bromine-treated carbon.
  • Addendum: Other References to Hg Sorption
  • Sorbent Beds with Particulate Removal
  • Carbon beds have also been utilized for mercury capture in flue gas. The German Patent 34 26 059 describes the use of a very thick carbon bed for treatment of flue gases containing polyhalogenated compounds. Although the system employed at Dusseldorf would also have the potential for Hg removal (for example, see the Streng reference), it is not very practical to use such a thick bed. Spent sorbent is burned and not regenerated. The carbons are not pretreated.
  • The GE-Mitsui-BF system (Tsuji, K.; Shiraishi, I.; Dague, R. F. Proceedings, Sixth International Symposium, Air & Water Management Assoc., New Orleans, La., Mar. 10-12, 1993) employs a recirculating carbon bed, where mercury is removed along with acid gases (as ammonium salts) and the carbon is regenerated at high temperatures where ammonium sulfate is decomposed to SO2 and N2 and mercury is converted to the elemental form, which desorbs from the sorbent. Attrition of the sorbent results in a significant sorbent cost. The carbons are not pretreated.
  • Sorbent Injection after Particulate Removal
  • A process of injecting manganese oxide sorbent particles is described in U.S. Patent Application 2002/0150516. Regeneration is claimed by removal of spent oxide particles from the reaction zone and rinsing with dilute aqueous acid.
  • Sorbent Beds after Particulate Removal
  • Of particular interest in designing a mercury control process is to use the sorbent downstream of a particulate control device so the sorbent is not highly diluted with the ash particles. The sorbent could then be more easily regenerated and recycled. The prior art teaches several examples of this type of configuration and sorbent processing.
  • U.S. Pat. No. 5,607,496 teaches the oxidation of mercury on a metal oxide sorbent bed and subsequent absorption to sorbent. The sorbent bed follows the particulate-removal equipment and, thus, the gas still contains the SO and NOx, which react with the metal oxide sorbent to form the metal sulfates, which poison the bed. High temperatures are proposed to regenerate the bed. However, Hg is only partially removed from the sorbent at temperatures up to 500° C. The sorbents do not work effectively after regeneration using this technique; the problem may be that manganese sulfate formed during the sorption cycle does not completely decompose back to an active manganese oxide form.
  • U.S. Pat. No. 6,383,981 describes a fixed MnO2 or Fe2O3 bed for removal of Hg from a hydrocarbon stream. No regeneration method appears to be included.
  • A recent U.S. Patent application (2001/0003116) describes the regeneration of a plate or honeycomb material composed of transition metal oxides that was used for sorption of mercury in flue gas. The claimed process involves heating the sorbent in a reducing gas stream to remove poisons, followed by impregnation with a polyfunctional complex-forming reagent containing the catalyst active component to restore mercury capture capacity. The first of these steps can remove the mercury, but it is unclear whether it actually removes the sulfate poison. The second of these steps is rather expensive, because one is actually reconstituting the reagent on the sorbent
  • Porous beds containing a mercury oxidizing reagent on a solid support are described in several patents for removal of mercury from gas streams. These include peroxomonosulfate (for example, see U.S. Pat. No. 4,786,483), triiodide or other mixed halogens (for example, see U.S. Pat. Nos. 3,194,629; 3,662,523), or sulfur (for example, see U.S. Pat. Nos. 3,194,629, 4,101,631, 4,708,853, 6,258,334). The reagent material is destroyed either by reaction with the flue gas during sorption or by attempts to regenerate the sorbent; there is no way to regenerate these sorbents, except by reimpregnation of the expensive reagent.
  • Amalgamating noble metals (gold, silver) on a suitable support can be regenerated by microwave heating (for example, see U.S. Pat. No. 6,136,072), but they are expensive and not especially active for sorption in flue gas.
  • Hg Sorbents for Air or Natural Gas Treatment
  • Melkersson (U.S. Pat. No. 3,786,619) described a Hg sorbent comprising SeO2 or SeS2 for air treatment. This method did not appear to employ a carbon support or halide.
  • Yan (U.S. Pat. No. 4,814,152) described a Hg sorbent comprising elemental sulfur and a metal catalyst on a carbon support. This method did not appear to employ a halide.
  • Attia (U.S. Patent 65/080,281) described a sorbent for mercury and a variety of other contaminants comprising an inorganic aerogel composition. This method did not appear to employ a carbon support or halide.
  • FOLLOWING IS A LIST OF VARIOUS BACKGROUND REFERENCES
    • Lancia, A.; Musmarra, D.; Pepe, F.; Volpicelli, G. Combust. Sci. & Technol. 1993, 93, 277.
    • Streng, S.; Kassebohm, B. Fuel/Proc. Technol. 1994, 39,431.
    • U.S. Pat. No. 6,214,304 Rosenthal
    • U.S. Pat. No. 4,889,698 Moller
    • U.S. Pat. No. 4,956,162 Smith
    • U.S. Pat. No. 5,672,323 Bhat.
    • U.S. Pat. No. 5,827,352 Altman
    • U.S. Pat. No. 6,027,551 Hwang
    • U.S. Pat. No. 5,505,766 Chang
    • U.S. Pat. No. 5,607,496 Brooks
    • U.S. Pat. No. 6,383,981 Blankenship
    • U.S. Pat. No. 4,786,483 Audeh
    • U.S. Pat. No. 3,194,629 Dreibelbis, et al
    • U.S. Pat. No. 4,101,631 Ambrsini, et al
    • U.S. Pat. No. 3,662,523 Revoir
    • U.S. Pat. No. 4,708,853 Matviya
    • U.S. Pat. No. 6,258,334 Gadkaree
    • U.S. Pat. No. 6,136,072 Sjostrom
    • U.S. Patent Application 2002/0150516
    • U.S. Patent Application 2001/0003116 Neufert
  • While the preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are exemplary only and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Accordingly, the scope of protection is not limited by the description set out above, but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims.
  • The examples provided in the disclosure are presented for illustration and explanation purposes only and are not intended to limit the claims or embodiment of this invention. While the preferred embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. Process criteria, equipment, and the like for any given implementation of the invention will be readily ascertainable to one of skill in the art based upon the disclosure herein. The embodiments described herein are exemplary only and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Use of the term “optionally” with respect to any element of the invention is intended to mean that the subject element is required, or alternatively, is not required. Both alternatives are intended to be within the scope of the invention.
  • The discussion of a reference in the Background is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated herein by reference in their entirety, to the extent that they provide exemplary, procedural, or other details supplementary to those set forth herein.
  • Although the invention is described herein as a promoted sorbent material and associated processes for its preparation and use, it is nevertheless not intended to be limited to the details described, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.

Claims (30)

What is claimed is:
1. A method for reducing mercury in a mercury-containing gas, the method comprising:
combusting coal in a combustion chamber, the coal comprising an additive comprising Br2, I2, HBr, HI, a bromide compound, an iodide compound, or a combination thereof, to form the mercury-containing gas;
collecting mercury in the mercury-containing gas on a sorbent comprising a carbon sorbent, a non-carbon sorbent, or a combination thereof.
2. The method of claim 1, wherein the sorbent material comprises a non-carbon sorbent material.
3. The method of claim 2, wherein the non-carbon sorbent material comprises a porous felsic material, a vesicular felsic material, a porous basaltic material, a vesicular basaltic material, a clay-based compound, an alkaline compound, a calcium hydroxide compound, a sodium acetate compound, a bicarbonate compound, or a combination thereof.
4. The method of claim 1, wherein the sorbent comprises at least one of activated carbon, powdered activated carbon, granulated activated carbon, carbon black, unburned carbon, carbon fiber, carbon honeycomb or plate structure, aerogel carbon film, pyrolysis char, and regenerated activated carbon.
5. The method of claim 1, wherein the sorbent comprises activated carbon.
6. The method of claim 1, wherein the sorbent is injected into the mercury-containing gas.
7. The method of claim 1, wherein the coal comprises the added Br2, I2, HBr, HI, the bromide compound, the iodide compound, or a combination thereof, added to the coal before the coal enters the combustion chamber.
8. The method of claim 1, wherein the combustion chamber comprises the added Br2, I2, HBr, HI, the bromide compound, the iodide compound, or a combination thereof.
9. The method of claim 1, wherein the coal is combusted in the combustion chamber at a coal-combustion facility, wherein the Br2, I2, HBr, HI, the bromide compound, the iodide compound, or combination thereof, is added to the coal before the coal enters the combustion chamber, wherein the addition of the Br2, I2, HBr, HI, the bromide compound, the iodide compound, or combination thereof, to the coal is performed at the coal-combustion facility.
10. The method of claim 1, wherein the coal is combusted in the combustion chamber at a coal-combustion facility, wherein the Br2, I2, HBr, HI, the bromide compound, the iodide compound, or combination thereof, is added to the coal before the coal enters the combustion chamber, wherein the addition of the Br2, I2, HBr, HI, the bromide compound, the iodide compound, or combination thereof, to the coal is performed at a site other than the coal-combustion facility.
11. The method of claim 1, wherein the combustion chamber is an electric utility coal combustion chamber.
12. The method of claim 1, wherein the combustion chamber is a combustion furnace.
13. The method of claim 1, wherein the coal comprises subbituminous coal.
14. The method of claim 1, wherein the coal comprises lignite coal.
15. The method of claim 1, further comprising:
measuring the mercury content of the mercury-containing gas; and
modifying, in response to the measured mercury content,
an injection rate of injecting the sorbent into the mercury-containing gas,
an amount of the additive added to the coal, or
a combination thereof.
16. The method of claim 1, further comprising:
modifying, in response to a measured mercury content,
an injection rate of injecting the sorbent into the mercury-containing gas,
an amount of the additive added to the coal, or
a combination thereof.
17. The method of claim 16, wherein the measurement of the mercury content of the mercury-containing gas comprises continuous measurement.
18. The method of claim 1, wherein the mercury-containing gas comprises about 1 g to about 30 g of the element bromine per 100 g of the sorbent.
19. The method of claim 1, wherein the sorbent in the mercury-containing gas comprises about 1 g to about 30 g of the added Br2, I2, HBr, HI, the bromide compound, the iodide compound, or a combination thereof, per 100 g of the sorbent.
20. The method of claim 1, comprising removing greater than 70 wt % of the mercury in the mercury-containing gas.
21. The method of claim 1, comprising removing greater than 70 wt % of the mercury in the mercury-containing gas with the sorbent.
22. The method of claim 1, wherein the sorbent injected into the mercury-containing gas is a sorbent obtained by contacting a sorbent with a halogen or halide promoter prior to injection of the sorbent into the mercury-containing gas.
23. The method of claim 1, wherein the sorbent material injected into the mercury-containing gas is substantially free of halogen and halide promotion prior to injection of the sorbent into the mercury-containing gas.
24. The method of claim 1, wherein the injection of the sorbent into the mercury-containing gas occurs upstream of a particulate separator, a scrubber, an air-preheater, or a combination thereof.
25. The method of claim 24, wherein the particulate separator comprises an electrostatic precipitator, a baghouse, a fabric filter, or a combination thereof.
26. The method of claim 1, wherein a halide sorbent enhancement additive comprises the added Br2, I2, HBr, HI, the bromide compound, the iodide compound, or combination thereof.
27. The method of claim 1, wherein the sorbent enhancement additive comprises the bromide compound, the iodide compound, or a combination thereof.
28. A method of separating mercury from a mercury-containing gas, the method comprising:
combusting coal in a combustion chamber, to provide the mercury-containing gas, wherein
the coal comprises added Br2, I2, HBr, HI, a bromide compound, an iodide compound, or a combination thereof, added to the coal upstream of the combustion chamber, or
the combustion chamber comprises added Br2, I2, HBr, HI, a bromide compound, an iodide compound, or a combination thereof, or
a combination thereof;
injecting a sorbent into the mercury-containing gas downstream of the combustion chamber, the sorbent comprising a carbon sorbent, a non-carbon sorbent, or a combination thereof,
contacting mercury in the mercury-containing gas with the sorbent; and
separating the sorbent contacted with the mercury from the mercury-containing gas.
29. A method of separating mercury from a mercury-containing gas, the method comprising:
combusting coal in a combustion chamber, to provide the mercury-containing gas, wherein the mercury-containing gas comprises a halogen or halide promoter comprising HBr, HI, Br, I, or a combination thereof, wherein
the coal comprises added Br2, I2, HBr, HI, a bromide compound, an iodide compound, or a combination thereof, added to the coal before the coal enters the combustion chamber, or
the combustion chamber comprises added Br2, I2, HBr, HI, a bromide compound, an iodide compound, or a combination thereof, or
a combination thereof;
injecting a sorbent into the mercury-containing gas downstream of the combustion chamber, the sorbent comprising a carbon sorbent, a non-carbon sorbent, or a combination thereof;
contacting mercury in the mercury-containing gas with the sorbent; and
separating the sorbent contacted with the mercury from the mercury-containing gas.
30. A method of separating mercury from a mercury-containing gas, the method comprising:
combusting coal in a combustion chamber, to provide the mercury-containing gas, wherein the mercury-containing gas comprises a halogen or halide promoter comprising HBr, HI, Br, I, or a combination thereof, wherein
the coal comprises added Br2, I2, HBr, HI, a bromide compound, an iodide compound, or a combination thereof, added to the coal before the coal enters the combustion chamber, or
the combustion chamber comprises added Br2, I2, HBr, HI, a bromide compound, an iodide compound, or a combination thereof, or
a combination thereof;
injecting a sorbent into the mercury-containing gas downstream of the combustion chamber, the sorbent comprising a carbon sorbent, a non-carbon sorbent, or a combination thereof, such that the sorbent reacts with the halogen or halide promoter in the mercury-containing gas to form a promoted sorbent;
contacting mercury in the mercury-containing gas with the promoted sorbent;
separating the promoted sorbent contacted with the mercury from the mercury-containing gas;
measuring the mercury content of the mercury-containing gas; and
modifying, in response to the measured mercury content,
an injection rate of injecting the sorbent into the mercury-containing gas,
an amount of the Br2, I2, HBr, HI, the bromide compound, the iodide compound, or a combination thereof, added to the coal or the combustion chamber, or
a combination thereof.
US16/509,146 2004-08-30 2019-07-11 Sorbents for the oxidation and removal of mercury Abandoned US20190329215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/509,146 US20190329215A1 (en) 2004-08-30 2019-07-11 Sorbents for the oxidation and removal of mercury
US16/993,361 US20210170332A1 (en) 2004-08-30 2020-08-14 Sorbents for the oxidation and removal of mercury

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US60564004P 2004-08-30 2004-08-30
US11/209,163 US7435286B2 (en) 2004-08-30 2005-08-22 Sorbents for the oxidation and removal of mercury
US12/201,595 US20090062119A1 (en) 2004-08-30 2008-08-29 Sorbents for the oxidation and removal of mercury
US12/429,058 US8652235B2 (en) 2004-08-30 2009-04-23 Sorbents for the oxidation and removal of mercury
US14/102,896 US9468886B2 (en) 2004-08-30 2013-12-11 Sorbents for the oxidation and removal of mercury
US15/295,594 US20170128908A1 (en) 2004-08-30 2016-10-17 Sorbents for the oxidation and removal of mercury
US16/509,146 US20190329215A1 (en) 2004-08-30 2019-07-11 Sorbents for the oxidation and removal of mercury

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/295,594 Continuation US20170128908A1 (en) 2003-04-23 2016-10-17 Sorbents for the oxidation and removal of mercury

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/993,361 Continuation US20210170332A1 (en) 2004-08-30 2020-08-14 Sorbents for the oxidation and removal of mercury

Publications (1)

Publication Number Publication Date
US20190329215A1 true US20190329215A1 (en) 2019-10-31

Family

ID=35994906

Family Applications (15)

Application Number Title Priority Date Filing Date
US11/209,163 Active 2026-03-18 US7435286B2 (en) 2003-04-23 2005-08-22 Sorbents for the oxidation and removal of mercury
US12/201,595 Abandoned US20090062119A1 (en) 2003-04-23 2008-08-29 Sorbents for the oxidation and removal of mercury
US12/419,219 Active US8168147B2 (en) 2003-04-23 2009-04-06 Sorbents for the oxidation and removal of mercury
US13/427,665 Active US8512655B2 (en) 2003-04-23 2012-03-22 Sorbents for the oxidation and removal of mercury
US13/966,768 Active US8821819B2 (en) 2003-04-23 2013-08-14 Sorbents for the oxidation and removal of mercury
US14/318,270 Active 2025-10-23 US9757689B2 (en) 2004-08-30 2014-06-27 Sorbents for the oxidation and removal of mercury
US14/712,558 Active 2025-08-23 US10589225B2 (en) 2003-04-23 2015-05-14 Sorbents for the oxidation and removal of mercury
US15/951,970 Active 2026-04-24 US10933370B2 (en) 2004-08-30 2018-04-12 Sorbents for the oxidation and removal of mercury
US15/974,343 Active US10668430B2 (en) 2004-08-30 2018-05-08 Sorbents for the oxidation and removal of mercury
US15/997,091 Active US10596517B2 (en) 2004-08-30 2018-06-04 Sorbents for the oxidation and removal of mercury
US16/509,146 Abandoned US20190329215A1 (en) 2004-08-30 2019-07-11 Sorbents for the oxidation and removal of mercury
US16/509,071 Active US10926218B2 (en) 2004-08-30 2019-07-11 Sorbents for the oxidation and removal of mercury
US16/509,102 Abandoned US20190329179A1 (en) 2004-08-30 2019-07-11 Treatment of coal with mercury control additives
US16/993,361 Abandoned US20210170332A1 (en) 2004-08-30 2020-08-14 Sorbents for the oxidation and removal of mercury
US17/125,641 Abandoned US20210129079A1 (en) 2004-08-30 2020-12-17 Sorbents for the oxidation and removal of mercury

Family Applications Before (10)

Application Number Title Priority Date Filing Date
US11/209,163 Active 2026-03-18 US7435286B2 (en) 2003-04-23 2005-08-22 Sorbents for the oxidation and removal of mercury
US12/201,595 Abandoned US20090062119A1 (en) 2003-04-23 2008-08-29 Sorbents for the oxidation and removal of mercury
US12/419,219 Active US8168147B2 (en) 2003-04-23 2009-04-06 Sorbents for the oxidation and removal of mercury
US13/427,665 Active US8512655B2 (en) 2003-04-23 2012-03-22 Sorbents for the oxidation and removal of mercury
US13/966,768 Active US8821819B2 (en) 2003-04-23 2013-08-14 Sorbents for the oxidation and removal of mercury
US14/318,270 Active 2025-10-23 US9757689B2 (en) 2004-08-30 2014-06-27 Sorbents for the oxidation and removal of mercury
US14/712,558 Active 2025-08-23 US10589225B2 (en) 2003-04-23 2015-05-14 Sorbents for the oxidation and removal of mercury
US15/951,970 Active 2026-04-24 US10933370B2 (en) 2004-08-30 2018-04-12 Sorbents for the oxidation and removal of mercury
US15/974,343 Active US10668430B2 (en) 2004-08-30 2018-05-08 Sorbents for the oxidation and removal of mercury
US15/997,091 Active US10596517B2 (en) 2004-08-30 2018-06-04 Sorbents for the oxidation and removal of mercury

Family Applications After (4)

Application Number Title Priority Date Filing Date
US16/509,071 Active US10926218B2 (en) 2004-08-30 2019-07-11 Sorbents for the oxidation and removal of mercury
US16/509,102 Abandoned US20190329179A1 (en) 2004-08-30 2019-07-11 Treatment of coal with mercury control additives
US16/993,361 Abandoned US20210170332A1 (en) 2004-08-30 2020-08-14 Sorbents for the oxidation and removal of mercury
US17/125,641 Abandoned US20210129079A1 (en) 2004-08-30 2020-12-17 Sorbents for the oxidation and removal of mercury

Country Status (5)

Country Link
US (15) US7435286B2 (en)
EP (3) EP2431087B1 (en)
CN (1) CN101048218B (en)
CA (1) CA2584327C (en)
WO (1) WO2006039007A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10589225B2 (en) 2004-08-30 2020-03-17 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US11059028B2 (en) 2013-03-06 2021-07-13 Midwwest Energy Emissions Corp. Activated carbon sorbent including nitrogen and methods of using the same
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US20220331738A1 (en) * 2010-02-04 2022-10-20 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124036B1 (en) 2005-10-27 2012-02-28 ADA-ES, Inc. Additives for mercury oxidation in coal-fired power plants
US8652235B2 (en) * 2004-08-30 2014-02-18 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20080184886A1 (en) * 2007-02-02 2008-08-07 Research Triangle Institute Thermal preconcentrator for collection of chemical species
US10343114B2 (en) * 2004-08-30 2019-07-09 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US7615101B2 (en) * 2005-09-07 2009-11-10 Energy & Environmental Research Foundation High energy dissociation for mercury control systems
US20070234902A1 (en) * 2006-03-29 2007-10-11 Fair David L Method for mercury removal from flue gas streams
US8057576B1 (en) 2008-06-10 2011-11-15 Calgon Carbon Corporation Enhanced adsorbents and methods for mercury removal
WO2007140073A2 (en) * 2006-05-01 2007-12-06 Crowfoot Development, Llc. Process for the manufacture of carbonaceous mercury sorbent from coal
US7722705B2 (en) * 2006-05-11 2010-05-25 Corning Incorporated Activated carbon honeycomb catalyst beds and methods for the use thereof
US20070265161A1 (en) * 2006-05-11 2007-11-15 Gadkaree Kishor P Activated carbon honeycomb catalyst beds and methods for the manufacture of same
US7713503B2 (en) * 2006-09-12 2010-05-11 General Electric Company Sorbents and sorbent composition for mercury removal
JP5553966B2 (en) 2008-03-19 2014-07-23 千代田化工建設株式会社 Mercury adsorbent and smoke treatment method using the adsorbent
US7767007B2 (en) * 2006-12-08 2010-08-03 Praxair Technology, Inc. Mercury adsorbents compatible as cement additives
US20080207443A1 (en) * 2007-02-28 2008-08-28 Kishor Purushottam Gadkaree Sorbent comprising activated carbon, process for making same and use thereof
US8288312B2 (en) 2007-03-06 2012-10-16 S&S Lime, Inc. Particulate matter and methods of obtaining same from a Kraft waste reclamation
US8741243B2 (en) 2007-05-14 2014-06-03 Corning Incorporated Sorbent bodies comprising activated carbon, processes for making them, and their use
US7998898B2 (en) * 2007-10-26 2011-08-16 Corning Incorporated Sorbent comprising activated carbon, process for making same and use thereof
US8312822B2 (en) 2007-07-02 2012-11-20 Energy & Environmental Research Center Foundation Mercury control using moderate-temperature dissociation of halogen compounds
EP2171023A1 (en) * 2007-07-03 2010-04-07 Albermarle Corporation Use of compounds containing halogen and nitrogen for reducing mercury emissions during coal combustion
EP2205338A2 (en) * 2007-08-29 2010-07-14 Corning Incorporated Process for removing toxic metals from a fluid stream
US7833500B1 (en) 2007-08-31 2010-11-16 Western Kentucky University Abatement of mercury in flue gas
US8685351B2 (en) * 2007-09-24 2014-04-01 Basf Corporation Pollutant emission control sorbents and methods of manufacture and use
US9038829B2 (en) * 2007-10-07 2015-05-26 Brown University Nanostructured sorbent materials for capturing environmental mercury vapor
US8491865B2 (en) * 2008-02-28 2013-07-23 Brown University Nanostructured sorbent materials for capturing environmental mercury vapor
US20090252663A1 (en) * 2008-04-02 2009-10-08 Todd Marshall Wetherill Method and system for the removal of an elemental trace contaminant from a fluid stream
US7875102B2 (en) * 2008-04-02 2011-01-25 Corning Incorporated Method for managing the use of flow-through monolithic sorbents for the sorption of a trace contaminant from a fluid stream
US20090297885A1 (en) * 2008-05-30 2009-12-03 Kishor Purushottam Gadkaree Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide
US8124213B2 (en) * 2008-05-30 2012-02-28 Corning Incorporated Flow-through sorbent comprising a metal sulfide
US8133303B2 (en) * 2008-07-02 2012-03-13 Schwab James J Apparatus and method for controlling mercury pollution from a cement plant
US8691722B2 (en) * 2008-07-03 2014-04-08 Corning Incorporated Sorbent comprising activated carbon particles, sulfur and metal catalyst
US20100056841A1 (en) * 2008-08-27 2010-03-04 Corning Incorporated Methods Of Disposing Of Sorbent Bodies
RU2509600C2 (en) 2008-09-24 2014-03-20 Альбемарл Корпорейшн Sorbing compositions and methods of removing mercury from streams of waste flue gases
CA2658469C (en) 2008-10-03 2012-08-14 Rajender P. Gupta Bromination process
US20110049045A1 (en) * 2008-10-07 2011-03-03 Brown University Nanostructured sorbent materials for capturing environmental mercury vapor
US8402619B2 (en) * 2008-11-24 2013-03-26 Minnesota Funeral Directors Association System and method for reducing environmental crematorial release of mercury from mercury-containing dental amalgam
WO2010089750A1 (en) * 2009-02-09 2010-08-12 Bromine Compounds Ltd. Process and apparatus for preparing molecular bromine
UA109399C2 (en) 2009-04-01 2015-08-25 THERMALLY ACTIVATED COAL RESISTANT TO SELF-IGNITION
US8110029B2 (en) * 2009-05-08 2012-02-07 Alstom Technology Ltd Integrated mercury control system
CN102458615B (en) * 2009-05-08 2015-01-28 南方研究院 Systems and methods for reducing mercury emission
US8182583B1 (en) * 2009-09-11 2012-05-22 Southern Company Services, Inc. Mercury control activated carbon management
US8489231B2 (en) * 2009-09-18 2013-07-16 Raf Technology, Inc. Loop mail processing
US20110185899A1 (en) * 2010-02-02 2011-08-04 Battelle Memorial Institute Methods for Abatement of Arsenic and Phosphorous Contaminants From Fuel Gases Prior to Gasification
EP2531276A4 (en) 2010-02-04 2014-07-02 Ada Es Inc Method and system for controlling mercury emissions from coal-fired thermal processes
US8524179B2 (en) 2010-10-25 2013-09-03 ADA-ES, Inc. Hot-side method and system
US11298657B2 (en) 2010-10-25 2022-04-12 ADA-ES, Inc. Hot-side method and system
US8951487B2 (en) 2010-10-25 2015-02-10 ADA-ES, Inc. Hot-side method and system
US8784757B2 (en) 2010-03-10 2014-07-22 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
WO2011112854A1 (en) 2010-03-10 2011-09-15 Ada Environmental Solutions, Llc Process for dilute phase injection or dry alkaline materials
US9555368B2 (en) * 2010-03-11 2017-01-31 Ramsay Chang Chemically-enhanced sorbent activation process and method of using same
US8999278B2 (en) * 2010-03-11 2015-04-07 The Board Of Trustees Of The University Of Illinois Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
MX2012011676A (en) * 2010-04-07 2013-01-29 Calgon Carbon Corp Methods for removal of mercury from flue gas.
US20110269079A1 (en) * 2010-04-28 2011-11-03 Enviromental Energy Services, Inc. Process for operating a utility boiler and methods therefor
US8226752B2 (en) * 2010-04-29 2012-07-24 Hai Xu Method and apparatus for air purification
RU2012151821A (en) * 2010-05-04 2014-06-10 Альбемарл Корпорейшн REDUCED MERCURY EMISSIONS FROM CEMENT PLANTS
US8198210B2 (en) * 2010-05-27 2012-06-12 Corning Incorporated Halogenated activated carbon materials for high energy density ultracapacitors
US8709255B2 (en) 2010-06-08 2014-04-29 Phillips 66 Company Selenium removal methods and systems
BR112013004470A2 (en) * 2010-08-30 2017-11-21 Albemarle Corp thermally activated cellulosic sorbent sorbent to remove mercury from emissions produced during fuel combustion and process to increase thermal stability thermally activated cellulosic sorbent
US8702975B2 (en) 2010-09-16 2014-04-22 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US8673133B2 (en) 2010-09-16 2014-03-18 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US8728304B2 (en) 2010-09-16 2014-05-20 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US8663460B2 (en) 2010-09-16 2014-03-04 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US8721873B2 (en) 2010-11-19 2014-05-13 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US8721874B2 (en) 2010-11-19 2014-05-13 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US8728303B2 (en) 2010-11-19 2014-05-20 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
CN102078757B (en) * 2010-12-16 2012-11-07 浙江天蓝环保技术股份有限公司 Halogen spraying and adding device for smoke mercury removal and spraying and adding method thereof
JP2014501215A (en) * 2010-12-17 2014-01-20 アルベマール・コーポレーシヨン Reduce mercury emissions from cement factories
CN102553522A (en) * 2010-12-30 2012-07-11 四川清源环境工程有限公司 Oxidative adsorbent for removing mercury from coal-burning flue gas
US8562724B2 (en) 2011-03-01 2013-10-22 General Electric Company Methods and systems for removing pollutants from fluid stream
CN102179234B (en) * 2011-04-06 2013-07-10 南京林大活性炭有限公司 Production method of special active carbon for removing mercuric chloride
JP2014518563A (en) 2011-04-15 2014-07-31 バイオジェニック リージェンツ エルエルシー Process for producing high carbon bioreagents
US8845986B2 (en) 2011-05-13 2014-09-30 ADA-ES, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
CN102849675B (en) * 2011-06-28 2015-08-12 国家纳米科学中心 The preparation of nano composite material and preparation method thereof and water treatment, method and device
EP2753410B1 (en) * 2011-09-07 2016-07-20 Kompoferm GmbH Method for improving flame resistance in filter systems
US9539538B2 (en) 2011-10-28 2017-01-10 Ada Carbon Solutions, Llc Multi-functional composition of matter for rapid removal of mercury from a flue gas
US10722865B2 (en) 2011-10-28 2020-07-28 Ada Carbon Solutions, Llc Multi-functional composition of matter for removal of mercury from high temperature flue gas streams
US9017452B2 (en) 2011-11-14 2015-04-28 ADA-ES, Inc. System and method for dense phase sorbent injection
CA2855774A1 (en) 2011-11-29 2013-06-06 Vaporlok Technology, Llc Mercury capture for packaged fluorescent lamps
US8974581B2 (en) 2011-11-29 2015-03-10 Vaporlok Technology, Llc Mercury capture for packaged fluorescent lamps
US8480983B1 (en) * 2012-03-15 2013-07-09 Alstom Technology Ltd Mercury capture system and method for a wet flue gas desulfurization system
US9802154B2 (en) 2012-03-30 2017-10-31 Fuel Tech, Inc. Process for sulfur dioxide, hydrochloric acid and mercury mediation
US8992868B2 (en) 2012-05-01 2015-03-31 Fuel Tech, Inc. Dry processes, apparatus compositions and systems for reducing mercury, sulfur oxides and HCl
US8883099B2 (en) 2012-04-11 2014-11-11 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US9011805B2 (en) 2012-04-23 2015-04-21 Energy & Environmental Research Center Foundation Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream
WO2013169803A1 (en) * 2012-05-07 2013-11-14 Biogenic Reagents LLC Biogenic activated carbon and methods of making and using same
US9447675B2 (en) 2012-05-16 2016-09-20 Chevron U.S.A. Inc. In-situ method and system for removing heavy metals from produced fluids
EP2850155B1 (en) 2012-05-16 2018-04-04 Chevron U.S.A., Inc. Process for removing mercury from fluids
WO2013173593A1 (en) 2012-05-16 2013-11-21 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
CA2872793C (en) 2012-05-16 2020-08-25 Chevron U.S.A. Inc. Process, method, and system for removing mercury from fluids
US20130330257A1 (en) 2012-06-11 2013-12-12 Calgon Carbon Corporation Sorbents for removal of mercury
US8974756B2 (en) 2012-07-25 2015-03-10 ADA-ES, Inc. Process to enhance mixing of dry sorbents and flue gas for air pollution control
US9957454B2 (en) 2012-08-10 2018-05-01 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
PL229084B1 (en) 2012-11-07 2018-06-29 Politechnika Lodzka Multilayer composite to a reversible sorption of mercury and a method for sorption and desorption of mercury from the gas phase
WO2014077979A1 (en) * 2012-11-13 2014-05-22 Albemarle Corporation Activated carbon from boiler ash residue
US9308518B2 (en) 2013-02-14 2016-04-12 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
CN105209158B (en) * 2013-02-18 2018-12-28 巴布考克及威尔考克斯公司 Increase the service life of SCR catalyst
US9289721B2 (en) 2013-02-27 2016-03-22 Fuel Tech, Inc. Process and apparatus for improving the operation of wet scrubbers
MX2015011065A (en) 2013-02-27 2016-02-11 Fuel Tech Inc Processes, apparatus, compositions and systems for reducing emissions of hci and/or sulfur oxides.
US10130930B2 (en) 2013-03-06 2018-11-20 Midwest Energy Emissions Corp Sorbent comprising carbon and nitrogen and methods of using the same
US9234141B2 (en) 2013-03-14 2016-01-12 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from oily solids
US9023196B2 (en) 2013-03-14 2015-05-05 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US9169445B2 (en) 2013-03-14 2015-10-27 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from oily solids
TWI619550B (en) * 2013-03-15 2018-04-01 亞比馬利股份有限公司 Flue gas sorbents, methods for their manufacture, and their use in removal of mercury from gaseous streams
US9399597B2 (en) 2013-04-01 2016-07-26 Fuel Tech, Inc. Ash compositions recovered from coal combustion gases having reduced emissions of HCI and/or mercury
US9718025B2 (en) 2013-04-01 2017-08-01 Fuel Tech, Inc. Reducing hydrochloric acid in cement kilns
US10307710B2 (en) 2013-04-16 2019-06-04 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
US10695717B2 (en) 2013-04-16 2020-06-30 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
US9089816B2 (en) 2013-04-16 2015-07-28 Carbonxt, Inc. Systems and methods for post combustion mercury control using sorbent injection and wet scrubbing
US9889451B2 (en) 2013-08-16 2018-02-13 ADA-ES, Inc. Method to reduce mercury, acid gas, and particulate emissions
US20150126362A1 (en) 2013-10-24 2015-05-07 Biogenic Reagent Ventures, Llc Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
MX2016009270A (en) 2014-01-16 2017-05-04 Biogenic Reagents Ventures Llc Carbon micro-plant.
CA2977092C (en) 2014-02-24 2022-12-13 Biogenic Reagents Ventures, Llc Highly mesoporous activated carbon
CN103977763B (en) * 2014-06-04 2016-03-16 武汉市天虹仪表有限责任公司 A kind of preparation method of the high-efficiency adsorbent for gaseous mercury sampling
CN104148013B (en) * 2014-07-18 2016-05-11 中国林业科学研究院林产化学工业研究所 The preparation method of fume mercury-removing active carbon
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
US10350545B2 (en) 2014-11-25 2019-07-16 ADA-ES, Inc. Low pressure drop static mixing system
CA2979332C (en) 2015-03-16 2022-11-22 University Of Wyoming Methods and compositions for the removal of mercury from gases
CA2995357C (en) 2015-08-11 2023-12-19 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
BR112018003029B1 (en) 2015-08-21 2022-11-16 Ecolab Usa Inc METHOD TO REDUCE MERCURY EMISSIONS
BR112018003056B1 (en) 2015-08-21 2022-09-13 Ecolab Usa Inc METHOD AND USE OF PERACETIC ACID TO REDUCE MERCURY EMISSIONS
PL236851B1 (en) 2015-12-14 2021-02-22 Pge Gornictwo I Energetyka Konwencjonalna Spolka Akcyjna Method for mercury capture from gases forming in the energy combustion of coal
CN106178830B (en) * 2016-07-29 2018-11-02 华中科技大学 A kind of method that can activate and spray demercuration adsorbent online simultaneously
CN106178831B (en) * 2016-08-01 2018-11-02 华中科技大学 A kind of activation of adsorbent and injection demercuration integral method
US9833739B1 (en) * 2016-08-03 2017-12-05 Millenium Synthfuels Corporation Exhaust gas clean-up system for fossil fuel fired power plant
CA3035525A1 (en) 2016-09-02 2018-03-08 Regents Of The University Of Minnesota Systems and methods for body-proximate recoverable capture of mercury vapor during cremation
CN115475480A (en) 2017-01-31 2022-12-16 卡尔冈碳素公司 Adsorbent device
US11975305B2 (en) 2017-02-10 2024-05-07 Calgon Carbon Corporation Sorbent and method of making
SG11201908534YA (en) 2017-03-17 2019-10-30 Graymont Pa Inc Calcium hydroxide-containing compositions and associated systems and methods
EP3648871A1 (en) 2017-07-06 2020-05-13 Ecolab USA, Inc. Enhanced injection of mercury oxidants
CN109395706A (en) * 2018-02-05 2019-03-01 东南大学 A kind of preparation method of the renewable demercuration adsorbent of active carbon
KR20210006890A (en) * 2018-05-04 2021-01-19 알베마를 코포레이션 Process to reduce the environmental use of environmental pollutants
WO2019226720A1 (en) * 2018-05-21 2019-11-28 Ada Carbon Solutions, Llc Sorbent compositions and methods for the removal of contaminants from a gas stream
US11697580B2 (en) 2018-08-01 2023-07-11 Calgon Carbon Corporation Apparatus for hydrocarbon vapor recovery
WO2020028839A1 (en) 2018-08-02 2020-02-06 Calgon Carbon Corporation Sorbent devices
WO2020028845A1 (en) 2018-08-02 2020-02-06 Calgon Carbon Corporation Sorbent devices
CN109045963B (en) * 2018-08-08 2021-06-08 华北电力大学 Method for removing gaseous selenium dioxide in coal-fired flue gas through oxidation-absorption
CN109045992A (en) * 2018-08-15 2018-12-21 广州康滤净化科技有限公司 A kind of net wind material of the compound removing taste of graphene and preparation method thereof
CN109737390B (en) * 2019-01-18 2020-07-28 清华大学 Control method in gaseous mineral composition furnace generated by pulverized coal combustion
CN113727774A (en) 2019-04-03 2021-11-30 卡尔冈碳素公司 Perfluoroalkyl and polyfluoroalkyl sorbent materials and methods of use
CN114364870B (en) 2019-08-08 2024-08-20 卡尔冈碳素公司 Sorbent device for air inlet
CN115551620A (en) * 2020-05-11 2022-12-30 雅宝公司 Process, system and apparatus for reducing environmental contaminants from flowing phases
CN111569834A (en) * 2020-06-01 2020-08-25 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) Mercury removing adsorbent for crude chloroethylene gas
DE102020117667B4 (en) 2020-07-03 2022-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein A manufacturing process of an impregnated sorbent for oxidizing and sorbing mercury
WO2022047499A2 (en) 2020-08-31 2022-03-03 Calgon Carbon Corporation Iron and nitrogen treated sorbent and method for making same
TW202218983A (en) 2020-08-31 2022-05-16 美商卡爾岡碳公司 Copper and nitrogen treated sorbent and method for making same
US12059668B2 (en) 2020-08-31 2024-08-13 Calgon Carbon Corporation Copper, iron, and nitrogen treated sorbent and method for making same
EP4332255A3 (en) 2020-09-25 2024-07-17 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
CN117015624A (en) 2021-02-18 2023-11-07 卡本科技控股有限责任公司 Carbon negative metallurgical product
JP2024515776A (en) 2021-04-27 2024-04-10 カーボン テクノロジー ホールディングス, エルエルシー Biocarbon compositions with optimized fixed carbon and processes for producing same
CA3225978A1 (en) 2021-07-09 2023-01-12 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom
CA3237206A1 (en) 2021-11-12 2023-05-19 Carbon Technology Holdings, LLC Biocarbon compositions with optimized compositional parameters, and processes for producing the same

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013516A (en) * 1975-03-13 1977-03-22 Hanover Research Corporation Apparatus and process for the pyrolysis of waste solids concentrates
US4500327A (en) * 1982-07-08 1985-02-19 Takeda Chemical Industries, Ltd. Process for removal of mercury vapor and adsorbent therefor
US4699896A (en) * 1984-09-11 1987-10-13 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Manufacture of fibrous activated carbons
US5435980A (en) * 1991-11-04 1995-07-25 Niro A/S Method of improving the Hg-removing capability of a flue gas cleaning process
US5556447A (en) * 1995-01-23 1996-09-17 Physical Sciences, Inc. Process for treating metal-contaminated materials
US5569436A (en) * 1993-06-10 1996-10-29 Beco Engineering Company Removal of mercury and cadmium and their compounds from incinerator flue gases
US6103205A (en) * 1997-07-11 2000-08-15 Advanced Fuel Research, Inc. Simultaneous mercury, SO2, and NOx control by adsorption on activated carbon
US6136749A (en) * 1997-07-28 2000-10-24 Corning Incorporated Mercury removal catalyst and method of making and using same
US6372187B1 (en) * 1998-12-07 2002-04-16 Mcdermott Technology, Inc. Alkaline sorbent injection for mercury control
US20020114749A1 (en) * 2000-12-22 2002-08-22 Cole Jerald Alan Process for removing mercury vapor from flue gas
US6558454B1 (en) * 1997-08-19 2003-05-06 Electric Power Research Institute, Inc. Method for removal of vapor phase contaminants from a gas stream by in-situ activation of carbon-based sorbents
US20030104937A1 (en) * 2001-11-27 2003-06-05 Sinha Rabindra K. In-situ generation of special sorbents in combustion gases for the removal of mercury and other pollutants present in them
US20030113239A1 (en) * 2001-08-01 2003-06-19 Pahlman John E. Systems and processes for removal of pollutants from a gas stream
US20030161771A1 (en) * 2002-02-14 2003-08-28 Oehr Klaus H. Enhanced mercury control in coal-fired power plants
US20040003716A1 (en) * 2002-05-06 2004-01-08 Nelson Sidney G. Sorbents and methods for the removal of mercury from combustion gases
US6719828B1 (en) * 2001-04-30 2004-04-13 John S. Lovell High capacity regenerable sorbent for removal of mercury from flue gas
US20040086439A1 (en) * 2002-07-22 2004-05-06 Bayer Aktiengesellschaft Process for removing mercury from flue gases
US6818043B1 (en) * 2003-01-23 2004-11-16 Electric Power Research Institute, Inc. Vapor-phase contaminant removal by injection of fine sorbent slurries
US20040244657A1 (en) * 2003-06-03 2004-12-09 Alstom (Switzerland) Ltd Control of mercury emissions from solid fuel combustion
US20060048646A1 (en) * 2004-08-30 2006-03-09 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20070180990A1 (en) * 2004-03-22 2007-08-09 William Downs Dynamic halogenation of sorbents for the removal of mercury from flue gases
US20070259781A1 (en) * 2006-05-08 2007-11-08 Sinha Rabindra K Chemical formulations for removal of hazardous pollutants from combustion gases
US7361209B1 (en) * 2003-04-03 2008-04-22 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
US7514052B2 (en) * 2004-01-06 2009-04-07 General Electric Company Method for removal of mercury emissions from coal combustion
US20090297413A1 (en) * 2004-08-30 2009-12-03 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20090320678A1 (en) * 2006-11-03 2009-12-31 Electric Power Research Institute, Inc. Sorbent Filter for the Removal of Vapor Phase Contaminants
US7780765B2 (en) * 2003-06-03 2010-08-24 Alstom Technologies Ltd Control of mercury emissions from solid fuel combustion
US8080088B1 (en) * 2007-03-05 2011-12-20 Srivats Srinivasachar Flue gas mercury control
US20150098878A1 (en) * 2012-04-23 2015-04-09 Energy & Environmental Research Center Foundation Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream
US20170100692A1 (en) * 2003-04-23 2017-04-13 Edwin S. Olson Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US20170239644A1 (en) * 2013-03-06 2017-08-24 Edwin S. Olson Activated carbon sorbent including nitrogen and methods of using the same
US20180133646A1 (en) * 2003-04-23 2018-05-17 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US20180257031A1 (en) * 2004-08-30 2018-09-13 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984164A (en) * 1931-06-30 1934-12-11 Degea Ag Process and apparatus for purifying air vitiated with mercury vapors
US2317857A (en) * 1938-12-17 1943-04-27 United Gas Improvement Co Polymerized styrene-polyisoprene resin product
US2456272A (en) 1946-08-02 1948-12-14 Fairchild Engine & Airplane Engine cylinder construction
US3194629A (en) * 1962-02-23 1965-07-13 Pittsburgh Activated Carbon Co Method of removing mercury vapor from gases
US3341185A (en) 1966-07-29 1967-09-12 Sr Walter L Kennedy Fuel injector
JPS4943197Y1 (en) 1970-06-13 1974-11-26
US3826618A (en) * 1970-09-28 1974-07-30 Ionics Automatic mercury monitor
US3662523A (en) * 1970-12-15 1972-05-16 American Optical Corp Adsorbents for removal of mercury vapor from air or gas
JPS4943197B1 (en) 1970-12-29 1974-11-19
JPS506438B1 (en) 1970-12-29 1975-03-13
US3786619A (en) * 1971-06-04 1974-01-22 Boliden Ab Method of purifying gases containing mercury compounds and elementary mercury
NL7202959A (en) * 1972-03-06 1972-05-25
JPS5224232B2 (en) 1972-09-02 1977-06-29
JPS5533375B2 (en) 1972-09-29 1980-08-30
JPS4953593A (en) * 1972-09-29 1974-05-24
JPS4966592A (en) 1972-11-01 1974-06-27
JPS5323777B2 (en) 1972-12-04 1978-07-17
AT321170B (en) 1972-12-18 1975-03-25 Smolka & Co Wiener Metall Ski binding part
NL7308176A (en) 1973-06-13 1974-12-17
JPS558265B2 (en) 1974-05-14 1980-03-03
JPS513386A (en) 1974-06-28 1976-01-12 Tokuyama Soda Kk JUKINZOKUKYUCHAKUZAI
JPS5140958A (en) 1974-10-04 1976-04-06 Oki Electric Ind Co Ltd Kyodono kakudochoseisochi
DE2656803C2 (en) 1975-12-18 1986-12-18 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Process for removing mercury from a gas or liquid
SU732207A1 (en) 1976-10-08 1980-05-05 Всесоюзный научно-исследовательский институт медицинских полимеров Method of producing adsorbent for adsorbing blood toxins
US4101631A (en) * 1976-11-03 1978-07-18 Union Carbide Corporation Selective adsorption of mercury from gas streams
NL7710632A (en) 1977-09-29 1979-04-02 Akzo Nv PROCESS FOR THE REMOVAL OF MERCURY FROM GASES CONTAINING MERCURY VAPOR.
DE2931427A1 (en) 1978-11-17 1981-02-19 Steag Ag PLANT FOR ENERGY FROM SOLID FOSSIL FUELS, IN PARTICULAR CHARCOAL
US4338896A (en) 1980-03-13 1982-07-13 Caterpillar Tractor Co. Fire suppression system
JPS5824340A (en) 1981-08-05 1983-02-14 Toho Rayon Co Ltd Filter
US4530765A (en) 1982-05-14 1985-07-23 Ensotech, Inc. Processes using calcined, high surface area, particulate matter, and admixture with other agents
FR2529802A1 (en) 1982-07-06 1984-01-13 Pro Catalyse Absorption compsn. for removing mercury from gas or liq.
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
SU1163982A1 (en) 1984-01-18 1985-06-30 Днепропетровский Ордена Трудового Красного Знамени Металлургический Институт Им.Л.И.Брежнева Flux for cleaning the surface of metal articles from scale
DE3426059A1 (en) 1984-07-14 1986-01-16 Hugo Petersen Gesellschaft für verfahrenstechnischen Anlagenbau mbH & Co KG, 6200 Wiesbaden Process for separating out and disposing organic pollutants, in particular polychlorinated dibenzodioxines (PCDD) from flue gases
DK298485A (en) * 1985-07-01 1987-01-02 Niro Atomizer As PROCEDURE FOR THE REMOVAL OF MERCURY VAPOR AND Vapor-shaped CHLORDIBENZODIOXINES AND FURANES FROM A STREAM OF HOT RAGGAS
US4956162A (en) * 1986-06-16 1990-09-11 Electric Power Research Institute, Inc. Process for removal of particulates and SO2 from combustion gases
DK158376C (en) * 1986-07-16 1990-10-08 Niro Atomizer As METHOD OF REDUCING THE CONTENT OF MERCURY Vapor AND / OR VAPORS OF Harmful Organic Compounds And / Or Nitrogen Oxides In Combustion Plant
US4786483A (en) * 1987-09-25 1988-11-22 Mobil Oil Corporation Process for removing hydrogen sulfide and mercury from gases
US4814152A (en) * 1987-10-13 1989-03-21 Mobil Oil Corporation Process for removing mercury vapor and chemisorbent composition therefor
US4820318A (en) * 1987-12-24 1989-04-11 Allied-Signal Inc. Removal of organic compounds from gas streams using carbon molecular sieves
DE3816600A1 (en) 1988-05-14 1989-11-23 Huels Chemische Werke Ag Process for the regeneration of arsenic-contaminated catalysts and sorbents
CN1048173A (en) 1989-06-23 1991-01-02 中国科学院大连化学物理研究所 Contain the iodine activated-carbon catalyst and be used for elimination and recovery industrial exhaust gas sulfur dioxide technology
US5202301A (en) 1989-11-22 1993-04-13 Calgon Carbon Corporation Product/process/application for removal of mercury from liquid hydrocarbon
GB8929044D0 (en) 1989-12-22 1990-02-28 Agglo Recovery A process for the purification of flue gases
CN1084058C (en) 1991-04-17 2002-05-01 兹特克公司 High efficiency energy conversion and treatment of organic waste
EP0526077A1 (en) 1991-07-22 1993-02-03 Takeda Chemical Industries, Ltd. Activated carbon honeycombs and applications thereof
US5494649A (en) 1991-10-03 1996-02-27 Cognis, Inc. Process for removing heavy metals from paint chips
US5245120A (en) 1991-12-27 1993-09-14 Physical Sciences, Inc. Process for treating metal-contaminated materials
US5300137A (en) * 1992-09-18 1994-04-05 Pittsburgh Mineral And Environmental Technology, Inc. Method for removing mercury from contaminated soils and industrial wastes and related apparatus
DE4302910C1 (en) 1993-02-02 1994-09-15 Straten Guenter Precipitant for the precipitation of heavy metals, a process for its preparation and its use
CA2098513C (en) * 1993-06-16 2000-10-24 Septimus Hsien-Chai Liang Organic amine impregnated activated carbon
DE4344113A1 (en) * 1993-12-23 1995-06-29 Metallgesellschaft Ag Process for cleaning waste gas from incineration
WO1995028220A1 (en) * 1994-04-18 1995-10-26 Attia Yosry A Aerogel materials and system for the capture and separation of gases and vapors with aerogel materials
US5409522A (en) * 1994-04-20 1995-04-25 Ada Technologies, Inc. Mercury removal apparatus and method
US5607496A (en) * 1994-06-01 1997-03-04 Brooks Rand, Ltd. Removal of mercury from a combustion gas stream and apparatus
US5480619A (en) 1994-06-28 1996-01-02 The Babcock & Wilcox Company Regenerative scrubber application with condensing heat exchanger
DE4422661A1 (en) 1994-06-28 1996-01-04 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Continuous removal of mercury from flue gases to a prescribed level
US5505766A (en) * 1994-07-12 1996-04-09 Electric Power Research, Inc. Method for removing pollutants from a combustor flue gas and system for same
US5672323A (en) * 1995-01-26 1997-09-30 The Babcock & Wilcox Company Activated carbon flue gas desulfurization systems for mercury removal
KR0146503B1 (en) 1995-07-31 1998-08-17 강박광 Polyfunctional granular molecular sieve composition
JP3537581B2 (en) * 1996-03-04 2004-06-14 クラレケミカル株式会社 Mercury adsorbent
JPH09256812A (en) 1996-03-21 1997-09-30 Toshiba Corp Combined cycle generating plant
US6214304B1 (en) * 1996-12-02 2001-04-10 L & C STEINMüLLER GMBH Method of removing mercury from a mercury-containing flue gas
US6001762A (en) 1997-02-17 1999-12-14 E. I. Du Pont De Nemours And Company Reactivation of perfluorinated ion-exchange microcomposite catalysts
JP3935547B2 (en) 1997-02-19 2007-06-27 三菱重工業株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus
US5827352A (en) * 1997-04-16 1998-10-27 Electric Power Research Institute, Inc. Method for removing mercury from a gas stream and apparatus for same
SG65087A1 (en) * 1997-07-25 1999-05-25 Takeda Chemical Industries Ltd Bromine-impregnated activated carbon and process for preparing the same
KR19990038272A (en) 1997-11-04 1999-06-05 김성년 Wet recycling process of impregnated activated carbon by organic solvent extraction method
US6136072A (en) * 1998-01-20 2000-10-24 Electric Power Research Institute, Inc. Apparatus and method for the removal of contaminants in gases
DE19832057C1 (en) * 1998-07-16 2000-03-16 Siemens Ag Process for the regeneration of a deactivated catalyst
DE19844758C1 (en) 1998-09-29 2000-07-06 Siemens Ag Process for the production of a catalyst body
US6027551A (en) * 1998-10-07 2000-02-22 Board Of Control For Michigan Technological University Control of mercury emissions using unburned carbon from combustion by-products
US6503359B2 (en) * 1999-03-05 2003-01-07 Burstein Technologies, Inc. Monomolecular adhesion methods for manufacturing microfabricated multilaminate devices
US6342462B1 (en) 1999-03-22 2002-01-29 Uop Llc Process for regenerating an adsorbent
US6284199B1 (en) * 1999-03-31 2001-09-04 Mcdermott Technology, Inc. Apparatus for control of mercury
SG109408A1 (en) * 1999-06-04 2005-03-30 Univ Singapore Method of reversibly storing h2, and h2-storage system based on metal-doped carbon-based materials
US6383981B1 (en) * 1999-07-20 2002-05-07 Süd-Chemie Inc. Adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use
US6475471B1 (en) 1999-07-22 2002-11-05 Janet M. Wehrli System and method for applying oral fluid absorbing material to dental arches, with application in treatment of periodontal gum disease
US6524371B2 (en) 1999-09-29 2003-02-25 Merck & Co., Inc. Process for adsorption of mercury from gaseous streams
US7625540B2 (en) 1999-12-03 2009-12-01 Edwards Vacuum, Inc. Fluorine removal by ion exchange
ZA200006996B (en) 1999-12-06 2001-05-29 Antonio T Robles Method for the regenaration of sorbent materials.
DE10001099A1 (en) 2000-01-13 2001-08-02 Bosch Gmbh Robert Control valve for injector of fuel injection system for internal combustion engine; has regulator connected to pressure piston to separate control chamber from control valve and increase pressure
US6533842B1 (en) * 2000-02-24 2003-03-18 Merck & Co., Inc. Adsorption powder for removing mercury from high temperature, high moisture gas streams
US20020010516A1 (en) 2000-07-07 2002-01-24 John Addink Irrigation controller using regression model
US20020043496A1 (en) 2000-08-01 2002-04-18 Boddu Veera M. Composite biosorbent for treatment of waste aqueous system(s) containing heavy metals
US6610263B2 (en) 2000-08-01 2003-08-26 Enviroscrub Technologies Corporation System and process for removal of pollutants from a gas stream
US7247279B2 (en) 2000-08-01 2007-07-24 Enviroscrub Technologies Corporation System for removal of pollutants from a gas stream
US6475451B1 (en) 2000-08-23 2002-11-05 Gas Technology Institute Mercury removal from gaseous process streams
US6375909B1 (en) * 2000-09-14 2002-04-23 Infilco Degremont Inc. Method for the removal of mercury and nitrogen oxides from combustion flue gas
WO2002028513A2 (en) 2000-10-04 2002-04-11 Enviroscrub Technologies Corporation Systems and processes for removal of pollutants from a gas stream
WO2002048032A2 (en) * 2000-12-11 2002-06-20 United States Filter Corporation Activated carbon for odor control and method for making same
US6511527B2 (en) * 2001-02-06 2003-01-28 Ngk Insulators, Ltd. Method of treating exhaust gas
US6942840B1 (en) * 2001-09-24 2005-09-13 Ada Technologies, Inc. Method for removal and stabilization of mercury in mercury-containing gas streams
KR20040090962A (en) 2001-12-21 2004-10-27 엔바이로스크럽 테크놀러지스 코퍼레이션 Pretreatment and regeneration of oxides of manganese
AU2003267942A1 (en) 2002-02-25 2003-12-22 Gentex Corporation Cross-reference to related applications
US6960329B2 (en) 2002-03-12 2005-11-01 Foster Wheeler Energy Corporation Method and apparatus for removing mercury species from hot flue gas
DE10233173B4 (en) * 2002-07-22 2006-03-23 Bayer Industry Services Gmbh & Co. Ohg Method for separating mercury from flue gases
US6804964B2 (en) 2002-09-19 2004-10-19 Siemens Westinghouse Power Corporation Water recovery from combustion turbine exhaust
CA2408858C (en) 2002-10-18 2011-04-19 Charles Qiang Jia Production of sulphur and activated carbon
JP4175465B2 (en) 2003-02-07 2008-11-05 三菱重工業株式会社 Method and system for removing mercury from exhaust gas
MXPA05009490A (en) 2003-03-06 2006-02-22 Univ Florida Method and a composite for mercury capture from fluid streams.
EP1606128A1 (en) 2003-03-12 2005-12-21 3K Technologies, Inc. System and method for removing pollutants from a roadway
US7442239B2 (en) 2003-03-24 2008-10-28 Ingersoll-Rand Energy Systems Corporation Fuel-conditioning skid
CN1826175B (en) 2003-04-23 2015-07-01 能源及环境研究中心基金会 Process for regenerating a spent sorbent
US20080292512A1 (en) 2003-06-03 2008-11-27 Kang Shin G Method for producing and using a carbonaceous sorbent for mercury removal
US7442352B2 (en) * 2003-06-20 2008-10-28 Gore Enterprise Holdings, Inc. Flue gas purification process using a sorbent polymer composite material
US7488464B2 (en) 2003-07-31 2009-02-10 Enviroscrub Technologies Corporation Metal oxide processing methods and systems
US20050227146A1 (en) 2003-12-12 2005-10-13 Dania Ghantous Medium rate and high rate batteries
US7124591B2 (en) 2004-01-09 2006-10-24 Siemens Power Generation, Inc. Method for operating a gas turbine
US20080107579A1 (en) 2004-03-22 2008-05-08 William Downs Bromine Addition for the Improved Removal of Mercury from Flue Gas
US7479263B2 (en) * 2004-04-09 2009-01-20 The Regents Of The University Of California Method for scavenging mercury
US7569089B2 (en) 2004-06-14 2009-08-04 David Christopher Avina Boundary layer propulsion and turbine apparatus
US7249564B2 (en) 2004-06-14 2007-07-31 General Electric Company Method and apparatus for utilization of partially gasified coal for mercury removal
US7293414B1 (en) 2005-02-10 2007-11-13 Florida Turbine Technologies, Inc. High performance method for throttling of closed gas turbine cycles
US20060191835A1 (en) * 2005-02-28 2006-08-31 Petrik Viktor I Compositions and methods of remediation devices with nanostructured sorbent
US20060205592A1 (en) 2005-03-14 2006-09-14 Chien-Chung Chao Catalytic adsorbents for mercury removal from flue gas and methods of manufacture therefor
RU2494793C2 (en) 2005-03-17 2013-10-10 НОКС II ИНТЕНЭШНЛ, эЛТиДи. Method of combusting mercury-bearing fuel (versions), method of reducing mercury emission, method of combusting coal with reduced emission of harmful elements and method of decreasing mercury content in flue gas
CA2601325C (en) 2005-03-17 2014-06-17 Douglas C. Comrie Reducing mercury emissions from the burning of coal
JP4953593B2 (en) 2005-06-24 2012-06-13 キヤノン株式会社 Ink tank
US7942566B1 (en) 2005-10-11 2011-05-17 Flyashdirect, Ltd. Fly ash treatment system and method of use thereof
US7938571B1 (en) 2005-10-11 2011-05-10 Flyashdirect, Ltd. Fly ash treatment system and method of use thereof
JP4838579B2 (en) 2005-12-21 2011-12-14 三菱重工業株式会社 Mercury removal system and mercury removal method
US8150776B2 (en) 2006-01-18 2012-04-03 Nox Ii, Ltd. Methods of operating a coal burning facility
US20070179056A1 (en) 2006-01-27 2007-08-02 Baek Jeom I Sorbent for removal of trace hazardous air pollutants from combustion flue gas and preparation method thereof
US20070295347A1 (en) 2006-02-22 2007-12-27 Philip Morris Usa Inc. Surface-modified porous substrates
US20070234902A1 (en) 2006-03-29 2007-10-11 Fair David L Method for mercury removal from flue gas streams
US20080090951A1 (en) 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
US7767174B2 (en) 2006-09-18 2010-08-03 General Electric Company Method and systems for removing mercury from combustion exhaust gas
US7722843B1 (en) 2006-11-24 2010-05-25 Srivats Srinivasachar System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems
JP4388542B2 (en) 2006-12-07 2009-12-24 三菱重工業株式会社 Mercury removal method and mercury removal system
US7767007B2 (en) 2006-12-08 2010-08-03 Praxair Technology, Inc. Mercury adsorbents compatible as cement additives
US7611564B2 (en) * 2006-12-22 2009-11-03 Parts Cleaning Technologies Llc Recovery of n-propyl bromide emissions
US20080182747A1 (en) 2007-01-25 2008-07-31 Sinha Rabindra K Special formulations for the removal of mercury and other pollutants present in combustion gases
CN100435934C (en) 2007-02-02 2008-11-26 华南理工大学 Organic complex supported activated carbon adsorbent and its preparation method and application
US20080207443A1 (en) 2007-02-28 2008-08-28 Kishor Purushottam Gadkaree Sorbent comprising activated carbon, process for making same and use thereof
JP4943197B2 (en) 2007-03-19 2012-05-30 エヌ・ティ・ティ・コムウェア株式会社 Content distribution system, web application server, content distribution method, and program
JP5126946B2 (en) 2007-03-28 2013-01-23 株式会社豊田中央研究所 Sulfur gas removal filter and sulfur gas removal method using the same
WO2009018539A2 (en) 2007-08-01 2009-02-05 Energy & Environmental Research Center Application of microturbines to control emissions from associated gas
US8906823B2 (en) 2007-09-24 2014-12-09 Basf Corporation Pollutant emission control sorbents and methods of manufacture and use
US20090081092A1 (en) 2007-09-24 2009-03-26 Xiaolin David Yang Pollutant Emission Control Sorbents and Methods of Manufacture and Use
US7862788B2 (en) * 2007-12-05 2011-01-04 Alstom Technology Ltd Promoter enhanced chilled ammonia based system and method for removal of CO2 from flue gas stream
US7837962B2 (en) 2008-03-24 2010-11-23 General Electric Company Method and apparatus for removing mercury and particulates from combustion exhaust gas
CN101293196B (en) 2008-06-19 2011-04-27 同济大学 Watersoluble polyurethane adsorption agent containing sulfhydryl group for removing hydrargyrum and preparation method thereof
EP2482970B1 (en) 2009-09-28 2018-08-08 Calgon Carbon Corporation Sorbent formulation for removal of mercury from flue gas
US20110168018A1 (en) 2010-01-14 2011-07-14 Research Institute Of Petroleum Industry (Ripi) Hybrid nano sorbent
US8496894B2 (en) 2010-02-04 2013-07-30 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
CN101816922A (en) 2010-04-20 2010-09-01 华中科技大学 Chemically modified chitosan mercury-removing adsorbent and preparation process thereof
WO2012030560A1 (en) 2010-08-30 2012-03-08 Albemarle Corporation Improved sorbents for removing mercury from emissions produced during fuel combustion
DE102012007392A1 (en) 2011-11-07 2013-05-08 BLüCHER GMBH Nitrogen-modified or -functionalized activated carbon, preferably activated coal with nitrogen as catalytically active heteroatom obtained by surface oxidation of activated carbon using oxidizing reagent, useful to produce e.g. filter
US9308518B2 (en) 2013-02-14 2016-04-12 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
US10130930B2 (en) 2013-03-06 2018-11-20 Midwest Energy Emissions Corp Sorbent comprising carbon and nitrogen and methods of using the same
CN104519410A (en) 2014-11-25 2015-04-15 四川长虹电器股份有限公司 Method and system for dynamically displaying intelligent terminal user interface
CA2995357C (en) 2015-08-11 2023-12-19 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
JP7131923B2 (en) 2018-02-20 2022-09-06 三星エスディアイ株式会社 Electrolyte for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013516A (en) * 1975-03-13 1977-03-22 Hanover Research Corporation Apparatus and process for the pyrolysis of waste solids concentrates
US4500327A (en) * 1982-07-08 1985-02-19 Takeda Chemical Industries, Ltd. Process for removal of mercury vapor and adsorbent therefor
US4699896A (en) * 1984-09-11 1987-10-13 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Manufacture of fibrous activated carbons
US5435980A (en) * 1991-11-04 1995-07-25 Niro A/S Method of improving the Hg-removing capability of a flue gas cleaning process
US5569436A (en) * 1993-06-10 1996-10-29 Beco Engineering Company Removal of mercury and cadmium and their compounds from incinerator flue gases
US5556447A (en) * 1995-01-23 1996-09-17 Physical Sciences, Inc. Process for treating metal-contaminated materials
US6103205A (en) * 1997-07-11 2000-08-15 Advanced Fuel Research, Inc. Simultaneous mercury, SO2, and NOx control by adsorption on activated carbon
US6136749A (en) * 1997-07-28 2000-10-24 Corning Incorporated Mercury removal catalyst and method of making and using same
US6558454B1 (en) * 1997-08-19 2003-05-06 Electric Power Research Institute, Inc. Method for removal of vapor phase contaminants from a gas stream by in-situ activation of carbon-based sorbents
US6372187B1 (en) * 1998-12-07 2002-04-16 Mcdermott Technology, Inc. Alkaline sorbent injection for mercury control
US20020114749A1 (en) * 2000-12-22 2002-08-22 Cole Jerald Alan Process for removing mercury vapor from flue gas
US6719828B1 (en) * 2001-04-30 2004-04-13 John S. Lovell High capacity regenerable sorbent for removal of mercury from flue gas
US20030113239A1 (en) * 2001-08-01 2003-06-19 Pahlman John E. Systems and processes for removal of pollutants from a gas stream
US20030104937A1 (en) * 2001-11-27 2003-06-05 Sinha Rabindra K. In-situ generation of special sorbents in combustion gases for the removal of mercury and other pollutants present in them
US20030161771A1 (en) * 2002-02-14 2003-08-28 Oehr Klaus H. Enhanced mercury control in coal-fired power plants
US20040003716A1 (en) * 2002-05-06 2004-01-08 Nelson Sidney G. Sorbents and methods for the removal of mercury from combustion gases
US20040086439A1 (en) * 2002-07-22 2004-05-06 Bayer Aktiengesellschaft Process for removing mercury from flue gases
US6818043B1 (en) * 2003-01-23 2004-11-16 Electric Power Research Institute, Inc. Vapor-phase contaminant removal by injection of fine sorbent slurries
US7361209B1 (en) * 2003-04-03 2008-04-22 Ada Environmental Solutions, Llc Apparatus and process for preparing sorbents for mercury control at the point of use
US20180133646A1 (en) * 2003-04-23 2018-05-17 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US20170100692A1 (en) * 2003-04-23 2017-04-13 Edwin S. Olson Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US20040244657A1 (en) * 2003-06-03 2004-12-09 Alstom (Switzerland) Ltd Control of mercury emissions from solid fuel combustion
US7780765B2 (en) * 2003-06-03 2010-08-24 Alstom Technologies Ltd Control of mercury emissions from solid fuel combustion
US6848374B2 (en) * 2003-06-03 2005-02-01 Alstom Technology Ltd Control of mercury emissions from solid fuel combustion
US7514052B2 (en) * 2004-01-06 2009-04-07 General Electric Company Method for removal of mercury emissions from coal combustion
US20070180990A1 (en) * 2004-03-22 2007-08-09 William Downs Dynamic halogenation of sorbents for the removal of mercury from flue gases
US20090297413A1 (en) * 2004-08-30 2009-12-03 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US7435286B2 (en) * 2004-08-30 2008-10-14 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US8168147B2 (en) * 2004-08-30 2012-05-01 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20060048646A1 (en) * 2004-08-30 2006-03-09 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20180257031A1 (en) * 2004-08-30 2018-09-13 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US20070259781A1 (en) * 2006-05-08 2007-11-08 Sinha Rabindra K Chemical formulations for removal of hazardous pollutants from combustion gases
US20090320678A1 (en) * 2006-11-03 2009-12-31 Electric Power Research Institute, Inc. Sorbent Filter for the Removal of Vapor Phase Contaminants
US8080088B1 (en) * 2007-03-05 2011-12-20 Srivats Srinivasachar Flue gas mercury control
US20150098878A1 (en) * 2012-04-23 2015-04-09 Energy & Environmental Research Center Foundation Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream
US20170239644A1 (en) * 2013-03-06 2017-08-24 Edwin S. Olson Activated carbon sorbent including nitrogen and methods of using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US11806665B2 (en) 2003-04-23 2023-11-07 Midwwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10589225B2 (en) 2004-08-30 2020-03-17 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10596517B2 (en) 2004-08-30 2020-03-24 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10668430B2 (en) 2004-08-30 2020-06-02 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10926218B2 (en) 2004-08-30 2021-02-23 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US10933370B2 (en) 2004-08-30 2021-03-02 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US20220331738A1 (en) * 2010-02-04 2022-10-20 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US11059028B2 (en) 2013-03-06 2021-07-13 Midwwest Energy Emissions Corp. Activated carbon sorbent including nitrogen and methods of using the same

Also Published As

Publication number Publication date
CA2584327A1 (en) 2006-04-13
CN101048218A (en) 2007-10-03
US20180280870A1 (en) 2018-10-04
EP1796816A4 (en) 2009-05-13
CN101048218B (en) 2010-06-09
WO2006039007A2 (en) 2006-04-13
EP2431087A2 (en) 2012-03-21
US10589225B2 (en) 2020-03-17
EP2422869A8 (en) 2012-05-16
EP1796816B1 (en) 2012-07-04
US9757689B2 (en) 2017-09-12
WO2006039007A9 (en) 2006-07-27
US20150246315A1 (en) 2015-09-03
US10596517B2 (en) 2020-03-24
US20180229182A1 (en) 2018-08-16
US8512655B2 (en) 2013-08-20
US20060048646A1 (en) 2006-03-09
EP1796816A2 (en) 2007-06-20
EP2431087B1 (en) 2014-05-28
US20180257030A1 (en) 2018-09-13
US20100047146A1 (en) 2010-02-25
US20190329179A1 (en) 2019-10-31
US8168147B2 (en) 2012-05-01
WO2006039007A3 (en) 2006-09-14
US20210170332A1 (en) 2021-06-10
US20140056787A1 (en) 2014-02-27
US8821819B2 (en) 2014-09-02
US20190336913A1 (en) 2019-11-07
US7435286B2 (en) 2008-10-14
EP2422869A1 (en) 2012-02-29
US10933370B2 (en) 2021-03-02
US20090062119A1 (en) 2009-03-05
US20140308188A1 (en) 2014-10-16
US20120183458A1 (en) 2012-07-19
CA2584327C (en) 2010-08-17
US10926218B2 (en) 2021-02-23
EP2431087A3 (en) 2012-06-06
US20210129079A1 (en) 2021-05-06
US10668430B2 (en) 2020-06-02

Similar Documents

Publication Publication Date Title
US20210170332A1 (en) Sorbents for the oxidation and removal of mercury
US10343114B2 (en) Sorbents for the oxidation and removal of mercury
US9468886B2 (en) Sorbents for the oxidation and removal of mercury
AU2003232091B2 (en) Sorbents and methods for the removal of mercury from combustion gases

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENERGY AND ENVIRONMENTAL RESEARCH CENTER FOUNDATIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OLSON, EDWIN S.;HOLMES, MICHAEL J.;PAVLISH, JOHN H.;SIGNING DATES FROM 20140822 TO 20140825;REEL/FRAME:050690/0699

Owner name: MIDWEST ENERGY EMISSIONS CORP., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENERGY AND ENVIRONMENTAL RESEARCH CENTER FOUNDATION;REEL/FRAME:050690/0873

Effective date: 20170424

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: MIDWEST ENERGY EMISSIONS CORP., TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRECT THE ASSIGNEE ADDRESS PREVIOUSLY RECORDED AT REEL: 050690 FRAME: 0873. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ENERGY AND ENVIRONMENTAL RESEARCH CENTER FOUNDATION;REEL/FRAME:052144/0800

Effective date: 20170424

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION