US20190327531A1 - Video Production System with Content Extraction Feature - Google Patents

Video Production System with Content Extraction Feature Download PDF

Info

Publication number
US20190327531A1
US20190327531A1 US16/502,403 US201916502403A US2019327531A1 US 20190327531 A1 US20190327531 A1 US 20190327531A1 US 201916502403 A US201916502403 A US 201916502403A US 2019327531 A1 US2019327531 A1 US 2019327531A1
Authority
US
United States
Prior art keywords
sub
content
video
video content
data stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/502,403
Inventor
Hank J. Hundemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tribune Broadcasting Co LLC
Original Assignee
Tribune Broadcasting Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tribune Broadcasting Co LLC filed Critical Tribune Broadcasting Co LLC
Priority to US16/502,403 priority Critical patent/US20190327531A1/en
Assigned to TRIBUNE BROADCASTING COMPANY, LLC reassignment TRIBUNE BROADCASTING COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNDEMER, HANK J.
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY AGREEMENT Assignors: CHICAGOLAND TELEVISION NEWS, INC., KPLR, INC., KSTU, LLC, KSWB, LLC, KTLA, LLC, KTVI, LLC, KWGN, LLC, TRIBUNE BROADCASTING COMPANY, LLC, TRIBUNE BROADCASTING DENVER, LLC, TRIBUNE BROADCASTING FORT SMITH, LLC, TRIBUNE ENTERTAINMENT COMPANY, LLC, TRIBUNE MEDIA COMPANY, TRIBUNE TELEVISION NEW ORLEANS, INC., WDAF LICENSE, INC., WDCW, LLC, WGHP, LLC, WGN CONTINENTAL BROADCASTING COMPANY, LLC, WHNT, LLC, WJW TELEVISION, LLC, WNEP, LLC, WPIX, LLC, WQAD, LLC, WREG, LLC
Publication of US20190327531A1 publication Critical patent/US20190327531A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • H04N21/4788Supplemental services, e.g. displaying phone caller identification, shopping application communicating with other users, e.g. chatting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/02Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
    • G11B27/031Electronic editing of digitised analogue information signals, e.g. audio or video signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/23424Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving splicing one content stream with another content stream, e.g. for inserting or substituting an advertisement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/44008Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving operations for analysing video streams, e.g. detecting features or characteristics in the video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6125Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving transmission via Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/845Structuring of content, e.g. decomposing content into time segments
    • H04N21/8456Structuring of content, e.g. decomposing content into time segments by decomposing the content in the time domain, e.g. in time segments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/85Assembly of content; Generation of multimedia applications
    • H04N21/854Content authoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment

Definitions

  • an example method includes (i) receiving, by a first computing system, video content, wherein the received video content comprises at least a first element and a second element, wherein the first element is social media (SM) video content published by a SM user, and wherein the second element is content other than SM content published by the SM user; (ii) extracting, by the first computing system, the first element from the received video content; (iii) generating, by the first computing system, video content that includes the extracted first element; and (iv) transmitting, by the first computing system, to a second computing system, the generated video content for presentation of the generated video content on the second computing system.
  • SM social media
  • an example non-transitory computer-readable medium has stored thereon program instructions that upon execution by a processor, cause performance of a first set of acts including (i) receiving, by a first computing system, video content, wherein the received video content comprises at least a first element and a second element, wherein the first element is social media (SM) video content published by a SM user, and wherein the second element is content other than SM content published by the SM user; (ii) extracting, by the first computing system, the first element from the received video content; (iii) generating, by the first computing system, video content that includes the extracted first element; and (iv) transmitting, by the first computing system, to a second computing system, the generated video content for presentation of the generated video content on the second computing system.
  • SM social media
  • an example first computing system is disclosed.
  • the first computing system is configured for performing a set of acts including (i) receiving, by the first computing system, video content, wherein the received video content comprises at least a first element and a second element, wherein the first element is social media (SM) video content published by a SM user, and wherein the second element is content other than SM content published by the SM user; (ii) extracting, by the first computing system, the first element from the received video content; (iii) generating, by the first computing system, video content that includes the extracted first element; and (iv) transmitting, by the first computing system, to a second computing system, the generated video content for presentation of the generated video content on the second computing system.
  • SM social media
  • FIG. 1 is a simplified block diagram of an example computing device.
  • FIG. 2 is a simplified block diagram of an example video system.
  • FIG. 3 is a simplified block diagram of an example video production system.
  • FIG. 4A is a simplified diagram of an example frame of video content, without content overlaid thereon.
  • FIG. 4B is a simplified diagram of an example frame of video content, with content overlaid thereon.
  • FIG. 5 is a simplified block diagram of an example program schedule.
  • FIG. 6 is a simplified diagram of an example data stream.
  • FIG. 7 is a flow chart of an example method.
  • a video-production system can generate video content that can serve as or be part of a video program (e.g., a news program).
  • the VPS can then transmit the video content to a video-broadcast system (VBS), which in turn can transmit the video content to an end-user device for presentation of the video content to an end-user.
  • VBS video-broadcast system
  • the VPS can include various components to facilitate generating video content.
  • the VPS can include a video source, a digital video-effect (DVE) system, a scheduling system, and a sequencing system.
  • the video source can generate video content, and can transmit the video content to the DVE system.
  • the DVE system can use the video content and a DVE template to execute a DVE, which can cause the DVE system to generate new video content that is a modified version of the received video content.
  • the generated video content can include the received video content with local weather content overlaid thereon.
  • the scheduling system can create a program schedule, perhaps based on input received from a user (e.g., a producer or technical director) via a user interface.
  • the sequencing system can process records in the program schedule, and based on the processed records, can control one or more components of the VPS, such as the video source and the DVE system, to facilitate generating video content.
  • the VPS can also include a SM system and a character generator.
  • the SM system can obtain SM video content, and the character generator can then use the SM video content to generate video content that includes the SM video content. Further, the character generator can transmit the video content to the DVE system.
  • the DVE system can receive the video content and can execute a DVE, which causes the DVE system to generate video content that includes the received video content and thus, that also includes the SM video content.
  • the generated video content can serve as or be part of a video program.
  • the VPS can integrate SM video content into a video program.
  • the VPS can receive SM video content and can integrate it to a video program.
  • a SM server can transmit the SM video content to the VPS by transmitting a data stream representing the SM video content to the VPS.
  • the VPS can receive the SM video content by receiving the data stream representing the SM video content.
  • the data stream can represent more than just the SM video content.
  • the data stream can also include an instruction configured to cause a computing system that receives the data stream to perform a particular operation, such as a content overlay operation.
  • the VPS can receive the entire data stream, in some instances, it can be desirable to integrate the represented SM video content, but not the overlay content, into a video program. This can help avoid certain undesirable situations. For example, if the overlay content is integrated in into the video program, it can potentially interfere with text or other content that may be overlaid on the video program by way of the DVE system executing a DVE. As such, to avoid this from happening, it can be desirable to integrate the SM video content, but not the overlay content, into the video program.
  • the VPS 202 , the VBS 204 , and/or components thereof can provide various acts and/or functions to allow the video content, but not the other content, to be integrated into the video program.
  • the SM system can receive from a computing system associated with a SM platform, a data stream that includes a first portion and a second portion.
  • the first portion can represent SM video content published by a SM user on the SM platform.
  • the second portion can represent data other than SM content published by the SM user on the SM platform.
  • the SM system can then extract the first portion from the received data stream.
  • the VPS can then integrate the SM video content represented by the extracted first portion into a video program as discussed above. As such, the VPS can use the extracted first portion of the received data stream to generate video content that includes the represented SM video content. Further, the VBS can transmit the generated video content to the end-user device for presentation of the generated video content to an end-user of the end-user device as described above.
  • FIG. 1 is a simplified block diagram of an example computing device 100 .
  • the computing device can be configured to perform and/or can perform one or more acts and/or functions, such as those described in this disclosure.
  • the computing device 100 can include various components, such as a processor 102 , a data storage unit 104 , a communication interface 106 , and/or a user interface 108 . Each of these components can be connected to each other via a connection mechanism 110 .
  • connection mechanism means a mechanism that facilitates communication between two or more components, devices, systems, or other entities.
  • a connection mechanism can be a relatively simple mechanism, such as a cable or system bus, or a relatively complex mechanism, such as a packet-based communication network (e.g., the Internet).
  • a connection mechanism can include a non-tangible medium (e.g., in the case where the connection is wireless).
  • the processor 102 can include a general-purpose processor (e.g., a microprocessor) and/or a special-purpose processor (e.g., a digital signal processor (DSP)).
  • the processor 102 can execute program instructions contained in the data storage unit 104 as discussed below.
  • the data storage unit 104 can include one or more volatile, non-volatile, removable, and/or non-removable storage components, such as magnetic, optical, and/or flash storage, and/or can be integrated in whole or in part with the processor 102 . Further, the data storage unit 104 can take the form of a non-transitory computer-readable storage medium, having stored thereon program instructions (e.g., compiled or non-compiled program logic and/or machine code) that, upon execution by the processor 102 , cause the computing device 100 to perform one or more acts and/or functions, such as those described in this disclosure. These program instructions can define and/or be part of a discrete software application. In some instances, the computing device 100 can execute program instructions in response to receiving an input, such as from the communication interface 106 and/or the user interface 108 . The data storage unit 104 can also store other types of data, such as those types described in this disclosure.
  • the communication interface 106 can allow the computing device 100 to connect with and/or communicate with another other entity according to one or more protocols.
  • the communication interface 106 can be a wired interface, such as an Ethernet interface or a high-definition serial-digital-interface (HD-SDI).
  • the communication interface 106 can be a wireless interface, such as a cellular or WI-FI interface.
  • a connection can be a direct connection or an indirect connection, the latter being a connection that passes through and/or traverses one or more entities, such as a router, switcher, or other network device.
  • a transmission can be a direct transmission or an indirect transmission.
  • the user interface 108 can include hardware and/or software components that facilitate interaction between the computing device 100 and a user of the computing device 100 , if applicable.
  • the user interface 108 can include input components such as a keyboard, a keypad, a mouse, a touch-sensitive panel, a microphone, and/or a camera, and/or output components such as a display device (which, for example, can be combined with a touch-sensitive panel), a sound speaker, and/or a haptic feedback system.
  • the computing device 100 can take various forms, such as a workstation terminal, a desktop computer, a laptop, a tablet, a mobile phone, a set-top box, and/or a television.
  • FIG. 2 is a simplified block diagram of an example video system 200 .
  • the video system 200 can perform various acts and/or functions related to video content, and can be implemented as a computing system.
  • the term “computing system” means a system that includes at least one computing device. In some instances, a computing system can include one or more other computing systems.
  • the video system 200 can include various components, such as a VPS 202 , a VBS 204 , and an end-user device 206 , each of which can be implemented as a computing system.
  • the video system 200 can also include a connection mechanism 208 , which connects the VPS 202 with the VBS 204 ; and a connection mechanism 210 , which connects the VBS 204 with the end-user device 206 .
  • FIG. 3 is a simplified block diagram of an example VPS 202 .
  • the VPS 202 can include various components, such as a video source 302 , a SM system 306 , a character generator 308 , a DVE system 310 , a scheduling system 312 , and a sequencing system 314 , each of which can be implemented as a computing system.
  • the VPS 202 can also include a connection mechanism 316 , which connects the video source 302 with the sequencing system 314 ; a connection mechanism 318 , which connects the video source 302 with the DVE system 310 ; a connection mechanism 322 , which connects the SM system 306 with the sequencing system 314 ; a connection mechanism 324 , which connects the SM system 306 with the character generator 308 ; a connection mechanism 326 , which connects the character generator 308 with the sequencing system 314 ; a connection mechanism 328 , which connects the character generator 308 with the DVE system 310 ; a connection mechanism 330 , which connects the DVE system 310 with the sequencing system 314 ; and a connection mechanism 332 , which connects the scheduling system 312 with the sequencing system 314 .
  • a connection mechanism 316 which connects the video source 302 with the sequencing system 314
  • a connection mechanism 318 which connects the video source 302 with the DVE system 310
  • the video source 302 can take various forms, such as a video server, a video camera, a satellite receiver, a character generator, or a DVE system.
  • a video server is the K2 server provided by Grass Valley of San Francisco, Calif.
  • the character generator 308 can take various forms.
  • An example character generator is the VIZ TRIO provided by Viz Rt of Bergen, Norway.
  • Another example character generator is CASPAR CG developed and distributed by the Swedish Broadcasting Corporation (SVT).
  • the DVE system 310 can take various forms, such as a production switcher.
  • An example production switcher is the VISION OCTANE production switcher provided by Ross Video Ltd. of Iroquois, Ontario in Canada.
  • the scheduling system 312 can take various forms.
  • An example scheduling system is WO TRAFFIC provided by WideOrbit, Inc. of San Francisco, Calif.
  • Another example scheduling system is OSI-TRAFFIC provided by Harris Corporation of Melbourne, Fla.
  • the sequencing system 314 can take various forms.
  • a sequencing system is sometimes referred to in the industry as a “production automation system.”
  • the VBS 204 can include various components, such as a terrestrial antenna or a satellite transmitter, each of which can be implemented as a computing system.
  • Each of the video-based entities described in this disclosure can include or be integrated with a corresponding audio-based entity.
  • the video content described in this disclosure can include or be integrated with corresponding audio content.
  • the video system 200 and/or components thereof can perform various acts and/or functions. These features and related features will now be described.
  • the video system 200 can perform various acts and/or functions related to video content.
  • the video system 200 can receive, generate, output, and/or transmit video content that can serve as or be part of a video program (e.g., a news program).
  • the act of receiving, generating, outputting, and/or transmitting video content can occur in various ways and/or according to various standards.
  • the act of receiving, outputting, and/or transmitting video content can include receiving, outputting, and/or transmitting a video stream representing the video content, such as over Internet Protocol (IP) or in accordance with the high-definition serial digital interface (HD-SDI) standard.
  • the act of generating content can include generating a video stream representing the video content.
  • the act of receiving, generating, outputting, and/or transmitting video content can include receiving, generating, outputting, and/or transmitting an encoded or decoded version of the video content.
  • the VPS 202 can perform various acts and/or functions related to video content production.
  • the VPS 202 can generate and/or output video content, and can transmit the video content to another entity, such as the VBS 204 .
  • the video source 302 can generate and/or output video content, and can transmit the video content to another entity, such as the DVE system 310 .
  • the VPS 202 is likely to include multiple video sources and corresponding connection mechanisms, each connecting a respective one of the video sources with the DVE system 310 .
  • the video source 302 can take the form of a video server.
  • a video server can record and/or store video content (e.g., in the form of a file). Further, the video server can retrieve stored video content and can use the retrieved video content to generate and/or output a video stream representing the video content. This is sometimes referred to in the industry as the video server playing out the video content.
  • the video server 302 can then transmit the video stream, thereby transmitting the video content, to another entity, such as the DVE system 310 .
  • SM content is content that has been published on a SM platform, which is a computer-based tool that allows users to create, share, and/or exchange content (e.g., in the form of text, images, and/or videos) in virtual communities on a computer-based network such as the Internet.
  • SM platforms include TWITTER, YOUTUBE, FACEBOOK, PERISCOPE, INSTAGRAM, MEERKAT, LINKEDIN, and GOOGLE+.
  • SM content has become a prominent and influential source of news and entertainment content. Indeed, SM platforms are more and more often a news-breaking source of information. It can thus be beneficial for video content providers to incorporate SM content items into a video program.
  • SM content providers can encounter a number of technological challenges that make it difficult to incorporate SM content items into a video program.
  • receiving and integrating SM content items into a video program is generally a time-consuming and labor-intensive process using conventional computing systems and technology platforms. This can be particularly problematic in the context of a news program in which it may be beneficial to quickly receive and integrate SM content into the news program.
  • the VPS 202 can overcome these and other technological challenges.
  • the VPS 202 can provide technological solutions that allow SM content items to be received and integrated into a video program in an efficient and timely manner.
  • the described technical solutions can also provide numerous other benefits, which will be apparent from this disclosure.
  • the SM system 306 can receive SM content and can do so in various ways.
  • the SM system can receive SM content by obtaining it from another entity, such as a SM platform.
  • the SM system 306 can obtain SM content directly from a SM platform.
  • the SM system can obtain SM content from a SM platform via a SM dashboard application (e.g., TWEETDECK, CYFE, or HOOTSUITE).
  • a SM dashboard application can provide additional searching and browsing functionalities (e.g., based on trend analysis or analytics) that may not be provided by the SM platform itself, and/or can provide access to multiple SM platforms through a single user interface.
  • SM content can include various elements such as (i) data indicating the SM platform from which the SM content was received, (ii) data identifying the publisher of the SM content (e.g., an account identifier, such as a username), (iii) a profile image corresponding to the publisher of the SM content, (iv) text published by the publisher in connection with the SM content, (v) an image published by the publisher in connection with the SM content, (vi) audio content published by the publisher in connection with the SM content, (vii) video content published by the publisher in connection with the SM content, (viii) a timestamp indicating a time and/or date at which the SM content was published on the SM platform, (ix) a location (e.g., represented by global positioning system (GPS) coordinates) of the publisher when the SM content was published, (x) a location at which an aspect of the SM content occurred (e.g., where video content was recorded or where a photograph was taken), (xi)
  • SM content that takes the form of video content is referred to as SM video content.
  • SM video content can be video content that is captured by a video capturing device of a mobile device or of another computing system associated with a SM user who published the video content on the SM platform.
  • the SM user can use the mobile device to capture the video content, and, at or about the same time that the video content is being captured (i.e., without significant delay), can transmit the captured video content to the SM server. This is sometimes referred to in the industry as a live video transmission or a live video stream.
  • the SM system can store, select, and/or retrieve SM content, perhaps based on input received from a user (e.g., a producer or technical director) via a user interface.
  • the SM system 306 can store an obtained SM content item in a data storage unit (e.g., a data storage unit of the SM system 306 ), and can then receive the SM content by selecting and retrieving it from the data storage unit.
  • a data storage unit e.g., a data storage unit of the SM system 306
  • the SM system 306 can also transmit SM content to another entity, such as the character generator 308 .
  • the SM system 306 can retrieve stored SM content and can then transmit the retrieved SM content to the character generator 308 .
  • the SM system 306 can also receive SM content from a SM server (or other computing system associated with the SM platform on which the SM content was published) and can then forward the received SM content to the character generator. Notably, even when the SM system 306 transmits SM content in this manner, the SM system 306 can still store and/or retrieve the SM content as part of this process. For instance, the SM system 306 can store the SM content in, and can retrieve it from, a memory buffer to facilitate the receipt and transmission of the SM content.
  • the character generator 308 can use a character generator template and content to generate and/or output video content that includes the content.
  • the character generator template specifies the manner in which the character generator 308 uses the content to generate and/or output the video content.
  • the character generator 308 can create and/or modify a character generator template, perhaps based on input received from a user via a user interface. Further, the character generator 308 can store, select, and/or retrieve a character generator template, perhaps based on input received from a user via a user interface. As such, the character generator 308 can store a character generator template in a data storage unit (e.g., a data storage unit of the character generator 308 ), and can then receive the character generator template by retrieving it from the data storage unit.
  • a data storage unit e.g., a data storage unit of the character generator 308
  • the character generator 308 can also receive content in various ways. For example, the character generator 308 can receive content by receiving it from another entity, such as the SM system 306 . In another example, the character generator 308 can receive content by selecting and retrieving it from a data storage unit (e.g., a data storage unit of the SM system 306 ).
  • a data storage unit e.g., a data storage unit of the SM system 306
  • the character generator template can specify how the character generator 308 is to receive content. In one example, the character generator template can do so by specifying that the character generator 308 is to receive content on a particular input of the character generator 308 (e.g., an input that maps to a particular entity, such as the SM system 306 ). In another example, the character generator template can do so by specifying that the character generator 308 is to receive content by retrieving it from a particular location of a particular data storage unit (e.g., a data storage unit of the character generator 308 ).
  • a particular input of the character generator 308 e.g., an input that maps to a particular entity, such as the SM system 306 .
  • the character generator template can do so by specifying that the character generator 308 is to receive content by retrieving it from a particular location of a particular data storage unit (e.g., a data storage unit of the character generator 308 ).
  • the character generator 308 can use an ordered set of content items to generate video content that includes the content items in the specified order. This type of generated video content is sometimes referred to in the industry as a “ticker.”
  • the content items can include various types of content, such as text and/or images.
  • each of these content items can be SM content.
  • the ordered set of content items can be stored in various forms, such as in the form of an Extensible Markup Language (XML) file.
  • XML Extensible Markup Language
  • the character generator 308 can transmit the video content to another entity, such as the DVE system 310 , and/or can store the video content in a data storage unit (e.g., a data storage unit of the character generator 308 ).
  • a data storage unit e.g., a data storage unit of the character generator 308
  • the character generator 308 can receive SM content, can use the SM content to generate and/or output video content that includes the SM content, and can transmit the video content to the DVE system 310 .
  • the DVE system 310 can use a DVE template to generate and/or output video content. This is sometimes referred to in the industry as the DVE system “executing a DVE.” In some instances, the DVE system 310 can execute multiple DVEs in serial or overlapping fashion.
  • the DVE template specifies the manner in which the DVE system 310 generates and/or outputs video content.
  • the DVE system 310 can create and/or modify a DVE template, perhaps based on input received from a user via a user interface. Further, the DVE system 310 can store and/or retrieve a DVE template, perhaps based on input received from a user via a user interface. As such, the DVE system 310 can store a DVE system template in a data storage unit (e.g., a data storage unit of the DVE system 310 ), and can then receive the DVE template by selecting and retrieving it from the data storage unit.
  • a data storage unit e.g., a data storage unit of the DVE system 310
  • the DVE system 310 can use the DVE template and content to generate and/or output video content that includes the content.
  • the DVE system 310 can receive content in various ways. For example, the DVE system 310 can do so by receiving it from another entity, such as the video source 302 and/or the character generator 308 . In another example, the DVE system 310 can do so by selecting and retrieving it from a data storage unit (e.g., a data storage unit of the DVE system 310 ).
  • the DVE template can specify how the DVE system 310 is to receive content. In one example, the DVE template can do so by specifying that the DVE system 310 is to receive content on a particular input of the DVE system 310 (e.g., an input that maps to a particular entity, such as the video source 302 or the character generator 308 ). In another example, the DVE template can do so by specifying that the DVE system 310 is to receive content by retrieving it from a particular location of a particular data storage unit (e.g., a data storage unit of the DVE system 310 ).
  • a particular data storage unit e.g., a data storage unit of the DVE system 310
  • a DVE template can be configured in various ways, which can allow the DVE system 310 to execute various types of DVEs.
  • a DVE template can specify that the DVE system 310 is to receive video content from the video source 302 and other content (e.g., local weather content) from a data storage unit of the DVE system, and is to overlay the other content on the video content, thereby generating a modified version of the video content.
  • the DVE system 310 can generate video content by modifying video content.
  • FIGS. 4A and 4B help illustrate this concept of overlaying other content on video content.
  • FIG. 4A is a simplified depiction of an example frame 400 of video content.
  • Frame 400 includes content 402 , but does not include other content overlaid on content 402 .
  • FIG. 4B is a simplified depiction of another example frame 450 of video content.
  • Frame 450 includes content 452 and other content 454 overlaid on content 452 .
  • a DVE template can specify that the DVE system 310 is to receive first video content from the video source 302 and second video content from the character generator 308 , and is to overlay the second video content on the first video content, thereby generating a modified version of the first video content.
  • a DVE template can specify that the DVE system 310 is to receive first video content from the video source 302 and second video content from the character generator 308 , and is to scale-down and re-position the first video content and the second video content, each in a respective one of two windows positioned side-by-side.
  • the DVE system 310 can generate video content by scaling and/or re-positioning video content.
  • the DVE system 310 can transmit the video content to another entity, such as the VBS 204 , or can store the video content in a data storage unit (e.g., a data storage unit of the DVE system 310 ).
  • a data storage unit e.g., a data storage unit of the DVE system 310
  • the DVE system 310 can receive first video content including SM content, can use the first video content to generate and/or output second video content that includes the SM content. This is an example way in which the VPS 202 can integrate SM content into a video program.
  • the VPS 202 can also integrate SM content into a video program in other ways.
  • the SM system 306 can include a display device that is located within a field of the view of the video camera while the video camera records video content that serves as or is made part of the video program.
  • the display device can be touch-enabled, which can allow a user (e.g., a news anchor) to interact with the SM content.
  • the display device and/or other components of the SM system 306 can be programmed with instructions that cause particular actions in response to particular touch commands.
  • the display device can initially display multiple small tiles, each representing a different SM content item.
  • the SM contents can relate to weather conditions captured in photographs published on SM platforms by various different publishers.
  • each tile can display a different photograph.
  • the position and ordering of the small tiles can be determined by a character generator template and/or a DVE template.
  • Either template can also include programming instructions that can allow the commands provided via the touch screen display to cause predefined actions for the displayed SM content items.
  • the programming instructions can cause the tile to expand to enlarge the photograph and perhaps display additional elements of, or information associated with, the SM content (e.g., a username, time, location, and/or text published in connection with the SM content).
  • Other commands can cause an expanded tile to return to its initial size and position.
  • the video camera can generate video content including these interactions and thereby integrate the SM contents into the video program.
  • the scheduling system 312 can perform various acts and/or functions related to the scheduling of video content production. For example, the scheduling system 312 can create and/or modify a program schedule of a video program, perhaps based on input received from a user via a user interface. Further, the scheduling system 312 can store and/or retrieve a program schedule, perhaps based on input received from a user via a user interface. As such, the scheduling system 312 can store a program schedule in a data storage unit (e.g., a data storage unit of the scheduling system 312 ), and can then receive the program schedule by selecting and retrieving it from the data storage unit. The scheduling system 312 can also transmit a program schedule to another entity, such as the sequencing system 314 .
  • a data storage unit e.g., a data storage unit of the scheduling system 312
  • the sequencing system 314 can process records in the program schedule. This can cause the sequencing system 314 to control one or more other components of the VPS 202 to facilitate the VPS 202 generating and/or outputting video content, which can serve as or be part of a video program.
  • the sequencing system 314 can control the video source 302 , the SM system 306 , the character generator 308 , and/or the DVE system 310 to perform the various acts and/or functions described in this disclosure.
  • the sequencing system 314 can receive a program schedule in various ways. For example, the sequencing system 314 can do so by receiving it from another entity, such as the scheduling system 312 . In another example, the character generator 308 can do so by selecting and retrieving it from a data storage unit (e.g., a data storage unit of the scheduling system 312 ).
  • a data storage unit e.g., a data storage unit of the scheduling system 312
  • a program schedule (sometimes referred to in the industry as a “rundown”) serves as a schedule or outline of a video program and can include multiple records.
  • a video program can be conceptually divided into multiple logically-separated portions (sometimes referred to in the industry as “stories”). As such, each portion of the video program can be represented by a separate record of the program schedule. In some cases, each record can also include one or more sub-records. Each record (including a sub-record) can include various types of data.
  • FIG. 5 is a simplified diagram of an example program schedule 500 .
  • the program schedule 500 includes ten records represented as ten ordered rows. Each record corresponds to a respective portion of a video program, except for one which corresponds to a commercial break. For each portion, the respective record specifies at least one data item that corresponds to that portion of the video program. In particular, each record specifies at least one of a story title, a video content item identifier, a duration, and a DVE identifier (which can serve as an instruction to execute the identified DVE).
  • a video content item can consist of logically-related video content.
  • a video content item can be a commercial.
  • a video content item can be a portion of a television program that is scheduled between two commercial breaks. This is sometimes referred to in the industry as a “program segment.”
  • the first record specifies a story title of STORY A, a video content identifier of VCI ID A, a duration of 00:02:00:00 (in hours::minutes::seconds::frames format), and a script of SCRIPT A.
  • SCRIPT A includes instructions for the video source 302 to playout a first video content item identified by the identifier VCI A for two minutes, instructions for the character generator 308 to use a live transmission of a SM content item to generate a third video content item that includes the SM content item, and instructions for the DVE system 310 to execute a particular DVE, which causes the DVE system 310 to overlay the generated third video content item on the generated first video content item to generate a fourth video content item.
  • the program schedule 500 has been greatly simplified for the purposes of illustrating certain features. In practice, a program schedule is likely to include significantly more data.
  • the sequencing system 314 can process a next record in the program schedule based on a trigger event.
  • the trigger event can be the sequencing system 314 completing one or more actions related to a current record in the program schedule.
  • the trigger event can be the sequencing system 314 receiving input from a user via a user interface.
  • the VBS 204 can receive video content from the VPS 202 , which in turn can transmit the video content to the end-user device 206 for presentation of the video content to an end user.
  • the VBS 204 can transmit video content to a large number of end-user devices for presentation of the video content to a large number of end users.
  • the VBS 204 can transmit video content to the end-user device 206 in various ways.
  • VBS 204 can transmit video content to the end-user device 206 over-the-air or via a packet-based network such as the Internet.
  • the end-user device 206 can receive video content from the VBS 204 , and can present the video content to an end user via a user interface.
  • a SM server (or other computing system associated with a SM platform) can transmit SM video content to the VPS 202 .
  • the VPS 202 can then receive the SM video content and can integrate it to a video program.
  • the SM server can transmit the SM video content to the VPS 202 by transmitting a data stream representing the SM video content to the VPS.
  • the VPS 202 can receive the SM video content by receiving the data stream representing the SM video content.
  • the data stream can represent more than just the SM video content.
  • the data stream can also include an instruction configured to cause a computing system that receives the data stream to perform a particular operation, such as a content overlay operation.
  • FIG. 600 is a simplified diagram of an example data stream 600 , which can help illustrate this concept. In discussing the data stream 600 , reference will be made to a computing system that receives and processes the data stream.
  • the data stream 600 includes at least seven blocks of data namely, a first block 602 , a second block 604 , a third block 606 , a fourth block 608 , a fifth block 610 , a sixth block 612 , and a seventh block 614 .
  • the computing system can receive the blocks in order from left to right, as shown. As such, the computing system can receive the first block 602 , and then the second block 604 , and so on.
  • the first block 602 includes data that indicates that data of a certain type (i.e., data representing video content) follows in a subsequent block.
  • the second block 604 includes data representing a first part of SM video content.
  • the third block 606 indicates that data of a certain type (i.e., data representing an overlay instruction) follows in a subsequent block.
  • the fourth block 608 includes an instruction configured to cause the computing system to perform a content overlay operation.
  • the fifth block 610 includes data that indicates that data of a certain type (i.e., data representing video content) follows in a subsequent block.
  • the sixth block includes data representing a second part of the SM video content.
  • the seventh block includes data of a certain type (i.e., data representing an overlay instruction) follows in a subsequent block.
  • the computing system can use the data to render the represented video content (i.e., the SM video content) on a display component of the computing system. Responsive to receiving the data in the fourth block 608 , the computing system can cause the computing system to overlay other content on the SM video content as it is being displayed. In one example, the instruction can cause the computing system to overlay content related to comments from other SM users. However, the overlay content can take other forms.
  • the data in the first block 602 , the third block 606 , the fifth block 610 , and the seventh block 614 can allow the computing system to determine where the neighboring blocks begin and end.
  • the data in the first block 602 can allow the computing system to determine where the second block 604 begins.
  • the data in the third block 606 can allow the computing system to determine where the data in the second block 604 ends and where the data in the fourth block 608 begins, and so forth.
  • the computing system can determine that each of the first block 602 , the third block 606 , the fifth block 610 , and the seventh block 614 includes data to be use for this purposes in various ways, such as by determining that the data has a particular characteristic (e.g., a pre-defined string of bits).
  • the data includes in each of these blocks can includes various types of information to help the computing system determine the beginning and/or ending of the neighboring blocks.
  • the first block 602 can specify the size of the block in which it is contained. This can allow the computing system to use the data in the first block 602 to identify the start of the next block, which in this case, is the second block 604 .
  • the computing system can determine that a position just prior to that point represents the end of the second block 604 .
  • the VPS 202 can receive the entire data stream 600 , in some instances, it can be desirable to integrate the represented SM video content, but not the overlay content, into a video program. This can help avoid certain undesirable situations. For example, if the overlay content is integrated in into the video program, it can potentially interfere with text or other content that may be overlaid on the video program by way of the DVE system 310 executing a DVE as described above. As such, to avoid this from happening, it can be desirable to integrate the SM video content, but not the overlay content, into the video program.
  • the VPS 202 , the VBS 204 , and/or components thereof can provide various acts and/or functions to allow the video content, but not the other content, to be integrated into the video program. These acts and/or functions and related features will now be discussed.
  • the SM system 306 can receive from a computing system associated with a SM platform, a data stream that includes a first portion and a second portion.
  • the first portion can represent SM video content published by a SM user on the SM platform.
  • the first portion can be a combination of the second block 604 and the sixth block 612 .
  • the second portion can represent data other than SM content published by the SM user on the SM platform.
  • the second portion can be the fourth block 608 .
  • the first portion can include a first sub-portion and a second sub-portion.
  • the first sub-portion can be the second block 604 and the second sub-portion can be the sixth block 612 .
  • the SM system 306 can receive the first sub-portion before receiving the second portion, and can receive the second portion before receiving the second sub-portion.
  • the SM system can receive the second block 604 before receiving the fourth block 608 , which the SM system 306 can receive before receive the sixth block 612 .
  • the SM system 306 can then extract the first portion from the received data stream. In one example, this can involve the SM system 306 identifying the first sub-portion, identifying the second sub-portion, extracting the identified first sub-portion from the received data stream, and extracting the identified second sub-portion from the received data stream. As such, the SM system 306 can identify the second block 604 and the sixth block 612 , and can extract the second block 604 and the sixth block 612 from the data stream 600 .
  • the SM system 306 can receive the first block 602 and the act of the SM system 306 identifying the second block 604 can include the SM system 306 using the received first block 602 to identify a starting point of the second block 604 .
  • the SM system 306 can receive the third block 606 and the act of SM system 306 identifying the second block 604 can include the SM system 306 using the received third block 606 to identify an ending point of the second block 604 .
  • the SM system 306 can receive the fifth block 610 and the act of SM system 306 identifying the sixth block 612 can include the SM system 306 using the received fifth block 610 to identify a starting point of the sixth block 612 .
  • the SM system 306 can receive the seventh block 614 and the act of SM system 306 identifying the sixth block 612 can include the SM system 306 using the received seventh block 614 to identify an ending point of the sixth block 612 .
  • the VPS 202 can then integrate the SM video content represented by the extracted first portion into a video program as discussed above. As such, the VPS 202 can use the extracted first portion of the received data stream to generate video content that includes the represented SM video content. Further, the VBS 204 can transmit the generated video content to the end-user device 206 for presentation of the generated video content to an end-user of the end-user device 206 as described above.
  • FIG. 7 is a flow chart illustrating an example method 700 .
  • the method 700 can include receiving, by a first computing system, from a second computing system associated with a social media (SM) platform, a data stream, wherein the received data stream comprises a first portion and a second portion, wherein the first portion represents SM video content published by a SM user on the SM platform, and wherein the second portion represents data other than SM content published by the SM user on the SM platform.
  • the first computing system can be a computing system that includes the VPS 202 and a VBS 204 .
  • the method 700 can include extracting, by the first computing system, the first portion from the received data stream.
  • the method 700 can include using, by the computing system, the extracted first portion of the received data stream to generate video content that includes the SM video content.
  • the method 700 can include transmitting, by the first computing system, to a third computing system, the generated video content for presentation of the generated video content on the third computing system.
  • the second computing system can be the end-user device 206 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Computer Security & Cryptography (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

In one aspect, an example method is disclosed. The method includes (i) receiving, by a first computing system, video content, wherein the received video content comprises at least a first element and a second element, wherein the first element is social media (SM) video content published by a SM user, and wherein the second element is content other than SM video content published by the SM user; (ii) extracting, by the first computing system, the first element from the received video content; (iii) generating, by the first computing system, video content that includes the extracted first element; and (iv) transmitting, by the first computing system, to a second computing system, the generated video content for presentation of the generated video content on the second computing system.

Description

    RELATED DISCLOSURES
  • This disclosure is a continuation of U.S. patent application Ser. No. 15/213,301, titled “Video Production System with Content Extraction Feature,” filed Jul. 18, 2016, which claims priority to (i) U.S. Provisional Patent Application No. 62/194,173, titled “Video Production System with Social Media Features,” filed on Jul. 17, 2015, and (ii) U.S. Provisional Patent Application No. 62/242,593, titled “Video Production System with Content-Related Features,” filed on Oct. 16, 2015, all of which are hereby incorporated by reference in their entirety.
  • USAGE AND TERMINOLOGY
  • In this disclosure, unless otherwise specified and/or unless the particular context clearly dictates otherwise, the terms “a” or “an” mean at least one, and the term “the” means the at least one.
  • SUMMARY
  • In one aspect, an example method is disclosed. The method includes (i) receiving, by a first computing system, video content, wherein the received video content comprises at least a first element and a second element, wherein the first element is social media (SM) video content published by a SM user, and wherein the second element is content other than SM content published by the SM user; (ii) extracting, by the first computing system, the first element from the received video content; (iii) generating, by the first computing system, video content that includes the extracted first element; and (iv) transmitting, by the first computing system, to a second computing system, the generated video content for presentation of the generated video content on the second computing system.
  • In another aspect, an example non-transitory computer-readable medium is disclosed. The computer-readable medium has stored thereon program instructions that upon execution by a processor, cause performance of a first set of acts including (i) receiving, by a first computing system, video content, wherein the received video content comprises at least a first element and a second element, wherein the first element is social media (SM) video content published by a SM user, and wherein the second element is content other than SM content published by the SM user; (ii) extracting, by the first computing system, the first element from the received video content; (iii) generating, by the first computing system, video content that includes the extracted first element; and (iv) transmitting, by the first computing system, to a second computing system, the generated video content for presentation of the generated video content on the second computing system.
  • In another aspect, an example first computing system is disclosed. The first computing system is configured for performing a set of acts including (i) receiving, by the first computing system, video content, wherein the received video content comprises at least a first element and a second element, wherein the first element is social media (SM) video content published by a SM user, and wherein the second element is content other than SM content published by the SM user; (ii) extracting, by the first computing system, the first element from the received video content; (iii) generating, by the first computing system, video content that includes the extracted first element; and (iv) transmitting, by the first computing system, to a second computing system, the generated video content for presentation of the generated video content on the second computing system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified block diagram of an example computing device.
  • FIG. 2 is a simplified block diagram of an example video system.
  • FIG. 3 is a simplified block diagram of an example video production system.
  • FIG. 4A is a simplified diagram of an example frame of video content, without content overlaid thereon.
  • FIG. 4B is a simplified diagram of an example frame of video content, with content overlaid thereon.
  • FIG. 5 is a simplified block diagram of an example program schedule.
  • FIG. 6 is a simplified diagram of an example data stream.
  • FIG. 7 is a flow chart of an example method.
  • DETAILED DESCRIPTION I. Overview
  • A video-production system (VPS) can generate video content that can serve as or be part of a video program (e.g., a news program). The VPS can then transmit the video content to a video-broadcast system (VBS), which in turn can transmit the video content to an end-user device for presentation of the video content to an end-user.
  • The VPS can include various components to facilitate generating video content. For example, the VPS can include a video source, a digital video-effect (DVE) system, a scheduling system, and a sequencing system. The video source can generate video content, and can transmit the video content to the DVE system. The DVE system can use the video content and a DVE template to execute a DVE, which can cause the DVE system to generate new video content that is a modified version of the received video content. For example, the generated video content can include the received video content with local weather content overlaid thereon.
  • The scheduling system can create a program schedule, perhaps based on input received from a user (e.g., a producer or technical director) via a user interface. The sequencing system can process records in the program schedule, and based on the processed records, can control one or more components of the VPS, such as the video source and the DVE system, to facilitate generating video content.
  • In one example, the VPS can also include a SM system and a character generator. The SM system can obtain SM video content, and the character generator can then use the SM video content to generate video content that includes the SM video content. Further, the character generator can transmit the video content to the DVE system. The DVE system can receive the video content and can execute a DVE, which causes the DVE system to generate video content that includes the received video content and thus, that also includes the SM video content. The generated video content can serve as or be part of a video program. Thus, in this way, the VPS can integrate SM video content into a video program.
  • As noted above, the VPS can receive SM video content and can integrate it to a video program. In some instances, a SM server can transmit the SM video content to the VPS by transmitting a data stream representing the SM video content to the VPS. As such, the VPS can receive the SM video content by receiving the data stream representing the SM video content.
  • In some instances though, the data stream can represent more than just the SM video content. For example, the data stream can also include an instruction configured to cause a computing system that receives the data stream to perform a particular operation, such as a content overlay operation.
  • Although the VPS can receive the entire data stream, in some instances, it can be desirable to integrate the represented SM video content, but not the overlay content, into a video program. This can help avoid certain undesirable situations. For example, if the overlay content is integrated in into the video program, it can potentially interfere with text or other content that may be overlaid on the video program by way of the DVE system executing a DVE. As such, to avoid this from happening, it can be desirable to integrate the SM video content, but not the overlay content, into the video program.
  • The VPS 202, the VBS 204, and/or components thereof can provide various acts and/or functions to allow the video content, but not the other content, to be integrated into the video program. First, the SM system can receive from a computing system associated with a SM platform, a data stream that includes a first portion and a second portion. The first portion can represent SM video content published by a SM user on the SM platform. The second portion can represent data other than SM content published by the SM user on the SM platform. The SM system can then extract the first portion from the received data stream.
  • After the SM system extract the first portion from the received video content, the VPS can then integrate the SM video content represented by the extracted first portion into a video program as discussed above. As such, the VPS can use the extracted first portion of the received data stream to generate video content that includes the represented SM video content. Further, the VBS can transmit the generated video content to the end-user device for presentation of the generated video content to an end-user of the end-user device as described above.
  • II. Example Architecture
  • A. Computing Device
  • FIG. 1 is a simplified block diagram of an example computing device 100. The computing device can be configured to perform and/or can perform one or more acts and/or functions, such as those described in this disclosure. The computing device 100 can include various components, such as a processor 102, a data storage unit 104, a communication interface 106, and/or a user interface 108. Each of these components can be connected to each other via a connection mechanism 110.
  • In this disclosure, the term “connection mechanism” means a mechanism that facilitates communication between two or more components, devices, systems, or other entities. A connection mechanism can be a relatively simple mechanism, such as a cable or system bus, or a relatively complex mechanism, such as a packet-based communication network (e.g., the Internet). In some instances, a connection mechanism can include a non-tangible medium (e.g., in the case where the connection is wireless).
  • The processor 102 can include a general-purpose processor (e.g., a microprocessor) and/or a special-purpose processor (e.g., a digital signal processor (DSP)). The processor 102 can execute program instructions contained in the data storage unit 104 as discussed below.
  • The data storage unit 104 can include one or more volatile, non-volatile, removable, and/or non-removable storage components, such as magnetic, optical, and/or flash storage, and/or can be integrated in whole or in part with the processor 102. Further, the data storage unit 104 can take the form of a non-transitory computer-readable storage medium, having stored thereon program instructions (e.g., compiled or non-compiled program logic and/or machine code) that, upon execution by the processor 102, cause the computing device 100 to perform one or more acts and/or functions, such as those described in this disclosure. These program instructions can define and/or be part of a discrete software application. In some instances, the computing device 100 can execute program instructions in response to receiving an input, such as from the communication interface 106 and/or the user interface 108. The data storage unit 104 can also store other types of data, such as those types described in this disclosure.
  • The communication interface 106 can allow the computing device 100 to connect with and/or communicate with another other entity according to one or more protocols. In one example, the communication interface 106 can be a wired interface, such as an Ethernet interface or a high-definition serial-digital-interface (HD-SDI). In another example, the communication interface 106 can be a wireless interface, such as a cellular or WI-FI interface. In this disclosure, a connection can be a direct connection or an indirect connection, the latter being a connection that passes through and/or traverses one or more entities, such as a router, switcher, or other network device. Likewise, in this disclosure, a transmission can be a direct transmission or an indirect transmission.
  • The user interface 108 can include hardware and/or software components that facilitate interaction between the computing device 100 and a user of the computing device 100, if applicable. As such, the user interface 108 can include input components such as a keyboard, a keypad, a mouse, a touch-sensitive panel, a microphone, and/or a camera, and/or output components such as a display device (which, for example, can be combined with a touch-sensitive panel), a sound speaker, and/or a haptic feedback system.
  • The computing device 100 can take various forms, such as a workstation terminal, a desktop computer, a laptop, a tablet, a mobile phone, a set-top box, and/or a television.
  • B. Video System
  • FIG. 2 is a simplified block diagram of an example video system 200. The video system 200 can perform various acts and/or functions related to video content, and can be implemented as a computing system. In this disclosure, the term “computing system” means a system that includes at least one computing device. In some instances, a computing system can include one or more other computing systems.
  • The video system 200 can include various components, such as a VPS 202, a VBS 204, and an end-user device 206, each of which can be implemented as a computing system. The video system 200 can also include a connection mechanism 208, which connects the VPS 202 with the VBS 204; and a connection mechanism 210, which connects the VBS 204 with the end-user device 206.
  • FIG. 3 is a simplified block diagram of an example VPS 202. The VPS 202 can include various components, such as a video source 302, a SM system 306, a character generator 308, a DVE system 310, a scheduling system 312, and a sequencing system 314, each of which can be implemented as a computing system. The VPS 202 can also include a connection mechanism 316, which connects the video source 302 with the sequencing system 314; a connection mechanism 318, which connects the video source 302 with the DVE system 310; a connection mechanism 322, which connects the SM system 306 with the sequencing system 314; a connection mechanism 324, which connects the SM system 306 with the character generator 308; a connection mechanism 326, which connects the character generator 308 with the sequencing system 314; a connection mechanism 328, which connects the character generator 308 with the DVE system 310; a connection mechanism 330, which connects the DVE system 310 with the sequencing system 314; and a connection mechanism 332, which connects the scheduling system 312 with the sequencing system 314.
  • The video source 302 can take various forms, such as a video server, a video camera, a satellite receiver, a character generator, or a DVE system. An example video server is the K2 server provided by Grass Valley of San Francisco, Calif.
  • The character generator 308 can take various forms. An example character generator is the VIZ TRIO provided by Viz Rt of Bergen, Norway. Another example character generator is CASPAR CG developed and distributed by the Swedish Broadcasting Corporation (SVT).
  • The DVE system 310 can take various forms, such as a production switcher. An example production switcher is the VISION OCTANE production switcher provided by Ross Video Ltd. of Iroquois, Ontario in Canada.
  • The scheduling system 312 can take various forms. An example scheduling system is WO TRAFFIC provided by WideOrbit, Inc. of San Francisco, Calif. Another example scheduling system is OSI-TRAFFIC provided by Harris Corporation of Melbourne, Fla.
  • The sequencing system 314 can take various forms. A sequencing system is sometimes referred to in the industry as a “production automation system.”
  • Referring back to FIG. 2, the VBS 204 can include various components, such as a terrestrial antenna or a satellite transmitter, each of which can be implemented as a computing system.
  • Each of the video-based entities described in this disclosure can include or be integrated with a corresponding audio-based entity. Also, the video content described in this disclosure can include or be integrated with corresponding audio content.
  • III. Example Operations
  • The video system 200 and/or components thereof can perform various acts and/or functions. These features and related features will now be described.
  • The video system 200 can perform various acts and/or functions related to video content. For example, the video system 200 can receive, generate, output, and/or transmit video content that can serve as or be part of a video program (e.g., a news program). In this disclosure, the act of receiving, generating, outputting, and/or transmitting video content can occur in various ways and/or according to various standards. For example, the act of receiving, outputting, and/or transmitting video content can include receiving, outputting, and/or transmitting a video stream representing the video content, such as over Internet Protocol (IP) or in accordance with the high-definition serial digital interface (HD-SDI) standard. Likewise, the act of generating content can include generating a video stream representing the video content. Also, the act of receiving, generating, outputting, and/or transmitting video content can include receiving, generating, outputting, and/or transmitting an encoded or decoded version of the video content.
  • The VPS 202 can perform various acts and/or functions related to video content production. For example, the VPS 202 can generate and/or output video content, and can transmit the video content to another entity, such as the VBS 204.
  • Referring back to FIG. 3, within the VPS 202, the video source 302 can generate and/or output video content, and can transmit the video content to another entity, such as the DVE system 310. In practice, the VPS 202 is likely to include multiple video sources and corresponding connection mechanisms, each connecting a respective one of the video sources with the DVE system 310.
  • As noted above, the video source 302 can take the form of a video server. A video server can record and/or store video content (e.g., in the form of a file). Further, the video server can retrieve stored video content and can use the retrieved video content to generate and/or output a video stream representing the video content. This is sometimes referred to in the industry as the video server playing out the video content. The video server 302 can then transmit the video stream, thereby transmitting the video content, to another entity, such as the DVE system 310.
  • The SM system 306 can perform various acts and/or functions related to SM content. In this disclosure, “SM content” is content that has been published on a SM platform, which is a computer-based tool that allows users to create, share, and/or exchange content (e.g., in the form of text, images, and/or videos) in virtual communities on a computer-based network such as the Internet. Examples of SM platforms include TWITTER, YOUTUBE, FACEBOOK, PERISCOPE, INSTAGRAM, MEERKAT, LINKEDIN, and GOOGLE+.
  • SM content has become a prominent and influential source of news and entertainment content. Indeed, SM platforms are more and more often a news-breaking source of information. It can thus be beneficial for video content providers to incorporate SM content items into a video program.
  • However, video content providers can encounter a number of technological challenges that make it difficult to incorporate SM content items into a video program. For example, receiving and integrating SM content items into a video program is generally a time-consuming and labor-intensive process using conventional computing systems and technology platforms. This can be particularly problematic in the context of a news program in which it may be beneficial to quickly receive and integrate SM content into the news program.
  • The VPS 202 can overcome these and other technological challenges. Among other things, the VPS 202 can provide technological solutions that allow SM content items to be received and integrated into a video program in an efficient and timely manner. The described technical solutions can also provide numerous other benefits, which will be apparent from this disclosure.
  • In line with the discussion above, the SM system 306 can receive SM content and can do so in various ways. For example, the SM system can receive SM content by obtaining it from another entity, such as a SM platform. In one example, the SM system 306 can obtain SM content directly from a SM platform. In another example, the SM system can obtain SM content from a SM platform via a SM dashboard application (e.g., TWEETDECK, CYFE, or HOOTSUITE). In some instances, a SM dashboard application can provide additional searching and browsing functionalities (e.g., based on trend analysis or analytics) that may not be provided by the SM platform itself, and/or can provide access to multiple SM platforms through a single user interface.
  • SM content can include various elements such as (i) data indicating the SM platform from which the SM content was received, (ii) data identifying the publisher of the SM content (e.g., an account identifier, such as a username), (iii) a profile image corresponding to the publisher of the SM content, (iv) text published by the publisher in connection with the SM content, (v) an image published by the publisher in connection with the SM content, (vi) audio content published by the publisher in connection with the SM content, (vii) video content published by the publisher in connection with the SM content, (viii) a timestamp indicating a time and/or date at which the SM content was published on the SM platform, (ix) a location (e.g., represented by global positioning system (GPS) coordinates) of the publisher when the SM content was published, (x) a location at which an aspect of the SM content occurred (e.g., where video content was recorded or where a photograph was taken), (xi) a timestamp indicating when an aspect of the SM content occurred, (xii) a number of other users associated with the publisher on a SM platform (e.g., a number of friends or followers), (xiii) an indication of how long the publisher has been a user of a SM platform, (xiv) a number of times the SM content has been shared (e.g., retweeted) by other users of a SM platform, (xv) a number of posts by the publisher on a SM platform, and/or (xvi) any other data that can be integrated into a video program.
  • In this disclosure, SM content that takes the form of video content is referred to as SM video content. In some cases, SM video content can be video content that is captured by a video capturing device of a mobile device or of another computing system associated with a SM user who published the video content on the SM platform. In some cases, the SM user can use the mobile device to capture the video content, and, at or about the same time that the video content is being captured (i.e., without significant delay), can transmit the captured video content to the SM server. This is sometimes referred to in the industry as a live video transmission or a live video stream.
  • The SM system can store, select, and/or retrieve SM content, perhaps based on input received from a user (e.g., a producer or technical director) via a user interface. As such, the SM system 306 can store an obtained SM content item in a data storage unit (e.g., a data storage unit of the SM system 306), and can then receive the SM content by selecting and retrieving it from the data storage unit.
  • The SM system 306 can also transmit SM content to another entity, such as the character generator 308. In one example, the SM system 306 can retrieve stored SM content and can then transmit the retrieved SM content to the character generator 308.
  • The SM system 306 can also receive SM content from a SM server (or other computing system associated with the SM platform on which the SM content was published) and can then forward the received SM content to the character generator. Notably, even when the SM system 306 transmits SM content in this manner, the SM system 306 can still store and/or retrieve the SM content as part of this process. For instance, the SM system 306 can store the SM content in, and can retrieve it from, a memory buffer to facilitate the receipt and transmission of the SM content.
  • The character generator 308 can use a character generator template and content to generate and/or output video content that includes the content. The character generator template specifies the manner in which the character generator 308 uses the content to generate and/or output the video content. The character generator 308 can create and/or modify a character generator template, perhaps based on input received from a user via a user interface. Further, the character generator 308 can store, select, and/or retrieve a character generator template, perhaps based on input received from a user via a user interface. As such, the character generator 308 can store a character generator template in a data storage unit (e.g., a data storage unit of the character generator 308), and can then receive the character generator template by retrieving it from the data storage unit.
  • The character generator 308 can also receive content in various ways. For example, the character generator 308 can receive content by receiving it from another entity, such as the SM system 306. In another example, the character generator 308 can receive content by selecting and retrieving it from a data storage unit (e.g., a data storage unit of the SM system 306).
  • The character generator template can specify how the character generator 308 is to receive content. In one example, the character generator template can do so by specifying that the character generator 308 is to receive content on a particular input of the character generator 308 (e.g., an input that maps to a particular entity, such as the SM system 306). In another example, the character generator template can do so by specifying that the character generator 308 is to receive content by retrieving it from a particular location of a particular data storage unit (e.g., a data storage unit of the character generator 308).
  • In one example, the character generator 308 can use an ordered set of content items to generate video content that includes the content items in the specified order. This type of generated video content is sometimes referred to in the industry as a “ticker.” The content items can include various types of content, such as text and/or images. In one example, each of these content items can be SM content. The ordered set of content items can be stored in various forms, such as in the form of an Extensible Markup Language (XML) file.
  • After the character generator 308 generates and/or outputs video content, the character generator 308 can transmit the video content to another entity, such as the DVE system 310, and/or can store the video content in a data storage unit (e.g., a data storage unit of the character generator 308).
  • As such, in one example, the character generator 308 can receive SM content, can use the SM content to generate and/or output video content that includes the SM content, and can transmit the video content to the DVE system 310.
  • The DVE system 310 can use a DVE template to generate and/or output video content. This is sometimes referred to in the industry as the DVE system “executing a DVE.” In some instances, the DVE system 310 can execute multiple DVEs in serial or overlapping fashion.
  • The DVE template specifies the manner in which the DVE system 310 generates and/or outputs video content. The DVE system 310 can create and/or modify a DVE template, perhaps based on input received from a user via a user interface. Further, the DVE system 310 can store and/or retrieve a DVE template, perhaps based on input received from a user via a user interface. As such, the DVE system 310 can store a DVE system template in a data storage unit (e.g., a data storage unit of the DVE system 310), and can then receive the DVE template by selecting and retrieving it from the data storage unit.
  • In some instances, the DVE system 310 can use the DVE template and content to generate and/or output video content that includes the content. The DVE system 310 can receive content in various ways. For example, the DVE system 310 can do so by receiving it from another entity, such as the video source 302 and/or the character generator 308. In another example, the DVE system 310 can do so by selecting and retrieving it from a data storage unit (e.g., a data storage unit of the DVE system 310).
  • The DVE template can specify how the DVE system 310 is to receive content. In one example, the DVE template can do so by specifying that the DVE system 310 is to receive content on a particular input of the DVE system 310 (e.g., an input that maps to a particular entity, such as the video source 302 or the character generator 308). In another example, the DVE template can do so by specifying that the DVE system 310 is to receive content by retrieving it from a particular location of a particular data storage unit (e.g., a data storage unit of the DVE system 310).
  • A DVE template can be configured in various ways, which can allow the DVE system 310 to execute various types of DVEs. In one example, a DVE template can specify that the DVE system 310 is to receive video content from the video source 302 and other content (e.g., local weather content) from a data storage unit of the DVE system, and is to overlay the other content on the video content, thereby generating a modified version of the video content. As such, in one example, the DVE system 310 can generate video content by modifying video content.
  • FIGS. 4A and 4B help illustrate this concept of overlaying other content on video content. FIG. 4A is a simplified depiction of an example frame 400 of video content. Frame 400 includes content 402, but does not include other content overlaid on content 402. For comparison, FIG. 4B is a simplified depiction of another example frame 450 of video content. Frame 450 includes content 452 and other content 454 overlaid on content 452.
  • In another example, a DVE template can specify that the DVE system 310 is to receive first video content from the video source 302 and second video content from the character generator 308, and is to overlay the second video content on the first video content, thereby generating a modified version of the first video content.
  • In another example, a DVE template can specify that the DVE system 310 is to receive first video content from the video source 302 and second video content from the character generator 308, and is to scale-down and re-position the first video content and the second video content, each in a respective one of two windows positioned side-by-side. As such, the DVE system 310 can generate video content by scaling and/or re-positioning video content.
  • After the DVE system 310 generates and/or outputs the video content, the DVE system 310 can transmit the video content to another entity, such as the VBS 204, or can store the video content in a data storage unit (e.g., a data storage unit of the DVE system 310).
  • As such, in one example, the DVE system 310 can receive first video content including SM content, can use the first video content to generate and/or output second video content that includes the SM content. This is an example way in which the VPS 202 can integrate SM content into a video program.
  • The VPS 202 can also integrate SM content into a video program in other ways. For example, in the case where the video source 302 is a video camera, the SM system 306 can include a display device that is located within a field of the view of the video camera while the video camera records video content that serves as or is made part of the video program. In one example, the display device can be touch-enabled, which can allow a user (e.g., a news anchor) to interact with the SM content. To facilitate the user's interaction with the SM content, the display device and/or other components of the SM system 306 can be programmed with instructions that cause particular actions in response to particular touch commands.
  • In one example, the display device can initially display multiple small tiles, each representing a different SM content item. In this example, the SM contents can relate to weather conditions captured in photographs published on SM platforms by various different publishers. As such, each tile can display a different photograph. The position and ordering of the small tiles can be determined by a character generator template and/or a DVE template. Either template can also include programming instructions that can allow the commands provided via the touch screen display to cause predefined actions for the displayed SM content items. For example, if a meteorologist taps on one of the small items a first time, the programming instructions can cause the tile to expand to enlarge the photograph and perhaps display additional elements of, or information associated with, the SM content (e.g., a username, time, location, and/or text published in connection with the SM content). Other commands can cause an expanded tile to return to its initial size and position. As the meteorologist interacts with the SM contents displayed on the display device, the video camera can generate video content including these interactions and thereby integrate the SM contents into the video program.
  • The scheduling system 312 can perform various acts and/or functions related to the scheduling of video content production. For example, the scheduling system 312 can create and/or modify a program schedule of a video program, perhaps based on input received from a user via a user interface. Further, the scheduling system 312 can store and/or retrieve a program schedule, perhaps based on input received from a user via a user interface. As such, the scheduling system 312 can store a program schedule in a data storage unit (e.g., a data storage unit of the scheduling system 312), and can then receive the program schedule by selecting and retrieving it from the data storage unit. The scheduling system 312 can also transmit a program schedule to another entity, such as the sequencing system 314.
  • The sequencing system 314 can process records in the program schedule. This can cause the sequencing system 314 to control one or more other components of the VPS 202 to facilitate the VPS 202 generating and/or outputting video content, which can serve as or be part of a video program. For example, the sequencing system 314 can control the video source 302, the SM system 306, the character generator 308, and/or the DVE system 310 to perform the various acts and/or functions described in this disclosure.
  • The sequencing system 314 can receive a program schedule in various ways. For example, the sequencing system 314 can do so by receiving it from another entity, such as the scheduling system 312. In another example, the character generator 308 can do so by selecting and retrieving it from a data storage unit (e.g., a data storage unit of the scheduling system 312).
  • A program schedule (sometimes referred to in the industry as a “rundown”) serves as a schedule or outline of a video program and can include multiple records. A video program can be conceptually divided into multiple logically-separated portions (sometimes referred to in the industry as “stories”). As such, each portion of the video program can be represented by a separate record of the program schedule. In some cases, each record can also include one or more sub-records. Each record (including a sub-record) can include various types of data.
  • FIG. 5 is a simplified diagram of an example program schedule 500. The program schedule 500 includes ten records represented as ten ordered rows. Each record corresponds to a respective portion of a video program, except for one which corresponds to a commercial break. For each portion, the respective record specifies at least one data item that corresponds to that portion of the video program. In particular, each record specifies at least one of a story title, a video content item identifier, a duration, and a DVE identifier (which can serve as an instruction to execute the identified DVE).
  • A video content item can consist of logically-related video content. For example, a video content item can be a commercial. As another example, a video content item can be a portion of a television program that is scheduled between two commercial breaks. This is sometimes referred to in the industry as a “program segment.”
  • As shown in FIG. 5, the first record specifies a story title of STORY A, a video content identifier of VCI ID A, a duration of 00:02:00:00 (in hours::minutes::seconds::frames format), and a script of SCRIPT A. In this example, SCRIPT A includes instructions for the video source 302 to playout a first video content item identified by the identifier VCI A for two minutes, instructions for the character generator 308 to use a live transmission of a SM content item to generate a third video content item that includes the SM content item, and instructions for the DVE system 310 to execute a particular DVE, which causes the DVE system 310 to overlay the generated third video content item on the generated first video content item to generate a fourth video content item.
  • The program schedule 500 has been greatly simplified for the purposes of illustrating certain features. In practice, a program schedule is likely to include significantly more data.
  • In some instances, the sequencing system 314 can process a next record in the program schedule based on a trigger event. In one example, the trigger event can be the sequencing system 314 completing one or more actions related to a current record in the program schedule. In another example, the trigger event can be the sequencing system 314 receiving input from a user via a user interface.
  • Referring back to FIG. 2, the VBS 204 can receive video content from the VPS 202, which in turn can transmit the video content to the end-user device 206 for presentation of the video content to an end user. In practice, the VBS 204 can transmit video content to a large number of end-user devices for presentation of the video content to a large number of end users. The VBS 204 can transmit video content to the end-user device 206 in various ways. For example, VBS 204 can transmit video content to the end-user device 206 over-the-air or via a packet-based network such as the Internet. The end-user device 206 can receive video content from the VBS 204, and can present the video content to an end user via a user interface.
  • As noted above, a SM server (or other computing system associated with a SM platform) can transmit SM video content to the VPS 202. The VPS 202 can then receive the SM video content and can integrate it to a video program. In some instances, the SM server can transmit the SM video content to the VPS 202 by transmitting a data stream representing the SM video content to the VPS. As such, the VPS 202 can receive the SM video content by receiving the data stream representing the SM video content.
  • In some instances though, the data stream can represent more than just the SM video content. For example, the data stream can also include an instruction configured to cause a computing system that receives the data stream to perform a particular operation, such as a content overlay operation. FIG. 600 is a simplified diagram of an example data stream 600, which can help illustrate this concept. In discussing the data stream 600, reference will be made to a computing system that receives and processes the data stream.
  • As shown, the data stream 600 includes at least seven blocks of data namely, a first block 602, a second block 604, a third block 606, a fourth block 608, a fifth block 610, a sixth block 612, and a seventh block 614. The computing system can receive the blocks in order from left to right, as shown. As such, the computing system can receive the first block 602, and then the second block 604, and so on.
  • The first block 602 includes data that indicates that data of a certain type (i.e., data representing video content) follows in a subsequent block. The second block 604 includes data representing a first part of SM video content. The third block 606 indicates that data of a certain type (i.e., data representing an overlay instruction) follows in a subsequent block. The fourth block 608 includes an instruction configured to cause the computing system to perform a content overlay operation. The fifth block 610 includes data that indicates that data of a certain type (i.e., data representing video content) follows in a subsequent block. The sixth block includes data representing a second part of the SM video content. The seventh block includes data of a certain type (i.e., data representing an overlay instruction) follows in a subsequent block.
  • By receiving the data in the second block 604 and in the sixth block 612, the computing system can use the data to render the represented video content (i.e., the SM video content) on a display component of the computing system. Responsive to receiving the data in the fourth block 608, the computing system can cause the computing system to overlay other content on the SM video content as it is being displayed. In one example, the instruction can cause the computing system to overlay content related to comments from other SM users. However, the overlay content can take other forms.
  • The data in the first block 602, the third block 606, the fifth block 610, and the seventh block 614 can allow the computing system to determine where the neighboring blocks begin and end. For example, the data in the first block 602 can allow the computing system to determine where the second block 604 begins. Similarly, the data in the third block 606 can allow the computing system to determine where the data in the second block 604 ends and where the data in the fourth block 608 begins, and so forth.
  • The computing system can determine that each of the first block 602, the third block 606, the fifth block 610, and the seventh block 614 includes data to be use for this purposes in various ways, such as by determining that the data has a particular characteristic (e.g., a pre-defined string of bits). The data includes in each of these blocks can includes various types of information to help the computing system determine the beginning and/or ending of the neighboring blocks. For example, the first block 602 can specify the size of the block in which it is contained. This can allow the computing system to use the data in the first block 602 to identify the start of the next block, which in this case, is the second block 604. Similarly, by determining that the third block 606 starts at a certain point, the computing system can determine that a position just prior to that point represents the end of the second block 604.
  • Although the VPS 202 can receive the entire data stream 600, in some instances, it can be desirable to integrate the represented SM video content, but not the overlay content, into a video program. This can help avoid certain undesirable situations. For example, if the overlay content is integrated in into the video program, it can potentially interfere with text or other content that may be overlaid on the video program by way of the DVE system 310 executing a DVE as described above. As such, to avoid this from happening, it can be desirable to integrate the SM video content, but not the overlay content, into the video program.
  • The VPS 202, the VBS 204, and/or components thereof can provide various acts and/or functions to allow the video content, but not the other content, to be integrated into the video program. These acts and/or functions and related features will now be discussed.
  • First, the SM system 306 can receive from a computing system associated with a SM platform, a data stream that includes a first portion and a second portion. The first portion can represent SM video content published by a SM user on the SM platform. As such, the first portion can be a combination of the second block 604 and the sixth block 612. The second portion can represent data other than SM content published by the SM user on the SM platform. As such, the second portion can be the fourth block 608.
  • In one example, the first portion can include a first sub-portion and a second sub-portion. As such, the first sub-portion can be the second block 604 and the second sub-portion can be the sixth block 612. The SM system 306 can receive the first sub-portion before receiving the second portion, and can receive the second portion before receiving the second sub-portion. As such, the SM system can receive the second block 604 before receiving the fourth block 608, which the SM system 306 can receive before receive the sixth block 612.
  • The SM system 306 can then extract the first portion from the received data stream. In one example, this can involve the SM system 306 identifying the first sub-portion, identifying the second sub-portion, extracting the identified first sub-portion from the received data stream, and extracting the identified second sub-portion from the received data stream. As such, the SM system 306 can identify the second block 604 and the sixth block 612, and can extract the second block 604 and the sixth block 612 from the data stream 600.
  • In one example, the SM system 306 can receive the first block 602 and the act of the SM system 306 identifying the second block 604 can include the SM system 306 using the received first block 602 to identify a starting point of the second block 604. In another example, the SM system 306 can receive the third block 606 and the act of SM system 306 identifying the second block 604 can include the SM system 306 using the received third block 606 to identify an ending point of the second block 604.
  • In another example, the SM system 306 can receive the fifth block 610 and the act of SM system 306 identifying the sixth block 612 can include the SM system 306 using the received fifth block 610 to identify a starting point of the sixth block 612. In another example, the SM system 306 can receive the seventh block 614 and the act of SM system 306 identifying the sixth block 612 can include the SM system 306 using the received seventh block 614 to identify an ending point of the sixth block 612.
  • After the SM system 306 extract the first portion from the received video content, the VPS 202 can then integrate the SM video content represented by the extracted first portion into a video program as discussed above. As such, the VPS 202 can use the extracted first portion of the received data stream to generate video content that includes the represented SM video content. Further, the VBS 204 can transmit the generated video content to the end-user device 206 for presentation of the generated video content to an end-user of the end-user device 206 as described above.
  • FIG. 7 is a flow chart illustrating an example method 700.
  • At block 702, the method 700 can include receiving, by a first computing system, from a second computing system associated with a social media (SM) platform, a data stream, wherein the received data stream comprises a first portion and a second portion, wherein the first portion represents SM video content published by a SM user on the SM platform, and wherein the second portion represents data other than SM content published by the SM user on the SM platform. In one example, the first computing system can be a computing system that includes the VPS 202 and a VBS 204.
  • At block 704, the method 700 can include extracting, by the first computing system, the first portion from the received data stream.
  • At block 706, the method 700 can include using, by the computing system, the extracted first portion of the received data stream to generate video content that includes the SM video content.
  • At block 708, the method 700 can include transmitting, by the first computing system, to a third computing system, the generated video content for presentation of the generated video content on the third computing system. In one example, the second computing system can be the end-user device 206.
  • IV. Example Variations
  • Although some of the acts and/or functions described in this disclosure have been described as being performed by a particular entity, the acts and/or functions can be performed by any entity, such as those entities described in this disclosure. Further, although the acts and/or functions have been recited in a particular order, the acts and/or functions need not be performed in the order recited. However, in some instances, it can be desired to perform the acts and/or functions in the order recited. Further, each of the acts and/or functions can be performed responsive to one or more of the other acts and/or functions. Also, not all of the acts and/or functions need to be performed to achieve one or more of the benefits provided by this disclosure, and therefore not all of the acts and/or functions are required.
  • Although certain variations have been discussed in connection with one or more example of this disclosure, these variations can also be applied to all of the other examples of this disclosure as well.
  • Although select examples of this disclosure have been described, alterations and permutations of these examples will be apparent to those of ordinary skill in the art. Other changes, substitutions, and/or alterations are also possible without departing from the invention in its broader aspects as set forth in the following claims.

Claims (20)

What is claimed is:
1. A method for use in connection with a first computing system comprising a video-production system (VPS) configured to facilitate production of a video program, the method comprising:
receiving, by the first computing system, from a second computing system, a data stream, wherein the received data stream comprises a first portion and a second portion, wherein the first portion represents video content, wherein the second portion represents data other than the video content, and wherein the second portion comprises an instruction to overlay supplemental content on the video content;
extracting, by the first computing system, the first portion from the received data stream;
from among the extracted first portion of the received data stream and the instruction to overlay the supplemental content, integrating, by the first computing system, only the extracted first portion of the received data stream into the video program to generate a video program that includes the video content; and
transmitting, by the first computing system, to an end-user device, the generated video program for presentation of the generated video program on the end-user device.
2. The method of claim 1, wherein the supplemental content includes comments by social media users on the video content.
3. The method of claim 1, wherein the first portion comprises a first sub-portion and a second sub-portion, wherein receiving the data stream comprises (i) receiving the first sub-portion before receiving the second portion, and (ii) receiving the second portion before receiving the second sub-portion.
4. The method of claim 3, wherein extracting the first portion from the received data stream comprises:
identifying the first sub-portion;
identifying the second sub-portion;
extracting the identified first sub-portion from the received data stream; and
extracting the identified second sub-portion from the received data stream.
5. The method of claim 4, further comprising:
receiving a third portion of the received data stream before receiving the first sub-portion, wherein identifying the first sub-portion comprises using the received third portion to identify a starting point of the first sub-portion.
6. The method of claim 4, further comprising:
receiving a third portion of the received data stream after receiving the first sub-portion, wherein identifying the first sub-portion comprises using the received third portion to identify an ending point of the first sub-portion.
7. The method of claim 4, further comprising:
receiving a third portion of the received data stream before receiving the second sub-portion, wherein identifying the second sub-portion comprises using the received third portion to identify a starting point of the second sub-portion.
8. The method of claim 4, further comprising:
receiving a third portion of the received data stream after receiving the second sub-portion, wherein identifying the second sub-portion comprises using the received third portion to identify an ending point of the second sub-portion.
9. The method of claim 1, wherein transmitting the generated video program comprises transmitting the generated video program at our about the same time that the video content is captured by a video capturing device of a third computing system.
10. A non-transitory computer-readable medium having stored thereon program instructions that upon execution by a processor, cause performance of a set of acts comprising:
receiving, by a first computing system comprising a video-production system (VPS) configured to facilitate production of a video program, from a second computing system, a data stream, wherein the received data stream comprises a first portion and a second portion, wherein the first portion represents video content, wherein the second portion represents data other than the video content, and wherein the second portion comprises an instruction to overlay supplemental content on the video content;
extracting, by the first computing system, the first portion from the received data stream;
from among the extracted first portion of the received data stream and the instruction to overlay the supplemental content, integrating, by the first computing system, only the extracted first portion of the received data stream into the video program to generate a video program that includes the video content; and
transmitting, by the first computing system, to an end-user device, the generated video program for presentation of the generated video program on the end-user device.
11. The non-transitory computer-readable medium of claim 10, wherein the supplemental content includes comments by social media users on the video content.
12. The non-transitory computer-readable medium of claim 10, wherein the first portion comprises a first sub-portion and a second sub-portion, wherein receiving the data stream comprises (i) receiving the first sub-portion before receiving the second portion, and (ii) receiving the second portion before receiving the second sub-portion.
13. The non-transitory computer-readable medium of claim 12, wherein extracting the first portion from the received data stream comprises:
identifying the first sub-portion;
identifying the second sub-portion;
extracting the identified first sub-portion from the received data stream; and
extracting the identified second sub-portion from the received data stream.
14. The non-transitory computer-readable medium of claim 13, the set of acts further comprising:
receiving a third portion of the received data stream before receiving the first sub-portion, wherein identifying the first sub-portion comprises using the received third portion to identify a starting point of the first sub-portion.
15. The non-transitory computer-readable medium of claim 13, the set of acts further comprising:
receiving a third portion of the received data stream after receiving the first sub-portion, wherein identifying the first sub-portion comprises using the received third portion to identify an ending point of the first sub-portion.
16. The non-transitory computer-readable medium of claim 13, the set of acts further comprising:
receiving a third portion of the received data stream before receiving the second sub-portion, wherein identifying the second sub-portion comprises using the received third portion to identify a starting point of the second sub-portion.
17. The non-transitory computer-readable medium of claim 13, the set of acts further comprising:
receiving a third portion of the received data stream after receiving the second sub-portion, wherein identifying the second sub-portion comprises using the received third portion to identify an ending point of the second sub-portion.
18. The non-transitory computer-readable medium of claim 13, wherein transmitting the generated video program comprises transmitting the generated video program at our about the same time that the video content is captured by a video capturing device of a third computing system.
19. A first computing system configured for performing a set of acts, wherein first computing system comprises a video-production system (VPS) configured to facilitate production of a video program, the set of acts comprising:
receiving, by the first computing system, from a second computing system, a data stream, wherein the received data stream comprises a first portion and a second portion, wherein the first portion represents video content, wherein the second portion represents data other than the video content, and wherein the second portion comprises an instruction to overlay supplemental content on the video content;
extracting, by the first computing system, the first portion from the received data stream;
from among the extracted first portion of the received data stream and the instruction to overlay the supplemental content, integrating, by the first computing system, only the extracted first portion of the received data stream into the video program to generate a video program that includes the video content; and
transmitting, by the first computing system, to an end-user device, the generated video program for presentation of the generated video program on the end-user device.
20. The first computing system of claim 19, wherein the supplemental content includes comments by social media users on the video content.
US16/502,403 2015-07-17 2019-07-03 Video Production System with Content Extraction Feature Abandoned US20190327531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/502,403 US20190327531A1 (en) 2015-07-17 2019-07-03 Video Production System with Content Extraction Feature

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562194173P 2015-07-17 2015-07-17
US201562242593P 2015-10-16 2015-10-16
US15/213,301 US10382824B2 (en) 2015-07-17 2016-07-18 Video production system with content extraction feature
US16/502,403 US20190327531A1 (en) 2015-07-17 2019-07-03 Video Production System with Content Extraction Feature

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/213,301 Continuation US10382824B2 (en) 2015-07-17 2016-07-18 Video production system with content extraction feature

Publications (1)

Publication Number Publication Date
US20190327531A1 true US20190327531A1 (en) 2019-10-24

Family

ID=57776052

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/213,301 Expired - Fee Related US10382824B2 (en) 2015-07-17 2016-07-18 Video production system with content extraction feature
US16/502,403 Abandoned US20190327531A1 (en) 2015-07-17 2019-07-03 Video Production System with Content Extraction Feature

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/213,301 Expired - Fee Related US10382824B2 (en) 2015-07-17 2016-07-18 Video production system with content extraction feature

Country Status (1)

Country Link
US (2) US10382824B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11341337B1 (en) * 2021-06-11 2022-05-24 Winter Chat Pty Ltd Semantic messaging collaboration system
US11494851B1 (en) 2021-06-11 2022-11-08 Winter Chat Pty Ltd. Messaging system and method for providing management views

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10528505B2 (en) * 2016-10-11 2020-01-07 International Business Machines Corporation HDMI devices and methods with stacking support

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040117819A1 (en) * 2002-12-03 2004-06-17 Ming-He Yu Apparatus for producing TV advertising contents and inserting interstitial advertisements on TV programs
US20110075992A1 (en) * 2009-09-30 2011-03-31 Microsoft Corporation Intelligent overlay for video advertising
US20110126252A1 (en) * 2009-11-20 2011-05-26 At&T Intellectual Property I, L.P. Method and apparatus for presenting media programs
US20130094590A1 (en) * 2011-10-12 2013-04-18 Vixs Systems, Inc. Video decoding device for extracting embedded metadata and methods for use therewith
US20150033255A1 (en) * 2013-07-25 2015-01-29 Thomson Licensing Method for caching of data items in a chache area of a data processing system and corresponding device
US20160293214A1 (en) * 2015-03-31 2016-10-06 Jaguar Land Rover Limited Content Processing and Distribution System and Method
US20190124413A1 (en) * 2016-04-28 2019-04-25 Sharp Kabushiki Kaisha Systems and methods for signaling of emergency alerts

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150297949A1 (en) * 2007-06-12 2015-10-22 Intheplay, Inc. Automatic sports broadcasting system
WO2001001690A1 (en) * 1999-06-28 2001-01-04 United Video Properties, Inc. Interactive television system with newsgroups
FR2824223A1 (en) * 2001-04-25 2002-10-31 Thomson Licensing Sa METHOD FOR CONTROLLING THE VISUALIZATION OF AUDIOVISUAL PROGRAMS, AND RECEIVER CAPABLE OF VISUALIZING THEM
JP4139253B2 (en) * 2003-03-26 2008-08-27 富士通株式会社 Streaming delivery method
US20060200842A1 (en) * 2005-03-01 2006-09-07 Microsoft Corporation Picture-in-picture (PIP) alerts
WO2007149444A2 (en) * 2006-06-16 2007-12-27 Droplet Technology, Inc. System, method and apparatus of video processing and applications
EP2052552A4 (en) * 2006-07-16 2011-12-28 Seambi Ltd System and method for virtual content placement
US8060609B2 (en) * 2008-01-04 2011-11-15 Sling Media Inc. Systems and methods for determining attributes of media items accessed via a personal media broadcaster
US8136134B2 (en) * 2008-03-14 2012-03-13 Disney Enterprises Inc. System and method for dynamically transmitting network alert system (NAS) information from television network to stations using information embedded in an HDTV signal
US7974983B2 (en) 2008-11-13 2011-07-05 Buzzient, Inc. Website network and advertisement analysis using analytic measurement of online social media content
EP2430833A4 (en) * 2009-05-13 2014-01-22 Coincident Tv Inc Playing and editing linked and annotated audiovisual works
KR102112973B1 (en) 2009-07-16 2020-05-19 블루핀 랩스, 인코포레이티드 Estimating and displaying social interest in time-based media
JP5833551B2 (en) * 2009-08-07 2015-12-16 トムソン ライセンシングThomson Licensing System and method for searching the internet on video devices
US11122009B2 (en) 2009-12-01 2021-09-14 Apple Inc. Systems and methods for identifying geographic locations of social media content collected over social networks
US20130304818A1 (en) 2009-12-01 2013-11-14 Topsy Labs, Inc. Systems and methods for discovery of related terms for social media content collection over social networks
US8516063B2 (en) * 2010-02-12 2013-08-20 Mary Anne Fletcher Mobile device streaming media application
WO2012088468A2 (en) * 2010-12-22 2012-06-28 Coincident.Tv, Inc. Switched annotations in playing audiovisual works
JP2012164756A (en) * 2011-02-04 2012-08-30 Denso Corp Electronic control device
EP4009651A1 (en) * 2011-07-12 2022-06-08 Snap Inc. Methods and systems of providing visual content editing functions
US8832741B1 (en) * 2012-04-03 2014-09-09 Google Inc. Real time overlays on live streams
US20130268962A1 (en) 2012-04-10 2013-10-10 Shawn Andrew SNIDER Integration of social media with live events
JP6106982B2 (en) * 2012-07-27 2017-04-05 マツダ株式会社 Vehicle body side structure
US8745259B2 (en) * 2012-08-02 2014-06-03 Ujam Inc. Interactive media streaming
CN104145434B (en) * 2012-08-17 2017-12-12 青岛海信国际营销股份有限公司 The channel switch device of intelligent television
US10403042B2 (en) * 2012-11-06 2019-09-03 Oath Inc. Systems and methods for generating and presenting augmented video content
US9924179B2 (en) * 2013-01-10 2018-03-20 Samsung Electronics Co., Ltd. Method and apparatus for coding multilayer video, method and apparatus for decoding multilayer video
US10607299B2 (en) * 2013-03-15 2020-03-31 Tomorrowish Llc Displaying social media content
US20150319510A1 (en) * 2014-04-30 2015-11-05 General Instrument Corporation Interactive viewing experiences by detecting on-screen text
US9846532B2 (en) * 2013-09-06 2017-12-19 Seespace Ltd. Method and apparatus for controlling video content on a display
US20150074735A1 (en) * 2013-09-06 2015-03-12 Seespace Ltd. Method and Apparatus for Rendering Video Content Including Secondary Digital Content
US9716909B2 (en) * 2013-11-19 2017-07-25 SketchPost, LLC Mobile video editing and sharing for social media
WO2016057944A2 (en) * 2014-10-09 2016-04-14 FiveByFive, Inc. Channel-based live tv conversion
US20170069349A1 (en) * 2015-09-07 2017-03-09 Bigvu Inc Apparatus and method for generating a video file by a presenter of the video
US9635079B1 (en) * 2015-11-12 2017-04-25 International Business Machines Corporation Social media sharing based on video content

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040117819A1 (en) * 2002-12-03 2004-06-17 Ming-He Yu Apparatus for producing TV advertising contents and inserting interstitial advertisements on TV programs
US20110075992A1 (en) * 2009-09-30 2011-03-31 Microsoft Corporation Intelligent overlay for video advertising
US20110126252A1 (en) * 2009-11-20 2011-05-26 At&T Intellectual Property I, L.P. Method and apparatus for presenting media programs
US20130094590A1 (en) * 2011-10-12 2013-04-18 Vixs Systems, Inc. Video decoding device for extracting embedded metadata and methods for use therewith
US20150033255A1 (en) * 2013-07-25 2015-01-29 Thomson Licensing Method for caching of data items in a chache area of a data processing system and corresponding device
US20160293214A1 (en) * 2015-03-31 2016-10-06 Jaguar Land Rover Limited Content Processing and Distribution System and Method
US20190124413A1 (en) * 2016-04-28 2019-04-25 Sharp Kabushiki Kaisha Systems and methods for signaling of emergency alerts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11341337B1 (en) * 2021-06-11 2022-05-24 Winter Chat Pty Ltd Semantic messaging collaboration system
US11494851B1 (en) 2021-06-11 2022-11-08 Winter Chat Pty Ltd. Messaging system and method for providing management views

Also Published As

Publication number Publication date
US20170019713A1 (en) 2017-01-19
US10382824B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
US10581947B2 (en) Video production system with DVE feature
US10381043B2 (en) Media-production system with social media content interface feature
US20190327531A1 (en) Video Production System with Content Extraction Feature
US10347295B1 (en) Computing system with video content generation feature

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRIBUNE BROADCASTING COMPANY, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUNDEMER, HANK J.;REEL/FRAME:049662/0984

Effective date: 20160726

AS Assignment

Owner name: BANK OF AMERICA, N.A., NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNORS:CHICAGOLAND TELEVISION NEWS, INC.;KPLR, INC.;KSTU, LLC;AND OTHERS;REEL/FRAME:050438/0004

Effective date: 20190919

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION