US20190319684A1 - Antenna arrangement for transmitting reference signals - Google Patents

Antenna arrangement for transmitting reference signals Download PDF

Info

Publication number
US20190319684A1
US20190319684A1 US15/771,351 US201815771351A US2019319684A1 US 20190319684 A1 US20190319684 A1 US 20190319684A1 US 201815771351 A US201815771351 A US 201815771351A US 2019319684 A1 US2019319684 A1 US 2019319684A1
Authority
US
United States
Prior art keywords
antenna
signal
polarization
fed
antenna array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/771,351
Other versions
US10432273B1 (en
Inventor
Fredrik Athley
Sven Petersson
Andreas Nilsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Assigned to TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) reassignment TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATHLEY, FREDRIK, NILSSON, ANDREAS, PETERSSON, SVEN
Application granted granted Critical
Publication of US10432273B1 publication Critical patent/US10432273B1/en
Publication of US20190319684A1 publication Critical patent/US20190319684A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas

Definitions

  • Embodiments presented herein relate to an antenna arrangement, a method, a radio transceiver device, a computer program, and a computer program product for transmitting reference signals.
  • communications networks there may be a challenge to obtain good performance and capacity for a given communications protocol, its parameters and the physical environment in which the communications network is deployed.
  • frequency bands at many different carrier frequencies could be needed.
  • low such frequency bands could be needed to achieve sufficient network coverage for wireless devices and higher frequency bands (e.g. at millimeter wavelengths (mmW), i.e. near and above 30 GHz) could be needed to reach required network capacity.
  • mmW millimeter wavelengths
  • the propagation properties of the radio channel are more challenging and beamforming both at the access node of the network and at the wireless devices might be required to reach a sufficient link budget.
  • the wireless devices could implement beamforming by means of analog beamforming, digital beamforming, or hybrid beamforming.
  • Each implementation has its advantages and disadvantages.
  • a digital beamforming implementation is the most flexible implementation of the three but also the costliest due to the large number of required radio chains and baseband chains.
  • An analog beamforming implementation is the least flexible but cheaper to manufacture due to a reduced number of radio chains and baseband chains compared to the digital beamforming implementation.
  • a hybrid beamforming implementation is a compromise between the analog and the digital beamforming implementations. As the skilled person understands, depending on cost and performance requirements of different wireless devices, different implementations will be needed.
  • an antenna port is a logical entity rather than a physical entity that is defined by a transmitted reference signal.
  • Such an antenna port may or may not correspond to a physical antenna port.
  • An example of the former is when the reference signal defining the port is transmitted on a connector to an antenna element.
  • An example of the latter is when the reference signal defining the port is transmitted using a digital beamformer.
  • a reference signal e.g., channel state information reference signal (CSI-RS) or demodulation reference signal (DMRS)
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • FIG. 1 schematically illustrates an example architecture of an antenna arrangement 120 .
  • the antenna arrangement 120 consists of two antenna arrays 130 a , 130 b, each having antenna elements 140 a , 140 b of two polarizations p 1 , p 2 .
  • Each antenna array 130 a , 130 b is thus connected to one transceiver unit (TXRU) per polarization, thus in total four panel ports.
  • TXRU transceiver unit
  • Each panel port (corresponding to one TXRU) is capable of generating a narrow steerable beam by means of analog beamforming.
  • An analog distribution network with phase shifters is used to steer the transmission beam generated at each antenna array 130 a , 130 b .
  • a multi-panel codebook can be used to support co-phasing of the antenna arrays 130 a , 130 b.
  • the antenna arrangement 120 can be used to transmit one or two layers per panel in single-user (SU) or multi-user (MU) multiple input multiple output (MIMO) transmission.
  • SU single-user
  • MU multi-user
  • MIMO multiple input multiple output
  • multiple independent data streams can be transmitted in the same time-frequency radio resource, resulting in so-called spatial multiplexing.
  • One such data stream is sometimes referred to as a layer.
  • a single layer (per polarization) is transmitted by coherent combining of the two antenna arrays 130 a , 130 b in order to increase the beamforming gain.
  • PDSCH physical downlink shared channel
  • a first alternative is to transmit using only a single one of the antenna arrays 130 a , 130 b. Thereby only half of the total transmit power is used, leading to reduced coverage.
  • a second alternative is to transmit using both antenna arrays 130 a , 130 b using coherent combining. This requires the knowledge of how to co-phase the two antenna arrays 130 a , 130 b in order to steer the resulting beam in the correct direction. This knowledge can be obtained by uplink channel estimation if reciprocity holds or by feedback from the receiving radio transceiver device.
  • a synchronization signal (SS) block (comprising PSS, SSS, and PBCH, where PSS is short for primary synchronization signal, SSS is short for secondary synchronization signal and PBCH is short for the physical broadcast channel) which are transmitted over one antenna port
  • SS synchronization signal
  • the transmitting radio transceiver device can perform a beam sweep to transmit the SS block in different directions.
  • coherent combining of the two antenna arrays 130 a , 130 b may produce a very narrow transmission beam.
  • a relatively wide transmission beam might be desired in order to achieve robustness against blockage and mobility of the receiving radio transceiver device.
  • the number of possible transmission beams in an SS block beam sweep might be limited. Such a beam sweep should cover the entire coverage region of the transmitting radio transceiver device, and therefore the beams should not be too narrow. This could, for example, be the case when there is a limit on the number of beams in a beam sweep in which an SS block is transmitted. Furthermore, if the antenna arrays 130 a , 130 b are not calibrated relative to each other, the transmitting radio transceiver device has no knowledge of the resulting beam pointing direction when the same signal is fed to both antenna arrays 130 a , 130 b.
  • radio transceiver devices such as network nodes or wireless devices.
  • An object of embodiments herein is to provide an improved antenna arrangement that can be used in a radio transceiver device, such as a network node or a wireless device, and that does not suffer from the issues noted above, or at least where these issues are reduced or mitigated.
  • the antenna arrangement comprises a first antenna array and a second antenna array.
  • Each antenna array comprises antenna elements of a first polarization and antenna elements of a second polarization.
  • the two antenna arrays are arranged to collectively be fed four signals, such that the antenna elements of each polarization at each antenna array is fed a respective one out of the four signals.
  • the signal as fed to the antenna elements of the second polarization of the second antenna array is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.
  • this antenna arrangement can be used in a radio transceiver device, such as a wireless device, and that does not suffer from the issues noted above.
  • this antenna arrangement allows for all power amplifiers to be fully utilized without causing unintended beamforming across the antenna arrays, leading to improved coverage, for example with respect to the antenna arrangement in FIG. 1 .
  • the radio transceiver device comprises an antenna arrangement according to the first aspect.
  • a method for transmitting signals is performed by a radio transceiver device according to the second aspect.
  • the method comprises transmitting signals by feeding the signals through the antenna arrangement.
  • a computer program for transmitting reference signals comprising computer program code which, when run on a radio transceiver device according to the second, causes the radio transceiver device to perform a method according to the third aspect.
  • a computer program product comprising a computer program according to the fourth aspect and a computer readable storage medium on which the computer program is stored.
  • the computer readable storage medium could be a non-transitory computer readable storage medium.
  • FIG. 1 schematically illustrates an antenna arrangement according to prior art
  • FIG. 2 is a schematic diagram illustrating a communications system according to embodiments
  • FIGS. 3, 4, 5, and 6 schematically illustrate antenna arrangements according to embodiments
  • FIG. 7 is a flowchart of methods according to an embodiment
  • FIG. 8 is a schematic diagram showing functional units of a radio transceiver device according to an embodiment
  • FIG. 9 is a schematic diagram showing functional modules of a radio transceiver device according to an embodiment.
  • FIG. 10 shows one example of a computer program product comprising computer readable storage medium according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating a communications system 100 comprising a radio transceiver device implemented as a radio access network node (such as the radio transceiver device 200 ) providing network access to a radio transceiver device implemented as a wireless device (such as the radio transceiver device 300 ).
  • the radio access network node could be any of an access node, radio base station, base transceiver station, node B, evolved node B, g node B, access point, or the like.
  • the wireless device could be any of a wireless device, mobile station, mobile phone, handset, wireless local loop phone, user equipment (UE), smartphone, laptop computer, tablet computer, wireless sensor, or the like.
  • the radio transceiver device 200 is assumed to comprise an antenna arrangement configured to transmit signals to the radio transceiver device 300 in M beams 110 a , 110 b , . . . , 110 M.
  • the beams 110 a , 110 b , . . . , 110 M might all have the same width, or at least two of the beams 110 a , 110 b , . . . , 110 M have mutually different widths.
  • the radio transceiver device 200 is thus configured to communicate in M beams 110 a , 110 b , . . . , 110 M (in contrast to omnidirectional beams).
  • an antenna arrangement that enables unintentional, uncontrolled beamforming across two antenna arrays 130 a , 130 b of the antenna arrangement 120 in the radio transceiver device to be avoided.
  • FIGS. 3, 4, 5, and 6 schematically illustrate antenna arrangements 120 a , 120 b, 120 c , 120 d according to embodiments.
  • the antenna arrangement 120 a , 120 b, 120 c , 120 d comprises a first antenna array 130 a and a second antenna array 130 b.
  • Each antenna array 130 a , 130 b comprises antenna elements 140 a of a first polarization p 1 and antenna elements 140 b of a second polarization p 2 .
  • the two antenna arrays 130 a , 130 b are arranged to collectively be fed four signals, such that the antenna elements 140 a , 140 b of each polarization p 1 , p 2 at each antenna array 130 a , 130 b is fed a respective one out of the four signals.
  • these four signals might originate from two common signals s 1 , s 2 (as for the antenna arrangements 120 a , 120 b , 120 d in FIGS. 3, 4, 6 ) or one single common signal s (as for the antenna arrangement 120 c in FIG. 5 ).
  • the signal as fed to the antenna elements mob of the second polarization p 2 of the second antenna array 130 b is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.
  • this antenna arrangement 120 a , 120 b, 120 c , 120 d enables non-coherent transmission across the two antenna arrays 130 a , 130 b.
  • the antenna elements 140 a , 140 b are fed signals from an analog beamforming network.
  • the antenna arrangement 120 a , 120 b, 120 c , 120 d further comprises an analog beamforming network. The signals are then fed to the antenna elements 140 a, 140 b from the analog beamforming network.
  • first and second polarizations p 1 , p 2 There could be different types of first and second polarizations p 1 , p 2 .
  • the first sub-array 130 a and the second sub-array 130 b have antenna elements 140 a , 140 b with mutually orthogonal polarizations. That is, according to an embodiment the first polarization p 1 and the second polarization p 2 are mutually orthogonal
  • the antenna arrangement 120 a , 120 b, 120 c , 120 d such that the signal as fed to the antenna elements 140 b of the second polarization p 2 of the second antenna array 130 b is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.
  • the signal as fed to the antenna elements mob of the second polarization p 2 of the second antenna array 130 b is phase shifted 180° with respect to at least the signal as fed to the antenna elements 140 a of the first polarization p 1 of the first antenna array 130 a .
  • the signal as fed to the antenna elements 140 b of the second polarization p 2 of the second antenna array 130 b is phase shifted 180° with respect to at least the signal as fed to the antenna elements 140 a of the first polarization p 1 of the second antenna array 130 b. This is the case for the antenna arrangement 120 d in FIG. 6 .
  • the two signals as fed to the first antenna array 130 a originate from a first common signal s 1
  • the two signals as fed to the second antenna array 130 b originate from a second common signal s 2
  • the first common signal s 1 represents a first layer signal
  • the second common signal s 2 represents a second layer signal
  • the first common signal s 1 and the second common signal s 2 represent two ports of a reference signal, such as CSI-RS.
  • FIG. 3 thus shows an embodiment in which one layer per antenna array 130 a , 130 b can be transmitted whilst utilizing all power amplifiers.
  • the signal s 1 for the first layer is transmitted on the first antenna array 130 a by feeding the two polarizations in phase, resulting in a vertical polarization of the transmitted signal.
  • the signal s 2 for the second layer is transmitted on the second antenna array 130 b by feeding the two polarizations with a 180° phase difference, resulting in a horizontal polarization of the transmitted signal. Since the two panel ports on one antenna array 130 a , 130 b have orthogonal polarizations there will not be any additional beamforming of the panel ports within an antenna array 130 a , 130 b other than the beamforming already performed by the analog beamforming network. Furthermore, the two layers will be transmitted with orthogonal polarizations since the resulting polarization of the transmission from the first antenna array 130 a is vertical and the resulting polarization of the transmission from the second antenna array 130 b is horizontal.
  • the antenna arrangement 120 b of FIG. 4 Other resulting polarization states for the antenna arrays 130 a , 130 b than linear horizontal polarization and vertical polarization can be obtained by introducing extra phase shifts, ⁇ , according to the antenna arrangement 120 b in FIG. 4 .
  • the signal as fed to the antenna elements 140 b of the second polarization p 2 of the first antenna array 130 a is phase shifted ⁇ ° with respect to the signal as fed to the antenna elements 140 a of the first polarization p 1 of the first antenna array 130 a.
  • the signal as fed to the antenna elements 140 a of the first polarization p 1 of the second antenna array 130 b is phase shifted ⁇ ° with respect to the signal as fed to the antenna elements 140 a of the first polarization p 1 of the first antenna array 130 a .
  • might have a channel dependent value.
  • the anti-symmetry of the applied phase shifts ensures that the two layers are transmitted with orthogonal polarizations.
  • the two antenna arrays 130 a , 130 b might have mutually different analog beamforming networks.
  • the analog beamforming networks for the two polarizations within each antenna array 130 a , 130 b should be the same.
  • the two polarizations within each antenna array 130 a , 130 b should be calibrated relative to each other.
  • Dual-polarization beamforming (as disclosed in WO2011/050866 A1 and WO2016/141961 A1) can be applied within each antenna array 130 a , 130 b using the analog beamforming network.
  • beams with arbitrary beam widths can be created while maintaining full utilization of the power amplifiers and orthogonal polarization between the two transmission layers.
  • Being able to create beams with different beam widths can be useful for a hierarchical beam search during beam management.
  • a first beam management process could comprise a beam scan of a wide angular sector using relatively wide beams
  • a second beam management process for beam refinement could comprise using narrower beams in a restricted angular sector, as determined by the first beam management process. It might be advantageous that the two beams have orthogonal polarizations since then a two-port CSI-RS resource in beam management will span the polarization space, removing the risk of polarization mismatch.
  • the first common signal s 1 and the second common signal s 2 originate from one single common signal s.
  • the single common signal s might then represent a single layer signal or a single-port reference signal.
  • a rank-1 transmission utilizing all power amplifiers can be achieved with the antenna arrangement 120 c illustrated in FIG. 5 .
  • the same signal s can be fed both antenna arrays 130 a , 130 b without any coherent combining of the two antenna arrays 130 a , 130 b.
  • the resulting rank-1 transmission beam will have the same radiation pattern as a single one of the antenna arrays 130 a , 130 b and will fully utilize all power amplifiers.
  • first polarization p 1 on the first antenna array 130 a to have the same analog beaming network as the second polarization p 2 on the second antenna array 130 b
  • second polarization p 2 on the first antenna array 130 a to have the same analog beaming network as the first polarization p 1 on the second antenna array 130 b.
  • the antenna arrangement 120 c is further suitable for transmission of 1-port signals such as SS block or physical downlink control channel (PDCCH) signaling.
  • Another usage can be to increase the coverage in beam management.
  • CSI-RS might be used with up to two antenna ports for beam management.
  • a typical usage would then be to transmit the CSI-RS in one beam from one of the antenna arrays 130 a , 130 b with one CSI-RS port per polarization. In such a transmission, only half of the total transmission power would be used per beam since only one of two antenna arrays 130 a , 130 b are used in the transmission.
  • the antenna arrangement 120 c the total transmit power from both antenna arrays 130 a , 130 b can be used for one beam (and two polarizations). With the antenna arrays 130 a, 130 b this beam will have the same radiation pattern as the beam from a single antenna array 130 a , 130 b.
  • the signal as fed to the antenna elements 140 b of the second polarization p 2 of the first antenna array 130 a is phase shifted ⁇ ° with respect to the signal as fed to the antenna elements 140 a of the first polarization p 1 of the second antenna array 130 b .
  • the signal as fed to the antenna elements 140 a of the first polarization p 1 of the first antenna array 130 a is phase shifted ⁇ ° with respect to the signal as fed to the antenna elements 140 a of the first polarization p 1 of the second antenna array 130 b .
  • there could be different ways to determine the value of ⁇ . For example, as above, a might have a channel dependent value.
  • the signal as fed to the antenna elements 140 a of the first polarization p 1 of the second antenna array 130 b and the signal as fed to the antenna elements 140 b of the second polarization p 2 of the first antenna array 130 a originate from a first common signal s 1 .
  • the signal as fed to the antenna elements 140 b of the second polarization p 2 of the second antenna array 130 b and the signal as fed to the antenna elements 140 a of the first polarization p 1 of the first antenna array 130 a originate from a second common signal s 2 .
  • the antenna arrangement 120 d of FIG. 6 is suitable for rank-2 transmission.
  • the first common signal s 1 might represent a first layer signal
  • the second common signal s 2 might represent a second layer signal
  • the first common signal s 1 and the second common signal s 2 might represent two ports of a reference signal.
  • the first layer signal uses one polarization p 1 from one antenna array 130 a and the orthogonal polarization p 2 from the other antenna array 130 b, and similarly for the second layer signal.
  • the two layers will have orthogonal polarization only in the boresight direction.
  • the polarization parallellity will vary with the direction since the transmission combines orthogonally polarized antenna ports having different phase centers.
  • FIG. 7 is a flowchart illustrating embodiments of methods for transmitting signals.
  • the methods are performed by the radio transceiver device 200 .
  • the radio transceiver device 200 comprises an antenna arrangement 120 a , 120 b , 120 c , 120 d as disclosed above.
  • the methods are advantageously provided as a computer program 1020 .
  • the radio transceiver device 200 transmits signals by feeding the signals through the antenna arrangement 120 a , 120 b, 120 c , 120 d.
  • the signals could be data signals, control signals, or reference signals.
  • the reference signals could be any type of reference signals, such as CSI-RS, SS block, etc.
  • FIG. 8 schematically illustrates, in terms of a number of functional units, the components of a radio transceiver device 200 according to an embodiment.
  • Processing circuitry 210 is provided using any combination of one or more of a suitable central processing unit (CPU), multiprocessor, microcontroller, digital signal processor (DSP), etc., capable of executing software instructions stored in a computer program product 1010 (as in FIG. 10 ), e.g. in the form of a storage medium 230 .
  • the processing circuitry 210 may further be provided as at least one application specific integrated circuit (ASIC), or field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the processing circuitry 210 is configured to cause the radio transceiver device 200 to perform a set of operations, or steps, as disclosed above.
  • the storage medium 230 may store the set of operations
  • the processing circuitry 210 may be configured to retrieve the set of operations from the storage medium 230 to cause the radio transceiver device 200 to perform the set of operations.
  • the set of operations may be provided as a set of executable instructions.
  • the processing circuitry 210 is thereby arranged to execute methods as herein disclosed.
  • the storage medium 230 may also comprise persistent storage, which, for example, can be any single one or combination of magnetic memory, optical memory, solid state memory or even remotely mounted memory.
  • the radio transceiver device 200 may further comprise a communications interface 220 at least configured for communications with another radio transceiver device 300 .
  • the communications interface 220 may comprise one or more transmitters and receivers, comprising analogue and digital components.
  • the radio transceiver device 200 comprises an antenna arrangement 120 a , 120 b, 120 c , 120 d as disclosed above and which thus might be part of the communications interface 220 .
  • the processing circuitry 210 controls the general operation of the radio transceiver device 200 e.g. by sending data and control signals to the communications interface 220 and the storage medium 230 , by receiving data and reports from the communications interface 220 , and by retrieving data and instructions from the storage medium 230 .
  • radio transceiver device 200 Other components, as well as the related functionality, of the radio transceiver device 200 are omitted in order not to obscure the concepts presented herein.
  • FIG. 9 schematically illustrates, in terms of a number of functional modules, the components of a radio transceiver device 200 according to an embodiment.
  • the radio transceiver device 200 of FIG. 9 comprises a transmit module 210 a configured to perform step S 102 .
  • the transmit module 210 a is implemented by the processing circuitry 210 and the communications interface 220 .
  • the radio transceiver device 200 of FIG. 9 further comprises an antenna arrangement 120 a , 120 b, 120 c , 120 d as herein disclosed.
  • the radio transceiver device 200 of FIG. 9 may further comprise a number of optional functional modules.
  • the functional module 210 a may in one embodiment be implemented only in hardware and in another embodiment with the help of software, i.e., the latter embodiment having computer program instructions stored on the storage medium 230 which when run on the processing circuitry makes the radio transceiver device 200 perform the corresponding steps mentioned above in conjunction with FIG. 9 .
  • the modules correspond to parts of a computer program, they do not need to be separate modules therein, but the way in which they are implemented in software is dependent on the programming language used.
  • one or more or all functional modules 210 a may be implemented by the processing circuitry 210 , possibly in cooperation with the communications interface 220 and/or the storage medium 230 .
  • the processing circuitry 210 may thus be configured to from the storage medium 230 fetch instructions as provided by a functional module 210 a and to execute these instructions, thereby performing any steps as disclosed herein.
  • the radio transceiver device 200 may be provided as a standalone device or as a part of at least one further device. In some aspects the radio transceiver device 200 is, or is provided in, a wireless device.
  • FIG. 10 shows one example of a computer program product 1010 comprising computer readable storage medium 1030 .
  • a computer program 1020 can be stored, which computer program 1020 can cause the processing circuitry 210 and thereto operatively coupled entities and devices, such as the communications interface 220 and the storage medium 230 , to execute methods according to embodiments described herein.
  • the computer program 1020 and/or computer program product 1010 may thus provide means for performing any steps as herein disclosed.
  • the computer program product 1010 is illustrated as an optical disc, such as a CD (compact disc) or a DVD (digital versatile disc) or a Blu-Ray disc.
  • the computer program product 1010 could also be embodied as a memory, such as a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM), or an electrically erasable programmable read-only memory (EEPROM) and more particularly as a non-volatile storage medium of a device in an external memory such as a USB (Universal Serial Bus) memory or a Flash memory, such as a compact Flash memory.
  • the computer program 1020 is here schematically shown as a track on the depicted optical disk, the computer program 1020 can be stored in any way which is suitable for the computer program product 1010 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

There is provided an antenna arrangement. The antenna arrangement comprises a first antenna array and a second antenna array. Each antenna array comprises antenna elements of a first polarization and antenna elements of a second polarization. The two antenna arrays are arranged to collectively be fed four signals, such that the antenna elements of each polarization at each antenna array is fed a respective one out of the four signals. The signal as fed to the antenna elements of the second polarization of the second antenna array is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.

Description

    TECHNICAL FIELD
  • Embodiments presented herein relate to an antenna arrangement, a method, a radio transceiver device, a computer program, and a computer program product for transmitting reference signals.
  • BACKGROUND
  • In communications networks, there may be a challenge to obtain good performance and capacity for a given communications protocol, its parameters and the physical environment in which the communications network is deployed.
  • For example, for future generations of mobile communications systems frequency bands at many different carrier frequencies could be needed. For example, low such frequency bands could be needed to achieve sufficient network coverage for wireless devices and higher frequency bands (e.g. at millimeter wavelengths (mmW), i.e. near and above 30 GHz) could be needed to reach required network capacity. In general terms, at high frequencies the propagation properties of the radio channel are more challenging and beamforming both at the access node of the network and at the wireless devices might be required to reach a sufficient link budget.
  • The wireless devices could implement beamforming by means of analog beamforming, digital beamforming, or hybrid beamforming. Each implementation has its advantages and disadvantages. A digital beamforming implementation is the most flexible implementation of the three but also the costliest due to the large number of required radio chains and baseband chains. An analog beamforming implementation is the least flexible but cheaper to manufacture due to a reduced number of radio chains and baseband chains compared to the digital beamforming implementation. A hybrid beamforming implementation is a compromise between the analog and the digital beamforming implementations. As the skilled person understands, depending on cost and performance requirements of different wireless devices, different implementations will be needed.
  • Different antenna architectures for different frequency bands are being discussed for wireless devices. At high frequency bands (e.g. above 15 GHz) something called “panels” of antenna arrays are being discussed. These panels of antenna array may be uniform linear/rectangular arrays (ULAs/URAs), for example steered by using analog phase shifters. In order to get coverage from different directions, multiple panels of antenna array can be mounted on different sides of the wireless devices. Unless specifically stated, the terms antenna array and panels will hereinafter be used interchangeably.
  • According to the third generation partnership project (3GPP) suite of telecommunications standards, an antenna port is a logical entity rather than a physical entity that is defined by a transmitted reference signal. Such an antenna port may or may not correspond to a physical antenna port. An example of the former is when the reference signal defining the port is transmitted on a connector to an antenna element. An example of the latter is when the reference signal defining the port is transmitted using a digital beamformer. A reference signal, e.g., channel state information reference signal (CSI-RS) or demodulation reference signal (DMRS), can have one or several ports. For example, a CSI-RS resource could have two ports which could be transmitted over two different physical antenna ports.
  • FIG. 1 schematically illustrates an example architecture of an antenna arrangement 120. The antenna arrangement 120 consists of two antenna arrays 130 a, 130 b, each having antenna elements 140 a, 140 b of two polarizations p1, p2. Each antenna array 130 a, 130 b is thus connected to one transceiver unit (TXRU) per polarization, thus in total four panel ports. Each panel port (corresponding to one TXRU) is capable of generating a narrow steerable beam by means of analog beamforming. An analog distribution network with phase shifters is used to steer the transmission beam generated at each antenna array 130 a, 130 b. For example, a multi-panel codebook can be used to support co-phasing of the antenna arrays 130 a, 130 b.
  • The antenna arrangement 120 can be used to transmit one or two layers per panel in single-user (SU) or multi-user (MU) multiple input multiple output (MIMO) transmission. In this respect, in a system using MIMO transmission, multiple independent data streams can be transmitted in the same time-frequency radio resource, resulting in so-called spatial multiplexing. One such data stream is sometimes referred to as a layer. According to an example, a single layer (per polarization) is transmitted by coherent combining of the two antenna arrays 130 a, 130 b in order to increase the beamforming gain.
  • There are cases when transmission with a dual-panel antenna with four panel ports can result in some issues.
  • For rank-1 or rank-2 transmission, e.g., physical downlink shared channel (PDSCH) signaling, there are two alternatives when using an antenna arrangement 120 as in FIG. 1. A first alternative is to transmit using only a single one of the antenna arrays 130 a, 130 b. Thereby only half of the total transmit power is used, leading to reduced coverage. A second alternative is to transmit using both antenna arrays 130 a, 130 b using coherent combining. This requires the knowledge of how to co-phase the two antenna arrays 130 a, 130 b in order to steer the resulting beam in the correct direction. This knowledge can be obtained by uplink channel estimation if reciprocity holds or by feedback from the receiving radio transceiver device. For reciprocity-based uplink channel estimation, besides requiring time-division duplexing (TDD), this also requires that the transmit branches and the receive branches in the two antenna arrays are calibrated, which can be costly to achieve. Feedback-based uplink channel estimation can be achieved by using so-called multi-panel codebook reporting. However, this increases signaling overhead. Furthermore, the multi-panel codebook might not support one antenna port per antenna array and polarization, and might therefore not even be used for the antenna arrangement in FIG. 1.
  • For transmission of so-called channels or signals that only use one or two antenna ports, e.g. a synchronization signal (SS) block (comprising PSS, SSS, and PBCH, where PSS is short for primary synchronization signal, SSS is short for secondary synchronization signal and PBCH is short for the physical broadcast channel) which are transmitted over one antenna port the transmitting radio transceiver device can perform a beam sweep to transmit the SS block in different directions. However, coherent combining of the two antenna arrays 130 a, 130 b may produce a very narrow transmission beam. For SS block transmission, a relatively wide transmission beam might be desired in order to achieve robustness against blockage and mobility of the receiving radio transceiver device. Furthermore, the number of possible transmission beams in an SS block beam sweep might be limited. Such a beam sweep should cover the entire coverage region of the transmitting radio transceiver device, and therefore the beams should not be too narrow. This could, for example, be the case when there is a limit on the number of beams in a beam sweep in which an SS block is transmitted. Furthermore, if the antenna arrays 130 a, 130 b are not calibrated relative to each other, the transmitting radio transceiver device has no knowledge of the resulting beam pointing direction when the same signal is fed to both antenna arrays 130 a, 130 b.
  • Hence, there are scenarios where coherent transmission across two antenna arrays 130 a, 130 b is not desired since it can create a too narrow transmission beam and/or control over the beam pointing direction is lost.
  • Hence, there is still a need for improved antenna arrangements for radio transceiver devices, such as network nodes or wireless devices.
  • SUMMARY
  • An object of embodiments herein is to provide an improved antenna arrangement that can be used in a radio transceiver device, such as a network node or a wireless device, and that does not suffer from the issues noted above, or at least where these issues are reduced or mitigated.
  • According to a first aspect there is presented an antenna arrangement. The antenna arrangement comprises a first antenna array and a second antenna array. Each antenna array comprises antenna elements of a first polarization and antenna elements of a second polarization. The two antenna arrays are arranged to collectively be fed four signals, such that the antenna elements of each polarization at each antenna array is fed a respective one out of the four signals. The signal as fed to the antenna elements of the second polarization of the second antenna array is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.
  • Advantageously this antenna arrangement can be used in a radio transceiver device, such as a wireless device, and that does not suffer from the issues noted above.
  • Advantageously this antenna arrangement allows for all power amplifiers to be fully utilized without causing unintended beamforming across the antenna arrays, leading to improved coverage, for example with respect to the antenna arrangement in FIG. 1.
  • According to a second aspect there is presented a radio transceiver device. The radio transceiver device comprises an antenna arrangement according to the first aspect.
  • According to a third aspect there is presented a method for transmitting signals. The method is performed by a radio transceiver device according to the second aspect. The method comprises transmitting signals by feeding the signals through the antenna arrangement.
  • According to a fourth aspect there is presented a computer program for transmitting reference signals, the computer program comprising computer program code which, when run on a radio transceiver device according to the second, causes the radio transceiver device to perform a method according to the third aspect.
  • According to a fifth aspect there is presented a computer program product comprising a computer program according to the fourth aspect and a computer readable storage medium on which the computer program is stored. The computer readable storage medium could be a non-transitory computer readable storage medium.
  • Other objectives, features and advantages of the enclosed embodiments will be apparent from the following detailed disclosure, from the attached dependent claims as well as from the drawings.
  • Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the element, apparatus, component, means, module, step, etc.” are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, module, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The inventive concept is now described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 schematically illustrates an antenna arrangement according to prior art;
  • FIG. 2 is a schematic diagram illustrating a communications system according to embodiments;
  • FIGS. 3, 4, 5, and 6 schematically illustrate antenna arrangements according to embodiments;
  • FIG. 7 is a flowchart of methods according to an embodiment;
  • FIG. 8 is a schematic diagram showing functional units of a radio transceiver device according to an embodiment;
  • FIG. 9 is a schematic diagram showing functional modules of a radio transceiver device according to an embodiment; and
  • FIG. 10 shows one example of a computer program product comprising computer readable storage medium according to an embodiment.
  • DETAILED DESCRIPTION
  • The inventive concept will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments of the inventive concept are shown. This inventive concept may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art. Like numbers refer to like elements throughout the description. Any step or feature illustrated by dashed lines should be regarded as optional.
  • FIG. 2 is a schematic diagram illustrating a communications system 100 comprising a radio transceiver device implemented as a radio access network node (such as the radio transceiver device 200) providing network access to a radio transceiver device implemented as a wireless device (such as the radio transceiver device 300). The radio access network node could be any of an access node, radio base station, base transceiver station, node B, evolved node B, g node B, access point, or the like. The wireless device could be any of a wireless device, mobile station, mobile phone, handset, wireless local loop phone, user equipment (UE), smartphone, laptop computer, tablet computer, wireless sensor, or the like.
  • The radio transceiver device 200 is assumed to comprise an antenna arrangement configured to transmit signals to the radio transceiver device 300 in M beams 110 a, 110 b, . . . , 110M. The beams 110 a, 110 b, . . . , 110M might all have the same width, or at least two of the beams 110 a, 110 b, . . . , 110M have mutually different widths. The radio transceiver device 200 is thus configured to communicate in M beams 110 a, 110 b, . . . , 110M (in contrast to omnidirectional beams).
  • As noted above there is a need for improved antenna arrangements for radio transceiver devices. Particularly, there is disclosed an antenna arrangement that enables unintentional, uncontrolled beamforming across two antenna arrays 130 a, 130 b of the antenna arrangement 120 in the radio transceiver device to be avoided.
  • Reference is now made to FIGS. 3, 4, 5, and 6. FIGS. 3, 4, 5, and 6 schematically illustrate antenna arrangements 120 a, 120 b, 120 c, 120 d according to embodiments.
  • The antenna arrangement 120 a, 120 b, 120 c, 120 d comprises a first antenna array 130 a and a second antenna array 130 b. Each antenna array 130 a, 130 b comprises antenna elements 140 a of a first polarization p1 and antenna elements 140 b of a second polarization p2.
  • The two antenna arrays 130 a, 130 b are arranged to collectively be fed four signals, such that the antenna elements 140 a, 140 b of each polarization p1, p2 at each antenna array 130 a, 130 b is fed a respective one out of the four signals. As will be disclosed below, these four signals might originate from two common signals s1, s2 (as for the antenna arrangements 120 a, 120 b, 120 d in FIGS. 3, 4, 6) or one single common signal s (as for the antenna arrangement 120 c in FIG. 5).
  • The signal as fed to the antenna elements mob of the second polarization p2 of the second antenna array 130 b is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.
  • By being arranged for transmission on orthogonal polarizations on the two antenna arrays 130 a, 130 b this antenna arrangement 120 a, 120 b, 120 c, 120 d enables non-coherent transmission across the two antenna arrays 130 a, 130 b.
  • Embodiments relating to further details of the antenna arrangement will now be disclosed.
  • In some aspects the antenna elements 140 a, 140 b are fed signals from an analog beamforming network. Particularly, according to an embodiment the antenna arrangement 120 a, 120 b, 120 c, 120 d further comprises an analog beamforming network. The signals are then fed to the antenna elements 140 a, 140 b from the analog beamforming network.
  • There could be different types of first and second polarizations p1, p2. In some aspects the first sub-array 130 a and the second sub-array 130 b have antenna elements 140 a, 140 b with mutually orthogonal polarizations. That is, according to an embodiment the first polarization p1 and the second polarization p2 are mutually orthogonal
  • There could be different ways to configure the antenna arrangement 120 a, 120 b, 120 c, 120 d such that the signal as fed to the antenna elements 140 b of the second polarization p2 of the second antenna array 130 b is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.
  • According to a first embodiment the signal as fed to the antenna elements mob of the second polarization p2 of the second antenna array 130 b is phase shifted 180° with respect to at least the signal as fed to the antenna elements 140 a of the first polarization p1 of the first antenna array 130 a. This is the case for the antenna arrangements 120 a, 120 b, 120 c in FIGS. 3, 4, 5.
  • According to a second embodiment the signal as fed to the antenna elements 140 b of the second polarization p2 of the second antenna array 130 b is phase shifted 180° with respect to at least the signal as fed to the antenna elements 140 a of the first polarization p1 of the second antenna array 130 b. This is the case for the antenna arrangement 120 d in FIG. 6.
  • Specific reference is now made to the antenna arrangement 120 a of FIG. 3. According to the antenna arrangement 120 a in FIG. 3, the two signals as fed to the first antenna array 130 a originate from a first common signal s1, and the two signals as fed to the second antenna array 130 b originate from a second common signal s2. Further, the first common signal s1 represents a first layer signal, and the second common signal s2 represents a second layer signal, or the first common signal s1 and the second common signal s2 represent two ports of a reference signal, such as CSI-RS. FIG. 3 thus shows an embodiment in which one layer per antenna array 130 a, 130 b can be transmitted whilst utilizing all power amplifiers.
  • The signal s1 for the first layer is transmitted on the first antenna array 130 a by feeding the two polarizations in phase, resulting in a vertical polarization of the transmitted signal. The signal s2 for the second layer is transmitted on the second antenna array 130 b by feeding the two polarizations with a 180° phase difference, resulting in a horizontal polarization of the transmitted signal. Since the two panel ports on one antenna array 130 a, 130 b have orthogonal polarizations there will not be any additional beamforming of the panel ports within an antenna array 130 a, 130 b other than the beamforming already performed by the analog beamforming network. Furthermore, the two layers will be transmitted with orthogonal polarizations since the resulting polarization of the transmission from the first antenna array 130 a is vertical and the resulting polarization of the transmission from the second antenna array 130 b is horizontal.
  • Specific reference is now made to the antenna arrangement 120 b of FIG. 4. Other resulting polarization states for the antenna arrays 130 a, 130 b than linear horizontal polarization and vertical polarization can be obtained by introducing extra phase shifts, α, according to the antenna arrangement 120 b in FIG. 4. According to the antenna arrangement 120 b in FIG. 4, the signal as fed to the antenna elements 140 b of the second polarization p2 of the first antenna array 130 a is phase shifted α° with respect to the signal as fed to the antenna elements 140 a of the first polarization p1 of the first antenna array 130 a. Further, the signal as fed to the antenna elements 140 a of the first polarization p1 of the second antenna array 130 b is phase shifted −α° with respect to the signal as fed to the antenna elements 140 a of the first polarization p1 of the first antenna array 130 a. There could be different ways to determine the value of α. For example, α might have a channel dependent value.
  • The anti-symmetry of the applied phase shifts (α and −α, respectively,) ensures that the two layers are transmitted with orthogonal polarizations. In transmission schemes where one layer is transmitted per antenna array 130 a, 130 b, the two antenna arrays 130 a, 130 b might have mutually different analog beamforming networks. However, the analog beamforming networks for the two polarizations within each antenna array 130 a, 130 b should be the same. Furthermore, the two polarizations within each antenna array 130 a, 130 b should be calibrated relative to each other.
  • Dual-polarization beamforming (as disclosed in WO2011/050866 A1 and WO2016/141961 A1) can be applied within each antenna array 130 a, 130 b using the analog beamforming network. In this way, beams with arbitrary beam widths can be created while maintaining full utilization of the power amplifiers and orthogonal polarization between the two transmission layers. Being able to create beams with different beam widths can be useful for a hierarchical beam search during beam management. For example, a first beam management process could comprise a beam scan of a wide angular sector using relatively wide beams, and a second beam management process for beam refinement could comprise using narrower beams in a restricted angular sector, as determined by the first beam management process. It might be advantageous that the two beams have orthogonal polarizations since then a two-port CSI-RS resource in beam management will span the polarization space, removing the risk of polarization mismatch.
  • Specific reference is now made to the antenna arrangement 120 c of FIG. 5. According to the antenna arrangement 120 c in FIG. 5, the first common signal s1 and the second common signal s2 originate from one single common signal s. The single common signal s might then represent a single layer signal or a single-port reference signal. A rank-1 transmission utilizing all power amplifiers can be achieved with the antenna arrangement 120 c illustrated in FIG. 5.
  • Since the resulting polarizations of the two antenna arrays 130 a, 130 b are orthogonal, the same signal s can be fed both antenna arrays 130 a, 130 bwithout any coherent combining of the two antenna arrays 130 a, 130 b. The resulting rank-1 transmission beam will have the same radiation pattern as a single one of the antenna arrays 130 a, 130 b and will fully utilize all power amplifiers. This might require the first polarization p1 on the first antenna array 130 a to have the same analog beaming network as the second polarization p2 on the second antenna array 130 b, and the second polarization p2 on the first antenna array 130 a to have the same analog beaming network as the first polarization p1 on the second antenna array 130 b.
  • The antenna arrangement 120 c is further suitable for transmission of 1-port signals such as SS block or physical downlink control channel (PDCCH) signaling. Another usage can be to increase the coverage in beam management. For example, CSI-RS might be used with up to two antenna ports for beam management. A typical usage would then be to transmit the CSI-RS in one beam from one of the antenna arrays 130 a, 130 b with one CSI-RS port per polarization. In such a transmission, only half of the total transmission power would be used per beam since only one of two antenna arrays 130 a, 130 b are used in the transmission. With the antenna arrangement 120 c, the total transmit power from both antenna arrays 130 a, 130 b can be used for one beam (and two polarizations). With the antenna arrays 130 a, 130 b this beam will have the same radiation pattern as the beam from a single antenna array 130 a, 130 b.
  • Specific reference is now made to the antenna arrangement 120 d of FIG. 6. According to the antenna arrangement 120 d in FIG. 6, the signal as fed to the antenna elements 140 b of the second polarization p2 of the first antenna array 130 a is phase shifted α° with respect to the signal as fed to the antenna elements 140 a of the first polarization p1 of the second antenna array 130 b. Further, the signal as fed to the antenna elements 140 a of the first polarization p1 of the first antenna array 130 a is phase shifted −α° with respect to the signal as fed to the antenna elements 140 a of the first polarization p1 of the second antenna array 130 b. There could be different ways to determine the value of α. For example, as above, a might have a channel dependent value.
  • Further, according to the antenna arrangement 120 d in FIG. 6, the signal as fed to the antenna elements 140 a of the first polarization p1 of the second antenna array 130 b and the signal as fed to the antenna elements 140 b of the second polarization p2 of the first antenna array 130 a originate from a first common signal s1. Still further, the signal as fed to the antenna elements 140 b of the second polarization p2 of the second antenna array 130 b and the signal as fed to the antenna elements 140 a of the first polarization p1 of the first antenna array 130 a originate from a second common signal s2.
  • The antenna arrangement 120 d of FIG. 6 is suitable for rank-2 transmission. Particularly, the first common signal s1 might represent a first layer signal, and the second common signal s2 might represent a second layer signal, or the first common signal s1 and the second common signal s2 might represent two ports of a reference signal.
  • According to the example of FIG. 6, the first layer signal uses one polarization p1 from one antenna array 130 a and the orthogonal polarization p2 from the other antenna array 130 b, and similarly for the second layer signal. In this case, the two layers will have orthogonal polarization only in the boresight direction. In other directions the polarization parallellity will vary with the direction since the transmission combines orthogonally polarized antenna ports having different phase centers.
  • FIG. 7 is a flowchart illustrating embodiments of methods for transmitting signals. The methods are performed by the radio transceiver device 200. The radio transceiver device 200 comprises an antenna arrangement 120 a, 120 b, 120 c, 120 d as disclosed above. The methods are advantageously provided as a computer program 1020.
  • S102: The radio transceiver device 200 transmits signals by feeding the signals through the antenna arrangement 120 a, 120 b, 120 c, 120 d.
  • The signals could be data signals, control signals, or reference signals. The reference signals could be any type of reference signals, such as CSI-RS, SS block, etc.
  • FIG. 8 schematically illustrates, in terms of a number of functional units, the components of a radio transceiver device 200 according to an embodiment. Processing circuitry 210 is provided using any combination of one or more of a suitable central processing unit (CPU), multiprocessor, microcontroller, digital signal processor (DSP), etc., capable of executing software instructions stored in a computer program product 1010 (as in FIG. 10), e.g. in the form of a storage medium 230. The processing circuitry 210 may further be provided as at least one application specific integrated circuit (ASIC), or field programmable gate array (FPGA).
  • Particularly, the processing circuitry 210 is configured to cause the radio transceiver device 200 to perform a set of operations, or steps, as disclosed above. For example, the storage medium 230 may store the set of operations, and the processing circuitry 210 may be configured to retrieve the set of operations from the storage medium 230 to cause the radio transceiver device 200 to perform the set of operations. The set of operations may be provided as a set of executable instructions.
  • Thus the processing circuitry 210 is thereby arranged to execute methods as herein disclosed. The storage medium 230 may also comprise persistent storage, which, for example, can be any single one or combination of magnetic memory, optical memory, solid state memory or even remotely mounted memory. The radio transceiver device 200 may further comprise a communications interface 220 at least configured for communications with another radio transceiver device 300. As such, the communications interface 220 may comprise one or more transmitters and receivers, comprising analogue and digital components. In this respect the radio transceiver device 200 comprises an antenna arrangement 120 a, 120 b, 120 c, 120 d as disclosed above and which thus might be part of the communications interface 220.
  • The processing circuitry 210 controls the general operation of the radio transceiver device 200 e.g. by sending data and control signals to the communications interface 220 and the storage medium 230, by receiving data and reports from the communications interface 220, and by retrieving data and instructions from the storage medium 230.
  • Other components, as well as the related functionality, of the radio transceiver device 200 are omitted in order not to obscure the concepts presented herein.
  • FIG. 9 schematically illustrates, in terms of a number of functional modules, the components of a radio transceiver device 200 according to an embodiment. The radio transceiver device 200 of FIG. 9 comprises a transmit module 210 a configured to perform step S102. In some aspects the transmit module 210 a is implemented by the processing circuitry 210 and the communications interface 220. In some aspects the radio transceiver device 200 of FIG. 9 further comprises an antenna arrangement 120 a, 120 b, 120 c, 120 d as herein disclosed.
  • The radio transceiver device 200 of FIG. 9 may further comprise a number of optional functional modules. In general terms, the functional module 210 a may in one embodiment be implemented only in hardware and in another embodiment with the help of software, i.e., the latter embodiment having computer program instructions stored on the storage medium 230 which when run on the processing circuitry makes the radio transceiver device 200 perform the corresponding steps mentioned above in conjunction with FIG. 9. It should also be mentioned that even though the modules correspond to parts of a computer program, they do not need to be separate modules therein, but the way in which they are implemented in software is dependent on the programming language used. Preferably, one or more or all functional modules 210 a may be implemented by the processing circuitry 210, possibly in cooperation with the communications interface 220 and/or the storage medium 230. The processing circuitry 210 may thus be configured to from the storage medium 230 fetch instructions as provided by a functional module 210 a and to execute these instructions, thereby performing any steps as disclosed herein.
  • The radio transceiver device 200 may be provided as a standalone device or as a part of at least one further device. In some aspects the radio transceiver device 200 is, or is provided in, a wireless device.
  • FIG. 10 shows one example of a computer program product 1010 comprising computer readable storage medium 1030. On this computer readable storage medium 1030, a computer program 1020 can be stored, which computer program 1020 can cause the processing circuitry 210 and thereto operatively coupled entities and devices, such as the communications interface 220 and the storage medium 230, to execute methods according to embodiments described herein. The computer program 1020 and/or computer program product 1010 may thus provide means for performing any steps as herein disclosed.
  • In the example of FIG. 10, the computer program product 1010 is illustrated as an optical disc, such as a CD (compact disc) or a DVD (digital versatile disc) or a Blu-Ray disc. The computer program product 1010 could also be embodied as a memory, such as a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM), or an electrically erasable programmable read-only memory (EEPROM) and more particularly as a non-volatile storage medium of a device in an external memory such as a USB (Universal Serial Bus) memory or a Flash memory, such as a compact Flash memory. Thus, while the computer program 1020 is here schematically shown as a track on the depicted optical disk, the computer program 1020 can be stored in any way which is suitable for the computer program product 1010.
  • The inventive concept has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the inventive concept, as defined by the appended patent claims.

Claims (21)

1. An antenna arrangement, the antenna arrangement comprising:
a first antenna array; and
a second antenna array, wherein
the first antenna array comprises antenna elements of a first polarization and antenna elements of a second polarization,
the second antenna array comprises antenna elements of the first polarization and antenna elements of the second polarization,
the two antenna arrays are arranged to collectively be fed four signals, such that the antenna elements of each polarization at each antenna array is fed a respective one out of the four signals, and
the signal as fed to the antenna elements of the second polarization of the second antenna array is phase shifted 180° with respect to at least one of the other signals as fed to the other antenna elements.
2. The antenna arrangement of claim 1, wherein the signal as fed to the antenna elements of the second polarization of the second antenna array is phase shifted 180° with respect to at least the signal as fed to the antenna elements of the first polarization of the first antenna array.
3. The antenna arrangement of claim 2, wherein the two signals as fed to the first antenna array originate from a first common signal s1, and wherein the two signals as fed to the second antenna array originate from a second common signal s2.
4. The antenna arrangement of claim 3, wherein the first common signal s1 represents a first layer signal and wherein the second common signal s2 represents a second layer signal, or wherein the first common signal s1 and the second common signal s2 represent two ports of a reference signal.
5. The antenna arrangement of claim 3, wherein the signal as fed to the antenna elements of the second polarization of the first antenna array is phase shifted α° with respect to the signal as fed to the antenna elements of the first polarization of the first antenna array.
6. The antenna arrangement of claim 3, wherein the signal as fed to the antenna elements of the first polarization of the second antenna array is phase shifted −α° with respect to the signal as fed to the antenna elements of the first polarization of the first antenna array.
7. The antenna arrangement of claim 5, wherein α has a channel dependent value.
8. The antenna arrangement of claim 3, wherein the first common signal s1 and the second common signal s2 originate from one single common signal s.
9. The antenna arrangement of claim 8, wherein the single common signal s represents a single layer signal or a single-port reference signal.
10. The antenna arrangement of claim 1, wherein the signal as fed to the antenna elements of the second polarization of the second antenna array is phase shifted 180° with respect to at least the signal as fed to the antenna elements of the first polarization of the second antenna array.
11. The antenna arrangement of claim 10, wherein the signal as fed to the antenna elements of the second polarization of the first antenna array is phase shifted α° with respect to the signal as fed to the antenna elements of the first polarization of the second antenna array.
12. The antenna arrangement of claim 10, wherein the signal as fed to the antenna elements of the first polarization of the first antenna array is phase shifted −α° with respect to the signal as fed to the antenna elements of the first polarization of the second antenna array.
13. The antenna arrangement of claim 11, wherein α has a channel dependent value.
14. The antenna arrangement of claim 10, wherein the signal as fed to the antenna elements of the first polarization of the second antenna array and the signal as fed to the antenna elements of the second polarization of the first antenna array originate from a first common signal s1.
15. The antenna arrangement of claim 10, wherein the signal as fed to the antenna elements of the second polarization of the second antenna array and the signal as fed to the antenna elements of the first polarization of the first antenna array originate from a second common signal s2.
16. The antenna arrangement of claim 15, wherein the first common signal s1 represents a first layer signal, and wherein the second common signal s2 represents a second layer signal, or wherein the first common signal s1 and the second common signal s2 represent two ports of a reference signal.
17. The antenna arrangement of claim 1, further comprising:
an analog beamforming network, and wherein the four signals are fed to the antenna elements from the analog beamforming network.
18. The antenna arrangement of claim 1, wherein the first polarization and the second polarization are mutually orthogonal.
19. A radio transceiver device comprising the antenna arrangement of claim 1.
20. A method for transmitting signals, the method being performed by a radio transceiver device, the method comprising:
transmitting signals by feeding the signals through the antenna arrangement of claim 1.
21. A computer program product comprising a non-transitory computer readable medium storing a computer program for transmitting signals, the computer program comprising computer code which, when run on processing circuitry of a radio transceiver device, causes the radio transceiver device to perform the method according to claim 20.
US15/771,351 2018-04-12 2018-04-12 Antenna arrangement for transmitting reference signals Active US10432273B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/059363 WO2019197028A1 (en) 2018-04-12 2018-04-12 Antenna arrangement for transmitting reference signals

Publications (2)

Publication Number Publication Date
US10432273B1 US10432273B1 (en) 2019-10-01
US20190319684A1 true US20190319684A1 (en) 2019-10-17

Family

ID=61972527

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/771,351 Active US10432273B1 (en) 2018-04-12 2018-04-12 Antenna arrangement for transmitting reference signals

Country Status (7)

Country Link
US (1) US10432273B1 (en)
EP (1) EP3776874B1 (en)
JP (1) JP7328248B2 (en)
CN (1) CN111937239A (en)
BR (1) BR112020020808A2 (en)
MX (1) MX2020010597A (en)
WO (1) WO2019197028A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021183335A1 (en) * 2020-03-10 2021-09-16 Commscope Technologies Llc Massive mimo (mmimo) antenna with phase shifter and radio signal phase synchronization

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019048033A1 (en) * 2017-09-06 2019-03-14 Telefonaktiebolaget Lm Ericsson (Publ) Antenna arrangement for two polarizations
US11502418B2 (en) * 2018-06-05 2022-11-15 European Space Agency Network for forming multiple beams from a planar array
EP4122047A4 (en) * 2020-03-18 2024-01-03 Ericsson Telefon Ab L M Side lobe level enhancement in an array antenna

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989011A (en) * 1987-10-23 1991-01-29 Hughes Aircraft Company Dual mode phased array antenna system
JPH07209359A (en) * 1994-01-10 1995-08-11 Mitsubishi Electric Corp Electron scanning microwave radiometer
JP3279180B2 (en) * 1996-06-07 2002-04-30 三菱電機株式会社 Array antenna device
FR2788133B1 (en) * 1998-12-30 2003-05-02 Agence Spatiale Europeenne RADIOMETRIC SYSTEM COMPRISING AN ANTENNA OF THE OPENING SYNTHESIS TYPE AND ITS APPLICATION IN MICROWAVE IMAGING
US7038621B2 (en) * 2003-08-06 2006-05-02 Kathrein-Werke Kg Antenna arrangement with adjustable radiation pattern and method of operation
US8879997B2 (en) 2011-03-25 2014-11-04 Quintel Technology Limited Method and apparatus for antenna radiation cross polar suppression
US8588334B2 (en) * 2011-07-22 2013-11-19 Telefonaktiebolaget L M Ericsson (Publ) Robust antenna array
KR101969701B1 (en) * 2011-08-19 2019-04-17 큐인텔 케이만 리미티드 Method and apparatus for providing elevation plane spatial beamforming
BR112014012109A8 (en) 2011-12-13 2017-06-20 Ericsson Telefon Ab L M node in a wireless communication network with at least two antenna columns
US10629999B2 (en) * 2012-03-12 2020-04-21 John Howard Method and apparatus that isolate polarizations in phased array and dish feed antennas
US9774098B2 (en) * 2012-12-03 2017-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication node with 4TX/4RX triple band antenna arrangement
JP2014204305A (en) 2013-04-05 2014-10-27 株式会社Nttドコモ Radio communication system, radio base station and user device
BR112015024425A2 (en) * 2013-04-25 2017-07-18 Ericsson Telefon Ab L M sky spider roofing knot
US10205235B2 (en) * 2013-12-04 2019-02-12 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication system node with re-configurable antenna devices
EP3100518B1 (en) * 2014-01-31 2020-12-23 Quintel Cayman Limited Antenna system with beamwidth control
PT3266119T (en) * 2015-03-06 2018-07-23 Ericsson Telefon Ab L M Beam forming using an antenna arrangement
EP3958478B1 (en) * 2016-01-29 2023-11-08 Telefonaktiebolaget LM Ericsson (publ) Beamforming using an antenna array
US10700762B2 (en) * 2016-05-04 2020-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Beam forming using an antenna arrangement
US10616768B2 (en) * 2016-06-05 2020-04-07 Iridium Satellite Llc Wireless communication with interference mitigation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021183335A1 (en) * 2020-03-10 2021-09-16 Commscope Technologies Llc Massive mimo (mmimo) antenna with phase shifter and radio signal phase synchronization
US11316258B2 (en) 2020-03-10 2022-04-26 Commscope Technologies Llc Massive MIMO (mMIMO) antenna with phase shifter and radio signal phase synchronization

Also Published As

Publication number Publication date
MX2020010597A (en) 2020-10-28
EP3776874A1 (en) 2021-02-17
JP7328248B2 (en) 2023-08-16
EP3776874B1 (en) 2023-09-27
JP2021521686A (en) 2021-08-26
CN111937239A (en) 2020-11-13
WO2019197028A1 (en) 2019-10-17
BR112020020808A2 (en) 2021-01-12
US10432273B1 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US10432273B1 (en) Antenna arrangement for transmitting reference signals
US11728879B2 (en) Dual-polarization beamforming
US20160211900A1 (en) Beam Forming Using a Two-Dimensional Antenna Arrangement
US20180026367A1 (en) Beam Forming Using an Antenna Arrangement
EP3652870B1 (en) Frequency-selective beam management
US11601165B2 (en) Antenna arrangement for two polarizations
US11329399B2 (en) Antenna arrangement for dual-polarization beamforming
US10285179B2 (en) Flexible reconfiguration of an antenna arrangement
US20230138221A1 (en) Antenna arrangements for a radio transceiver device
JP2015504626A (en) Method and apparatus for generating a static beam across an entire virtual sector using phase shift transmit diversity
US11095347B1 (en) Transmission of a two-port reference signal
US10666333B2 (en) Signal transmission diversity
US20180006671A1 (en) Method for transmitting radio signals from a base station, a system and a computer program product

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ATHLEY, FREDRIK;PETERSSON, SVEN;NILSSON, ANDREAS;REEL/FRAME:046361/0233

Effective date: 20180412

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4