US20190295896A1 - Manufacturing method of epitaxial fin-shaped structure - Google Patents

Manufacturing method of epitaxial fin-shaped structure Download PDF

Info

Publication number
US20190295896A1
US20190295896A1 US15/951,192 US201815951192A US2019295896A1 US 20190295896 A1 US20190295896 A1 US 20190295896A1 US 201815951192 A US201815951192 A US 201815951192A US 2019295896 A1 US2019295896 A1 US 2019295896A1
Authority
US
United States
Prior art keywords
layer
epitaxial
shaped structure
recess
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/951,192
Other versions
US10431497B1 (en
Inventor
Po-Kuang Hsieh
Kuan-Hao TSENG
Yu-Hsiang Lin
Shih-Hung Tsai
Yu-Ting Tseng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Assigned to UNITED MICROELECTRONICS CORP. reassignment UNITED MICROELECTRONICS CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSIEH, PO-KUANG, LIN, YU-HSIANG, TSAI, SHIH-HUNG, TSENG, KUAN-HAO, TSENG, YU-TING
Publication of US20190295896A1 publication Critical patent/US20190295896A1/en
Application granted granted Critical
Publication of US10431497B1 publication Critical patent/US10431497B1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66803Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Definitions

  • the present invention relates to a manufacturing method of an epitaxial fin-shaped structure, and more particularly, to a manufacturing method including a planarization process for forming an epitaxial fin-shaped structure.
  • the conventional planar field effect transistor has difficulty in development because of the manufacturing limitations. Therefore, for overcoming the manufacturing limitations, the non-planar transistor technology such as fin field effect transistor (FinFET) technology is developed to replace the planar FET and becomes a development trend in the related industries.
  • FinFET fin field effect transistor
  • the manufacturing processes of the field effect transistors are more complicated relatively, and the related industries are endeavoring to simplify the processes and lower the manufacturing cost. Since the three-dimensional structure of a FinFET increases the overlapping area between the gate and the fin-shaped structure, the channel region can therefore be more effectively controlled by the gate. This way, the drain-induced barrier lowering (DIBL) effect and the short channel effect (SCE) of the device with smaller dimensions may be reduced. Additionally, a higher drain current may be obtained because the FinFET may have a wider channel width while the channel length is unchanged.
  • DIBL drain-induced barrier lowering
  • SCE short channel effect
  • a manufacturing method of an epitaxial fin-shaped structure is provided in the present invention.
  • a planarization process is performed after forming a nitride layer and an oxide layer on an epitaxial layer for improving the flatness of the epitaxial layer and improving the height uniformity of an epitaxial fin-shaped structure formed by the epitaxial layer.
  • a manufacturing method of an epitaxial fin-shaped structure includes the following steps.
  • a substrate is provided.
  • a recess is formed in the substrate.
  • An epitaxial layer is formed on the substrate.
  • the epitaxial layer is partly formed in the recess and partly formed outside the recess.
  • the epitaxial layer has a dent formed on the top surface of the epitaxial layer, and the dent is formed corresponding to the recess in a thickness direction of the substrate.
  • a nitride layer is conformally formed on the epitaxial layer.
  • An oxide layer is formed on the nitride layer.
  • a first planarization process is performed to remove a part of the oxide layer, and the first planarization process is stopped on the nitride layer.
  • the epitaxial layer in the recess is patterned for forming at least one epitaxial fin-shaped structure.
  • FIGS. 1-8 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a first embodiment of the present invention, wherein FIG. 2 is a schematic drawing in a step subsequent to FIG. 1 , FIG. 3 is a schematic drawing in a step subsequent to FIG. 2 , FIG. 4 is a schematic drawing in a step subsequent to FIG. 3 , FIG. 5 is a schematic drawing in a step subsequent to FIG. 4 , FIG. 6 is a schematic drawing in a step subsequent to FIG. 5 , FIG. 7 is a schematic drawing in a step subsequent to FIG. 6 , and FIG. 8 is a schematic drawing in a step subsequent to FIG. 7 .
  • FIG. 9 and FIG. 10 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a second embodiment of the present invention, wherein FIG. 10 is a schematic drawing in a step subsequent to FIG. 9 .
  • FIGS. 1-8 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a first embodiment of the present invention, wherein FIG. 2 is a schematic drawing in a step subsequent to FIG. 1 , FIG. 3 is a schematic drawing in a step subsequent to FIG. 2 , FIG. 4 is a schematic drawing in a step subsequent to FIG. 3 , FIG. 5 is a schematic drawing in a step subsequent to FIG. 4 , FIG. 6 is a schematic drawing in a step subsequent to FIG. 5 , FIG. 7 is a schematic drawing in a step subsequent to FIG. 6 , and FIG. 8 is a schematic drawing in a step subsequent to FIG. 7 .
  • the manufacturing method of the epitaxial fin-shaped structure in this embodiment may include the following steps.
  • a substrate is provided.
  • the substrate 10 may include a silicon substrate, a silicon-on insulator (SOI) substrate, or substrates made of other suitable materials.
  • An oxide mask layer 20 is formed on the substrate 10 , and a patterned photoresist layer 21 is formed on the oxide mask layer 20 .
  • the oxide mask layer 20 may include silicon oxide or other suitable oxide materials.
  • a part of the oxide mask layer 20 may be removed for exposing a part of the substrate 10 by an etching process using the patterned mask layer 21 , and an ion implantation process may be performed to implant dopants to the substrate 10 which is not covered by the patterned photoresist layer 10 for forming a well 11 .
  • the part of the substrate 10 having the well 11 formed therein may be used to form active units such as fin-shaped transistors in subsequent processes, but not limited thereto.
  • the dopants used in the implantation process for forming the well 11 may be different in accordance with different types of transistors going to be formed, and the well 11 may include an N-well or a P-well.
  • a recess RS is then formed in the substrate 10 .
  • the recess RS may be formed by performing another etching process using the patterned photoresist layer 21 as a mask to remove a part of the substrate 10 including the well 11 , but not limited thereto.
  • the patterned photoresist layer 21 may be removed, and the recess RS in the substrate 10 may be formed by performing an etching process using the oxide mask layer 20 as a mask.
  • the oxide mask layer 20 may be formed on the substrate 10 before the step of forming the recess RS.
  • the recess RS may be formed in the substrate 10 first, and the well 11 may be formed in the substrate 10 and formed under the recess RS after the step of forming the recess RS according to some considerations.
  • the patterned photoresist layer 21 is removed subsequently, and an epitaxial layer 30 is formed on the substrate 10 after the step of removing the patterned photoresist layer 21 .
  • the epitaxial layer 30 may be partly formed in the recess RS and partly formed outside the recess RS.
  • the recess RS may be filled with the epitaxial layer 30 , and a top surface 30 S of the epitaxial layer 30 may be higher than the top surface of the substrate 10 and the top surface of the oxide mask layer 20 in a vertical direction (such as a thickness direction Z of the substrate 10 ).
  • a part of the epitaxial layer 30 formed outside the recess RS may be located on the oxide mask layer 20 in the thickness direction Z of the substrate 10 , but not limited thereto.
  • a thickness TK of the epitaxial layer 30 may be larger than a depth DP of the recess RS.
  • the depth DP of the recess RS may be about 500 angstroms and the thickness TK of the epitaxial layer 30 may be about 1250 angstroms.
  • the epitaxial layer 30 may be formed by a growth process such as a selective epitaxial growth (SEG) process, but not limited thereto.
  • the epitaxial layer 30 may be composed of silicon germanium (SiGe), but not limited thereto.
  • the epitaxial layer 30 may be composed of at least one or a combination selected from the group consisting of silicon, germanium, silicon carbide, gallium arsenide, indium phosphide, indium gallium arsenide, indium aluminum phosphide, and group III-V semiconductor materials.
  • the epitaxial layer 30 will have a dent 30 R formed on the top surface 30 S of the epitaxial layer 30 because of the influence of the topography of the substrate 10 and the recess RS, and the dent 30 R is formed corresponding to the recess RS in the thickness direction Z of the substrate 10 .
  • the top surface 30 S of the epitaxial layer 30 located above the oxide mask layer 20 may be higher than the surface of the dent 30 R in the thickness direction Z of the substrate 10 .
  • a nitride layer 41 is conformally formed on the epitaxial layer 30 , and an oxide layer 42 is formed on the nitride layer 41 .
  • the nitride layer 41 may include silicon nitride or other suitable nitride materials, and the oxide layer 42 may include silicon oxide or other suitable oxide materials.
  • the nitride layer 41 and the oxide layer 42 may be formed by a deposition process such as a chemical vapor deposition, but not limited thereto.
  • a part of the nitride layer 41 and a part of the oxide layer 42 may be formed in the dent 30 R of the epitaxial layer 30 , and another part of the nitride layer 41 and another part of the oxide layer 42 may be formed outside the dent 30 R of the epitaxial layer 30 .
  • the dent 30 R of the epitaxial layer 30 may be filled with the nitride layer 41 and the oxide layer 42 .
  • the nitride layer 41 may be relatively thinner because the nitride layer 41 may be used as a stop layer in a planarization process performed subsequently and the nitride layer 41 has to be conformally formed on the top surface 30 S of the epitaxial layer 30 and the surface of the dent 30 R.
  • the oxide layer 42 may be relatively thicker because the remaining space in the dent 30 R has to be filled with the oxide layer 42 . Accordingly, the oxide layer 42 may be thicker than the nitride layer 41 .
  • the thickness of the nitride layer 41 may be about 60 angstroms, and the thickness of the oxide layer 42 may be about 1000 angstroms, but not limited thereto.
  • a first planarization process 91 is performed to remove a part of the oxide layer 42 , and the first planarization process 91 is stopped on the nitride layer 41 .
  • the first planarization process 91 may include a chemical mechanical polishing (CMP) process or other suitable planarization approaches.
  • CMP chemical mechanical polishing
  • the first planarization process 91 may be controlled to be stopped on the nitride layer 41 by the material difference between the nitride layer 41 and the oxide layer 42 and the influence of the dent 30 R and the topography of the epitaxial layer 30 on the nitride layer 41 .
  • the nitride layer 41 and the oxide layer 42 formed in the dent 30 R may still remain in the dent 30 R after the first planarization process 91 .
  • the epitaxial layer 30 in the recess RS is patterned for forming at least one epitaxial fin-shaped structure 30 F.
  • a second planarization process 92 may be performed to remove the oxide layer 42 , the nitride layer 41 , and the epitaxial layer 30 outside the recess RS after the first planarization process 91 and before the step of forming the epitaxial fin-shaped structure 30 F, but not limited thereto.
  • the second planarization process 92 may be stopped on the oxide mask layer 20 , and a part of the oxide mask layer 20 may be removed by the second planarization process 92 , but not limited thereto.
  • the second planarization process 92 may be different from the first planarization process 91 .
  • the second planarization process 92 may include an etching back process or other suitable planarization approaches, and a process gas used in the etching back process may include carbon hexafluoride (CF 6 ), sulfur hexafluoride (SF 6 ), or other suitable process gases.
  • the required etching rate and the etching selectivity for different material layers may be obtained by modifying the process conditions of the second planarization process 92 , such as the types and/or the composition ratio of the process gases in the etching back process.
  • the ratio of carbon hexafluoride to sulfur hexafluoride used in the etching back process may be about 15:1, but not limited thereto.
  • the etching rate of the nitride layer 41 in the etching back process of the second planarization process 92 may be higher than the etching rate of the epitaxial layer 30 in the etching back process
  • the etching rate of the oxide layer 42 in the etching back process may be higher than the etching rate of the epitaxial layer 30 in the etching back process
  • the etching rate of the oxide mask layer 20 in the etching back process may be higher than the etching rate of the epitaxial layer 30 in the etching back process for obtaining better flatness on the surface of the epitaxial layer 30 remaining after the second planarization process 92 , but no limited thereto.
  • the etching rate of the epitaxial layer 30 in the etching back process may be about 7 angstroms/second, and the ratio of the etching rate of the epitaxial layer 30 to the etching rate of the nitride layer 41 , the oxide layer 42 , and the oxide mask layer 20 in the etching back process may range from 1:1.02 to 1:1.03, but not limited thereto.
  • a hard mask layer such as a first mask layer 51 and a second mask layer 52 may be formed on the epitaxial layer 30 and the oxide mask layer 20 after the second planarization process 92 .
  • the materials of the first mask layer 51 and the second mask layer 52 may include silicon oxide, silicon nitride, silicon oxynitride, or other suitable mask materials respectively, and the material of the second mask layer 52 may be different from the material of the first mask layer 51 , but not limited thereto.
  • a patterning method such as a sidewall image transfer (SIT) process or a photo-etching process may be used to remove a part of the second mask layer 52 , a part of the first mask layer 51 , and a part of the epitaxial layer 30 above the recess RS and a part of the substrate 10 for forming a plurality of epitaxial fin-shaped structures 30 F. Since the formation of fin-shaped structures through SIT process or photo-etching process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity. Subsequently, as shown in FIG.
  • SIT sidewall image transfer
  • photo-etching process may be used to remove a part of the second mask layer 52 , a part of the first mask layer 51 , and a part of the epitaxial layer 30 above the recess RS and a part of the substrate 10 for forming a plurality of epitaxial fin-shaped structures 30 F. Since the formation of fin-shaped structures through SIT process or photo
  • the first mask layer 51 , the second mask layer 52 , and the oxide mask layer 20 may be removed, and a shallow trench isolation 60 may be formed between the epitaxial fin-shaped structures 30 F.
  • a fin-shaped transistor fabrication process may be performed. For example, gate structures may be formed on the epitaxial fin-shaped structures 30 F, and source/drain regions may be formed in the epitaxial fin-shaped structures 30 F, but not limited thereto.
  • the dishing recess issue which may be generated by removing the epitaxial layer 30 with a single CMP process may be avoided in the manufacturing method of the present invention because the first planarization process 91 is performed first and stopped at the nitride layer 41 and the second planarization process 92 is performed after the first planarization process 91 to remove the epitaxial layer 30 outside the recess RS.
  • the height uniformity of the epitaxial fin-shaped structures 30 F formed by the epitaxial layer may be improved, and the electrical performance of the semiconductor device formed by the epitaxial fin-shaped structures 30 F may be enhanced also.
  • FIG. 9 and FIG. 10 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a second embodiment of the present invention
  • FIG. 10 is a schematic drawing in a step subsequent to FIG. 9 .
  • the difference between the manufacturing method of the first embodiment described above and the manufacturing method of this embodiment is that a buffer layer 31 may be formed in the recess RS before the step of forming the epitaxial layer 30 in the manufacturing method of this embodiment, and the epitaxial layer 30 in the recess RS may be formed on the buffer layer 31 .
  • the buffer layer 31 may be used to adjust the stress between the well 11 and the epitaxial layer 30 , and the material of the buffer layer 31 may include silicon germanium, but not limited thereto.
  • the buffer layer 31 may be composed of at least one or a combination selected from the group consisting of silicon, germanium, silicon carbide, gallium arsenide, indium phosphide, indium gallium arsenide, indium aluminum phosphide, and group III-V semiconductor materials according to process requirements.
  • the material composition ratio of the buffer layer 31 may be different from the material composition ratio of the epitaxial layer 30 .
  • the germanium concentration of the buffer layer 31 may be lower than the germanium concentration of the epitaxial layer 30 when the buffer layer 31 and the epitaxial layer 30 are silicon germanium layers, but not limited thereto.
  • the buffer layer 31 and the epitaxial layer 30 may be patterned together by the step of patterning the epitaxial layer 30 for forming the epitaxial fin-shaped structures 30 F, and the shallow trench isolation 60 may surround the patterned buffer layer 31 , but not limited thereto.
  • the first planarization process may be performed after forming the nitride layer and the oxide layer on the epitaxial layer and be stopped on the nitride layer
  • the second planarization process is performed after the first planarization process for improving the height uniformity of the epitaxial fin-shaped structures formed by the epitaxial layer and enhancing the electrical performance of the semiconductor device formed by the epitaxial fin-shaped structures.

Abstract

A manufacturing method of an epitaxial fin-shaped structure includes the following steps. A substrate is provided. A recess is formed in the substrate. An epitaxial layer is formed on the substrate. The epitaxial layer is partly formed in the recess and partly formed outside the recess. The epitaxial layer has a dent formed on the top surface of the epitaxial layer, and the dent is formed corresponding to the recess in a thickness direction of the substrate. A nitride layer is conformally formed on the epitaxial layer. An oxide layer is formed on the nitride layer. A first planarization process is performed to remove a part of the oxide layer, and the first planarization process is stopped on the nitride layer. The epitaxial layer in the recess is patterned for forming at least one epitaxial fin-shaped structure.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a manufacturing method of an epitaxial fin-shaped structure, and more particularly, to a manufacturing method including a planarization process for forming an epitaxial fin-shaped structure.
  • 2. Description of the Prior Art
  • As the size of the field effect transistors (FETs) becomes smaller continuously, the conventional planar field effect transistor has difficulty in development because of the manufacturing limitations. Therefore, for overcoming the manufacturing limitations, the non-planar transistor technology such as fin field effect transistor (FinFET) technology is developed to replace the planar FET and becomes a development trend in the related industries. However, the manufacturing processes of the field effect transistors are more complicated relatively, and the related industries are endeavoring to simplify the processes and lower the manufacturing cost. Since the three-dimensional structure of a FinFET increases the overlapping area between the gate and the fin-shaped structure, the channel region can therefore be more effectively controlled by the gate. This way, the drain-induced barrier lowering (DIBL) effect and the short channel effect (SCE) of the device with smaller dimensions may be reduced. Additionally, a higher drain current may be obtained because the FinFET may have a wider channel width while the channel length is unchanged.
  • SUMMARY OF THE INVENTION
  • A manufacturing method of an epitaxial fin-shaped structure is provided in the present invention. A planarization process is performed after forming a nitride layer and an oxide layer on an epitaxial layer for improving the flatness of the epitaxial layer and improving the height uniformity of an epitaxial fin-shaped structure formed by the epitaxial layer.
  • According to an embodiment of the present invention, a manufacturing method of an epitaxial fin-shaped structure is provided. The manufacturing method includes the following steps. A substrate is provided. A recess is formed in the substrate. An epitaxial layer is formed on the substrate. The epitaxial layer is partly formed in the recess and partly formed outside the recess. The epitaxial layer has a dent formed on the top surface of the epitaxial layer, and the dent is formed corresponding to the recess in a thickness direction of the substrate. A nitride layer is conformally formed on the epitaxial layer. An oxide layer is formed on the nitride layer. A first planarization process is performed to remove a part of the oxide layer, and the first planarization process is stopped on the nitride layer. The epitaxial layer in the recess is patterned for forming at least one epitaxial fin-shaped structure.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-8 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a first embodiment of the present invention, wherein FIG. 2 is a schematic drawing in a step subsequent to FIG. 1, FIG. 3 is a schematic drawing in a step subsequent to FIG. 2, FIG. 4 is a schematic drawing in a step subsequent to FIG. 3, FIG. 5 is a schematic drawing in a step subsequent to FIG. 4, FIG. 6 is a schematic drawing in a step subsequent to FIG. 5, FIG. 7 is a schematic drawing in a step subsequent to FIG. 6, and FIG. 8 is a schematic drawing in a step subsequent to FIG. 7.
  • FIG. 9 and FIG. 10 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a second embodiment of the present invention, wherein FIG. 10 is a schematic drawing in a step subsequent to FIG. 9.
  • DETAILED DESCRIPTION
  • To provide a better understanding of the present invention, preferred exemplary embodiments will be described in detail. The preferred exemplary embodiments of the present invention are illustrated in the accompanying drawings with numbered elements.
  • Please refer to FIGS. 1-8. FIGS. 1-8 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a first embodiment of the present invention, wherein FIG. 2 is a schematic drawing in a step subsequent to FIG. 1, FIG. 3 is a schematic drawing in a step subsequent to FIG. 2, FIG. 4 is a schematic drawing in a step subsequent to FIG. 3, FIG. 5 is a schematic drawing in a step subsequent to FIG. 4, FIG. 6 is a schematic drawing in a step subsequent to FIG. 5, FIG. 7 is a schematic drawing in a step subsequent to FIG. 6, and FIG. 8 is a schematic drawing in a step subsequent to FIG. 7. The manufacturing method of the epitaxial fin-shaped structure in this embodiment may include the following steps. As shown in FIG. 1, a substrate is provided. In some embodiments, the substrate 10 may include a silicon substrate, a silicon-on insulator (SOI) substrate, or substrates made of other suitable materials. An oxide mask layer 20 is formed on the substrate 10, and a patterned photoresist layer 21 is formed on the oxide mask layer 20. The oxide mask layer 20 may include silicon oxide or other suitable oxide materials. In some embodiments, a part of the oxide mask layer 20 may be removed for exposing a part of the substrate 10 by an etching process using the patterned mask layer 21, and an ion implantation process may be performed to implant dopants to the substrate 10 which is not covered by the patterned photoresist layer 10 for forming a well 11. The part of the substrate 10 having the well 11 formed therein may be used to form active units such as fin-shaped transistors in subsequent processes, but not limited thereto. In some embodiments, the dopants used in the implantation process for forming the well 11 may be different in accordance with different types of transistors going to be formed, and the well 11 may include an N-well or a P-well.
  • As shown in FIG. 1 and FIG. 2, a recess RS is then formed in the substrate 10. In some embodiments, the recess RS may be formed by performing another etching process using the patterned photoresist layer 21 as a mask to remove a part of the substrate 10 including the well 11, but not limited thereto. In some embodiments, the patterned photoresist layer 21 may be removed, and the recess RS in the substrate 10 may be formed by performing an etching process using the oxide mask layer 20 as a mask. In other words, the oxide mask layer 20 may be formed on the substrate 10 before the step of forming the recess RS. Additionally, in some embodiments, the recess RS may be formed in the substrate 10 first, and the well 11 may be formed in the substrate 10 and formed under the recess RS after the step of forming the recess RS according to some considerations.
  • As shown in FIG. 2 and FIG. 3, the patterned photoresist layer 21 is removed subsequently, and an epitaxial layer 30 is formed on the substrate 10 after the step of removing the patterned photoresist layer 21. The epitaxial layer 30 may be partly formed in the recess RS and partly formed outside the recess RS. In some embodiments, the recess RS may be filled with the epitaxial layer 30, and a top surface 30S of the epitaxial layer 30 may be higher than the top surface of the substrate 10 and the top surface of the oxide mask layer 20 in a vertical direction (such as a thickness direction Z of the substrate 10). Therefore, a part of the epitaxial layer 30 formed outside the recess RS may be located on the oxide mask layer 20 in the thickness direction Z of the substrate 10, but not limited thereto. Additionally, a thickness TK of the epitaxial layer 30 may be larger than a depth DP of the recess RS. For instance, the depth DP of the recess RS may be about 500 angstroms and the thickness TK of the epitaxial layer 30 may be about 1250 angstroms. In some embodiments, the epitaxial layer 30 may be formed by a growth process such as a selective epitaxial growth (SEG) process, but not limited thereto. In this embodiment, the epitaxial layer 30 may be composed of silicon germanium (SiGe), but not limited thereto. In some embodiments, the epitaxial layer 30 may be composed of at least one or a combination selected from the group consisting of silicon, germanium, silicon carbide, gallium arsenide, indium phosphide, indium gallium arsenide, indium aluminum phosphide, and group III-V semiconductor materials. In the step of forming the epitaxial layer 30, the epitaxial layer 30 will have a dent 30R formed on the top surface 30S of the epitaxial layer 30 because of the influence of the topography of the substrate 10 and the recess RS, and the dent 30R is formed corresponding to the recess RS in the thickness direction Z of the substrate 10. In other words, the top surface 30S of the epitaxial layer 30 located above the oxide mask layer 20 may be higher than the surface of the dent 30R in the thickness direction Z of the substrate 10.
  • Subsequently, as shown in FIG. 4, a nitride layer 41 is conformally formed on the epitaxial layer 30, and an oxide layer 42 is formed on the nitride layer 41. The nitride layer 41 may include silicon nitride or other suitable nitride materials, and the oxide layer 42 may include silicon oxide or other suitable oxide materials. The nitride layer 41 and the oxide layer 42 may be formed by a deposition process such as a chemical vapor deposition, but not limited thereto. A part of the nitride layer 41 and a part of the oxide layer 42 may be formed in the dent 30R of the epitaxial layer 30, and another part of the nitride layer 41 and another part of the oxide layer 42 may be formed outside the dent 30R of the epitaxial layer 30. The dent 30R of the epitaxial layer 30 may be filled with the nitride layer 41 and the oxide layer 42. Additionally, the nitride layer 41 may be relatively thinner because the nitride layer 41 may be used as a stop layer in a planarization process performed subsequently and the nitride layer 41 has to be conformally formed on the top surface 30S of the epitaxial layer 30 and the surface of the dent 30R. In addition, the oxide layer 42 may be relatively thicker because the remaining space in the dent 30R has to be filled with the oxide layer 42. Accordingly, the oxide layer 42 may be thicker than the nitride layer 41. For example, in some embodiments, the thickness of the nitride layer 41 may be about 60 angstroms, and the thickness of the oxide layer 42 may be about 1000 angstroms, but not limited thereto.
  • As shown in FIG. 4 and FIG. 5, a first planarization process 91 is performed to remove a part of the oxide layer 42, and the first planarization process 91 is stopped on the nitride layer 41. In some embodiments, the first planarization process 91 may include a chemical mechanical polishing (CMP) process or other suitable planarization approaches. The first planarization process 91 may be controlled to be stopped on the nitride layer 41 by the material difference between the nitride layer 41 and the oxide layer 42 and the influence of the dent 30R and the topography of the epitaxial layer 30 on the nitride layer 41. The nitride layer 41 and the oxide layer 42 formed in the dent 30R may still remain in the dent 30R after the first planarization process 91.
  • As shown in FIGS. 5-7, the epitaxial layer 30 in the recess RS is patterned for forming at least one epitaxial fin-shaped structure 30F. In some embodiments, a second planarization process 92 may be performed to remove the oxide layer 42, the nitride layer 41, and the epitaxial layer 30 outside the recess RS after the first planarization process 91 and before the step of forming the epitaxial fin-shaped structure 30F, but not limited thereto. The second planarization process 92 may be stopped on the oxide mask layer 20, and a part of the oxide mask layer 20 may be removed by the second planarization process 92, but not limited thereto. The second planarization process 92 may be different from the first planarization process 91. For example, the second planarization process 92 may include an etching back process or other suitable planarization approaches, and a process gas used in the etching back process may include carbon hexafluoride (CF6), sulfur hexafluoride (SF6), or other suitable process gases. In some embodiments, the required etching rate and the etching selectivity for different material layers may be obtained by modifying the process conditions of the second planarization process 92, such as the types and/or the composition ratio of the process gases in the etching back process. For example, the ratio of carbon hexafluoride to sulfur hexafluoride used in the etching back process may be about 15:1, but not limited thereto.
  • Additionally, the etching rate of the nitride layer 41 in the etching back process of the second planarization process 92 may be higher than the etching rate of the epitaxial layer 30 in the etching back process, the etching rate of the oxide layer 42 in the etching back process may be higher than the etching rate of the epitaxial layer 30 in the etching back process, and the etching rate of the oxide mask layer 20 in the etching back process may be higher than the etching rate of the epitaxial layer 30 in the etching back process for obtaining better flatness on the surface of the epitaxial layer 30 remaining after the second planarization process 92, but no limited thereto. For instance, the etching rate of the epitaxial layer 30 in the etching back process may be about 7 angstroms/second, and the ratio of the etching rate of the epitaxial layer 30 to the etching rate of the nitride layer 41, the oxide layer 42, and the oxide mask layer 20 in the etching back process may range from 1:1.02 to 1:1.03, but not limited thereto.
  • In some embodiments, a hard mask layer such as a first mask layer 51 and a second mask layer 52 may be formed on the epitaxial layer 30 and the oxide mask layer 20 after the second planarization process 92. The materials of the first mask layer 51 and the second mask layer 52 may include silicon oxide, silicon nitride, silicon oxynitride, or other suitable mask materials respectively, and the material of the second mask layer 52 may be different from the material of the first mask layer 51, but not limited thereto. Subsequently, a patterning method such as a sidewall image transfer (SIT) process or a photo-etching process may be used to remove a part of the second mask layer 52, a part of the first mask layer 51, and a part of the epitaxial layer 30 above the recess RS and a part of the substrate 10 for forming a plurality of epitaxial fin-shaped structures 30F. Since the formation of fin-shaped structures through SIT process or photo-etching process is well known to those skilled in the art, the details of which are not explained herein for the sake of brevity. Subsequently, as shown in FIG. 8, the first mask layer 51, the second mask layer 52, and the oxide mask layer 20 may be removed, and a shallow trench isolation 60 may be formed between the epitaxial fin-shaped structures 30F. Subsequently, a fin-shaped transistor fabrication process may be performed. For example, gate structures may be formed on the epitaxial fin-shaped structures 30F, and source/drain regions may be formed in the epitaxial fin-shaped structures 30F, but not limited thereto.
  • It is worth noting that, as shown in FIGS. 5-8, the dishing recess issue which may be generated by removing the epitaxial layer 30 with a single CMP process may be avoided in the manufacturing method of the present invention because the first planarization process 91 is performed first and stopped at the nitride layer 41 and the second planarization process 92 is performed after the first planarization process 91 to remove the epitaxial layer 30 outside the recess RS. The height uniformity of the epitaxial fin-shaped structures 30F formed by the epitaxial layer may be improved, and the electrical performance of the semiconductor device formed by the epitaxial fin-shaped structures 30F may be enhanced also.
  • The following description will detail the different embodiments of the present invention. To simplify the description, identical components in each of the following embodiments are marked with identical symbols. For making it easier to understand the differences between the embodiments, the following description will detail the dissimilarities among different embodiments and the identical features will not be redundantly described.
  • Please refer to FIG. 9 and FIG. 10. FIG. 9 and FIG. 10 are schematic drawings illustrating a manufacturing method of an epitaxial fin-shaped structure according to a second embodiment of the present invention, and FIG. 10 is a schematic drawing in a step subsequent to FIG. 9. As shown in FIG. 9, the difference between the manufacturing method of the first embodiment described above and the manufacturing method of this embodiment is that a buffer layer 31 may be formed in the recess RS before the step of forming the epitaxial layer 30 in the manufacturing method of this embodiment, and the epitaxial layer 30 in the recess RS may be formed on the buffer layer 31. In some embodiments, the buffer layer 31 may be used to adjust the stress between the well 11 and the epitaxial layer 30, and the material of the buffer layer 31 may include silicon germanium, but not limited thereto. For example, the buffer layer 31 may be composed of at least one or a combination selected from the group consisting of silicon, germanium, silicon carbide, gallium arsenide, indium phosphide, indium gallium arsenide, indium aluminum phosphide, and group III-V semiconductor materials according to process requirements. Additionally, the material composition ratio of the buffer layer 31 may be different from the material composition ratio of the epitaxial layer 30. For instance, the germanium concentration of the buffer layer 31 may be lower than the germanium concentration of the epitaxial layer 30 when the buffer layer 31 and the epitaxial layer 30 are silicon germanium layers, but not limited thereto. As shown in FIG. 10, the buffer layer 31 and the epitaxial layer 30 may be patterned together by the step of patterning the epitaxial layer 30 for forming the epitaxial fin-shaped structures 30F, and the shallow trench isolation 60 may surround the patterned buffer layer 31, but not limited thereto.
  • To summarize the above descriptions, according to the manufacturing method of forming the epitaxial fin-shaped structure in the present invention, the first planarization process may be performed after forming the nitride layer and the oxide layer on the epitaxial layer and be stopped on the nitride layer, and the second planarization process is performed after the first planarization process for improving the height uniformity of the epitaxial fin-shaped structures formed by the epitaxial layer and enhancing the electrical performance of the semiconductor device formed by the epitaxial fin-shaped structures.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (12)

What is claimed is:
1. A manufacturing method of an epitaxial fin-shaped structure, comprising:
providing a substrate;
forming a recess in the substrate;
forming an epitaxial layer on the substrate, wherein the epitaxial layer is partly formed in the recess and partly formed outside the recess, and the epitaxial layer comprises a dent formed on the top surface of the epitaxial layer and formed corresponding to the recess in a thickness direction of the substrate;
forming a nitride layer conformally on the epitaxial layer;
forming an oxide layer on the nitride layer;
performing a first planarization process to remove a part of the oxide layer, wherein the first planarization process is stopped on the nitride layer; and
patterning the epitaxial layer in the recess for forming at least one epitaxial fin-shaped structure.
2. The manufacturing method of the epitaxial fin-shaped structure according to claim 1, wherein a part of the nitride layer and a part of the oxide layer are formed in the dent of the epitaxial layer.
3. The manufacturing method of the epitaxial fin-shaped structure according to claim 2, wherein the nitride layer and the oxide layer formed in the dent remain in the dent after the first planarization process.
4. The manufacturing method of the epitaxial fin-shaped structure according to claim 1, further comprising:
performing a second planarization process to remove the oxide layer, the nitride layer, and the epitaxial layer outside the recess after the first planarization process and before the step of forming the epitaxial fin-shaped structure.
5. The manufacturing method of the epitaxial fin-shaped structure according to claim 4, wherein the second planarization process comprises an etching back process, and the first planarization process comprises a chemical mechanical polishing (CMP) process.
6. The manufacturing method of the epitaxial fin-shaped structure according to claim 5, wherein the etching rate of the nitride layer in the etching back process is higher than the etching rate of the epitaxial layer in the etching back process.
7. The manufacturing method of the epitaxial fin-shaped structure according to claim 5, wherein the etching rate of the oxide layer in the etching back process is higher than the etching rate of the epitaxial layer in the etching back process.
8. The manufacturing method of the epitaxial fin-shaped structure according to claim 5, wherein a process gas used in the etching back process comprises carbon hexafluoride (CF6) and sulfur hexafluoride (SF6).
9. The manufacturing method of the epitaxial fin-shaped structure according to claim 4, further comprising:
forming an oxide mask layer on the substrate before the step of forming the recess, wherein the second planarization process is stopped on the oxide mask layer.
10. The manufacturing method of the epitaxial fin-shaped structure according to claim 1, wherein the oxide layer is thicker than the nitride layer.
11. The manufacturing method of the epitaxial fin-shaped structure according to claim 1, wherein a thickness of the epitaxial layer is larger than a depth of the recess.
12. The manufacturing method of the epitaxial fin-shaped structure according to claim 1, further comprising:
forming a buffer layer in the recess before the step of forming the epitaxial layer, wherein the epitaxial layer in the recess is formed on the buffer layer.
US15/951,192 2018-03-21 2018-04-12 Manufacturing method of epitaxial fin-shaped structure Active 2038-05-15 US10431497B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810234864.8 2018-03-21
CN201810234864.8A CN110299286B (en) 2018-03-21 2018-03-21 Method for manufacturing epitaxial fin-shaped structure
CN201810234864 2018-03-21

Publications (2)

Publication Number Publication Date
US20190295896A1 true US20190295896A1 (en) 2019-09-26
US10431497B1 US10431497B1 (en) 2019-10-01

Family

ID=67984363

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/951,192 Active 2038-05-15 US10431497B1 (en) 2018-03-21 2018-04-12 Manufacturing method of epitaxial fin-shaped structure

Country Status (2)

Country Link
US (1) US10431497B1 (en)
CN (1) CN110299286B (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265315B1 (en) 1998-06-24 2001-07-24 Taiwan Semiconductor Manufacturing Company Method for improving chemical/mechanical polish uniformity over rough topography for semiconductor integrated circuits
KR100481549B1 (en) * 2002-09-09 2005-04-08 동부아남반도체 주식회사 Method for forming a shallow trench isolation using of porous silicon evaporation
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
JP2007115766A (en) * 2005-10-18 2007-05-10 Toshiba Corp Manufacturing method of semiconductor device
US8193094B2 (en) * 2010-06-21 2012-06-05 Taiwan Semiconductor Manufacturing Company, Ltd. Post CMP planarization by cluster ION beam etch
US8367534B2 (en) 2010-09-17 2013-02-05 Taiwan Semiconductor Manufacturing Company, Ltd. Non-uniformity reduction in semiconductor planarization
US8673755B2 (en) 2011-10-27 2014-03-18 United Microelectronics Corp. Semiconductor device having metal gate and manufacturing method thereof
US8497177B1 (en) 2012-10-04 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a FinFET device
US8956942B2 (en) * 2012-12-21 2015-02-17 Stmicroelectronics, Inc. Method of forming a fully substrate-isolated FinFET transistor
US9059164B2 (en) 2013-10-22 2015-06-16 International Business Machines Corporation Embedded interlevel dielectric barrier layers for replacement metal gate field effect transistors
US9496282B2 (en) * 2013-12-02 2016-11-15 International Business Machines Corporation Structure and method to reduce crystal defects in epitaxial fin merge using nitride deposition
US20150333145A1 (en) * 2014-05-15 2015-11-19 International Business Machines Corporation High density finfet devices with unmerged fins
US9583599B2 (en) * 2015-04-22 2017-02-28 International Business Machines Corporation Forming a fin using double trench epitaxy
CN105390497B (en) * 2015-11-05 2019-01-18 中国科学院微电子研究所 Cmos device and its manufacturing method including electrically charged side wall
US9530700B1 (en) * 2016-01-28 2016-12-27 International Business Machines Corporation Method of fabricating vertical field effect transistors with protective fin liner during bottom spacer recess etch
TWI687980B (en) * 2016-03-22 2020-03-11 聯華電子股份有限公司 Semiconductor device and method for fabricating the same
US9748245B1 (en) * 2016-09-23 2017-08-29 International Business Machines Corporation Multiple finFET formation with epitaxy separation

Also Published As

Publication number Publication date
CN110299286A (en) 2019-10-01
US10431497B1 (en) 2019-10-01
CN110299286B (en) 2022-06-03

Similar Documents

Publication Publication Date Title
US10410930B2 (en) Nonplanar device and strain-generating channel dielectric
US9627476B2 (en) Fin structure of semiconductor device
KR101653464B1 (en) Integrated circuit structure with substrate isolation and un-doped channel
US9449971B2 (en) Methods of forming FinFETs
US9917194B2 (en) Self-aligned silicon germanium FinFET with relaxed channel region
US8969974B2 (en) Structure and method for FinFET device
US8624326B2 (en) FinFET device and method of manufacturing same
US8106459B2 (en) FinFETs having dielectric punch-through stoppers
US9954104B2 (en) Multiwidth finFET with channel cladding
US9881831B2 (en) Method for fabricating semiconductor device including fin shaped structure
US9412850B1 (en) Method of trimming fin structure
US20170338327A1 (en) Semiconductor device and manufacturing method thereof
US8936979B2 (en) Semiconductor devices having improved gate height uniformity and methods for fabricating same
US11610980B2 (en) Method for processing a FinFET device
TW202038330A (en) Integrated circuit devices and methods for forming the same
US9281400B1 (en) Method of fabricating a semiconductor device with fin-shaped structures
US9847423B1 (en) Semiconductor device and method for fabricating the same
US10431497B1 (en) Manufacturing method of epitaxial fin-shaped structure
US9875941B1 (en) Method for fabricating semiconductor device
US11715759B2 (en) Semiconductor device with a single diffusion break structure having a sidewall aligned with a gate sidewall
US20230268346A1 (en) Semiconductor device and method for fabricating the same
US9842760B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED MICROELECTRONICS CORP., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HSIEH, PO-KUANG;TSENG, KUAN-HAO;LIN, YU-HSIANG;AND OTHERS;REEL/FRAME:045512/0560

Effective date: 20180409

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4