US20190233082A9 - Rotating circular aerofoil and propeller system - Google Patents

Rotating circular aerofoil and propeller system Download PDF

Info

Publication number
US20190233082A9
US20190233082A9 US15/200,915 US201615200915A US2019233082A9 US 20190233082 A9 US20190233082 A9 US 20190233082A9 US 201615200915 A US201615200915 A US 201615200915A US 2019233082 A9 US2019233082 A9 US 2019233082A9
Authority
US
United States
Prior art keywords
disc body
aerofoil
fins
shaped
propeller system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/200,915
Other versions
US20180001993A1 (en
US10377467B2 (en
Inventor
Thoi H Huynh
Fuji P Huynh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/694,082 external-priority patent/US9381988B2/en
Application filed by Individual filed Critical Individual
Priority to US15/200,915 priority Critical patent/US10377467B2/en
Publication of US20180001993A1 publication Critical patent/US20180001993A1/en
Publication of US20190233082A9 publication Critical patent/US20190233082A9/en
Application granted granted Critical
Publication of US10377467B2 publication Critical patent/US10377467B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/007Propulsive discs, i.e. discs having the surface specially adapted for propulsion purposes

Definitions

  • This invention relates to conventional aerofoil and hydrofoil which produce a force perpendicular to the motion called lift.
  • the well-known aerofoil principal has been applied in producing fixed wings and propellers for aircrafts. This same principal also has been applied to create lift for high speed watercraft known as hydrofoils
  • Conventional aerofoils and hydrofoils usually must travel through a fluid to create lift.
  • the present invention is for an aerofoil and hydrofoil that does not need to pass through fluids but create lift by rotating about its axis.
  • the present invention is for a rotating circular aerofoil and propeller system with its main body sectional-shape similar to modern airplane wings, having a leading edge and a trailing edge, but is symmetrical about its axis.
  • This circular aerofoil and propeller system includes a circular hollow at its center where the leading edge begins and a circular outer edge where its trailing edge ends. Pairs of T-shaped or L-shaped fins or a mixture T-shaped and L-shaped fins are attached to the top surface and bottom surface of the main body, which run radiately from the inner edge to the outer edge, to create centrifugal action of fluid when the circular aerofoil rotates about its center axis. As a result, the fluid in contact to the disc body travels from the leading edge to the trailing edge on both the top and bottom surfaces. A force perpendicular to this motion, called lift, is created when the circular aerofoil rotates around its center axis.
  • the aerofoil includes additional means for pushing air over the top and bottom surfaces of the disc body to improve lift.
  • FIG. 1 shows a top view of a rotating circular aerofoil and propeller system made in accordance with one embodiment of the present invention.
  • FIG. 1A shows a cross sectional view of the rotating circular aerofoil and propeller, taking along line 1 A- 1 A in FIG. 1 .
  • FIG. 1B shows an enlarged cross sectional view of the tee-shape fin of the rotating circular aerofoil and propeller system, taking along line 1 B- 1 B in FIG. 1 .
  • FIG. 1C shows an enlarged cross-sectional view of the L-shaped fin.
  • FIG. 2 shows a top view of a rotating circular aerofoil and propeller system made in accordance with one embodiment of the present invention with all of the T-shaped fins uniformly curved counterclockwise.
  • FIG. 3 shows a top view of a rotating circular aerofoil and propeller system made in accordance with one embodiment of the present invention with all of the T-shaped fins uniformly curved clockwise.
  • FIG. 4 shows a top plan view of the rotating circular aerofoil system with an air blower.
  • FIG. 4A shows a cross-sectional view of the rotating aerofoil system with the air blower.
  • FIG. 5 shows a top plan view of the rotating circular aerofoil system with the centrifugal impeller.
  • FIG. 5A shows a cross-sectional view of the rotating aerofoil system 9 with the centrifugal impeller.
  • FIG. 1 illustrated is a top view of a rotating circular aerofoil system 9 made in accordance with a preferred embodiment of the present invention.
  • the system 9 includes a circular disc body 10 made to be symmetrical about its center axis 12 .
  • the disc body 10 has a uniform and symmetrical aerofoil shape cross-section 14 as shown in FIG. 1A , and is made of lightweight composite or other suitable materials.
  • a circular center opening 13 coaxially aligned with the central axis 12 is formed in the disc body 10 .
  • the perimeter edge of the center opening 13 acts also as the disc body's leading edge 16 .
  • Formed or mounted on the disc body 10 is a pair of fins 22 or 34 made of similar material as the disc body 10 .
  • spokes 24 extend across the center opening 13 and intersect at an intersection section 25 at the center axis 12 .
  • the spokes 24 are made of strong material that can be attached to the disc body 10 .
  • Formed centrally in the intersection section 25 of the spokes 24 is a center hole 26 configured to engage a rotating shaft 40 , as shown in FIGS. 4 and 5 .
  • FIG. 1A is a cross-sectional view of the rotating circular aerofoil system 9 through line 1 A- 1 A in FIG. 1 showing the disc body's aerofoil shape cross-sectional shape, the fins 22 formed on the top and bottom surfaces of the disc body 10 , and the spokes 26 .
  • FIG. 1B is an enlarged cross-sectional view taken along line 1 B-!B in FIG. 1 showing a fin 22 mounted or formed on the top surface of the disc body 10 that has a T-shape configuration.
  • FIG. 2 illustrated is the top view of another embodiment of the rotating circular aerofoil system 9 made in accordance with a preferred embodiment of the present invention as described as in FIG. 1 above; showing all the fins 22 uniformly curved counterclockwise to improve the aerodynamic of the rotating disc body 10 .
  • This alternative embodiment is used when the disc body 10 is made to rotate clockwise only.
  • FIG. 3 illustrated is the top view of a rotating circular aerofoil system 9 as described as in FIG. 1 above; only with all the fins 22 uniformly curved clockwise to improve the aerodynamic of the rotating disc body 10 .
  • the fins 22 are curved clockwise when the disc body 10 is made to rotate counterclockwise only.
  • the disc body 10 When a conventional aerofoil-shape body moves through the air, fluid travels from the leading edge to the trailing edge, producing a force perpendicular to the motion called lift.
  • the disc body 10 Used in water to create lift, the disc body 10 is known as a hydrofoil.
  • the inner perimeter edge 16 of the rotating disc body 10 serves as the leading edge while its outer edge 18 serves as the trailing edge as used in the conventional aerofoil.
  • the circular disc body 10 rotates about its center axis 12 , causing the fluid in contact to travel from the inner edge 16 to the outer edge 18 due to the centrifugal action created by the fins 22 , and produces the same known lift force.
  • More than two pairs of fins 22 are produced to maximize fluid flow to improve lift.
  • FIGS. 4 and 4A show a top plan view and cross-sectional view, respectively, of another embodiment of the rotating circular aerofoil system 9 that includes a means for pushing air over the top surface of the disc body 10 to improve lift.
  • the means for pushing air includes an air blower 36 located centrally and coaxially aligned with the disc body's center axis 12 .
  • the air blower 36 includes a hollow cylindrical body 37 with a plurality of evenly spaced apart ports 38 formed on its side walls.
  • the cylindrical body 37 is mounted on the upper end of a vertical hollow shaft 40 configured to transmit air from an air pump 100 .
  • the air pump 100 may be linked to an engine (not shown) that rotates the disc body 10 or a separate structure.
  • the cylindrical body 37 may be affixed to the disc body 10 or configured to rotate independently from the disc body 10 . When the cylindrical body 37 is rotated and air from the air pump 100 is pushed outward from the ports 38 to flow laterally over the top surface of the disc body 10 to improve lift.
  • FIGS. 5 and 5A show an alternative means for pushing air over the top surface of the disc body 10 that includes an impeller 44 mounted on the top end of a vertical shaft 40 .
  • the shaft 40 may be a solid structure or a hollow structure configured to deliver air from an optional air pump 100 .
  • the impeller 44 includes a center hub 42 and a plurality of blades 46 that extend radially outward from the center hub 42 .
  • the blades 46 are configured to force air laterally from the hub's center axis.
  • the impeller 44 may rotate independently over the shaft 40 or fixed to the shaft 40 and rotates with the shaft 40 is rotated. During operation, the impeller 44 rotates and the blades 46 force air that flows against the hub 42 laterally and over the top surface of the disc body 10 to improve lift.
  • a shaft 40 may be a hollow shaft hollow shaft, similar to the hollow shaft 40 shown in FIGS. 4 and 4A , that connects to an air pump 100 to forcible deliver air from the air pump 100 to the center hub 42 and over the top surface of the disc body 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A rotating circular aerofoil system that includes a disc body that has an aerofoil shape in cross section. The air foil shape has an angle of attack that is symmetrical. The disc body's includes a circular inner edge which forms a circular center opening and the disc body's leading edge. The disc body also includes an outer edge that forms the trailing edge. Intersecting ribs extend across the center opening and include a shaft opening that attaches to a rotating shaft. Formed on the top and bottom surfaces of the disc body are evenly spaced apart, extending T-shaped or L-shaped fins. In one embodiment, an air blower or impeller is attached to a hollow shaft linked to an air pump. When the air pump is activated, air is delivered to the air blower and impeller that distributes the air over the top surface of the disc body to improve lift.

Description

  • This is a continuation in part application based on U.S. utility patent application (application Ser. No. 13/694,082), filed on Oct. 10, 2012, now U.S. Pat. No. 9,381,988.
  • COPYRIGHT NOTICE
  • Notice is given that the following patent document contains original material subject to copyright protection. The copyright owner has no objection to the facsimile or digital download reproduction of all or part of the patent document, but otherwise reserves all copyrights.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • This invention relates to conventional aerofoil and hydrofoil which produce a force perpendicular to the motion called lift. The well-known aerofoil principal has been applied in producing fixed wings and propellers for aircrafts. This same principal also has been applied to create lift for high speed watercraft known as hydrofoils
  • 2. Description of the Related Art
  • Due to the upper curved shape of the aerofoil, fluid travels faster for a longer path across the top surface than the bottom surface of the aerofoil producing lower pressure over the top surface, therefore creating lift.
  • Conventional aerofoils and hydrofoils usually must travel through a fluid to create lift. The present invention is for an aerofoil and hydrofoil that does not need to pass through fluids but create lift by rotating about its axis.
  • SUMMARY OF THE INVENTION
  • The present invention is for a rotating circular aerofoil and propeller system with its main body sectional-shape similar to modern airplane wings, having a leading edge and a trailing edge, but is symmetrical about its axis. This circular aerofoil and propeller system includes a circular hollow at its center where the leading edge begins and a circular outer edge where its trailing edge ends. Pairs of T-shaped or L-shaped fins or a mixture T-shaped and L-shaped fins are attached to the top surface and bottom surface of the main body, which run radiately from the inner edge to the outer edge, to create centrifugal action of fluid when the circular aerofoil rotates about its center axis. As a result, the fluid in contact to the disc body travels from the leading edge to the trailing edge on both the top and bottom surfaces. A force perpendicular to this motion, called lift, is created when the circular aerofoil rotates around its center axis.
  • In different embodiments, the aerofoil includes additional means for pushing air over the top and bottom surfaces of the disc body to improve lift.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a top view of a rotating circular aerofoil and propeller system made in accordance with one embodiment of the present invention.
  • FIG. 1A shows a cross sectional view of the rotating circular aerofoil and propeller, taking along line 1A-1A in FIG. 1.
  • FIG. 1B shows an enlarged cross sectional view of the tee-shape fin of the rotating circular aerofoil and propeller system, taking along line 1B-1B in FIG. 1.
  • FIG. 1C shows an enlarged cross-sectional view of the L-shaped fin.
  • FIG. 2 shows a top view of a rotating circular aerofoil and propeller system made in accordance with one embodiment of the present invention with all of the T-shaped fins uniformly curved counterclockwise.
  • FIG. 3 shows a top view of a rotating circular aerofoil and propeller system made in accordance with one embodiment of the present invention with all of the T-shaped fins uniformly curved clockwise.
  • FIG. 4 shows a top plan view of the rotating circular aerofoil system with an air blower.
  • FIG. 4A shows a cross-sectional view of the rotating aerofoil system with the air blower.
  • FIG. 5 shows a top plan view of the rotating circular aerofoil system with the centrifugal impeller.
  • FIG. 5A shows a cross-sectional view of the rotating aerofoil system 9 with the centrifugal impeller.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT(S) Reference Numeral in Drawings
      • 9 aerofoil system;
      • 10 disc body
      • 12 axis disc body;
      • 13 center opening;
      • 14 body-sectional-shape of the disc body;
      • 15 top surface of the disc body;
      • 16 circular inner edge/leading edge of the disc body;
      • 17 bottom surface of the disc body;
      • 18 circular outer edge/trailing edge of the disc body;
      • 20 angle of attack of the aerofoil;
      • 22 pair of fins;
      • 24 spokes;
      • 25 intersection section of the spokes;
      • 26 center hole;
      • 28 lift force of the aerofoil;
      • 30 air travel direction when the disc body rotates;
      • 32 rotating direction of the disc body;
      • 34 L-shaped fin;
      • 36 air blower;
      • 37 cylindrical body;
      • 38 air blower port (to push more air/fluid thru the aerofoil body and improve lift);
      • 40 turn shaft;
      • 42 center hub;
      • 44 centrifugal impeller (to push more air/fluid thru aerofoil body and improve lift);
      • 46 impeller blade; and,
      • 100 air pump
    DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, illustrated is a top view of a rotating circular aerofoil system 9 made in accordance with a preferred embodiment of the present invention. The system 9 includes a circular disc body 10 made to be symmetrical about its center axis 12. The disc body 10 has a uniform and symmetrical aerofoil shape cross-section 14 as shown in FIG. 1A, and is made of lightweight composite or other suitable materials. A circular center opening 13 coaxially aligned with the central axis 12 is formed in the disc body 10. The perimeter edge of the center opening 13 acts also as the disc body's leading edge 16. Formed or mounted on the disc body 10 is a pair of fins 22 or 34 made of similar material as the disc body 10. Four spokes 24 extend across the center opening 13 and intersect at an intersection section 25 at the center axis 12. The spokes 24 are made of strong material that can be attached to the disc body 10. Formed centrally in the intersection section 25 of the spokes 24 is a center hole 26 configured to engage a rotating shaft 40, as shown in FIGS. 4 and 5.
  • Referring to FIG. 1A is a cross-sectional view of the rotating circular aerofoil system 9 through line 1A-1A in FIG. 1 showing the disc body's aerofoil shape cross-sectional shape, the fins 22 formed on the top and bottom surfaces of the disc body 10, and the spokes 26.
  • Referring to FIG. 1B, is an enlarged cross-sectional view taken along line 1B-!B in FIG. 1 showing a fin 22 mounted or formed on the top surface of the disc body 10 that has a T-shape configuration.
  • Referring to FIG. 2, illustrated is the top view of another embodiment of the rotating circular aerofoil system 9 made in accordance with a preferred embodiment of the present invention as described as in FIG. 1 above; showing all the fins 22 uniformly curved counterclockwise to improve the aerodynamic of the rotating disc body 10. This alternative embodiment is used when the disc body 10 is made to rotate clockwise only.
  • Referring to FIG. 3, illustrated is the top view of a rotating circular aerofoil system 9 as described as in FIG. 1 above; only with all the fins 22 uniformly curved clockwise to improve the aerodynamic of the rotating disc body 10. The fins 22 are curved clockwise when the disc body 10 is made to rotate counterclockwise only.
  • Operation
  • When a conventional aerofoil-shape body moves through the air, fluid travels from the leading edge to the trailing edge, producing a force perpendicular to the motion called lift. Used in water to create lift, the disc body 10 is known as a hydrofoil. In this present invention, the inner perimeter edge 16 of the rotating disc body 10 serves as the leading edge while its outer edge 18 serves as the trailing edge as used in the conventional aerofoil. When the circular disc body 10 rotates about its center axis 12, causing the fluid in contact to travel from the inner edge 16 to the outer edge 18 due to the centrifugal action created by the fins 22, and produces the same known lift force.
  • More than two pairs of fins 22 are produced to maximize fluid flow to improve lift.
  • FIGS. 4 and 4A show a top plan view and cross-sectional view, respectively, of another embodiment of the rotating circular aerofoil system 9 that includes a means for pushing air over the top surface of the disc body 10 to improve lift. In the embodiment shown in FIGS. 4 and 4A, the means for pushing air includes an air blower 36 located centrally and coaxially aligned with the disc body's center axis 12. The air blower 36 includes a hollow cylindrical body 37 with a plurality of evenly spaced apart ports 38 formed on its side walls. The cylindrical body 37 is mounted on the upper end of a vertical hollow shaft 40 configured to transmit air from an air pump 100. The air pump 100 may be linked to an engine (not shown) that rotates the disc body 10 or a separate structure.
  • The cylindrical body 37 may be affixed to the disc body 10 or configured to rotate independently from the disc body 10. When the cylindrical body 37 is rotated and air from the air pump 100 is pushed outward from the ports 38 to flow laterally over the top surface of the disc body 10 to improve lift.
  • FIGS. 5 and 5A show an alternative means for pushing air over the top surface of the disc body 10 that includes an impeller 44 mounted on the top end of a vertical shaft 40. The shaft 40 may be a solid structure or a hollow structure configured to deliver air from an optional air pump 100. The impeller 44 includes a center hub 42 and a plurality of blades 46 that extend radially outward from the center hub 42. The blades 46 are configured to force air laterally from the hub's center axis. The impeller 44 may rotate independently over the shaft 40 or fixed to the shaft 40 and rotates with the shaft 40 is rotated. During operation, the impeller 44 rotates and the blades 46 force air that flows against the hub 42 laterally and over the top surface of the disc body 10 to improve lift. If additional lift is needed, a shaft 40 may be a hollow shaft hollow shaft, similar to the hollow shaft 40 shown in FIGS. 4 and 4A, that connects to an air pump 100 to forcible deliver air from the air pump 100 to the center hub 42 and over the top surface of the disc body 10.
  • In compliance with the statute, the invention described has been described in language more or less specific as to structural features. It should be understood, however, that the invention is not limited to the specific features shown, since the means and construction shown comprises the preferred embodiments for putting the invention into effect. The invention is therefore claimed in its forms or modifications within the legitimate and valid scope of the amended claims, appropriately interpreted in accordance with under the doctrine of equivalents.

Claims (10)

We claim:
1. A rotating circular aerofoil and propeller system, comprising:
a disc body with a circular outer edge and a coaxially aligned center opening, a section of said disc body extending from said outer edge to said center opening having an aerofoil shape when viewed in cross-section with an angle of attack tilted upward, said outer edge curved downward from said disc body;
a set of intersecting spokes located inside said central opening;
a center shaft opening formed on the intersecting area of said spokes; and,
a plurality of fixed fins extending outward from said top surface and said bottom surface of said disc body, respectively, each said fin being L-shaped in cross section and extending radially over said disc body.
2. A rotating circular aerofoil and propeller system of claim 1, wherein said fins are uniformly curved to the left to improve the aerodynamic of the circular aerofoil when said top surface faces upward and is rotated in a clockwise direction to produce lift.
3. A rotating circular aerofoil and propeller system of claim 1, wherein said fins are uniformly curved to the right to improve the aerodynamic of the circular aerofoil when said top surface faces upward and is rotated in a counterclockwise direction to produce lift.
4. A rotating circular aerofoil and propeller system, comprising:
a disc body with a circular outer edge and a coaxially aligned center opening, a section of said disc body extending from said outer edge to said center opening having an aerofoil shape when viewed in cross-section with an angle of attack tilted upward, said outer edge curved downward from said disc body;
a set of intersecting spokes located inside said central opening;
a center shaft opening formed on the intersecting area of said spokes; and,
fixed fins extending outward from said top surface and said bottom surface of said disc body; and,
means for pushing air over said disc body.
5. The rotating circular aerofoil and propeller system as recited in claim 4, wherein said means for pushing air over said disc body is an air blower that includes a disc body connected to a hollow shaft linked to an air pump, said disc body includes a plurality air conduits that deliver air from the air pump laterally and over the top surface of said disc body.
6. The rotating circular aerofoil and propeller system of claim 5, wherein said fixed fins are all T-shaped or all L-shaped in cross-section or a combination of T-shaped or L-shaped fins.
7. A rotating circular aerofoil and propeller system as recited in claim 4, wherein said means for pushing air over said disc body is a rotating impeller located over said center opening and mounted to a shaft, said impeller includes a hub and a plurality of laterally extending blades each configured to deliver air over the top surface of said disc body when said hub is rotated.
8. The rotating circular aerofoil and propeller system of claim 7, wherein said fixed fins are all T-shaped or all L-shaped in cross-section or a combination of T-shaped or L-shaped fins.
9. A rotating circular aerofoil and propeller system of claim 8, wherein said fins are uniformly curved to the left to improve the aerodynamic of the circular aerofoil when said top surface faces upward and is rotated in a clockwise direction to produce lift.
10. A rotating circular aerofoil and propeller system of claim 8, wherein said fins are uniformly curved to the right to improve the aerodynamic of the circular aerofoil when said top
US15/200,915 2012-10-26 2016-07-01 Rotating circular aerofoil and propeller system Active 2033-11-08 US10377467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/200,915 US10377467B2 (en) 2012-10-26 2016-07-01 Rotating circular aerofoil and propeller system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/694,082 US9381988B2 (en) 2012-10-26 2012-10-26 Rotating circular airfoil and propeller system
US15/200,915 US10377467B2 (en) 2012-10-26 2016-07-01 Rotating circular aerofoil and propeller system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/694,082 Continuation-In-Part US9381988B2 (en) 2012-10-26 2012-10-26 Rotating circular airfoil and propeller system

Publications (3)

Publication Number Publication Date
US20180001993A1 US20180001993A1 (en) 2018-01-04
US20190233082A9 true US20190233082A9 (en) 2019-08-01
US10377467B2 US10377467B2 (en) 2019-08-13

Family

ID=60806098

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/200,915 Active 2033-11-08 US10377467B2 (en) 2012-10-26 2016-07-01 Rotating circular aerofoil and propeller system

Country Status (1)

Country Link
US (1) US10377467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12071228B1 (en) * 2019-03-28 2024-08-27 Snap Inc. Drone with propeller guard configured as an airfoil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124200A (en) * 1964-03-10 Propeller device
US1542853A (en) 1924-06-24 1925-06-23 Joseph J Callahan Propeller
US2378125A (en) 1941-11-12 1945-06-12 Charles A Cooper Airscrew
US2426742A (en) 1943-11-20 1947-09-02 Felix W Pawlowski Screw propeller
US2855179A (en) 1955-01-05 1958-10-07 John K Brown High temperature ceramic turbine
US4301981A (en) * 1979-06-29 1981-11-24 Joseph Hartt Aircraft with rotary wing
US5503351A (en) * 1994-09-06 1996-04-02 Vass; Gabor I. Circular wing aircraft
US20110097209A1 (en) 2009-10-26 2011-04-28 Solorzano Luis Indefonso Thermal airfoil turbine

Also Published As

Publication number Publication date
US20180001993A1 (en) 2018-01-04
US10377467B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
US3053325A (en) Aeronautical propeller
US9359072B2 (en) Rotor blade for a rotor of an aircraft designed to minimize noise emitted by the rotor
US9944372B1 (en) Efficient reverse thrusting modular propeller
US11345471B2 (en) Flow diverting lift element
CN205524939U (en) Screw, power component and aircraft
WO2018076457A1 (en) Airscrew, power suite and unmanned aerial vehicle
US1758560A (en) Aircraft propeller
US9381988B2 (en) Rotating circular airfoil and propeller system
CN105829204B (en) Double tail finses ship
US2169325A (en) Sustaining and propelling member for fluid-sustained craft
US10377467B2 (en) Rotating circular aerofoil and propeller system
JP2007125914A (en) Fluid focusing propeller
US7025642B1 (en) Boat propeller
US1600654A (en) Self-adjusting propeller
US6899525B2 (en) Blade and wing configuration
JP6046652B2 (en) Ship
JP6638941B2 (en) Ship rudder with stern fins
KR20160031790A (en) Propelling and steering system of vessel, and full spade rudder with twisted leading edge
US2754919A (en) Propeller
KR20180101015A (en) Rotor blade of UAV
US10569851B1 (en) Dual blade assembly propeller
TWI515147B (en) Diffuser-type endplate propeller
WO2019014873A1 (en) Propeller for dredger
KR20130002144U (en) Propeller for Ship
KR20120068250A (en) Duct structure for ship

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: MICROENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, MICRO ENTITY (ORIGINAL EVENT CODE: M3554); ENTITY STATUS OF PATENT OWNER: MICROENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, MICRO ENTITY (ORIGINAL EVENT CODE: M3551); ENTITY STATUS OF PATENT OWNER: MICROENTITY

Year of fee payment: 4