US20190191904A9 - Bite proof straw assembly - Google Patents
Bite proof straw assembly Download PDFInfo
- Publication number
- US20190191904A9 US20190191904A9 US15/048,955 US201615048955A US2019191904A9 US 20190191904 A9 US20190191904 A9 US 20190191904A9 US 201615048955 A US201615048955 A US 201615048955A US 2019191904 A9 US2019191904 A9 US 2019191904A9
- Authority
- US
- United States
- Prior art keywords
- durometer
- straw
- upper portion
- spout
- drinking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010902 straw Substances 0.000 title claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 56
- 230000035622 drinking Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 20
- 238000000748 compression moulding Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 5
- 238000009423 ventilation Methods 0.000 description 12
- 238000007906 compression Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000035929 gnawing Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 239000010981 turquoise Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45F—TRAVELLING OR CAMP EQUIPMENT: SACKS OR PACKS CARRIED ON THE BODY
- A45F3/00—Travelling or camp articles; Sacks or packs carried on the body
- A45F3/16—Water-bottles; Mess-tins; Cups
- A45F3/18—Water-bottles; Mess-tins; Cups of rigid material
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G19/00—Table service
- A47G19/22—Drinking vessels or saucers used for table service
- A47G19/2205—Drinking glasses or vessels
- A47G19/2266—Means for facilitating drinking, e.g. for infants or invalids
- A47G19/2272—Means for facilitating drinking, e.g. for infants or invalids from drinking glasses or cups comprising lids or covers
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G19/00—Table service
- A47G19/22—Drinking vessels or saucers used for table service
- A47G19/2205—Drinking glasses or vessels
- A47G19/2266—Means for facilitating drinking, e.g. for infants or invalids
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G21/00—Table-ware
- A47G21/18—Drinking straws or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D23/00—Details of bottles or jars not otherwise provided for
- B65D23/10—Handles
- B65D23/102—Gripping means formed in the walls, e.g. roughening, cavities, projections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D23/00—Details of bottles or jars not otherwise provided for
- B65D23/10—Handles
- B65D23/104—Handles formed separately
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/06—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
- B65D47/12—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having removable closures
- B65D47/14—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having removable closures and closure-retaining means
- B65D47/147—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having removable closures and closure-retaining means for snap-on caps
Definitions
- the subject disclosure relates generally to bottles and drinking containers.
- the invention relates to a bottle having a hardened, bite proof straw assembly.
- FIG. 1 illustrates a side view of an exemplary bite proof bottle with a pivoting cover according to the subject disclosure.
- FIG. 2 shows a side view of the bottle with the pivoting cover in both an open and close position.
- FIG. 3 depicts a front view of the bottle.
- FIG. 4 illustrates a back view of the bottle.
- FIG. 5 shows a top view of the pivoting cover.
- FIG. 6 depicts a side view of the bottle with handles.
- FIG. 7 illustrates another side view of the bottle.
- FIG. 8 shows a front view of the bottle with handles.
- FIG. 9 depicts a top view of the bottle with handles with the pivoting cover in both the open and closed position.
- FIG. 10 illustrates a back view of the bottle with the cover in the closed position.
- FIG. 11 shows a cross section view of the bottle about A-A in FIG. 10 .
- FIG. 12 depicts a back view of the bottle with the cover in the open position.
- FIG. 13 illustrates a cross section view of the bottle about B-B in FIG. 12 .
- FIG. 14 shows a back perspective view of a bite proof bottle with a pivoting cover having another exemplary spout and lid according to the subject disclosure.
- FIG. 15 depicts a side perspective view of the bottle with the cover in the closed position.
- FIG. 16 illustrates a side perspective view of the bottle with the cover in the open position.
- FIG. 17 shows an upper perspective view of a bottle having a bite proof spout according to the subject disclosure.
- FIG. 18 depicts another upper perspective view of a bottle having a bite proof spout.
- FIGS. 19-20 show a front and side view of the bottle having a bite proof spout.
- FIG. 21 illustrates an upper perspective view of a soft top insert having a bite proof spout.
- FIG. 22 depicts a top view of the soft top insert having the bite proof spout.
- FIGS. 23-24 shows front and side views of the soft top insert having the bite proof spout.
- FIGS. 25-26 illustrates front and side cross section views of the soft top insert having the bite proof spout.
- FIGS. 27-35 illustrate an exemplary process of making the soft top insert with the bite proof spout.
- FIGS. 36-40 depict front, side and top views of another exemplary embodiment of the subject disclosure having a bite proof straw.
- FIG. 41 shows a cross section view of the bottle about a line C-C in FIG. 37 .
- FIG. 42 illustrates a cross section view of the bottle about a line D-D in FIG. 39 .
- FIG. 43 depicts another cross section view of the bottle.
- FIG. 1 illustrates a bottle 10 having a lid 20 , a container 30 , a spout 40 , a cover 50 and a pivoting connection 60 embodied as a strap 54 .
- FIG. 2 shows the cover 50 having a cap portion 52 and the strap 54 .
- the cap portion 52 may be co-molded with the strap 54 which is made of a flexible material such that it allows the cap portion to pivot about the pivoting connection 60 .
- the cap portion 52 may also be of a harder durometer than the strap 54 by using methods later discussed herein.
- the strap 54 may also be made from a second material than the cap portion 52 .
- the cap portion 52 and strap 54 can take a variety of different shapes and sizes and be made from a wide variety of suitable materials with various thicknesses and durometer.
- the cover 50 In a closed position, the cover 50 will enclose the spout 40 such to prevent exposure of the spout 40 .
- the cap portion 52 has a shape which generally follows the contour of the spout 40 shape to create a slip-fit frictional connection preventing the cover 50 from slipping off of the spout 40 without a predetermined amount of force to overcome the friction fit. This force should be high enough to keep the cover 50 in a closed position if the bottle 10 is knocked over or dropped, but low enough such that a young child or parent can remove the cover 50 from the spout 40 with ease.
- the cap portion 52 may also have a beaded edge 57 and a pull tab 58 , which gives a user a place to grip onto for increased leverage of the cover 50 and to facilitate removing the cover 50 from the closed position.
- the cap portion 52 may connect directly to the lid 20 or base of the spout 40 by a mating feature between the beaded edge 57 and the spout 40 or lid 20 .
- the mating feature may act as a slip-fit or snap fastener, or any other suitable connection to prevent the cover 50 from slipping off of the spout 40 .
- FIGS. 3-4 illustrate the spout 40 having a top portion 42 , a bottom portion 44 , a middle band 46 and a lip 48 .
- the spout 40 can be made in various shapes or sizes, and be made from a variety of suitable materials.
- An opening in the top portion 42 may be made in the form of a circle, oval, race track, or any other suitable shape.
- the middle band 46 acts as a bite guard and subsequently protects the spout 40 from biting of the user.
- the middle band 46 may have a first durometer and the top portion 42 and bottom portion 44 may have a second durometer.
- the first durometer is greater than the second durometer in order to provide added bite protection.
- both the top portion 42 and the middle band 46 may have the first durometer while the bottom portion 44 may have the second durometer, thus protecting the entire upper portion of the spout 40 from gnawing or biting.
- the middle band 46 may be manufactured to have a first color while the top portion 42 and bottom portion 44 have a second color. This gives the user a visual indicator of where the material durometer changes and thus where the bite guard is located. Furthermore, using different colors for the middle band 46 may act to distinguish spouts with different durometer bite guards. For instance, a pink middle band 46 may represent a durometer of 70 Shore while a turquoise middle band 46 may represent a durometer of 100 Shore.
- the middle band 46 may be extended completely flush with the top portion 42 and bottom portion 44 , or may bow out by a predetermined width to form a bump 47 to further distinguish it from the rest of the spout 40 .
- the bump 47 may be located at the top, middle or bottom of the middle band 46 , or any combination thereof.
- the middle band 46 may also include various textures, patterns or designs on its surface or interior to further distinguish it from the rest of the spout 40 . Differing the texture of the middle band 46 or providing the bump 47 will provide the user an additional tactile feedback of where the durometer changes when they drink from the bottle 10 .
- the middle band 46 having the first durometer may be compression molded, and then the rest of the spout 40 having the second durometer may be subsequently liquid injection molded around the middle band 46 .
- both the top portion 42 and middle band 46 may have the first durometer while the bottom portion 44 has the second durometer. This may be manufactured in the same fashion as the previous embodiment. It also may be manufactured by first compression molding the top portion 42 and middle band 46 with the first durometer, then subsequently compression molding the bottom portion 44 with the second durometer.
- FIG. 5 depicts the strap 54 having a textured inner surface comprised of raised ridges 54 a and grooves 54 b . Since the strap 54 has a smaller thickness at grooves 54 b , the strap 54 will be more flexible and thus the cover 50 can more easily pivot about the pivoting connection 60 .
- the raised ridges 54 a also provide an increased tactile surface for the user to grip when removing the cover 50 .
- the surface of strap 54 may be formed with a variety of patterns, shapes, thicknesses and hardness.
- the cap portion 52 may be constructed to have a different durometer from the strap 54 in a similar method as the middle portion 46 as recited above. In the closed position, this would allow for the cap portion 52 to be harder in order to protect the spout 40 while accidentally dropped or knocked over. At the same time, constructing the strap 54 softer would allow the user to more easily manipulate the position of cover 50 from open to closed or vice versa.
- FIGS. 6-9 illustrate the bottle 10 further comprising handles 70 which extend out from opposing sides of the lid 20 and curve around towards a lower portion of the container 30 .
- the handles 70 may also include a multitude of grooves 72 which enhance the grip of the user.
- the handles 70 can take a variety of different shapes and sizes and may have different types of grips such as rubber, plastic, groves, notches, apertures, textures, or any other suitable material or device to facilitate gripping by a user.
- FIG. 10-13 depict the lid 20 , the spout 40 , the cover 50 , the strap 54 and the pivoting connection 60 in greater detail.
- FIG. 11 illustrates a cross section of the bottle 10 about section lines A-A in FIG. 10 with the cover 50 in the closed position.
- the lid 20 further comprises a ventilation shaft 22 , a vent extrusion 22 a and a cover attachment mechanism 80 .
- the cover 50 further comprises a recess 53 in the cap portion 52 , and a cover anchor 55 located at a second end of the strap 54 , wherein the cap portion 52 is located at a first end of the strap 54 .
- the cover anchor 55 is generally round and comprises an aperture which receives the vent extrusion 22 a when the bottle 10 is assembled.
- the cover anchor 55 may take a variety of shapes and sizes suitable to mate and/or attach the cover 50 to the lid 20 . This configuration keeps the cover 50 attached to the bottle 10 and allows for the strap 54 to rotate about the pivoting connection 60 , while also being removable during washing.
- the cover anchor 55 may instead be attached or integral to the spout 40 .
- the spout 40 further comprises a horizontally extending ridge 48 and a ventilation aperture 49 .
- the ridge 48 rests between the lid 20 and an upper portion 32 of the container 30 and is fixed in place.
- the ridge 48 also acts to fix the cover anchor 55 into place between the spout 40 and the lid 20 .
- the ventilation aperture 49 rests against a bottom of the vent extrusion 22 a of the lid 20 . This allows air to flow from the atmosphere, through the ventilation shaft 22 of the lid 20 , the ventilation aperture 49 of the spout 40 , and into the container 30 .
- both the pivoting connection 60 and the ventilation shaft 22 can be displaced by a predetermined amount from the spout 40 .
- the ventilation shaft 22 is positioned relative to the spout 40 to permit the free flow of air into the container 30 while in use.
- the pivoting connection 60 is suitably positioned relative to the spout 40 so that the cover 50 may not be obstructed by the user from gripping the spout 40 with their mouth while drinking from the container 30 .
- the ventilation shaft 22 may be located on different parts of the lid 20 , container 30 or spout 40 as will be shown in an alternative embodiment described in FIG. 14 .
- FIGS. 12-13 show the bottle with the strap 54 (in dashed line) and cover anchor 55 hidden.
- FIG. 13 illustrates a cross section of the bottle 10 about section lines B-B in FIG. 12 .
- the lid 20 comprises an inner space 25 which surrounds the vent extrusion 22 a .
- the inner space 25 is adapted to receive the cover anchor 55 when assembled and fixes the cover anchor 55 in place between the lid 20 and the spout 40 .
- the cover attachment mechanism 80 is shown in more detail in FIG. 13 .
- the recess 53 in the cover 50 has a resilient undercut which slightly flexes as it is pushed onto the cover attachment point 23 .
- the recess 53 flexes back into its original configuration when installed into the open position, thereby gripping the cover attachment point 23 of the lid 20 and preventing the cover 50 from flipping back into the closed position or any other position while the user is drinking from the bottle 10 .
- the cover attachment mechanism 80 can take a variety of forms, including Velcro®, snap, hook and loop, slip-fit, button, or magnets fasteners, or any other suitable coupling mechanism.
- FIG. 14 shows a back perspective view of a bite proof bottle 110 with a pivoting cover 150 having another exemplary spout 140 and lid 120 according to the subject disclosure.
- the cover 150 includes a cap portion 152 and a strap 154 which connects to the lid 120 at a pivoting connection 160 .
- the cap portion 152 also includes a recess 153 which receives a complementary cover attachment point 123 on the lid 120 .
- FIGS. 15-16 show another method to attach the cover 153 to the lid 120 which uses an integrated pin 223 connection which fits into an aperture 253 located within the cover 150
- FIG. 14 shows the spout 140 comprising a top portion 142 , bottom portion 144 , middle portion 146 and a vent 145 .
- the strap 154 is attached between the spout 140 and the lid 120 in a separate position away from the vent 145 .
- the vent 145 communicates air from the atmosphere directly into a container 130 .
- the middle portion 146 may be constructed to have similar features of the middle portion 46 as recited above.
- FIGS. 17-26 show another briefly mentioned above process in which an upper portion 242 of a soft top insert 200 may be constructed to include the previous mentioned top portion 42 and the middle band 46 of a single material composition defining the spout 240 . That is, the spout 240 may be made of a harder first material composition of a first harder durometer (such as in the range of 60), and the second softer lower region 144 may be made of a softer second material composition comprised of a softer durometer (such as in the range of 50).
- the spout 240 may be formed of, and fastened to, the softer lower region 144 of the soft top insert 200 via a compression molding technique and/or any other suitable technique capable of fastening a spout of a first durometer to a lower base portion of a soft top insert which is composed of a different second durometer composition.
- FIGS. 21-24 illustrate various exemplary views of the soft top insert 200 including the spout 240 having a single material consistency of a first durometer and a lower region 144 having a single material consistency of a second durometer being softer than the spout 240 .
- FIGS. 25-26 depict front and side cross section views of the spout soft top insert 200 including the spout 240 connected to the lower region 144 .
- various contours may be constructed into the region adjacent to the connection between the spout 240 and the lower region 144 for a variety of different purposes.
- various concentric bumps or ridges can be configured to create a connecting lap-joint between the between the spout 240 and the upper end of the lower region 144 .
- a channel 245 can be constructed adjacent to the spout 240 and the upper end of the lower region 144 in order to provide a flow area to allow for trapped gasses during the compression molding process to escape.
- a plurality of different configurations is possible at this juncture between the spout 240 and the upper end of the lower region 144 .
- FIGS. 27-35 illustrate one exemplary process for constructing the soft top insert would be a compression molding process in which the is one tool that uses two different molds.
- a first mold would be used to construct the spout tip and a second mold may be used for an overmold process to connect the spout tip to the lower portion of the soft top insert.
- the spout tip is processed.
- a first material composition such as a suitable silicon, is placed between an upper and a lower mold adjacent to a removable insert or core.
- the first composition is placed over the removable core and adjacent to the various cavities adapted to receive the molten composition to form the various spout tips.
- slabs of 60 durometer silicone may be placed over the removable insert or core.
- the removable core can be a single piece core or a modular core that is assembled with various component parts. As shown in FIG. 27 , the various component parts of the removable core stack adjacent to each other forming the recess structure that will define the shape of the spout between the upper and lower molds.
- the removable core is aligned within the upper and lower molds and the various spouts are formed by a first compression molding process in which the molding material, is generally preheated, is placed in the open, heated mold cavity defined by the upper and lower molds and the inner removable core.
- the mold is closed with a predetermined force, and pressure is applied to force the mold material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured to form the shape of the spouts.
- the spout may undergo a curing process at a predetermined heat and duration of time.
- compression molding is its ability to mold fairly intricate parts. It is also one of the lowest cost molding methods. However, it is to be understood that other methods for molding the spout may be employed, such as but not limited to other methods such as transfer molding and injection molding.
- the individual spouts are shown attached to the removable core which has been removed from the upper and lower molds. Also shown, the individual spouts may be removed as rows of spouts from the removable core. As shown in FIG. 29 , various individual components of the removable core may then modularly separated from each other so that each of the individually molded spout tips may be accessed and removed from the removable internal core. Any extraneous flashing may be cleaned off, or removed from the individual spouts.
- FIG. 30 shows another step in which the molds for the first spout mold have been removed and the molds for the second process are put in place in the compression mold tooling.
- the spout mold is over molded with another mold material of a second durometer.
- the overmold has a mold comprised of three layers. As shown in FIG. 31 , the molded spout tips are placed upside down onto mating projections on the bottom most lower layer of the mold.
- the middle layer mold is aligned and lowered over the first lower layer holding the molded spout tips.
- the middle layer includes an internal mold recess adapted to be configured to the outer shape of the soft top insert.
- a second mold material of a predetermined quantity of a second softer durometer material is placed over the internal mold recess above the middle layer.
- predetermined quantities of slabs of 50 durometer silicon may be positioned adjacent to various recessed defined in the middle layer of the mold to form the lower portion of the soft top insert.
- the lower face of the upper mold includes at least one projection defining a negative construction of the internal surface area of the soft top insert.
- the projections on the lower face of the upper mold defines the inner construction of the soft top insert.
- the upper, middle and lower mold layers closed against each other under high pressure and heat defining the configuration of the soft top insert and it being overmolded onto the hardened spout tip. That is, the top mold layer compresses onto the middle mold layer and finally onto the lower mold layer of the mold. This compression forms the bottom portion of the soft top insert and causes the bottom of the spout to overmold onto the spout tip.
- the complete soft top insert may be processed through a subsequent curing procedure. Since the spout tip of a first durometer has been cured, it is possible to form a clean secure bond connection against the upper connecting surface of the lower region of the soft top insert.
- Various techniques may be implemented to create a secure connection between the spout tip and the upper portion of the lower region of the soft top insert below the spout tip, such as by providing a lap-joint or other suitable interlocking structure there-between according to this subject disclosure.
- Other alignment and position fastening techniques may be employed to ensure that the position of the spout tip adjacent to the lower layer mold will not shift from its axial alignment during the compression process such as by forming ridges or joints to keep the spout in a predetermined position during the compression process. See for example the various ridges and bumps 220 integrated onto the spout as shown in FIGS. 35-26 at the junction adjacent to the spout tip 240 and the lower region 144 of the soft top insert 200 .
- both the spout tip of a first durometer and the lower region of the soft top insert may be formed in a single compression process.
- other manufacturing processes may be employed, including but not limited to for example, a first or second stage compression molding process, an injection molding process, or other suitable process capable of securely bonding a spout tip of a first durometer to a lower region of a soft top insert of a second durometer.
- suitable durometers may be used according to this subject disclosure.
- FIG. 34 shows the positioning of various soft top inserts webbed together after the compression molding process has occurred and the upper layer has been removed from the middle layer mold.
- FIG. 35 depicts the various soft top inserts webbed together prior to removal of excess material flashing between adjacent soft top inserts.
- the complete spouts are removed from the mold and set to cool.
- FIGS. 36-42 illustrate another exemplary embodiment of the subject disclosure having a bottle 10 with a bite proof straw 400 .
- the bottle has a bite proof straw 400 , a collar 410 , and a flip lid 420 hingedly attached to the collar 410 .
- the collar 410 is attached to the container 30 .
- the bite proof straw 400 may have a top portion 402 and a bottom portion 406 .
- the straw 400 can be made in various shapes or sizes and can be made from a variety of suitable materials.
- An opening 403 in the top portion of the straw can be made in the form of a circle, oval, or any other suitable shape.
- the top portion 402 of the straw 400 may act as a bite guard and protect the straw 400 from biting by the user.
- the top portion 402 may be comprised of a first durometer and the bottom portion 406 may be comprised of a second durometer.
- the first durometer may be greater than the second durometer having a more durable composition to provide added bite protection to the top portion 402 , which is bitten by the user.
- the top portion 402 may be manufactured to have a first color while the bottom portion 406 may have a second color identifying a different hardness, such as shown in FIG. 37 . This gives the user a visual indicator of where the material durometer changes and thus were the bite guard is located. Furthermore, different colors may act to distinguish bite guards with different durometer values.
- FIG. 37 illustrates an alternative construction for the bite proof straw 400 .
- a middle band portion 404 between the top portion 402 and bottom portion 406 that may act as a bite guard.
- the middle band portion 404 may have a third durometer that is greater than the durometer of the top portion 402 and bottom portion 406 to give added bite protection.
- the middle band portion 404 and top portion 402 may alternatively have the first durometer and the bottom portion 406 may have the second durometer.
- the middle band portion 404 may be manufactured to have a color according to a predetermined durometer value.
- the top portion 402 and bottom portion 406 may be constructed of a first durometer and the middle band portion 404 may be constructed of a second durometer.
- the middle band portion 405 may be extended concentrically flush with the top portion 402 and bottom portion 406 , or may extend radially outward by a predetermined thickness to form a bump 405 to further distinguish it from the rest of the straw 400 .
- the bump 405 may be located at the top, middle, or bottom of the middle band portion 404 (as shown in FIG. 37 ), or any combination thereof.
- the middle band portion 404 may also include various textures, patterns, or designs on its surface or interior to further distinguish it from the rest of the straw. Differing the texture of the middle band portion 404 or providing the bump 405 will provide the user an additional tactile feedback of where the durometer changes when they drink from the bottle 10 .
- the bottom portion 406 of the straw 400 can be made with a sufficiently flexible material, allowing the straw 400 to bend without being damaged.
- the bottom portion 406 may be constructed to endure the cyclic bending and unbending that occurs when switching the straw 400 between the stored and in-use positions.
- the bottom portion 406 may have a recessed ring 407 that mates with a protruding ring 412 from the collar 410 to removably secure the straw 400 to the collar 410 and create a seal.
- the bottom portion 406 may have a wider segment 408 that prevents upward displacement of the straw 400 through an opening 413 in the collar 410 as well as reinforce the seal between the straw 400 and the collar 410 .
- the bottom portion 406 of the straw 400 can also attach to a ventilation shaft 415 of the collar 410 by a friction fit grip.
- the bottom portion 406 can also cover the ventilation shaft 415 with a one-way passage valve 409 , allowing air to enter into the container 30 while preventing the spillage of a fluid contained therein.
- the top portion 402 having the first durometer may be compression molded and the bottom portion 406 having the second durometer may be subsequently liquid injection molded around the top portion.
- the middle band portion 404 may be compression molded alongside the top portion 402 , and then the bottom portion 406 may be subsequently molded.
- the bottom portion 406 may alternatively be compression molded in any of these embodiments.
- FIGS. 40-42 depict various cross section views of the bottle 10 , with and without, the bite proof straw 400 .
- the top portion 402 may be comolded over a portion of the bottom portion 406 as shown or the top portion 402 may be attached to the bottom portion 406 in a variety of ways previously described.
- the collar 410 may be made in a variety of shapes and sizes, and may be made out a variety of materials.
- the collar 410 may secure the straw 400 by mating with a recessed ring 407 in the straw 400 or by any other suitable mechanism.
- the collar 410 has a ventilation shaft 415 or opening to allow atmospheric air to enter into the container 30 .
- the collar 410 may also have a protrusion 416 sufficiently large in size and near enough to the straw 400 that the protrusion 416 will constrict the flow of liquid through the straw 400 when the straw 400 is folded over the protrusion 416 in a closed position.
- the collar 410 may have a recess 418 or recesses that mate with protrusions 422 on the flip lid 420 in order to attach the flip lid 420 to the collar 410 .
- the collar 410 may also have a locking recess or similar mechanism to reversibly secure the flip lid 420 closed when in a closed position.
- one side of the collar 410 may also have a protruding end 419 with a ledge that meets with the flip lid 420 in order to protect and cover the open end of the straw 400 when the straw 400 is folded over in the closed position.
- FIG. 42 shows the flip lid 420 may have protrusions 422 that hingedly attach to the collar 410 , allowing the flip lid 420 to alternate between an open position and a closed position.
- the flip lid 420 has a raised chamber 424 that envelopes the straw 400 in the closed position.
- the flip lid 420 may have any number of grip elements 425 on the outer surface to assist with moving the flip lid 420 . These grip elements 425 may also be on the outer surface of the raised chamber 422 .
- the flip lid may 420 also have a protrusion or similar mechanism that allows it to reversibly lock with the collar 410 .
- the flip lid 420 When the flip lid 420 is rotated about the hinge (defined by the recess 418 and protrusions 422 ) into a storage position, the straw 400 is bent inward towards, and lies against blocking protrusion 416 .
- a front edge 428 of the flip lid 420 contacts a portion of the straw 400 , which causes the straw 400 to flex about a distal portion to the bottle 10 .
- the front edge 428 of the flip lid 420 travels over a length of the straw 400 .
- the flip lid 420 When the flip lid 420 is in the closed position, the straw 400 will be completely within a gap in the raised chamber 424 provided between the flip lid 420 and the bottle 10 .
- An advantage of having a softer durometer bottom portion is the added flexibility of the straw 400 to flex during this process.
- the bottle 10 described herein includes all of the features and functionality discussed above.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pediatric Medicine (AREA)
- Closures For Containers (AREA)
Abstract
Description
- This applications claims priority to U.S. Provisional Application Ser. No. 62/119,058, filed Feb. 20, 2015; U.S. Non-Provisional application Ser. No. 14/703,843, filed May 4, 2015; U.S. Provisional Application Ser. No. 62/046,869, filed Sep. 5, 2014; and to U.S. Provisional Application Ser. No. 61/988,077, filed May 2, 2014; the contents of all of which are hereby incorporated by reference herein in their entirety into this disclosure.
- The subject disclosure relates generally to bottles and drinking containers. In particular, the invention relates to a bottle having a hardened, bite proof straw assembly.
- Conventional bottles with straws are consistently exposed to harsh biting conditions from young children. After a long period of repeated biting, these straws may become weakened or damaged causing irregular flow or loose particles. Children, however, are known for biting through straws, causing tears and breaking the straw. Trying to account for this by stiffening the straw creates an exposed, inflexible opening, resulting in sanitation issues and spills. Unfortunately, these deficiencies have not been solved and have never been addressed previously.
- Various exemplary embodiments of this disclosure will be described in detail, wherein like reference numerals refer to identical or similar components or steps, with reference to the following figures, wherein:
-
FIG. 1 illustrates a side view of an exemplary bite proof bottle with a pivoting cover according to the subject disclosure. -
FIG. 2 shows a side view of the bottle with the pivoting cover in both an open and close position. -
FIG. 3 depicts a front view of the bottle. -
FIG. 4 illustrates a back view of the bottle. -
FIG. 5 shows a top view of the pivoting cover. -
FIG. 6 depicts a side view of the bottle with handles. -
FIG. 7 illustrates another side view of the bottle. -
FIG. 8 shows a front view of the bottle with handles. -
FIG. 9 depicts a top view of the bottle with handles with the pivoting cover in both the open and closed position. -
FIG. 10 illustrates a back view of the bottle with the cover in the closed position. -
FIG. 11 shows a cross section view of the bottle about A-A inFIG. 10 . -
FIG. 12 depicts a back view of the bottle with the cover in the open position. -
FIG. 13 illustrates a cross section view of the bottle about B-B inFIG. 12 . -
FIG. 14 shows a back perspective view of a bite proof bottle with a pivoting cover having another exemplary spout and lid according to the subject disclosure. -
FIG. 15 depicts a side perspective view of the bottle with the cover in the closed position. -
FIG. 16 illustrates a side perspective view of the bottle with the cover in the open position. -
FIG. 17 shows an upper perspective view of a bottle having a bite proof spout according to the subject disclosure. -
FIG. 18 depicts another upper perspective view of a bottle having a bite proof spout. -
FIGS. 19-20 show a front and side view of the bottle having a bite proof spout. -
FIG. 21 illustrates an upper perspective view of a soft top insert having a bite proof spout. -
FIG. 22 depicts a top view of the soft top insert having the bite proof spout. -
FIGS. 23-24 shows front and side views of the soft top insert having the bite proof spout. -
FIGS. 25-26 illustrates front and side cross section views of the soft top insert having the bite proof spout. -
FIGS. 27-35 illustrate an exemplary process of making the soft top insert with the bite proof spout. -
FIGS. 36-40 depict front, side and top views of another exemplary embodiment of the subject disclosure having a bite proof straw. -
FIG. 41 shows a cross section view of the bottle about a line C-C inFIG. 37 . -
FIG. 42 illustrates a cross section view of the bottle about a line D-D inFIG. 39 . -
FIG. 43 depicts another cross section view of the bottle. - Particular embodiments of the present invention will now be described in greater detail with reference to the figures.
-
FIG. 1 illustrates abottle 10 having alid 20, acontainer 30, aspout 40, acover 50 and apivoting connection 60 embodied as astrap 54. -
FIG. 2 shows thecover 50 having acap portion 52 and thestrap 54. Thecap portion 52 may be co-molded with thestrap 54 which is made of a flexible material such that it allows the cap portion to pivot about thepivoting connection 60. Thecap portion 52 may also be of a harder durometer than thestrap 54 by using methods later discussed herein. However, thestrap 54 may also be made from a second material than thecap portion 52. Thecap portion 52 andstrap 54 can take a variety of different shapes and sizes and be made from a wide variety of suitable materials with various thicknesses and durometer. - In a closed position, the
cover 50 will enclose thespout 40 such to prevent exposure of thespout 40. Thecap portion 52 has a shape which generally follows the contour of thespout 40 shape to create a slip-fit frictional connection preventing thecover 50 from slipping off of thespout 40 without a predetermined amount of force to overcome the friction fit. This force should be high enough to keep thecover 50 in a closed position if thebottle 10 is knocked over or dropped, but low enough such that a young child or parent can remove thecover 50 from thespout 40 with ease. - The
cap portion 52 may also have abeaded edge 57 and apull tab 58, which gives a user a place to grip onto for increased leverage of thecover 50 and to facilitate removing thecover 50 from the closed position. In addition, thecap portion 52 may connect directly to thelid 20 or base of thespout 40 by a mating feature between thebeaded edge 57 and thespout 40 orlid 20. The mating feature may act as a slip-fit or snap fastener, or any other suitable connection to prevent thecover 50 from slipping off of thespout 40. -
FIGS. 3-4 illustrate thespout 40 having atop portion 42, abottom portion 44, amiddle band 46 and alip 48. Thespout 40 can be made in various shapes or sizes, and be made from a variety of suitable materials. An opening in thetop portion 42 may be made in the form of a circle, oval, race track, or any other suitable shape. - The
middle band 46 acts as a bite guard and subsequently protects thespout 40 from biting of the user. Themiddle band 46 may have a first durometer and thetop portion 42 andbottom portion 44 may have a second durometer. The first durometer is greater than the second durometer in order to provide added bite protection. Alternatively, both thetop portion 42 and themiddle band 46 may have the first durometer while thebottom portion 44 may have the second durometer, thus protecting the entire upper portion of thespout 40 from gnawing or biting. - The
middle band 46 may be manufactured to have a first color while thetop portion 42 andbottom portion 44 have a second color. This gives the user a visual indicator of where the material durometer changes and thus where the bite guard is located. Furthermore, using different colors for themiddle band 46 may act to distinguish spouts with different durometer bite guards. For instance, a pinkmiddle band 46 may represent a durometer of 70 Shore while aturquoise middle band 46 may represent a durometer of 100 Shore. - The
middle band 46 may be extended completely flush with thetop portion 42 andbottom portion 44, or may bow out by a predetermined width to form abump 47 to further distinguish it from the rest of thespout 40. Thebump 47 may be located at the top, middle or bottom of themiddle band 46, or any combination thereof. Themiddle band 46 may also include various textures, patterns or designs on its surface or interior to further distinguish it from the rest of thespout 40. Differing the texture of themiddle band 46 or providing thebump 47 will provide the user an additional tactile feedback of where the durometer changes when they drink from thebottle 10. - In order to form the difference in durometer, the
middle band 46 having the first durometer may be compression molded, and then the rest of thespout 40 having the second durometer may be subsequently liquid injection molded around themiddle band 46. In an alternative embodiment, both thetop portion 42 andmiddle band 46 may have the first durometer while thebottom portion 44 has the second durometer. This may be manufactured in the same fashion as the previous embodiment. It also may be manufactured by first compression molding thetop portion 42 andmiddle band 46 with the first durometer, then subsequently compression molding thebottom portion 44 with the second durometer. -
FIG. 5 depicts thestrap 54 having a textured inner surface comprised of raisedridges 54 a andgrooves 54 b. Since thestrap 54 has a smaller thickness atgrooves 54 b, thestrap 54 will be more flexible and thus thecover 50 can more easily pivot about thepivoting connection 60. The raisedridges 54 a also provide an increased tactile surface for the user to grip when removing thecover 50. The surface ofstrap 54 may be formed with a variety of patterns, shapes, thicknesses and hardness. - Furthermore, the
cap portion 52 may be constructed to have a different durometer from thestrap 54 in a similar method as themiddle portion 46 as recited above. In the closed position, this would allow for thecap portion 52 to be harder in order to protect thespout 40 while accidentally dropped or knocked over. At the same time, constructing thestrap 54 softer would allow the user to more easily manipulate the position ofcover 50 from open to closed or vice versa. -
FIGS. 6-9 illustrate thebottle 10 further comprisinghandles 70 which extend out from opposing sides of thelid 20 and curve around towards a lower portion of thecontainer 30. As shown inFIG. 8 , thehandles 70 may also include a multitude ofgrooves 72 which enhance the grip of the user. Thehandles 70 can take a variety of different shapes and sizes and may have different types of grips such as rubber, plastic, groves, notches, apertures, textures, or any other suitable material or device to facilitate gripping by a user. -
FIG. 10-13 depict thelid 20, thespout 40, thecover 50, thestrap 54 and thepivoting connection 60 in greater detail.FIG. 11 illustrates a cross section of thebottle 10 about section lines A-A inFIG. 10 with thecover 50 in the closed position. - The
lid 20 further comprises aventilation shaft 22, avent extrusion 22 a and acover attachment mechanism 80. In addition, thecover 50 further comprises arecess 53 in thecap portion 52, and acover anchor 55 located at a second end of thestrap 54, wherein thecap portion 52 is located at a first end of thestrap 54. As best shown inFIG. 11 , thecover anchor 55 is generally round and comprises an aperture which receives thevent extrusion 22 a when thebottle 10 is assembled. However, thecover anchor 55 may take a variety of shapes and sizes suitable to mate and/or attach thecover 50 to thelid 20. This configuration keeps thecover 50 attached to thebottle 10 and allows for thestrap 54 to rotate about thepivoting connection 60, while also being removable during washing. Furthermore, thecover anchor 55 may instead be attached or integral to thespout 40. - The
spout 40 further comprises a horizontally extendingridge 48 and aventilation aperture 49. When assembled, theridge 48 rests between thelid 20 and anupper portion 32 of thecontainer 30 and is fixed in place. Theridge 48 also acts to fix thecover anchor 55 into place between thespout 40 and thelid 20. Theventilation aperture 49 rests against a bottom of thevent extrusion 22 a of thelid 20. This allows air to flow from the atmosphere, through theventilation shaft 22 of thelid 20, theventilation aperture 49 of thespout 40, and into thecontainer 30. - Since the
cover anchor 55 surrounds theventilation shaft 22, both thepivoting connection 60 and theventilation shaft 22 can be displaced by a predetermined amount from thespout 40. Theventilation shaft 22 is positioned relative to thespout 40 to permit the free flow of air into thecontainer 30 while in use. In addition, the pivotingconnection 60 is suitably positioned relative to thespout 40 so that thecover 50 may not be obstructed by the user from gripping thespout 40 with their mouth while drinking from thecontainer 30. It is to be understood, however, that theventilation shaft 22 may be located on different parts of thelid 20,container 30 or spout 40 as will be shown in an alternative embodiment described inFIG. 14 . -
FIGS. 12-13 show the bottle with the strap 54 (in dashed line) andcover anchor 55 hidden.FIG. 13 illustrates a cross section of thebottle 10 about section lines B-B inFIG. 12 . As shown, thelid 20 comprises aninner space 25 which surrounds thevent extrusion 22 a. Theinner space 25 is adapted to receive thecover anchor 55 when assembled and fixes thecover anchor 55 in place between thelid 20 and thespout 40. - The
cover attachment mechanism 80 is shown in more detail inFIG. 13 . Therecess 53 in thecover 50 has a resilient undercut which slightly flexes as it is pushed onto thecover attachment point 23. Therecess 53 flexes back into its original configuration when installed into the open position, thereby gripping thecover attachment point 23 of thelid 20 and preventing thecover 50 from flipping back into the closed position or any other position while the user is drinking from thebottle 10. It is to be understood that thecover attachment mechanism 80 can take a variety of forms, including Velcro®, snap, hook and loop, slip-fit, button, or magnets fasteners, or any other suitable coupling mechanism. -
FIG. 14 shows a back perspective view of a biteproof bottle 110 with a pivotingcover 150 having anotherexemplary spout 140 andlid 120 according to the subject disclosure. As shown inFIGS. 14-16 , thecover 150 includes acap portion 152 and astrap 154 which connects to thelid 120 at apivoting connection 160. Thecap portion 152 also includes arecess 153 which receives a complementarycover attachment point 123 on thelid 120.FIGS. 15-16 show another method to attach thecover 153 to thelid 120 which uses anintegrated pin 223 connection which fits into anaperture 253 located within thecover 150 -
FIG. 14 shows thespout 140 comprising atop portion 142,bottom portion 144,middle portion 146 and avent 145. Here, thestrap 154 is attached between thespout 140 and thelid 120 in a separate position away from thevent 145. Thevent 145 communicates air from the atmosphere directly into acontainer 130. Themiddle portion 146 may be constructed to have similar features of themiddle portion 46 as recited above. -
FIGS. 17-26 show another briefly mentioned above process in which anupper portion 242 of a softtop insert 200 may be constructed to include the previous mentionedtop portion 42 and themiddle band 46 of a single material composition defining thespout 240. That is, thespout 240 may be made of a harder first material composition of a first harder durometer (such as in the range of 60), and the second softerlower region 144 may be made of a softer second material composition comprised of a softer durometer (such as in the range of 50). - As will be described in more detail later, the
spout 240 may be formed of, and fastened to, the softerlower region 144 of the softtop insert 200 via a compression molding technique and/or any other suitable technique capable of fastening a spout of a first durometer to a lower base portion of a soft top insert which is composed of a different second durometer composition. -
FIGS. 21-24 illustrate various exemplary views of the softtop insert 200 including thespout 240 having a single material consistency of a first durometer and alower region 144 having a single material consistency of a second durometer being softer than thespout 240. -
FIGS. 25-26 depict front and side cross section views of the spout softtop insert 200 including thespout 240 connected to thelower region 144. As shown, various contours may be constructed into the region adjacent to the connection between thespout 240 and thelower region 144 for a variety of different purposes. For example, various concentric bumps or ridges can be configured to create a connecting lap-joint between the between thespout 240 and the upper end of thelower region 144. Alternatively, a channel 245 can be constructed adjacent to thespout 240 and the upper end of thelower region 144 in order to provide a flow area to allow for trapped gasses during the compression molding process to escape. A plurality of different configurations is possible at this juncture between thespout 240 and the upper end of thelower region 144. -
FIGS. 27-35 illustrate one exemplary process for constructing the soft top insert would be a compression molding process in which the is one tool that uses two different molds. A first mold would be used to construct the spout tip and a second mold may be used for an overmold process to connect the spout tip to the lower portion of the soft top insert. - In a first step as shown in
FIG. 27 , the spout tip is processed. A first material composition, such as a suitable silicon, is placed between an upper and a lower mold adjacent to a removable insert or core. The first composition is placed over the removable core and adjacent to the various cavities adapted to receive the molten composition to form the various spout tips. By way of example shown inFIG. 27 , slabs of 60 durometer silicone may be placed over the removable insert or core. The removable core can be a single piece core or a modular core that is assembled with various component parts. As shown inFIG. 27 , the various component parts of the removable core stack adjacent to each other forming the recess structure that will define the shape of the spout between the upper and lower molds. - In the first step process, the removable core is aligned within the upper and lower molds and the various spouts are formed by a first compression molding process in which the molding material, is generally preheated, is placed in the open, heated mold cavity defined by the upper and lower molds and the inner removable core. The mold is closed with a predetermined force, and pressure is applied to force the mold material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured to form the shape of the spouts. Following the spout molding process, the spout may undergo a curing process at a predetermined heat and duration of time.
- The advantage of compression molding is its ability to mold fairly intricate parts. It is also one of the lowest cost molding methods. However, it is to be understood that other methods for molding the spout may be employed, such as but not limited to other methods such as transfer molding and injection molding.
- In a second step as shown in
FIG. 28 , the individual spouts are shown attached to the removable core which has been removed from the upper and lower molds. Also shown, the individual spouts may be removed as rows of spouts from the removable core. As shown inFIG. 29 , various individual components of the removable core may then modularly separated from each other so that each of the individually molded spout tips may be accessed and removed from the removable internal core. Any extraneous flashing may be cleaned off, or removed from the individual spouts. -
FIG. 30 shows another step in which the molds for the first spout mold have been removed and the molds for the second process are put in place in the compression mold tooling. In the second overmold process, the spout mold is over molded with another mold material of a second durometer. - In this step, the overmold has a mold comprised of three layers. As shown in
FIG. 31 , the molded spout tips are placed upside down onto mating projections on the bottom most lower layer of the mold. In a next step, the middle layer mold is aligned and lowered over the first lower layer holding the molded spout tips. The middle layer includes an internal mold recess adapted to be configured to the outer shape of the soft top insert. When the upper third layer is closed over the second and first layers, an internal shape forming the soft top insert is constructed between the first, middle and upper molds and overmolded or melted onto the preformed spout tip. - Referring back to
FIG. 32 , a second mold material of a predetermined quantity of a second softer durometer material is placed over the internal mold recess above the middle layer. For example, predetermined quantities of slabs of 50 durometer silicon may be positioned adjacent to various recessed defined in the middle layer of the mold to form the lower portion of the soft top insert. - As shown in
FIG. 33 , the lower face of the upper mold includes at least one projection defining a negative construction of the internal surface area of the soft top insert. When the upper mold layer is compressed against the second middle layer mold, the projections on the lower face of the upper mold defines the inner construction of the soft top insert. During the compression process, the upper, middle and lower mold layers closed against each other under high pressure and heat defining the configuration of the soft top insert and it being overmolded onto the hardened spout tip. That is, the top mold layer compresses onto the middle mold layer and finally onto the lower mold layer of the mold. This compression forms the bottom portion of the soft top insert and causes the bottom of the spout to overmold onto the spout tip. Thereafter, the complete soft top insert may be processed through a subsequent curing procedure. Since the spout tip of a first durometer has been cured, it is possible to form a clean secure bond connection against the upper connecting surface of the lower region of the soft top insert. - Various techniques may be implemented to create a secure connection between the spout tip and the upper portion of the lower region of the soft top insert below the spout tip, such as by providing a lap-joint or other suitable interlocking structure there-between according to this subject disclosure. Other alignment and position fastening techniques may be employed to ensure that the position of the spout tip adjacent to the lower layer mold will not shift from its axial alignment during the compression process such as by forming ridges or joints to keep the spout in a predetermined position during the compression process. See for example the various ridges and bumps 220 integrated onto the spout as shown in
FIGS. 35-26 at the junction adjacent to thespout tip 240 and thelower region 144 of the softtop insert 200. - Likewise, various other processes may be implemented to bond the spout tip of a first durometer to a lower region of a soft top insert. For example, instead of a two step process, both the spout tip of a first durometer and the lower region of the soft top insert may be formed in a single compression process. Furthermore, other manufacturing processes may be employed, including but not limited to for example, a first or second stage compression molding process, an injection molding process, or other suitable process capable of securely bonding a spout tip of a first durometer to a lower region of a soft top insert of a second durometer. Various different suitable durometers may be used according to this subject disclosure.
-
FIG. 34 shows the positioning of various soft top inserts webbed together after the compression molding process has occurred and the upper layer has been removed from the middle layer mold. -
FIG. 35 depicts the various soft top inserts webbed together prior to removal of excess material flashing between adjacent soft top inserts. The complete spouts are removed from the mold and set to cool. -
FIGS. 36-42 illustrate another exemplary embodiment of the subject disclosure having abottle 10 with abite proof straw 400. As shown, the bottle has abite proof straw 400, acollar 410, and aflip lid 420 hingedly attached to thecollar 410. Thecollar 410 is attached to thecontainer 30. - The
bite proof straw 400 may have atop portion 402 and abottom portion 406. Thestraw 400 can be made in various shapes or sizes and can be made from a variety of suitable materials. Anopening 403 in the top portion of the straw can be made in the form of a circle, oval, or any other suitable shape. - The
top portion 402 of thestraw 400 may act as a bite guard and protect thestraw 400 from biting by the user. Thetop portion 402 may be comprised of a first durometer and thebottom portion 406 may be comprised of a second durometer. The first durometer may be greater than the second durometer having a more durable composition to provide added bite protection to thetop portion 402, which is bitten by the user. Thetop portion 402 may be manufactured to have a first color while thebottom portion 406 may have a second color identifying a different hardness, such as shown inFIG. 37 . This gives the user a visual indicator of where the material durometer changes and thus were the bite guard is located. Furthermore, different colors may act to distinguish bite guards with different durometer values. -
FIG. 37 illustrates an alternative construction for thebite proof straw 400. Alternatively, there may be amiddle band portion 404 between thetop portion 402 andbottom portion 406 that may act as a bite guard. Themiddle band portion 404 may have a third durometer that is greater than the durometer of thetop portion 402 andbottom portion 406 to give added bite protection. Themiddle band portion 404 andtop portion 402 may alternatively have the first durometer and thebottom portion 406 may have the second durometer. Themiddle band portion 404 may be manufactured to have a color according to a predetermined durometer value. Furthermore, thetop portion 402 andbottom portion 406 may be constructed of a first durometer and themiddle band portion 404 may be constructed of a second durometer. - The
middle band portion 405 may be extended concentrically flush with thetop portion 402 andbottom portion 406, or may extend radially outward by a predetermined thickness to form abump 405 to further distinguish it from the rest of thestraw 400. Thebump 405 may be located at the top, middle, or bottom of the middle band portion 404 (as shown inFIG. 37 ), or any combination thereof. Themiddle band portion 404 may also include various textures, patterns, or designs on its surface or interior to further distinguish it from the rest of the straw. Differing the texture of themiddle band portion 404 or providing thebump 405 will provide the user an additional tactile feedback of where the durometer changes when they drink from thebottle 10. - The
bottom portion 406 of thestraw 400 can be made with a sufficiently flexible material, allowing thestraw 400 to bend without being damaged. Thebottom portion 406 may be constructed to endure the cyclic bending and unbending that occurs when switching thestraw 400 between the stored and in-use positions. - As shown in
FIG. 40 , thebottom portion 406 may have a recessedring 407 that mates with a protrudingring 412 from thecollar 410 to removably secure thestraw 400 to thecollar 410 and create a seal. Thebottom portion 406 may have awider segment 408 that prevents upward displacement of thestraw 400 through anopening 413 in thecollar 410 as well as reinforce the seal between thestraw 400 and thecollar 410. - The
bottom portion 406 of thestraw 400 can also attach to aventilation shaft 415 of thecollar 410 by a friction fit grip. Thebottom portion 406 can also cover theventilation shaft 415 with a one-way passage valve 409, allowing air to enter into thecontainer 30 while preventing the spillage of a fluid contained therein. - In order to form the differences in durometer of the different portions of the
bite proof straw 400, thetop portion 402 having the first durometer may be compression molded and thebottom portion 406 having the second durometer may be subsequently liquid injection molded around the top portion. Alternatively, themiddle band portion 404 may be compression molded alongside thetop portion 402, and then thebottom portion 406 may be subsequently molded. Thebottom portion 406 may alternatively be compression molded in any of these embodiments. -
FIGS. 40-42 depict various cross section views of thebottle 10, with and without, thebite proof straw 400. Thetop portion 402 may be comolded over a portion of thebottom portion 406 as shown or thetop portion 402 may be attached to thebottom portion 406 in a variety of ways previously described. - The
collar 410 may be made in a variety of shapes and sizes, and may be made out a variety of materials. Thecollar 410 may secure thestraw 400 by mating with a recessedring 407 in thestraw 400 or by any other suitable mechanism. Thecollar 410 has aventilation shaft 415 or opening to allow atmospheric air to enter into thecontainer 30. Thecollar 410 may also have aprotrusion 416 sufficiently large in size and near enough to thestraw 400 that theprotrusion 416 will constrict the flow of liquid through thestraw 400 when thestraw 400 is folded over theprotrusion 416 in a closed position. - The
collar 410 may have arecess 418 or recesses that mate withprotrusions 422 on theflip lid 420 in order to attach theflip lid 420 to thecollar 410. Thecollar 410 may also have a locking recess or similar mechanism to reversibly secure theflip lid 420 closed when in a closed position. As shown inFIG. 42 , one side of thecollar 410 may also have aprotruding end 419 with a ledge that meets with theflip lid 420 in order to protect and cover the open end of thestraw 400 when thestraw 400 is folded over in the closed position. -
FIG. 42 shows theflip lid 420 may haveprotrusions 422 that hingedly attach to thecollar 410, allowing theflip lid 420 to alternate between an open position and a closed position. Theflip lid 420 has a raisedchamber 424 that envelopes thestraw 400 in the closed position. Theflip lid 420 may have any number ofgrip elements 425 on the outer surface to assist with moving theflip lid 420. Thesegrip elements 425 may also be on the outer surface of the raisedchamber 422. The flip lid may 420 also have a protrusion or similar mechanism that allows it to reversibly lock with thecollar 410. - When the
flip lid 420 is rotated about the hinge (defined by therecess 418 and protrusions 422) into a storage position, thestraw 400 is bent inward towards, and lies against blockingprotrusion 416. Afront edge 428 of theflip lid 420 contacts a portion of thestraw 400, which causes thestraw 400 to flex about a distal portion to thebottle 10. As theflip lid 420 moves from an open position to a closed position, thefront edge 428 of theflip lid 420 travels over a length of thestraw 400. When theflip lid 420 is in the closed position, thestraw 400 will be completely within a gap in the raisedchamber 424 provided between theflip lid 420 and thebottle 10. An advantage of having a softer durometer bottom portion is the added flexibility of thestraw 400 to flex during this process. - As mentioned previously, the
bottle 10 described herein includes all of the features and functionality discussed above. - The illustrations and examples provided herein are for explanatory purposes and are not intended to limit the scope of the appended claims. It will be recognized by those skilled in the art that changes or modifications may be made to the above described embodiment without departing from the broad inventive concepts of the invention. It is understood therefore that the invention is not limited to the particular embodiment which is described, but is intended to cover all modifications and changes within the scope and spirit of the invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/048,955 US20190191904A9 (en) | 2014-05-02 | 2016-02-19 | Bite proof straw assembly |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461988077P | 2014-05-02 | 2014-05-02 | |
US201462046869P | 2014-09-05 | 2014-09-05 | |
US201562119058P | 2015-02-20 | 2015-02-20 | |
US14/703,843 US11932447B2 (en) | 2014-05-02 | 2015-05-04 | Bite proof spout |
US15/048,955 US20190191904A9 (en) | 2014-05-02 | 2016-02-19 | Bite proof straw assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/703,843 Continuation-In-Part US11932447B2 (en) | 2014-05-02 | 2015-05-04 | Bite proof spout |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160166094A1 US20160166094A1 (en) | 2016-06-16 |
US20190191904A9 true US20190191904A9 (en) | 2019-06-27 |
Family
ID=56109973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/048,955 Pending US20190191904A9 (en) | 2014-05-02 | 2016-02-19 | Bite proof straw assembly |
Country Status (1)
Country | Link |
---|---|
US (1) | US20190191904A9 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10569940B2 (en) * | 2017-06-15 | 2020-02-25 | Camelbak Products, Llc | Cap assemblies with magnetic closure retention mechanisms and drink containers including the same |
US11173221B2 (en) * | 2017-10-31 | 2021-11-16 | Sensor Electronic Technology, Inc. | Ultraviolet disinfection for a water bottle |
US10898017B2 (en) * | 2017-12-19 | 2021-01-26 | Ignite Usa, Llc | No-spill drinking container |
WO2020033769A1 (en) * | 2018-08-08 | 2020-02-13 | MODL Outdoors, LLC | Modular utility bottle |
USD920046S1 (en) | 2019-05-23 | 2021-05-25 | Camelbak Products, Llc | Container cap with drink vessel |
US11396408B2 (en) | 2019-08-05 | 2022-07-26 | Yeti Coolers, Llc | Lid for container |
USD1032291S1 (en) * | 2021-10-13 | 2024-06-25 | Assuaged, Inc. | Bottle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5201460A (en) * | 1990-04-30 | 1993-04-13 | Hoechst Celanese Corporation | Spill-resistant drinking straw |
US5509605A (en) * | 1994-08-19 | 1996-04-23 | Hydro-Life, Inc. | Filtering straw |
US5544766A (en) * | 1994-11-04 | 1996-08-13 | Munchkin Bottling Inc. | Coded two part nipple members for baby bottles and method of making |
US5582320A (en) * | 1995-02-21 | 1996-12-10 | Shing Hong Industrial Co., Ltd. | Beverage container with extendable drinking straw |
US20020030115A1 (en) * | 1998-11-10 | 2002-03-14 | Float Ardele Y. | Bendable insulated drinking straw for drinking hot and cold liquids |
US20110240703A1 (en) * | 2008-12-15 | 2011-10-06 | Marilene Hickmann Tobin | Hydration system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101107799B1 (en) * | 2004-07-29 | 2012-01-25 | 피죤 가부시키가이샤 | Artificial nipple, feeder, and method of producing artificial nipple |
CA2681349A1 (en) * | 2007-03-21 | 2008-09-25 | Sanbrook Innovations Pty Ltd. | Inventions relating to drinking vessels |
US8608016B2 (en) * | 2011-11-18 | 2013-12-17 | Wilton Industries Inc. | Flexible straw mug |
US8833598B2 (en) * | 2012-09-19 | 2014-09-16 | Choomee, Inc. | Protective spout cover with food regulating valve |
-
2016
- 2016-02-19 US US15/048,955 patent/US20190191904A9/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5201460A (en) * | 1990-04-30 | 1993-04-13 | Hoechst Celanese Corporation | Spill-resistant drinking straw |
US5509605A (en) * | 1994-08-19 | 1996-04-23 | Hydro-Life, Inc. | Filtering straw |
US5544766A (en) * | 1994-11-04 | 1996-08-13 | Munchkin Bottling Inc. | Coded two part nipple members for baby bottles and method of making |
US5582320A (en) * | 1995-02-21 | 1996-12-10 | Shing Hong Industrial Co., Ltd. | Beverage container with extendable drinking straw |
US20020030115A1 (en) * | 1998-11-10 | 2002-03-14 | Float Ardele Y. | Bendable insulated drinking straw for drinking hot and cold liquids |
US20110240703A1 (en) * | 2008-12-15 | 2011-10-06 | Marilene Hickmann Tobin | Hydration system |
Also Published As
Publication number | Publication date |
---|---|
US20160166094A1 (en) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11932447B2 (en) | Bite proof spout | |
US20190191904A9 (en) | Bite proof straw assembly | |
KR101446816B1 (en) | Composite closure with outer gripping layer | |
JP2022502322A (en) | Flexible container with spout and closure | |
EP1489951B1 (en) | Drinking vessel | |
US9027769B2 (en) | Cap with integrated spout | |
JP2004529039A (en) | Non-dispensing sealing member | |
AU2005317315A1 (en) | Latchable lid assemblies | |
EP0798226B1 (en) | Two-piece plastic container and removable cover | |
US20220002040A1 (en) | Closure for a spout of a flexible thin-walled package | |
US10351308B1 (en) | Disposable cup lid | |
US20230255377A1 (en) | Container closure, lid element for use in the container closure, and container arrangement | |
US20140291275A1 (en) | Oral Motor Development Sipping Spout | |
JP7290392B2 (en) | packaging container | |
US9629784B2 (en) | Pacifiers | |
JP5588643B2 (en) | Beverage container | |
CN101258078A (en) | Child-resistant closure, package and method of making | |
JP4525085B2 (en) | Tamper-proof overcap | |
JPS6013801Y2 (en) | Soft synthetic resin bottle stopper | |
TW202005880A (en) | A bottle extension | |
CN205931763U (en) | Bottle lid of easily opening that is used for liquid packaging | |
JP4514313B2 (en) | Container lid with buffer means | |
JP4195248B2 (en) | Plastic cap | |
EP1577072A1 (en) | Food package | |
JPH07112750A (en) | Fitting container composed of different kinds of material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MUNCHKIN, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TEBBE, MARK GERARD;KHACHIKIAN, NAIRI;HATHERILL, MARK A.;AND OTHERS;REEL/FRAME:037800/0889 Effective date: 20160223 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
STCC | Information on status: application revival |
Free format text: WITHDRAWN ABANDONMENT, AWAITING EXAMINER ACTION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |