US20190184482A1 - Welding system for determining a quality of a welding operation - Google Patents
Welding system for determining a quality of a welding operation Download PDFInfo
- Publication number
- US20190184482A1 US20190184482A1 US16/283,268 US201916283268A US2019184482A1 US 20190184482 A1 US20190184482 A1 US 20190184482A1 US 201916283268 A US201916283268 A US 201916283268A US 2019184482 A1 US2019184482 A1 US 2019184482A1
- Authority
- US
- United States
- Prior art keywords
- temperature
- power supply
- workpiece
- welding
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 claims description 22
- 238000003860 storage Methods 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000000007 visual effect Effects 0.000 claims description 3
- 230000005055 memory storage Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007778 shielded metal arc welding Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- QFXZANXYUCUTQH-UHFFFAOYSA-N ethynol Chemical group OC#C QFXZANXYUCUTQH-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
- B23K9/0953—Monitoring or automatic control of welding parameters using computing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/12—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
- B23K31/125—Weld quality monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
- B23K9/028—Seam welding; Backing means; Inserts for curved planar seams
- B23K9/0282—Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
- B23K9/0956—Monitoring or automatic control of welding parameters using sensing means, e.g. optical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/32—Accessories
- B23K9/321—Protecting means
- B23K9/322—Head protecting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/06—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
Definitions
- the invention relates generally to welding systems and, more particularly, to a welding system for determining a quality of a welding operation.
- Welding is a process that has increasingly become utilized in various industries and applications. Such processes may be automated in certain contexts, although a large number of applications continue to exist for manual welding operations. In both cases, such welding operations rely on a variety of types of equipment to ensure the supply of welding consumables (e.g., wire feed, shielding gas, etc.) is provided to the weld in appropriate amounts at the desired time.
- welding consumables e.g., wire feed, shielding gas, etc.
- a workpiece may be formed from a carbon steel or a corrosion resistant alloy, such as stainless steel.
- a time duration of heat that the workpiece is exposed to may be managed for obtaining certain metallurgical characteristics. For example, certain preheat temperatures, interpass temperatures, heat input of welding, and/or other welding parameters may be managed. Accordingly, a quality of a welding operation on a workpiece may depend on a time history of temperatures that the workpiece is exposed to during the welding operation.
- a welding system in one embodiment, includes a movable temperature sensor configured to detect temperatures corresponding to a workpiece and to provide temperature data corresponding to the detected temperatures.
- the welding system also includes a power supply configured to receive the temperature data from the temperature sensor.
- the power supply is configured to modify control of an output of the power supply based on the detected temperature.
- a method for determining a quality of a welding operation includes receiving, via a power supply, a temperature signal representative of one or more temperatures of a workpiece detected by a temperature sensor during an operation for the workpiece.
- the method further includes processing the temperature signal to derive a processed temperature data, and receiving operations data corresponding to the operation for the workpiece.
- the method additionally includes determining a quality of the operation by applying the processed temperature data and the operations data.
- a tangible, non-transitory computer-readable medium comprising instructions configured to receive, via a power supply, a temperature signal representative of one or more temperatures of a workpiece detected by a temperature sensor during an operation for the workpiece.
- the instructions are additionally configured to process the temperature signal to derive a processed temperature data and to receive operations data corresponding to the operation for the workpiece.
- the instructions are further configured to determine a quality of the operation by applying the processed temperature data and the operations data.
- FIG. 1 is an illustration of an embodiment of a welding system including a workpiece that may be formed from a carbon steel or a corrosion resistant alloy, in accordance with aspects of the present disclosure
- FIG. 2 is an illustration of an embodiment of a welding system that may be used to determine a quality of a welding operation, in accordance with aspects of the present disclosure
- FIG. 3 is a perspective view of an embodiment of the temperature sensor 32 in the form of a handheld device for detecting temperatures during a welding operation, in accordance with aspects of the present disclosure
- FIG. 4 is a perspective view of an embodiment of a detector for identifying a welding operation, in accordance with aspects of the present disclosure.
- FIG. 5 is a flowchart of an embodiment of a method for determining a quality of a welding operation, in accordance with aspects of the present disclosure.
- FIG. 1 illustrates an arc welding system 10 .
- the arc welding system 10 may include a power supply 12 that generates and supplies welding power to an electrode 14 via a conduit 16 .
- a direct current (DC) or alternating current (AC) may be used along with the consumable or non-consumable electrode 14 to deliver current to the point of welding.
- an operator 18 may control the location and operation of the electrode 14 by positioning the electrode 14 and triggering the starting and stopping of the current flow.
- a helmet assembly 20 is worn by the welding operator 18 .
- the helmet assembly 20 includes a helmet shell 22 and a lens assembly 24 that may be darkened to prevent or limit exposure to the light generated by a welding arc 26 .
- the welding arc 26 is developed between the electrode 14 and a workpiece 28 , such as the illustrated pipe.
- the workpiece 28 may be formed from a carbon steel or a corrosion resistant alloy, such as stainless steel, or other metals and alloys (e.g., aluminum, titanium, zirconium, niobium, tantalum, nickel alloys). Non-metal workpieces 28 may also be welded or otherwise joined, for example, by stir welding.
- the electrode 14 and the conduit 16 thus deliver current and voltage sufficient to create the welding arc 26 between the electrode 14 and the work piece 28 .
- the welding arc 26 melts the metal (the base material and any filler material added) at the point of welding between the electrode 14 and the work piece 28 , thereby providing a joint when the metal cools.
- the welding system 10 may be configured to form a weld joint by any suitable technique, including shielded metal arc welding (SMAW) (i.e., stick welding), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), flux-cored arc welding (FCAW), metal inert gas welding (MIG), tungsten inert gas welding (TIG), gas welding (e.g., oxyacetylene welding), sub-arc welding (SAW), and/or resistance welding.
- SMAW shielded metal arc welding
- GTAW gas tungsten arc welding
- GMAW gas metal arc welding
- FCAW flux-cored arc welding
- MIG metal inert gas welding
- TOG tungsten inert gas welding
- gas welding e.g., oxyacet
- shielding gas may be used in certain applications, such as GTAW, GMAW, and FCAW, for example.
- Waveforms used during welding may include regulated metal deposition (RMD) type waveforms, among others, surface tension transfer (STT), cold metal transfer (CMT).
- RMD regulated metal deposition
- STT surface tension transfer
- CMT cold metal transfer
- the techniques described herein enable certain operations (e.g., welding, cutting, grinding, induction heating, testing) to be performed on the workpiece 28 by applying power supplied by the power supply 12 .
- the workpiece 28 may be disposed in an industrial facility (e.g., industrial plant, shipyard) but may also be disposed in a residential facility, such as a garage or a home.
- the workpiece 28 may include tubular pieces (e.g., pipe), flat sheeting (e.g., metal or plastic sheets and plates), angled workpieces 28 (e.g., angle iron) or any other piece that may be welded, cut, ground, induction heated, or tested, for example, by using power delivered via the power supply 12 .
- heat applied to the workpiece 28 may be detected (e.g., sensed) using one or more temperature sensors.
- the power supply 12 may be configured to store the detected data.
- temperatures of the workpiece 28 near a welding application may be detected and/or monitored to determine a quality of a welding operation and/or to control temperature of a welding operation being performed.
- temperature sensors may be used in any application where temperature detection is desired, such as welding, cutting, grinding, induction heating, testing, and so forth.
- FIG. 2 is an illustration of an embodiment of the welding system 10 that may be used to determine a quality of a welding operation.
- the workpiece 28 has a joint 30 where joining (e.g., welding) is to be performed.
- a sensor 32 is positioned adjacent to the joint 30 to detect one or more temperatures of the workpiece 28 before, during, and/or after the joint 30 is welded.
- the sensors may detect rotational speed of the workpiece 28 , a deposition rate of welding of the joint 32 , a cooling rate of the workpiece 28 , a gas on or around the workpiece 28 (e.g., amount of gas such as acetylene, oxygen, argon, helium, or any other gas), and preheating of the workpiece 28 (e.g., whether the workpiece 28 was preheated and/or preheating rate).
- Data from the sensor(s) 32 may aid in determining a quality of operations on the workpiece 28 , as described in more detail below with respect to FIG. 5 .
- the sensor 32 may be positioned within one to four inches or more from the joint 30 , in certain embodiments. While one sensor 32 is illustrated, the welding system 10 may include 1, 2, 3, 4, 5, or more sensors. While the workpiece 28 has a circular outer surface in the illustrated embodiment, in other embodiments, the workpiece 28 may have a outer or inner surface that is triangular, square, rectangular, or any other standard or non-standard shape of outer surface.
- the sensor 32 may be disposed on the outer surface or on the inner surface using a variety of fastening techniques, including magnetic mounts, clamps, gravity (e.g., when a sensor 32 is placed on top of a non-moving workpiece), and the like.
- the temperature sensor 32 may be any suitable device that can provide indications (e.g., temperature data) that correspond to temperatures.
- the temperature sensor 32 may be a thermocouple, a bimetallic switch, a resistance temperature detector (RTD), a thermistor, a wax motor (e.g., actuator device suitable for converting thermal-to-mechanical energy via phase change behavior of waxes), and/or an infrared detector.
- the temperature sensor 32 may provide indications that correspond to temperatures being measured by using wired and/or wireless communication.
- the temperature sensor 32 is configured to communicate using wireless signals 34 .
- the power supply 12 e.g., welding power supply suitable for providing electric power for welding operations
- another device may be configured to receive the wireless signals 34 provided by the temperature sensor 32 .
- the indications transmitted by the sensor 32 may be representative of temperatures, but may actually be voltages, current flows, capacitive values or other signals that correspond to various temperatures.
- the sensor 32 may transmit actual temperatures measurements alternative to or in addition to signals representative of temperatures.
- the power supply 12 includes one or more processors 40 , storage devices 42 , and memory devices 44 .
- the processor(s) 40 may be used to execute software, such as data processing, welding operation quality determination, welding control, converting indications from the temperature sensor 32 to temperature data, and so forth.
- the processor(s) 40 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or application specific integrated circuits (ASICS), or some combination thereof.
- ASICS application specific integrated circuits
- the processor(s) 40 may include one or more reduced instruction set (RISC) processors, digital signal processors (DSP), microcontrollers, field-programmable gate arrays (FPGA), custom chips, and the like.
- RISC reduced instruction set
- DSP digital signal processors
- FPGA field-programmable gate arrays
- the storage device(s) 42 may include read-only memory (ROM), flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, or a combination thereof.
- the storage device(s) 42 may store data (e.g., welding data, temperature data, historical data, indications from the temperature sensor 32 , etc.), instructions (e.g., software or firmware for determining welding quality, temperature conversions, welding control, etc.), and any other suitable data.
- the memory device(s) 44 may include a volatile memory, such as random access memory (RAM), and/or a nonvolatile memory, such as ROM, including updatable ROM such as flashable ROM.
- RAM random access memory
- ROM read-only memory
- the memory device(s) 44 may store a variety of information and may be used for various purposes.
- the memory device(s) 44 may store processor-executable instructions (e.g., firmware or software) for the processor(s) 40 to execute, such as instructions for determining a quality of a welding operation.
- the workpiece 28 includes identification data 46 (e.g., a code).
- the identification data 46 may be used to identify the welding operation to be performed on the joint 30 .
- the identification data 46 may identify a job number, a work order number, and so forth.
- the identification data 46 may be a bar code, a quick response (QR) code, radio frequency identification (RFID), or any other suitable code that may uniquely identify a welding operation. While in the depicted embodiment the identification data 46 is shown as disposed on the workpiece 28 , in other embodiments the identification data 46 may be disposed on a job packet, a move ticket, or generally physically separate from the workpiece 28 .
- the identification data 46 may also be entered, for example, into a system such as the power supply 12 via a buttons or a keyboard disposed on the power supply 12 or via buttons or a keyboard disposed on a remote device, such as an infrared remote, a radio frequency (RF) remote, Bluetooth device, WiFi device, and the like.
- the welding system 10 includes a detector 48 configured to detect the identification data 46 .
- the detector 48 may be a bar code detector.
- the detector 48 provides wireless signals 50 that may be received by the power supply 12 .
- temperatures of the workpiece 28 may be detected and/or monitored. Accordingly, a quality of a welding operation on the joint 30 may be determined and/or controlled.
- the power supply 12 may derive that the temperature is at a level undesired for certain operations, and may notify the user via visual and/or audio notifications (e.g., lights, beeps, screen displays). The power supply 12 may also suspend operations of the temperature is found to be at an undesired level (e.g., too high or too low).
- an undesired level e.g., too high or too low.
- the power supply 12 may be informed of the type of operation to be performed (e.g., welding, plasma cutting, grinding, induction heating, testing) via on-device input (e.g., keyboard, buttons, switches) and/or remotely from an external device (e.g., Bluetooth enabled mobile device, WiFi device). Accordingly, the power supply may include a wireless module suitable for sending and receiving wireless signals from the sensor 32 and external devices.
- the power supply 12 may also receive further inputs based on the operation to be performed, such as operation supplies used (e.g., welding wire/electrode type), metal/alloy or plastic type of the workpiece 28 being operated on, size of the workpiece 28 , and so on. The power supply 12 may then use the input to derive a desirable temperature range, thus improving a quality of various operations as applied to various workpieces 28 .
- FIG. 3 is a perspective view of an embodiment of the temperature sensor 32 in the form of a handheld device 52 for detecting temperatures during a welding operation.
- the handheld device 52 communicates wirelessly using the wireless signals 34 .
- the handheld device 52 may be held by a hand 54 of an operator to direct (e.g., point) a sensing tip 56 (e.g., an end (contact or non-contact) used to detect temperatures) positioned at a proximal end of the device 52 at a desired location. With the sensing tip 56 directed at a desired location, the handheld device 52 may detect temperatures at, or near, a welding operation.
- the handheld device 52 may include multiple sensors disposed in the tip 56 , including one or more temperature sensors and one or more sensors suitable for reading the code 46 .
- the sensors may include optical sensors useful in reading QR and/or barcodes, and RFID sensors useful in reading RFID tags.
- the handheld device 52 may provide indications corresponding to the temperatures wirelessly to the power supply 12 for storage, processing, and/or analysis.
- the handheld device 52 may additionally provide the code 46 , useful in deriving the type of workpiece 28 (e.g., material type, size) and/or the operation to be performed on the workpiece 28 .
- the handheld device 52 may include a removable storage device, such as a memory stick, universal serial bus (USB) flash drive, etc., for storing indications corresponding to temperatures detected.
- the removable storage device may be configured to store a date and/or a time associated with the indications corresponding to temperatures detected.
- the handheld device 52 may have a built-in storage device. Accordingly, the handheld device 52 may be directly connected to the power supply 12 , a computer, or another device for transferring data from the storage device of the handheld device 52 . Thus, using the handheld device 52 temperatures at, or near, a welding operation may be detected.
- FIG. 4 is a perspective view of an embodiment of the detector 48 suitable for identifying a welding operation.
- the detector 48 includes a handle 58 that enables an operator to hold the detector 48 and to aim the detector 48 toward a desired direction.
- the detector 48 includes a scanner 60 , such as a bar code scanner, for detecting the identification data 46 used to identify the weld and/or a welding operator.
- the detector may additionally or alternatively include an RFID receive useful in detecting RFID signals provided via RFID embodiments of the identification data 46 .
- the detector 48 may provide identification data 46 to the power supply 12 using the wireless signals 50 .
- the identification data 46 may be used to correlate temperature data and/or welding data performed during a welding operation with a weld on the workpiece 28 .
- the identification data 46 may also include data related to the type of workpiece 28 (e.g., material type, size) and/or the operation to be performed on the workpiece 28 . Accordingly, the power supply 12 may use the identification data 46 to control operations, as well as to notify the user 18 of temperature data or undesired temperature conditions.
- the detector 48 may include a removable storage device, such as a memory stick, USB flash drive, etc, for storing detected identification data 46 .
- the removable storage device may be configured to store a date and/or a time associated with the detected identification data.
- the detector 48 may have a built-in storage device, e.g., built-in non-removable flash memory. Accordingly, the detector 48 may be directly connected to the power supply 12 , a computer, or another device for transferring data from the detector 48 from the removable storage device or the built-in memory.
- the detector 48 includes a socket 62 that enables the handheld device 52 to be inserted therein.
- the socket 62 may include an electrical connector providing communications and/or power to the handheld device 52 . Accordingly, the detector 48 may provide data to the handheld device 52 and/or the handheld device 52 may provide data to the detector 48 . Therefore, identification data and temperature related data may be stored and/or wirelessly transmitted together via the device 52 , the detector 58 , or combination thereof.
- FIG. 5 is a flowchart of an embodiment of a process 64 for determining a quality of a welding operation.
- the process 64 may be implemented as computer-executable instructions or code stored in a non-transitory computer readable medium, such as the memory 44 , and executed by one or more processors, such as the processors 40 .
- the process 64 may be executed and stored by the power supply 12 and/or the cloud-based device, the welding accessory, the pendant, the wire feeder, the welding helmet, the welding torch, the module, the communication interface, and so forth.
- the power supply 12 receives first timing data indicating a first time before, during, or after a welding or other operation (e.g., cutting, grinding, induction heating, testing) begins (block 66 ).
- first timing data indicating a first time before, during, or after a welding or other operation (e.g., cutting, grinding, induction heating, testing) begins (block 66 ).
- the detector 48 may be used to detect, before the welding operation begins, the identification data 46 that corresponds to the welding operation.
- the detector 48 may provide the identification data 46 and/or a time (e.g., date and time) to the power supply 12 .
- the power supply 12 receives temperature data representative of one or more temperatures of the workpiece 28 detected during the welding operation after receiving the first timing data (block 68 ).
- the power supply 12 may receive the temperature data wirelessly, using a wired connection, using a memory storage device, and so forth.
- the power supply 12 stores the temperature data (or processed temperature data) together with welding data corresponding to the welding operation and the first timing data to correlate data of the welding operation (block 70 ).
- the term “processed temperature data” refers to temperature data that has been modified, such as a sensed voltage converted to a temperature.
- the power supply 12 determines a quality of the welding operation using the temperature data and the welding data (block 72 ).
- the power supply 12 other device, e.g., cloud-based server, determines whether the temperature data indicates that temperatures are within a predetermined range.
- a measure of quality of the operation on the workpiece 28 may include how long the operation occurred at a desired temperature or temperature range.
- the measure of quality of the operation on the workpiece 28 may additionally or alternatively include rotational speed, or speed of any movement of the workpiece 28 (or welding torch 26 ) during operations.
- certain materials may be welded, cut, tested, heated, and so on, at a desired movement speed or ranges of speed of the torch 26 and/or the workpiece 28 .
- the measure of quality of the operation on the workpiece 28 may additionally or alternatively include a cooling rate of the workpiece 28 . For example, after application of the torch 26 , the workpiece may be cooled for a certain time, as desired.
- the measure of quality of the operation on the workpiece 28 may additionally or alternatively include whether or not preheating was applied, and/or a rate of preheating. For example, certain materials and operations may have higher quality when the workpiece 28 is preheated prior to welding, cutting, and so on.
- the measure of quality of the operation on the workpiece 28 may additionally or alternatively include gas monitoring via the sensor(s) 32 .
- gas monitoring via the sensor(s) 32 .
- the presence and/or amount of certain gases on or near the workpiece 28 may be indicative of quality of the operation.
- Power supply data may also be indicative of quality of the operation. For example, voltage levels, current levels, waveforms used, and the like, may be indicative of quality of the operation.
- the power supply 12 may provide data, including identification data 46 , temperature data, rotational speed data, deposition rate data, cooling rate data, preheating data, gas monitoring data, and power supply 12 data (e.g., power currently being used) the to the associated device (e.g., computer server communicatively coupled to the power supply 12 ) and/or to a cloud for further analysis.
- the power supply 12 may also analyze the data. The analysis may include real-time analysis of the data (e.g. temperature data and operations data such as temperature and power currently used) being transmitted via the power supply 12 .
- the associated device and/or cloud-based server may process (and store) the data to determine if an operation is proceeding as desired, and may then transmit data back to the power supply 12 based on this determination, such as a measure of quality of the operation.
- the power supply 12 may then inform the operator and/or provide control actions, such as stopping power if the temperature is deemed too high.
- the power supply 12 may additionally or alternatively provide for data processing. For example, the power supply 12 may determine whether the temperature data indicates that temperatures are within an acceptable range, an unacceptable range, or some combination thereof. Likewise, rotational speed data, deposition rate data, cooling rate data, preheat data, and/or gas monitoring data may be used to determine acceptable ranges and/or a quality of the operation. For example, the quality measure may include a graded measure (e.g., from 1 to 100) where higher numbers imply higher quality based on the analysis described herein. Moreover, the power supply 12 controls the welding operation using the temperature data (block 74 ).
- the power supply 12 may be configured to provide a signal (e.g., warning) to a welding operator while the temperature or other measure (e.g., rotational speed data, deposition rate data, cooling rate data, preheat data, and/or gas monitoring data) is outside a desired range, or while the measure is within a desired range, based at least partly on the data received from the sensor 32 .
- the power supply 12 receives second timing data indicating a second time after the welding operation is performed (block 76 ).
- the second timing data may include the identification data 46 that corresponds to a second welding operation.
- temperatures of the workpiece 28 may be detected and/or monitored. Accordingly, a quality of a welding operation on the joint 30 may be determined and/or controlled. Specifically, temperatures that a workpiece is exposed to during the welding operation may be managed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Arc Welding Control (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
- This application is a Non provisional patent application of U.S. Provisional Patent Application No. 61/822,035 entitled “WELDING SYSTEM FOR DETERMINING A QUALITY OF A WELDING OPERATION”, filed May 10, 2013, which is incorporated herein by reference in its entirety.
- The invention relates generally to welding systems and, more particularly, to a welding system for determining a quality of a welding operation.
- Welding is a process that has increasingly become utilized in various industries and applications. Such processes may be automated in certain contexts, although a large number of applications continue to exist for manual welding operations. In both cases, such welding operations rely on a variety of types of equipment to ensure the supply of welding consumables (e.g., wire feed, shielding gas, etc.) is provided to the weld in appropriate amounts at the desired time.
- Welding operations are performed on a variety of different materials (e.g., metallic materials). For example, a workpiece may be formed from a carbon steel or a corrosion resistant alloy, such as stainless steel. A time duration of heat that the workpiece is exposed to may be managed for obtaining certain metallurgical characteristics. For example, certain preheat temperatures, interpass temperatures, heat input of welding, and/or other welding parameters may be managed. Accordingly, a quality of a welding operation on a workpiece may depend on a time history of temperatures that the workpiece is exposed to during the welding operation. Unfortunately, it may be difficult to detect the temperature of a workpiece near a joint while a welding operation is occurring on the joint in conjunction with timing data corresponding to the welding operation. Thus, it may be difficult to determine a time history of temperatures that a workpiece is exposed to during the welding operation.
- In one embodiment, a welding system includes a movable temperature sensor configured to detect temperatures corresponding to a workpiece and to provide temperature data corresponding to the detected temperatures. The welding system also includes a power supply configured to receive the temperature data from the temperature sensor. The power supply is configured to modify control of an output of the power supply based on the detected temperature.
- In another embodiment, there is a method for determining a quality of a welding operation. The method includes receiving, via a power supply, a temperature signal representative of one or more temperatures of a workpiece detected by a temperature sensor during an operation for the workpiece. The method further includes processing the temperature signal to derive a processed temperature data, and receiving operations data corresponding to the operation for the workpiece. The method additionally includes determining a quality of the operation by applying the processed temperature data and the operations data.
- In a further embodiment, there is a tangible, non-transitory computer-readable medium comprising instructions configured to receive, via a power supply, a temperature signal representative of one or more temperatures of a workpiece detected by a temperature sensor during an operation for the workpiece. The instructions are additionally configured to process the temperature signal to derive a processed temperature data and to receive operations data corresponding to the operation for the workpiece. The instructions are further configured to determine a quality of the operation by applying the processed temperature data and the operations data.
- These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
-
FIG. 1 is an illustration of an embodiment of a welding system including a workpiece that may be formed from a carbon steel or a corrosion resistant alloy, in accordance with aspects of the present disclosure; -
FIG. 2 is an illustration of an embodiment of a welding system that may be used to determine a quality of a welding operation, in accordance with aspects of the present disclosure; -
FIG. 3 is a perspective view of an embodiment of thetemperature sensor 32 in the form of a handheld device for detecting temperatures during a welding operation, in accordance with aspects of the present disclosure; -
FIG. 4 is a perspective view of an embodiment of a detector for identifying a welding operation, in accordance with aspects of the present disclosure; and -
FIG. 5 is a flowchart of an embodiment of a method for determining a quality of a welding operation, in accordance with aspects of the present disclosure. - Embodiments of the present invention may be used in any application where one or more temperatures may be detected. For example,
FIG. 1 illustrates anarc welding system 10. As depicted, thearc welding system 10 may include apower supply 12 that generates and supplies welding power to anelectrode 14 via aconduit 16. In thearc welding system 10, a direct current (DC) or alternating current (AC) may be used along with the consumable or non-consumableelectrode 14 to deliver current to the point of welding. In such awelding system 10, anoperator 18 may control the location and operation of theelectrode 14 by positioning theelectrode 14 and triggering the starting and stopping of the current flow. As illustrated, ahelmet assembly 20 is worn by thewelding operator 18. Thehelmet assembly 20 includes a helmet shell 22 and alens assembly 24 that may be darkened to prevent or limit exposure to the light generated by awelding arc 26. - When the
operator 18 begins the welding operation (or other operation such as plasma cutting) by applying power from thepower supply 12 to theelectrode 14, thewelding arc 26 is developed between theelectrode 14 and aworkpiece 28, such as the illustrated pipe. Theworkpiece 28 may be formed from a carbon steel or a corrosion resistant alloy, such as stainless steel, or other metals and alloys (e.g., aluminum, titanium, zirconium, niobium, tantalum, nickel alloys).Non-metal workpieces 28 may also be welded or otherwise joined, for example, by stir welding. Theelectrode 14 and theconduit 16 thus deliver current and voltage sufficient to create thewelding arc 26 between theelectrode 14 and thework piece 28. Thewelding arc 26 melts the metal (the base material and any filler material added) at the point of welding between theelectrode 14 and thework piece 28, thereby providing a joint when the metal cools. Thewelding system 10 may be configured to form a weld joint by any suitable technique, including shielded metal arc welding (SMAW) (i.e., stick welding), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), flux-cored arc welding (FCAW), metal inert gas welding (MIG), tungsten inert gas welding (TIG), gas welding (e.g., oxyacetylene welding), sub-arc welding (SAW), and/or resistance welding. As may be appreciated, shielding gas may be used in certain applications, such as GTAW, GMAW, and FCAW, for example. Waveforms used during welding may include regulated metal deposition (RMD) type waveforms, among others, surface tension transfer (STT), cold metal transfer (CMT). - Generally, the techniques described herein enable certain operations (e.g., welding, cutting, grinding, induction heating, testing) to be performed on the
workpiece 28 by applying power supplied by thepower supply 12. Theworkpiece 28 may be disposed in an industrial facility (e.g., industrial plant, shipyard) but may also be disposed in a residential facility, such as a garage or a home. Theworkpiece 28 may include tubular pieces (e.g., pipe), flat sheeting (e.g., metal or plastic sheets and plates), angled workpieces 28 (e.g., angle iron) or any other piece that may be welded, cut, ground, induction heated, or tested, for example, by using power delivered via thepower supply 12. - As described below, heat applied to the
workpiece 28 may be detected (e.g., sensed) using one or more temperature sensors. Thepower supply 12 may be configured to store the detected data. By using the temperature sensors, temperatures of theworkpiece 28 near a welding application may be detected and/or monitored to determine a quality of a welding operation and/or to control temperature of a welding operation being performed. As may be appreciated, temperature sensors may be used in any application where temperature detection is desired, such as welding, cutting, grinding, induction heating, testing, and so forth. -
FIG. 2 is an illustration of an embodiment of thewelding system 10 that may be used to determine a quality of a welding operation. Theworkpiece 28 has a joint 30 where joining (e.g., welding) is to be performed. Asensor 32 is positioned adjacent to thejoint 30 to detect one or more temperatures of theworkpiece 28 before, during, and/or after thejoint 30 is welded. Additionally or alternatively, the sensors, such as thesensor 32, may detect rotational speed of theworkpiece 28, a deposition rate of welding of thejoint 32, a cooling rate of theworkpiece 28, a gas on or around the workpiece 28 (e.g., amount of gas such as acetylene, oxygen, argon, helium, or any other gas), and preheating of the workpiece 28 (e.g., whether theworkpiece 28 was preheated and/or preheating rate). Data from the sensor(s) 32 may aid in determining a quality of operations on theworkpiece 28, as described in more detail below with respect toFIG. 5 . - The
sensor 32 may be positioned within one to four inches or more from thejoint 30, in certain embodiments. While onesensor 32 is illustrated, thewelding system 10 may include 1, 2, 3, 4, 5, or more sensors. While theworkpiece 28 has a circular outer surface in the illustrated embodiment, in other embodiments, theworkpiece 28 may have a outer or inner surface that is triangular, square, rectangular, or any other standard or non-standard shape of outer surface. Thesensor 32 may be disposed on the outer surface or on the inner surface using a variety of fastening techniques, including magnetic mounts, clamps, gravity (e.g., when asensor 32 is placed on top of a non-moving workpiece), and the like. - The
temperature sensor 32 may be any suitable device that can provide indications (e.g., temperature data) that correspond to temperatures. For example, thetemperature sensor 32 may be a thermocouple, a bimetallic switch, a resistance temperature detector (RTD), a thermistor, a wax motor (e.g., actuator device suitable for converting thermal-to-mechanical energy via phase change behavior of waxes), and/or an infrared detector. Furthermore, thetemperature sensor 32 may provide indications that correspond to temperatures being measured by using wired and/or wireless communication. As illustrated, thetemperature sensor 32 is configured to communicate using wireless signals 34. Moreover, the power supply 12 (e.g., welding power supply suitable for providing electric power for welding operations) is configured to receivewireless signals 38 from thetemperature sensor 32. In other embodiments, another device may be configured to receive the wireless signals 34 provided by thetemperature sensor 32. As may be appreciated, the indications transmitted by thesensor 32 may be representative of temperatures, but may actually be voltages, current flows, capacitive values or other signals that correspond to various temperatures. In another embodiment, thesensor 32 may transmit actual temperatures measurements alternative to or in addition to signals representative of temperatures. - The
power supply 12 includes one ormore processors 40,storage devices 42, andmemory devices 44. The processor(s) 40 may be used to execute software, such as data processing, welding operation quality determination, welding control, converting indications from thetemperature sensor 32 to temperature data, and so forth. Moreover, the processor(s) 40 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or application specific integrated circuits (ASICS), or some combination thereof. For example, the processor(s) 40 may include one or more reduced instruction set (RISC) processors, digital signal processors (DSP), microcontrollers, field-programmable gate arrays (FPGA), custom chips, and the like. - The storage device(s) 42 (e.g., nonvolatile storage) may include read-only memory (ROM), flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, or a combination thereof. The storage device(s) 42 may store data (e.g., welding data, temperature data, historical data, indications from the
temperature sensor 32, etc.), instructions (e.g., software or firmware for determining welding quality, temperature conversions, welding control, etc.), and any other suitable data. - The memory device(s) 44 may include a volatile memory, such as random access memory (RAM), and/or a nonvolatile memory, such as ROM, including updatable ROM such as flashable ROM. The memory device(s) 44 may store a variety of information and may be used for various purposes. For example, the memory device(s) 44 may store processor-executable instructions (e.g., firmware or software) for the processor(s) 40 to execute, such as instructions for determining a quality of a welding operation.
- The
workpiece 28 includes identification data 46 (e.g., a code). Theidentification data 46 may be used to identify the welding operation to be performed on the joint 30. For example, theidentification data 46 may identify a job number, a work order number, and so forth. In certain embodiments, theidentification data 46 may be a bar code, a quick response (QR) code, radio frequency identification (RFID), or any other suitable code that may uniquely identify a welding operation. While in the depicted embodiment theidentification data 46 is shown as disposed on theworkpiece 28, in other embodiments theidentification data 46 may be disposed on a job packet, a move ticket, or generally physically separate from theworkpiece 28. Theidentification data 46 may also be entered, for example, into a system such as thepower supply 12 via a buttons or a keyboard disposed on thepower supply 12 or via buttons or a keyboard disposed on a remote device, such as an infrared remote, a radio frequency (RF) remote, Bluetooth device, WiFi device, and the like. Thewelding system 10 includes adetector 48 configured to detect theidentification data 46. In certain embodiments, thedetector 48 may be a bar code detector. Thedetector 48 provides wireless signals 50 that may be received by thepower supply 12. As may be appreciated, by using thetemperature sensor 32, temperatures of theworkpiece 28 may be detected and/or monitored. Accordingly, a quality of a welding operation on the joint 30 may be determined and/or controlled. For example, thepower supply 12 may derive that the temperature is at a level undesired for certain operations, and may notify the user via visual and/or audio notifications (e.g., lights, beeps, screen displays). Thepower supply 12 may also suspend operations of the temperature is found to be at an undesired level (e.g., too high or too low). - The
power supply 12 may be informed of the type of operation to be performed (e.g., welding, plasma cutting, grinding, induction heating, testing) via on-device input (e.g., keyboard, buttons, switches) and/or remotely from an external device (e.g., Bluetooth enabled mobile device, WiFi device). Accordingly, the power supply may include a wireless module suitable for sending and receiving wireless signals from thesensor 32 and external devices. Thepower supply 12 may also receive further inputs based on the operation to be performed, such as operation supplies used (e.g., welding wire/electrode type), metal/alloy or plastic type of theworkpiece 28 being operated on, size of theworkpiece 28, and so on. Thepower supply 12 may then use the input to derive a desirable temperature range, thus improving a quality of various operations as applied tovarious workpieces 28. -
FIG. 3 is a perspective view of an embodiment of thetemperature sensor 32 in the form of ahandheld device 52 for detecting temperatures during a welding operation. As illustrated, thehandheld device 52 communicates wirelessly using the wireless signals 34. Thehandheld device 52 may be held by ahand 54 of an operator to direct (e.g., point) a sensing tip 56 (e.g., an end (contact or non-contact) used to detect temperatures) positioned at a proximal end of thedevice 52 at a desired location. With thesensing tip 56 directed at a desired location, thehandheld device 52 may detect temperatures at, or near, a welding operation. Thehandheld device 52 may include multiple sensors disposed in thetip 56, including one or more temperature sensors and one or more sensors suitable for reading thecode 46. For example, the sensors may include optical sensors useful in reading QR and/or barcodes, and RFID sensors useful in reading RFID tags. - As illustrated, the
handheld device 52 may provide indications corresponding to the temperatures wirelessly to thepower supply 12 for storage, processing, and/or analysis. Thehandheld device 52 may additionally provide thecode 46, useful in deriving the type of workpiece 28 (e.g., material type, size) and/or the operation to be performed on theworkpiece 28. In certain embodiments, thehandheld device 52 may include a removable storage device, such as a memory stick, universal serial bus (USB) flash drive, etc., for storing indications corresponding to temperatures detected. The removable storage device may be configured to store a date and/or a time associated with the indications corresponding to temperatures detected. Furthermore, in certain embodiments, thehandheld device 52 may have a built-in storage device. Accordingly, thehandheld device 52 may be directly connected to thepower supply 12, a computer, or another device for transferring data from the storage device of thehandheld device 52. Thus, using thehandheld device 52 temperatures at, or near, a welding operation may be detected. -
FIG. 4 is a perspective view of an embodiment of thedetector 48 suitable for identifying a welding operation. Thedetector 48 includes ahandle 58 that enables an operator to hold thedetector 48 and to aim thedetector 48 toward a desired direction. Moreover, thedetector 48 includes ascanner 60, such as a bar code scanner, for detecting theidentification data 46 used to identify the weld and/or a welding operator. The detector may additionally or alternatively include an RFID receive useful in detecting RFID signals provided via RFID embodiments of theidentification data 46. As discussed above, thedetector 48 may provideidentification data 46 to thepower supply 12 using the wireless signals 50. In one embodiment, theidentification data 46 may be used to correlate temperature data and/or welding data performed during a welding operation with a weld on theworkpiece 28. Theidentification data 46 may also include data related to the type of workpiece 28 (e.g., material type, size) and/or the operation to be performed on theworkpiece 28. Accordingly, thepower supply 12 may use theidentification data 46 to control operations, as well as to notify theuser 18 of temperature data or undesired temperature conditions. - In certain embodiments, the
detector 48 may include a removable storage device, such as a memory stick, USB flash drive, etc, for storing detectedidentification data 46. The removable storage device may be configured to store a date and/or a time associated with the detected identification data. Furthermore, in certain embodiments, thedetector 48 may have a built-in storage device, e.g., built-in non-removable flash memory. Accordingly, thedetector 48 may be directly connected to thepower supply 12, a computer, or another device for transferring data from thedetector 48 from the removable storage device or the built-in memory. As illustrated, thedetector 48 includes asocket 62 that enables thehandheld device 52 to be inserted therein. In one embodiment, thesocket 62 may include an electrical connector providing communications and/or power to thehandheld device 52. Accordingly, thedetector 48 may provide data to thehandheld device 52 and/or thehandheld device 52 may provide data to thedetector 48. Therefore, identification data and temperature related data may be stored and/or wirelessly transmitted together via thedevice 52, thedetector 58, or combination thereof. -
FIG. 5 is a flowchart of an embodiment of aprocess 64 for determining a quality of a welding operation. Theprocess 64 may be implemented as computer-executable instructions or code stored in a non-transitory computer readable medium, such as thememory 44, and executed by one or more processors, such as theprocessors 40. Theprocess 64 may be executed and stored by thepower supply 12 and/or the cloud-based device, the welding accessory, the pendant, the wire feeder, the welding helmet, the welding torch, the module, the communication interface, and so forth. The power supply 12 (or another device, such as a cloud-based device, welding accessory, a pendant, a wire feeder, a welding helmet, a welding torch, a module suitable for retrofitting thepower supply 12 with the techniques described herein, a communication interface, and so forth) receives first timing data indicating a first time before, during, or after a welding or other operation (e.g., cutting, grinding, induction heating, testing) begins (block 66). For example, thedetector 48 may be used to detect, before the welding operation begins, theidentification data 46 that corresponds to the welding operation. Thedetector 48 may provide theidentification data 46 and/or a time (e.g., date and time) to thepower supply 12. The power supply 12 (or another device, such as the cloud-based device, the welding accessory, the pendant, the wire feeder, the welding helmet, the welding torch, the module, the communication interface, and so forth) receives temperature data representative of one or more temperatures of theworkpiece 28 detected during the welding operation after receiving the first timing data (block 68). For example, thepower supply 12 may receive the temperature data wirelessly, using a wired connection, using a memory storage device, and so forth. Furthermore, thepower supply 12 stores the temperature data (or processed temperature data) together with welding data corresponding to the welding operation and the first timing data to correlate data of the welding operation (block 70). As used herein, the term “processed temperature data” refers to temperature data that has been modified, such as a sensed voltage converted to a temperature. - The
power supply 12 determines a quality of the welding operation using the temperature data and the welding data (block 72). In certain embodiments, thepower supply 12, other device, e.g., cloud-based server, determines whether the temperature data indicates that temperatures are within a predetermined range. For example a measure of quality of the operation on theworkpiece 28 may include how long the operation occurred at a desired temperature or temperature range. The measure of quality of the operation on theworkpiece 28 may additionally or alternatively include rotational speed, or speed of any movement of the workpiece 28 (or welding torch 26) during operations. For example, certain materials may be welded, cut, tested, heated, and so on, at a desired movement speed or ranges of speed of thetorch 26 and/or theworkpiece 28. The measure of quality of the operation on theworkpiece 28 may additionally or alternatively include a cooling rate of theworkpiece 28. For example, after application of thetorch 26, the workpiece may be cooled for a certain time, as desired. - Likewise, the measure of quality of the operation on the
workpiece 28 may additionally or alternatively include whether or not preheating was applied, and/or a rate of preheating. For example, certain materials and operations may have higher quality when theworkpiece 28 is preheated prior to welding, cutting, and so on. The measure of quality of the operation on theworkpiece 28 may additionally or alternatively include gas monitoring via the sensor(s) 32. For example, the presence and/or amount of certain gases on or near theworkpiece 28 may be indicative of quality of the operation. Power supply data may also be indicative of quality of the operation. For example, voltage levels, current levels, waveforms used, and the like, may be indicative of quality of the operation. - In certain embodiment, the
power supply 12 may provide data, includingidentification data 46, temperature data, rotational speed data, deposition rate data, cooling rate data, preheating data, gas monitoring data, andpower supply 12 data (e.g., power currently being used) the to the associated device (e.g., computer server communicatively coupled to the power supply 12) and/or to a cloud for further analysis. Thepower supply 12 may also analyze the data. The analysis may include real-time analysis of the data (e.g. temperature data and operations data such as temperature and power currently used) being transmitted via thepower supply 12. For example, the associated device and/or cloud-based server may process (and store) the data to determine if an operation is proceeding as desired, and may then transmit data back to thepower supply 12 based on this determination, such as a measure of quality of the operation. Thepower supply 12 may then inform the operator and/or provide control actions, such as stopping power if the temperature is deemed too high. - The
power supply 12 may additionally or alternatively provide for data processing. For example, thepower supply 12 may determine whether the temperature data indicates that temperatures are within an acceptable range, an unacceptable range, or some combination thereof. Likewise, rotational speed data, deposition rate data, cooling rate data, preheat data, and/or gas monitoring data may be used to determine acceptable ranges and/or a quality of the operation. For example, the quality measure may include a graded measure (e.g., from 1 to 100) where higher numbers imply higher quality based on the analysis described herein. Moreover, thepower supply 12 controls the welding operation using the temperature data (block 74). For example, in certain embodiments, thepower supply 12 may be configured to provide a signal (e.g., warning) to a welding operator while the temperature or other measure (e.g., rotational speed data, deposition rate data, cooling rate data, preheat data, and/or gas monitoring data) is outside a desired range, or while the measure is within a desired range, based at least partly on the data received from thesensor 32. Thepower supply 12 receives second timing data indicating a second time after the welding operation is performed (block 76). For example, the second timing data may include theidentification data 46 that corresponds to a second welding operation. Using thetemperature sensor 32 and other devices described herein, temperatures of theworkpiece 28 may be detected and/or monitored. Accordingly, a quality of a welding operation on the joint 30 may be determined and/or controlled. Specifically, temperatures that a workpiece is exposed to during the welding operation may be managed. - While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/283,268 US12070821B2 (en) | 2013-05-10 | 2019-02-22 | Welding system for determining a quality of a welding operation |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361822035P | 2013-05-10 | 2013-05-10 | |
US14/262,588 US10213862B2 (en) | 2013-05-10 | 2014-04-25 | Welding system for determining a quality of a welding operation |
US16/283,268 US12070821B2 (en) | 2013-05-10 | 2019-02-22 | Welding system for determining a quality of a welding operation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/262,588 Continuation US10213862B2 (en) | 2013-05-10 | 2014-04-25 | Welding system for determining a quality of a welding operation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190184482A1 true US20190184482A1 (en) | 2019-06-20 |
US12070821B2 US12070821B2 (en) | 2024-08-27 |
Family
ID=51864076
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/262,588 Active 2035-12-10 US10213862B2 (en) | 2013-05-10 | 2014-04-25 | Welding system for determining a quality of a welding operation |
US16/283,268 Active 2035-10-09 US12070821B2 (en) | 2013-05-10 | 2019-02-22 | Welding system for determining a quality of a welding operation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/262,588 Active 2035-12-10 US10213862B2 (en) | 2013-05-10 | 2014-04-25 | Welding system for determining a quality of a welding operation |
Country Status (7)
Country | Link |
---|---|
US (2) | US10213862B2 (en) |
EP (1) | EP2994261A1 (en) |
KR (1) | KR102162946B1 (en) |
CN (1) | CN105163891B (en) |
BR (1) | BR112015021065A2 (en) |
CA (1) | CA2902615C (en) |
WO (1) | WO2014182523A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111014901A (en) * | 2019-12-30 | 2020-04-17 | 武昌船舶重工集团有限公司 | Automatic self-melting TIG welding method for thin-wall stainless steel pipe |
WO2023049148A1 (en) * | 2021-09-21 | 2023-03-30 | Edison Welding Institute, Inc. | System and method for determining weld cooling rate in-situ |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10213862B2 (en) * | 2013-05-10 | 2019-02-26 | Illinois Tool Works Inc. | Welding system for determining a quality of a welding operation |
US11090753B2 (en) * | 2013-06-21 | 2021-08-17 | Illinois Tool Works Inc. | System and method for determining weld travel speed |
US9314878B2 (en) * | 2013-09-12 | 2016-04-19 | Ford Global Technologies, Llc | Non-destructive aluminum weld quality estimator |
SI3102356T1 (en) * | 2014-02-04 | 2018-05-31 | Sares S.P.A. | Device of electric sliding contact, welding head for roller welding machines and related roller welding machine |
US10773329B2 (en) * | 2015-01-20 | 2020-09-15 | Illinois Tool Works Inc. | Multiple input welding vision system |
US20160311046A1 (en) * | 2015-04-26 | 2016-10-27 | Antonio Aguilar | Wireless control of a welding machine |
CN104889584A (en) * | 2015-05-15 | 2015-09-09 | 无锡阳工机械制造有限公司 | Intelligent welding method |
JP6709638B2 (en) * | 2016-03-10 | 2020-06-17 | 日立造船株式会社 | Welding method of steel pipe and joint in steel pipe structure |
KR101894364B1 (en) * | 2016-05-03 | 2018-09-04 | 삼성중공업 주식회사 | Welding apparatus |
KR101689172B1 (en) * | 2016-05-12 | 2016-12-26 | (주)신화웰텍 | A method of estimating welding quality in flash buttwelding process |
US10682721B2 (en) * | 2016-07-14 | 2020-06-16 | Lincoln Global, Inc. | Method and system for welding with temperature detector |
CN107639316A (en) * | 2016-07-21 | 2018-01-30 | 鸿骐新技股份有限公司 | Chamber profile reflow oven board and its temperature self-compensation control method |
KR20180118540A (en) * | 2017-04-21 | 2018-10-31 | 링컨 글로벌, 인크. | Method and system for welding with temperature detector |
KR101984383B1 (en) * | 2017-06-30 | 2019-05-30 | 두산중공업 주식회사 | System for controlling of temperature of basic material, method thereof and computer recordable medium storing program to perform the method |
CN109926702A (en) * | 2017-12-15 | 2019-06-25 | 伊达新技术电源(昆山)有限公司 | Welding gun, the system with this welding gun and the method for controlling this system |
DE102018126118A1 (en) * | 2018-10-19 | 2020-04-23 | Hugo Vogelsang Maschinenbau Gmbh | Device for distributing bulk material with a device for detecting blockages |
US11806814B2 (en) | 2019-02-19 | 2023-11-07 | Illinois Tool Works Inc. | Welding location and order monitoring in welding systems |
US11373262B2 (en) | 2019-03-25 | 2022-06-28 | Illinois Tool Works Inc. | Systems and methods for providing part quality confidence |
US12042887B2 (en) | 2019-05-22 | 2024-07-23 | Illinois Tool Works Inc. | Weld monitoring systems with unknown downtime disabling |
US11768483B2 (en) | 2019-05-22 | 2023-09-26 | Illinois Tool Works Inc. | Distributed weld monitoring system with job tracking |
CN110340577A (en) * | 2019-07-18 | 2019-10-18 | 江苏环宇建设工程有限公司 | A kind of monitoring method of pipeline welding quality monitoring system |
US11400537B2 (en) | 2019-09-12 | 2022-08-02 | Illinois Tool Works Inc. | System and methods for labeling weld monitoring time periods using machine learning techniques |
EP3888839B1 (en) * | 2020-03-30 | 2023-11-29 | Hitachi Rail STS S.p.A. | Method and system for monitoring and identifying the weld quality of a welding performed by a welding machinery on metallic components |
CN113359909A (en) * | 2021-05-19 | 2021-09-07 | 中核工程咨询有限公司 | Welding environment monitoring system and method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620625A (en) * | 1992-06-01 | 1997-04-15 | Gaz De France (Service National) | Method of butt-welding two plastic parts with an identifying code, using an automatically controlled electro-welding machine |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151963A (en) | 1982-03-04 | 1983-09-09 | Mitsubishi Electric Corp | Automatic all-position arc welding machine |
US4447700A (en) * | 1982-06-07 | 1984-05-08 | General Electric Company | Resistance spot welder adaptive control |
DE4328363C2 (en) * | 1993-08-24 | 1995-06-08 | Siemens Ag | Method for determining an evaluation time interval and method for quality evaluation of a spot weld connection on the basis of a temperature profile in the evaluation time interval |
JP3186721B2 (en) * | 1998-12-07 | 2001-07-11 | 三菱電機株式会社 | Welding quality judging device and welding machine equipped with the same |
US6585146B2 (en) * | 2000-01-06 | 2003-07-01 | Thermal Wave Imaging, Inc. | Automated non-destructive weld evaluation method and apparatus |
JP2001191186A (en) * | 2000-01-07 | 2001-07-17 | Auto Network Gijutsu Kenkyusho:Kk | Quality evaluation system for weld zone |
KR100346238B1 (en) * | 2000-02-23 | 2002-08-01 | 김윤중 | Method of preheating on welding point and it's apparatus |
DE602006009895D1 (en) * | 2006-02-06 | 2009-12-03 | Force Technology | Cart for automating welding, soldering, cutting and surface treatment processes |
US9937577B2 (en) * | 2006-12-20 | 2018-04-10 | Lincoln Global, Inc. | System for a welding sequencer |
DE102007036505A1 (en) | 2007-08-01 | 2009-02-12 | Ewm Hightec Welding Gmbh | Method, device and system for determining a welding speed in a manually performed arc welding process |
WO2009089337A1 (en) * | 2008-01-09 | 2009-07-16 | Illinois Tool Works Inc. | Automatic weld arc monitoring system |
US9352411B2 (en) * | 2008-05-28 | 2016-05-31 | Illinois Tool Works Inc. | Welding training system |
EP2292363B1 (en) * | 2009-09-08 | 2017-01-04 | Ewm Ag | Method and device for determining a welding or soldering speed |
US20120145688A1 (en) * | 2010-12-13 | 2012-06-14 | Moon Jr John H | System and method for monitoring and recording welder information |
CN102581437B (en) | 2011-08-24 | 2015-01-07 | 唐山松下产业机器有限公司 | Welder and system capable of managing welding operation |
US9266182B2 (en) * | 2012-04-06 | 2016-02-23 | Illinois Tools Works Inc. | Welding torch with a temperature measurement device |
US10213862B2 (en) * | 2013-05-10 | 2019-02-26 | Illinois Tool Works Inc. | Welding system for determining a quality of a welding operation |
-
2014
- 2014-04-25 US US14/262,588 patent/US10213862B2/en active Active
- 2014-04-30 CN CN201480024947.4A patent/CN105163891B/en not_active Expired - Fee Related
- 2014-04-30 CA CA2902615A patent/CA2902615C/en active Active
- 2014-04-30 WO PCT/US2014/036141 patent/WO2014182523A1/en active Application Filing
- 2014-04-30 EP EP14729531.5A patent/EP2994261A1/en not_active Withdrawn
- 2014-04-30 KR KR1020157026115A patent/KR102162946B1/en active IP Right Grant
- 2014-04-30 BR BR112015021065A patent/BR112015021065A2/en not_active IP Right Cessation
-
2019
- 2019-02-22 US US16/283,268 patent/US12070821B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620625A (en) * | 1992-06-01 | 1997-04-15 | Gaz De France (Service National) | Method of butt-welding two plastic parts with an identifying code, using an automatically controlled electro-welding machine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111014901A (en) * | 2019-12-30 | 2020-04-17 | 武昌船舶重工集团有限公司 | Automatic self-melting TIG welding method for thin-wall stainless steel pipe |
WO2023049148A1 (en) * | 2021-09-21 | 2023-03-30 | Edison Welding Institute, Inc. | System and method for determining weld cooling rate in-situ |
Also Published As
Publication number | Publication date |
---|---|
CA2902615A1 (en) | 2014-11-13 |
CN105163891B (en) | 2018-12-07 |
EP2994261A1 (en) | 2016-03-16 |
US20140332514A1 (en) | 2014-11-13 |
US10213862B2 (en) | 2019-02-26 |
CA2902615C (en) | 2018-08-28 |
BR112015021065A2 (en) | 2017-07-18 |
KR102162946B1 (en) | 2020-10-07 |
CN105163891A (en) | 2015-12-16 |
WO2014182523A1 (en) | 2014-11-13 |
US12070821B2 (en) | 2024-08-27 |
KR20160005008A (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12070821B2 (en) | Welding system for determining a quality of a welding operation | |
US11090753B2 (en) | System and method for determining weld travel speed | |
US10458855B2 (en) | Temperature sensor belt | |
US11504791B2 (en) | Welding torch with a temperature measurement device | |
US20190091810A1 (en) | Data acquisition using a purge plug | |
US9631986B2 (en) | Rotatable temperature sensing device | |
CA2998241A1 (en) | System and method for positive metal identification and intelligent consumalbe identification | |
US11020813B2 (en) | Systems, methods, and apparatus to reduce cast in a welding wire | |
Tsybulkin | The Paton Welding Journal 2017 № 06 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ILLINOIS TOOL WORKS INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOLVERSON, TODD EARL;FINK, JOSEPH K.;MULROY, ANDREW PATRICK;AND OTHERS;SIGNING DATES FROM 20140410 TO 20140425;REEL/FRAME:048414/0640 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: ILLINOIS TOOL WORKS INC., ILLINOIS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CORRESPONDENCE DATA PREVIOUSLY RECORDED ON REEL 048414 FRAME 0640. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:HOLVERSON, TODD EARL;FINK, JOSEPH K.;MULROY, ANDREW PATRICK;AND OTHERS;SIGNING DATES FROM 20140410 TO 20140425;REEL/FRAME:050522/0573 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |