US20190175542A1 - Methods of treating age related disorders - Google Patents

Methods of treating age related disorders Download PDF

Info

Publication number
US20190175542A1
US20190175542A1 US16/020,093 US201816020093A US2019175542A1 US 20190175542 A1 US20190175542 A1 US 20190175542A1 US 201816020093 A US201816020093 A US 201816020093A US 2019175542 A1 US2019175542 A1 US 2019175542A1
Authority
US
United States
Prior art keywords
metap2
patient
inhibitor
administration
metap2 inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/020,093
Inventor
Thomas E. Hughes
James E. Vath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Larimar Therapeutics Inc
Original Assignee
Zafgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zafgen Inc filed Critical Zafgen Inc
Priority to US16/020,093 priority Critical patent/US20190175542A1/en
Publication of US20190175542A1 publication Critical patent/US20190175542A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/336Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals

Definitions

  • oxidative damage participates in the functional deterioration of aging. For example, it appears that mitochondrial oxidative damage accumulates, and mitochondrial function declines, with chronological age. Further, mitochondrial reactive oxygen species production and global oxidative damage to protein, DNA and lipids increases with chronological age.
  • reactive oxygen species such as peroxides and free radicals
  • MCLK1 also known as CLK-1 and COQ7
  • MCLK1 a mitochondrial enzyme necessary for ubiquinone biosynthesis
  • MCLK1 expression increased mitochondria oxidative stress, but also led to an overall decrease in non-mitochondrial oxidative damage accompanied by a decrease in systemic biomarkers of oxidative stress and aging (Lapointe et al., (2008), The Journal of Biochemistry 283(38): 26217-26227; Lapointe et al., (2010) Cell. Mol. Life Sci. 67: 1-8). Partial inactivation of MCLK1 also prolonged the lifespan of nematodes and mice.
  • Oxidative stress acts in an integrated manner to increase susceptibility to diseases generally considered to be related to the process of biological aging, including diabetes, peripheral vascular disease, uremia, ischemic stroke, and cataracts, as well as for both cardiovascular and noncardiovascular mortality in the elderly. (Kushner (2001), Cleveland Clinic Journal of Medicine 68:535-537).
  • an oxidative stress disorder such as Alzheimer's disease or an age-related disorder (e.g., osteoarthritis, sarcopenia and/or frailty) in a patient in need thereof, comprising administering to said patient an therapeutically effective amount of a MetAP2 inhibitor.
  • an oxidative stress disorder such as Alzheimer's disease or an age-related disorder (e.g., osteoarthritis, sarcopenia and/or frailty) in a patient in need thereof, comprising administering to said patient an therapeutically effective amount of a MetAP2 inhibitor.
  • Also provided herein is a method of treating memory impairment, for example, memory impairement due to Alzheimer's disease, senile dementia, mild cognitive impairment due to aging, schizophrenia, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, depression, aging, stroke, CNS hypoxia, cerebral senility, cardiovascular disease, head trauma or age-related cognitive decline, in a patient in need thereof comprising administering to said patient an therapeutically effective amount of a MetAP2 inhibitor.
  • memory impairment for example, memory impairement due to Alzheimer's disease, senile dementia, mild cognitive impairment due to aging, schizophrenia, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, depression, aging, stroke, CNS hypoxia, cerebral senility, cardiovascular disease, head trauma or age-related cognitive decline.
  • a method of enhancing cognitive function in a patient comprising administering to said patient an effective amount of a MetAP2 inhibitor.
  • a method of treating an age-related disorder e.g., type 2 diabetes, Alzheimer's disease, osteoarthritis, senile dementia, and premature death
  • an age-related disorder e.g., type 2 diabetes, Alzheimer's disease, osteoarthritis, senile dementia, and premature death
  • administering an effective amount of a MetAP2 inhibitor compound to the patient, and wherein said compound, upon administration increases the level of metabolic products formed in the citric acid cycle and does not substantially increase alphaketoglutarate in the liver of said patient.
  • a patient treated by a disclosed method exhibits a reduction in expression of mCLK1, exhibits a decrease in non-mitochondrial oxidative damage, and/or exhibits increased mitochondrial oxidative stress.
  • a method of decreasing the rate of development of one or more markers indicative of aging comprising administering to said patient a therapeutically effective amount of a MetAP2 inhibitor.
  • markers indicative of aging e.g., an oxidative biomarker, e.g., a C-reactive protein
  • FIG. 1 depicts hepatic MCLK1 mRNA levels after treatment with MetAP2 inhibitors.
  • FIG. 2 indicates the effect of fumagillin treatment on the levels of citric acid cycle metabolites in rats.
  • FIG. 3 depicts the results of neuromuscular coordination of mice after long time treatment with a MetAP2 inhibitor.
  • FIG. 4 depicts the decrease of C-reactive protein in patients after treatment with MetAP2.
  • the disclosure relates at least in part to methods for treating a patient suffering from oxidative distress disorders including age-related disorders.
  • methods of treating Alzheimer's disease, type 2 diabetes, congestive heart failure, osteoarthritis, sarcopenia, frailty, senile dementia, and premature death are methods of enhancing cognitive function and treating memory impairment associated with Alzheimer's disease, senile dementia, schizophrenia, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, depression, aging, stroke, central nervous system (CNS) hypoxia, cerebral senility, cardiovascular disease, head trauma, and/or age-related cognitive decline.
  • the disclosed methods are contemplated to prevent and/or treat a patient affected by the aforementioned disorders, which include administering an effective amount of a methionine aminopeptidase 2 (MetAP2) inhibitor.
  • MetalAP2 methionine aminopeptidase 2
  • MetAP2 encodes a protein that functions at least in part by enzymatically removing the amino terminal methionine residue from certain newly translated proteins. Increased expression of the MetAP2 gene has been historically associated with various forms of cancer. Molecules inhibiting the enzymatic activity of MetAP2 have been identified and have been explored for their utility in the treatment of various tumor types and infectious diseases such as microsporidiosis, leishmaniasis, and malaria.
  • MetAP2 inhibitors can effectively reduce the expression of MCLK1, a mitochondrial enzyme involved in the synthesis of ubiquinone, a membrane antioxidant and essential electron transporter of the mitochondrial respiratory chain.
  • MCLK1 has also been implicated in the control of lifespan in nematodes and in mice. Without being limited by any particular theory or mechanism of action, it is believed that administration of a MetAP2 inhibitor suppresses the expression of MCLK1, that can result in a slower rate of mitochondrial electron transport, and consequently lower ATP and NAD(H) production.
  • Such lowered ATP and NAD(H) levels can lead to an overall decrease in non-mitochondrial (e.g., cytoplasmic) oxidative damage and/or can reduce the overall reactive oxygen species damage associated with aging as exemplified by, for example, a reduction in age-associated systemic biomarkers of oxidative stress.
  • non-mitochondrial e.g., cytoplasmic
  • NAD(H) levels can lead to an overall decrease in non-mitochondrial (e.g., cytoplasmic) oxidative damage and/or can reduce the overall reactive oxygen species damage associated with aging as exemplified by, for example, a reduction in age-associated systemic biomarkers of oxidative stress.
  • long-term treatment e.g. 4 weeks, 6 months, 1 year or more, e.g. about 1 month to about 1 year treatment duration
  • MetAP2 inhibitors effectively and/or substantially prevents deterioration of neuromuscular coordination and function in a patient, e.g. a older patient (e.g. a patient over 50 years old, e.g. 45 years old to about 90 or 100 years old).
  • a patient e.g. a patient over 50 years old, e.g. 45 years old to about 90 or 100 years old.
  • such prevention of deterioration can be for example, measured using the Rotarod test, a standard test of coordination that assesses the ability of an aging animal to remain balanced on a rotating beam.
  • MetAP2 inhibitor reduces the decline in function of the neuromuscular and skeletal system, that can result in improved balance, neurological function, and resistance to decline in motor function and skills that normally occur with aging and that predispose individuals to decline in health and well-being.
  • MetAP2 inhibitors may be used in some embodiments to prevent and/or treat subjects with, or at risk of, oxidative distress disorders including age-related disorders.
  • methods relating to administering a MetAP-2 inhibitor to treat oxidative distress disorders and/or age-related disorders e.g., by administering an effective amount of a MetAP-2 inhibitor, e.g. a therapeutically effective amount that reduces expression of MCLK1 in a patient.
  • a patient upon administration of the MetAP2 inhibitor, a patient may exhibit a decrease in non-mitochondrial oxidative damage.
  • disclosed therapeutically effective amounts of MetAP2 inhibitors may not substantially modulate or suppress angiogenesis.
  • Also disclosed herein are methods of determining the need of individual patients for MetAP2 inhibitor treatment comprising measuring the plasma concentrations of C-reactive protein in the patient, administering a disclosed MetAP2 inhibitor based on an elevated basal level (e.g. a level of above 2.4 mg/L, or above 10 mg/L) of C-reactive protein, and/or determining the extent and/or duration of benefit derived from MetAP2 inhibitor therapy, e.g. by assessing the impact on circulating C-reactive protein concentrations in plasma or other biological samples.
  • an elevated basal level e.g. a level of above 2.4 mg/L, or above 10 mg/L
  • Disclosed methods may include continuing administration of a MetAP2 inhibitor until a return to a normal range of a marker level (e.g., a C-reactive protein level, e.g. a C-reactive protein level between about 0.1 mg/L to about 10 mg/L) or to a desired change in clinical symptom.
  • a marker level e.g., a C-reactive protein level, e.g. a C-reactive protein level between about 0.1 mg/L to about 10 mg/L
  • MetAP2 inhibitors refer to a class of molecules that inhibit or modulate the activity of MetAP2, e.g., the ability of MetAP2 to cleave the N-terminal methionine residue of newly synthesized proteins to produce the active form of the protein, or the ability of MetAP2 to regulate protein synthesis by protecting the subunit of eukaryotic initiation factor-2 (eIF2) and/or ERK1/2 from phosphorylation.
  • MetAP2 inhibitors provided herein may be reversible or irreversible inhibitors.
  • Exemplary MetAP2 inhibitors may include irreversible inhibitors that covalently bind to MetAP2.
  • irreversible inhibitors include fumagillin, fumagillol, and fumagillin ketone.
  • Derivatives and analogs of fumagillin, and pharmaceutically acceptable salts thereof are contemplated herein as irreversible MetAP2 inhibitors, such as O-(4-dimethylaminoethoxycinnamoyl)fumagillol (also referred to herein as Compound A or ZGN-433), O-(3,4,5-trimethoxycinnamoyl)fumagillol, O-(4-chlorocinnamoyl)fumagillol; O-(4-aminocinnamoyl)fumagillol; O-(4-dimethylaminoethoxycinnamoyl)fumagillol; O-(4-methoxycinnamoyl)fumagillol; O-(4-dimethylaminocinnamoyl)fumagillol; O-(4-hydroxycinnamoyl)fumagillol; O-(3,4-dimethoxycinnam
  • Fumagillin, and some derivatives thereof have a carboxylic acid moiety and can be administered in the form of the free acid.
  • contemplated herein are pharmaceutically acceptable salts of fumagillin, fumagillol, and derivatives thereof.
  • Pharmaceutically acceptable salts illustratively include those that can be made using the following bases: ammonia, L-arginine, benethamine, benzathene, betaine, bismuth, calcium hydroxide, choline, deanol, diethanolamine, diethylamine, 2-(diethylamino)ethanol, ethylenediamine, N-methylglucarnine, hydrabamine, 1 H-imidazole, lysine, magnesium hydroxide, 4-(2-hydroxyethyl)morpholine, piperazine, potassium hydroxide, 1-(2-hydroxyethyl)pyrrolidine, sodium hydroxide, triethanolamine, zinc hydroxide, dicyclohexlamine, or any other electron pair donor (as described in Handbook of Pharmaceutical Salts, Stan & Wermuth, VHCA and Wiley, Uchsenfurt-Hohestadt Germany, 2002).
  • Contemplated pharmaceutically acceptable salts may include hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, nitric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, fumaric acid, tartaric acid, maleic acid, methanesulfonic acid, benzenesulfonic acid or para-toluenesulfonic acid.
  • Esters of the present invention may be prepared by reacting fumagillin or fumagillol with the appropriate acid under standard esterification conditions described in the literature (Houben-Weyl 4th Ed. 1952, Methods of Organic Synthesis).
  • Suitable fumagillin esters include ethyl methanoate, ethyl ethanoate, ethyl propanoate, propyl methanoate, propyl ethanoate, and methyl butanoate.
  • contemplated irreversible inhibitors of MetAP2 may include a siRNA, shRNA, an antibody or an antisense compound of MetAP2.
  • Kishimoto et al. (U.S. Pat. Nos. 5,166,172; 5,698,586; 5,164,410; and 5,180,738), Kishimoto et al. (U.S. Pat. No. 5,180,735), Kishimoto et al. (U.S. Pat. No. 5,288,722), Kishimoto et al. (U.S. Pat. No. 5,204,345), Kishimoto et al. (U.S. Pat. No. 5,422,363), Liu et al. (U.S. Pat. Nos. 6,207,704; 6,566,541; and WO 1998/056372), Craig et al.
  • contemplated MetAP2 inhibitors may include:
  • a contemplated MetAP2 inhibitor may modulate MCLK1.
  • a disclosed MetAP2 inhibitor may decrease the mRNA levels or protein levels of MCLK1 in a subject after administration, e.g. after 1, 3, 5, and/or 10 days or more of treatment.
  • a contemplated MetAP2 inhibitor may decrease non-mitochondrial oxidative damage in a patient. In another embodiment, a contemplated MetAP2 inhibitor may decrease the rate of development of one or more markers indicative of aging in a patient. In yet another embodiment, a contemplated MetAP2 inhibitor may increase mitochondrial oxidative stress in a patient. In a further embodiment, a contemplated MetAP2 inhibitor increases the levels of citric acid cycle metabolites in a patient without increasing alphaketoglutarate.
  • a method of treating, and/or mitigating or minimizing the risk of, oxidative distress disorders in a patient in need thereof comprising parenterally or non-parenterally administering a therapeutically effective amount of a MetAP2 inhibitor to said patient.
  • the instant disclosure embraces a method of treating an oxidative stress disorder selected from an age-related disorder, a neurodegenerative disorder, a mitochondrial disorder, and an impaired energy processing disorder.
  • contemplated methods include treatment of age-related disorders, including, but not limited to, macular degeneration, diabetes mellitus, osteoarthritis, rheumatoid arthritis, sarcopenia, cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, ischemia/reperfusion injury, cancer, premature death, as well as age-related decline in cognitive function, cardiopulmonary function, muscle strength, vision, and hearing.
  • age-related disorders including, but not limited to, macular degeneration, diabetes mellitus, osteoarthritis, rheumatoid arthritis, sarcopenia
  • cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, ischemia/reperfusion injury, cancer, premature death, as well as age-related decline in cognitive function, cardiopulmonary function, muscle strength, vision, and hearing.
  • Contemplated methods also include treatment of a neurodegenerative disorder or neurological disease, including, but not limited to, Motor Neuron Disease, Creutzfeldt-Jakob disease, Machado-Joseph disease, Spino-cerebellar ataxia, Multiple sclerosis (MS), Parkinson's disease, Alzheimer's disease, Huntington's disease, hearing and balance impairments, ataxias, epilepsy, mood disorders such as schizophrenia, bipolar disorder, and depression, dementia, Pick's Disease, stroke, CNS hypoxia, cerebral senility, and neural injury such as head trauma.
  • a neurodegenerative disorder or neurological disease including, but not limited to, Motor Neuron Disease, Creutzfeldt-Jakob disease, Machado-Joseph disease, Spino-cerebellar ataxia, Multiple sclerosis (MS), Parkinson's disease, Alzheimer's disease, Huntington's disease, hearing and balance impairments, ataxias, epilepsy, mood disorders such as schizophrenia, bipolar disorder, and depression, dementia
  • Contemplated methods further include treatment of a mitochondrial disorder, including, but not limited to, Myoclonic Epilepsy with Ragged Red Fibers (MERRF), Mitochondrial Encephalomyopathy, Lactic acidosis, and Stroke-like episodes (MELAS), Maternally Inherited Diabetes and Deafness (MIDD), Leber's Hereditary Optic Neuropathy (LHON), chronic progressive external ophthalmoplegia (CPEO), Leigh Disease, Kearns-Sayre Syndrome (KSS), Friedreich's Ataxia (FRDA), Co-Enzyme Q10 (CoQ10) deficiency, Complex I Deficiency, Complex II Deficiency, Complex III Deficiency, Complex IV Deficiency, Complex V Deficiency, myopathies (including cardiomyopathy and encephalomyopathy), and renal tubular acidosis.
  • a mitochondrial disorder including, but not limited to, Myoclonic Epilepsy with Ragged Red Fibers (MERRF), Mito
  • contemplated methods include treatment of patients affected with an impaired energy processing disorder, including, but not limited to, haemaglobionopathies, thalassemia, sickle cell anemia, or energy impairment due to deprivation, poisoning or toxicity of oxygen.
  • an impaired energy processing disorder including, but not limited to, haemaglobionopathies, thalassemia, sickle cell anemia, or energy impairment due to deprivation, poisoning or toxicity of oxygen.
  • methods of enhancing cognitive function in a patient in need thereof comprising parenterally or non-parenterally administering a therapeutically effective amount of a MetAP2 inhibitor to said patient.
  • Such patients may suffer from memory impairment due to, for example, Alzheimer's disease, dementia (e.g., senile dementia), mild cognitive impairment due to aging, schizophrenia, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, depression, aging, stroke, CNS hypoxia, cerebral senility, cardiovascular disease, head trauma, or age-related cognitive decline.
  • dementia e.g., senile dementia
  • mild cognitive impairment due to aging
  • schizophrenia Parkinson's disease
  • Huntington's disease Huntington's disease
  • Pick's disease Creutzfeldt-Jakob disease
  • depression aging
  • stroke CNS hypoxia
  • cerebral senility e.g., stroke
  • cardiovascular disease e.g., stroke, CNS hypoxia, cerebral senility, cardiovascular disease, head trauma, or age-related cognitive decline.
  • provided herein are methods of decreasing the rate of development of one or more biomarkers indicative of aging in a patient, comprising parenterally or non-parenterally administering a therapeutically effective amount of a MetAP2 inhibitor to said patient.
  • the one or more biomarkers indicative of aging is an energy or oxidative biomarker.
  • Exemplary energy or oxidative biomarkers include, but are not limited to, lactic acid (lactate) levels, pyruvic acid (pyruvate) levels, lactate/pyruvate ratios, phosphocreatine levels, NADH or NADPH levels, NAD or NADP levels, ATP levels, reduced coenzyme Q levels, oxidized coenzyme Q levels, total coenzyme Q levels, oxidized cytochrome C levels, reduced cytochrome C levels, oxidized cytochrome C/reduced cytochrome C ratio, acetoacetate levels, beta-hydroxy butyrate levels, acetoacetate/beta-hydroxy butyrate ratio, 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, isoprostane levels, levels of reactive oxygen species, oxygen consumption (VO 2 ), carbon dioxide output (VCO 2 ), and respiratory quotient (VCO 2 /VO 2 ). Biomarkers can be measured in whole blood, plasma, cerebrospinal fluid, cere
  • administering results in a reduction in expression of MCLK1 in the patient.
  • Such administration of MetAP2 inhibitors may also result in a decrease in non-mitochondrial oxidative damage.
  • such administration of MetAP2 inhibitors may result in an increase in mitochondrial oxidative stress.
  • administration of a therapeutically effective amount of a MetAP2 inhibitors increases the level of metabolic products formed in the citric acid cycle but does not substantially increase the level of alphaketoglutarate in the liver of the treated patient.
  • methods of extending lifespan of a mammal are contemplated. For example, contemplated herein is a reduction (e.g. by 1%, 5% 30% or 50% of the expression of mCLK1 a patient, which may result in extended lifespan by as much as 1%, 5%, 20% or 30%.
  • a contemplated therapeutically effective amount of a MetAP2 inhibitor does not substantially modulate or suppress angiogenesis, but is still effective as a MetAP2 inhibitor.
  • angiogenesis is known to persons skilled in the art, and refers to the process of new blood vessel formation, and is essential for the exponential growth of solid tumors and tumor metastasis.
  • a MetAP2 inhibitor for example, to treat an oxidative stress disorder, as described herein can be part of a combination therapy, for example, administered with (e.g. before, during, or after) administration of another active agent or treatment regimen such as chemotherapy treatment, and/or radiation treatment. It is contemplated that co-administration of a MetAP-2 inhibitor and another active agent can occur at the same time. In other embodiments, administration of a MetAP-2 inhibitor occurs immediately prior to or immediately after administration of another active agent. In yet another embodiment, a period of time may elapse between administration of a MetAP-2 inhibitor and another agent.
  • a subject may have a lower systemic exposure (e.g. at least about 2, 3, 5, 10, 20, or at least about 30% less systemic exposure) to the non-parenterally (e.g. orally) administered of a MetAP2 inhibitor as compared to a subject parenterally (e.g. subcutaneously) administered the same dose of the MetAP2 inhibitor.
  • a lower systemic exposure e.g. at least about 2, 3, 5, 10, 20, or at least about 30% less systemic exposure
  • Contemplated non-parenteral administration includes oral, buccal, transdermal (e.g. by a dermal patch), topical, inhalation, sublingual, ocular, pulmonary, nasal, or rectal administration.
  • Contemplated parenteral administration includes intravenous and subcutaneous administration, as well as administration at a site of a minimally-invasive procedure or a surgery.
  • angiogenesis e.g. a daily dosage of a MetAP2 inhibitor
  • methods that include administering doses of MetAP2 inhibitors that are effective for e.g. reducing MCLK1 expression, but are significantly smaller doses than that necessary to modulate and/or suppress angiogenesis (which may typically require about 12.5 mg/kg to about 50 mg/kg or more).
  • contemplated dosage of a MetAP2 inhibitor in the methods described herein may include administering about 25 mg/day, about 10 mg/day, about 5 mg/day, about 3 mg/day, about 2 mg/day, about 1 mg/day, about 0.75 mg/day, about 0.5 mg/day, about 0.1 mg/day, about 0.05 mg/day, or about 0.01 mg/day.
  • a therapeutically effective amount of the drug for administering to a patient in need thereof may be about 0.0001 mg/kg to about 25 mg/kg of body weight per day.
  • a contemplated dosage may from about 0.01 mg/kg to about 10 mg/kg of body weight per day, about 0.01 mg/kg to about 1 mg/kg of body weight per day, about 0.01 mg/kg to about 0.1 mg/kg of body weight per day, about 0.04 mg/kg to about 10 mg/kg of body weight per day, or about 0.04 to about 1 mg/kg of body weight per day.
  • a MetAP2 inhibitor such as disclosed herein (e.g. O-(4-dimethlyaminoethoxycinnamoyl)fumagillol), may be administered at about 0.04 to about 1 mg/kg of a patient.
  • Contemplated methods may include administration of a composition comprising a MetAP2 inhibitor, for example, hourly, twice hourly, every three to four hours, daily, twice daily, 1, 2, 3 or 4 times a week, every three to four days, every week, or once every two weeks depending on half-life and clearance rate of the particular composition or inhibitor.
  • a composition comprising a MetAP2 inhibitor, for example, hourly, twice hourly, every three to four hours, daily, twice daily, 1, 2, 3 or 4 times a week, every three to four days, every week, or once every two weeks depending on half-life and clearance rate of the particular composition or inhibitor.
  • compositions may be administered on a regimen of, for example, one to four or more times per day.
  • a suitable treatment period may be, for example, at least about one week, at least about two weeks, at least about one month, at least about six months, at least about 1 year, or indefinitely.
  • a treatment regimen may include a corrective phase, during which a MetAP2 inhibitor dose sufficient to provide e.g., a reduction of MCLK1 expression, followed by a maintenance phase, during which a lower MetAP2 inhibitor dose sufficient to reduce or prevent increase in MCLK1 expression level is administered.
  • MetAP2 inhibitors may be formulated with conventional excipients to prepare an inhalable composition in the form of a fine powder or atomizable liquid.
  • MetAP2 inhibitors may be formulated with conventional excipients, for example, in the form of eye drops or an ocular implant.
  • excipients useful in eye drops are viscosifying or gelling agents, to minimize loss by lacrimation through improved retention in the eye.
  • Liquid dosage forms for oral or other administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents such as, for example, water or other solvents, solubil
  • Dosage forms for topical or transdermal administration of an inventive pharmaceutical composition may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches.
  • the active agent is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
  • cutaneous routes of administration are achieved with aqueous drops, a mist, an emulsion, or a cream.
  • Transdermal patches may have the added advantage of providing controlled delivery of the active ingredients to the body.
  • dosage forms can be made by dissolving or dispensing the compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
  • injectable preparations are also contemplated herein, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • compositions for rectal administration may be suppositories which can be prepared by mixing a MetAP2 inhibitor with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum and release the active agent(s).
  • suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum and release the active agent(s).
  • contemplated formulations can be administered by release from a lumen of an endoscope after the endoscope has been inserted into a rectum of a subject.
  • Oral dosage forms such as capsules, tablets, pills, powders, and granules, may be prepared using any suitable process known to the art.
  • a MetAP2 inhibitor may be mixed with enteric materials and compressed into tablets.
  • formulations of the invention are incorporated into chewable tablets, crushable tablets, tablets that dissolve rapidly within the mouth, or mouth wash.
  • C57BL/6 mice were treated for three days with orally administered fumigillin (ZGN-201) or for ten days with subcutaneously administered Compound I.
  • Liver mRNA levels of MCLK1 were then assessed by microarray analysis of samples obtained from four individual animals per treatment group (vehicle and fumagillin after three days of treatment, or vehicle and Compound 1 after 10 days of treatment), using the Illumina MouseRef8 chip system Analysis of background-subtracted data was conducted using the Illumina BeadStudio software according to manufacturer's specifications.
  • FIG. 1 depicts the hepatic MCLK1 mRNA levels in treated mice and indicates that MCLK1 levels were reduced by approximately 30-60% in the livers of mice treated with either compound.
  • FIG. 1 further illustrates the utility in modulating MCLK1 levels regardless of whether the MetAP2 inhibitor is administered orally or parenterally.
  • C57BL/6 mice were treated for 247 days with orally administered fumigillin (ZGN-201).
  • ZGN-201 orally administered fumigillin
  • Neuromuscular coordination was assessed using a standardized Rotarod test, which was repeated five times for each animal.
  • Animals treated with ZGN-201 remained on the rotating rod for an average of 54.5 seconds, compared with 32.7 seconds for control animals.
  • FIG. 3 depicts the results of the Rotarod test administered in mice treated with fumagillin (vs. control animals) for over eight months (roughly one half of the lifespan of the animals when fed this diet).
  • FIG. 1 further illustrates the utility in preventing the decline in neuromuscular function that occurs with aging.
  • FIG. 4 indicates that MetAP2 inhibitor treatment (ZGN) decreased the levels of C-reactive protein in the plasma.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Biochemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Psychiatry (AREA)
  • Toxicology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Dermatology (AREA)
  • Obesity (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention generally relates to methods of treating a patient having, and/or at risk of, oxidative distress disorders and/or age-related disorders. The disclosure also generally relates to methods of treating memory impairment or enhancing the cognitive function of a patient in need thereof. Such methods may include administering a therapeutically effective amount of a MetAP2 inhibitor.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/242,980, filed Aug. 22, 2016, which is a continuation of U.S. patent application Ser. No. 14/244,278, filed Apr. 3, 2014, which is a continuation of International Application No. PCT/US2012/000461, filed Oct. 3, 2012, which claims priority to U.S. Provisional Patent Application 61/542,393 filed Oct. 3, 2011, each of which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • Decreased mitochondrial function and increased oxidative damage has been linked to range of pathologic conditions associated with aging pathology, and it is commonly understood that oxidative damage participates in the functional deterioration of aging. For example, it appears that mitochondrial oxidative damage accumulates, and mitochondrial function declines, with chronological age. Further, mitochondrial reactive oxygen species production and global oxidative damage to protein, DNA and lipids increases with chronological age.
  • Oxidative stress caused by an imbalance between the production and detoxification of reactive oxygen species, such as peroxides and free radicals, has been implicated in a variety of pathological and chronic degenerative conditions including cancer, diabetes mellitus, arthritis, neurodegenerative disorders such as dementia, Alzheimer' disease, Parkinson's disease, and Hungtinton's disease, as well as age-related decline in cognitive function, cardiopulmonary function, muscle strength, vision, and hearing.
  • There are several sources by which reactive oxygen species are generated. However, the most important source of reactive oxygen species is probably the leakage of activated oxygen from mitochondria during normal oxidative respiration and energy production. Studies of the various components of mitochondria have provided tremendous insight into the role of mitochondria in oxidative stress. For example, molecular and genetic studies of MCLK1 (also known as CLK-1 and COQ7), a mitochondrial enzyme necessary for ubiquinone biosynthesis, indicate that a reduction of MCLK1 expression increased mitochondria oxidative stress, but also led to an overall decrease in non-mitochondrial oxidative damage accompanied by a decrease in systemic biomarkers of oxidative stress and aging (Lapointe et al., (2008), The Journal of Biochemistry 283(38): 26217-26227; Lapointe et al., (2010) Cell. Mol. Life Sci. 67: 1-8). Partial inactivation of MCLK1 also prolonged the lifespan of nematodes and mice. Together, these studies suggest a link between mitochondrial energy metabolism, oxidative damage, and the aging process. Oxidative stress acts in an integrated manner to increase susceptibility to diseases generally considered to be related to the process of biological aging, including diabetes, peripheral vascular disease, uremia, ischemic stroke, and cataracts, as well as for both cardiovascular and noncardiovascular mortality in the elderly. (Kushner (2001), Cleveland Clinic Journal of Medicine 68:535-537).
  • There remains a dramatic need for new methods of preventing and/or treating the various pathological and chronic degenerative disorders associated with aging, e.g., associated with oxidative stress.
  • SUMMARY
  • Provided herein is a method of treating an oxidative stress disorder, such as Alzheimer's disease or an age-related disorder (e.g., osteoarthritis, sarcopenia and/or frailty) in a patient in need thereof, comprising administering to said patient an therapeutically effective amount of a MetAP2 inhibitor.
  • Also provided herein is a method of treating memory impairment, for example, memory impairement due to Alzheimer's disease, senile dementia, mild cognitive impairment due to aging, schizophrenia, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, depression, aging, stroke, CNS hypoxia, cerebral senility, cardiovascular disease, head trauma or age-related cognitive decline, in a patient in need thereof comprising administering to said patient an therapeutically effective amount of a MetAP2 inhibitor.
  • A method of enhancing cognitive function in a patient is contemplated herein, comprising administering to said patient an effective amount of a MetAP2 inhibitor. Also contemplated herein is a method of treating an age-related disorder (e.g., type 2 diabetes, Alzheimer's disease, osteoarthritis, senile dementia, and premature death) in a patient in need thereof, comprising administering an effective amount of a MetAP2 inhibitor compound to the patient, and wherein said compound, upon administration increases the level of metabolic products formed in the citric acid cycle and does not substantially increase alphaketoglutarate in the liver of said patient.
  • In some embodiments, a patient treated by a disclosed method exhibits a reduction in expression of mCLK1, exhibits a decrease in non-mitochondrial oxidative damage, and/or exhibits increased mitochondrial oxidative stress.
  • A method of decreasing the rate of development of one or more markers indicative of aging (e.g., an oxidative biomarker, e.g., a C-reactive protein) in a patient in need thereof, is provided, comprising administering to said patient a therapeutically effective amount of a MetAP2 inhibitor.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1 depicts hepatic MCLK1 mRNA levels after treatment with MetAP2 inhibitors.
  • FIG. 2 indicates the effect of fumagillin treatment on the levels of citric acid cycle metabolites in rats.
  • FIG. 3 depicts the results of neuromuscular coordination of mice after long time treatment with a MetAP2 inhibitor.
  • FIG. 4 depicts the decrease of C-reactive protein in patients after treatment with MetAP2.
  • DETAILED DESCRIPTION
  • Overview
  • The disclosure relates at least in part to methods for treating a patient suffering from oxidative distress disorders including age-related disorders. For example, provided herein are methods of treating Alzheimer's disease, type 2 diabetes, congestive heart failure, osteoarthritis, sarcopenia, frailty, senile dementia, and premature death. The disclosure also relates in part to methods of enhancing cognitive function and treating memory impairment associated with Alzheimer's disease, senile dementia, schizophrenia, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, depression, aging, stroke, central nervous system (CNS) hypoxia, cerebral senility, cardiovascular disease, head trauma, and/or age-related cognitive decline. The disclosed methods are contemplated to prevent and/or treat a patient affected by the aforementioned disorders, which include administering an effective amount of a methionine aminopeptidase 2 (MetAP2) inhibitor.
  • MetAP2 encodes a protein that functions at least in part by enzymatically removing the amino terminal methionine residue from certain newly translated proteins. Increased expression of the MetAP2 gene has been historically associated with various forms of cancer. Molecules inhibiting the enzymatic activity of MetAP2 have been identified and have been explored for their utility in the treatment of various tumor types and infectious diseases such as microsporidiosis, leishmaniasis, and malaria.
  • As disclosed herein, MetAP2 inhibitors can effectively reduce the expression of MCLK1, a mitochondrial enzyme involved in the synthesis of ubiquinone, a membrane antioxidant and essential electron transporter of the mitochondrial respiratory chain. MCLK1 has also been implicated in the control of lifespan in nematodes and in mice. Without being limited by any particular theory or mechanism of action, it is believed that administration of a MetAP2 inhibitor suppresses the expression of MCLK1, that can result in a slower rate of mitochondrial electron transport, and consequently lower ATP and NAD(H) production. Such lowered ATP and NAD(H) levels can lead to an overall decrease in non-mitochondrial (e.g., cytoplasmic) oxidative damage and/or can reduce the overall reactive oxygen species damage associated with aging as exemplified by, for example, a reduction in age-associated systemic biomarkers of oxidative stress.
  • In an embodiment, long-term treatment (e.g. 4 weeks, 6 months, 1 year or more, e.g. about 1 month to about 1 year treatment duration) with MetAP2 inhibitors effectively and/or substantially prevents deterioration of neuromuscular coordination and function in a patient, e.g. a older patient (e.g. a patient over 50 years old, e.g. 45 years old to about 90 or 100 years old). For example, such prevention of deterioration can be for example, measured using the Rotarod test, a standard test of coordination that assesses the ability of an aging animal to remain balanced on a rotating beam. Without being limited by any particular theory or mechanistic links, it is believed that administration of a MetAP2 inhibitor reduces the decline in function of the neuromuscular and skeletal system, that can result in improved balance, neurological function, and resistance to decline in motor function and skills that normally occur with aging and that predispose individuals to decline in health and well-being.
  • Accordingly, disclosed herein are methods of treating age-related disorders using MetAP2 inhibitors; e.g. MetAP2 may be used in some embodiments to prevent and/or treat subjects with, or at risk of, oxidative distress disorders including age-related disorders. Disclosed herein are methods relating to administering a MetAP-2 inhibitor to treat oxidative distress disorders and/or age-related disorders, e.g., by administering an effective amount of a MetAP-2 inhibitor, e.g. a therapeutically effective amount that reduces expression of MCLK1 in a patient. Also disclosed herein are methods relating to administering a MetAP-2 inhibitor to treat memory impairment and to enhance the cognitive, metabolic and/or neuromuscular function of a patient in need thereof. In certain embodiments, upon administration of the MetAP2 inhibitor, a patient may exhibit a decrease in non-mitochondrial oxidative damage. In some embodiments, disclosed therapeutically effective amounts of MetAP2 inhibitors may not substantially modulate or suppress angiogenesis.
  • Also disclosed herein are methods of determining the need of individual patients for MetAP2 inhibitor treatment comprising measuring the plasma concentrations of C-reactive protein in the patient, administering a disclosed MetAP2 inhibitor based on an elevated basal level (e.g. a level of above 2.4 mg/L, or above 10 mg/L) of C-reactive protein, and/or determining the extent and/or duration of benefit derived from MetAP2 inhibitor therapy, e.g. by assessing the impact on circulating C-reactive protein concentrations in plasma or other biological samples.
  • Disclosed methods may include continuing administration of a MetAP2 inhibitor until a return to a normal range of a marker level (e.g., a C-reactive protein level, e.g. a C-reactive protein level between about 0.1 mg/L to about 10 mg/L) or to a desired change in clinical symptom.
  • MetAP2 Inhibitors
  • MetAP2 inhibitors refer to a class of molecules that inhibit or modulate the activity of MetAP2, e.g., the ability of MetAP2 to cleave the N-terminal methionine residue of newly synthesized proteins to produce the active form of the protein, or the ability of MetAP2 to regulate protein synthesis by protecting the subunit of eukaryotic initiation factor-2 (eIF2) and/or ERK1/2 from phosphorylation. MetAP2 inhibitors provided herein may be reversible or irreversible inhibitors.
  • Exemplary MetAP2 inhibitors may include irreversible inhibitors that covalently bind to MetAP2. For example, such irreversible inhibitors include fumagillin, fumagillol, and fumagillin ketone.
  • Derivatives and analogs of fumagillin, and pharmaceutically acceptable salts thereof are contemplated herein as irreversible MetAP2 inhibitors, such as O-(4-dimethylaminoethoxycinnamoyl)fumagillol (also referred to herein as Compound A or ZGN-433), O-(3,4,5-trimethoxycinnamoyl)fumagillol, O-(4-chlorocinnamoyl)fumagillol; O-(4-aminocinnamoyl)fumagillol; O-(4-dimethylaminoethoxycinnamoyl)fumagillol; O-(4-methoxycinnamoyl)fumagillol; O-(4-dimethylaminocinnamoyl)fumagillol; O-(4-hydroxycinnamoyl)fumagillol; O-(3,4-dimethoxycinnamoyl)fumagillol; O-(3,4-methylenedioxycinnamoyl)fumagillol; O-(3,4,5-trimethoxycinnamoyl)fumagillol; O-(4-nitrocinnamoyl)fumagillol; O-(3,4-dimethoxy-6-aminocinnamoyl)fumagillol; O-(4-acetoxy-3,5-dimethoxycinnamoyl)fumagillol; O-(4-ethylaminocinnamoyl)fumagillol; O-(4-ethylaminoethoxycinnamoyl)fumagillol; O-(3-dimethylaminomethyl-4-methoxycinnamoyl)fumagillol; O-(4-trifluoromethylcinnamoyl)fumagillol; O-(3,4-dimethoxy-6-nitrocinnamoyl)fumagillol; O-(4-acetoxycinnamoyl)fumagillol; O-(4-cyanocinnamoyl)fumagillol; 4-(4-methoxycinnamoyl)oxy-2-(1,2-epoxy-1,5-dimethyl-4-hexenyl)-3-methoxy-1-chloromethyl-1-cyclohexanol; O-(3,4,5-trimethoxycinnamoyl)fumagillol; O-(4-dimethylaminocinnamoyl)fumagillol; O-(3,4,5-trimethoxycinnamoyl)oxy-2-(1,2-epoxy-1,5-dimethyl-4-hexenyl)-3-m-ethoxy-1-chloromethyl-1-cyclohexanol; O-(4-dimethylaminocinnamoyl)oxy-2-(1,2-epoxy-1,5-dimethyl-4-hexenyl)-3-me-thoxy-1-chloromethyl-1-cyclohexanol; O-(3,5-dimethoxy-4-hydroxycinnamoyl)fumagillol or O-(chloracetyl-carbamoyl) fumagillol(TNP-470), and/or pharmaceutically acceptable salts thereof (e.g. O-(4-dimethylaminoethoxycinnamoyl)fumagillol oxalate).
  • Fumagillin, and some derivatives thereof, have a carboxylic acid moiety and can be administered in the form of the free acid. Alternatively, contemplated herein are pharmaceutically acceptable salts of fumagillin, fumagillol, and derivatives thereof.
  • Pharmaceutically acceptable salts illustratively include those that can be made using the following bases: ammonia, L-arginine, benethamine, benzathene, betaine, bismuth, calcium hydroxide, choline, deanol, diethanolamine, diethylamine, 2-(diethylamino)ethanol, ethylenediamine, N-methylglucarnine, hydrabamine, 1 H-imidazole, lysine, magnesium hydroxide, 4-(2-hydroxyethyl)morpholine, piperazine, potassium hydroxide, 1-(2-hydroxyethyl)pyrrolidine, sodium hydroxide, triethanolamine, zinc hydroxide, dicyclohexlamine, or any other electron pair donor (as described in Handbook of Pharmaceutical Salts, Stan & Wermuth, VHCA and Wiley, Uchsenfurt-Hohestadt Germany, 2002). Contemplated pharmaceutically acceptable salts may include hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, nitric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, fumaric acid, tartaric acid, maleic acid, methanesulfonic acid, benzenesulfonic acid or para-toluenesulfonic acid.
  • Esters of the present invention may be prepared by reacting fumagillin or fumagillol with the appropriate acid under standard esterification conditions described in the literature (Houben-Weyl 4th Ed. 1952, Methods of Organic Synthesis). Suitable fumagillin esters include ethyl methanoate, ethyl ethanoate, ethyl propanoate, propyl methanoate, propyl ethanoate, and methyl butanoate.
  • In another embodiment, contemplated irreversible inhibitors of MetAP2 may include a siRNA, shRNA, an antibody or an antisense compound of MetAP2.
  • Further examples of reversible and irreversible MetAP2 inhibitors are provided in the following references, each of which is hereby incorporated by reference: Olson et al. (U.S. Pat. No. 7,084,108 and WO 2002/042295), Olson et al. (U.S. Pat. Nos. 6,548,477; 7,037,890; 7,084,108; 7,268,111; and WO 2002/042295), Olson et al. (WO 2005/066197), Hong et al. (U.S. Pat. No. 6,040,337). Hong et al. (U.S. Pat. No. 6,063,812 and WO 1999/059986), Lee et al. (WO 2006/080591), Kishimoto et al. (U.S. Pat. Nos. 5,166,172; 5,698,586; 5,164,410; and 5,180,738), Kishimoto et al. (U.S. Pat. No. 5,180,735), Kishimoto et al. (U.S. Pat. No. 5,288,722), Kishimoto et al. (U.S. Pat. No. 5,204,345), Kishimoto et al. (U.S. Pat. No. 5,422,363), Liu et al. (U.S. Pat. Nos. 6,207,704; 6,566,541; and WO 1998/056372), Craig et al. (WO 1999/057097), Craig et al. (U.S. Pat. No. 6,242,494), BaMaung et al. (U.S. Pat. No. 7,030,262), Comess et al. (WO 2004/033419), Comess et al. (US 2004/0157836), Comess et al. (US 2004/0167128), Henkin et al. (WO 2002/083065), Craig et al. (U.S. Pat. No. 6,887,863), Craig et al. (US 2002/0002152), Sheppard et al. (2004, Bioorganic & Medicinal Chemistry Letters 14:865-868), Wang et al. (2003, Cancer Research 63:7861-7869), Wang et al. (2007, Bioorganic & Medicinal Chemistry Letters 17:2817-2822), Kawai et al. (2006, Bioorganic & Medicinal Chemistry Letters 16:3574-3577), Henkin et al. (WO 2002/026782), Nan et al. (US 2005/0113420), Luo et al. (2003, J. Med. Chem., 46:2632-2640), Vedantham et al. (2008, J. Comb. Chem., 10:195-203), Wang et al. (2008, J. Med. Chem., 51:6110-20), Ma et al. (2007, BMC Structural Biology, 7:84) and Huang et al. (2007, J. Med. Chem., 50:5735-5742), Evdokimov et al. (2007, PROTEINS: Structure, Function, and Bioinformatics, 66:538-546), Garrabrant et al. (2004, Angiogenesis 7:91-96), Kim et al. (2004, Cancer Research, 64:2984-2987), Towbin et al. (2003, The Journal of Biological Chemistry, 278(52):52964-52971), Marino Jr. (U.S. Pat. No. 7,304,082), Kallender et al. (U.S. patent application number 2004/0192914), and Kallender et al. (U.S. patent application numbers 2003/0220371 and 2005/0004116).
  • For example, contemplated MetAP2 inhibitors may include:
  • Figure US20190175542A1-20190613-C00001
    Figure US20190175542A1-20190613-C00002
  • In some embodiments, a contemplated MetAP2 inhibitor may modulate MCLK1. For example, a disclosed MetAP2 inhibitor may decrease the mRNA levels or protein levels of MCLK1 in a subject after administration, e.g. after 1, 3, 5, and/or 10 days or more of treatment.
  • In an embodiment, a contemplated MetAP2 inhibitor may decrease non-mitochondrial oxidative damage in a patient. In another embodiment, a contemplated MetAP2 inhibitor may decrease the rate of development of one or more markers indicative of aging in a patient. In yet another embodiment, a contemplated MetAP2 inhibitor may increase mitochondrial oxidative stress in a patient. In a further embodiment, a contemplated MetAP2 inhibitor increases the levels of citric acid cycle metabolites in a patient without increasing alphaketoglutarate.
  • Methods
  • A method of treating, and/or mitigating or minimizing the risk of, oxidative distress disorders in a patient in need thereof is provided herein, comprising parenterally or non-parenterally administering a therapeutically effective amount of a MetAP2 inhibitor to said patient. In one embodiment, the instant disclosure embraces a method of treating an oxidative stress disorder selected from an age-related disorder, a neurodegenerative disorder, a mitochondrial disorder, and an impaired energy processing disorder.
  • For example, contemplated methods include treatment of age-related disorders, including, but not limited to, macular degeneration, diabetes mellitus, osteoarthritis, rheumatoid arthritis, sarcopenia, cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, ischemia/reperfusion injury, cancer, premature death, as well as age-related decline in cognitive function, cardiopulmonary function, muscle strength, vision, and hearing. Contemplated methods also include treatment of a neurodegenerative disorder or neurological disease, including, but not limited to, Motor Neuron Disease, Creutzfeldt-Jakob disease, Machado-Joseph disease, Spino-cerebellar ataxia, Multiple sclerosis (MS), Parkinson's disease, Alzheimer's disease, Huntington's disease, hearing and balance impairments, ataxias, epilepsy, mood disorders such as schizophrenia, bipolar disorder, and depression, dementia, Pick's Disease, stroke, CNS hypoxia, cerebral senility, and neural injury such as head trauma. Contemplated methods further include treatment of a mitochondrial disorder, including, but not limited to, Myoclonic Epilepsy with Ragged Red Fibers (MERRF), Mitochondrial Encephalomyopathy, Lactic acidosis, and Stroke-like episodes (MELAS), Maternally Inherited Diabetes and Deafness (MIDD), Leber's Hereditary Optic Neuropathy (LHON), chronic progressive external ophthalmoplegia (CPEO), Leigh Disease, Kearns-Sayre Syndrome (KSS), Friedreich's Ataxia (FRDA), Co-Enzyme Q10 (CoQ10) deficiency, Complex I Deficiency, Complex II Deficiency, Complex III Deficiency, Complex IV Deficiency, Complex V Deficiency, myopathies (including cardiomyopathy and encephalomyopathy), and renal tubular acidosis. Additionally, contemplated methods include treatment of patients affected with an impaired energy processing disorder, including, but not limited to, haemaglobionopathies, thalassemia, sickle cell anemia, or energy impairment due to deprivation, poisoning or toxicity of oxygen.
  • Also provided herein are methods of treating memory impairment in a patient in need thereof, comprising parenterally or non-parenterally administering a therapeutically effective amount of a MetAP2 inhibitor to said patient. In another embodiment, provided herein are methods of enhancing cognitive function in a patient in need thereof, comprising parenterally or non-parenterally administering a therapeutically effective amount of a MetAP2 inhibitor to said patient. Such patients may suffer from memory impairment due to, for example, Alzheimer's disease, dementia (e.g., senile dementia), mild cognitive impairment due to aging, schizophrenia, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, depression, aging, stroke, CNS hypoxia, cerebral senility, cardiovascular disease, head trauma, or age-related cognitive decline.
  • In another embodiment, provided herein are methods of decreasing the rate of development of one or more biomarkers indicative of aging in a patient, comprising parenterally or non-parenterally administering a therapeutically effective amount of a MetAP2 inhibitor to said patient. In an embodiment, the one or more biomarkers indicative of aging is an energy or oxidative biomarker. Exemplary energy or oxidative biomarkers include, but are not limited to, lactic acid (lactate) levels, pyruvic acid (pyruvate) levels, lactate/pyruvate ratios, phosphocreatine levels, NADH or NADPH levels, NAD or NADP levels, ATP levels, reduced coenzyme Q levels, oxidized coenzyme Q levels, total coenzyme Q levels, oxidized cytochrome C levels, reduced cytochrome C levels, oxidized cytochrome C/reduced cytochrome C ratio, acetoacetate levels, beta-hydroxy butyrate levels, acetoacetate/beta-hydroxy butyrate ratio, 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, isoprostane levels, levels of reactive oxygen species, oxygen consumption (VO2), carbon dioxide output (VCO2), and respiratory quotient (VCO2/VO2). Biomarkers can be measured in whole blood, plasma, cerebrospinal fluid, cerebroventricular fluid, arterial blood, venous blood, or any other body fluid, body gas, or other biological sample useful for such measurement.
  • In some embodiments, administration of a contemplated therapeutically effective amount of a MetAP2 inhibitors results in a reduction in expression of MCLK1 in the patient. Such administration of MetAP2 inhibitors may also result in a decrease in non-mitochondrial oxidative damage. In another embodiment, such administration of MetAP2 inhibitors may result in an increase in mitochondrial oxidative stress. In yet a further embodiment, administration of a therapeutically effective amount of a MetAP2 inhibitors increases the level of metabolic products formed in the citric acid cycle but does not substantially increase the level of alphaketoglutarate in the liver of the treated patient. In another embodiment, methods of extending lifespan of a mammal are contemplated. For example, contemplated herein is a reduction (e.g. by 1%, 5% 30% or 50% of the expression of mCLK1 a patient, which may result in extended lifespan by as much as 1%, 5%, 20% or 30%.
  • In some embodiments, a contemplated therapeutically effective amount of a MetAP2 inhibitor, does not substantially modulate or suppress angiogenesis, but is still effective as a MetAP2 inhibitor. The term “angiogenesis” is known to persons skilled in the art, and refers to the process of new blood vessel formation, and is essential for the exponential growth of solid tumors and tumor metastasis.
  • It is understood that the administration of a MetAP2 inhibitor, for example, to treat an oxidative stress disorder, as described herein can be part of a combination therapy, for example, administered with (e.g. before, during, or after) administration of another active agent or treatment regimen such as chemotherapy treatment, and/or radiation treatment. It is contemplated that co-administration of a MetAP-2 inhibitor and another active agent can occur at the same time. In other embodiments, administration of a MetAP-2 inhibitor occurs immediately prior to or immediately after administration of another active agent. In yet another embodiment, a period of time may elapse between administration of a MetAP-2 inhibitor and another agent.
  • Administration and Formulation
  • Contemplated herein are formulations suitable for parenteral or non-parenteral administration of MetAP2 inhibitors. In certain embodiments, a subject may have a lower systemic exposure (e.g. at least about 2, 3, 5, 10, 20, or at least about 30% less systemic exposure) to the non-parenterally (e.g. orally) administered of a MetAP2 inhibitor as compared to a subject parenterally (e.g. subcutaneously) administered the same dose of the MetAP2 inhibitor.
  • Contemplated non-parenteral administration includes oral, buccal, transdermal (e.g. by a dermal patch), topical, inhalation, sublingual, ocular, pulmonary, nasal, or rectal administration.
  • Contemplated parenteral administration includes intravenous and subcutaneous administration, as well as administration at a site of a minimally-invasive procedure or a surgery.
  • In an embodiment, provided herein are effective dosages, e.g. a daily dosage of a MetAP2 inhibitor, that may not substantially modulate or suppress angiogenesis. For example, provided here are methods that include administering doses of MetAP2 inhibitors that are effective for e.g. reducing MCLK1 expression, but are significantly smaller doses than that necessary to modulate and/or suppress angiogenesis (which may typically require about 12.5 mg/kg to about 50 mg/kg or more). For example, contemplated dosage of a MetAP2 inhibitor in the methods described herein may include administering about 25 mg/day, about 10 mg/day, about 5 mg/day, about 3 mg/day, about 2 mg/day, about 1 mg/day, about 0.75 mg/day, about 0.5 mg/day, about 0.1 mg/day, about 0.05 mg/day, or about 0.01 mg/day.
  • For example, a therapeutically effective amount of the drug for administering to a patient in need thereof may be about 0.0001 mg/kg to about 25 mg/kg of body weight per day. For example, a contemplated dosage may from about 0.01 mg/kg to about 10 mg/kg of body weight per day, about 0.01 mg/kg to about 1 mg/kg of body weight per day, about 0.01 mg/kg to about 0.1 mg/kg of body weight per day, about 0.04 mg/kg to about 10 mg/kg of body weight per day, or about 0.04 to about 1 mg/kg of body weight per day. In an embodiment, a MetAP2 inhibitor such as disclosed herein (e.g. O-(4-dimethlyaminoethoxycinnamoyl)fumagillol), may be administered at about 0.04 to about 1 mg/kg of a patient.
  • Contemplated methods may include administration of a composition comprising a MetAP2 inhibitor, for example, hourly, twice hourly, every three to four hours, daily, twice daily, 1, 2, 3 or 4 times a week, every three to four days, every week, or once every two weeks depending on half-life and clearance rate of the particular composition or inhibitor.
  • Treatment can be continued for as long or as short a period as desired. The compositions may be administered on a regimen of, for example, one to four or more times per day. A suitable treatment period may be, for example, at least about one week, at least about two weeks, at least about one month, at least about six months, at least about 1 year, or indefinitely. A treatment regimen may include a corrective phase, during which a MetAP2 inhibitor dose sufficient to provide e.g., a reduction of MCLK1 expression, followed by a maintenance phase, during which a lower MetAP2 inhibitor dose sufficient to reduce or prevent increase in MCLK1 expression level is administered.
  • For pulmonary (e.g., intrabronchial) administration, MetAP2 inhibitors may be formulated with conventional excipients to prepare an inhalable composition in the form of a fine powder or atomizable liquid. For ocular administration, MetAP2 inhibitors may be formulated with conventional excipients, for example, in the form of eye drops or an ocular implant. Among excipients useful in eye drops are viscosifying or gelling agents, to minimize loss by lacrimation through improved retention in the eye.
  • Liquid dosage forms for oral or other administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active agent(s), the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the ocular, oral, or other systemically-delivered compositions can also include adjuvants such as wetting agents, and emulsifying and suspending agents.
  • Dosage forms for topical or transdermal administration of an inventive pharmaceutical composition may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches. The active agent is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. For example, cutaneous routes of administration are achieved with aqueous drops, a mist, an emulsion, or a cream.
  • Transdermal patches may have the added advantage of providing controlled delivery of the active ingredients to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
  • When administered in lower doses, injectable preparations are also contemplated herein, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • Compositions for rectal administration may be suppositories which can be prepared by mixing a MetAP2 inhibitor with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum and release the active agent(s). Alternatively, contemplated formulations can be administered by release from a lumen of an endoscope after the endoscope has been inserted into a rectum of a subject.
  • Oral dosage forms, such as capsules, tablets, pills, powders, and granules, may be prepared using any suitable process known to the art. For example, a MetAP2 inhibitor may be mixed with enteric materials and compressed into tablets.
  • Alternatively, formulations of the invention are incorporated into chewable tablets, crushable tablets, tablets that dissolve rapidly within the mouth, or mouth wash.
  • EXAMPLES
  • This example is not intended in any way to limit the scope of this invention but is provided to illustrate aspects of the disclosed methods. Many other embodiments of this invention will be apparent to one skilled in the art.
  • Example 1 Administration of MetAP2 Inhibitors Reduces Hepatic MCLK1 Levels in Mammals
  • C57BL/6 mice were treated for three days with orally administered fumigillin (ZGN-201) or for ten days with subcutaneously administered Compound I. Liver mRNA levels of MCLK1 were then assessed by microarray analysis of samples obtained from four individual animals per treatment group (vehicle and fumagillin after three days of treatment, or vehicle and Compound 1 after 10 days of treatment), using the Illumina MouseRef8 chip system Analysis of background-subtracted data was conducted using the Illumina BeadStudio software according to manufacturer's specifications.
  • FIG. 1 depicts the hepatic MCLK1 mRNA levels in treated mice and indicates that MCLK1 levels were reduced by approximately 30-60% in the livers of mice treated with either compound. FIG. 1 further illustrates the utility in modulating MCLK1 levels regardless of whether the MetAP2 inhibitor is administered orally or parenterally.
  • Example 2 Administration of MetAP2 Inhibitors Increases Citric Acid Cycle Metabolites in Mammals
  • Male Wistar rats were fed a high fat diet (45% of calories) for 12 weeks to induce obesity, followed by an additional two weeks of continued exposure to diet containing either no drug (control) or fumagillin providing an average daily dose of 3 mg/kg of body weight. At 2 weeks, levels of metabolites known to participate in the citric acid cycle, such as pyruvate, succinate, fumarate, malate, and citrate, were measured in extracts of liver using liquid chromatography coupled with tandem mass spectrometry. In addition, the hepatic level of alphaketoglutarate (a-KG), the precursor of alphaketoglutarate dehydrogenase, was assessed in the same manner. FIG. 2 indicates that fumagillin treatment (ZGN) increased the levels of fumarate and malate in the livers of treated rats. However, fumagillin treatment did not alter the hepatic level of alphaketoglutarate.
  • An increase in expression and activity of the mitochondrial enzyme alphaketoglutarate dehydrogenase was also observed in the liver of similarly treated mCLK1 mutant mice.
  • Example 3 Administration of MetAP2 Inhibitors Improves Neuromuscular Coordination in Aging Mammals
  • C57BL/6 mice were treated for 247 days with orally administered fumigillin (ZGN-201). Neuromuscular coordination was assessed using a standardized Rotarod test, which was repeated five times for each animal. Animals treated with ZGN-201 remained on the rotating rod for an average of 54.5 seconds, compared with 32.7 seconds for control animals.
  • FIG. 3 depicts the results of the Rotarod test administered in mice treated with fumagillin (vs. control animals) for over eight months (roughly one half of the lifespan of the animals when fed this diet). FIG. 1 further illustrates the utility in preventing the decline in neuromuscular function that occurs with aging.
  • Example 4 Administration of MetAP2 Inhibitors Decreases Circulating C-Reactive Protein Concentrations in Humans
  • Obese women were treated with a MetAP2 inhibitor (ZGN-433) by twice weekly intravenous administration. Before and after four weeks of treatment, levels of C-reactive protein were measured in plasma using a bead-based immunofluorescence assay.
  • FIG. 4 indicates that MetAP2 inhibitor treatment (ZGN) decreased the levels of C-reactive protein in the plasma.
  • EQUIVALENTS
  • Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.
  • INCORPORATION BY REFERENCE
  • References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.

Claims (13)

What is claimed is:
1. A method of treating an age-related neuromuscular disorder in a patient in need thereof, comprising administering to the patient an effective amount of an irreversible MetAP2 inhibitor that covalently binds to MetAP2, wherein said inhibitor, upon administration increases the level of metabolic products formed in the citric acid cycle and does not substantially increase alphaketoglutarate in the liver of said patient.
2. The method of claim 1, wherein said patient exhibits a reduction in expression of mCLK1.
3. The method of claim 1, wherein the patient, upon administration of the MetAP2 inhibitor, exhibits a decrease in non-mitochondrial oxidative damage.
4. The method of claim 1, wherein the patient, upon administration of the MetAP2 inhibitor, exhibits increased mitochondrial oxidative stress.
5. The method of claim 1, wherein said therapeutically effective amount does not substantially modulate or suppress angiogenesis.
6. The method of claim 1, further comprising administration of the MetAP2 inhibitor until a marker level is returned to a normal range.
7. The method of claim 6, wherein the marker is C-reactive protein.
8. The method of claim 1, wherein said MetAP2 inhibitor is administered parenterally or non-parenterally.
9. The method of claim 1, wherein the MetAP2 inhibitor is a fumagillin analog.
10. The method of claim 9, wherein the MetAP2 inhibitor is administered at a dose of about 0.01 mg/kg to about 10 mg/kg.
11. The method of claim 9, wherein the MetAP2 inhibitor is administered at a dose of about 0.04 mg/kg to about 1.0 mg/kg.
12. The method of claim 1, wherein the age-related neuromuscular disorder is sarcopenia.
13. A method of treating sarcopenia in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of an irreversible MetAP2 inhibitor that covalently binds to MetAP2, wherein the therapeutically effective amount does not substantially modulate or suppress angiogenesis.
US16/020,093 2011-10-03 2018-06-27 Methods of treating age related disorders Abandoned US20190175542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/020,093 US20190175542A1 (en) 2011-10-03 2018-06-27 Methods of treating age related disorders

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161542393P 2011-10-03 2011-10-03
PCT/US2012/000461 WO2013055385A2 (en) 2011-10-03 2012-10-03 Methods of treating age related disorders
US14/244,278 US9446016B2 (en) 2011-10-03 2014-04-03 Methods of treating age related disorders
US15/242,980 US20170196829A1 (en) 2011-10-03 2016-08-22 Methods of treating age related disorders
US16/020,093 US20190175542A1 (en) 2011-10-03 2018-06-27 Methods of treating age related disorders

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/242,980 Continuation US20170196829A1 (en) 2008-12-04 2016-08-22 Methods of treating age related disorders

Publications (1)

Publication Number Publication Date
US20190175542A1 true US20190175542A1 (en) 2019-06-13

Family

ID=47324350

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/244,278 Expired - Fee Related US9446016B2 (en) 2008-12-04 2014-04-03 Methods of treating age related disorders
US15/242,980 Abandoned US20170196829A1 (en) 2008-12-04 2016-08-22 Methods of treating age related disorders
US16/020,093 Abandoned US20190175542A1 (en) 2011-10-03 2018-06-27 Methods of treating age related disorders

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/244,278 Expired - Fee Related US9446016B2 (en) 2008-12-04 2014-04-03 Methods of treating age related disorders
US15/242,980 Abandoned US20170196829A1 (en) 2008-12-04 2016-08-22 Methods of treating age related disorders

Country Status (3)

Country Link
US (3) US9446016B2 (en)
EP (1) EP2763671A2 (en)
WO (1) WO2013055385A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127304A2 (en) 2010-04-07 2011-10-13 Zafgen Corporation Methods of treating an overweight subject
EP2763671A2 (en) 2011-10-03 2014-08-13 Zafgen, Inc. Methods of treating age related disorders
AU2013259617A1 (en) 2012-05-08 2014-11-27 Zafgen, Inc. Treating hypothalamic obesity with MetAP2 inhibitors
WO2013169860A1 (en) 2012-05-09 2013-11-14 Zafgen, Inc. Fumigillol type compounds and methods of making and using same
CA2904353A1 (en) 2013-03-14 2014-09-25 Zafgen, Inc. Methods of treating renal disease and other disorders
AR105671A1 (en) 2015-08-11 2017-10-25 Zafgen Inc HUMEROCYCLIC COMPOUNDS OF FUMAGILLOL AND ITS METHODS OF ELABORATION AND USE
CN106432255A (en) 2015-08-11 2017-02-22 扎夫根公司 Fumigillol spiro-compound, preparation and use method thereof
AU2021263829A1 (en) * 2020-04-29 2022-12-15 BioAge Labs, Inc. Hypoxia-inducible factor prolyl hydroxylase inhibitors for treating aging-related conditions
CN111840278B (en) * 2020-09-12 2021-09-03 自然堂生物科技(广州)有限公司 Application of combination of compound and vitamin E in preparation of anti-aging drugs or cosmetics

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164410A (en) 1988-01-09 1992-11-17 Takeda Chemical Industries, Ltd. Fumagillol derivatives and pharmaceutical compositions thereof
PH26256A (en) 1988-08-12 1992-04-01 Fujisawa Pharmaceutical Co Oxaspiro [2,5] octane derivative
US5180738A (en) 1988-09-01 1993-01-19 Takeda Chemical Industries Fumagillol derivatives and pharmaceutical compositions thereof
EP0682020A1 (en) 1988-09-01 1995-11-15 Takeda Chemical Industries, Ltd. Fumagillol derivatives useful as angiogenesis inhibitors
US5166172A (en) 1988-09-01 1992-11-24 Takeda Chemical Industries, Ltd. Fumagillol derivatives and pharmaceutical compositions thereof
US5288722A (en) 1989-03-06 1994-02-22 Takeda Chemical Industries, Ltd. 6-amino-6-desoxyfumagillols, production and use thereof
EP0387650B1 (en) 1989-03-06 1993-03-31 Takeda Chemical Industries, Ltd. 6-epifumagillols, production and use thereof
US6017954A (en) 1989-08-10 2000-01-25 Children's Medical Center Corp. Method of treating tumors using O-substituted fumagillol derivatives
US5290807A (en) 1989-08-10 1994-03-01 Children's Medical Center Corporation Method for regressing angiogenesis using o-substituted fumagillol derivatives
EP0415294A3 (en) 1989-08-31 1991-06-12 Takeda Chemical Industries, Ltd. Cyclohexanol derivatives, production and use thereof
TW282399B (en) 1990-05-25 1996-08-01 Takeda Pharm Industry Co Ltd
EP0555693B1 (en) 1992-01-30 2001-09-05 Takeda Chemical Industries, Ltd. Method of producing highly watersoluble cyclodextrin complex
EP0602586B1 (en) 1992-12-16 1997-06-04 Takeda Chemical Industries, Ltd. Stable pharmaceutical composition of fumagillol derivatives
NZ304906A (en) 1995-03-27 1999-06-29 Sanofi Sa Use of fumagillol or a fumagillol ester and an optionally saturated alkylcarboxylic or alkyldicarboxylic acid to fight intestinal infections
WO1997013509A1 (en) 1995-10-11 1997-04-17 Fujisawa Pharmaceutical Co., Ltd. Vascular permeation inhibitor
EP0799616A1 (en) 1996-04-01 1997-10-08 Takeda Chemical Industries, Ltd. Oral composition comprising a fumagillol derivative
AU3968597A (en) 1996-08-02 1998-02-25 Children's Medical Center Corporation Method of regulating the female reproductive system through angiogenesis inhibitors
US6281245B1 (en) 1996-10-28 2001-08-28 Versicor, Inc. Methods for solid-phase synthesis of hydroxylamine compounds and derivatives, and combinatorial libraries thereof
WO1998056372A1 (en) 1997-06-09 1998-12-17 Massachusetts Institute Of Technology TYPE 2 METHIONINE AMINOPEPTIDASE (MetAP2) INHIBITORS AND USES THEROF
DE69824750T2 (en) 1997-10-31 2005-07-07 Children's Medical Center Corp., Boston METHODS FOR REGULATING THE SIZE AND GROWTH OF A BLOODED NORMAL TISSUE
US6242494B1 (en) 1998-05-01 2001-06-05 Abbott Laboratories Substituted β-amino acid inhibitors of methionine aminopeptidase-2
KR100357542B1 (en) 1998-05-15 2002-10-18 주식회사종근당 Fumagillol derivatives and preparation method thereof
KR100357541B1 (en) 1998-05-15 2002-10-18 주식회사종근당 5-Demthoxyfumagillol derivatives and processes for preparing the same
KR100293504B1 (en) 1998-06-05 2001-07-12 김윤 Sustanined-releasing anti-prostatitic composition and preparing method thereof
JP2000116337A (en) 1998-10-09 2000-04-25 Nippon Shokuhin Kako Co Ltd Pet food
US6383471B1 (en) 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
PT1177176E (en) 1999-04-28 2006-08-31 Aventis Pharma Gmbh DERIVATIVES OF TRIARILIC ACIDS AS LIGANDS OF PPAR RECEPTORS.
AU7989400A (en) 1999-10-01 2001-05-10 Smithkline Beecham Corporation Compounds and methods
AU2001253418A1 (en) 2000-04-12 2001-10-30 Smith Kline Beecham Corporation Compounds and methods
US20020002152A1 (en) 2000-04-14 2002-01-03 Craig Richard A. Hydrazide and alkoxyamide angiogenesis inhibitors
US6323228B1 (en) 2000-09-15 2001-11-27 Abbott Laboratories 3-substituted indole angiogenesis inhibitors
AR030631A1 (en) 2000-09-29 2003-08-27 Abbott Lab ANTIANGIOGEN POLYPEPTIDES AND METHODS TO INHIBIT THE ANGIOGENESIS
JP4212356B2 (en) 2000-11-01 2009-01-21 プラエシス ファーマシューティカルズ インク. Therapeutic agents for modulating angiogenesis and methods of use thereof
US6548477B1 (en) 2000-11-01 2003-04-15 Praecis Pharmaceuticals Inc. Therapeutic agents and methods of use thereof for the modulation of angiogenesis
US20040116495A1 (en) 2001-03-29 2004-06-17 Marino Jr. Joseph P. Compounds and methods
US20020183242A1 (en) 2001-04-11 2002-12-05 Jack Henkin Peptide antiangiogenic drugs
EP1436286B1 (en) * 2001-09-27 2009-08-19 Equispharm Co., Ltd. Fumagillol derivatives and preparing method thereof
US20040192914A1 (en) 2001-10-12 2004-09-30 Kallander Lara S Compounds and methods
US6803382B2 (en) 2001-11-09 2004-10-12 Galderma Research & Development, S.N.C. Angiogenesis inhibitors and pharmaceutical and cosmetic use thereof
US20040116490A1 (en) 2002-03-28 2004-06-17 Marino Jr. Joseph P. Compounds and methods
KR100451485B1 (en) * 2002-03-28 2004-10-06 주식회사종근당 Inclusion compounds of fumagillol derivative or its salt, and pharmaceutical compositions comprising the same
CN100357283C (en) 2002-04-02 2007-12-26 中国科学院上海药物研究所 Methionyl aminopeptidase inhibitor
AU2003243604A1 (en) 2002-06-12 2003-12-31 Silicon Optix, Inc. Automatic keystone correction system and method
US6989392B2 (en) 2002-06-18 2006-01-24 Abbott Laboratories 2-Aminoquinolines as melanin concentrating hormone receptor antagonists
US7030262B2 (en) 2002-08-06 2006-04-18 Abbott Laboratories 3-Amino-2-hydroxyalkanoic acids and their prodrugs
US20040067266A1 (en) 2002-10-07 2004-04-08 Toppo Frank R. Weight loss compound
US7491718B2 (en) 2002-10-08 2009-02-17 Abbott Laboratories Sulfonamides having antiangiogenic and anticancer activity
US20040157836A1 (en) 2002-10-08 2004-08-12 Comess Kenneth M. Sulfonamides having antiangiogenic and anticancer activity
WO2004078113A2 (en) 2003-03-04 2004-09-16 Pharmacia Corporation Treatment and prevention of obesity with cox-2 inhibitors alone or in combination with weight-loss agents
WO2005066197A2 (en) 2003-12-29 2005-07-21 Praecis Pharmaceuticals, Inc. Inhibitors of methionine aminopeptidase-2 and uses thereof
KR100552043B1 (en) 2004-02-28 2006-02-20 주식회사종근당 Composition for obesity treatment comprising fumagillol derivatives
MX2007000142A (en) 2004-06-30 2007-03-26 Combinatorx Inc Methods and reagents for the treatment of metabolic disorders.
WO2006010498A2 (en) 2004-07-28 2006-02-02 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with methionine aminopeptidase 2 (metap2)
US20060045865A1 (en) 2004-08-27 2006-03-02 Spherics, Inc. Controlled regional oral delivery
CN101142210A (en) 2005-01-26 2008-03-12 株式会社钟根堂 Fumagillol derivatives or method for preparation of fumagillol derivatives, and pharmaceutical compositions comprising the same
FR2886855B1 (en) 2005-06-08 2009-07-17 Agronomique Inst Nat Rech USE OF FUMAGILLIN AND ITS DERIVATIVES TO INCREASE BIODAVAILABILITY OF MACROCYLIC LACTONES
US20070078172A1 (en) 2005-06-16 2007-04-05 Jenrin Discovery Mao-b inhibitors useful for treating obesity
WO2009003110A2 (en) * 2007-06-26 2008-12-31 Children's Medical Center Corporation Metap-2 inhibitor polymersomes for therapeutic administration
EP2217283A2 (en) 2007-11-28 2010-08-18 Mersana Therapeutics, Inc. Biocompatible biodegradable fumagillin analog conjugates
NZ590732A (en) 2008-07-18 2012-09-28 Zafgen Inc Methods of treating an overweight or obese subject using fumagillin
ES2641471T3 (en) 2008-10-06 2017-11-10 The Johns Hopkins University Quinoline compounds as inhibitors of human angiogenesis, methionine aminopeptidase, and SirT1, and disorders treatment procedures
US8906896B2 (en) 2008-10-24 2014-12-09 Ulrich Bierbach Platinum acridine anti-cancer compounds and methods thereof
US20120004162A1 (en) 2008-12-04 2012-01-05 Vath James E Methods of Treating an Overweight or Obese Subject
US8642650B2 (en) 2008-12-04 2014-02-04 Zafgen, Inc. Methods of treating an overweight or obese subject
WO2010065879A2 (en) 2008-12-04 2010-06-10 Zafgen Corporation Methods of treating an overweight or obese subject
WO2010065881A2 (en) 2008-12-04 2010-06-10 Zafgen Corporation Methods of treating an overweight or obese subject
KR20120083905A (en) * 2009-10-09 2012-07-26 자프겐 코포레이션 Sulphone compounds for use in the treatment of obesity
US8815309B2 (en) 2010-01-08 2014-08-26 Zafgen, Inc. Methods of treating a subject with benign prostate hyperplasia
MX343135B (en) 2010-01-08 2016-10-25 Zafgen Corp * Fumagillol type compounds and methods of making and using same.
US20130023513A1 (en) * 2010-01-12 2013-01-24 Hughes Thomas E Methods and Compositions for Treating Cardiovascular Disorders
WO2011127304A2 (en) 2010-04-07 2011-10-13 Zafgen Corporation Methods of treating an overweight subject
WO2011150338A1 (en) 2010-05-27 2011-12-01 Zafgen Corporation Methods of treating obesity
CN103249735B (en) 2010-07-22 2016-04-06 扎夫根股份有限公司 Tricyclic compound and preparation and application thereof
CA2814413A1 (en) 2010-10-12 2012-04-19 Zafgen, Inc. Sulphonamide compounds and methods of making and using same
MX2013005208A (en) 2010-11-09 2013-08-01 Zafgen Inc Crystalline solids of a metap-2 inhibitor and methods of making and using same.
WO2012064928A1 (en) 2010-11-10 2012-05-18 Zafgen Corporation Methods and compositions for treating thyroid hormone related disorders
EP2646016B1 (en) 2010-11-29 2017-05-17 Zafgen, Inc. Treatment if obesity using non-daily administration of 6-0-(4-dimethylaminoethoxy)cinnamoyl fumagillol
WO2012074968A1 (en) 2010-11-29 2012-06-07 Zafgen Corporation Methods of reducing risk of hepatobiliary dysfunction during rapid weight loss with metap-2 inhibitors
US20140011870A1 (en) 2010-11-29 2014-01-09 Zafgen, Inc. Methods of Treating Obesity Using an Effective Dose of a METAP-2 Inhibitor
BR112013018771A2 (en) 2011-01-26 2019-09-17 Zafgen Inc tetrazole compounds and methods for making and using them
AU2012225531B2 (en) * 2011-03-08 2017-03-30 Zafgen, Inc Oxaspiro (2.5) octane derivatives and analogs
US9290472B2 (en) 2011-05-06 2016-03-22 Zafgen, Inc. Partially saturated tricyclic compounds and methods of making and using same
CA2835195A1 (en) 2011-05-06 2012-11-15 Zafgen, Inc. Tricyclic sulfonamide compounds and methods of making and using same
WO2012154679A1 (en) 2011-05-06 2012-11-15 Zafgen Corporation Tricyclic pyrazole sulfonamide compounds and methods of making and using same
WO2013033430A1 (en) 2011-09-02 2013-03-07 Wake Forest School Of Medicine Targeted delivery and prodrug designs for platinum-acridine anti-cancer compounds and methods thereof
EP2763671A2 (en) 2011-10-03 2014-08-13 Zafgen, Inc. Methods of treating age related disorders
US9440943B2 (en) 2012-01-18 2016-09-13 Zafgen, Inc. Tricyclic sulfone compounds and methods of making and using same
KR20140112565A (en) 2012-01-18 2014-09-23 자프겐 인크. Tricyclic sulfonamide compounds and methods of making and using same
AU2013259760A1 (en) 2012-05-07 2014-11-20 Zafgen, Inc. Polymorphic salt of the oxalate salt of 6-O-(4-dimethylaminoethoxy) cinnamoyl fumagillol and methods of making and using same
AU2013259617A1 (en) 2012-05-08 2014-11-27 Zafgen, Inc. Treating hypothalamic obesity with MetAP2 inhibitors
WO2013169860A1 (en) 2012-05-09 2013-11-14 Zafgen, Inc. Fumigillol type compounds and methods of making and using same

Also Published As

Publication number Publication date
US20140336251A1 (en) 2014-11-13
WO2013055385A3 (en) 2013-07-04
US20170196829A1 (en) 2017-07-13
US9446016B2 (en) 2016-09-20
EP2763671A2 (en) 2014-08-13
WO2013055385A2 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
US20190175542A1 (en) Methods of treating age related disorders
US10953102B2 (en) Compositions and methods for increasing efficiency of cardiac metabolism
US20220133668A1 (en) Isotopically modified components and therapeutic uses thereof
JP2018104471A (en) Methods for selective oxidation of alpha tocotrienol in the presence of non-alpha tocotrienols
US20140073691A1 (en) Methods and composition for Treating Thyroid Hormone Related Disorders
US20130316994A1 (en) Methods of Reducing Risk of Hepatobiliary Dysfunction During Rapid Weight Loss with METAP-2 Inhibitors
US20220117972A1 (en) Use of ppar-delta agonists in the treatment of mitochondrial myopathy
JP2004525942A (en) Compounds and methods
US20220023306A1 (en) Use of a ppar-delta agonist in the treatment of fatty acid oxidation disorders (faod)
US20220265604A1 (en) Treatment of mitochondrial diseases
KR20160143731A (en) Prodrugs of succinic acid for increasing atp producion
US20180042886A1 (en) Methods of treating age related disorders
JP2016540827A (en) Use of cysteamine and its derivatives for the treatment of mitochondrial diseases
US20240091210A1 (en) Use of 5-[[4-[2-[5-acetylpyridin-2-yl]ethoxy]benzyl]-1,3-thiazolidine-2,4-dione and its salts
US20120259007A1 (en) Anticoagulant compounds and their use
US20200095184A1 (en) Derivatives of sulindac can protect normal cells against oxidative damage
US20230242538A1 (en) PanK Modulators and Methods Using Same
US9468669B2 (en) Methods to treat dysregulated blood glucose disorders
WO2001092220A1 (en) Aminothiolester compounds, pharmaceutical and cosmetic compositions containing same and uses thereof
KR20210129034A (en) Substituted fused imidazole derivatives and methods of treating sickle cell disease and related complications
JP2021024826A (en) Glycation product formation inhibitor and pharmaceutical composition
KR20220136800A (en) Novel use of 3-(4-(benzyloxy)phenyl)hex-4-inoic acid derivative
JPWO2020026570A1 (en) Glucose consumption promoter and glycolytic accelerator
WO2017060422A1 (en) Protected carboxylic acid-based metabolites for the treatment of mitochondrial disorders

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION