US20190172927A1 - Vertical transport field-effect transistor including air-gap top spacer - Google Patents
Vertical transport field-effect transistor including air-gap top spacer Download PDFInfo
- Publication number
- US20190172927A1 US20190172927A1 US15/831,340 US201715831340A US2019172927A1 US 20190172927 A1 US20190172927 A1 US 20190172927A1 US 201715831340 A US201715831340 A US 201715831340A US 2019172927 A1 US2019172927 A1 US 2019172927A1
- Authority
- US
- United States
- Prior art keywords
- region
- dielectric
- layer
- semiconductor fin
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000006850 spacer group Chemical group 0.000 title claims abstract description 37
- 230000005669 field effect Effects 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000004065 semiconductor Substances 0.000 claims description 95
- 239000000463 material Substances 0.000 claims description 54
- 238000000151 deposition Methods 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 238000005538 encapsulation Methods 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- 230000008021 deposition Effects 0.000 description 25
- 230000008569 process Effects 0.000 description 17
- 230000006870 function Effects 0.000 description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 230000009471 action Effects 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- -1 i.e. Substances 0.000 description 9
- 238000000231 atomic layer deposition Methods 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 238000005137 deposition process Methods 0.000 description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 description 1
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 229910000951 Aluminide Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910000927 Ge alloy Inorganic materials 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- XWCMFHPRATWWFO-UHFFFAOYSA-N [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] Chemical compound [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] XWCMFHPRATWWFO-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000224 chemical solution deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- OXTURSYJKMYFLT-UHFFFAOYSA-N dichlorogermane Chemical compound Cl[GeH2]Cl OXTURSYJKMYFLT-UHFFFAOYSA-N 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- VXGHASBVNMHGDI-UHFFFAOYSA-N digermane Chemical compound [Ge][Ge] VXGHASBVNMHGDI-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- KJLLKLRVCJAFRY-UHFFFAOYSA-N mebutizide Chemical compound ClC1=C(S(N)(=O)=O)C=C2S(=O)(=O)NC(C(C)C(C)CC)NC2=C1 KJLLKLRVCJAFRY-UHFFFAOYSA-N 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- KJXBRHIPHIVJCS-UHFFFAOYSA-N oxo(oxoalumanyloxy)lanthanum Chemical compound O=[Al]O[La]=O KJXBRHIPHIVJCS-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- CZXRMHUWVGPWRM-UHFFFAOYSA-N strontium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Sr+2].[Ba+2] CZXRMHUWVGPWRM-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- LXEXBJXDGVGRAR-UHFFFAOYSA-N trichloro(trichlorosilyl)silane Chemical compound Cl[Si](Cl)(Cl)[Si](Cl)(Cl)Cl LXEXBJXDGVGRAR-UHFFFAOYSA-N 0.000 description 1
- MUDDKLJPADVVKF-UHFFFAOYSA-N trichlorogermane Chemical compound Cl[GeH](Cl)Cl MUDDKLJPADVVKF-UHFFFAOYSA-N 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66553—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
- H01L29/0653—Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4983—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
- H01L29/4991—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material comprising an air gap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6653—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66666—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
Definitions
- the present invention relates generally to the electrical, electronic and computer arts and, more particularly, to vertical transistor structures.
- Metal oxide semiconductor field-effect transistors include gate electrodes that are electrically insulated from operatively associated semiconductor channels by thin layers of dielectric material. MOSFETs having n-doped source and drain regions employ electrons as the primary current carriers while those having p-doped source and drain regions use holes as primary current carriers.
- Vertical transport field-effect transistors VTFETs have configurations wherein the current between the drain and source regions is substantially normal to the surface of the die.
- a vertical transport field-effect transistor may, for example, include a semiconductor pillar or fin having top and bottom regions comprising source/drain regions, the portion of the pillar between the source/drain regions defining a channel region.
- Junction field-effect transistors JFETs are characterized by doped, possibly vertical channel regions, p-n junctions on one or more sides of the channels, and ohmic contacts forming the source and drain regions.
- VTFETs Vertical transport FETs
- a logic circuit comprising VTFETs can be referred to as a “vertical transport logic gate.”
- VTFETs can potentially provide electronic devices comprising logic circuits with improved circuit density.
- Such logic circuits can be characterized by a lower-number CPP (cell gate pitch) versus comparable logic circuits comprising lateral FET layouts.
- Minimum wiring pitch can also be relevant for realizing denser vertical FET layouts.
- a monolithic semiconductor structure including a vertical transport FET and fabrication of such a structure are aspects of inventions disclosed herein.
- an exemplary method of fabricating a vertical transport field-effect transistor includes obtaining a first structure including: a vertically extending semiconductor fin including a top region, a bottom region, and a channel region between the top region and the bottom region, a bottom source/drain region adjoining the bottom region of the semiconductor fin, a gate dielectric layer above the bottom electrically insulating spacer and adjoining the channel region of the semiconductor fin, an electrically conductive gate electrode layer adjoining the gate dielectric layer, a bottom electrically insulating spacer between the bottom source/drain region and the gate electrode layer, a cavity bounded by first and second vertically extending dielectric layers, the top region of the semiconductor fin extending within the cavity, a dielectric liner, the bottom dielectric liner extending horizontally over the gate dielectric layer and the gate electrode layer, first and second divots extending downwardly from the cavity and located, respectively, between the top region of the semiconductor fin and the first and second vertically extending dielectric layers, and a sacrificial
- the sacrificial material is removed and a faceted top source/drain region is epitaxially grown on the top region of the semiconductor fin and within the cavity such that a top spacer including open gaps is formed between the top source/drain region and the dielectric liner.
- a vertical transport field-effect transistor structure including an open gap top spacer.
- the structure includes a semiconductor fin extending vertically with respect to the substrate.
- the semiconductor fin includes a top region, a bottom region, and a channel region between the top region and the bottom region.
- a bottom source/drain region adjoins the bottom region of the semiconductor fin.
- a gate dielectric layer adjoins the channel region of the semiconductor fin and an electrically conductive gate electrode layer adjoins the gate dielectric layer.
- a bottom dielectric spacer is located between the bottom source/drain region and the gate electrode layer.
- a cavity is bounded by first and second vertically extending dielectric layers. The top region of the semiconductor fin extends within the cavity.
- First and second divots extending downwardly from the cavity and are located between the top region of the semiconductor fin and the first and second vertically extending dielectric layers.
- a faceted, epitaxial top source/drain region is on the top region of the semiconductor fin and within the cavity.
- a dielectric liner extends over the gate dielectric layer and the gate electrode layer.
- a top spacer including first and second open gaps is between the faceted, epitaxial top source/drain region and the dielectric liner.
- facilitating includes performing the action, making the action easier, helping to carry the action out, or causing the action to be performed.
- instructions executing on one processor might facilitate an action carried out by instructions executing on a remote processor, by sending appropriate data or commands to cause or aid the action to be performed.
- the action is nevertheless performed by some entity or combination of entities.
- One or more embodiments or elements thereof can be implemented in the form of a computer program product including a computer readable storage medium with computer usable program code for performing the method steps indicated. Furthermore, one or more embodiments or elements thereof can be implemented in the form of a system (or apparatus) including a memory, and at least one processor that is coupled to the memory and operative to perform exemplary method steps.
- one or more embodiments or elements thereof can be implemented in the form of means for carrying out one or more of the method steps described herein; the means can include (i) hardware module(s), (ii) software module(s) stored in a computer readable storage medium (or multiple such media) and implemented on a hardware processor, or (iii) a combination of (i) and (ii); any of (i)-(iii) implement the specific techniques set forth herein.
- FIG. 1 is a schematic, cross-sectional illustration of a bulk semiconductor substrate including an array of parallel fins and dielectric caps on the fins;
- FIG. 2 is a view of the structure shown in FIG. 1 following formation of an epitaxial bottom source/drain layer;
- FIG. 3 is a schematical, cross-sectional view showing the structure of FIG. 2 following deposition of a bottom spacer;
- FIG. 4 is a schematical, cross-sectional view showing the structure of FIG. 3 following deposition of gate dielectric and gate metal materials;
- FIG. 5 is a schematical, cross-sectional view showing the structure of FIG. 4 following gate encapsulation
- FIG. 6 is a schematical, cross-sectional view showing the structure of FIG. 5 following deposition of oxide material followed by planarization;
- FIG. 7 is a schematical, cross-sectional view showing the structure of FIG. 6 following removal of encapsulation material above the fins;
- FIG. 8 is a schematical, cross-sectional view showing the structure of FIG. 7 following recessing of gate dielectric and gate metal materials;
- FIG. 9 is a schematical, cross-sectional view showing the structure of FIG. 8 following deposition of an oxide liner
- FIG. 10 is a schematical, cross-sectional view showing the structure of FIG. 9 following deposition and etch-back of sacrificial material
- FIG. 11 is a schematical, cross-sectional view showing the structure of FIG. 10 following recessing of the sacrificial material and etching of the oxide liner;
- FIG. 12 is a schematical, cross-sectional view showing the structure of FIG. 11 following removal of the sacrificial material and epitaxial growth of top source/drain regions, and
- FIG. 13 is a schematical, cross-sectional view showing the structure of FIG. 12 following formation of top source/drain contacts.
- a structure 20 including a bulk semiconductor substrate 21 comprised of crystalline silicon is shown in FIG. 1 .
- the substrate may be in the form of a wafer that is essentially undoped.
- An array of parallel fins 22 is formed from the substrate using, for example, a sidewall image transfer process.
- a hard mask (not shown) may be deposited over the substrate, including any features thereon, using conventional deposition techniques such as spin-on coating, CVD, plasma-assisted CVD, or other known techniques.
- the fins 22 are formed beneath portions of the hard mask that remain on the structure following mask patterning.
- Semiconductor fins 22 extending vertically with respect to the substrate are formed following partial removal of substrate material by an etching process such as a reactive ion etch (RIE).
- RIE reactive ion etch
- Dielectric caps 24 on the top surfaces of the fins 22 are the remaining portions of the hard mask (HM). Silicon nitride caps 24 are formed in some embodiments. While the fins 22 are shown as having vertical side walls and horizontal top surfaces in the schematic illustrations, it will be appreciated that the fins may have somewhat different configurations such as triangular configurations wherein the fin bases are wider than the tops of the fins.
- the structure 20 may accordingly include fins having sides that are not completely vertical. Fin heights are preferably equal. Fin heights, widths and spacing are further chosen in accordance with manufacturer preferences. Fin heights in some embodiments range between 10-50 nm.
- the substrate in one exemplary embodiment is a (100) substrate oriented such that the side walls of the mono-crystalline silicon fins 22 are (110) surfaces. As discussed above, the side walls of the fins 22 may not be exactly vertical. Surfaces described as (110) surfaces herein are at least close to being (110) surfaces but may or may not be exactly (110) surfaces.
- substrate 21 and fins formed therefrom may include one or more semiconductor materials.
- suitable substrate materials include Si (silicon), strained Si, SiC (silicon carbide), Ge (germanium), SiGe (silicon germanium), SiGeC (silicon-germanium-carbon), Si alloys, Ge alloys, III-V materials (e.g., GaAs (gallium arsenide), InAs (indium arsenide), InP (indium phosphide), or aluminum arsenide (AlAs)), II-VI materials (e.g., CdSe (cadmium selenide), CdS (cadmium sulfide), CdTe (cadmium telluride), ZnO (zinc oxide), ZnSe (zinc selenide), ZnS (zinc sulfide), or ZnTe (zinc telluride)), or any combination thereof.
- Vertical transport devices can alternatively be formed on a semiconductor-on-insulator (
- a heavily bottom doped source/drain layer 26 A can be formed by epitaxial growth on the substrate 21 and bottom regions of the semiconductor fins 22 as discussed further below.
- the source/drain layer 26 A is heavily doped with dopant(s) having a first conductivity type.
- n-type refers to the addition of impurities that contribute free electrons to an intrinsic semiconductor.
- examples of n-type dopants, i.e. impurities include but are not limited to antimony, arsenic and phosphorous.
- p-type refers to the addition of impurities to an intrinsic semiconductor that creates deficiencies of valence electrons.
- examples of p-type dopants, i.e., impurities include but are not limited to: boron, aluminum, gallium and indium.
- the bottom source/drain layer 26 A is can be formed using a bottom-up epitaxial growth process wherein the heavily doped source/drain layer is grown to certain height (thickness) such as, but not necessarily limited to from about 50 nm to about 250 nm, with about 100 nm to about 200 nm preferred.
- a fin liner (not shown, e.g. SiO 2 or SiN) prevents epitaxial growth from the fin sidewalls within and above the channel regions of the semiconductor fins 22 at this stage of the process.
- the epitaxially grown source/drain layer 26 A can be doped in situ, and dopants may include, for example, an n-type dopant selected from a group of phosphorus (P), arsenic (As) and antimony (Sb), or a p-type dopant selected from a group of boron (B), gallium (Ga), indium (In), and thallium (Tl) at various concentrations.
- a dopant concentration range may be e20/cm 3 to e21/cm 3 , with 4e20/cm 3 to 8e20/cm 3 preferred.
- the bottom source/drain layer 26 A can include, but is not necessarily limited to, silicon (Si), silicon germanium (SiGe), or other semiconductor material.
- epitaxial growth and/or deposition and “epitaxially formed and/or grown,” mean the growth of a semiconductor material (crystalline material) on a deposition surface of another semiconductor material (crystalline material), in which the semiconductor material being grown (crystalline over layer) has substantially the same crystalline characteristics as the semiconductor material of the deposition surface (seed material).
- the chemical reactants provided by the source gases are controlled, and the system parameters are set so that the depositing atoms arrive at the deposition surface of the semiconductor substrate with sufficient energy to move about on the surface such that the depositing atoms orient themselves to the crystal arrangement of the atoms of the deposition surface. Therefore, an epitaxially grown semiconductor material has substantially the same crystalline characteristics as the deposition surface on which the epitaxially grown material is formed.
- the epitaxial deposition process may employ the deposition chamber of a chemical vapor deposition type apparatus, such as a low pressure chemical vapor deposition (LPCVD) apparatus.
- a chemical vapor deposition type apparatus such as a low pressure chemical vapor deposition (LPCVD) apparatus.
- LPCVD low pressure chemical vapor deposition
- the gas source for the deposition of an epitaxially formed in situ doped semiconductor material may include silicon (Si) deposited from silane, disilane, trisilane, tetrasilane, hexachlorodisilane, tetrachlorosilane, dichlorosilane, trichlorosilane, disilane and combinations thereof.
- a germanium gas source may be selected from the group consisting of germane, digermane, halogermane, dichlorogermane, trichlorogermane, tetrachlorogermane and combinations thereof.
- the temperature for epitaxial silicon germanium deposition typically ranges from 450° C. to 900° C. Although higher temperature typically results in faster deposition, the faster deposition may result in crystal defects and film cracking.
- Examples of other epitaxial growth processes that can be employed in growing semiconductor layers described herein include rapid thermal chemical vapor deposition (RTCVD), low-energy plasma deposition (LEPD), ultra-high vacuum chemical vapor deposition (UHVCVD), atmospheric pressure chemical vapor deposition (APCVD) and molecular beam epitaxy (MBE).
- RTCVD rapid thermal chemical vapor deposition
- LEPD low-energy plasma deposition
- UHVCVD ultra-high vacuum chemical vapor deposition
- APCVD atmospheric pressure chemical vapor deposition
- MBE molecular beam epitaxy
- in-situ it is meant that the dopant that dictates the conductivity type of doped layer is introduced during the process step, e.g., epitaxial deposition, that forms the doped layer.
- the resulting bottom source/drain layer 26 A includes an essentially flat top surface.
- the oxide or nitride fin liner can be removed following completion of the bottom source/drain layer.
- a diluted hydrofluoric acid (HF) solution may, for example, be employed to remove an oxide liner. Additionally, after bottom source/drain formation, a dopant drive-in anneal (900° C. to 1050° C.) is conducted for junction formation.
- HF hydrofluoric acid
- a bottom spacer 28 is deposited to obtain a structure as shown in FIG. 3 .
- the bottom spacer may comprise an electrically insulating material, for example, silicon dioxide, silicon nitride, SiOCN, or SiBCN.
- materials for the bottom spacer include dielectric oxides (e.g., silicon oxide), dielectric nitrides (e.g., silicon nitride), dielectric oxynitrides, or any combination thereof.
- the bottom spacer may have a thickness of about five to about ten nanometers, though such a range is not considered critical.
- the bottom spacer can be deposited directly on the bottom source/drain layer 26 A using directional deposition techniques including, but not necessarily limited to high density plasma (HDP) deposition and gas cluster ion beam (GCM) deposition, or deposition techniques including, but not limited to, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), radio-frequency CVD (RFCVD), physical vapor deposition (PVD), atomic layer deposition (ALD), molecular layer deposition (MLD), molecular beam deposition (MBD), pulsed laser deposition (PLD), liquid source misted chemical deposition (LSMCD), and/or sputtering.
- CVD chemical vapor deposition
- PECVD plasma enhanced CVD
- RFCVD radio-frequency CVD
- PVD physical vapor deposition
- ALD atomic layer deposition
- MLD molecular layer deposition
- MLD molecular beam deposition
- PLD pulsed laser deposition
- LSMCD liquid source misted chemical deposition
- a gate dielectric layer 30 and a work function metal (WFM) layer 32 are deposited sequentially to form a gate stack for the VTFET device, as schematically illustrated in FIG. 4 .
- the gate dielectric layer adjoins the bottom spacer 28 , the sidewalls of the semiconductor fins 22 , and the dielectric caps 24 on the fins.
- suitable materials for the gate dielectric layer 30 include oxides, nitrides, oxynitrides, silicates (e.g., metal silicates), aluminates, titanates, nitrides, or any combination thereof.
- high-k materials include, but are not limited to, metal oxides such as hafnium oxide, hafnium silicon oxide, hafnium silicon oxynitride, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, zirconium silicon oxynitride, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate.
- the high-k material may further include dopants such as, for example, lanthanum and aluminum.
- the gate dielectric layer 30 may be formed by suitable deposition processes, for example, chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), evaporation, physical vapor deposition (PVD), chemical solution deposition, or other like processes.
- CVD chemical vapor deposition
- PECVD plasma-enhanced chemical vapor deposition
- ALD atomic layer deposition
- evaporation evaporation
- PVD physical vapor deposition
- chemical solution deposition chemical solution deposition
- the work function metal layer 32 is disposed over the gate dielectric layer to obtain a structure 35 as shown in FIG. 4 .
- suitable work function metals include p-type work function metal materials and n-type work function metal materials.
- P-type work function materials include compositions such as ruthenium, palladium, platinum, cobalt, nickel, conductive metal oxides, titanium nitride (TiN), and tantalum nitride (TaN) or any combination thereof.
- N-type metal materials include compositions such as hafnium, zirconium, titanium, tantalum, aluminum, metal carbides (e.g., hafnium carbide, zirconium carbide, titanium carbide, and aluminum carbide), aluminides, or any combination thereof.
- the work function metal(s) may be deposited by a suitable deposition process, for example, CVD, PECVD, PVD, plating, thermal or e-beam evaporation, and sputtering.
- a gate-all-around (GAA) structure for the VTFET is thereby obtained, wherein the WFM is functional as a gate electrode.
- a dielectric gate encapsulation layer 36 is deposited on the structure 35 .
- the gate encapsulation layer is a silicon nitride layer in some embodiments in direct contact with the work function metal layer 32 .
- the dielectric gate encapsulation layer may alternatively consist essentially of dielectric material(s) other than silicon nitride, for example, silicon oxynitride, SiBCN (silicon borocarbonitride), SiOCN (silicon oxycarbonitride), and/or SiOC (silicon oxycarbide).
- An oxide fill layer 38 is deposited over the gate encapsulation layer 36 and planarized to obtain a structure 40 as shown in FIG. 6 .
- a chemical mechanical planarization (CMP) process may be employed to remove oxide fill material down to the top surface of the gate encapsulation layer above the semiconductor fins 22 .
- An anisotropic etching process such as reactive ion etching or plasma etching can be employed to remove the exposed top surface portions of the gate encapsulation layer 36 , as shown in FIG. 7 . A top surface of the work function metal layer is thereby exposed. Sequential wet or dry etches, or combinations thereof, can be employed for etching the work function metal, hard mask (dielectric caps), and gate dielectric materials to form cavities 42 between vertical portions of the gate encapsulation layer 36 . Timed etches may be employed. As shown in FIG. 8 , the dielectric caps are completely removed from the semiconductor fins. The gate dielectric and work function metal materials are partially removed. The remaining vertical portions of the gate dielectric layer and work function metal layer 32 adjoin the channel regions of the semiconductor fins.
- Top portions of the semiconductor fins 22 extend above the gate stacks ( 30 / 32 ). As further shown in FIG. 8 , the distance d between each fin sidewall and an opposing sidewall of the gate encapsulation layer 36 is about ten nanometers (10 nm) in one or more exemplary embodiments.
- the widths of the cavities 42 as measured between the inner surfaces of the oxide fill layer at the tops of the cavities 42 , are about thirty-five nanometers (35 nm).
- the cavities include divot portions contiguous therewith and extending beneath the top surfaces of the fins.
- a thin oxide liner 44 is deposited on the structure using atomic layer deposition (ALD) or other suitable deposition process.
- the oxide liner is a silicon dioxide liner having a thickness of about two nanometers (2 nm).
- the oxide liner 44 lines the cavities and divots. It adjoins the inner sidewalls of the gate encapsulation layer, the top surfaces of the gate stacks, and the exposed top regions of the semiconductor fins 22 .
- the divots 46 are bounded by portions of the oxide liner.
- the oxide liner 44 includes vertical portions adjoining the vertical portions of the gate encapsulation layer 36 and horizontal portions between the top surfaces of the gate stacks and the unfilled portions of the divots.
- a sacrificial material is deposited within the cavities 42 , also filling the divots 46 .
- the sacrificial material is etched back to the oxide liner portions on the top surfaces of the semiconductor fins.
- the sacrificial material forms dummy spacers 48 within the divots 46 .
- titanium dioxide TiO 2
- Titanium dioxide can be deposited using chemical vapor deposition (CVD) or other suitable process.
- a standard basic SC1 solution (12.5% ammonium hydroxide solution, 12.5% hydrogen peroxide solution, and 75% water) can be used to selectively etch back the titanium dioxide layer at room temperature.
- the etchant chosen should be highly selective with respect to the removal of the oxide liner 44 . Following a SC1 wet etch, a structure 55 as shown in FIG. 10 may be obtained. Silicon nitride also has high etch selectivity over a silicon dioxide liner and may alternatively be used as a sacrificial material in some embodiments.
- the dummy spacers 48 are recessed beneath the plane of the top surfaces of the semiconductor fins.
- the portions of the oxide liner 44 above the recessed dummy spacers are removed to obtain the structure 60 as schematically illustrated.
- the remaining portions of the oxide liner 44 have U-shaped cross-sectional configurations.
- Etching of oxide liner may be conducted using a diluted hydrofluoric acid (HF) solution or by an isotropic reactive ion etch that leaves residual oxide liner material in the divots and adjoining the recessed dummy spacers 48 .
- a diluted HF etch is selective to both titanium dioxide and silicon nitride, leaving the sacrificial material substantially intact.
- the sacrificial material forming the dummy spacers 48 is selectively removed, leaving the residual portions of the oxide liner 44 within the bottom portions of the divots 46 .
- the oxide liner at this stage of the process includes a horizontal portion adjoining the top ends of the gate dielectric layer and gate electrode layer. It further includes vertical portions that adjoin the top regions of the semiconductor fins 22 and parts of the gate encapsulation layer 36 .
- the top regions of the semiconductor fins include sidewalls extending above the oxide liner 44 that allow epitaxial growth of semiconductor materials thereon.
- Top source/drain regions 26 B are then epitaxially grown on the exposed surfaces of the top region of the semiconductor fin 22 .
- the top source/drain regions form diamond-shaped structures.
- the semiconductor fin sidewall surfaces are (110) surfaces in one or more embodiments such that epitaxial growth thereon produces in diamond-shaped (faceted) structures due to the fact that the growth rate on (111) planes is considerably less than on (110) planes. Self-limiting diamond-shaped structures can accordingly be formed. Growth of the top source/drain regions is confined within the vertical portions of the gate encapsulation layer.
- the diamond-shaped top source/drain regions 26 B are in situ doped silicon or silicon germanium and extend about ten nanometers (10 nm) laterally with respect to each vertical sidewall of the semiconductor fins 22 .
- the doping levels may be about the same as those in the bottom source/drain regions.
- the width of the confined source/drain epitaxial regions should be about twenty-five to thirty nanometers (25-30 nm). Fin thickness (width) is about five to ten nanometers (5-10 nm). Gate metal thickness on each side is about ten nanometers (10 nm).
- the height of the top source/drain regions grown thereon will be about nineteen to twenty-four nanometers (19-24 nm).
- the vertical portions of the gate encapsulation layer 36 above the gate metal should accordingly be between twenty-five and fifty nanometers (25-50 nm) to ensure the epitaxial top source/drain regions 26 B are confined within the cavities 42 .
- the resulting structure 65 include open gaps 52 that function as top spacers to reduce the capacitance between the top source/drain regions 26 B and the gate stack.
- the gaps are located between the faceted bottom surfaces of the top source/drain regions 26 B and the portions of the oxide liner that protect the gate stack.
- the gaps 52 are substantially uniform in dimension. In contrast, gap formation relying on the non-conformal deposition of dielectric material and subsequent etch-back may lead to variation and non-uniformity of gap spacers formed in such a manner.
- Top source/drain contacts 54 are formed to obtain the structure 70 shown in FIG. 13 .
- Contact metal is confined to the upper portions of the cavities 42 above the top source/drain regions 26 B.
- the source/drain contacts are formed using suitable metallization processes.
- a metal such as nickel, nickel platinum, or titanium is deposited on the top source/drain regions 26 B.
- the thickness of the deposited metal layer may be between eight to ten nanometers (8-10 nm).
- Electroless deposition processes and atomic layer deposition (ALD) are among the techniques that may be employed.
- Metal deposition may be followed by low temperature silicidation to form metal silicide or metal germanide layers (not shown) on the top source/drain regions 26 B. Annealing temperatures between 300-420° C.
- a contact metal layer for example tungsten (W) or cobalt (Co), is deposited on the structure, filling the cavities 42 and directly contacting the metal silicide layers formed on the top source/drain regions 26 B.
- the contact metal layer is a tungsten (W) layer that is deposited using a tungsten hexafluoride source with silane. Chemical vapor deposition conducted between 300-400° C. using tungsten hexafluoride precursor chemistry may, for example, be employed to deposit a tungsten layer.
- Contact material may, for example, alternatively include tantalum (Ta), aluminum (Al), platinum (Pt), gold (Au), titanium (Ti), palladium (Pd) or any combination thereof.
- the contact material may be deposited by, for example, CVD, PECVD, PVD, plating, thermal or e-beam evaporation, or sputtering.
- a planarization process such as CMP is performed to remove any electrically conductive material (overburden) from the top surface of the structure 70 .
- Gate and bottom source/drain contacts are also formed within the structure 70 . Metal is deposited only in the upper portions of the cavities 42 as the top source/drain regions 26 B prevent metal from entering the gaps 52 .
- the electronic devices comprising the structure 70 may be incorporated within electronic circuitry that, in one or more exemplary embodiments, comprises an integrated circuit (IC).
- the electronic circuitry may include an assembly of electronic components, fabricated as a monolithic unit, in which active and passive devices and their interconnections are formed.
- the resulting circuit may perform one or more functions (e.g. logic, memory, sensing) depending on the arrangement of the components.
- Semiconductor device manufacturing includes various steps of device patterning processes.
- the manufacturing of a semiconductor chip may start with, for example, a plurality of CAD (computer aided design) generated device patterns, which is then followed by effort to replicate these device patterns in a substrate.
- the replication process may involve the use of various exposing techniques and a variety of subtractive (etching) and/or additive (deposition) material processing procedures.
- etching subtractive
- deposition additive
- Portions of the photo-resist that are exposed to light or other ionizing radiation may experience some changes in their solubility to certain solutions.
- the photo-resist may then be developed in a developer solution, thereby removing the non-irradiated (in a negative resist) or irradiated (in a positive resist) portions of the resist layer, to create a photo-resist pattern or photo-mask.
- the photo-resist pattern or photo-mask may subsequently be copied or transferred to the substrate underneath the photo-resist pattern.
- etching includes techniques of wet etching, dry etching, chemical oxide removal (COR) etching, and reactive ion etching (RIE), which are all known techniques to remove select material when forming a semiconductor structure.
- COR chemical oxide removal
- RIE reactive ion etching
- an exemplary method of fabricating a vertical transport field-effect transistor includes obtaining a first structure 60 as schematically illustrated in FIG. 11 .
- the first structure includes a vertically extending semiconductor fin 22 including a top region, a bottom region, and a channel region between the top region and the bottom region.
- a bottom source/drain layer 26 A adjoins the bottom region of the semiconductor fin 22 .
- a bottom electrically insulating spacer 28 is above the source/drain layer.
- a gate dielectric layer 30 is above the bottom electrically insulating spacer and adjoins the channel region of the semiconductor fin 22 .
- An electrically conductive gate electrode layer adjoins the gate dielectric layer.
- the first structure 60 includes first and second vertically extending dielectric layers, which are portions of a gate encapsulation layer 36 shown in FIG. 11 .
- a bottom dielectric layer 44 extends horizontally over the gate dielectric layer and the gate electrode layer.
- a cavity 42 is bounded by the first and second vertically extending dielectric layers.
- the top region of the semiconductor fin 22 extends within the cavity.
- First and second divots ( 46 in FIG. 9 ) extend downwardly from the cavity 42 and are located, respectively, between the top region of the semiconductor fin 22 and the first and second vertically extending dielectric layers (vertical portions of layer 36 ).
- a sacrificial material (dummy spacers 48 ) is over the bottom dielectric layer and within the first and second divots.
- a faceted top source/drain region 26 B is epitaxially grown on the top region of the semiconductor fin 22 and within the cavity such that open gaps 52 (“air-gaps”) are formed between the top source/drain region 26 B and the bottom dielectric layer 44 , thereby reducing capacitance between the top source/drain region 26 B and the gate electrode layer 32 .
- a vertical transport field-effect transistor structure includes a substrate 21 and a semiconductor fin 22 extending vertically with respect to the substrate.
- the semiconductor fin includes a top region, a bottom region, and a channel region between the top region and the bottom region.
- a bottom source/drain region 26 A adjoins the bottom region of the semiconductor fin.
- a gate dielectric layer adjoins the channel region of the semiconductor fin and an electrically conductive gate electrode layer adjoins the gate dielectric layer.
- a bottom dielectric spacer 28 is between the bottom source/drain region 26 A and the gate electrode layer 32 .
- a cavity 42 is bounded by first and second vertically extending dielectric layers.
- the vertically extending dielectric layers are portions of a gate encapsulation layer 36 .
- the top region of the semiconductor fin 22 extends within the cavity 42 .
- First and second divots ( 46 in FIG. 9 ) extending downwardly from the cavity and are located between the top region of the semiconductor fin 22 and the first and second vertically extending dielectric layers.
- a faceted, epitaxial top source/drain region 26 B is on the top region of the semiconductor fin 22 and within the cavity 42 .
- a dielectric liner 44 including a horizontal portion extends over the gate dielectric layer 30 and the gate electrode layer 32 .
- a top spacer including first and second open gaps 52 is located between the faceted, epitaxial top source/drain region and the dielectric liner 44 .
- At least a portion of the techniques described above may be implemented in an integrated circuit.
- identical dies are typically fabricated in a repeated pattern on a surface of a semiconductor wafer.
- Each die includes a device described herein, and may include other structures and/or circuits.
- the individual dies are cut or diced from the wafer, then packaged as an integrated circuit.
- One skilled in the art would know how to dice wafers and package die to produce integrated circuits. Any of the exemplary circuits illustrated in the accompanying figures, or portions thereof, may be part of an integrated circuit. Integrated circuits so manufactured are considered part of this disclosure.
- exemplary structures discussed above can be distributed in raw form (i.e., a single wafer having multiple unpackaged chips), as bare dies, in packaged form, or incorporated as parts of intermediate products or end products that benefit from having low-noise devices therein.
- An integrated circuit in accordance with aspects of the present disclosure can be employed in essentially any application and/or electronic system where the use of VTFETs would be beneficial. Given the teachings of the present disclosure provided herein, one of ordinary skill in the art will be able to contemplate other implementations and applications of embodiments disclosed herein.
- Embodiments are referred to herein, individually and/or collectively, by the term “embodiment” merely for convenience and without intending to limit the scope of this application to any single embodiment or inventive concept if more than one is, in fact, shown.
- the term “embodiment” merely for convenience and without intending to limit the scope of this application to any single embodiment or inventive concept if more than one is, in fact, shown.
- this disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will become apparent to those of skill in the art given the teachings herein.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
- The present invention relates generally to the electrical, electronic and computer arts and, more particularly, to vertical transistor structures.
- Metal oxide semiconductor field-effect transistors (MOSFETs) include gate electrodes that are electrically insulated from operatively associated semiconductor channels by thin layers of dielectric material. MOSFETs having n-doped source and drain regions employ electrons as the primary current carriers while those having p-doped source and drain regions use holes as primary current carriers. Vertical transport field-effect transistors (VTFETs) have configurations wherein the current between the drain and source regions is substantially normal to the surface of the die. A vertical transport field-effect transistor may, for example, include a semiconductor pillar or fin having top and bottom regions comprising source/drain regions, the portion of the pillar between the source/drain regions defining a channel region. Junction field-effect transistors (JFETs) are characterized by doped, possibly vertical channel regions, p-n junctions on one or more sides of the channels, and ohmic contacts forming the source and drain regions.
- Vertical transport FETs (VTFETs) are a promising alternative to standard lateral FET structures due to potential benefits, among others, in terms of reduced circuit footprint. A logic circuit comprising VTFETs can be referred to as a “vertical transport logic gate.” VTFETs can potentially provide electronic devices comprising logic circuits with improved circuit density. Such logic circuits can be characterized by a lower-number CPP (cell gate pitch) versus comparable logic circuits comprising lateral FET layouts. Minimum wiring pitch can also be relevant for realizing denser vertical FET layouts.
- A monolithic semiconductor structure including a vertical transport FET and fabrication of such a structure are aspects of inventions disclosed herein.
- In one aspect, an exemplary method of fabricating a vertical transport field-effect transistor includes obtaining a first structure including: a vertically extending semiconductor fin including a top region, a bottom region, and a channel region between the top region and the bottom region, a bottom source/drain region adjoining the bottom region of the semiconductor fin, a gate dielectric layer above the bottom electrically insulating spacer and adjoining the channel region of the semiconductor fin, an electrically conductive gate electrode layer adjoining the gate dielectric layer, a bottom electrically insulating spacer between the bottom source/drain region and the gate electrode layer, a cavity bounded by first and second vertically extending dielectric layers, the top region of the semiconductor fin extending within the cavity, a dielectric liner, the bottom dielectric liner extending horizontally over the gate dielectric layer and the gate electrode layer, first and second divots extending downwardly from the cavity and located, respectively, between the top region of the semiconductor fin and the first and second vertically extending dielectric layers, and a sacrificial material over the bottom dielectric liner and within the first and second divots. The sacrificial material is removed and a faceted top source/drain region is epitaxially grown on the top region of the semiconductor fin and within the cavity such that a top spacer including open gaps is formed between the top source/drain region and the dielectric liner.
- In a further aspect, a vertical transport field-effect transistor structure including an open gap top spacer is provided. The structure includes a semiconductor fin extending vertically with respect to the substrate. The semiconductor fin includes a top region, a bottom region, and a channel region between the top region and the bottom region. A bottom source/drain region adjoins the bottom region of the semiconductor fin. A gate dielectric layer adjoins the channel region of the semiconductor fin and an electrically conductive gate electrode layer adjoins the gate dielectric layer. A bottom dielectric spacer is located between the bottom source/drain region and the gate electrode layer. A cavity is bounded by first and second vertically extending dielectric layers. The top region of the semiconductor fin extends within the cavity. First and second divots extending downwardly from the cavity and are located between the top region of the semiconductor fin and the first and second vertically extending dielectric layers. A faceted, epitaxial top source/drain region is on the top region of the semiconductor fin and within the cavity. A dielectric liner extends over the gate dielectric layer and the gate electrode layer. A top spacer including first and second open gaps is between the faceted, epitaxial top source/drain region and the dielectric liner.
- As used herein, “facilitating” an action includes performing the action, making the action easier, helping to carry the action out, or causing the action to be performed. Thus, by way of example and not limitation, instructions executing on one processor might facilitate an action carried out by instructions executing on a remote processor, by sending appropriate data or commands to cause or aid the action to be performed. For the avoidance of doubt, where an actor facilitates an action by other than performing the action, the action is nevertheless performed by some entity or combination of entities.
- One or more embodiments or elements thereof can be implemented in the form of a computer program product including a computer readable storage medium with computer usable program code for performing the method steps indicated. Furthermore, one or more embodiments or elements thereof can be implemented in the form of a system (or apparatus) including a memory, and at least one processor that is coupled to the memory and operative to perform exemplary method steps. Yet further, in another aspect, one or more embodiments or elements thereof can be implemented in the form of means for carrying out one or more of the method steps described herein; the means can include (i) hardware module(s), (ii) software module(s) stored in a computer readable storage medium (or multiple such media) and implemented on a hardware processor, or (iii) a combination of (i) and (ii); any of (i)-(iii) implement the specific techniques set forth herein.
- Techniques as disclosed herein can provide substantial beneficial technical effects. By way of example only and without limitation, one or more embodiments may provide one or more of the following advantages:
- Operational benefits of VTFETs;
- Reduced parasitic capacitance.
- These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
- The following drawings are presented by way of example only and without limitation, wherein like reference numerals (when used) indicate corresponding elements throughout the several views, and wherein:
-
FIG. 1 is a schematic, cross-sectional illustration of a bulk semiconductor substrate including an array of parallel fins and dielectric caps on the fins; -
FIG. 2 is a view of the structure shown inFIG. 1 following formation of an epitaxial bottom source/drain layer; -
FIG. 3 is a schematical, cross-sectional view showing the structure ofFIG. 2 following deposition of a bottom spacer; -
FIG. 4 is a schematical, cross-sectional view showing the structure ofFIG. 3 following deposition of gate dielectric and gate metal materials; -
FIG. 5 is a schematical, cross-sectional view showing the structure ofFIG. 4 following gate encapsulation; -
FIG. 6 is a schematical, cross-sectional view showing the structure ofFIG. 5 following deposition of oxide material followed by planarization; -
FIG. 7 is a schematical, cross-sectional view showing the structure ofFIG. 6 following removal of encapsulation material above the fins; -
FIG. 8 is a schematical, cross-sectional view showing the structure ofFIG. 7 following recessing of gate dielectric and gate metal materials; -
FIG. 9 is a schematical, cross-sectional view showing the structure ofFIG. 8 following deposition of an oxide liner; -
FIG. 10 is a schematical, cross-sectional view showing the structure ofFIG. 9 following deposition and etch-back of sacrificial material; -
FIG. 11 is a schematical, cross-sectional view showing the structure ofFIG. 10 following recessing of the sacrificial material and etching of the oxide liner; -
FIG. 12 is a schematical, cross-sectional view showing the structure ofFIG. 11 following removal of the sacrificial material and epitaxial growth of top source/drain regions, and -
FIG. 13 is a schematical, cross-sectional view showing the structure ofFIG. 12 following formation of top source/drain contacts. - It is to be appreciated that elements in the figures are illustrated for simplicity and clarity. Common but well-understood elements that may be useful or necessary in a commercially feasible embodiment may not be shown in order to facilitate a less hindered view of the illustrated embodiments.
- Principles of the present disclosure will be described herein in the context of illustrative embodiments. Moreover, it will become apparent to those skilled in the art given the teachings herein that numerous modifications can be made to the embodiments shown that are within the scope of the claims. That is, no limitations with respect to the embodiments shown and described herein are intended or should be inferred.
- A
structure 20 including abulk semiconductor substrate 21 comprised of crystalline silicon is shown inFIG. 1 . The substrate may be in the form of a wafer that is essentially undoped. An array ofparallel fins 22 is formed from the substrate using, for example, a sidewall image transfer process. A hard mask (not shown) may be deposited over the substrate, including any features thereon, using conventional deposition techniques such as spin-on coating, CVD, plasma-assisted CVD, or other known techniques. Thefins 22 are formed beneath portions of the hard mask that remain on the structure following mask patterning.Semiconductor fins 22 extending vertically with respect to the substrate are formed following partial removal of substrate material by an etching process such as a reactive ion etch (RIE).Dielectric caps 24 on the top surfaces of thefins 22 are the remaining portions of the hard mask (HM). Silicon nitride caps 24 are formed in some embodiments. While thefins 22 are shown as having vertical side walls and horizontal top surfaces in the schematic illustrations, it will be appreciated that the fins may have somewhat different configurations such as triangular configurations wherein the fin bases are wider than the tops of the fins. Thestructure 20 may accordingly include fins having sides that are not completely vertical. Fin heights are preferably equal. Fin heights, widths and spacing are further chosen in accordance with manufacturer preferences. Fin heights in some embodiments range between 10-50 nm. The substrate in one exemplary embodiment is a (100) substrate oriented such that the side walls of the mono-crystalline silicon fins 22 are (110) surfaces. As discussed above, the side walls of thefins 22 may not be exactly vertical. Surfaces described as (110) surfaces herein are at least close to being (110) surfaces but may or may not be exactly (110) surfaces. - It will be appreciated that
substrate 21 and fins formed therefrom may include one or more semiconductor materials. Non-limiting examples of suitable substrate materials include Si (silicon), strained Si, SiC (silicon carbide), Ge (germanium), SiGe (silicon germanium), SiGeC (silicon-germanium-carbon), Si alloys, Ge alloys, III-V materials (e.g., GaAs (gallium arsenide), InAs (indium arsenide), InP (indium phosphide), or aluminum arsenide (AlAs)), II-VI materials (e.g., CdSe (cadmium selenide), CdS (cadmium sulfide), CdTe (cadmium telluride), ZnO (zinc oxide), ZnSe (zinc selenide), ZnS (zinc sulfide), or ZnTe (zinc telluride)), or any combination thereof. Vertical transport devices can alternatively be formed on a semiconductor-on-insulator (SOI) substrate including a buried insulator layer. - Referring to
FIG. 2 , a heavily bottom doped source/drain layer 26A can be formed by epitaxial growth on thesubstrate 21 and bottom regions of thesemiconductor fins 22 as discussed further below. The source/drain layer 26A is heavily doped with dopant(s) having a first conductivity type. The term “n-type” refers to the addition of impurities that contribute free electrons to an intrinsic semiconductor. In a silicon containing substrate, examples of n-type dopants, i.e. impurities, include but are not limited to antimony, arsenic and phosphorous. The term “p-type” refers to the addition of impurities to an intrinsic semiconductor that creates deficiencies of valence electrons. In a silicon-containing substrate, examples of p-type dopants, i.e., impurities include but are not limited to: boron, aluminum, gallium and indium. - The bottom source/
drain layer 26A is can be formed using a bottom-up epitaxial growth process wherein the heavily doped source/drain layer is grown to certain height (thickness) such as, but not necessarily limited to from about 50 nm to about 250 nm, with about 100 nm to about 200 nm preferred. A fin liner (not shown, e.g. SiO2 or SiN) prevents epitaxial growth from the fin sidewalls within and above the channel regions of thesemiconductor fins 22 at this stage of the process. The epitaxially grown source/drain layer 26A can be doped in situ, and dopants may include, for example, an n-type dopant selected from a group of phosphorus (P), arsenic (As) and antimony (Sb), or a p-type dopant selected from a group of boron (B), gallium (Ga), indium (In), and thallium (Tl) at various concentrations. For example, in a non-limiting example, a dopant concentration range may be e20/cm3 to e21/cm3, with 4e20/cm3 to 8e20/cm3 preferred. The bottom source/drain layer 26A can include, but is not necessarily limited to, silicon (Si), silicon germanium (SiGe), or other semiconductor material. - The terms “epitaxial growth and/or deposition” and “epitaxially formed and/or grown,” mean the growth of a semiconductor material (crystalline material) on a deposition surface of another semiconductor material (crystalline material), in which the semiconductor material being grown (crystalline over layer) has substantially the same crystalline characteristics as the semiconductor material of the deposition surface (seed material). In an epitaxial deposition process, the chemical reactants provided by the source gases are controlled, and the system parameters are set so that the depositing atoms arrive at the deposition surface of the semiconductor substrate with sufficient energy to move about on the surface such that the depositing atoms orient themselves to the crystal arrangement of the atoms of the deposition surface. Therefore, an epitaxially grown semiconductor material has substantially the same crystalline characteristics as the deposition surface on which the epitaxially grown material is formed.
- The epitaxial deposition process may employ the deposition chamber of a chemical vapor deposition type apparatus, such as a low pressure chemical vapor deposition (LPCVD) apparatus. A number of different precursors may be used for the epitaxial deposition of the in situ doped semiconductor material. In some embodiments, the gas source for the deposition of an epitaxially formed in situ doped semiconductor material may include silicon (Si) deposited from silane, disilane, trisilane, tetrasilane, hexachlorodisilane, tetrachlorosilane, dichlorosilane, trichlorosilane, disilane and combinations thereof. In other examples, when the in situ doped semiconductor material includes germanium, a germanium gas source may be selected from the group consisting of germane, digermane, halogermane, dichlorogermane, trichlorogermane, tetrachlorogermane and combinations thereof. The temperature for epitaxial silicon germanium deposition typically ranges from 450° C. to 900° C. Although higher temperature typically results in faster deposition, the faster deposition may result in crystal defects and film cracking. Examples of other epitaxial growth processes that can be employed in growing semiconductor layers described herein include rapid thermal chemical vapor deposition (RTCVD), low-energy plasma deposition (LEPD), ultra-high vacuum chemical vapor deposition (UHVCVD), atmospheric pressure chemical vapor deposition (APCVD) and molecular beam epitaxy (MBE). By “in-situ” it is meant that the dopant that dictates the conductivity type of doped layer is introduced during the process step, e.g., epitaxial deposition, that forms the doped layer. The resulting bottom source/
drain layer 26A includes an essentially flat top surface. The oxide or nitride fin liner can be removed following completion of the bottom source/drain layer. A diluted hydrofluoric acid (HF) solution may, for example, be employed to remove an oxide liner. Additionally, after bottom source/drain formation, a dopant drive-in anneal (900° C. to 1050° C.) is conducted for junction formation. - A
bottom spacer 28 is deposited to obtain a structure as shown inFIG. 3 . The bottom spacer may comprise an electrically insulating material, for example, silicon dioxide, silicon nitride, SiOCN, or SiBCN. Other non-limiting examples of materials for the bottom spacer include dielectric oxides (e.g., silicon oxide), dielectric nitrides (e.g., silicon nitride), dielectric oxynitrides, or any combination thereof. The bottom spacer may have a thickness of about five to about ten nanometers, though such a range is not considered critical. The bottom spacer can be deposited directly on the bottom source/drain layer 26A using directional deposition techniques including, but not necessarily limited to high density plasma (HDP) deposition and gas cluster ion beam (GCM) deposition, or deposition techniques including, but not limited to, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), radio-frequency CVD (RFCVD), physical vapor deposition (PVD), atomic layer deposition (ALD), molecular layer deposition (MLD), molecular beam deposition (MBD), pulsed laser deposition (PLD), liquid source misted chemical deposition (LSMCD), and/or sputtering. - A
gate dielectric layer 30 and a work function metal (WFM)layer 32 are deposited sequentially to form a gate stack for the VTFET device, as schematically illustrated inFIG. 4 . The gate dielectric layer adjoins thebottom spacer 28, the sidewalls of thesemiconductor fins 22, and the dielectric caps 24 on the fins. Non-limiting examples of suitable materials for thegate dielectric layer 30 include oxides, nitrides, oxynitrides, silicates (e.g., metal silicates), aluminates, titanates, nitrides, or any combination thereof. Examples of high-k materials (with a dielectric constant greater than 7.0) include, but are not limited to, metal oxides such as hafnium oxide, hafnium silicon oxide, hafnium silicon oxynitride, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, zirconium silicon oxynitride, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. The high-k material may further include dopants such as, for example, lanthanum and aluminum. Thegate dielectric layer 30 may be formed by suitable deposition processes, for example, chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), evaporation, physical vapor deposition (PVD), chemical solution deposition, or other like processes. The thickness of the gate dielectric material may vary depending on the deposition process as well as the composition and number of high-k dielectric materials used. In some embodiments, the gate dielectric layer includes multiple layers. - The work
function metal layer 32 is disposed over the gate dielectric layer to obtain astructure 35 as shown inFIG. 4 . Non-limiting examples of suitable work function metals include p-type work function metal materials and n-type work function metal materials. P-type work function materials include compositions such as ruthenium, palladium, platinum, cobalt, nickel, conductive metal oxides, titanium nitride (TiN), and tantalum nitride (TaN) or any combination thereof. N-type metal materials include compositions such as hafnium, zirconium, titanium, tantalum, aluminum, metal carbides (e.g., hafnium carbide, zirconium carbide, titanium carbide, and aluminum carbide), aluminides, or any combination thereof. The work function metal(s) may be deposited by a suitable deposition process, for example, CVD, PECVD, PVD, plating, thermal or e-beam evaporation, and sputtering. A gate-all-around (GAA) structure for the VTFET is thereby obtained, wherein the WFM is functional as a gate electrode. - Referring to
FIG. 5 , a dielectricgate encapsulation layer 36 is deposited on thestructure 35. The gate encapsulation layer is a silicon nitride layer in some embodiments in direct contact with the workfunction metal layer 32. The dielectric gate encapsulation layer may alternatively consist essentially of dielectric material(s) other than silicon nitride, for example, silicon oxynitride, SiBCN (silicon borocarbonitride), SiOCN (silicon oxycarbonitride), and/or SiOC (silicon oxycarbide). An oxide filllayer 38 is deposited over thegate encapsulation layer 36 and planarized to obtain astructure 40 as shown inFIG. 6 . A chemical mechanical planarization (CMP) process may be employed to remove oxide fill material down to the top surface of the gate encapsulation layer above thesemiconductor fins 22. - An anisotropic etching process such as reactive ion etching or plasma etching can be employed to remove the exposed top surface portions of the
gate encapsulation layer 36, as shown inFIG. 7 . A top surface of the work function metal layer is thereby exposed. Sequential wet or dry etches, or combinations thereof, can be employed for etching the work function metal, hard mask (dielectric caps), and gate dielectric materials to formcavities 42 between vertical portions of thegate encapsulation layer 36. Timed etches may be employed. As shown inFIG. 8 , the dielectric caps are completely removed from the semiconductor fins. The gate dielectric and work function metal materials are partially removed. The remaining vertical portions of the gate dielectric layer and workfunction metal layer 32 adjoin the channel regions of the semiconductor fins. Top portions of thesemiconductor fins 22 extend above the gate stacks (30/32). As further shown inFIG. 8 , the distance d between each fin sidewall and an opposing sidewall of thegate encapsulation layer 36 is about ten nanometers (10 nm) in one or more exemplary embodiments. The widths of thecavities 42, as measured between the inner surfaces of the oxide fill layer at the tops of thecavities 42, are about thirty-five nanometers (35 nm). The cavities include divot portions contiguous therewith and extending beneath the top surfaces of the fins. - A
thin oxide liner 44 is deposited on the structure using atomic layer deposition (ALD) or other suitable deposition process. In some embodiments, the oxide liner is a silicon dioxide liner having a thickness of about two nanometers (2 nm). Theoxide liner 44 lines the cavities and divots. It adjoins the inner sidewalls of the gate encapsulation layer, the top surfaces of the gate stacks, and the exposed top regions of thesemiconductor fins 22. In the resultingstructure 50, as shown inFIG. 9 , thedivots 46 are bounded by portions of the oxide liner. Theoxide liner 44 includes vertical portions adjoining the vertical portions of thegate encapsulation layer 36 and horizontal portions between the top surfaces of the gate stacks and the unfilled portions of the divots. - A sacrificial material is deposited within the
cavities 42, also filling thedivots 46. The sacrificial material is etched back to the oxide liner portions on the top surfaces of the semiconductor fins. The sacrificial material formsdummy spacers 48 within thedivots 46, In one embodiment, titanium dioxide (TiO2) is employed as the sacrificial material forming the dummy spacers. Titanium dioxide can be deposited using chemical vapor deposition (CVD) or other suitable process. A standard basic SC1 solution (12.5% ammonium hydroxide solution, 12.5% hydrogen peroxide solution, and 75% water) can be used to selectively etch back the titanium dioxide layer at room temperature. The etchant chosen should be highly selective with respect to the removal of theoxide liner 44. Following a SC1 wet etch, astructure 55 as shown inFIG. 10 may be obtained. Silicon nitride also has high etch selectivity over a silicon dioxide liner and may alternatively be used as a sacrificial material in some embodiments. - Referring to
FIG. 11 , thedummy spacers 48 are recessed beneath the plane of the top surfaces of the semiconductor fins. The portions of theoxide liner 44 above the recessed dummy spacers are removed to obtain thestructure 60 as schematically illustrated. The remaining portions of theoxide liner 44 have U-shaped cross-sectional configurations. Etching of oxide liner may be conducted using a diluted hydrofluoric acid (HF) solution or by an isotropic reactive ion etch that leaves residual oxide liner material in the divots and adjoining the recesseddummy spacers 48. A diluted HF etch is selective to both titanium dioxide and silicon nitride, leaving the sacrificial material substantially intact. - The sacrificial material forming the
dummy spacers 48 is selectively removed, leaving the residual portions of theoxide liner 44 within the bottom portions of thedivots 46. The oxide liner at this stage of the process includes a horizontal portion adjoining the top ends of the gate dielectric layer and gate electrode layer. It further includes vertical portions that adjoin the top regions of thesemiconductor fins 22 and parts of thegate encapsulation layer 36. The top regions of the semiconductor fins include sidewalls extending above theoxide liner 44 that allow epitaxial growth of semiconductor materials thereon. Top source/drain regions 26B are then epitaxially grown on the exposed surfaces of the top region of thesemiconductor fin 22. Unlike the bottom source/drain regions 26A that are epitaxially grown as a layer on the substrate, the top source/drain regions form diamond-shaped structures. As discussed above, the semiconductor fin sidewall surfaces are (110) surfaces in one or more embodiments such that epitaxial growth thereon produces in diamond-shaped (faceted) structures due to the fact that the growth rate on (111) planes is considerably less than on (110) planes. Self-limiting diamond-shaped structures can accordingly be formed. Growth of the top source/drain regions is confined within the vertical portions of the gate encapsulation layer. In exemplary embodiments, the diamond-shaped top source/drain regions 26B are in situ doped silicon or silicon germanium and extend about ten nanometers (10 nm) laterally with respect to each vertical sidewall of thesemiconductor fins 22. The doping levels may be about the same as those in the bottom source/drain regions. The width of the confined source/drain epitaxial regions should be about twenty-five to thirty nanometers (25-30 nm). Fin thickness (width) is about five to ten nanometers (5-10 nm). Gate metal thickness on each side is about ten nanometers (10 nm). Assuming the exposed top portion of each semiconductor fin is about six nanometers (6 nm), the height of the top source/drain regions grown thereon will be about nineteen to twenty-four nanometers (19-24 nm). The vertical portions of thegate encapsulation layer 36 above the gate metal should accordingly be between twenty-five and fifty nanometers (25-50 nm) to ensure the epitaxial top source/drain regions 26B are confined within thecavities 42. As shown inFIG. 12 , the resultingstructure 65 includeopen gaps 52 that function as top spacers to reduce the capacitance between the top source/drain regions 26B and the gate stack. The gaps are located between the faceted bottom surfaces of the top source/drain regions 26B and the portions of the oxide liner that protect the gate stack. Thegaps 52 are substantially uniform in dimension. In contrast, gap formation relying on the non-conformal deposition of dielectric material and subsequent etch-back may lead to variation and non-uniformity of gap spacers formed in such a manner. - Top source/
drain contacts 54 are formed to obtain the structure 70 shown inFIG. 13 . Contact metal is confined to the upper portions of thecavities 42 above the top source/drain regions 26B. The source/drain contacts are formed using suitable metallization processes. In one or more embodiments, a metal such as nickel, nickel platinum, or titanium is deposited on the top source/drain regions 26B. The thickness of the deposited metal layer may be between eight to ten nanometers (8-10 nm). Electroless deposition processes and atomic layer deposition (ALD) are among the techniques that may be employed. Metal deposition may be followed by low temperature silicidation to form metal silicide or metal germanide layers (not shown) on the top source/drain regions 26B. Annealing temperatures between 300-420° C. form uniform layers of metal-rich silicides. A contact metal layer, for example tungsten (W) or cobalt (Co), is deposited on the structure, filling thecavities 42 and directly contacting the metal silicide layers formed on the top source/drain regions 26B. In some embodiments, the contact metal layer is a tungsten (W) layer that is deposited using a tungsten hexafluoride source with silane. Chemical vapor deposition conducted between 300-400° C. using tungsten hexafluoride precursor chemistry may, for example, be employed to deposit a tungsten layer. Contact material may, for example, alternatively include tantalum (Ta), aluminum (Al), platinum (Pt), gold (Au), titanium (Ti), palladium (Pd) or any combination thereof. The contact material may be deposited by, for example, CVD, PECVD, PVD, plating, thermal or e-beam evaporation, or sputtering. A planarization process such as CMP is performed to remove any electrically conductive material (overburden) from the top surface of the structure 70. Gate and bottom source/drain contacts (not shown) are also formed within the structure 70. Metal is deposited only in the upper portions of thecavities 42 as the top source/drain regions 26B prevent metal from entering thegaps 52. - The electronic devices comprising the structure 70 may be incorporated within electronic circuitry that, in one or more exemplary embodiments, comprises an integrated circuit (IC). In other words, the electronic circuitry may include an assembly of electronic components, fabricated as a monolithic unit, in which active and passive devices and their interconnections are formed. The resulting circuit may perform one or more functions (e.g. logic, memory, sensing) depending on the arrangement of the components.
- Semiconductor device manufacturing includes various steps of device patterning processes. For example, the manufacturing of a semiconductor chip may start with, for example, a plurality of CAD (computer aided design) generated device patterns, which is then followed by effort to replicate these device patterns in a substrate. The replication process may involve the use of various exposing techniques and a variety of subtractive (etching) and/or additive (deposition) material processing procedures. For example, in a photolithographic process, a layer of photo-resist material may first be applied on top of a substrate, and then be exposed selectively according to a pre-determined device pattern or patterns. Portions of the photo-resist that are exposed to light or other ionizing radiation (e.g., ultraviolet, electron beams, X-rays, etc.) may experience some changes in their solubility to certain solutions. The photo-resist may then be developed in a developer solution, thereby removing the non-irradiated (in a negative resist) or irradiated (in a positive resist) portions of the resist layer, to create a photo-resist pattern or photo-mask. The photo-resist pattern or photo-mask may subsequently be copied or transferred to the substrate underneath the photo-resist pattern.
- There are numerous techniques used by those skilled in the art to remove material at various stages of creating a semiconductor structure. As used herein, these processes are referred to generically as “etching”. For example, etching includes techniques of wet etching, dry etching, chemical oxide removal (COR) etching, and reactive ion etching (RIE), which are all known techniques to remove select material when forming a semiconductor structure. The techniques and application of etching is well understood by those skilled in the art and, as such, a more detailed description of such processes is not presented herein.
- Although the overall fabrication method and the structures formed thereby are novel, certain individual processing steps required to implement the method may utilize conventional semiconductor fabrication techniques and conventional semiconductor fabrication tooling. These techniques and tooling will already be familiar to one having ordinary skill in the relevant arts given the teachings herein. Moreover, one or more of the processing steps and tooling used to fabricate semiconductor devices are also described in a number of readily available publications, including, for example: James D. Plummer et al., Silicon VLSI Technology: Fundamentals, Practice, and Modeling 1st Edition, Prentice Hall, 2001 and P. H. Holloway et al., Handbook of Compound Semiconductors: Growth, Processing, Characterization, and Devices, Cambridge University Press, 2008, which are both hereby incorporated by reference herein. It is emphasized that while some individual processing steps are set forth herein, those steps are merely illustrative, and one skilled in the art may be familiar with several equally suitable alternatives that would be applicable.
- It is to be appreciated that the various layers and/or regions shown in the accompanying figures may not be drawn to scale. Furthermore, one or more semiconductor layers of a type commonly used in such integrated circuit devices may not be explicitly shown in a given figure for ease of explanation. This does not imply that the semiconductor layer(s) not explicitly shown are omitted in the actual integrated circuit device.
- Given the discussion thus far, it will be appreciated that, in general terms, an exemplary method of fabricating a vertical transport field-effect transistor includes obtaining a
first structure 60 as schematically illustrated inFIG. 11 . The first structure includes a vertically extendingsemiconductor fin 22 including a top region, a bottom region, and a channel region between the top region and the bottom region. A bottom source/drain layer 26A adjoins the bottom region of thesemiconductor fin 22. A bottom electrically insulatingspacer 28 is above the source/drain layer. Agate dielectric layer 30 is above the bottom electrically insulating spacer and adjoins the channel region of thesemiconductor fin 22. An electrically conductive gate electrode layer adjoins the gate dielectric layer. Thefirst structure 60 includes first and second vertically extending dielectric layers, which are portions of agate encapsulation layer 36 shown inFIG. 11 . Abottom dielectric layer 44 extends horizontally over the gate dielectric layer and the gate electrode layer. Acavity 42 is bounded by the first and second vertically extending dielectric layers. The top region of thesemiconductor fin 22 extends within the cavity. First and second divots (46 inFIG. 9 ) extend downwardly from thecavity 42 and are located, respectively, between the top region of thesemiconductor fin 22 and the first and second vertically extending dielectric layers (vertical portions of layer 36). A sacrificial material (dummy spacers 48) is over the bottom dielectric layer and within the first and second divots. The sacrificial material is selectively removed such that thebottom dielectric layer 44 remains on the top edge portions of the gate dielectric layer and the gate electrode layer. A faceted top source/drain region 26B is epitaxially grown on the top region of thesemiconductor fin 22 and within the cavity such that open gaps 52 (“air-gaps”) are formed between the top source/drain region 26B and thebottom dielectric layer 44, thereby reducing capacitance between the top source/drain region 26B and thegate electrode layer 32. - Further given the above discussion, a vertical transport field-effect transistor structure includes a
substrate 21 and asemiconductor fin 22 extending vertically with respect to the substrate. The semiconductor fin includes a top region, a bottom region, and a channel region between the top region and the bottom region. A bottom source/drain region 26A adjoins the bottom region of the semiconductor fin. A gate dielectric layer adjoins the channel region of the semiconductor fin and an electrically conductive gate electrode layer adjoins the gate dielectric layer. Abottom dielectric spacer 28 is between the bottom source/drain region 26A and thegate electrode layer 32. Acavity 42 is bounded by first and second vertically extending dielectric layers. In the exemplary embodiment, the vertically extending dielectric layers are portions of agate encapsulation layer 36. The top region of thesemiconductor fin 22 extends within thecavity 42. First and second divots (46 inFIG. 9 ) extending downwardly from the cavity and are located between the top region of thesemiconductor fin 22 and the first and second vertically extending dielectric layers. A faceted, epitaxial top source/drain region 26B is on the top region of thesemiconductor fin 22 and within thecavity 42. Adielectric liner 44 including a horizontal portion extends over thegate dielectric layer 30 and thegate electrode layer 32. A top spacer including first and secondopen gaps 52 is located between the faceted, epitaxial top source/drain region and thedielectric liner 44. - At least a portion of the techniques described above may be implemented in an integrated circuit. In forming integrated circuits, identical dies are typically fabricated in a repeated pattern on a surface of a semiconductor wafer. Each die includes a device described herein, and may include other structures and/or circuits. The individual dies are cut or diced from the wafer, then packaged as an integrated circuit. One skilled in the art would know how to dice wafers and package die to produce integrated circuits. Any of the exemplary circuits illustrated in the accompanying figures, or portions thereof, may be part of an integrated circuit. Integrated circuits so manufactured are considered part of this disclosure.
- Those skilled in the art will appreciate that the exemplary structures discussed above can be distributed in raw form (i.e., a single wafer having multiple unpackaged chips), as bare dies, in packaged form, or incorporated as parts of intermediate products or end products that benefit from having low-noise devices therein.
- An integrated circuit in accordance with aspects of the present disclosure can be employed in essentially any application and/or electronic system where the use of VTFETs would be beneficial. Given the teachings of the present disclosure provided herein, one of ordinary skill in the art will be able to contemplate other implementations and applications of embodiments disclosed herein.
- The illustrations of embodiments described herein are intended to provide a general understanding of the various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the circuits and techniques described herein. Many other embodiments will become apparent to those skilled in the art given the teachings herein; other embodiments are utilized and derived therefrom, such that structural and logical substitutions and changes can be made without departing from the scope of this disclosure. It should also be noted that, in some alternative implementations, some of the steps of the exemplary methods may occur out of the order noted in the figures. For example, two steps shown in succession may, in fact, be executed substantially concurrently, or certain steps may sometimes be executed in the reverse order, depending upon the functionality involved. The drawings are also merely representational and are not drawn to scale. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
- Embodiments are referred to herein, individually and/or collectively, by the term “embodiment” merely for convenience and without intending to limit the scope of this application to any single embodiment or inventive concept if more than one is, in fact, shown. Thus, although specific embodiments have been illustrated and described herein, it should be understood that an arrangement achieving the same purpose can be substituted for the specific embodiment(s) shown; that is, this disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will become apparent to those of skill in the art given the teachings herein.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. Terms such as “bottom”, “top”, “above”, “over”, “under” and “below” are used to indicate relative positioning of elements or structures to each other as opposed to relative elevation. If a layer of a structure is described herein as “over” another layer, it will be understood that there may or may not be intermediate elements or layers between the two specified layers. If a layer is described as “directly on” another layer, direct contact of the two layers is indicated. As the term is used herein and in the appended claims, “about” means within plus or minus ten percent.
- The corresponding structures, materials, acts, and equivalents of any means or step-plus-function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the various embodiments has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the forms disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit thereof. The embodiments were chosen and described in order to best explain principles and practical applications, and to enable others of ordinary skill in the art to understand the various embodiments with various modifications as are suited to the particular use contemplated.
- The abstract is provided to comply with 37 C.F.R. § 1.76(b), which requires an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the appended claims reflect, the claimed subject matter may lie in less than all features of a single embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as separately claimed subject matter.
- Given the teachings provided herein, one of ordinary skill in the art will be able to contemplate other implementations and applications of the techniques and disclosed embodiments. Although illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that illustrative embodiments are not limited to those precise embodiments, and that various other changes and modifications are made therein by one skilled in the art without departing from the scope of the appended claims.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/831,340 US10319833B1 (en) | 2017-12-04 | 2017-12-04 | Vertical transport field-effect transistor including air-gap top spacer |
US16/404,704 US10559671B2 (en) | 2017-12-04 | 2019-05-06 | Vertical transport field-effect transistor including air-gap top spacer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/831,340 US10319833B1 (en) | 2017-12-04 | 2017-12-04 | Vertical transport field-effect transistor including air-gap top spacer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/404,704 Division US10559671B2 (en) | 2017-12-04 | 2019-05-06 | Vertical transport field-effect transistor including air-gap top spacer |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190172927A1 true US20190172927A1 (en) | 2019-06-06 |
US10319833B1 US10319833B1 (en) | 2019-06-11 |
Family
ID=66659488
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/831,340 Active US10319833B1 (en) | 2017-12-04 | 2017-12-04 | Vertical transport field-effect transistor including air-gap top spacer |
US16/404,704 Active US10559671B2 (en) | 2017-12-04 | 2019-05-06 | Vertical transport field-effect transistor including air-gap top spacer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/404,704 Active US10559671B2 (en) | 2017-12-04 | 2019-05-06 | Vertical transport field-effect transistor including air-gap top spacer |
Country Status (1)
Country | Link |
---|---|
US (2) | US10319833B1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10504889B1 (en) * | 2018-07-17 | 2019-12-10 | International Business Machines Corporation | Integrating a junction field effect transistor into a vertical field effect transistor |
US10516036B1 (en) * | 2017-09-29 | 2019-12-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Spacer structure with high plasma resistance for semiconductor devices |
US20200013681A1 (en) * | 2018-06-25 | 2020-01-09 | International Business Machines Corporation | Self-aligned silicide/germanide formation to reduce external resistance in a vertical field-effect transistor |
US20200395237A1 (en) * | 2019-06-14 | 2020-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method |
US10910435B2 (en) * | 2019-03-27 | 2021-02-02 | International Business Machines Corporation | Stackable symmetrical operation memory bit cell structure with bidirectional selectors |
US10916638B2 (en) * | 2018-09-18 | 2021-02-09 | International Business Machines Corporation | Vertical fin field effect transistor devices with reduced top source/drain variability and lower resistance |
US10971549B2 (en) | 2018-06-26 | 2021-04-06 | International Business Machines Corporation | Semiconductor memory device having a vertical active region |
US20210118721A1 (en) * | 2019-06-13 | 2021-04-22 | International Business Machines Corporation | Airgap vertical transistor without structural collapse |
US10998440B2 (en) * | 2018-10-09 | 2021-05-04 | Micron Technology, Inc. | Device including a vertical transistor having a large band gap channel material and void spaces adjacent gate electrodes, and related methods and systems |
US11024709B2 (en) * | 2016-08-22 | 2021-06-01 | International Business Machines Corporation | Vertical fin field effect transistor with air gap spacers |
US11158543B2 (en) * | 2019-07-09 | 2021-10-26 | International Business Machines Corporation | Silicide formation for source/drain contact in a vertical transport field-effect transistor |
US11164947B2 (en) * | 2020-02-29 | 2021-11-02 | International Business Machines Corporation | Wrap around contact formation for VTFET |
US11443988B2 (en) * | 2017-01-10 | 2022-09-13 | Samsung Electronics Co., Ltd. | Semiconductor device and method for manufacturing the same |
US20220328686A1 (en) * | 2021-04-13 | 2022-10-13 | Macronix International Co., Ltd. | Semiconductor structure and manufacturing method for the same |
US20220336220A1 (en) * | 2018-06-29 | 2022-10-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for metal gate cut and structure thereof |
US20230378304A1 (en) * | 2021-03-31 | 2023-11-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source and Drain Enginering Process for Multigate Devices |
US20240162289A1 (en) * | 2020-03-25 | 2024-05-16 | Intel Corporation | Source/drain regions in integrated circuit structures |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10229986B1 (en) | 2017-12-04 | 2019-03-12 | International Business Machines Corporation | Vertical transport field-effect transistor including dual layer top spacer |
US10777658B2 (en) * | 2018-04-17 | 2020-09-15 | International Business Machines Corporation | Method and structure of fabricating I-shaped silicon vertical field-effect transistors |
US10475889B1 (en) * | 2018-06-05 | 2019-11-12 | Qualcomm Incorporated | Gallium nitride power amplifier integration with metal-oxide-semiconductor devices |
US10804368B2 (en) * | 2018-07-30 | 2020-10-13 | International Business Machines Corporation | Semiconductor device having two-part spacer |
US10868130B2 (en) * | 2018-10-31 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacture |
WO2021005789A1 (en) * | 2019-07-11 | 2021-01-14 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Columnar semiconductor device and method for manufacturing same |
US11322602B2 (en) | 2019-10-11 | 2022-05-03 | Samsung Electronics Co., Ltd. | Vertical field-effect transistor (VFET) devices and methods of forming the same |
US11145816B2 (en) * | 2019-12-20 | 2021-10-12 | International Business Machines Corporation | Resistive random access memory cells integrated with vertical field effect transistor |
US11282752B2 (en) | 2020-02-05 | 2022-03-22 | Samsung Electronics Co., Ltd. | Method of forming vertical field-effect transistor devices having gate liner |
US20230107182A1 (en) * | 2021-10-05 | 2023-04-06 | International Business Machines Corporation | Bottom Air Spacer by Oxidation |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100634372B1 (en) | 2004-06-04 | 2006-10-16 | 삼성전자주식회사 | Semiconductor devices and methods for forming the same |
JP5466816B2 (en) * | 2007-08-09 | 2014-04-09 | ピーエスフォー ルクスコ エスエイアールエル | Manufacturing method of vertical MOS transistor |
US8637930B2 (en) * | 2011-10-13 | 2014-01-28 | International Business Machines Company | FinFET parasitic capacitance reduction using air gap |
US9305835B2 (en) | 2014-02-26 | 2016-04-05 | International Business Machines Corporation | Formation of air-gap spacer in transistor |
US10134863B2 (en) | 2015-06-15 | 2018-11-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Vertical semiconductor device structure and method of forming |
US9368572B1 (en) | 2015-11-21 | 2016-06-14 | International Business Machines Corporation | Vertical transistor with air-gap spacer |
US9570356B1 (en) | 2015-12-07 | 2017-02-14 | International Business Machines Corporation | Multiple gate length vertical field-effect-transistors |
US9698145B1 (en) | 2015-12-28 | 2017-07-04 | International Business Machines Corporation | Implementation of long-channel thick-oxide devices in vertical transistor flow |
US9805935B2 (en) * | 2015-12-31 | 2017-10-31 | International Business Machines Corporation | Bottom source/drain silicidation for vertical field-effect transistor (FET) |
US9443982B1 (en) * | 2016-02-08 | 2016-09-13 | International Business Machines Corporation | Vertical transistor with air gap spacers |
US9680473B1 (en) | 2016-02-18 | 2017-06-13 | International Business Machines Corporation | Ultra dense vertical transport FET circuits |
US9735246B1 (en) * | 2016-05-11 | 2017-08-15 | International Business Machines Corporation | Air-gap top spacer and self-aligned metal gate for vertical fets |
US9954102B1 (en) | 2017-04-20 | 2018-04-24 | International Business Machines Corporation | Vertical field effect transistor with abrupt extensions at a bottom source/drain structure |
-
2017
- 2017-12-04 US US15/831,340 patent/US10319833B1/en active Active
-
2019
- 2019-05-06 US US16/404,704 patent/US10559671B2/en active Active
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11024709B2 (en) * | 2016-08-22 | 2021-06-01 | International Business Machines Corporation | Vertical fin field effect transistor with air gap spacers |
US11443988B2 (en) * | 2017-01-10 | 2022-09-13 | Samsung Electronics Co., Ltd. | Semiconductor device and method for manufacturing the same |
US10516036B1 (en) * | 2017-09-29 | 2019-12-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Spacer structure with high plasma resistance for semiconductor devices |
US10804374B2 (en) | 2017-09-29 | 2020-10-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Spacer structure with high plasma resistance for semiconductor devices |
US11329141B2 (en) | 2017-09-29 | 2022-05-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Spacer structure with high plasma resistance for semiconductor devices |
US20200013681A1 (en) * | 2018-06-25 | 2020-01-09 | International Business Machines Corporation | Self-aligned silicide/germanide formation to reduce external resistance in a vertical field-effect transistor |
US10832970B2 (en) * | 2018-06-25 | 2020-11-10 | International Business Machines Corporation | Self-aligned silicide/germanide formation to reduce external resistance in a vertical field-effect transistor |
US10971549B2 (en) | 2018-06-26 | 2021-04-06 | International Business Machines Corporation | Semiconductor memory device having a vertical active region |
US20220336220A1 (en) * | 2018-06-29 | 2022-10-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for metal gate cut and structure thereof |
US11676819B2 (en) * | 2018-06-29 | 2023-06-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for metal gate cut and structure thereof |
US11011513B2 (en) * | 2018-07-17 | 2021-05-18 | International Business Machines Corporation | Integrating a junction field effect transistor into a vertical field effect transistor |
US10504889B1 (en) * | 2018-07-17 | 2019-12-10 | International Business Machines Corporation | Integrating a junction field effect transistor into a vertical field effect transistor |
US11978783B2 (en) * | 2018-09-18 | 2024-05-07 | International Business Machines Corporation | Vertical fin field effect transistor devices with reduced top source/drain variability and lower resistance |
US10916638B2 (en) * | 2018-09-18 | 2021-02-09 | International Business Machines Corporation | Vertical fin field effect transistor devices with reduced top source/drain variability and lower resistance |
US20210119019A1 (en) * | 2018-09-18 | 2021-04-22 | International Business Machines Corporation | Vertical fin field effect transistor devices with reduced top source/drain variability and lower resistance |
US11476259B2 (en) | 2018-10-09 | 2022-10-18 | Micron Technology, Inc. | Memory devices including void spaces between transistor features, and related semiconductor devices and electronic systems |
US10998440B2 (en) * | 2018-10-09 | 2021-05-04 | Micron Technology, Inc. | Device including a vertical transistor having a large band gap channel material and void spaces adjacent gate electrodes, and related methods and systems |
US10910435B2 (en) * | 2019-03-27 | 2021-02-02 | International Business Machines Corporation | Stackable symmetrical operation memory bit cell structure with bidirectional selectors |
US11637179B2 (en) * | 2019-06-13 | 2023-04-25 | International Business Machines Corporation | Airgap vertical transistor without structural collapse |
US20210118721A1 (en) * | 2019-06-13 | 2021-04-22 | International Business Machines Corporation | Airgap vertical transistor without structural collapse |
US20200395237A1 (en) * | 2019-06-14 | 2020-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method |
US11004725B2 (en) * | 2019-06-14 | 2021-05-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming a FinFET device with gaps in the source/drain region |
US11823949B2 (en) | 2019-06-14 | 2023-11-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFet with source/drain regions comprising an insulator layer |
US11621199B2 (en) | 2019-07-09 | 2023-04-04 | International Business Machines Corporation | Silicide formation for source/drain contact in a vertical transport field-effect transistor |
US11158543B2 (en) * | 2019-07-09 | 2021-10-26 | International Business Machines Corporation | Silicide formation for source/drain contact in a vertical transport field-effect transistor |
US11164947B2 (en) * | 2020-02-29 | 2021-11-02 | International Business Machines Corporation | Wrap around contact formation for VTFET |
US20240162289A1 (en) * | 2020-03-25 | 2024-05-16 | Intel Corporation | Source/drain regions in integrated circuit structures |
US20230378304A1 (en) * | 2021-03-31 | 2023-11-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source and Drain Enginering Process for Multigate Devices |
US20220328686A1 (en) * | 2021-04-13 | 2022-10-13 | Macronix International Co., Ltd. | Semiconductor structure and manufacturing method for the same |
US11626517B2 (en) * | 2021-04-13 | 2023-04-11 | Macronix International Co., Ltd. | Semiconductor structure including vertical channel portion and manufacturing method for the same |
Also Published As
Publication number | Publication date |
---|---|
US20190259854A1 (en) | 2019-08-22 |
US10319833B1 (en) | 2019-06-11 |
US10559671B2 (en) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10559671B2 (en) | Vertical transport field-effect transistor including air-gap top spacer | |
US10825916B2 (en) | Vertical transport field-effect transistor including dual layer top spacer | |
US10312151B1 (en) | Monolithic co-integration of MOSFET and JFET for neuromorphic/cognitive circuit applications | |
US20220123144A1 (en) | Gate-all-around field-effect transistor with asymmetric threshold voltage | |
US10002948B2 (en) | FinFET having highly doped source and drain regions | |
US20160111540A1 (en) | Fin field effect transistor (finfet) device and method for forming the same | |
US9812357B2 (en) | Self-limiting silicide in highly scaled fin technology | |
US10332983B1 (en) | Vertical field-effect transistors including uniform gate lengths | |
CN104051536A (en) | III-V finfets on silicon substrate | |
US11776956B2 (en) | III-V fins by aspect ratio trapping and self-aligned etch to remove rough epitaxy surface | |
US20170229542A1 (en) | Tensile strained nfet and compressively strained pfet formed on strain relaxed buffer | |
US10692768B1 (en) | Vertical transport field-effect transistor architecture | |
US10741663B1 (en) | Encapsulation layer for vertical transport field-effect transistor gate stack | |
US11482617B2 (en) | Vertical transport field-effect transistor including replacement gate | |
US9601482B1 (en) | Economical and environmentally friendly chemical mechanical polishing for III-V compound semiconductor device fabrication | |
US20160336177A1 (en) | Semiconductor Devices and Methods of Manufacture Thereof | |
US9437675B1 (en) | eDRAM for planar III-V semiconductor devices | |
US20230101235A1 (en) | Looped long channel field-effect transistor | |
US11908937B2 (en) | Vertical transport field-effect transistor with ring-shaped wrap-around contact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAGANNATHAN, HEMANTH;LEE, CHOONGHYUN;REZNICEK, ALEXANDER;AND OTHERS;REEL/FRAME:044292/0516 Effective date: 20171129 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |