US20190169836A1 - Stackable Expansion Joint Frame Assembly - Google Patents

Stackable Expansion Joint Frame Assembly Download PDF

Info

Publication number
US20190169836A1
US20190169836A1 US15/831,013 US201715831013A US2019169836A1 US 20190169836 A1 US20190169836 A1 US 20190169836A1 US 201715831013 A US201715831013 A US 201715831013A US 2019169836 A1 US2019169836 A1 US 2019169836A1
Authority
US
United States
Prior art keywords
elongated
interface
extension member
expansion joint
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/831,013
Other versions
US10385564B2 (en
Inventor
George Matthew Fisher
Joel M. Gavlitta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InPro Corp
Original Assignee
InPro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InPro Corp filed Critical InPro Corp
Priority to US15/831,013 priority Critical patent/US10385564B2/en
Assigned to INPRO CORPORATION reassignment INPRO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FISHER, GEORGE MATTHEW, GAVLITTA, JOEL M.
Priority to PCT/US2018/063814 priority patent/WO2019113042A1/en
Publication of US20190169836A1 publication Critical patent/US20190169836A1/en
Application granted granted Critical
Publication of US10385564B2 publication Critical patent/US10385564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6807Expansion elements for parts cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6813Compressable seals of hollow form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6803Joint covers
    • E04B1/6804Joint covers specially adapted for floor parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/04Material constitution of slabs, sheets or the like of plastics, fibrous material or wood

Definitions

  • the present invention relates to a system for attaching a flexible expansion joint to the surface of a building such as the floor or roof of a building.
  • the system for attaching the joint is configured to secure the joint and provide, in effect, a form up to which a top coat of material such as concrete or asphalt can be applied over an existing structure.
  • the system provides a universal base unit upon which common extension units can be attached and stacked to vary the height of the form for the surface coat.
  • One embodiment provides for an adjustable height expansion joint assembly for bridging an expansion gap in a floor or roof.
  • the assembly is attachable to the surfaces of the floor or roof adjacent to the gap.
  • the assembly includes a pair of elongated base supports each including a flange which provides an attachment to a respective surface, and a first interface having a first attachment configuration.
  • Each flange includes a lower surface which rests against and is parallel to a respective surface, with the first interface being displaced from and generally parallel to the lower surface.
  • the assembly further includes at least a pair of elongated extension members each having a first side including a second interface which includes a second attachment configuration which mates with the first interface to join the elongated extension member to the elongated base support.
  • Each elongated extension member also includes a second side opposite to and generally parallel with the first side, with the second side including a third interface having the first attachment configuration.
  • an elongated expansion joint including a pair of flanges is attachable to a respective third interfaces to bridge a gap between the surfaces.
  • Another embodiment provides for an assembly for forming the edge of a top coating applied to a floor or roof.
  • the assembly is attachable to a surface at the edge of the floor or roof adjacent to an expansion gap and is configured to support one side of an elongated expansion joint which bridges the expansion gap.
  • the assembly includes an elongated base support including a flange which provides an attachment to a respective surface, and a first interface having a first attachment configuration.
  • the flange includes a lower surface which rests against and is parallel to a respective surface, with the first interface being displaced from and generally parallel to the lower surface at a first distance.
  • the assembly further includes a first elongated extension member having a first side including a second interface which includes a second attachment configuration mated with the first interface to join the elongated extension member to the elongated base support.
  • the elongated extension member includes a second side displaced at a second distance from, opposite to and generally parallel with the first side, with the second side including a third interface having the first attachment configuration.
  • This assembly provides the top coating with a thickness defined by the sum of at least the first and second distances, wherein one side of the expansion joint is attached to the third interface.
  • Another embodiment provides for a method for bridging an expansion gap in a floor or roof and forming the edge for a top coating applied to the surface of a respective floor or roof.
  • the method includes the steps of attaching a flange of an elongated base support to the surface, with the base support having a first interface having a first attachment configuration, the first interface being displaced from and generally parallel to the lower surface at a first distance.
  • the method further includes the step of attaching at least a first elongated extension members to the elongated base, with the elongated extension member having a first side including a second interface which includes a second attachment configuration engaged with the first interface.
  • the elongated extension member also includes a second side displaced at a second distance from, opposite to and generally parallel with the first side, with the second side including a third interface having the first attachment configuration.
  • the method also includes attaching one side of an expansion joint to the third interface, with the top coating having a thickness defined by at least the sum of the first and second distances.
  • FIG. 1 is an end view of an adjustable height expansion joint assembly
  • FIG. 2 is an end view of an adjustable height expansion joint assembly which has been expanded to increase the height of the assembly
  • FIG. 3 is an end view of an alternative embodiment of the adjustable height expansion joint assembly which includes a cover plate;
  • FIG. 4 is a top perspective view of a base support
  • FIG. 5 is an end view of the base support
  • FIG. 6 is a top perspective view of an extension member
  • FIG. 7 is an end view of the extension member
  • FIG. 8 is a top perspective view of an expansion joint
  • FIG. 9 is an end view of the expansion joint
  • FIG. 10 is a top perspective view of an angle member
  • FIG. 11 is a cross-sectional view of the angle member of FIG. 10 , taken along line 26 - 26 .
  • FIG. 1 is an end view of the assembly 10 and illustrates one embodiment of the shapes of the components of the assembly 10 .
  • the majority of the components are elongated sections which are preferably extruded and/or extrusion molded.
  • the assembly 10 is shown attached to 2 concrete floor sections 14 and 16 which are separated by the expansion gap 12 .
  • the assembly 10 supports an elastic joint 15 above or partially within gap 12 (depends upon particular configuration of joint 15 and stacking as discussed below) between sections 14 and 16 and can be used to provide a variable width form for a top coat 18 applied to sections 14 and 16 after assembly 10 is installed.
  • the thickness of the top coat 18 at the assembly 10 is defined by the total height of assembly 10 which can be varied as discussed in further detail below.
  • Assembly 10 includes a pair of elongated bases supports 20 .
  • Base supports 20 are made from an extruded material which in the preferred embodiment is an extruded aluminum. As shown in FIG. 1 , the support 20 resting upon its respective floor section 16 is rotated 180 degrees from the support 20 resting upon floor section 14 .
  • Supports 20 include a flange 22 , which extends from the body 24 of support 20 .
  • Flanges 22 are fastened to the respective floor sections 14 and 16 by a plurality of concrete screws 26 spaced along the length of the respective supports 20 (e.g. every 12 to 24 inches).
  • the body 24 includes a first interface 27 having, by way of example, an attachment configuration as shown in FIGS. 1 and 2 .
  • the top surfaces 28 are generally parallel with the bottom surfaces 30 of flange 22 .
  • body 24 includes at least 3 elongated walls 32 , 34 and 36 which are positioned as shown to define a pair of parallel channels 38 and 40 which extend the length of support 20 .
  • Each channel 38 , 40 includes an engagement flange 42 , 44 defined by the respective wall 32 , 36 .
  • the flanges 42 and 44 may face opposite directions as shown.
  • Walls 34 and 36 also include a plurality of opposed notches or teeth 46 , 48 which cooperate to provide a location into which a threaded screw 49 can be engaged.
  • Wall 36 also includes a channel 52 .
  • Walls 32 and 34 include respective opposed prongs 55 and 57 .
  • the top of walls 34 and 36 are bounded by surfaces 28 , and the top of wall 32 is bounded by surface 54 which is parallel to surfaces 28 , but offset therefrom.
  • the walls 32 , 34 and 36 provide an engagement location 50 .
  • extension members 56 Located upon and engaged to respective bodies 24 are extension members 56 . As shown in FIG. 1 , the extension members 56 are rotated 180 degrees when located upon and engaged with their respective bodies 24 . Each extension member 56 includes a top engagement formation which has the same configuration as engagement formation 50 and (referring to FIGS. 12-15 ) each element thereof is numbered with the same number as the engagement formation 50 for bodies 24 .
  • Extension members 56 also include a bottom interface 58 which interfaces with channels 38 and 40 to hold members 56 in engagement with respective bodies 24 .
  • each interface includes a pair of elongated extension members 60 and 62 which each include an attachment configuration such as a tab/prong 64 , 66 .
  • the respective tabs 66 , 64 are located at the ends of members 60 and 62 to oppose each other. This configuration allows members 60 and 62 to be flexed toward each other when an extension member 56 is engaged with a respective body 24 and, upon full engagement, have tabs 64 and 66 forced/biased into the respective flanges 42 and 44 as shown in FIG. 1 .
  • surfaces 68 , 70 and 72 of interface 58 rest upon the respective surfaces 28 and surface 54 .
  • Elongated elastic expansion joint 15 is configured as shown and includes pair of flanges 74 which each may include a hook member 76 .
  • hook members 76 will engage the teeth/notches 46 and channels 52 in walls 36 of an engagement formation 50 of either a body 24 or an extension member 56 stacked upon and engaged with a body 24 .
  • an angle member 78 may be located to capture and hold flanges 74 in engagement with a respective body 24 or member 56 . Screws 49 are engaged with respective teeth 46 , 48 to hold members 78 in place.
  • the assembly 10 in FIG. 2 is similar to the assembly 10 in FIG. 1 with the exception that the left and right sides of the assembly 10 shown in FIG. 2 include 3 extension members 56 engaged to each other and the respective base support 20 .
  • the distance between surfaces 30 and 28 is about 1 inch
  • the distance between surfaces 28 and 68 , 70 is about 1 inch.
  • assembly 10 is about 2 inches high which defines the top coat 18 thickness when combined with the thickness of flange 74 and angle member 78 .
  • assembly 10 has been extended with the addition of 2 extension members 56 on each side to provide a top coat thickness of 4 inches combined with the thickness of flange 74 and angle member 78 .
  • the thinnest top coat 18 is provided when assembly 10 does not include an extension member 56 .
  • This use of common engagement formations 50 and interfaces 58 provide for a readily expandable/stackable assembly 10 which provides a form and thickness control for top coat 18 which in many cases is a concrete surface formed upon the respective floor sections 14 , 16 form the final surface of a building floor or roof surface.
  • FIG. 3 illustrates an alternative embodiment of assembly 10 .
  • this embodiment includes a modified angle member 80 and a top plate 82 which provides a ridged cover for rubber joint 15 .
  • member 80 replaces angle member 78 to capture and hold flanges 74 in place as discussed above. Screws 49 are also used to hold members 80 in place.
  • Member 80 provides a location at which top plate 82 can be fastened to one side of assembly 12 .
  • members 80 include threaded holes 84 which are engaged by screws 86 to fix plate 82 to either an extension member 56 or base support 20 on one side of assembly 12 (see right side of FIG. 3 ).
  • Plate 82 is not fixed to the other side of assembly 12 . Rather, plate 82 only rests upon the top surface of angle member 80 on the other side of assembly 12 (see left side of FIG. 3 ). This permits plate 82 to slide relative to assembly 10 on the un-fastened side when the width of gap 12 changes due to building movement/expansion/contraction.
  • base support 20 is shown in detail and labeled in accordance with FIGS. 1-3 .
  • extension member 56 is shown in detail and partially labeled in accordance with FIGS. 1-3 .
  • member 56 is labeled in FIGS. 1-3 with the above-described details being labeled in FIGS. 6 and 7 .
  • joint 15 is shown in detail and labeled in accordance with FIGS. 1-3 .
  • angle member 80 is shown in detail and labeled in accordance with FIGS. 1-3 .
  • Elongated base supports 20 are first fastened to opposing floor sections 14 and 16 using concrete screws engaged with appropriately sized holes drilled into sections 14 and 16 .
  • the appropriate number of extension members 56 are stacked and engaged with the respective base supports 20 .
  • the top coat 18 thicknesses selected for the embodiments shown in FIGS. 1 and 3 required a single extension member 56 engaged and stacked on each support 20 , whereas for the embodiment shown in FIG. 2 , 3 engagement members 56 were required for each side of assembly 10 .
  • the joint 15 is positioned between each side of assembly 10 such that tabs 76 engage the respective teeth 46 , 48 .
  • either angle member 78 or modified angle member 80 is then screwed in place to capture the flanges 74 of joint 15 .
  • the top coat 18 e.g. concrete, asphalt, etc.
  • the top coat 18 is installed upon floor sections 14 and 16 generally flush with the top surface of the members 78 or 80 .
  • top plate 82 is positioned on the top of members 80 and the top coat 18 and fixed to one side of assembly 10 .
  • the relative dimensions, including angles, lengths and radii, as shown in the Figures are to scale. Actual measurements of the Figures will disclose relative dimensions and angles of the various exemplary embodiments. Various exemplary embodiments include any combination of one or more relative dimensions or angles that may be determined from the Figures. Further, actual dimensions not expressly set out in this description can be determined by using the ratios of dimensions measured in the Figures in combination with the express dimensions set out in this description.
  • joint 15 may be extruded from a thermoset or thermoplastic elastic compound such as an appropriate rubber material.
  • base supports 20 , extension members 56 and members 78 are extruded aluminum with cross-sections as shown and described herein, there may be design considerations which result in variations in the cross-sectional shapes, and the material used for these components.
  • an appropriate plastic may be used to replace the aluminum in some or all of components 20 , 56 and 78 .
  • Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.
  • another example of the mounting elements are a combination of magnets and/or ferromagnetic materials.

Abstract

A system for attaching a flexible expansion joint to the surface of a building such as the floor of a building. The system for attaching the joint is configured to secure the joint and provide, in effect, a form up to which a top coat of material such as concrete or asphalt can applied over an existing floor structure. The system provides a universal base unit upon which common extension units can be attached and stacked to vary the height of the form for the surface coat.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a system for attaching a flexible expansion joint to the surface of a building such as the floor or roof of a building. In particular, the system for attaching the joint is configured to secure the joint and provide, in effect, a form up to which a top coat of material such as concrete or asphalt can be applied over an existing structure. The system provides a universal base unit upon which common extension units can be attached and stacked to vary the height of the form for the surface coat.
  • SUMMARY OF THE INVENTION
  • One embodiment provides for an adjustable height expansion joint assembly for bridging an expansion gap in a floor or roof. The assembly is attachable to the surfaces of the floor or roof adjacent to the gap. The assembly includes a pair of elongated base supports each including a flange which provides an attachment to a respective surface, and a first interface having a first attachment configuration. Each flange includes a lower surface which rests against and is parallel to a respective surface, with the first interface being displaced from and generally parallel to the lower surface. The assembly further includes at least a pair of elongated extension members each having a first side including a second interface which includes a second attachment configuration which mates with the first interface to join the elongated extension member to the elongated base support. Each elongated extension member also includes a second side opposite to and generally parallel with the first side, with the second side including a third interface having the first attachment configuration. an elongated expansion joint including a pair of flanges is attachable to a respective third interfaces to bridge a gap between the surfaces.
  • Another embodiment provides for an assembly for forming the edge of a top coating applied to a floor or roof. The assembly is attachable to a surface at the edge of the floor or roof adjacent to an expansion gap and is configured to support one side of an elongated expansion joint which bridges the expansion gap. The assembly includes an elongated base support including a flange which provides an attachment to a respective surface, and a first interface having a first attachment configuration. The flange includes a lower surface which rests against and is parallel to a respective surface, with the first interface being displaced from and generally parallel to the lower surface at a first distance. The assembly further includes a first elongated extension member having a first side including a second interface which includes a second attachment configuration mated with the first interface to join the elongated extension member to the elongated base support. The elongated extension member includes a second side displaced at a second distance from, opposite to and generally parallel with the first side, with the second side including a third interface having the first attachment configuration. This assembly provides the top coating with a thickness defined by the sum of at least the first and second distances, wherein one side of the expansion joint is attached to the third interface.
  • Another embodiment provides for a method for bridging an expansion gap in a floor or roof and forming the edge for a top coating applied to the surface of a respective floor or roof. The method includes the steps of attaching a flange of an elongated base support to the surface, with the base support having a first interface having a first attachment configuration, the first interface being displaced from and generally parallel to the lower surface at a first distance. The method further includes the step of attaching at least a first elongated extension members to the elongated base, with the elongated extension member having a first side including a second interface which includes a second attachment configuration engaged with the first interface. The elongated extension member also includes a second side displaced at a second distance from, opposite to and generally parallel with the first side, with the second side including a third interface having the first attachment configuration. The method also includes attaching one side of an expansion joint to the third interface, with the top coating having a thickness defined by at least the sum of the first and second distances.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • This application will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements in which:
  • FIG. 1 is an end view of an adjustable height expansion joint assembly;
  • FIG. 2 is an end view of an adjustable height expansion joint assembly which has been expanded to increase the height of the assembly;
  • FIG. 3 is an end view of an alternative embodiment of the adjustable height expansion joint assembly which includes a cover plate;
  • FIG. 4 is a top perspective view of a base support;
  • FIG. 5 is an end view of the base support;
  • FIG. 6 is a top perspective view of an extension member;
  • FIG. 7 is an end view of the extension member;
  • FIG. 8 is a top perspective view of an expansion joint;
  • FIG. 9 is an end view of the expansion joint;
  • FIG. 10 is a top perspective view of an angle member; and
  • FIG. 11 is a cross-sectional view of the angle member of FIG. 10, taken along line 26-26.
  • DETAILED DESCRIPTION
  • Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
  • Referring to FIG. 1, an adjustable height expansion joint assembly 10 for bridging an expansion gap 12 in a floor or roof is shown. FIG. 1 is an end view of the assembly 10 and illustrates one embodiment of the shapes of the components of the assembly 10. The majority of the components are elongated sections which are preferably extruded and/or extrusion molded. The assembly 10 is shown attached to 2 concrete floor sections 14 and 16 which are separated by the expansion gap 12. The assembly 10 supports an elastic joint 15 above or partially within gap 12 (depends upon particular configuration of joint 15 and stacking as discussed below) between sections 14 and 16 and can be used to provide a variable width form for a top coat 18 applied to sections 14 and 16 after assembly 10 is installed. The thickness of the top coat 18 at the assembly 10 is defined by the total height of assembly 10 which can be varied as discussed in further detail below.
  • Assembly 10 includes a pair of elongated bases supports 20. Base supports 20 are made from an extruded material which in the preferred embodiment is an extruded aluminum. As shown in FIG. 1, the support 20 resting upon its respective floor section 16 is rotated 180 degrees from the support 20 resting upon floor section 14. Supports 20 include a flange 22, which extends from the body 24 of support 20. Flanges 22 are fastened to the respective floor sections 14 and 16 by a plurality of concrete screws 26 spaced along the length of the respective supports 20 (e.g. every 12 to 24 inches).
  • The body 24 includes a first interface 27 having, by way of example, an attachment configuration as shown in FIGS. 1 and 2. The top surfaces 28 are generally parallel with the bottom surfaces 30 of flange 22. In a preferred embodiment body 24 includes at least 3 elongated walls 32, 34 and 36 which are positioned as shown to define a pair of parallel channels 38 and 40 which extend the length of support 20. Each channel 38, 40 includes an engagement flange 42, 44 defined by the respective wall 32, 36. The flanges 42 and 44 may face opposite directions as shown. Walls 34 and 36 also include a plurality of opposed notches or teeth 46, 48 which cooperate to provide a location into which a threaded screw 49 can be engaged. Wall 36 also includes a channel 52. Walls 32 and 34 include respective opposed prongs 55 and 57. The top of walls 34 and 36 are bounded by surfaces 28, and the top of wall 32 is bounded by surface 54 which is parallel to surfaces 28, but offset therefrom. The walls 32, 34 and 36 provide an engagement location 50.
  • Located upon and engaged to respective bodies 24 are extension members 56. As shown in FIG. 1, the extension members 56 are rotated 180 degrees when located upon and engaged with their respective bodies 24. Each extension member 56 includes a top engagement formation which has the same configuration as engagement formation 50 and (referring to FIGS. 12-15) each element thereof is numbered with the same number as the engagement formation 50 for bodies 24.
  • Extension members 56 also include a bottom interface 58 which interfaces with channels 38 and 40 to hold members 56 in engagement with respective bodies 24. Referring to FIGS. 6 and 7, each interface includes a pair of elongated extension members 60 and 62 which each include an attachment configuration such as a tab/ prong 64, 66. In the preferred embodiment the respective tabs 66, 64 are located at the ends of members 60 and 62 to oppose each other. This configuration allows members 60 and 62 to be flexed toward each other when an extension member 56 is engaged with a respective body 24 and, upon full engagement, have tabs 64 and 66 forced/biased into the respective flanges 42 and 44 as shown in FIG. 1. When fully engaged, surfaces 68, 70 and 72 of interface 58 rest upon the respective surfaces 28 and surface 54.
  • Elongated elastic expansion joint 15 is configured as shown and includes pair of flanges 74 which each may include a hook member 76. Depending upon the height chosen for assembly 10 (as discussed in further detail below in reference to FIG. 2) hook members 76 will engage the teeth/notches 46 and channels 52 in walls 36 of an engagement formation 50 of either a body 24 or an extension member 56 stacked upon and engaged with a body 24. This interaction of members 76, notches 46 and channels 52 located and, at least partially, hold joint 15 in place. In addition, an angle member 78 may be located to capture and hold flanges 74 in engagement with a respective body 24 or member 56. Screws 49 are engaged with respective teeth 46, 48 to hold members 78 in place.
  • An example of a joint 15 and portions thereof are described in detail in U.S. Pat. No. 9,494,235, the entirety of which is incorporated herein by reference. However, the joint in U.S. Pat. No. 9,494,235 includes a bottom configuration which is a variant of the bottom of joint 15 which includes a more rounded or smoother bottom surface which allows a joint 15 which may compress differently that the joint shown in the 235 patent. Additional examples of expansion joints are shown in U.S. Pat. Nos. D 739,564 and D 781,466, the entirety of which, are incorporated herein by reference.
  • Referring now to FIG. 2, the assembly 10 in FIG. 2 is similar to the assembly 10 in FIG. 1 with the exception that the left and right sides of the assembly 10 shown in FIG. 2 include 3 extension members 56 engaged to each other and the respective base support 20. In a preferred embodiment, the distance between surfaces 30 and 28 is about 1 inch, and the distance between surfaces 28 and 68, 70 is about 1 inch. Accordingly, in the assembly configuration of FIG. 1, assembly 10 is about 2 inches high which defines the top coat 18 thickness when combined with the thickness of flange 74 and angle member 78. For the assembly configuration of FIG. 2, assembly 10 has been extended with the addition of 2 extension members 56 on each side to provide a top coat thickness of 4 inches combined with the thickness of flange 74 and angle member 78. The thinnest top coat 18 is provided when assembly 10 does not include an extension member 56. This use of common engagement formations 50 and interfaces 58 provide for a readily expandable/stackable assembly 10 which provides a form and thickness control for top coat 18 which in many cases is a concrete surface formed upon the respective floor sections 14, 16 form the final surface of a building floor or roof surface.
  • FIG. 3 illustrates an alternative embodiment of assembly 10. In particular, this embodiment includes a modified angle member 80 and a top plate 82 which provides a ridged cover for rubber joint 15. Such an alternative may be required where the width of expansion gap 12 may be too wide to permit joint 15 to properly support loads on top of gap 12. In this embodiment member 80 replaces angle member 78 to capture and hold flanges 74 in place as discussed above. Screws 49 are also used to hold members 80 in place. Member 80 provides a location at which top plate 82 can be fastened to one side of assembly 12. For example, members 80 include threaded holes 84 which are engaged by screws 86 to fix plate 82 to either an extension member 56 or base support 20 on one side of assembly 12 (see right side of FIG. 3). Plate 82 is not fixed to the other side of assembly 12. Rather, plate 82 only rests upon the top surface of angle member 80 on the other side of assembly 12 (see left side of FIG. 3). This permits plate 82 to slide relative to assembly 10 on the un-fastened side when the width of gap 12 changes due to building movement/expansion/contraction.
  • Referring to FIG. 4, base support 20 is shown in detail and labeled in accordance with FIGS. 1-3.
  • Referring to FIGS. 6 and 7, extension member 56 is shown in detail and partially labeled in accordance with FIGS. 1-3. In particular, to avoid confusion, only the general features of member 56 are labeled in FIGS. 1-3 with the above-described details being labeled in FIGS. 6 and 7.
  • Referring to FIGS. 8 and 9, joint 15 is shown in detail and labeled in accordance with FIGS. 1-3.
  • Referring to FIGS. 10 and 11, angle member 80 is shown in detail and labeled in accordance with FIGS. 1-3.
  • Referring to the Figures, and in particular FIGS. 1-3, the method for installing the assembly 10 and thereby bridging the gap 12 in a building floor 14, 16 or roof will be described in further detail. Elongated base supports 20 are first fastened to opposing floor sections 14 and 16 using concrete screws engaged with appropriately sized holes drilled into sections 14 and 16. Based upon the required thickness of top coat 18, the appropriate number of extension members 56 are stacked and engaged with the respective base supports 20. By way of example, the top coat 18 thicknesses selected for the embodiments shown in FIGS. 1 and 3 required a single extension member 56 engaged and stacked on each support 20, whereas for the embodiment shown in FIG. 2, 3 engagement members 56 were required for each side of assembly 10.
  • Subsequently, the joint 15 is positioned between each side of assembly 10 such that tabs 76 engage the respective teeth 46, 48. As discussed in more detail above either angle member 78 or modified angle member 80 is then screwed in place to capture the flanges 74 of joint 15. After installation of members 78 or 80 the top coat 18 (e.g. concrete, asphalt, etc.) is installed upon floor sections 14 and 16 generally flush with the top surface of the members 78 or 80.
  • If the top plate 82 embodiment is chosen, top plate 82 is positioned on the top of members 80 and the top coat 18 and fixed to one side of assembly 10.
  • In various exemplary embodiments, the relative dimensions, including angles, lengths and radii, as shown in the Figures are to scale. Actual measurements of the Figures will disclose relative dimensions and angles of the various exemplary embodiments. Various exemplary embodiments include any combination of one or more relative dimensions or angles that may be determined from the Figures. Further, actual dimensions not expressly set out in this description can be determined by using the ratios of dimensions measured in the Figures in combination with the express dimensions set out in this description.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
  • Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only. The construction and arrangements, shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. By way of specific example, depending upon the application, joint 15 may be extruded from a thermoset or thermoplastic elastic compound such as an appropriate rubber material. Additionally, the preferred embodiments of base supports 20, extension members 56 and members 78 are extruded aluminum with cross-sections as shown and described herein, there may be design considerations which result in variations in the cross-sectional shapes, and the material used for these components. For example, an appropriate plastic may be used to replace the aluminum in some or all of components 20, 56 and 78. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention. For example, another example of the mounting elements are a combination of magnets and/or ferromagnetic materials.

Claims (23)

1. An adjustable height expansion joint assembly for bridging an expansion gap in a floor or roof, the assembly is attachable to surfaces of the floor or roof adjacent to the gap, the assembly comprising:
a pair of elongated base supports each including a flange which provides an attachment to a respective said surface, and a first interface having a first attachment configuration, each flange including a lower surface which rests against and is parallel to a respective said surface, the first interface being displaced from and generally parallel to the lower surface;
at least a pair of elongated extension members each having a first side including a second interface which includes a second attachment configuration which mates with the first interface to join the elongated extension member to the respective elongated base support, each elongated extension member further including a second side opposite to and generally parallel with the first side, the second side including a third interface having a third attachment configuration, the third attachment configuration being the same as the first attachment configuration; and
an elongated expansion joint including a pair of flanges attachable to a respective said third interfaces to bridge a gap between the surfaces;
wherein the first attachment configuration includes at least three elongated walls; and
wherein two opposing walls of the at least three elongated walls include a plurality of opposed notches which cooperate to provide a location into which a threaded screw can be engaged.
2. The expansion joint assembly of claim 1, further comprising:
a pair of elongated cover members which attach to a respective said third interface to capture a respective flange of said pair of flanges between the respective third interface and the respective elongated cover member.
3. The expansion joint assembly of claim 2, wherein the expansion joint is fabricated from an elastic material.
4. The expansion joint assembly of claim 1, wherein the three elongated walls define a pair of parallel channels extending the length of a respective base support or extension member, each channel including at least one engagement flange.
5. The expansion joint assembly of claim 4, wherein the second attachment configuration includes at least 2 engagement members extendable into a respective said channel and including an engagement member engageable with a respective engagement flange to join and hold the elongated extension member in engagement with a respective said elongated base support.
6. The expansion joint assembly of claim 5, wherein each flange of the expansion joint includes an engagement extension and wherein the plurality of opposed notches are configured for gripping a respective said engagement extension.
7. The expansion joint assembly of claim 1, further comprising a second pair of elongated extension members joinable between respective said elongated base supports and said elongated extension member.
8. An assembly for forming the edge of a top coating applied to a floor or roof and the assembly being attachable to a surface at the edge of the floor or roof adjacent to an expansion gap, the assembly being configured to support one side of an elongated expansion joint which bridges the expansion gap, the assembly comprising:
an elongated base support including a flange which provides an attachment to a respective said surface, and a first interface having a first attachment configuration, the flange including a lower surface which rests against and is parallel to a respective said surface, the first interface being displaced from and generally parallel to the lower surface at a first distance; and
a first elongated extension member having a first side including a second interface which includes a second attachment configuration mated with the first interface to join the elongated extension member to the respective elongated base support, the first elongated extension member further including a second side displaced at a second distance from, opposite to and generally parallel with the first side, the second side including a third interface having the first a third attachment configuration, the third attachment configuration being the same as the first attachment configuration, the top coating having a thickness defined by at least the sum of the first and second distances, wherein one side of the expansion joint is attached to the third interface;
wherein the first attachment configuration includes at least three elongated walls; and
wherein two opposing walls of the at least three elongated walls include a plurality of opposed notches which cooperate to provide a location into which a threaded screw can be engaged.
9. The assembly of claim 8 further comprising a second elongated extension member having the same configuration as the first elongated extension member, wherein the second interface of the second elongated extension member is joined to the third interface of the first elongated extension member with the thickness of the top coating being further defined by the second distance of the second elongated extension member, wherein the one side of the expansion joint is attached to the third interface of the second elongated extension member instead of the third interface of the first elongated extension member.
10. The assembly of claim 9 further comprising a third elongated extension member having the same configuration as the first elongated extension member, wherein the second interface of the third elongated extension member is joined to the third interface of the second elongated extension member with the thickness of the top coating being further defined by the second distance of the third elongated extension member, wherein the one side of the expansion joint is attached to the third interface of the third elongated extension member instead of the third interface of the second elongated extension member.
11. The expansion joint assembly of claim 8, wherein three elongated walls define a pair of parallel channels extending the length of a respective said base support or said extension member, each channel including at least one engagement flange.
12. The expansion joint assembly of claim 11, wherein the second attachment configuration includes at least 2 engagement members extendable into a respective said channel and including an engagement member engageable with a respective engagement flange to join and hold the elongated extension member in engagement with a respective said elongated base support.
13. The expansion joint assembly of claim 12, wherein each flange of the expansion joint includes an engagement extension and at least one of the pair of parallel channels includes a plurality of opposed notches for gripping a respective said engagement extension.
14. The expansion joint assembly of claim 10, wherein the first attachment configuration includes at least 3 elongated walls which define a pair of parallel channels extending the length of a respective said base support or said extension member, each channel including at least one engagement flange.
15. The expansion joint assembly of claim 14, wherein the second attachment configuration includes at least 2 engagement members extendable into a respective said channel and including an engagement member engageable with a respective engagement flange to join and hold the elongated extension member in engagement with a respective said elongated base support.
16. The expansion joint assembly of claim 15, wherein each flange of the expansion joint includes an engagement extension and wherein the plurality of opposed notches are configured for gripping a respective said engagement extension.
17. A method for bridging an expansion gap in a floor or roof and forming the edge for a top coating applied to the surface of a respective floor or roof, the method comprising:
attaching a flange of an elongated base support to the surface, the base support having a first interface having a first attachment configuration, the first interface being displaced from and generally parallel to the lower surface at a first distance;
attaching at least a first elongated extension members to the elongated base, the elongated extension member having a first side including a second interface which includes a second attachment configuration engaged with the first interface, the elongated extension member further including a second side displaced at a second distance from, opposite to and generally parallel with the first side, the second side including a third interface having the first attachment configuration; and
attaching one side of the expansion joint to the third interface, the top coating having a thickness defined by at least the sum of the first and second distances;
wherein the step of attaching one side of the expansion joint to the third interface comprises:
inserting an engagement extension of a flange of the expansion joint into a channel defined by two elongated walls of the third interface;
positioning an angle member over the flange so that the flange is between the third interface and the angle member; and
inserting a fastener through the angle member and the flange into the same channel as the engagement extension, the fastener engaging a plurality of opposed notches formed into the two elongated walls.
18. The method of claim 17, further comprising the step of:
attaching a second elongated extension member having the same configuration as the first elongated extension member to the first elongated extension member instead of the expansion joint, wherein the second interface of the second elongated extension member is joined to the third interface of the first elongated extension member; and
attaching one side of the expansion joint to the third interface of the second elongated extension member, the top coating having a thickness defined by at least the sum of the first and second distances.
19. The method of claim 18, further comprising the step of:
attaching a third elongated extension member having the same configuration as the first elongated extension member to the second elongated extension member instead of the expansion joint, wherein the second interface of the third elongated extension member is joined to the third interface of the second elongated extension member; and
attaching one side of the expansion joint to the third interface of the third elongated extension member, the top coating having a thickness defined by at least the sum of the first and second distances.
20. The method of claim 19 wherein the first and second distances are equal.
21. The expansion joint assembly of claim 1, wherein the first configuration comprises only three elongated walls, wherein tops of two adjacent elongated walls are offset from and parallel to a top of a third elongated wall.
22. The expansion joint assembly of claim 21, wherein the plurality of opposed notches on the two opposing walls are located on the two adjacent walls.
23. The expansion joint assembly of claim 1, further comprising a top plate configured to provide a rigid cover for the expansion joint.
US15/831,013 2017-12-04 2017-12-04 Stackable expansion joint frame assembly Active US10385564B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/831,013 US10385564B2 (en) 2017-12-04 2017-12-04 Stackable expansion joint frame assembly
PCT/US2018/063814 WO2019113042A1 (en) 2017-12-04 2018-12-04 Stackable expansion joint frame assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/831,013 US10385564B2 (en) 2017-12-04 2017-12-04 Stackable expansion joint frame assembly

Publications (2)

Publication Number Publication Date
US20190169836A1 true US20190169836A1 (en) 2019-06-06
US10385564B2 US10385564B2 (en) 2019-08-20

Family

ID=66658911

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/831,013 Active US10385564B2 (en) 2017-12-04 2017-12-04 Stackable expansion joint frame assembly

Country Status (2)

Country Link
US (1) US10385564B2 (en)
WO (1) WO2019113042A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD882122S1 (en) * 2017-12-04 2020-04-21 Inpro Corporation Extruded member
US10745910B2 (en) * 2017-09-11 2020-08-18 Invent To Build Inc. Wet seal system
FR3097885A1 (en) * 2019-06-27 2021-01-01 Gv2 International - Veda France Expansion joint device comprising an elastic member comprising tubular compartments, and associated expansion joint assembly
US11447958B2 (en) 2019-02-07 2022-09-20 Invent To Build Inc. Vertical seals for use with exterior wall panel assemblies
US11459751B2 (en) * 2017-07-12 2022-10-04 Dirtt Environmental Solutions Ltd Wall seal
USD1022666S1 (en) * 2021-12-30 2024-04-16 Surface Technologies Gmbh & Co. Kg Mounting device for floor panels

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1808092C2 (en) * 1968-11-09 1975-01-23 Migua Mitteldeutsche Gummi- U. Asbest Gesellschaft Hammerschmidt & Co, 5628 Heiligenhaus Cover profile for expansion joints
US4184298A (en) 1978-09-20 1980-01-22 Balco, Inc. Expansion joint filler strip and cover assembly
US4295315A (en) * 1978-10-23 1981-10-20 Construction Specialties, Inc. Expansion joint cover
DE3020035C2 (en) * 1980-05-24 1985-01-10 Migua Hammerschmidt GmbH, 5628 Heiligenhaus Movement joint sealing device
US4674252A (en) 1986-02-21 1987-06-23 Mm Systems Corporation Gland and mount system and components thereof
DE3811082C1 (en) * 1988-03-31 1989-12-28 Migua Hammerschmidt Gmbh, 5603 Wuelfrath, De
WO1992001843A1 (en) * 1990-07-23 1992-02-06 Vexcolt (Uk) Limited Expansion joint
US5048249A (en) * 1990-12-26 1991-09-17 Construction Specialties, Inc. Gasket for flush expansion joint cover
DE19646811C1 (en) * 1996-11-13 1998-02-05 Deflex Bautentechnik Gmbh Watertight expansion seam for parking deck, underground garage, etc.
DE10021016C2 (en) * 2000-05-02 2002-08-22 German Schindler Sealing for expansion joints
DE10208359A1 (en) * 2002-02-27 2003-09-11 Migua Fugensysteme Gmbh & Co K Sealing device for an expansion joint
USD739564S1 (en) 2013-08-06 2015-09-22 Inpro Corporation Joint seal
US9494235B2 (en) 2013-08-06 2016-11-15 Inpro Corporation Hollow, elastic expansion-joint seal
EP3369870B1 (en) * 2017-03-01 2019-08-07 Tecno K Giunti S.r.l. Expansion joint

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459751B2 (en) * 2017-07-12 2022-10-04 Dirtt Environmental Solutions Ltd Wall seal
US10745910B2 (en) * 2017-09-11 2020-08-18 Invent To Build Inc. Wet seal system
USD882122S1 (en) * 2017-12-04 2020-04-21 Inpro Corporation Extruded member
US11447958B2 (en) 2019-02-07 2022-09-20 Invent To Build Inc. Vertical seals for use with exterior wall panel assemblies
FR3097885A1 (en) * 2019-06-27 2021-01-01 Gv2 International - Veda France Expansion joint device comprising an elastic member comprising tubular compartments, and associated expansion joint assembly
USD1022666S1 (en) * 2021-12-30 2024-04-16 Surface Technologies Gmbh & Co. Kg Mounting device for floor panels

Also Published As

Publication number Publication date
US10385564B2 (en) 2019-08-20
WO2019113042A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US10385564B2 (en) Stackable expansion joint frame assembly
US8925271B1 (en) System for mounting wall panels to a wall structure
KR102472473B1 (en) Fitting for channel framing
US20240093913A1 (en) Multi-level Mounting System
US9732887B2 (en) Trapeze hanger system including twist-locking fitting
US9328518B2 (en) Method and system for mounting wall panels to a wall
US5927038A (en) Expandable self-locking frame
US20050210771A1 (en) Fastening system for use with a structural member
US20170260752A1 (en) System and method for mounting wall panels secured to a wall
US5653076A (en) Method and system for assembling a wall
AU2019202881B2 (en) Decking or flooring system, and components therefor
US20130036703A1 (en) Wall mounting apparatus and frame assembly
US20150152645A1 (en) Ceiling System
US20170175374A1 (en) Trench Drain With Overmolded Frame
US8079186B2 (en) Soffit system
US20060196134A1 (en) Multi-purpose framing product
US20210095480A1 (en) Adjustable molding assemblies and methods
US10711455B2 (en) Expansion joints
SE528058C2 (en) Universal mount
US20080307730A1 (en) Channel screed with fastening clips
US20220213691A1 (en) Handrail, Kit, and Method for Installation of Same
US20230235568A1 (en) Fastening system for covering elements
US20230029305A1 (en) Ceiling member installation tool
JP2020500277A (en) Wedge for lead-through system
AU2012100877A4 (en) Decking or flooring system, and components therefor

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: INPRO CORPORATION, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FISHER, GEORGE MATTHEW;GAVLITTA, JOEL M.;REEL/FRAME:044311/0951

Effective date: 20171130

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4