US20190162588A1 - Systems and methods for storage and analysis of periodic waveform data - Google Patents
Systems and methods for storage and analysis of periodic waveform data Download PDFInfo
- Publication number
- US20190162588A1 US20190162588A1 US16/196,831 US201816196831A US2019162588A1 US 20190162588 A1 US20190162588 A1 US 20190162588A1 US 201816196831 A US201816196831 A US 201816196831A US 2019162588 A1 US2019162588 A1 US 2019162588A1
- Authority
- US
- United States
- Prior art keywords
- data
- machinery
- monitoring system
- fixed monitoring
- monitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0208—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H1/00—Measuring characteristics of vibrations in solids by using direct conduction to the detector
- G01H1/003—Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
- G01H1/006—Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0208—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
- G05B23/0216—Human interface functionality, e.g. monitoring system providing help to the user in the selection of tests or in its configuration
Definitions
- the machinery may be monitored for environmental circumstances, and operating conditions of the machinery and components of the machinery.
- sensors may be placed at various locations throughout the machinery and machinery components in order to monitor the conditions at those locations. Collecting data from the sensors can be difficult due to the noise caused by the machinery.
- a method in a first embodiment, includes collecting a data for a time from sensors to a fixed monitoring system.
- the fixed monitoring system is fixedly coupled to a turbo-machinery and the sensors arc configured to monitor the turbo-machinery.
- the time comprises at least one week.
- the method also includes recovering the data by coupling a portable machinery monitor to the fixed monitoring system and retrieving the data into the portable machinery monitor.
- the method also includes analyzing the data to determine one or more machinery conditions.
- the analyzing the data comprises analyzing the data via the portable machinery monitor, an external system, or any combination thereof.
- a system in a second embodiment, includes a fixed monitoring system that includes a data collection circuitry having a first memory and a first processor and a first communications port.
- the first processor is configured to collect data from a machinery for a time of at least one week, and to store the data in the memory.
- the fixed monitoring system also includes a portable machinery monitor system having a second memory and a second processor.
- the system also includes a second communications port. The first or the second processor is configured to communicate the data through the first and the second communications from the first memory into the second memory.
- a system in a third embodiment, includes a portable machinery monitor system having a first memory and a first processor.
- the system also includes a first communications port.
- the first processor is configured to communicate with a fixed monitoring system to receive a data collected by the fixed monitoring system, and to analyze the data to derive a vibration.
- FIG. 1 is an embodiment of a turbine system.
- FIG. 2 is an embodiment of the portable monitoring system being used in operation by an operator.
- FIG. 3 illustrates a schematic diagram of an embodiment of the fixed monitoring system and the portable monitoring system of FIG. 1 .
- FIG. 4 is a flowchart of an embodiment of a method for generating maintenance reports about the turbine system of FIG. 1 .
- turbomachinery e.g., turbines, generators, compressors, and the like
- Such turbomachinery may be monitored to provide, for example, historical data of operations and environmental conditions of the turbomachinery useful in analysis of degradation and/or fault detection.
- the monitoring may be provided by a monitoring specialist as part of a regular maintenance cycle.
- the maintenance specialist may communicatively couple an equipment analysis tool to the turbomachinery and observe the turbomachinery while in operations.
- the monitoring specialist may then analyze the turbomachinery in situ.
- the turbomachinery may be communicatively coupled to a remote observation system which may constantly gather and/or analyze data.
- a dedicated remote observation system e.g., real time observation
- providing for a monitoring specialist at specific times may be inefficient and costly.
- the techniques described herein provide for systems and methods that may be retrofitted to turbomachinery to monitor existing equipment (e.g., turbomachinery) for a desired period to time (e.g., between 1 and 2 weeks, between 1 and 4 weeks, between 30 and 120 days, or more).
- the monitoring device may be permanently mounted to the equipment and include a 2 channel monitor which may protect the equipment from failures due to, for example, undesired vibration.
- the affixed monitor would store periodic vibration data over a desired period of time. This period of time can be pre-scheduled by the user through a web interface or changed using a portable data collector and monitoring system suitable for coupling to the affixed monitor.
- the user may recover data including historic events (e.g., undesired vibration events) and periodic sensor data using the portable data collector.
- the portable data collector and monitoring system may be coupled to the fixed monitoring system through an Ethernet cable, a universal serial bus (USB) cable, a serial cable, a wireless connection (e.g., BluetoothTM, Zigbee®. Wifi), and/or through transfer via a flashdrive, secure digital (SD) card, and the like.
- USB universal serial bus
- SD secure digital
- FIG. 1 an embodiment of a turbine system 10 is illustrated.
- Certain machinery such as the turbine system 10
- a fixed monitoring system 12 may be communicatively coupled to the turbine system 10 and used to monitor a variety of parameters, as described in more detail below.
- the fixed monitoring system 12 may include a processor 13 useful in executing computer instructions and a memory 14 useful in storing data and computer instructions.
- the fixed monitoring system 12 may be disposed on the turbine system 10 and used to store data over a desired time period.
- a fuel such as natural gas or syngas
- Air may enter the turbine system 10 through an air intake section 18 and may be compressed by a compressor 19 .
- the compressor 19 may include a series of stages 20 , 22 , and 24 that compress the air.
- Stage 20 may be a low pressure stage
- stage 22 may be an intermediate pressure stage
- stage 24 may be a high pressure stage.
- Each stage includes one or more sets of stationary vanes 26 .
- Each stage includes blades 28 that rotate to progressively increase the pressure to provide compressed air.
- the blades 28 are attached to rotating wheels 30 connected to a shaft 32 .
- the compressed discharge air from the compressor 19 exits the compressor 19 through a diffuser section 36 and is directed into the combustor 16 to mix with the fuel.
- the fuel nozzles 15 inject fuel into compressed air in the combustor 16 in a suitable ratio for optimal combustion, resulting in minimal emissions, minimal fuel consumption, and maximum power output.
- the turbine system 10 may include multiple combustors 16 disposed in an annular arrangement. Each combustor 16 may direct hot combustion gases into a turbine 34 .
- the turbine system 10 includes a turbine section 34 having three separate stages 40 , 42 , and 44 .
- the stage 40 is a high pressure stage
- stage 42 is an intermediate pressure stage
- stage 44 is a low pressure stage.
- Each stage 40 , 42 , and 44 includes a set of blades or buckets 46 coupled to a respective rotor wheel 48 , 50 , and 52 , which are attached to a shaft 54 .
- the shaft 54 rotates to drive the compressor 19 and any other suitable load, such as an electrical generator.
- the turbine system 10 diffuses and exhausts the combustion gases through an exhaust section 60 .
- the turbine system may also include a plurality of sensors 62 configured to monitor a plurality of engine parameters related to the operation and performance of the gas turbine engine 10 .
- the sensors may include, for example, inlet sensors and outlet sensors positioned adjacent to, for example, the inlet and outlet portions of the turbine 16 , sensors 62 positioned to sense the various stages (e.g., 20 , 22 , and/or 24 ) of the compressor 19 .
- the inlet sensors and outlet sensors 62 may measure a variety of data types. For example, environmental conditions, such as ambient temperature and ambient pressure, flow data, or chemical data.
- the sensors 62 may also measure a plurality of engine parameters related to the operation and performance of the turbine system 10 , such as, exhaust gas temperature, rotor speed, engine temperature, engine pressure, gas temperature, engine fuel flow, exhaust flow, vibration, clearance between rotating and stationary components, compressor discharge pressure, gas composition such as pollution (e.g., carbon monoxide, nitrogen oxides, carbon dioxide, particulate count), and turbine exhaust pressure.
- engine parameters related to the operation and performance of the turbine system 10 , such as, exhaust gas temperature, rotor speed, engine temperature, engine pressure, gas temperature, engine fuel flow, exhaust flow, vibration, clearance between rotating and stationary components, compressor discharge pressure, gas composition such as pollution (e.g., carbon monoxide, nitrogen oxides, carbon dioxide, particulate count), and turbine exhaust pressure.
- pollution e.g., carbon monoxide, nitrogen oxides, carbon dioxide, particulate count
- the sensors 62 may include, but are not limited to, thermocouples, proximity sensors, eddy current sensors, ultrasonic sensors, velocity sensors, vibration sensors, pressure sensors, clearance sensors, accelerometers, gyroscopes, chemical sensors, optical sensors, and the like.
- the plurality of sensors 62 may also be configured to monitor engine parameters related to various operational phases (e.g., start-up, steady state, transient state, and shut down) of the turbine system 10 . Measurements taken by the plurality of sensors 62 may be transmitted as electrical signals to the fixed monitoring system 12 .
- the fixed monitoring system 12 may then store the sensor signals and for later upload to a different system (e.g., portable monitoring system 68 ).
- the fixed monitoring system 12 may derive keyphasor measurements (e.g., phase relationship between vibration components and timing marks on the shaft 32 and/or 54 ), relative vibration (e.g., using proximity probes), axial positions, radial positions, casing velocity, casing acceleration, temperatures, differential expansion/case expansion, overspeed detection, rotor wheel 48 , 50 , 52 acceleration, actuator positions (e.g., valve positions, linear actuator positions), shaft 32 and/or 54 eccentricity, rolling element bearing activity monitor (REBAM®) data, vibration measurements (e.g., axial vibration, radial vibration), speed measurements, clearance measurements (e.g., distance between a rotating component and a stationary component), pressure measurements, flow measurements, or any combination thereof.
- keyphasor measurements e.g., phase relationship between vibration components and timing marks on the shaft 32 and/or 54
- relative vibration e.g., using proximity probes
- axial positions e.g., axial positions, radial positions
- casing velocity e.g., cas
- data 66 is provided to a portable monitoring system 68 by using a two-way communication data flow 70 .
- the data flow 70 may be one-way.
- the two-way data flow 70 may use a communications conduit such as a backplane communications bus, a fiber optic cable, an electrically-conductive cable, and the like.
- the data 66 may include substantially all of the signals produced by the sensors 62 , e.g., raw data. That is, the data 66 may include sensor 62 signals indicative of system 10 conditions.
- the portable monitoring system 68 may then use raw data 66 to derive measurements, conditions, parameters, alarms, alerts, and so on.
- These system 68 derivations may include, but are not limited to keyphasor measurements (e.g., phase relationship between vibration components and timing marks on the shaft 32 and/or 54 ), relative vibration (e.g., using proximity probes), axial positions, radial positions, easing velocity, easing acceleration, temperatures, differential expansion/case expansion, overspeed detection, rotor wheel 48 , 50 , 52 acceleration, actuator positions (e.g., valve positions, linear actuator positions), shaft 32 and/or 54 eccentricity, rolling element bearing activity monitor (REBAM®) data, vibration measurements (e.g., axial vibration, radial vibration), speed measurements, clearance measurements (e.g., distance between a rotating component and a stationary component), pressure measurements, flow measurements, or any combination thereof.
- keyphasor measurements e.g., phase relationship between vibration components and timing marks on the shaft 32 and/or 54
- relative vibration e.g., using proximity probes
- axial positions e.g., axial positions, radial positions
- easing velocity
- the data 66 may include some or substantially all of the derived measurements provided by the fixed monitoring system 12 , such the keyphasor measurements, relative vibration, axial positions, radial positions, casing velocity, casing acceleration, temperatures, differential expansion/case expansion, overspeed detection, rotor wheel 48 , 50 , 52 acceleration, actuator positions (e.g., valve positions, linear actuator positions), shaft 32 and/or 54 eccentricity, rolling element bearing activity monitor (REBAM®) data, vibration measurements (e.g., axial vibration, radial vibration), speed measurements, clearance measurements (e.g., distance between a rotating component and a stationary component), pressure measurements, flow measurements, or any combination thereof.
- the portable monitoring system 68 may include a processor 71 suitable for executing computer instructions and a memory 72 useful in storing data and computer instructions.
- the portable monitoring system 68 may then upload a data 74 to other systems 78 through a two-way communication 73 .
- the data flow 73 may be one-way.
- the communications to other systems 78 may include a communications network more optimized to analyze the raw data collected by the sensors 62 .
- a math analytics program 80 may accept the data from the portable monitoring system 68 and use the data 74 , which may include measurements derived from the sensors 62 , for further analysis.
- the systems 80 , 82 , 84 , and/or 86 may communicate the data 68 , for example, to request specific derived measurements through the data 68 , of system 10 parameters, and so on.
- the fixed monitoring system 12 may also be directed in some respects by instructions based in a digital cloud 90 .
- the cloud 90 represents aggregation of access and/or instruction methods remote from the system 12 .
- the cloud 90 may include computers connected to the internet, a local area network, a wireless local network, or other network. Instructions based in the cloud 90 may instruct the fixed monitoring system 12 through a wireless communications module 92 .
- operations such as when to collect data from the sensors 62 , which sensors 62 to turn on during a given time period, how often the sensors 62 collect data (i.e., the frequency of collection), which data type to collect, or other condition-based regulation of the sensors 62 , or any combination thereof may be controlled without visiting the fixed monitoring system 12 .
- FIG. 2 is an embodiment of the portable monitoring and data analysis system 68 being used in operation by an operator (e.g., monitoring specialist) 94 .
- the portable monitoring system 68 is connected to the fixed monitoring system 12 through the two-way connection 70 .
- the portable monitoring unit 68 is carried by the operator 94 who may travel between multiple fixed monitoring systems 12 that monitor multiple turbine systems 10 .
- the operator 94 may travel to a particular turbine system 10 once every week, few weeks, months, or longer to collect the data 66 from the fixed monitoring system 12 .
- the operator 94 may use the portable monitoring system 12 to connect directly to the sensors 62 .
- the portable monitoring system 68 records and/or analyzes data as the turbine system 10 operates.
- the portable monitoring system 68 may thus perform diagnostic calculations and operations on live data.
- the portable monitoring system 68 may include sensors such as accelerometer, velocity, displacement, current, voltage output, and laser sensor.
- the portable monitoring system 68 may also include 2-channel or 4-channel sensor input with wide measurement range (e.g., 1000 g. 25.00 mm/s, 2500 mm).
- the portable monitoring system 68 is a Scout 100/140® available from Bently Nevada.
- the portable monitoring system 68 also connects to the fixed monitoring system 12 . Connecting to the fixed monitoring system 12 may be accomplished via a local area network, a wide area network, a wireless network, or any combination thereof, to update a parameter of the fixed monitoring system 12 .
- the fixed monitoring system 12 stores operating data received from the sensors 62 as explained above with regard to FIG. 1 .
- the operator 94 evaluates and controls what data is stored on the fixed monitoring system 12 .
- the operator 94 might retrieve data 66 stored on the fixed monitoring system 12 and clear the stored data 66 as part of each visit. In other instances, the operator 94 may leave portions of the data 66 stored on the fixed monitoring system 12 between visits.
- the fixed monitoring system 12 may enable for data acquisition at real-time or near real-time levels without having a dedicated remote observation system that is always connected to the turbomachinery. Indeed, data may be sampled or otherwise acquired by the fixed monitoring system 12 at a frequency of 500 Hz, 1 MHz, 10 MHz or more at a resolution of 8, 16, 24, 32, 64 bits or more and subsequently stored.
- the operator 94 may retrieve the data stored in the fixed monitoring system 12 by communicatively coupling the portable monitoring system 68 to the fixed monitoring system 12 .
- the portable monitoring system 68 may then analyze the retrieved data in situ without waiting extra time for data acquisition. Additionally or alternatively, the retrieved data may be analyzed at a later time.
- FIG. 3 illustrates a schematic diagram of an embodiment of the fixed monitoring system 12 affixed to the monitored system 1 , and the portable monitoring system 68 of FIG. 1 communicatively coupled to the fixed monitoring system 12 .
- the fixed monitoring system 12 includes the processor 13 and the memory 14 as described above.
- the memory 14 may include any type of digital or non-digital storage, or combination of types of storage.
- the memory 14 may include primarily non-volatile memory such as flash memory or random access memory (RAM).
- the memory 14 may also include magnetic disks or tape, zip drives, thumb drives, or optical storage media.
- the fixed monitoring system 12 may employ combinations of these types of memory in order to store the data received from the sensors 62 on the memory 14 .
- the fixed monitoring system 12 includes at least one of a number of communication ports 98 .
- the illustrated embodiment includes five ports 98 , but other embodiments may include more or fewer ports 98 .
- the ports 98 include a number of types of communication ports such as universal serial bus (USB) ports, serial ports, VGA ports, PPTP ports, DNS ports, NTP ports, Ethernet ports, Firewire ports, or other communications ports.
- the ports 98 may also include wireless ports, such as Wifi (e.g., IEEE 802.11x), BluetoothTM, Zigbee®, and the like.
- the portable monitoring system 68 also includes correlating ports 100 that allow for any of the ports 98 from the fixed monitoring system 12 to communicate via the two-way communication 70 .
- the fixed monitoring system 12 is fixedly connected to the monitored turbine system 10 .
- the permanent connection 102 may include any suitable connection means such as welding, bolting, magnetic attachment, chemical adhesive, a combination thereof, or other attachment techniques.
- the sensors 62 may be attached in similar ways to the turbine system 10 .
- FIG. 4 is a flowchart of an embodiment of a process for generating maintenance reports based on data capture and analysis for the turbine system 10 of FIG. 1 .
- the process 110 begins, at block 112 , with the fixed monitoring system 12 logging data collected by the sensors 62 installed within the turbine system 10 .
- the fixed monitoring system 12 may collect all points of data from all the sensors 62 , or may be instructed to collect only some points of data from certain sensors 62 .
- the instructions for logging the data as well as for how long to store the data may be supplied to the fixed monitoring system 12 from the cloud 90 .
- the instructions may direct the fixed monitoring system 12 to log data more often during start-up and shut down of the turbine system 10 , for example.
- Other instructions may direct the fixed monitoring system 12 to continuously log data from all sensors 62 until storage is full. Data may be logged based on the condition of the system and the availability of storage on the fixed monitoring system 12 . For example, if the turbine system 10 recently went through servicing, or if the amount of storage is low, the fixed monitoring system 12 may be instructed not to log data as often.
- the process 110 includes waiting for the maintenance route.
- a maintenance route may be followed by the operator 94 , for example, every 90 days, or at any other time period.
- the fixed monitoring system 12 continues to log data as instructed by the portable monitoring system 68 , or as instructed through the cloud 90 .
- the fixed monitoring system 12 does not transfer the data, but stores the data for download. Accordingly, transmission components and energy used for transmitting data may be minimized.
- the process 110 includes recovering or retrieving stored data from the fixed monitoring system 12 and/or collecting new data via the portable monitoring system 68 .
- the operator 94 brings the portable monitoring system 68 along the maintenance route and connects the portable monitoring system 68 to the fixed monitoring system 12 with the communication ports 98 , 100 .
- the fixed monitoring system 12 then transfers the data to the portable monitoring system 68 .
- the portable monitoring system 68 may connect directly to the sensors 62 and collect new data without it being stored by the fixed monitoring system 12 .
- the portable monitoring system 68 may also, at block 118 , analyze the stored and/or new data for patterns or indications of operation conditions of the turbine system 10 .
- the operator 94 may analyze the data collected either from the fixed monitoring system 12 or from the sensors 62 and subsequently collect additional data from the sensors 62 based on the analysis. For example, if the analyzed data from the fixed monitoring system 12 indicates an increase in vibration from a section of the turbine system 10 , the operator 94 may instruct the portable monitoring system 68 to collect more data from that section to confirm or deny the vibration condition.
- the process 110 includes delivering the analysis. Delivery may include upload to networks such as the systems 80 , 82 , 84 , 86 indicated in FIG. 1 .
- the networks 80 , 82 , 84 , 86 may determine whether a notification should be sent to maintenance personnel. For example, if an increase of vibration is analyzed and determined to be from wear on the shaft 32 , then the networks 80 , 82 , 84 , 86 will notify the shaft 32 maintenance department.
- the portable monitoring system 68 may generate reports 122 that organize the analyzed data into a readily understood formal. These reports may then be used to plan and adjust a servicing schedule for the turbine system 10 .
- the portable system 68 may also prepare the reports 122 in the field and deliver them to interested parties.
- the turbine system 10 with sensors 62 that monitor and detect indications of operation.
- the sensors 62 deliver the detected conditions to either the fixed monitoring system 12 or the portable monitoring system 68 , or both.
- the fixed monitoring system 12 contains a memory 14 that stores the conditions and signals from the sensors 62 .
- the memory 14 may be configured to store high resolution signals for a week, a month, a year, or longer.
- the portable monitoring system 68 is assigned to monitor several gas turbine systems and thus is present only when a maintenance schedule is desired.
- the portable monitoring system 68 connects to the fixed monitoring system 12 when it is present and recovers the stored data.
- the portable monitoring system 68 also analyzes the data to generate data that is easy to read, and/or identifies likely maintenance issue for the turbine system 10 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 14/151,297, filed Jan. 9, 2014, entitled “SYSTEMS AND METHODS FOR STORAGE AND ANALYSIS OF PERIODIC WAVEFFORM DATA,” which is hereby incorporated by reference in its entirety.
- In many applications where machinery is used, the machinery may be monitored for environmental circumstances, and operating conditions of the machinery and components of the machinery. For example, sensors may be placed at various locations throughout the machinery and machinery components in order to monitor the conditions at those locations. Collecting data from the sensors can be difficult due to the noise caused by the machinery.
- Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
- In a first embodiment, a method includes collecting a data for a time from sensors to a fixed monitoring system. The fixed monitoring system is fixedly coupled to a turbo-machinery and the sensors arc configured to monitor the turbo-machinery. also, the time comprises at least one week. The method also includes recovering the data by coupling a portable machinery monitor to the fixed monitoring system and retrieving the data into the portable machinery monitor. The method also includes analyzing the data to determine one or more machinery conditions. The analyzing the data comprises analyzing the data via the portable machinery monitor, an external system, or any combination thereof.
- In a second embodiment, a system includes a fixed monitoring system that includes a data collection circuitry having a first memory and a first processor and a first communications port. The first processor is configured to collect data from a machinery for a time of at least one week, and to store the data in the memory. The fixed monitoring system also includes a portable machinery monitor system having a second memory and a second processor. The system also includes a second communications port. The first or the second processor is configured to communicate the data through the first and the second communications from the first memory into the second memory.
- In a third embodiment, a system includes a portable machinery monitor system having a first memory and a first processor. The system also includes a first communications port. The first processor is configured to communicate with a fixed monitoring system to receive a data collected by the fixed monitoring system, and to analyze the data to derive a vibration.
- These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
-
FIG. 1 is an embodiment of a turbine system. -
FIG. 2 is an embodiment of the portable monitoring system being used in operation by an operator. -
FIG. 3 illustrates a schematic diagram of an embodiment of the fixed monitoring system and the portable monitoring system ofFIG. 1 . -
FIG. 4 is a flowchart of an embodiment of a method for generating maintenance reports about the turbine system ofFIG. 1 . - One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
- When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
- In some industrial environments, certain turbomachinery (e.g., turbines, generators, compressors, and the like) may be used in a variety of industrial processes, such as manufacturing processes, power production, chemical processing, and so on. Such turbomachinery may be monitored to provide, for example, historical data of operations and environmental conditions of the turbomachinery useful in analysis of degradation and/or fault detection. The monitoring may be provided by a monitoring specialist as part of a regular maintenance cycle. For example, the maintenance specialist may communicatively couple an equipment analysis tool to the turbomachinery and observe the turbomachinery while in operations. The monitoring specialist may then analyze the turbomachinery in situ. In another operating mode, the turbomachinery may be communicatively coupled to a remote observation system which may constantly gather and/or analyze data. However, providing a dedicated remote observation system (e.g., real time observation) or providing for a monitoring specialist at specific times may be inefficient and costly.
- The techniques described herein provide for systems and methods that may be retrofitted to turbomachinery to monitor existing equipment (e.g., turbomachinery) for a desired period to time (e.g., between 1 and 2 weeks, between 1 and 4 weeks, between 30 and 120 days, or more). The monitoring device may be permanently mounted to the equipment and include a 2 channel monitor which may protect the equipment from failures due to, for example, undesired vibration. The affixed monitor would store periodic vibration data over a desired period of time. This period of time can be pre-scheduled by the user through a web interface or changed using a portable data collector and monitoring system suitable for coupling to the affixed monitor. Once the monitor is operational, the user may recover data including historic events (e.g., undesired vibration events) and periodic sensor data using the portable data collector. In one embodiment, the portable data collector and monitoring system may be coupled to the fixed monitoring system through an Ethernet cable, a universal serial bus (USB) cable, a serial cable, a wireless connection (e.g., Bluetooth™, Zigbee®. Wifi), and/or through transfer via a flashdrive, secure digital (SD) card, and the like. By combining a fixed monitoring system with a portable unit suitable for downloading stored data, the techniques described herein may improve data analysis and collection by more flexibly and efficiently providing for data acquisition and system monitoring.
- It may be useful to describe a turbomachinery system that may advantageously include the techniques described herein. With the foregoing in mind and turning now to
FIG. 1 , an embodiment of aturbine system 10 is illustrated. Certain machinery, such as theturbine system 10, may include various components as further described below, that may be monitored during operations. For example, afixed monitoring system 12 may be communicatively coupled to theturbine system 10 and used to monitor a variety of parameters, as described in more detail below. Thefixed monitoring system 12 may include aprocessor 13 useful in executing computer instructions and amemory 14 useful in storing data and computer instructions. Thefixed monitoring system 12 may be disposed on theturbine system 10 and used to store data over a desired time period. - During operation of the
turbine system 10, a fuel such as natural gas or syngas, may be routed to theturbine system 10 through one ormore fuel nozzles 15 into acombustor 16. Air may enter theturbine system 10 through anair intake section 18 and may be compressed by acompressor 19. Thecompressor 19 may include a series ofstages Stage 20 may be a low pressure stage,stage 22 may be an intermediate pressure stage, andstage 24 may be a high pressure stage. Each stage includes one or more sets ofstationary vanes 26. Each stage includesblades 28 that rotate to progressively increase the pressure to provide compressed air. Theblades 28 are attached to rotatingwheels 30 connected to ashaft 32. - The compressed discharge air from the
compressor 19 exits thecompressor 19 through adiffuser section 36 and is directed into thecombustor 16 to mix with the fuel. For example, thefuel nozzles 15 inject fuel into compressed air in thecombustor 16 in a suitable ratio for optimal combustion, resulting in minimal emissions, minimal fuel consumption, and maximum power output. In certain embodiments, theturbine system 10 may includemultiple combustors 16 disposed in an annular arrangement. Eachcombustor 16 may direct hot combustion gases into aturbine 34. - In the depicted embodiment, the
turbine system 10 includes aturbine section 34 having threeseparate stages stage 42 is an intermediate pressure stage, andstage 44 is a low pressure stage. Eachstage buckets 46 coupled to arespective rotor wheel shaft 54. As the hot combustion gases cause rotation ofturbine blades 46, theshaft 54 rotates to drive thecompressor 19 and any other suitable load, such as an electrical generator. Eventually, theturbine system 10 diffuses and exhausts the combustion gases through anexhaust section 60. - The turbine system may also include a plurality of
sensors 62 configured to monitor a plurality of engine parameters related to the operation and performance of thegas turbine engine 10. The sensors may include, for example, inlet sensors and outlet sensors positioned adjacent to, for example, the inlet and outlet portions of theturbine 16,sensors 62 positioned to sense the various stages (e.g., 20, 22, and/or 24) of thecompressor 19. The inlet sensors andoutlet sensors 62 may measure a variety of data types. For example, environmental conditions, such as ambient temperature and ambient pressure, flow data, or chemical data. Thesensors 62 may also measure a plurality of engine parameters related to the operation and performance of theturbine system 10, such as, exhaust gas temperature, rotor speed, engine temperature, engine pressure, gas temperature, engine fuel flow, exhaust flow, vibration, clearance between rotating and stationary components, compressor discharge pressure, gas composition such as pollution (e.g., carbon monoxide, nitrogen oxides, carbon dioxide, particulate count), and turbine exhaust pressure. - As such, the
sensors 62 may include, but are not limited to, thermocouples, proximity sensors, eddy current sensors, ultrasonic sensors, velocity sensors, vibration sensors, pressure sensors, clearance sensors, accelerometers, gyroscopes, chemical sensors, optical sensors, and the like. The plurality ofsensors 62 may also be configured to monitor engine parameters related to various operational phases (e.g., start-up, steady state, transient state, and shut down) of theturbine system 10. Measurements taken by the plurality ofsensors 62 may be transmitted as electrical signals to the fixedmonitoring system 12. The fixedmonitoring system 12 may then store the sensor signals and for later upload to a different system (e.g., portable monitoring system 68). - For example, the fixed
monitoring system 12 may derive keyphasor measurements (e.g., phase relationship between vibration components and timing marks on theshaft 32 and/or 54), relative vibration (e.g., using proximity probes), axial positions, radial positions, casing velocity, casing acceleration, temperatures, differential expansion/case expansion, overspeed detection,rotor wheel shaft 32 and/or 54 eccentricity, rolling element bearing activity monitor (REBAM®) data, vibration measurements (e.g., axial vibration, radial vibration), speed measurements, clearance measurements (e.g., distance between a rotating component and a stationary component), pressure measurements, flow measurements, or any combination thereof. Accordingly, operating conditions may be derived, including normal operations, abnormal operations, and so on. - In the depicted embodiment,
data 66, includingraw sensor 62 data, is provided to aportable monitoring system 68 by using a two-waycommunication data flow 70. In another embodiment, thedata flow 70 may be one-way. The two-way data flow 70 may use a communications conduit such as a backplane communications bus, a fiber optic cable, an electrically-conductive cable, and the like. Thedata 66 may include substantially all of the signals produced by thesensors 62, e.g., raw data. That is, thedata 66 may includesensor 62 signals indicative ofsystem 10 conditions. In one embodiment, theportable monitoring system 68 may then useraw data 66 to derive measurements, conditions, parameters, alarms, alerts, and so on. Thesesystem 68 derivations may include, but are not limited to keyphasor measurements (e.g., phase relationship between vibration components and timing marks on theshaft 32 and/or 54), relative vibration (e.g., using proximity probes), axial positions, radial positions, easing velocity, easing acceleration, temperatures, differential expansion/case expansion, overspeed detection,rotor wheel shaft 32 and/or 54 eccentricity, rolling element bearing activity monitor (REBAM®) data, vibration measurements (e.g., axial vibration, radial vibration), speed measurements, clearance measurements (e.g., distance between a rotating component and a stationary component), pressure measurements, flow measurements, or any combination thereof. - In another embodiment, the
data 66 may include some or substantially all of the derived measurements provided by the fixedmonitoring system 12, such the keyphasor measurements, relative vibration, axial positions, radial positions, casing velocity, casing acceleration, temperatures, differential expansion/case expansion, overspeed detection,rotor wheel shaft 32 and/or 54 eccentricity, rolling element bearing activity monitor (REBAM®) data, vibration measurements (e.g., axial vibration, radial vibration), speed measurements, clearance measurements (e.g., distance between a rotating component and a stationary component), pressure measurements, flow measurements, or any combination thereof. Theportable monitoring system 68 may include aprocessor 71 suitable for executing computer instructions and amemory 72 useful in storing data and computer instructions. - The
portable monitoring system 68 may then upload adata 74 toother systems 78 through a two-way communication 73. In another embodiment, thedata flow 73 may be one-way. The communications toother systems 78 may include a communications network more optimized to analyze the raw data collected by thesensors 62. In this manner, amath analytics program 80, a logger/database 82, akeyphasor 84, and/orother systems 86 may accept the data from theportable monitoring system 68 and use thedata 74, which may include measurements derived from thesensors 62, for further analysis. Likewise, thesystems data 68, for example, to request specific derived measurements through thedata 68, ofsystem 10 parameters, and so on. - The fixed
monitoring system 12 may also be directed in some respects by instructions based in a digital cloud 90. The cloud 90 represents aggregation of access and/or instruction methods remote from thesystem 12. For example, the cloud 90 may include computers connected to the internet, a local area network, a wireless local network, or other network. Instructions based in the cloud 90 may instruct the fixedmonitoring system 12 through awireless communications module 92. Thus, operations such as when to collect data from thesensors 62, whichsensors 62 to turn on during a given time period, how often thesensors 62 collect data (i.e., the frequency of collection), which data type to collect, or other condition-based regulation of thesensors 62, or any combination thereof may be controlled without visiting the fixedmonitoring system 12. -
FIG. 2 is an embodiment of the portable monitoring anddata analysis system 68 being used in operation by an operator (e.g., monitoring specialist) 94. Theportable monitoring system 68 is connected to the fixedmonitoring system 12 through the two-way connection 70. As illustrated, theportable monitoring unit 68 is carried by the operator 94 who may travel between multiple fixedmonitoring systems 12 that monitormultiple turbine systems 10. The operator 94 may travel to aparticular turbine system 10 once every week, few weeks, months, or longer to collect thedata 66 from the fixedmonitoring system 12. The operator 94 may use theportable monitoring system 12 to connect directly to thesensors 62. When the operator 94 connects directly to thesensors 62, theportable monitoring system 68 records and/or analyzes data as theturbine system 10 operates. Theportable monitoring system 68 may thus perform diagnostic calculations and operations on live data. Theportable monitoring system 68 may include sensors such as accelerometer, velocity, displacement, current, voltage output, and laser sensor. Theportable monitoring system 68 may also include 2-channel or 4-channel sensor input with wide measurement range (e.g., 1000 g. 25.00 mm/s, 2500 mm). In one embodiment, theportable monitoring system 68 is a Scout 100/140® available from Bently Nevada. Theportable monitoring system 68 also connects to the fixedmonitoring system 12. Connecting to the fixedmonitoring system 12 may be accomplished via a local area network, a wide area network, a wireless network, or any combination thereof, to update a parameter of the fixedmonitoring system 12. The fixedmonitoring system 12 stores operating data received from thesensors 62 as explained above with regard toFIG. 1 . The operator 94 evaluates and controls what data is stored on the fixedmonitoring system 12. For example, the operator 94 might retrievedata 66 stored on the fixedmonitoring system 12 and clear the storeddata 66 as part of each visit. In other instances, the operator 94 may leave portions of thedata 66 stored on the fixedmonitoring system 12 between visits. - By providing for storage suitable for storage of data at desired time periods, the fixed
monitoring system 12 may enable for data acquisition at real-time or near real-time levels without having a dedicated remote observation system that is always connected to the turbomachinery. Indeed, data may be sampled or otherwise acquired by the fixedmonitoring system 12 at a frequency of 500 Hz, 1 MHz, 10 MHz or more at a resolution of 8, 16, 24, 32, 64 bits or more and subsequently stored. The operator 94 may retrieve the data stored in the fixedmonitoring system 12 by communicatively coupling theportable monitoring system 68 to the fixedmonitoring system 12. Theportable monitoring system 68 may then analyze the retrieved data in situ without waiting extra time for data acquisition. Additionally or alternatively, the retrieved data may be analyzed at a later time. -
FIG. 3 illustrates a schematic diagram of an embodiment of the fixedmonitoring system 12 affixed to the monitored system 1, and theportable monitoring system 68 ofFIG. 1 communicatively coupled to the fixedmonitoring system 12. The fixedmonitoring system 12 includes theprocessor 13 and thememory 14 as described above. Thememory 14 may include any type of digital or non-digital storage, or combination of types of storage. For example, thememory 14 may include primarily non-volatile memory such as flash memory or random access memory (RAM). Thememory 14 may also include magnetic disks or tape, zip drives, thumb drives, or optical storage media. Furthermore, the fixedmonitoring system 12 may employ combinations of these types of memory in order to store the data received from thesensors 62 on thememory 14. - The fixed
monitoring system 12 includes at least one of a number ofcommunication ports 98. The illustrated embodiment includes fiveports 98, but other embodiments may include more orfewer ports 98. Theports 98 include a number of types of communication ports such as universal serial bus (USB) ports, serial ports, VGA ports, PPTP ports, DNS ports, NTP ports, Ethernet ports, Firewire ports, or other communications ports. Theports 98 may also include wireless ports, such as Wifi (e.g., IEEE 802.11x), Bluetooth™, Zigbee®, and the like. Theportable monitoring system 68 also includes correlating ports 100 that allow for any of theports 98 from the fixedmonitoring system 12 to communicate via the two-way communication 70. The fixedmonitoring system 12 is fixedly connected to the monitoredturbine system 10. The permanent connection 102 may include any suitable connection means such as welding, bolting, magnetic attachment, chemical adhesive, a combination thereof, or other attachment techniques. Thesensors 62 may be attached in similar ways to theturbine system 10. -
FIG. 4 is a flowchart of an embodiment of a process for generating maintenance reports based on data capture and analysis for theturbine system 10 ofFIG. 1 . The process 110 begins, atblock 112, with the fixedmonitoring system 12 logging data collected by thesensors 62 installed within theturbine system 10. The fixedmonitoring system 12 may collect all points of data from all thesensors 62, or may be instructed to collect only some points of data fromcertain sensors 62. The instructions for logging the data as well as for how long to store the data may be supplied to the fixedmonitoring system 12 from the cloud 90. The instructions may direct the fixedmonitoring system 12 to log data more often during start-up and shut down of theturbine system 10, for example. Other instructions may direct the fixedmonitoring system 12 to continuously log data from allsensors 62 until storage is full. Data may be logged based on the condition of the system and the availability of storage on the fixedmonitoring system 12. For example, if theturbine system 10 recently went through servicing, or if the amount of storage is low, the fixedmonitoring system 12 may be instructed not to log data as often. - At
block 114, the process 110 includes waiting for the maintenance route. A maintenance route may be followed by the operator 94, for example, every 90 days, or at any other time period. During the waiting period between maintenance visits, the fixedmonitoring system 12 continues to log data as instructed by theportable monitoring system 68, or as instructed through the cloud 90. Until the wait for the maintenance route is over, the fixedmonitoring system 12 does not transfer the data, but stores the data for download. Accordingly, transmission components and energy used for transmitting data may be minimized. Atblock 116, the process 110 includes recovering or retrieving stored data from the fixedmonitoring system 12 and/or collecting new data via theportable monitoring system 68. For example, the operator 94 brings theportable monitoring system 68 along the maintenance route and connects theportable monitoring system 68 to the fixedmonitoring system 12 with thecommunication ports 98, 100. The fixedmonitoring system 12 then transfers the data to theportable monitoring system 68. Additionally, theportable monitoring system 68 may connect directly to thesensors 62 and collect new data without it being stored by the fixedmonitoring system 12. - The
portable monitoring system 68 may also, atblock 118, analyze the stored and/or new data for patterns or indications of operation conditions of theturbine system 10. The operator 94 may analyze the data collected either from the fixedmonitoring system 12 or from thesensors 62 and subsequently collect additional data from thesensors 62 based on the analysis. For example, if the analyzed data from the fixedmonitoring system 12 indicates an increase in vibration from a section of theturbine system 10, the operator 94 may instruct theportable monitoring system 68 to collect more data from that section to confirm or deny the vibration condition. Furthermore, atblock 120, the process 110 includes delivering the analysis. Delivery may include upload to networks such as thesystems FIG. 1 . Thenetworks shaft 32, then thenetworks shaft 32 maintenance department. Theportable monitoring system 68 may generatereports 122 that organize the analyzed data into a readily understood formal. These reports may then be used to plan and adjust a servicing schedule for theturbine system 10. Theportable system 68 may also prepare thereports 122 in the field and deliver them to interested parties. - Technical effects of the invention include the
turbine system 10 withsensors 62 that monitor and detect indications of operation. Thesensors 62 deliver the detected conditions to either the fixedmonitoring system 12 or theportable monitoring system 68, or both. The fixedmonitoring system 12 contains amemory 14 that stores the conditions and signals from thesensors 62. Thememory 14 may be configured to store high resolution signals for a week, a month, a year, or longer. Theportable monitoring system 68 is assigned to monitor several gas turbine systems and thus is present only when a maintenance schedule is desired. Theportable monitoring system 68 connects to the fixedmonitoring system 12 when it is present and recovers the stored data. Theportable monitoring system 68 also analyzes the data to generate data that is easy to read, and/or identifies likely maintenance issue for theturbine system 10. - This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/196,831 US20190162588A1 (en) | 2014-01-09 | 2018-11-20 | Systems and methods for storage and analysis of periodic waveform data |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/151,297 US10139267B2 (en) | 2014-01-09 | 2014-01-09 | Systems and methods for storage and analysis of periodic waveform data |
US16/196,831 US20190162588A1 (en) | 2014-01-09 | 2018-11-20 | Systems and methods for storage and analysis of periodic waveform data |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/151,297 Continuation US10139267B2 (en) | 2014-01-09 | 2014-01-09 | Systems and methods for storage and analysis of periodic waveform data |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190162588A1 true US20190162588A1 (en) | 2019-05-30 |
Family
ID=52293199
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/151,297 Expired - Fee Related US10139267B2 (en) | 2014-01-09 | 2014-01-09 | Systems and methods for storage and analysis of periodic waveform data |
US16/196,831 Abandoned US20190162588A1 (en) | 2014-01-09 | 2018-11-20 | Systems and methods for storage and analysis of periodic waveform data |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/151,297 Expired - Fee Related US10139267B2 (en) | 2014-01-09 | 2014-01-09 | Systems and methods for storage and analysis of periodic waveform data |
Country Status (3)
Country | Link |
---|---|
US (2) | US10139267B2 (en) |
EP (1) | EP3092535A1 (en) |
WO (1) | WO2015105611A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6386488B2 (en) * | 2016-03-17 | 2018-09-05 | ファナック株式会社 | Operation management method and program for machine tool |
US9683454B1 (en) | 2016-06-29 | 2017-06-20 | General Electric Company | Method and system for monitoring non-rotating turbomachine parts |
US10830668B2 (en) * | 2017-05-08 | 2020-11-10 | Southwest Research Institute | Engine vibration imager |
US20190301300A1 (en) * | 2018-03-28 | 2019-10-03 | Pratt & Whitney Canada Corp. | Systems and methods for engine vibration monitoring |
US20230216339A1 (en) * | 2021-12-31 | 2023-07-06 | Duke Energy Corporation | Systems and methods for differential power generation |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4924418A (en) * | 1988-02-10 | 1990-05-08 | Dickey-John Corporation | Universal monitor |
US6801877B2 (en) * | 1993-11-12 | 2004-10-05 | Entek Ird International Corporation | Portable, self-contained data collection systems and methods |
US6556956B1 (en) * | 2000-06-30 | 2003-04-29 | General Electric Company | Data acquisition unit for remote monitoring system and method for remote monitoring |
US6925385B2 (en) | 2003-05-16 | 2005-08-02 | Seawest Holdings, Inc. | Wind power management system and method |
US20100280872A1 (en) | 2009-08-27 | 2010-11-04 | Scholte-Wassink Hartmut | Methods and systems for monitoring and scheduling operations and maintenance activities |
US8665104B2 (en) * | 2011-04-29 | 2014-03-04 | General Electric Company | Systems and methods for protecting rotating machines |
ITCO20120008A1 (en) | 2012-03-01 | 2013-09-02 | Nuovo Pignone Srl | METHOD AND SYSTEM FOR MONITORING THE CONDITION OF A GROUP OF PLANTS |
GB2514980B (en) * | 2012-04-10 | 2018-12-19 | Lockheed Corp | Efficient health management, diagnosis and prognosis of a machine |
US20130326383A1 (en) * | 2012-06-04 | 2013-12-05 | Roger Anthony Gatti | Vibration data collection and processing for a gas turbine engine |
-
2014
- 2014-01-09 US US14/151,297 patent/US10139267B2/en not_active Expired - Fee Related
- 2014-12-10 EP EP14824635.8A patent/EP3092535A1/en not_active Withdrawn
- 2014-12-10 WO PCT/US2014/069448 patent/WO2015105611A1/en active Application Filing
-
2018
- 2018-11-20 US US16/196,831 patent/US20190162588A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP3092535A1 (en) | 2016-11-16 |
US20150192456A1 (en) | 2015-07-09 |
US10139267B2 (en) | 2018-11-27 |
WO2015105611A1 (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190162588A1 (en) | Systems and methods for storage and analysis of periodic waveform data | |
US6499114B1 (en) | Remote diagnostic system and method collecting sensor data according to two storage techniques | |
US9244042B2 (en) | Vibration condition monitoring system and methods | |
US9625901B2 (en) | Monitoring system for a gas turbine engine | |
EP2559863A2 (en) | Method and system for analysis of turbomachinery | |
US11939875B2 (en) | Gas turbine engine drive system health monitor | |
US20160363127A1 (en) | Systems and methods for monitoring a compressor | |
JP2008180697A (en) | System and method for converting clearance data into vibration data | |
JP2002152862A (en) | Data collection unit for remote supervisory system, and remote supervisory method | |
JP2015108375A (en) | System and method for detecting at-fault combustor | |
EP3239477A1 (en) | Micro thermal imaging system for turbine engines | |
JP2012075308A (en) | Monitoring and diagnosing method for generator operation | |
US20170038275A1 (en) | Monitoring system for turbomachinery | |
EP4016014A1 (en) | Cloud-based acoustic monitoring, analysis, and diagnostic for power generation system | |
Przysowa | Blade vibration monitoring in a low-pressure steam turbine | |
US20160348532A1 (en) | High speed recorder for a gas turbine engine | |
JP5320448B2 (en) | Apparatus evaluation method and evaluation system | |
Ramadhan et al. | Application of Adaptive GPA to an Industrial Gas Turbine Using Field Data | |
US11143055B2 (en) | Method of monitoring a gas turbine engine to detect overspeed events and record related data | |
Meher-Homji et al. | ON LINE CONDITION MONITORING SYSTEMS FOR OFFSHORE TURBOMACHINERY SYSTEM DESIGN AND OPERATING EXPERIENCE | |
Mochi et al. | Remote Diagnostics of the Alliance Gas Pipeline System Architecture and Initial Operating Experience | |
AUNG MYINT OO | Knowledge Based Management For Rotating Equipment Diagnostics | |
Bridgeman et al. | Instrumenting and acquiring data for the WR21 gas turbine development programme | |
Whyte | Aircraft airborne condition monitoring experiences and expectations | |
Inabuaye-Omim | Industrial Gas Turbine Condition Monitoring System: An Overview |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: BAKER HUGHES, A GE COMPANY, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:056442/0072 Effective date: 20170703 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: BAKER HUGHES, A GE COMPANY, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:056846/0372 Effective date: 20170703 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |