US20190155390A1 - Haptic output device and method of generating a haptic effect in a haptic output device - Google Patents

Haptic output device and method of generating a haptic effect in a haptic output device Download PDF

Info

Publication number
US20190155390A1
US20190155390A1 US16/208,383 US201816208383A US2019155390A1 US 20190155390 A1 US20190155390 A1 US 20190155390A1 US 201816208383 A US201816208383 A US 201816208383A US 2019155390 A1 US2019155390 A1 US 2019155390A1
Authority
US
United States
Prior art keywords
output device
electrode
haptic output
location
touch input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/208,383
Inventor
Juan Manuel Cruz Hernandez
Danny A. Grant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immersion Corp
Original Assignee
Immersion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immersion Corp filed Critical Immersion Corp
Priority to US16/208,383 priority Critical patent/US20190155390A1/en
Assigned to IMMERSION CORPORATION reassignment IMMERSION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CRUZ-HERNANDEZ, JUAN MANUEL, GRANT, DANNY A.
Publication of US20190155390A1 publication Critical patent/US20190155390A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present invention is related to a haptic output device and a method of generating a haptic effect in a haptic output device.
  • Touch sensitive surfaces also known as touch surfaces
  • a touch surface may be provided by a touch screen, for example a capacitive touch screen, a touch pad, for example in a laptop, or an automotive controller.
  • Touch surfaces do not typically provide haptic effects to the users of the touch surfaces. It is desirable to provide a haptic output device that provides haptic effects when a user interacts with the touch surface of the haptic output device.
  • a haptic output device that includes a touch surface; a sensor configured to sense an input at the touch surface; and a controller configured to read the sensor, identify a location of the input, switch from a read mode to a write mode, and write a voltage based on the location of the input to generate an electrostatic output.
  • the haptic output device includes a touch screen comprising the touch surface.
  • the touch screen is a capacitive touch screen.
  • the controller is configured to write the voltage to an entire area of the capacitive touch screen.
  • the controller is configured to write the voltage to an area proximate the location of the input.
  • the senor is configured to sense a plurality of inputs, and wherein the controller is configured to identify locations of the inputs on the touch surface.
  • the controller is configured to write the voltage to areas corresponding to the locations of the inputs to generate a plurality of localized electrostatic outputs.
  • the capacitive touch screen comprises an insulating outer layer comprising the surface, and an electrode proximate the insulating outer layer, wherein the electrode is configured to generate the electrostatic output.
  • the haptic output device includes a plurality of electrodes proximate the insulating outer layer, wherein the controller is configured to drive at least one electrode of the plurality of electrodes closest to the location of the input to generate the electrostatic output.
  • the haptic output device includes a plurality of electrodes proximate the insulating outer layer, wherein the controller is configured to drive different electrodes of the plurality of electrodes to generate multi-touch localized electrostatic outputs.
  • the haptic output device includes a plurality of electrodes proximate the insulating outer layer, wherein the controller is configured to write the voltage to one of the plurality of electrodes proximate a first location, then write the voltage to another one of the plurality of electrodes proximate a second location to transition the electrostatic output from the first location to the second location as the input is moved from the first location to the second location.
  • the controller is configured to modulate an overall power delivered by each electrode of the plurality of electrodes according to a current location of the input.
  • the overall power delivered by each electrode is a function of the location of the input relative to each electrode.
  • a method for generating a haptic effect at a surface of a haptic output device comprising a touch surface.
  • the method includes sensing an input on the touch surface with a sensor; reading a first voltage from the sensor sensing the input on the touch surface with a controller; determining a location of the input with the controller; switching the controller from a read mode to a write mode; and writing a second voltage based on the sensed location of the input, with the controller, to generate an electrostatic output.
  • the touch surface is provided by a capacitive touch screen.
  • the writing comprises writing the second voltage to an entire area of the capacitive touch screen.
  • the writing comprises writing the second voltage to an area proximate the sensed location.
  • the sensing comprises sensing a plurality of inputs and locations of the inputs on the touch surface.
  • the writing comprises writing the second voltage to areas corresponding to the locations of the inputs to generate a plurality of localized electrostatic outputs.
  • the capacitive touch screen comprises an insulating outer layer comprising the touch surface, and an electrode proximate the insulating outer layer.
  • the electrode is configured to generate the electrostatic output.
  • the capacitive touch screen comprises a plurality of electrodes proximate the insulating outer layer
  • the method includes driving at least one electrode of the plurality of electrodes, with the controller, closest to a location to generate the electrostatic output.
  • the capacitive touch screen comprises a plurality of electrodes proximate the insulating outer layer, and the method comprises driving different electrodes of the plurality of electrodes, with the controller, to generate multi-touch localized electrostatic outputs.
  • the capacitive touch screen comprises a plurality of electrodes proximate the insulating outer layer
  • the method includes writing the second voltage to one of the plurality of electrodes proximate a first location, with the controller, sensing a second input at a second location with a sensor, determining the second location with the controller, and writing the second voltage to another one of the plurality of electrodes proximate the second location to transition the electrostatic output from the first location to the second location as the input is moved from the first location to the second location.
  • the method includes modulating, with the controller, an overall power delivered by each electrode according to a current location of the input.
  • the overall power delivered by each electrode is a function of the location of the input relative to each electrode.
  • the method includes measuring impedance at the touch surface at the location of the input, and adjusting the writing the second voltage to adjust the electrostatic output.
  • the impedance is measured by the sensor.
  • a method for generating a haptic effect at a surface of a haptic output device comprising a touch surface.
  • the method includes sensing an input on the touch surface with a sensor; reading a first voltage from the sensor sensing the input on the touch surface with a controller; determining a location of the input with a controller; and writing a second voltage based on the sensed location of the input to generate an electrostatic output with the controller.
  • the second voltage is about the same as the first voltage.
  • the second voltage comprises a dynamic voltage value.
  • the touch surface is provided by a capacitive touch screen comprising a plurality of electrodes
  • the writing the second voltage comprises writing the second voltage to at least one electrode proximate the location of the input.
  • the method includes measuring impedance at the touch surface at the location of the input, and adjusting the writing the second voltage to adjust the electrostatic output.
  • the impedance is measured by the sensor.
  • FIG. 1 schematically illustrates a haptic output device in accordance with an embodiment of the present invention
  • FIG. 2 schematically illustrates the haptic output device in accordance with an embodiment of the present invention
  • FIG. 3 schematically illustrates the haptic output device in accordance with an embodiment of the present invention
  • FIG. 4 schematically illustrates an embodiment of an insulating layer of the haptic output device of FIG. 2 ;
  • FIG. 5 is a flow diagram of a method for generating a haptic effect at a surface of a haptic output device.
  • FIG. 6 is a flow diagram of a method for generating a haptic effect at a surface of a haptic output device.
  • FIG. 1 illustrates an embodiment of a user interface in the form of a haptic output device 100 configured to provide a haptic effect to a user of the haptic output device 100 .
  • the haptic output device 100 may be, for example, part of tablet, a phone, a music player, a video player, a graphic display, an e-book reader, a gamepad, a touch pad, an automotive dashboard, a steering wheel, some combination of the aforementioned devices, or may be some other general device that includes a user interface.
  • the haptic output device 100 includes a touch screen 110 having a touch surface 112 , a display 120 beneath the touch screen 110 , and a controller 130 , which are described in further detail below.
  • haptic output device 100 that includes a touch screen
  • other embodiments within the scope of the present invention may not include a display and a touch screen, but instead include the touch surface 112 without the touch screen.
  • the illustrated embodiment discussed herein should not be considered to be limiting in any way.
  • a haptic effect refers to a stimulus or force, including but not limited to a vibration, an attractive or repulsive force, a voltage or current, some other mechanical or electromagnetic force, heating or cooling, or some other stimulus.
  • the haptic effect may comprise one force or stimulus or a combination of forces and/or stimuli.
  • a plurality of haptic effects may be combined to form an overall haptic effect.
  • the haptic effect may be output to provide feedback to a user or object interacting with the haptic output device 100 .
  • the haptic effect may provide feedback through an electrostatic output.
  • the electrostatic output may be used to generate a force on an object, like a finger at the user interface, to simulate a friction force as the finger is moved while in contact with the haptic output device 100 at the user interface.
  • the electrostatic output may be used to send an electric signal, e.g., a voltage or current, to an object that can perceive the signal, like a nerve of the finger or a sensor in a stylus, which can provide a texture effect to the user.
  • the touch screen 110 is a capacitive touch screen. In an embodiment, the touch screen is a surface capacitive touch screen. In an embodiment, the touch screen 110 is a projected capacitive touch screen.
  • the touch screen 110 may include a conductive layer 114 and an insulating layer 116 .
  • the conductive layer 114 may include any semiconductor or other conductive material, such as copper, aluminum, gold, silver, conductive polymers, carbon nanotubes, etc.
  • the conductive layer 114 may include a sensor 118 or a plurality of sensors.
  • the insulating layer 116 may be glass, plastic, polymer, or any other insulating material.
  • the haptic output device 100 interfaces with the user by being configured to sense an input, which may be an object that is touching the touch surface 112 of the touch screen 110 , with the sensor 118 .
  • the object may be a user's finger F, as illustrated in FIG. 1 , a palm of the user's hand, or any other part of the user's body that can sense a haptic effect.
  • the object may also be a stylus or some other device that can be sensed to be touching the surface 112 of the touch screen 110 .
  • the haptic output device 100 may sense the presence of the object touching the surface 112 of the touch screen 110 through capacitive, resistive, or inductive coupling, but is not limited to those techniques.
  • the controller 130 may provide an electric signal to the conductive layer 114 .
  • the electric signal may be an AC or time varying signal that capacitively couples the conductive layer 114 with an object near or touching the touch screen 110 .
  • the AC signal may be generated by a high-voltage amplifier.
  • the haptic output device 100 may also rely on principles other than or in addition to capacitive coupling to generate a haptic effect.
  • the capacitive coupling may generate a haptic effect by stimulating parts of the object near or touching the touch screen 110 , such as mechanoreceptors in the skin of a user's finger F or components in a stylus that can respond to the coupling.
  • the mechanoreceptors in the skin may be stimulated and sense the capacitive coupling as a vibration or some more specific sensation, which may simulate a texture or friction force, particularly when the finger F is moved across the surface 112 of the touch screen.
  • the conductive layer 114 may be applied with an AC voltage signal from the controller 130 that couples with conductive parts of a user's finger F.
  • the capacitive coupling may be provided to generate an electrostatic output.
  • the capacitive coupling may be provided to simulate a friction force or texture on the surface 112 of the touch screen 110 .
  • a friction force is simulated in that while the surface 112 of the touch screen 110 may be smooth, the capacitive coupling may produce an attractive force between an object near the touch screen 110 and the conductive layer 114 .
  • the attractive force increases the friction on the surface 112 even when the topography of the material at the surface 112 has not changed. Varying the levels of attraction between the object and the conductive layer 114 may vary the friction on an object moving across the surface 112 of the touch screen 110 . Varying the friction force simulates a change in the coefficient of friction.
  • the user may sense a texture of prickliness, graininess, bumpiness, roughness, stickiness, an edge, a button, or some other texture via the electrostatic outputs that are generated.
  • Texture does not have a coefficient of friction change on the surface 112 , but instead is created by specific sensations that are sensed by the user's skin mechanoreceptors.
  • the user's skin mechanoreceptors may also be stimulated to have a general sensation as the finger F moves across the touch screen 110 . Therefore, the capacitive coupling may be used to simulate a friction force or texture by generating a signal that couples with an object near or touching the touch screen 110 .
  • the sensor 118 and/or controller 130 may measure the impedance at the surface 112 of the touch screen 110 .
  • the sensor 118 and/or controller 130 may measure the impedance by applying a pulse across the surface 112 and measuring the surface voltage or by measuring the strength of the capacitive coupling.
  • the sensor 118 and/or controller 130 may use other known techniques for measuring impedance, and may compensate for varying ambient conditions such as the moisture in the air or temperature.
  • the haptic effect may be adjusted based on the impedance of a person. For example, a more forceful haptic effect may be applied to an object with higher impedance and a less forceful effect for an object with lower impedance.
  • the touch screen 110 may not have an insulating layer, so that an object can directly touch the conductive layer 114 .
  • a haptic effect may be generated by passing an electrical current from the conductive layer 114 to the object.
  • the insulating layer 116 may include one or more electrodes 122 in the insulating layer 116 that can pass current to objects that touch the surface 112 of the touch screen 110 at a location proximate to the electrode(s) 122 as the objects move across the insulating layer 116 .
  • the conductive layer 114 may include one or more electrodes 124 that can generate an electrostatic output to objects that touch the surface 112 of the touch screen 110 at a location proximate to the electrode(s) 124 as the objects move across the insulating layer 116 .
  • an electrode that is part of the sensor 118 may generate an electrostatic output.
  • one or more electrodes 126 , 126 A, 1266 may be located in between the conductive layer 114 and the insulating layer 116 .
  • the one or more electrodes 126 , 126 A, 126 B may generate an electrostatic output to the objects that touch the surface 112 of the touch screen 110 at a location proximate to the electrode(s) 126 , 126 A, 126 B as the objects move across the insulating layer 116 .
  • the controller 130 is configured to read an output of the sensor 118 , which may be a voltage, and to identify a location of the input that was sensed by the sensor 118 via the output of the sensor 118 when the controller 130 is in a read mode.
  • the controller 130 is also configured to operate in a write mode in which the controller 130 writes a signal, which may be a voltage, to an electrode, such as the electrode 124 in the conductive layer 114 (see FIG. 1 ) or the electrode 122 in the insulating layer 116 (see FIG. 2 ) or the electrode 126 in between the conductive layer 114 and the insulating layer 116 (see FIG. 3 ), to generate an electrostatic charge on, for example, the user's finger F.
  • the electrostatic charge may be felt as an electrostatic output, which provides the haptic effect.
  • the strength of the electrostatic output may depend, among other things, on the thickness of the insulating layer 116 that separates the electrode 122 , 124 , 126 from the skin of the user's finger F.
  • the insulating layer 116 may include an outer insulating layer 116 A that may be used to improve the strength and durability of the touch screen 110 .
  • the outer insulating layer 116 A comprises glass.
  • the outer insulating layer 116 A comprises a thermoplastic.
  • a second insulating layer 116 B is provided in addition to the outer insulating layer 116 A.
  • the second insulating layer 116 B comprises glass.
  • the outer insulating layer 116 A comprises a thermoplastic having a thickness of less than 0 . 5 mm, and the second insulating layer 116 B comprises glass.
  • the insulating layer 116 is a single layer of glass.
  • an electrode 128 proximate to the outer insulating layer 116 A may be used specifically for generating electrostatic outputs. Additional, dedicated electronics for driving the electrostatic outputs in the electrode 128 , and also to coordinate the reading of the position and writing to the electrostatic electrode 128 may be provided to minimize and even avoid potential capacitive sensing issues.
  • the controller 130 is configured to switch from a read mode in which the input or touch is sensed to a write mode in which a voltage is written or provided to generate an electrostatic charge and electrostatic output on the touching finger F.
  • the voltage may be written to at least one of the electrodes 122 , 124 , 126 , 128 described above.
  • the haptic output device 100 is configured to multiplex between the sensing of the touch and the writing of the voltage to generate an electrostatic change and electrostatic output on the touching finger F.
  • electrostatic outputs may be implemented by multiplexing between reading the sensor 118 that senses a touch and writing voltage to create the haptic effect.
  • the voltage may be written to at least one of the electrodes 122 , 124 , 126 , 128 described above. This may be a general technique for both surface capacitive touch screens and projected capacitive touch screens.
  • multiplexing may be used between the sensing of the touch and the writing of the voltage to generate an electrostatic charge on the touching finger F.
  • the method may include reading the sensor 118 that has sensed a touch, switching from reading to writing, writing a desired voltage based on the sensed location of the touch to create an electrostatic output, returning to reading the sensor 118 , etc.
  • the desired voltage may be written to at least one of the electrodes 122 , 124 , 126 , 128 described above.
  • the method may include reading the sensor 118 that has sensed a touch, obtaining a location of the touch, switching from reading to writing (e.g., sensing to actuation), and writing a desired voltage to the area around the touch location. Because projected capacitive touch screen technology allows for multi-touch, different locations can be selected, and electrostatic outputs may be applied to the specific locations without writing to the whole touch surface area. The method may be repeated with the reading of another touch, etc.
  • the timing for the switching between the reading and writing (sensing and actuating) modes of the controller 120 may depend on the settling time of the signals.
  • the ordering of the reading and writing may be adjusted. For example, in an embodiment, reading from a first electrode 126 A while writing to a second electrode 126 B (see FIG. 3 ) may occur simultaneously.
  • a higher voltage may be used while sensing a touch to minimize and even avoid the need to set the read and write voltages to two different levels.
  • the electronics drivers use a small voltage for sensing, but this voltage may potentially be high enough to generate electrostatic outputs.
  • an embodiment of a method may include reading a touch position using traditional voltage levels, determining a touch location, and at the touch location, reading the touch position by using electrostatic output voltage levels. Because voltage levels will be dynamic for electrostatic outputs, the processing of the sensing may be done by using this dynamic value. A potential advantage of this embodiment would be to minimize the time required to wait for settling voltages between the read and write cycles.
  • the output may be localized, because different locations are known and may be accessed separately.
  • the controller 130 may actively track the current voltage level for the read cycle, and adjust the value accordingly to determine an accurate location of the input.
  • some electrodes 140 may be read with normal voltage and other electrodes 140 may be read with a higher voltage than the normal voltage.
  • the size may be modified in order to have a larger area to produce electrostatic outputs.
  • the haptic effect may be modulated as a function of the area covered by the electrode, or as a function of the number of electrodes. For example, if different users with different finger sizes use the same touch screen 110 , or if a single user touches the touch screen 110 with multiple fingers having different contact areas, such as a pinky and a thumb, the contact area information can be used to adjust the magnitude of the haptic effect so that each finger perceives the same haptic effect.
  • a plurality of electrodes may be used instead of a single electrode in order to create the haptic effect.
  • the controller 130 may be used to determine the optimum output location to minimize power or isolate the haptic effect to a specific location. After the optimum output location has been determined, the controller 130 may send signal to drive the electrode closest to the optimum output location.
  • a user may provide multiple inputs to the touch screen 110 with, for example, two or more fingers at two different locations.
  • the controller 130 may be used to drive different electrodes at different locations separately to create multi-touch localized haptic effects.
  • the localized haptic effects may be provided so that one finger feels a stronger haptic effect than the other finger, or as the fingers are moved closer to one another across the surface 112 of the touch screen 110 , the haptic effect may change based on location of one finger relative to the other.
  • the controller 130 may be configured to transition haptic effects from one electrode to the other as the user's finger moves from electrode to electrode, and modulate the overall power delivered by each electrode according to the current location of the user's finger.
  • the power delivered to the finger by each electrode may be a function of the finger's location relative to the electrode. If the finger is located over a first electrode, the power delivered by the first electrode may be at level X to generate haptic effect A. If the finger is located over a second electrode, the power delivered by the second electrode may be at level Y to generate haptic effect B.
  • the power delivered to the first electrode may be one-half of level X and the power delivered to the second electrode may be one-half of level Y to generate haptic effect C.
  • level X and level Y may be the same or substantially the same, and haptic effects A, B, and C may be the same or substantially the same, so that the haptic effect felt by the user is consistent across the surface 112 of the touch screen 110 .
  • the haptic effects may be generated one at a time, or can be combined.
  • a voltage may be applied to the conductive layer 114 at a level high enough to both attract the skin of a finger F touching the touch screen 110 and to stimulate mechanoreceptors within the skin.
  • electrostatic forces may be produced on the conductive layer 114 and the insulating layer 116 (that includes electrodes) to create mechanical motion in those layers.
  • FIG. 5 illustrates a method 500 for generating a haptic effect in a haptic output device in accordance with an embodiment of the invention.
  • the method 500 begins at 502 .
  • an input on the surface 112 of the touch screen 110 is sensed with a sensor 118 .
  • a voltage is read from the sensor 118 that senses the input on the surface 112 of the touch screen 110 by the controller 130 .
  • the location of the input is determined by the controller 130 .
  • the controller 130 is switched from a read mode to a write mode.
  • a voltage based on the sensed location of the input is written by the controller 130 to generate an electrostatic output.
  • the voltage may be written to an electrode located at or near the sensed location of the input.
  • a decision is made whether to continue the method or end the method. If the method 500 is continued, the method 500 returns to 504 and another input on the surface 112 of the touch screen 110 is sensed with the sensor 118 . If the method 500 is ended, the method 500 ends at 516 .
  • FIG. 6 illustrates a method 600 for generating a haptic effect in a haptic output device in accordance with an embodiment of the invention.
  • the method 600 begins at 602 .
  • an input on the surface 112 of the touch screen 110 is sensed with a sensor 118 .
  • a voltage is read from the sensor 118 that senses the input on the surface 112 of the touch screen 110 by the controller 130 .
  • the location of the input is determined by the controller 130 .
  • a voltage based on the sensed location of the input is written by the controller 130 to generate an electrostatic output.
  • the voltage that is written by the controller 130 is about the same as the voltage that is read by the controller 130 .

Abstract

A haptic output device includes a touch surface, a sensor configured to sense an input at the touch surface, and a controller configured to read the sensor, identify a location of the input, switch from a read mode to a write mode, and write a voltage based on the location of the input to generate an electrostatic output.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/078,335, filed Mar. 23, 2016, which is a continuation of U.S. patent application Ser. No. 13/605,589, filed Sep. 6, 2012, which claims the benefit of priority from U. S. Provisional Patent Application No. 61/531,251, filed Sep. 6, 2011, the entire content of all are incorporated herein by reference.
  • FIELD
  • The present invention is related to a haptic output device and a method of generating a haptic effect in a haptic output device.
  • BACKGROUND
  • Touch sensitive surfaces, also known as touch surfaces, are used in a variety of applications. For example, a touch surface may be provided by a touch screen, for example a capacitive touch screen, a touch pad, for example in a laptop, or an automotive controller. Touch surfaces do not typically provide haptic effects to the users of the touch surfaces. It is desirable to provide a haptic output device that provides haptic effects when a user interacts with the touch surface of the haptic output device.
  • SUMMARY
  • According to an aspect of the present invention, there is provided a haptic output device that includes a touch surface; a sensor configured to sense an input at the touch surface; and a controller configured to read the sensor, identify a location of the input, switch from a read mode to a write mode, and write a voltage based on the location of the input to generate an electrostatic output.
  • In an embodiment of the haptic output device, the haptic output device includes a touch screen comprising the touch surface.
  • In an embodiment of the haptic output device, the touch screen is a capacitive touch screen.
  • In an embodiment of the haptic output device, the controller is configured to write the voltage to an entire area of the capacitive touch screen.
  • In an embodiment of the haptic output device, the controller is configured to write the voltage to an area proximate the location of the input.
  • In an embodiment of the haptic output device, the sensor is configured to sense a plurality of inputs, and wherein the controller is configured to identify locations of the inputs on the touch surface.
  • In an embodiment of the haptic output device, the controller is configured to write the voltage to areas corresponding to the locations of the inputs to generate a plurality of localized electrostatic outputs.
  • In an embodiment of the haptic output device, the capacitive touch screen comprises an insulating outer layer comprising the surface, and an electrode proximate the insulating outer layer, wherein the electrode is configured to generate the electrostatic output.
  • In an embodiment of the haptic output device, the haptic output device includes a plurality of electrodes proximate the insulating outer layer, wherein the controller is configured to drive at least one electrode of the plurality of electrodes closest to the location of the input to generate the electrostatic output.
  • In an embodiment of the haptic output device, the haptic output device includes a plurality of electrodes proximate the insulating outer layer, wherein the controller is configured to drive different electrodes of the plurality of electrodes to generate multi-touch localized electrostatic outputs.
  • In an embodiment of the haptic output device, the haptic output device includes a plurality of electrodes proximate the insulating outer layer, wherein the controller is configured to write the voltage to one of the plurality of electrodes proximate a first location, then write the voltage to another one of the plurality of electrodes proximate a second location to transition the electrostatic output from the first location to the second location as the input is moved from the first location to the second location.
  • In an embodiment of the haptic output device, the controller is configured to modulate an overall power delivered by each electrode of the plurality of electrodes according to a current location of the input.
  • In an embodiment of the haptic output device, the overall power delivered by each electrode is a function of the location of the input relative to each electrode.
  • According to an aspect of the present invention, there is provided a method for generating a haptic effect at a surface of a haptic output device comprising a touch surface. The method includes sensing an input on the touch surface with a sensor; reading a first voltage from the sensor sensing the input on the touch surface with a controller; determining a location of the input with the controller; switching the controller from a read mode to a write mode; and writing a second voltage based on the sensed location of the input, with the controller, to generate an electrostatic output.
  • In an embodiment of the method, the touch surface is provided by a capacitive touch screen.
  • In an embodiment of the method, the writing comprises writing the second voltage to an entire area of the capacitive touch screen.
  • In an embodiment of the method, the writing comprises writing the second voltage to an area proximate the sensed location.
  • In an embodiment of the method, the sensing comprises sensing a plurality of inputs and locations of the inputs on the touch surface.
  • In an embodiment of the method, the writing comprises writing the second voltage to areas corresponding to the locations of the inputs to generate a plurality of localized electrostatic outputs.
  • In an embodiment of the method, the capacitive touch screen comprises an insulating outer layer comprising the touch surface, and an electrode proximate the insulating outer layer. The electrode is configured to generate the electrostatic output.
  • In an embodiment of the method, the capacitive touch screen comprises a plurality of electrodes proximate the insulating outer layer, and the method includes driving at least one electrode of the plurality of electrodes, with the controller, closest to a location to generate the electrostatic output.
  • In an embodiment of the method, the capacitive touch screen comprises a plurality of electrodes proximate the insulating outer layer, and the method comprises driving different electrodes of the plurality of electrodes, with the controller, to generate multi-touch localized electrostatic outputs.
  • In an embodiment of the method, the capacitive touch screen comprises a plurality of electrodes proximate the insulating outer layer, and the method includes writing the second voltage to one of the plurality of electrodes proximate a first location, with the controller, sensing a second input at a second location with a sensor, determining the second location with the controller, and writing the second voltage to another one of the plurality of electrodes proximate the second location to transition the electrostatic output from the first location to the second location as the input is moved from the first location to the second location.
  • In an embodiment of the method, the method includes modulating, with the controller, an overall power delivered by each electrode according to a current location of the input.
  • In an embodiment of the method, the overall power delivered by each electrode is a function of the location of the input relative to each electrode.
  • In an embodiment of the method, the method includes measuring impedance at the touch surface at the location of the input, and adjusting the writing the second voltage to adjust the electrostatic output.
  • In an embodiment of the method, the impedance is measured by the sensor.
  • According to an aspect of the present invention, there is provided a method for generating a haptic effect at a surface of a haptic output device comprising a touch surface. The method includes sensing an input on the touch surface with a sensor; reading a first voltage from the sensor sensing the input on the touch surface with a controller; determining a location of the input with a controller; and writing a second voltage based on the sensed location of the input to generate an electrostatic output with the controller.
  • In an embodiment of the method, the second voltage is about the same as the first voltage.
  • In an embodiment of the method, the second voltage comprises a dynamic voltage value.
  • In an embodiment of the method, the touch surface is provided by a capacitive touch screen comprising a plurality of electrodes, and the writing the second voltage comprises writing the second voltage to at least one electrode proximate the location of the input.
  • In an embodiment of the method, the method includes measuring impedance at the touch surface at the location of the input, and adjusting the writing the second voltage to adjust the electrostatic output.
  • In an embodiment of the method, the impedance is measured by the sensor.
  • The embodiments described in the present disclosure may include various features and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that these features and advantages be included within the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The components of the following figures are illustrated to emphasize the general principles of the present disclosure and are not necessarily drawn to scale. Reference characters designating corresponding components are repeated as necessary throughout the figures for the sake of consistency and clarity.
  • FIG. 1 schematically illustrates a haptic output device in accordance with an embodiment of the present invention;
  • FIG. 2 schematically illustrates the haptic output device in accordance with an embodiment of the present invention;
  • FIG. 3 schematically illustrates the haptic output device in accordance with an embodiment of the present invention;
  • FIG. 4 schematically illustrates an embodiment of an insulating layer of the haptic output device of FIG. 2;
  • FIG. 5 is a flow diagram of a method for generating a haptic effect at a surface of a haptic output device; and
  • FIG. 6 is a flow diagram of a method for generating a haptic effect at a surface of a haptic output device.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates an embodiment of a user interface in the form of a haptic output device 100 configured to provide a haptic effect to a user of the haptic output device 100. The haptic output device 100 may be, for example, part of tablet, a phone, a music player, a video player, a graphic display, an e-book reader, a gamepad, a touch pad, an automotive dashboard, a steering wheel, some combination of the aforementioned devices, or may be some other general device that includes a user interface. As illustrated in FIG. 1, the haptic output device 100 includes a touch screen 110 having a touch surface 112, a display 120 beneath the touch screen 110, and a controller 130, which are described in further detail below. Although the embodiments described herein are directed to a haptic output device 100 that includes a touch screen, it should be understood that other embodiments within the scope of the present invention may not include a display and a touch screen, but instead include the touch surface 112 without the touch screen. The illustrated embodiment discussed herein should not be considered to be limiting in any way.
  • A haptic effect refers to a stimulus or force, including but not limited to a vibration, an attractive or repulsive force, a voltage or current, some other mechanical or electromagnetic force, heating or cooling, or some other stimulus. The haptic effect may comprise one force or stimulus or a combination of forces and/or stimuli. A plurality of haptic effects may be combined to form an overall haptic effect. The haptic effect may be output to provide feedback to a user or object interacting with the haptic output device 100. The haptic effect may provide feedback through an electrostatic output. In an embodiment, the electrostatic output may be used to generate a force on an object, like a finger at the user interface, to simulate a friction force as the finger is moved while in contact with the haptic output device 100 at the user interface. In an embodiment, the electrostatic output may be used to send an electric signal, e.g., a voltage or current, to an object that can perceive the signal, like a nerve of the finger or a sensor in a stylus, which can provide a texture effect to the user.
  • In an embodiment, the touch screen 110 is a capacitive touch screen. In an embodiment, the touch screen is a surface capacitive touch screen. In an embodiment, the touch screen 110 is a projected capacitive touch screen.
  • As illustrated in FIG. 1, the touch screen 110 may include a conductive layer 114 and an insulating layer 116. The conductive layer 114 may include any semiconductor or other conductive material, such as copper, aluminum, gold, silver, conductive polymers, carbon nanotubes, etc. The conductive layer 114 may include a sensor 118 or a plurality of sensors. The insulating layer 116 may be glass, plastic, polymer, or any other insulating material.
  • The haptic output device 100 interfaces with the user by being configured to sense an input, which may be an object that is touching the touch surface 112 of the touch screen 110, with the sensor 118. The object may be a user's finger F, as illustrated in FIG. 1, a palm of the user's hand, or any other part of the user's body that can sense a haptic effect. The object may also be a stylus or some other device that can be sensed to be touching the surface 112 of the touch screen 110. The haptic output device 100 may sense the presence of the object touching the surface 112 of the touch screen 110 through capacitive, resistive, or inductive coupling, but is not limited to those techniques.
  • The controller 130 may provide an electric signal to the conductive layer 114. The electric signal may be an AC or time varying signal that capacitively couples the conductive layer 114 with an object near or touching the touch screen 110. The AC signal may be generated by a high-voltage amplifier. The haptic output device 100 may also rely on principles other than or in addition to capacitive coupling to generate a haptic effect. The capacitive coupling may generate a haptic effect by stimulating parts of the object near or touching the touch screen 110, such as mechanoreceptors in the skin of a user's finger F or components in a stylus that can respond to the coupling. The mechanoreceptors in the skin, for example, may be stimulated and sense the capacitive coupling as a vibration or some more specific sensation, which may simulate a texture or friction force, particularly when the finger F is moved across the surface 112 of the touch screen. For example, the conductive layer 114 may be applied with an AC voltage signal from the controller 130 that couples with conductive parts of a user's finger F.
  • In an embodiment, the capacitive coupling may be provided to generate an electrostatic output. In an embodiment, the capacitive coupling may be provided to simulate a friction force or texture on the surface 112 of the touch screen 110. A friction force is simulated in that while the surface 112 of the touch screen 110 may be smooth, the capacitive coupling may produce an attractive force between an object near the touch screen 110 and the conductive layer 114. The attractive force increases the friction on the surface 112 even when the topography of the material at the surface 112 has not changed. Varying the levels of attraction between the object and the conductive layer 114 may vary the friction on an object moving across the surface 112 of the touch screen 110. Varying the friction force simulates a change in the coefficient of friction.
  • As the user touches the touch screen 110 and moves his or her finger F on the touch screen 110, the user may sense a texture of prickliness, graininess, bumpiness, roughness, stickiness, an edge, a button, or some other texture via the electrostatic outputs that are generated. Texture does not have a coefficient of friction change on the surface 112, but instead is created by specific sensations that are sensed by the user's skin mechanoreceptors. The user's skin mechanoreceptors may also be stimulated to have a general sensation as the finger F moves across the touch screen 110. Therefore, the capacitive coupling may be used to simulate a friction force or texture by generating a signal that couples with an object near or touching the touch screen 110.
  • To provide the same attractive force or to provide the same level of stimuli across many different objects or persons, the sensor 118 and/or controller 130 may measure the impedance at the surface 112 of the touch screen 110. The sensor 118 and/or controller 130 may measure the impedance by applying a pulse across the surface 112 and measuring the surface voltage or by measuring the strength of the capacitive coupling. The sensor 118 and/or controller 130 may use other known techniques for measuring impedance, and may compensate for varying ambient conditions such as the moisture in the air or temperature. The haptic effect may be adjusted based on the impedance of a person. For example, a more forceful haptic effect may be applied to an object with higher impedance and a less forceful effect for an object with lower impedance.
  • In an embodiment, the touch screen 110 may not have an insulating layer, so that an object can directly touch the conductive layer 114. A haptic effect may be generated by passing an electrical current from the conductive layer 114 to the object.
  • As illustrated in FIG. 2, in an embodiment, the insulating layer 116 may include one or more electrodes 122 in the insulating layer 116 that can pass current to objects that touch the surface 112 of the touch screen 110 at a location proximate to the electrode(s) 122 as the objects move across the insulating layer 116.
  • As illustrated in FIG. 1, in an embodiment, the conductive layer 114 may include one or more electrodes 124 that can generate an electrostatic output to objects that touch the surface 112 of the touch screen 110 at a location proximate to the electrode(s) 124 as the objects move across the insulating layer 116. In an embodiment, an electrode that is part of the sensor 118 may generate an electrostatic output.
  • As illustrated in FIG. 3, in an embodiment, one or more electrodes 126, 126A, 1266 may be located in between the conductive layer 114 and the insulating layer 116. The one or more electrodes 126, 126A, 126B may generate an electrostatic output to the objects that touch the surface 112 of the touch screen 110 at a location proximate to the electrode(s) 126, 126A, 126B as the objects move across the insulating layer 116.
  • The controller 130 is configured to read an output of the sensor 118, which may be a voltage, and to identify a location of the input that was sensed by the sensor 118 via the output of the sensor 118 when the controller 130 is in a read mode. The controller 130 is also configured to operate in a write mode in which the controller 130 writes a signal, which may be a voltage, to an electrode, such as the electrode 124 in the conductive layer 114 (see FIG. 1) or the electrode 122 in the insulating layer 116 (see FIG. 2) or the electrode 126 in between the conductive layer 114 and the insulating layer 116 (see FIG. 3), to generate an electrostatic charge on, for example, the user's finger F. The electrostatic charge may be felt as an electrostatic output, which provides the haptic effect. The strength of the electrostatic output may depend, among other things, on the thickness of the insulating layer 116 that separates the electrode 122, 124, 126 from the skin of the user's finger F.
  • In an embodiment illustrated in FIG. 4, the insulating layer 116 may include an outer insulating layer 116A that may be used to improve the strength and durability of the touch screen 110. In an embodiment, the outer insulating layer 116A comprises glass. In an embodiment, the outer insulating layer 116A comprises a thermoplastic. In an embodiment, a second insulating layer 116B is provided in addition to the outer insulating layer 116A. In an embodiment, the second insulating layer 116B comprises glass. In an embodiment, the outer insulating layer 116A comprises a thermoplastic having a thickness of less than 0.5 mm, and the second insulating layer 116B comprises glass. In an embodiment, the insulating layer 116 is a single layer of glass. In an embodiment, an electrode 128 proximate to the outer insulating layer 116A may be used specifically for generating electrostatic outputs. Additional, dedicated electronics for driving the electrostatic outputs in the electrode 128, and also to coordinate the reading of the position and writing to the electrostatic electrode 128 may be provided to minimize and even avoid potential capacitive sensing issues.
  • In an embodiment, the controller 130 is configured to switch from a read mode in which the input or touch is sensed to a write mode in which a voltage is written or provided to generate an electrostatic charge and electrostatic output on the touching finger F. The voltage may be written to at least one of the electrodes 122, 124, 126, 128 described above. This way, the haptic output device 100 is configured to multiplex between the sensing of the touch and the writing of the voltage to generate an electrostatic change and electrostatic output on the touching finger F.
  • In an embodiment, electrostatic outputs may be implemented by multiplexing between reading the sensor 118 that senses a touch and writing voltage to create the haptic effect. The voltage may be written to at least one of the electrodes 122, 124, 126, 128 described above. This may be a general technique for both surface capacitive touch screens and projected capacitive touch screens.
  • In an embodiment, multiplexing may be used between the sensing of the touch and the writing of the voltage to generate an electrostatic charge on the touching finger F. For surface capacitive touch screens, the method may include reading the sensor 118 that has sensed a touch, switching from reading to writing, writing a desired voltage based on the sensed location of the touch to create an electrostatic output, returning to reading the sensor 118, etc. The desired voltage may be written to at least one of the electrodes 122, 124, 126, 128 described above.
  • For projected capacitive touch screens, the method may include reading the sensor 118 that has sensed a touch, obtaining a location of the touch, switching from reading to writing (e.g., sensing to actuation), and writing a desired voltage to the area around the touch location. Because projected capacitive touch screen technology allows for multi-touch, different locations can be selected, and electrostatic outputs may be applied to the specific locations without writing to the whole touch surface area. The method may be repeated with the reading of another touch, etc.
  • The timing for the switching between the reading and writing (sensing and actuating) modes of the controller 120 may depend on the settling time of the signals.
  • In embodiments in which the touch screen 110 comprises multiple electrodes, the ordering of the reading and writing may be adjusted. For example, in an embodiment, reading from a first electrode 126A while writing to a second electrode 126B (see FIG. 3) may occur simultaneously.
  • In an embodiment, a higher voltage may be used while sensing a touch to minimize and even avoid the need to set the read and write voltages to two different levels. Typically, the electronics drivers use a small voltage for sensing, but this voltage may potentially be high enough to generate electrostatic outputs. For a surface capacitive touch screen and a projected capacitive touch screen, an embodiment of a method may include reading a touch position using traditional voltage levels, determining a touch location, and at the touch location, reading the touch position by using electrostatic output voltage levels. Because voltage levels will be dynamic for electrostatic outputs, the processing of the sensing may be done by using this dynamic value. A potential advantage of this embodiment would be to minimize the time required to wait for settling voltages between the read and write cycles.
  • For projected capacitive touch screens, the output may be localized, because different locations are known and may be accessed separately.
  • In an embodiment, the controller 130 may actively track the current voltage level for the read cycle, and adjust the value accordingly to determine an accurate location of the input. In an embodiment, some electrodes 140 may be read with normal voltage and other electrodes 140 may be read with a higher voltage than the normal voltage.
  • If the area covered by the conducting layer 114 that includes at least one electrode 124 in a projected capacitive touch screen is too small, the size may be modified in order to have a larger area to produce electrostatic outputs. The haptic effect may be modulated as a function of the area covered by the electrode, or as a function of the number of electrodes. For example, if different users with different finger sizes use the same touch screen 110, or if a single user touches the touch screen 110 with multiple fingers having different contact areas, such as a pinky and a thumb, the contact area information can be used to adjust the magnitude of the haptic effect so that each finger perceives the same haptic effect.
  • In an embodiment, a plurality of electrodes may be used instead of a single electrode in order to create the haptic effect. In an embodiment, after the user input has been sensed, and the controller 130 may be used to determine the optimum output location to minimize power or isolate the haptic effect to a specific location. After the optimum output location has been determined, the controller 130 may send signal to drive the electrode closest to the optimum output location.
  • In an embodiment, a user may provide multiple inputs to the touch screen 110 with, for example, two or more fingers at two different locations. After the inputs have been sensed, the controller 130 may be used to drive different electrodes at different locations separately to create multi-touch localized haptic effects. For example, the localized haptic effects may be provided so that one finger feels a stronger haptic effect than the other finger, or as the fingers are moved closer to one another across the surface 112 of the touch screen 110, the haptic effect may change based on location of one finger relative to the other.
  • In an embodiment, the controller 130 may be configured to transition haptic effects from one electrode to the other as the user's finger moves from electrode to electrode, and modulate the overall power delivered by each electrode according to the current location of the user's finger. For example, the power delivered to the finger by each electrode may be a function of the finger's location relative to the electrode. If the finger is located over a first electrode, the power delivered by the first electrode may be at level X to generate haptic effect A. If the finger is located over a second electrode, the power delivered by the second electrode may be at level Y to generate haptic effect B. If the finger is located in between the first electrode and the second electrode, the power delivered to the first electrode may be one-half of level X and the power delivered to the second electrode may be one-half of level Y to generate haptic effect C. In an embodiment, level X and level Y may be the same or substantially the same, and haptic effects A, B, and C may be the same or substantially the same, so that the haptic effect felt by the user is consistent across the surface 112 of the touch screen 110.
  • The haptic effects may be generated one at a time, or can be combined. For example, a voltage may be applied to the conductive layer 114 at a level high enough to both attract the skin of a finger F touching the touch screen 110 and to stimulate mechanoreceptors within the skin. Simultaneous to this haptic effect, electrostatic forces may be produced on the conductive layer 114 and the insulating layer 116 (that includes electrodes) to create mechanical motion in those layers.
  • FIG. 5 illustrates a method 500 for generating a haptic effect in a haptic output device in accordance with an embodiment of the invention. The method 500 begins at 502. At 504, an input on the surface 112 of the touch screen 110 is sensed with a sensor 118. At 506, a voltage is read from the sensor 118 that senses the input on the surface 112 of the touch screen 110 by the controller 130. At 508, the location of the input is determined by the controller 130. At 510, the controller 130 is switched from a read mode to a write mode. At 512, a voltage based on the sensed location of the input is written by the controller 130 to generate an electrostatic output. The voltage may be written to an electrode located at or near the sensed location of the input. At 514, a decision is made whether to continue the method or end the method. If the method 500 is continued, the method 500 returns to 504 and another input on the surface 112 of the touch screen 110 is sensed with the sensor 118. If the method 500 is ended, the method 500 ends at 516.
  • FIG. 6 illustrates a method 600 for generating a haptic effect in a haptic output device in accordance with an embodiment of the invention. The method 600 begins at 602. At 604, an input on the surface 112 of the touch screen 110 is sensed with a sensor 118. At 606, a voltage is read from the sensor 118 that senses the input on the surface 112 of the touch screen 110 by the controller 130. At 608, the location of the input is determined by the controller 130. At 610, a voltage based on the sensed location of the input is written by the controller 130 to generate an electrostatic output. The voltage that is written by the controller 130 is about the same as the voltage that is read by the controller 130. At 612, a decision is made whether to continue the method or end the method. If the method 600 is continued, the method 600 returns to 604 and another input on the surface 112 of the touch screen 110 is sensed with the sensor 118. If the method 600 is ended, the method 600 ends at 614.
  • Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.

Claims (17)

1-20. (canceled)
21. A haptic output device comprising:
an insulating layer forming a surface of the haptic output device;
one or more electrodes;
a sensor configured to sense a touch input at the surface of the haptic output device; and
a control circuit configured
to sense, via the sensor, the touch input on the surface of the haptic output device,
to determine a size of a contact area between an object applying the touch input and the surface of the haptic output device, and
to apply an electric signal to at least one electrode of the one or more electrodes to generate an electrostatic output with the at least one electrode, wherein a level of the electric signal is based on the size of the contact area between the object applying the touch input and the surface of the haptic output device.
22. The haptic output device of claim 21, wherein the electrostatic output simulates a friction force or texture as the touch input moves on the surface.
23. The haptic output device of claim 21, wherein the one or more electrodes comprises a plurality of electrodes, and wherein the control circuit is configured to select from among the plurality of electrodes a closest electrode to a location of the touch input to generate the electrostatic output.
24. The haptic output device of claim 21, wherein the level of the electrostatic output is further based on a location of the touch input relative to the at least one electrode.
25. The haptic output device of claim 21, wherein the level of the electrostatic output is further based on an impedance of the surface at a location of the touch input.
26. The haptic output device of claim 21, wherein the control circuit is configured to apply the electric signal at a first level if the touch input is disposed over the at least one electrode, and to apply the electric signal at a fraction of the first level if the touch input is between the at least one electrode and another electrode.
27. The haptic output device of claim 21, wherein the haptic output device is part of a phone, a tablet computer, an automotive dashboard, or a steering wheel.
28. A haptic output device comprising:
an insulating layer forming a surface of the haptic output device;
one or more electrodes;
a sensor configured to sense a plurality of touch inputs at the surface of the haptic output device; and
a control circuit configured
to sense, via the sensor, a location of a first touch input of the plurality of touch inputs and a location of a second touch input of the plurality of touch inputs, and
to apply an electric signal to at least one electrode of the one or more electrodes to generate an electrostatic output with the at least one electrode, wherein a level of the electric signal is based on the location of the first touch input relative to the location of the second touch input, wherein the electric signal causes the at least one electrode to generate an electrostatic output.
29. The haptic output device of claim 28, wherein the first touch input and the second touch input are from two different fingers simultaneously touching the surface of the haptic output device.
30. The haptic output device of claim 28, wherein the one or more electrodes include a plurality of electrodes, and the control circuit is configured to drive different electrodes of the plurality of electrodes at different locations to generate multi-touch localized electrostatic outputs for the plurality of respective touch inputs.
31. The haptic output device of claim 28, wherein the haptic output device is part of a phone, a tablet computer, an automotive dashboard, or a steering wheel.
32. A haptic output device comprising:
an insulating layer forming a surface of the haptic output device;
a plurality of electrodes comprising at least a first electrode and a second electrode;
a sensor configured to sense a touch input at the surface of the haptic output device; and
a control circuit configured
to sense, via the sensor, a location of the touch input on the surface of the haptic output device,
to determine whether the location of the touch input is over the first electrode or is between the first electrode and the second electrode,
to write an electric signal to the first electrode to generate an electrostatic output with the first electrode, wherein the electric signal is applied at a first level if the location of the touch input is over the first electrode, and wherein the electric signal is applied at a second level different than the first level if the location of the touch input is between the first electrode and the second electrode.
33. The haptic output device of claim 32, wherein the second level is half of the first level.
34. The haptic output device of claim 32, wherein the control circuit is configured, if the touch input moves from a first location of the first electrode to a second location of the second electrode, to write a second electric signal to the second electrode to transition the electrostatic output from the first location to the second location as the touch input is moved from the first location to the second location.
35. The haptic output device of claim 34, wherein a level of the second electric signal depends on whether the location of the touch input is over the second electrode or is between the first electrode and the second electrode.
36. The haptic output device of claim 32, wherein the haptic output device is part of a phone, a tablet computer, an automotive dashboard, or a steering wheel.
US16/208,383 2011-09-06 2018-12-03 Haptic output device and method of generating a haptic effect in a haptic output device Abandoned US20190155390A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/208,383 US20190155390A1 (en) 2011-09-06 2018-12-03 Haptic output device and method of generating a haptic effect in a haptic output device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161531251P 2011-09-06 2011-09-06
US13/605,589 US9323326B2 (en) 2011-09-06 2012-09-06 Haptic output device and method of generating a haptic effect in a haptic output device
US15/078,335 US9983674B2 (en) 2011-09-06 2016-03-23 Haptic output device and method of generating a haptic effect in a haptic output device
US15/632,644 US10175761B2 (en) 2011-09-06 2017-06-26 Haptic output device and method of generating a haptic effect in a haptic output device
US16/208,383 US20190155390A1 (en) 2011-09-06 2018-12-03 Haptic output device and method of generating a haptic effect in a haptic output device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/632,644 Continuation US10175761B2 (en) 2011-09-06 2017-06-26 Haptic output device and method of generating a haptic effect in a haptic output device

Publications (1)

Publication Number Publication Date
US20190155390A1 true US20190155390A1 (en) 2019-05-23

Family

ID=47752769

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/605,589 Expired - Fee Related US9323326B2 (en) 2011-09-06 2012-09-06 Haptic output device and method of generating a haptic effect in a haptic output device
US15/078,335 Expired - Fee Related US9983674B2 (en) 2011-09-06 2016-03-23 Haptic output device and method of generating a haptic effect in a haptic output device
US15/632,644 Expired - Fee Related US10175761B2 (en) 2011-09-06 2017-06-26 Haptic output device and method of generating a haptic effect in a haptic output device
US16/208,383 Abandoned US20190155390A1 (en) 2011-09-06 2018-12-03 Haptic output device and method of generating a haptic effect in a haptic output device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/605,589 Expired - Fee Related US9323326B2 (en) 2011-09-06 2012-09-06 Haptic output device and method of generating a haptic effect in a haptic output device
US15/078,335 Expired - Fee Related US9983674B2 (en) 2011-09-06 2016-03-23 Haptic output device and method of generating a haptic effect in a haptic output device
US15/632,644 Expired - Fee Related US10175761B2 (en) 2011-09-06 2017-06-26 Haptic output device and method of generating a haptic effect in a haptic output device

Country Status (6)

Country Link
US (4) US9323326B2 (en)
EP (1) EP2754013A4 (en)
JP (4) JP6039672B2 (en)
KR (2) KR101891858B1 (en)
CN (2) CN106095119A (en)
WO (1) WO2013036614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111309145A (en) * 2020-02-05 2020-06-19 吉林大学 Electrostatic force touch rendering method based on physiological and physical modeling

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703947B1 (en) * 2012-08-27 2019-02-27 Siemens Aktiengesellschaft Operating device for a technical system
US9304683B2 (en) * 2012-10-10 2016-04-05 Microsoft Technology Licensing, Llc Arced or slanted soft input panels
US9836150B2 (en) 2012-11-20 2017-12-05 Immersion Corporation System and method for feedforward and feedback with haptic effects
US9330544B2 (en) 2012-11-20 2016-05-03 Immersion Corporation System and method for simulated physical interactions with haptic effects
CN103869952B (en) * 2012-12-17 2018-06-26 富泰华工业(深圳)有限公司 Tactile feedback system and the method that tactile feedback is provided
US9436282B2 (en) * 2013-03-14 2016-09-06 Immersion Corporation Contactor-based haptic feedback generation
US9189098B2 (en) 2013-03-14 2015-11-17 Immersion Corporation Systems and methods for syncing haptic feedback calls
US9939900B2 (en) * 2013-04-26 2018-04-10 Immersion Corporation System and method for a haptically-enabled deformable surface
US10120447B2 (en) 2013-06-24 2018-11-06 Northwestern University Haptic display with simultaneous sensing and actuation
US9729730B2 (en) * 2013-07-02 2017-08-08 Immersion Corporation Systems and methods for perceptual normalization of haptic effects
US9317120B2 (en) 2013-09-06 2016-04-19 Immersion Corporation Multiplexing and demultiplexing haptic signals
JP2015114836A (en) * 2013-12-11 2015-06-22 キヤノン株式会社 Image processing device, tactile control method, and program
FR3015713A1 (en) * 2013-12-19 2015-06-26 Dav MAN INTERFACE MACHINE FOR CONTROLLING AT LEAST TWO FUNCTIONS OF A MOTOR VEHICLE
US9410907B2 (en) * 2013-12-19 2016-08-09 Clarus Vision, Inc. Methods and apparatuses for testing capacitive touch screen films
KR102174679B1 (en) * 2013-12-31 2020-11-06 엘지디스플레이 주식회사 Touch panel
EP3108343B1 (en) * 2014-02-21 2020-01-01 Tanvas, Inc. Haptic display with simultaneous sensing and actuation
US9696806B2 (en) * 2014-07-02 2017-07-04 Immersion Corporation Systems and methods for multi-output electrostatic haptic effects
US9710063B2 (en) 2014-07-21 2017-07-18 Immersion Corporation Systems and methods for determining haptic effects for multi-touch input
US9690381B2 (en) 2014-08-21 2017-06-27 Immersion Corporation Systems and methods for shape input and output for a haptically-enabled deformable surface
CN105446515A (en) * 2014-08-22 2016-03-30 联想(北京)有限公司 Touch device and apparatus comprising same
US10146308B2 (en) * 2014-10-14 2018-12-04 Immersion Corporation Systems and methods for impedance coupling for haptic devices
US9535550B2 (en) 2014-11-25 2017-01-03 Immersion Corporation Systems and methods for deformation-based haptic effects
EP3035158B1 (en) * 2014-12-18 2020-04-15 LG Display Co., Ltd. Touch sensitive device and display device comprising the same
DE102014226760A1 (en) * 2014-12-22 2016-06-23 Volkswagen Aktiengesellschaft Infotainment system, means of locomotion and device for operating an infotainment system of a means of transportation
JP6376035B2 (en) * 2015-04-30 2018-08-22 豊田合成株式会社 Manufacturing method of decorative molded products
US10739853B2 (en) * 2015-06-10 2020-08-11 Northwestern University Method and apparatus for finger position tracking and haptic display using conductive islands
DE102015012178A1 (en) * 2015-09-16 2017-03-16 e.solutions GmbH Touch-sensitive device with haptic feedback
US10664053B2 (en) * 2015-09-30 2020-05-26 Apple Inc. Multi-transducer tactile user interface for electronic devices
KR102422974B1 (en) 2016-01-15 2022-07-21 한국전자통신연구원 Apparatus for controlling hybrid display for providing texture and temperature at the same time and method using the same
AT518250B1 (en) * 2016-03-17 2017-09-15 Bernecker + Rainer Industrie-Elektronik Ges M B H touchscreen
CN109074162A (en) * 2016-04-21 2018-12-21 苹果公司 The haptic user interface of electronic equipment
US9983675B2 (en) 2016-06-10 2018-05-29 Immersion Corporation Systems and methods for monitoring insulation integrity for electrostatic friction
CN107491195A (en) * 2016-06-12 2017-12-19 南昌欧菲光科技有限公司 Detection method, detection means and touch-screen
US10416771B2 (en) 2016-08-03 2019-09-17 Apple Inc. Haptic output system for user input surface
WO2018110434A1 (en) 2016-12-15 2018-06-21 株式会社ソニー・インタラクティブエンタテインメント Vibration device and control system
WO2018110432A1 (en) * 2016-12-15 2018-06-21 株式会社ソニー・インタラクティブエンタテインメント Information processing system, controller device, controller device control method and program
US10963054B2 (en) 2016-12-15 2021-03-30 Sony Interactive Entertainment Inc. Information processing system, vibration control method and program
CN106873821B (en) * 2016-12-26 2020-05-05 捷开通讯(深圳)有限公司 Touch screen and electronic equipment
CN106843615B (en) * 2017-01-03 2019-10-01 京东方科技集团股份有限公司 A kind of display screen and display system
WO2018193514A1 (en) 2017-04-18 2018-10-25 株式会社ソニー・インタラクティブエンタテインメント Vibration control device
JP6833018B2 (en) 2017-04-18 2021-02-24 株式会社ソニー・インタラクティブエンタテインメント Vibration control device
US11013990B2 (en) 2017-04-19 2021-05-25 Sony Interactive Entertainment Inc. Vibration control apparatus
US10061458B1 (en) * 2017-04-20 2018-08-28 Oculus Vr, Llc Hand-held controller using capacitive touch pad
US11458389B2 (en) 2017-04-26 2022-10-04 Sony Interactive Entertainment Inc. Vibration control apparatus
EP3413288A1 (en) * 2017-06-09 2018-12-12 Honda Research Institute Europe GmbH Method for assisting a person in acting in a dynamic environment and corresponding system
JP6771435B2 (en) 2017-07-20 2020-10-21 株式会社ソニー・インタラクティブエンタテインメント Information processing device and location information acquisition method
US11779836B2 (en) 2017-08-24 2023-10-10 Sony Interactive Entertainment Inc. Vibration control apparatus
CN111033441B (en) 2017-08-24 2023-09-12 索尼互动娱乐股份有限公司 Vibration control device
KR102494625B1 (en) * 2017-08-28 2023-02-01 삼성디스플레이 주식회사 Display device
WO2019043781A1 (en) 2017-08-29 2019-03-07 株式会社ソニー・インタラクティブエンタテインメント Vibration control device, vibration control method, and program
CN107688416A (en) * 2017-08-30 2018-02-13 京东方科技集团股份有限公司 Touch base plate, touch-screen, electronic equipment and method of toch control
JP6511210B1 (en) * 2017-10-19 2019-05-15 住友理工株式会社 Capacitive coupling sensor and method of manufacturing the same
JP7087367B2 (en) * 2017-12-08 2022-06-21 富士フイルムビジネスイノベーション株式会社 Information processing equipment, programs and control methods
EP3756974A4 (en) * 2018-09-26 2021-03-31 Sumitomo Riko Company Limited Capacitance sensor, method for manufacturing same, and reticulated soft electrode for capacitance sensor
CN109542267A (en) * 2018-11-14 2019-03-29 Oppo广东移动通信有限公司 Electronic equipment and sliding sense of touch control method
CN114424150B (en) * 2019-09-26 2023-08-04 三菱电机株式会社 Haptic presentation panel, haptic presentation touch display
KR102496161B1 (en) * 2022-02-21 2023-02-06 주식회사 삼원파워텍 Over head lamp of a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032249A1 (en) * 2007-07-30 2009-02-05 Schlumberger Technology Corporation Method and system to obtain a compositional model of produced fluids using separator discharge data analysis
US20100085169A1 (en) * 2008-10-02 2010-04-08 Ivan Poupyrev User Interface Feedback Apparatus, User Interface Feedback Method, and Program

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149918A (en) 1990-10-29 1992-09-22 International Business Machines Corporation Touch sensitive overlay
US6822635B2 (en) * 2000-01-19 2004-11-23 Immersion Corporation Haptic interface for laptop computers and other portable devices
KR20080096854A (en) * 2001-03-09 2008-11-03 임머숀 코퍼레이션 Haptic interface for laptop computers and other portable devices
JP4704599B2 (en) * 2001-05-01 2011-06-15 株式会社東京大学Tlo Haptic presentation method and tactile presentation device
JP2003288158A (en) 2002-01-28 2003-10-10 Sony Corp Mobile apparatus having tactile feedback function
JP3852368B2 (en) 2002-05-16 2006-11-29 ソニー株式会社 Input method and data processing apparatus
US7456823B2 (en) 2002-06-14 2008-11-25 Sony Corporation User interface apparatus and portable information apparatus
JP3937982B2 (en) 2002-08-29 2007-06-27 ソニー株式会社 INPUT / OUTPUT DEVICE AND ELECTRONIC DEVICE HAVING INPUT / OUTPUT DEVICE
US7522152B2 (en) 2004-05-27 2009-04-21 Immersion Corporation Products and processes for providing haptic feedback in resistive interface devices
JP2006048302A (en) 2004-08-03 2006-02-16 Sony Corp Piezoelectric complex unit, its manufacturing method, its handling method, its control method, input/output device and electronic equipment
JP4360497B2 (en) * 2005-03-09 2009-11-11 国立大学法人 東京大学 Electric tactile presentation device and electric tactile presentation method
JP2007287005A (en) 2006-04-19 2007-11-01 Sony Corp Information input/output device, information processing method and computer program
WO2009037379A1 (en) * 2007-09-18 2009-03-26 Senseg Oy Method and apparatus for sensory stimulation
FI20085475A0 (en) 2008-05-19 2008-05-19 Senseg Oy Touch Device Interface
BRPI0804355A2 (en) * 2008-03-10 2009-11-03 Lg Electronics Inc terminal and control method
US20100250071A1 (en) * 2008-03-28 2010-09-30 Denso International America, Inc. Dual function touch switch with haptic feedback
US9056549B2 (en) * 2008-03-28 2015-06-16 Denso International America, Inc. Haptic tracking remote control for driver information center system
KR100955339B1 (en) * 2008-04-22 2010-04-29 주식회사 애트랩 Touch and proximity sensible display panel, display device and Touch and proximity sensing method using the same
KR101498623B1 (en) * 2008-06-25 2015-03-04 엘지전자 주식회사 Mobile Terminal Capable of Previewing Different Channel
US8174372B2 (en) * 2008-06-26 2012-05-08 Immersion Corporation Providing haptic feedback on a touch surface
KR101558210B1 (en) * 2008-08-05 2015-10-19 엘지전자 주식회사 Mobile Terminal With Touch Screen And Method Of Processing Message Using Same
US8823542B2 (en) 2008-11-26 2014-09-02 Nokia Corporation Apparatus and methods relevant to electronic devices
US8805517B2 (en) * 2008-12-11 2014-08-12 Nokia Corporation Apparatus for providing nerve stimulation and related methods
US10007340B2 (en) 2009-03-12 2018-06-26 Immersion Corporation Systems and methods for interfaces featuring surface-based haptic effects
JP2011002926A (en) * 2009-06-17 2011-01-06 Hitachi Ltd Display device with tactile exhibition function
JP5704428B2 (en) 2009-11-18 2015-04-22 株式会社リコー Touch panel device and control method of touch panel device
US9436280B2 (en) * 2010-01-07 2016-09-06 Qualcomm Incorporated Simulation of three-dimensional touch sensation using haptics
US20110285666A1 (en) * 2010-05-21 2011-11-24 Ivan Poupyrev Electrovibration for touch surfaces
KR20120011548A (en) * 2010-07-29 2012-02-08 삼성전자주식회사 Apparatus and Mehtod for Providing Feedback on User Input
US9448713B2 (en) 2011-04-22 2016-09-20 Immersion Corporation Electro-vibrotactile display
US10120447B2 (en) 2013-06-24 2018-11-06 Northwestern University Haptic display with simultaneous sensing and actuation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032249A1 (en) * 2007-07-30 2009-02-05 Schlumberger Technology Corporation Method and system to obtain a compositional model of produced fluids using separator discharge data analysis
US20100085169A1 (en) * 2008-10-02 2010-04-08 Ivan Poupyrev User Interface Feedback Apparatus, User Interface Feedback Method, and Program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111309145A (en) * 2020-02-05 2020-06-19 吉林大学 Electrostatic force touch rendering method based on physiological and physical modeling

Also Published As

Publication number Publication date
US9983674B2 (en) 2018-05-29
KR101891858B1 (en) 2018-08-24
US9323326B2 (en) 2016-04-26
EP2754013A4 (en) 2015-04-01
US20160202763A1 (en) 2016-07-14
JP2019220215A (en) 2019-12-26
CN106095119A (en) 2016-11-09
JP6039672B2 (en) 2016-12-07
KR20140060343A (en) 2014-05-19
KR102010206B1 (en) 2019-08-12
JP2017062818A (en) 2017-03-30
CN103858081B (en) 2016-08-31
US20170293360A1 (en) 2017-10-12
JP6268266B2 (en) 2018-01-24
WO2013036614A1 (en) 2013-03-14
US20130057509A1 (en) 2013-03-07
JP2018073432A (en) 2018-05-10
JP2014528120A (en) 2014-10-23
EP2754013A1 (en) 2014-07-16
KR20180098678A (en) 2018-09-04
JP6581173B2 (en) 2019-09-25
US10175761B2 (en) 2019-01-08
CN103858081A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
US10175761B2 (en) Haptic output device and method of generating a haptic effect in a haptic output device
JP6234364B2 (en) Electric vibration type tactile display
US9501145B2 (en) Electrovibration for touch surfaces
US9639158B2 (en) Systems and methods for generating friction and vibrotactile effects
US8441465B2 (en) Apparatus comprising an optically transparent sheet and related methods
US20120327006A1 (en) Using tactile feedback to provide spatial awareness
WO2015121970A1 (en) Educational tactile device and system
US20200012348A1 (en) Haptically enabled overlay for a pressure sensitive surface
TWI601076B (en) Organism stimulaing apparatus and organism stimulaing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMMERSION CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRUZ-HERNANDEZ, JUAN MANUEL;GRANT, DANNY A.;REEL/FRAME:047874/0855

Effective date: 20120906

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION