US20190152671A1 - Container Assemblies For Storing, Shipping, And/Or Dispensing Fluids, And Related Methods - Google Patents

Container Assemblies For Storing, Shipping, And/Or Dispensing Fluids, And Related Methods Download PDF

Info

Publication number
US20190152671A1
US20190152671A1 US16/258,381 US201916258381A US2019152671A1 US 20190152671 A1 US20190152671 A1 US 20190152671A1 US 201916258381 A US201916258381 A US 201916258381A US 2019152671 A1 US2019152671 A1 US 2019152671A1
Authority
US
United States
Prior art keywords
container
receptacle
side portion
opening
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/258,381
Inventor
Scott C. Voelker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Technology LLC
Original Assignee
Monsanto Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Technology LLC filed Critical Monsanto Technology LLC
Priority to US16/258,381 priority Critical patent/US20190152671A1/en
Assigned to MONSANTO TECHNOLOGY LLC reassignment MONSANTO TECHNOLOGY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VOELKER, SCOTT C.
Publication of US20190152671A1 publication Critical patent/US20190152671A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • B65D77/06Liquids or semi-liquids or other materials or articles enclosed in flexible containers disposed within rigid containers
    • B65D77/062Flexible containers disposed within polygonal containers formed by folding a carton blank
    • B65D77/065Spouts, pouring necks or discharging tubes fixed to or integral with the flexible container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/28Handles
    • B65D25/2882Integral handles
    • B65D25/2894Integral handles provided on the top or upper wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/4204Inspection openings or windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/44Integral, inserted or attached portions forming internal or external fittings
    • B65D5/46Handles
    • B65D5/46072Handles integral with the container
    • B65D5/4608Handgrip holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • B65D77/0413Articles or materials enclosed in two or more containers disposed one within another the inner and outer containers being rigid or semi-rigid and the outer container being of polygonal cross-section formed by folding or erecting one or more blanks, e.g. carton
    • B65D77/0426Articles or materials enclosed in two or more containers disposed one within another the inner and outer containers being rigid or semi-rigid and the outer container being of polygonal cross-section formed by folding or erecting one or more blanks, e.g. carton the inner container being a bottle, canister or like hollow container

Abstract

A container assembly includes a container and a receptacle configured to be positioned within the container. The receptacle has an opening for dispensing fluid, and the container has an opening that aligns with the receptacle opening when the receptacle is positioned within the container. The container includes window openings for viewing fluid level in the receptacle, when the receptacle is positioned within the container, and may further include a knockout configured to be removed from the container to allow access to the receptacle through the container. And, the receptacle can include a handle for grasping for use in carrying the container and the receptacle together and for use in dispensing fluid from the receptacle.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 13/580,610 filed on Aug. 22, 2012, which is a U.S. national stage filing under 35 U.S.C. § 371 of International Application No. PCT/US2011/026317 filed on Feb. 25, 2011, which claims the benefit of U.S. Provisional Application No. 61/308,779 filed on Feb. 26, 2010. The entire disclosures of each of the above applications are incorporated herein by reference.
  • FIELD
  • The present disclosure generally relates to container assemblies, and more particularly to composite container assemblies having receptacles suitable for holding fluids positioned within containers for use in storing, shipping, and/or dispensing the fluids, and methods related thereto.
  • BACKGROUND
  • This section provides background information related to the present disclosure which is not necessarily prior art.
  • Composite packages having plastic receptacles positioned within paperboard boxes have been used in the food and restaurant industry to package various types of liquids, including cooking oils. In such packages, the receptacles (for receiving the liquids) typically have pouring spouts located toward front walls of the receptacles and elongated handles extending from the pouring spouts to rear walls of the receptacles. And, the paperboard containers typically have single or double layer top assemblies with movable flaps to define first cutout portions for accommodating the receptacle spouts and second cutout portions for accommodating the receptacle handles.
  • SUMMARY
  • This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
  • Example embodiments of the present disclosure generally relate to container assemblies for storing, shipping, and/or dispensing fluid. In one example embodiment, a container assembly generally includes a first container, and a second container configured to be disposed at least partly within the first container. The second container has an opening for dispensing fluid from the second container, and the first container has an opening aligned with the opening of the second container when the second container is disposed at least partly within the first container. The opening of the first container defines an ergonomic cutout portion for grasping to allow for carrying the first and second containers and to facilitate dispensing of fluid from the second container through the opening of the second container when the second container is disposed at least partly within the first container.
  • In another example embodiment, a container assembly generally includes a container having first and second window openings for viewing an interior portion of the container and reinforcing material disposed adjacent the first and second window openings for enhancing strength of the container.
  • In another example embodiment, a container assembly generally includes a container and a receptacle. The container is formed from corrugated material and has a top portion, a bottom portion, and multiple side portions depending downwardly from the top portion where the top portion is defined by at least three overlapping layers of the corrugated material. The receptacle is configured to be disposed within the container and has an opening for receiving fluid into the receptacle and/or for dispensing fluid from the receptacle. The container also includes an opening defined at least partly in the top portion of the container and at least partly in one of the side portions of the container. The opening of the receptacle is aligned with the opening of the container when the receptacle is disposed within the container, and the opening of the container defines an ergonomic cutout portion for grasping the container and facilitating dispensing of fluid from the receptacle through the opening of the receptacle. The container further includes offset first and second window openings for viewing fluid level in the receptacle when the receptacle is disposed within the container, and reinforcing material disposed adjacent the first and second window openings for enhancing strength of the container. And, the receptacle includes a support portion and a vent structure each in communication with the opening of the receptacle. The support portion is configured to help support the receptacle within the container and thereby help inhibit sliding movement of the receptacle relative to the container when dispensing fluid from the receptacle, and the vent structure is configured to allow air to circulate within the receptacle when dispensing fluid from the receptacle to thereby promote generally uniform flow of the fluid from the receptacle.
  • In another example embodiment, a container assembly generally includes a container having offset first and second window openings for viewing an interior portion of the container and reinforcing material disposed adjacent the first and second window openings for enhancing strength of the container.
  • Example embodiments of the present disclosure also generally relate to methods of preparing container assemblies for use in storing, shipping, and/or dispensing fluid. In one example embodiment, a method generally includes folding a single piece blank of material to form a container configured for receiving a receptacle at least partly within the container, wherein a top portion of the folded container includes at least three layers of overlapping material coupled together and an opening defined at least partly in the top portion. The opening defines an ergonomic cutout portion for grasping the container and allowing for carrying the container and receptacle together when the receptacle is disposed at least partly within the container.
  • Example embodiments of the present disclosure also generally relate blanks of material for use in forming containers suitable for receiving receptacles therein for storing, shipping, and/or dispensing fluid. In one example embodiment, a single piece blank of material generally includes a group of openings defined in the single piece blank of material and positioned to generally align when the single piece blank of material is folded to form the container to thereby define an access opening in a top portion of the formed container. The access opening is aligned with an opening of a receptacle when the receptacle is positioned within the formed container to facilitate dispensing of fluid from the receptacle within the container through the opening of the receptacle.
  • Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
  • DRAWINGS
  • The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
  • FIG. 1 is a perspective view of an example container assembly including one or more aspects of the present disclosure;
  • FIG. 2 is a front elevation view of the container assembly of FIG. 1;
  • FIG. 3 is a top plan view of the container assembly of FIG. 1;
  • FIG. 4 is a bottom plan view of the container assembly of FIG. 1;
  • FIG. 5 is a right side elevation view of the container assembly of FIG. 1;
  • FIG. 6 is a rear elevation view of the container assembly of FIG. 1;
  • FIG. 7 is a left side elevation view of the container assembly of FIG. 1;
  • FIG. 8 is a perspective view of the container assembly of FIG. 1 with fluid shown pouring from a receptacle of the container assembly;
  • FIG. 9 is a perspective view of the container assembly of FIG. 1 with a knockout removed from a lower portion of a container of the container assembly in preparation for piercing the receptacle within the container through an opening left by the removed knockout;
  • FIG. 10 is a perspective view of the container of the container assembly of FIG. 1;
  • FIG. 11 is a section view of the container of FIG. 10 taken in a plane including line 11-11 in FIG. 10;
  • FIG. 12 is a perspective view of the receptacle of the container assembly of FIG. 1;
  • FIG. 13 is a front elevation view of the receptacle of FIG. 12;
  • FIG. 14 is a rear elevation view of the receptacle of FIG. 12;
  • FIG. 15 is a left side elevation view of the receptacle of FIG. 12;
  • FIG. 16 is a right side elevation view of the receptacle of FIG. 12;
  • FIG. 17 is a top plan view of the receptacle of FIG. 12;
  • FIG. 18 is a bottom plan view of the receptacle of FIG. 12;
  • FIG. 19 is a section view of the receptacle of FIG. 12 taken in a plane including line 19-19 in FIG. 17;
  • FIG. 20 is a perspective view of another example container assembly including one or more aspects of the present disclosure;
  • FIG. 21 is a perspective view of still another example container assembly including one or more aspects of the present disclosure;
  • FIG. 22 is a top plan view of an example container assembly including one or more aspects of the present disclosure and having a generally square-shaped access opening formed in an upper portion of a container thereof;
  • FIG. 23 is a top plan view of another example container assembly including one or more aspects of the present disclosure and having a generally circular-shaped access opening formed in an upper portion of a container thereof;
  • FIG. 24 is a front elevation view of an example container assembly including one or more aspects of the present disclosure and having a single window opening formed in a forward side portion of a container thereof;
  • FIG. 25 is a front elevation view of another example container assembly including one or more aspects of the present disclosure and having three window openings formed in a forward side portion of a container thereof;
  • FIG. 26 is a front elevation view of an example container assembly including one or more aspects of the present disclosure and having two generally vertically aligned window openings formed in a forward side portion of a container thereof;
  • FIG. 27 is a perspective view of another example container assembly including one or more aspects of the present disclosure and having a window openings formed in a forward side portion and a left side portion of a container thereof;
  • FIG. 28 is a front elevation view of another example container assembly including one or more aspects of the present disclosure and having two generally diagonal window openings formed in a forward side portion of a container thereof;
  • FIG. 29 is a front elevation view of still another example container assembly including one or more aspects of the present disclosure and having two window openings formed in a forward side portion of a container thereof;
  • FIG. 30 is a front elevation view of an example container assembly including one or more aspects of the present disclosure and having two window openings formed in a forward side portion of a container thereof;
  • FIG. 31 is a perspective view of another example receptacle for use with a container assembly including one or more aspects of the present disclosure;
  • FIG. 32 is a perspective view of multiple example container assemblies stacked on a pallet for shipping, storing, etc.;
  • FIG. 33 is a perspective view of a container assembly according to another example embodiment of the present disclosure; and
  • FIG. 34 is a perspective view of a receptacle of the container assembly of FIG. 33.
  • Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
  • DETAILED DESCRIPTION
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
  • When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper”, “lower” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • With reference now to the drawings, FIGS. 1-19 illustrate an example container assembly 100 (e.g., a fluid storage and dispensing assembly, etc.) including one or more aspects of the present disclosure. The illustrated container assembly 100 generally includes a composite, semi-rigid bottle-in-box design that promotes easy, safe, and efficient containment, delivery, and/or use of fluids within the container assembly 100. The container assembly 100 can be used, for example, for storing, shipping, and/or dispensing fluids, as desired, where such fluids may include (but are not limited to) chemical fluids such as herbicides, pesticides, fertilizers, etc.
  • As shown in FIG. 1, the container assembly 100 generally includes a container 102 (e.g., a pack, a box, etc.) (broadly, a first container) and a receptacle 104 (e.g., a bottle, etc.) (broadly, a second container). The receptacle 104 is configured to fit within the container 102 where it can then be filled with desired fluids. The fluids can then be dispensed from the receptacle 104 while disposed within the container 102 without removing the receptacle 104 from the container 102. As such, the container 102 can provide protection (and safety) to the receptacle 104 (and the fluids therein) against, for example, environmental exposure (e.g., rain, heat, etc.), damage from handling, shipping, and/or storing (e.g., falls, drops, etc.), or other damage that may affect the receptacle 104 and/or the fluids therein.
  • With additional reference to FIGS. 2-7, the container 102 generally includes a box shape having four side portions 108 a, 108 b, 108 c, and 108 d, an upper (or top) portion 110, and a lower (or bottom) portion 112. Corner portions 114 a, 114 b, 114 c, and 114 d of the container 102 located generally between adjacent ones of the side portions 108 a, 108 b, 108 c, and 108 d are beveled giving the container 102 a generally octagonal shape. The beveled corner portions 114 a, 114 b, 114 c, and 114 generally connect adjacent ones of the side portions 108 a, 108 b, 108 c, and 108 d. The beveled corner portions 114 a, 114 b, 114 c, and 114 d help optimize storage space within the container 102 (e.g., for receiving the receptacle 104 therein, etc.), and provide improved strength (e.g., compression strength, etc.), structural integrity, and drop impact resistance to the container 102, for example, for protecting the receptacle 104 when the receptacle 104 is disposed within the container 102. The container 102 can be formed from any suitable material within the scope of the present disclosure including, for example, corrugated material, fluted material, cardboard, plastic, composite material, coated material, etc. In addition, the container 102 can be formed from a single blank of material or two or more separate pieces of material within the scope of the present disclosure.
  • As shown in FIG. 1, the upper portion 110 of the illustrated container 102 includes three individual layers 118 a, 118 b, and 118 c generally defined by overlapping flaps of the container 102. In the illustrated embodiment, the three layers 118 a, 118 b, and 118 c substantially fully overlap and are coupled (e.g., glued, interlocked, fastened, etc.) together to substantially seal the receptacle 104 within the container 102. Each of the individual layers 118 a, 118 b, and 118 c may include a single layer of corrugated material. This construction provides strength and structural integrity to the upper portion 110 of the container 102 (as will be described more hereinafter) and also discourages users from removing the receptacle 104 from the container 102 prior to using the container assembly 100 (e.g., prior to dispensing fluid from the receptacle 104 of the container assembly 100, etc.). In other example embodiments, containers may include upper portions having more than or less then three overlapping layers and/or overlapping layers that do not substantially fully overlap.
  • An access opening 120 is defined in the illustrated container 102 generally in the upper portion 110 and a forward side portion 108 a of the container 102. The access opening 120 allows access to the receptacle 104 when the receptacle 104 is disposed within the container 102 (e.g., without requiring manipulating, opening, removing, etc. flaps of the container 102, etc.). More particularly, the access opening 120 provides room for users to fill the receptacle 104 with fluid and/or dispense fluid from the receptacle 104 when the receptacle 104 is disposed within the container 102 without interference from the container 102 (e.g., without contacting the container 102, etc.). The access opening 120 also provides room for users to seal and cap the receptacle 104 after the receptacle 104 is filled and/or open the sealed and capped receptacle 104 in preparation for dispensing fluid. In the illustrated embodiment, the access opening 120 includes a generally diamond shape. In other example embodiments, however, containers may include access openings having other desired shapes, depending on design choices, that provide room for users to access receptacles disposed within the containers. In addition in the illustrated embodiment, the container 102 includes a single access opening.
  • The access opening 120 also forms, provides, defines, etc. gripping portions 122 in the upper portion 110 of the container 102. The gripping portions 122 may be viewed as ergonomic cutout portions, etc. In the illustrated embodiment, the gripping portions 122 are located toward both sides of the access opening 120. And, the gripping portions 122 are oriented at angles of about thirty degrees. As such, users may grasp the container 102 at the gripping portions 122 with left hands or right hands (e.g., for ergonomic carrying, pouring, etc.) and, for example, lift the container 102 and the receptacle 104 (when the receptacle 104 is disposed within the container 102), move the container 102 and the receptacle 104, and/or manipulate the container 102 to directionally pour fluid from the receptacle 104 (see, FIG. 8). The overlapping construction of upper portion 110 (i.e., the three overlapping layers 118 a, 118 b, and 118 c of the upper portion 110) provides additional strength to the gripping portions 122 of the container 102. This can help inhibit failure of the container 102 at the gripping portions 122 when lifting the container assembly 100 (particularly when the receptacle 104 is filled with fluid), when transporting the container assembly 100, and/or when manipulating the container assembly 100 to pour fluid from the receptacle 104. Additional reinforcement (e.g., reinforcing material, bands, clips, etc.) could be provided to the gripping portions 122 as desired to provide still additional strength thereto.
  • A security seal (not shown) may be included over the access opening 120 of the container 102 (and over the receptacle 104 disposed within the container 102), as desired. When included, the security seal must be removed in order to access the receptacle 104 within the container 102. As such, the security seal could provide evidence that the container assembly 100 has not been altered or tampered with (e.g., that fluid within the receptacle 104 has not been altered or tampered with, etc.) prior to use. As an example, the security seal may be coupled (e.g., glued, etc.) to the upper portion 110 of the container 102 such that the security seal substantially covers the access opening 120. Perforations may be provided around perimeter edges of the security seal to allow users to easily remove the security seal when desired to access the receptacle 104 (e.g., to pour fluid from the receptacle 104, etc.).
  • With continued reference to FIGS. 1 and 2, the container 102 includes first and second window openings 126 and 128 defined in the container's forward side portion 108 a. The window openings 126 and 128 allow for viewing an interior portion of the container 102, for example, fluid level in the receptacle 104 when the receptacle 104 is disposed within the container 102. The window openings 126 and 128 are generally uniform, narrow, and elongate in shape (e.g., slot shaped, etc.) and have generally rounded end portions. The window openings 126 and 128 extend in a generally vertical direction of the container 102. And, measurement markings 130 (e.g., a scale, etc.) are included generally vertically along the window openings 126 and 128 to help indicate amount of fluid in the receptacle 104. As an example, the measurement markings 130 may include volumetric units (e.g., liters, gallons, etc.) which can be used to indicate volume of fluid in the receptacle 104 and/or to measure volume of fluid dispensed from the receptacle 104.
  • In the illustrated embodiment, the two window openings 126 and 128 are positioned in a generally offset configuration along the forward side portion 108 a of the container 102. As viewed in FIG. 2, the first window opening 126 is located toward a left portion of the container's forward side portion 108 a, and the second window opening 128 is located generally downwardly of the first window opening 126 and toward a right portion of the container's forward side portion 108 a. And, a lower portion of the first window opening 126 is located generally above an upper portion of the second window opening 128. This spaced apart configuration of the window openings 126 and 128 may help provide strength and stability to the container 102, and may help protect the container 102 against bursting, tearing, etc. under stress (e.g., when the container assembly 100 is dropped with the receptacle 104 filled with fluid, etc.).
  • As shown in FIG. 4, the container 102 also includes an opening 132 and a knockout 134 located in the lower portion 112 of the container 102. The opening 132 is configured for a user to grasp (in combination with the gripping portions 122) when manipulating the container 102 to pour fluid from the receptacle 104. The knockout 134 may be used, for example, in operations where dispensing fluid from the receptacle 104 and/or rinsing the receptacle 104 (when the receptacle 104 is disposed within the container 102) includes piercing a lower portion 112 of the receptacle 104 (without opening the receptacle 104 and/or removing the receptacle 104 from the container 102) (see, FIG. 9). In these operations, the knockout 134 can be removed from the lower portion 112 of the container 102, and the receptacle 104 can then be impaled on a spike 136 through an opening 138 left by the removed knockout 134 (see, FIG. 9). Fluid within the receptacle 104 can then be dispensed, for example, into a tub 140 as shown in FIG. 9. In addition (or alternatively), fluid can be introduced into the receptacle 104 for rinsing the receptacle 104, as desired, through the opening 138 left by the removed knockout 134 and through an opening formed in the pierced receptacle 104 by the spike 136.
  • In the illustrated embodiment, the knockout 134 has a generally circular shape with a diameter dimension of about 3 inches (about 7.62 centimeters). However, knockouts may have shapes other than circular (e.g., square shapes, oval shapes, etc.) and/or knockouts having dimensions other than about 3 inches (about 7.62 centimeters), depending on design choice, within the scope of the present disclosure. In addition, perforations (indicated by dashed lines in FIG. 4 generally defining the knockout 134) are formed in the lower portion 112 of the container 102 around a periphery of the knockout 134 for allowing the knockout 134 to be easily removed from the lower portion 112, as desired, to allow access to the receptacle 104 within the container 102 through the lower portion 112 of the container 102 (i.e., through the opening 138 left by the removed knockout 134 (see, FIG. 9)).
  • The lower portion 112 of the container 102 also includes indicia lines 142 for directing users how to remove the receptacle 104 from the container 102 after the container assembly 100 is used. The indicia lines 142 indicate locations to cut the lower portion 112 of the container 102 to open the container 102 for removing the receptacle 104. In other example embodiments, containers may include removable structures such as pull cords, zip cords, etc. disposed within the containers (e.g., within lower surfaces of the containers, etc.) for use in opening the containers and removing receptacles from the containers as desired.
  • Referring now to FIGS. 10 and 11, the illustrated container 102 also includes reinforcing tape 146 (broadly, reinforcing material) extending through the side portions 108 a, 108 b, 108 c, and 108 d of the container 102 and generally around a perimeter of the container 102. The reinforcing tape 146 provides strength and structural stability to the side portions 108 a, 108 b, 108 c, and 108 d of the container 102 and helps protect the container 102 against bursting, tearing, etc. under stress (e.g., when the container assembly 100 is dropped with the receptacle 104 therein filled with fluid, etc.).
  • In the illustrated embodiment, the reinforcing tape 146 is installed within the side portions 108 a, 108 b, 108 c, and 108 d of the container 102 within corrugated structures of the side portions 108 a, 108 b, 108 c, and 108 d. Part of the reinforcing tape 146 hidden within the side portions 108 a, 108 b, 108 c, and 108 d and the corner portions 114 a, 114 b, 114 c, and 114 d of the container 102 is shown in broken lines. In the forward side portion 108 a of the container 102, the first and second window openings 126 and 128 are spaced apart generally vertically along the container 102 so that the reinforcing tape 146 can extend adjacent (e.g., generally between, etc.) the first and second window openings 126 and 128. The reinforcing tape 146 may be constructed from any suitable materials within the scope of the present disclosure, including, for example, metal materials, composite materials, woven material, sesame band, etc.
  • In other example embodiments, containers may include reinforcing tape extending along surfaces of side portions of the containers (e.g., along inner surfaces of sidewall portions of containers, along outer surfaces of sidewall portions of containers, etc.). In still other example embodiments, reinforcing material may include labels, tape, etc. disposed along outer surfaces of containers and adjacent openings in the containers (e.g., window openings, etc.) to provide strength and structural stability to the side portions of the containers and to help protect the containers against bursting, tearing, etc. under stress.
  • The illustrated container 102 generally includes openings in the upper portion 110 and forward side portion 108 a. Openings are not provided in side portions 108 b, 108 c, or 108 d. This may help improve strength of the container 102, etc. In other example embodiments, however, containers may include side portions having openings differently than disclosed herein. In addition, the illustrated container 102 generally includes a flat lower portion 112 (e.g., free of flaps, etc.). This may help provide a level surface for stacking the container 102. In other example embodiments, however, containers may include lower surfaces with flaps.
  • The receptacle 104 of the illustrated container assembly 100 will now be described with reference to FIGS. 12-18. The receptacle 104 has a generally octagonal shape which provides strength (e.g., compression strength, etc.), structural integrity, and drop impact resistance to the receptacle 104. The receptacle 104 can be formed by any suitable process within the scope of the present disclosure including, for example, an extrusion blow molding process, etc.
  • As shown in FIG. 12, the receptacle 104 generally includes a spout 150 (broadly, an opening) in communication with the receptacle 104. The spout 150 is configured for receiving fluid into the receptacle 104 and/or for dispensing fluid from the receptacle 104. The spout 150 generally aligns with the access opening 120 of the container 102 when the receptacle 104 is disposed within the container 102 (see, FIGS. 1-3). This facilitates dispensing fluids from the receptacle 104 through the spout 150 and through the access opening 120 of the container 102 and allows for generally inline filling, closing, dispensing, etc. of the receptacle 104 in the container 102.
  • A cap 152 is removably coupled to the spout 150 and allows for selectively covering and uncovering the spout 150. A removable security seal (e.g., a peel liner, etc.) may be included over the spout 150 (and under the cap 152) as desired. When included, the security seal must be removed from the spout 150 in order to pour fluid from the receptacle 104. As such, the security seal could provide evidence that the receptacle 104 has not been altered or tampered with (e.g., that fluid within the receptacle 104 has not been altered or tampered with, etc.) prior to use. As an example, the security seal may be coupled (e.g., induction welded, etc.) to the receptacle 104 such that the security seal substantially covers the spout 150 and can be easily removed when desired to access the spout 150 (e.g., pour fluid from the receptacle 104, etc.). Other types of removable security seals may be used in connection with the cap 152 and/or spout 150 of the receptacle 104 within the scope of the present disclosure (e.g., perforated sealing rings used in connection with the cap 152, etc.).
  • The receptacle 104 also includes a shoulder 154 (broadly, a support portion) in communication with the receptacle 104 and the spout 150. The shoulder 154 is configured to position adjacent the upper portion 110 of the container 102 when the receptacle 104 is disposed within the container 102. In this position, the shoulder 154 engages the upper portion 110 of the container 102 when, for example, the container assembly 100 is manipulated to pour fluid from the receptacle 104 (see, FIG. 8). As such, the shoulder 154 supports the receptacle 104 within the container 102 generally against the upper portion 110 of the container 102 to help inhibit undesired sliding movement of the receptacle 104 that could affect, inhibit, etc. fluid pouring operation. The shoulder 154 also creates room within the container 102 between the receptacle 104 and the upper portion 110 of the container 102 for users to grasp the gripping portions 122 of the container 102 (such that the users' fingers can fit generally within the container 102 between the receptacle 104 and the upper portion 110 of the container 102).
  • With continued reference to FIG. 12, the receptacle 104 also includes a vent structure 156 that promotes easy pouring of fluid from the receptacle 104. More particularly, the vent structure 156 provides a generally uniform, smooth, continuous flow of fluid from the receptacle 104 (e.g., a “no-glug” flow of fluid, a generally steady stream of fluid flow, etc.) when users manipulate the container assembly 100 to pour fluid from the receptacle 104. This can help reduce splashing of the fluid as the fluid pours from the receptacle 104 (as well as the risk of inadvertent fluid contact with users while pouring).
  • In the illustrated embodiment, the vent structure 156 of the receptacle 104 generally includes a neck 158 extending along an upper portion of the receptacle 104 between the spout 150 and the shoulder 154. The neck 158 is formed monolithically with the receptacle 104 and defines a generally pinched channel extending from the spout 150 to the shoulder 154. The neck 158 is generally sealed from the fluid within the receptacle 104 (via the pinched channel construction of the neck 158), and is generally open at the spout 150 and at the shoulder 154. As such, the neck 158 allows air to enter the neck 158 from the spout 150, move through the neck 158 to the shoulder 154, and then circulate within the receptacle 104 as fluid is poured (i.e., generally behind the fluid being poured via the shoulder 154). This inhibits pressure differentials from forming within the receptacle 104 during pouring operation, and thus promotes the uniform, smooth, continuous flow of fluid from the receptacle 104.
  • The illustrated receptacle 104 does not include a handle for grasping and lifting the receptacle 104. Lifting the receptacle 104 when filled with fluid is accomplished by grasping the gripping portions 122 of the container 102 and moving the container 102 and receptacle 104 together. Thus, structural flexing of the receptacle 104 (e.g., in the vent structure 156, etc.) when being carried is reduced. As such, wall thicknesses of the receptacle 104 can be reduced resulting in use of less plastic when forming the receptacle 104.
  • FIG. 20 illustrates another example embodiment of a container assembly 200 including one or more aspects of the present disclosure. The container assembly 200 of this embodiment is substantially similar to the container assembly 100 previously described and illustrated in FIGS. 1-19. For example, the container assembly 200 includes a container 202 and a receptacle 204 configured to fit within the container 202. An access opening 220 is defined in an upper portion 210 of the container 202 as well as in a forward side portion 208 a of the container 202. And, first and second window openings 226 and 228 are defined in the container's forward side portion 208 a.
  • In addition in the illustrated container assembly 200, the container 202 includes two internal finger openings 272 each positioned on an opposing side of the access opening 220. The finger openings 272 are defined through interior layers 218 b and 218 c of the upper portion 210 to help users secure grips at gripping portions 222. In this example embodiment, the finger openings are not defined through layer 218 a of the upper portion 210 of the container 202. As such, the finger openings 272 are hidden in FIG. 20 and are thus shown in broken lines to illustrate general location.
  • FIG. 21 illustrates an example embodiment of a container assembly 300 substantially similar to the container assembly 200 previously described and illustrated in FIG. 20. For example, the container assembly 300 includes a container 302 and a receptacle 304 configured to fit within the container 302. An access opening 320 is defined in an upper portion 310 of the container 302 as well as in a forward side portion 308 a of the container 302. First and second window openings 326 and 328 are defined in the container's forward side portion 208 a. And, the container 302 includes two internal finger openings 372 each positioned on an opposing side of the access opening 320. In this embodiment, the finger openings 372 are defined through each of layers 318 a, 318 b, and 318 c of the upper portion 310 to help users secure grips at gripping portions 322.
  • FIGS. 22 and 23 illustrate additional example embodiments of container assemblies including one or more aspects of the present disclosure. In these example embodiments, the container assemblies include containers having alternative designs for access openings in upper portions of the containers for accessing receptacles within the containers. For example, FIG. 22 illustrates a container assembly 400 in which a container 402 includes a generally square-shaped access opening 420. And, FIG. 23 illustrates a container assembly 500 in which a container 502 includes a generally circular-shaped access opening 520.
  • FIGS. 24-30 illustrate more additional example embodiments of container assemblies including one or more aspects of the present disclosure. In these example embodiments, the container assemblies include containers having alternative designs for window openings located in side portions of the containers for viewing, for example, fluid level in receptacles disposed within the containers.
  • For example, FIG. 24 illustrates a container assembly 600 in which a container 602 thereof includes a single window opening 626 generally vertically oriented along a forward side portion 608 a of the container 602. FIG. 25 illustrates a container assembly 700 in which a container 702 thereof includes three window openings 726, 728, and 780 offset and generally vertically oriented along a forward side portion 708 a of the container 702. FIG. 26 illustrates a container assembly 800 in which a container 802 thereof includes two window openings 826 and 828 generally vertically oriented along a forward side portion 808 a of the container 802. FIG. 27 illustrates a container assembly 900 in which a container 902 thereof includes a first window opening 926 generally vertically oriented along a left side portion 908 d of the container 902 and a second window opening 928 generally vertically oriented along a forward side portion 908 a of the container 902. FIG. 28 illustrates a container assembly 1000 in which a container 1002 thereof includes first and second window openings 1026 and 1028 each generally diagonally oriented along a forward side portion 1008 a of the container 1002. FIG. 29 illustrates a container assembly 1100 in which a container 1102 thereof includes window openings 1126 and 1128 in a forward side portion 1108 a of the container 1102 having generally square end portions. And, FIG. 30 illustrates a container assembly 1200 in which a container 1202 thereof includes window openings 1226 and 1228 in a forward side portion 1208 a and having generally non-uniform shapes. In still other example embodiments, container assemblies may include containers having different numbers of window openings, different shapes of window openings, different orientations of window openings, etc. than disclosed herein.
  • FIG. 31 illustrates an example embodiment of a receptacle 1304 for use with a container assembly including one or more aspects of the present disclosure. In this example embodiment, the receptacle 1304 includes an alternative design for a shoulder 1354. The shoulder 1354 supports the receptacle 1304 within a container generally against an upper portion of the container to help inhibit undesired sliding movement of the receptacle 1304 within the container while pouring fluid from the receptacle 1354 (when the receptacle 1354 is disposed within the container).
  • In another example embodiment, a container assembly includes a container and a receptacle configured to fit within the container. In this example embodiment, the container has a length (or depth) dimension of about 10 inches (about 25.4 centimeters), a width dimension of about 9 inches (about 22.9 centimeters), and a height dimension of about 14.25 inches (about 36.2 centimeters). And, the receptacle has a volume of about 3 gallons (about 11.4 liters). In addition, walls of the receptacle may have a nominal thickness of about 0.03 inches (about 0.762 millimeters). In other example embodiments, container assemblies may include containers having different dimensions than described herein and/or receptacles having volumes other than about 3 gallons (e.g., about 3.5 gallons (about 13 liters, etc.). In still other example embodiments, container assemblies may have receptacles sized to hold sufficient fluid to dose a particular area of land (e.g., about 20 acres of land, etc.).
  • Other example embodiments of the present disclosure relate to methods of preparing container assemblies for use in storing, shipping, and/or dispensing fluid. In one example embodiment, a blank of material is initially formed to a desired shape for use in forming a container of the container assembly. Features such as access openings (broadly, a first group of openings), window openings (broadly, a second group of openings), finger openings, and knockouts can be formed (e.g., stamped, cut, etc.) in the blank of material as desired, for example, while forming the blank of material to the desired shape. The access openings, for example, are positioned in overlapping portions of the blank of material so that they generally align when the container is formed (i.e., to thereby form a single access opening in the container). Similarly, respective finger openings are positioned to generally align when the container is formed. In addition, desired artwork, trade dress, product instructions, product warnings, etc. may be printed on the blank of material and/or document holding compartments (e.g., for product booklets, etc.) may be formed on the blank of material as desired. Any suitable material may be used to form the blank of material, for example, corrugated material, cardboard, etc. And, the blank of material may have any desired thickness within the scope of the present disclosure.
  • In this example embodiment, after forming the blank of material, the blank of material is folded to form the container. When folding the blank of material, an upper portion of the container can be left unfolded and open so that a receptacle can be positioned within the container therethrough. After the receptacle is positioned within the container, the upper portion of the container can be then folded above the receptacle. In this example method, overlapping portions of the folded blank may be coupled together (e.g., glued, etc.) as desired, for example, thereby generally sealing the receptacle in the container.
  • Also in this example embodiment, the method may further include filling the receptacle (disposed in the container) with desired fluid, and then coupling a seal and a cap to a spout of the receptacle. A security seal may then also be coupled to the upper portion of the container generally over the access opening. Less production steps may be involved for ultimately filling the receptacle in this example embodiment.
  • FIG. 32 illustrates prepared container assemblies 1400 stored with other prepared container assemblies 1400 on a pallet for subsequent shipping, distribution, use, etc. For example, 75 container assemblies 1400 are shown on the pallet.
  • FIGS. 33 and 34 illustrate a container assembly 1500 according to another example embodiment of the present disclosure. The container assembly 1500 of this embodiment is similar to the container assembly 100 previously described and illustrated in FIGS. 1-19. For example, the container assembly 1500 includes a container 1502 and a receptacle 1504 configured to fit within the container 1502. An access opening 1520 is defined in an upper portion 1510 of the container 1502 as well as in a forward side portion 1508 a of the container 1502. As such, fluid can be poured from the receptacle 1504 at any desired angle without interference from the container 1502. In addition, the receptacle 1504 includes a vent structure 1556 to help with pouring fluid from the receptacle 1504 (e.g., to provide a generally uniform, smooth, continuous flow of fluid from the receptacle 1504 (e.g., a “no-glug” flow of fluid, a generally steady stream of fluid flow, etc.), etc.), and a spout 1550 that helps inhibit liquid from running down the receptacle 1504 during, after, etc. pouring.
  • In this embodiment, window openings (not visible) are defined in a rearward side portion 1508 c of the container 1502 (as compared to the forward side portion 1508 a of the container 1502). As such, in this embodiment users may easily view the window openings while gripping the container assembly 1500 and pouring fluid from the receptacle 1504.
  • Also in this embodiment, the receptacle 1504 includes a flange-style handle 1570 for use in grasping and carrying the receptacle 1504, and for use in helping pour fluid from the receptacle 1504. For example, a user can grasp the container 1502 at a gripping portion 1522 (e.g., an ergonomic gripping portion, etc.) while, at the same time, also grasping the handle 1570 of the receptacle 1504 thereby allowing the user to lift the container 1502 and the receptacle 1504 together (when the receptacle 1504 is disposed within the container 1502), move the container 1502 and the receptacle 1504 together, and/or manipulate the container 1502 to directionally pour fluid from the receptacle 1504. Allowing for gripping the receptacle 1504 and the container 1502 together (by gripping the handle 1570 of the receptacle and the gripping portion 1522 of the container 1502 together at the same time) during use of the container assembly 1500 can provide additional support, stability, etc. to the container assembly 1500. The handle 1570 is also configured to position adjacent the upper portion 1510 of the container 1502 when the receptacle 1504 is disposed within the container 1502 (FIG. 33). In this position, the handle 1570 may engage the upper portion 1510 of the container 1502 when, for example, the container assembly 1500 is manipulated to pour fluid from the receptacle 1504. As such, the handle 1570 can help support the receptacle 1504 within the container 1502 generally against the upper portion 1510 of the container 1502 to help inhibit undesired sliding movement of the receptacle 1504 that could affect, inhibit, etc. fluid pouring operation.
  • Example container assemblies of the present disclosure generally provide environmentally sensitive (e.g., eco-friendly, etc.) products for storing, shipping, and/or dispensing fluids. Container assemblies of the present disclosure can be recycled as part of the Ag Container Recycling Council (ACRC) steam. For example, after the container assemblies are used (e.g., after pouring fluid from receptacles of the container assemblies, etc.) the receptacles can be removed from containers of the container assemblies, rinsed, and recycled. And, the containers can be broken down and disposed as desired (e.g., recycled, etc.). In addition, the receptacles of the example container assemblies may be formed using less plastic. For example, light weight plastic can be used to form the receptacles because of the additional structural support provided to the container assemblies by the containers. As such, upwards of about fifty percent less plastic may be used to form the receptacles, less chemically exposed plastic (by weight) may be presented for recycling, and weight of the container assemblies may be reduced by up to, for example, about thirty-five percent or more. Further, because the receptacles are substantially sealed within the containers for use, labeling may not be required for the receptacles within the containers (thereby reducing unnecessary paper consumption).
  • Example container assemblies of the present disclosure may enhance storage and shipping efficiency. For example, the container assemblies are initially prepared for use (e.g., for filling with fluid, etc.) as unitary structures—empty receptacles are positioned within containers of the container assemblies prior to filing the receptacles with fluid. Thus, the prepared (but empty) container assemblies require less storage space because the receptacles are already disposed within the containers. In addition, the octagonal shape of the containers of the container assemblies provide for compact, efficient stacking of the container assemblies (either filled with fluid or empty), for example, on pallets, thereby requiring less storage area for the container assemblies and providing efficient use of available storage space.
  • Specific dimensions and/or values disclosed herein are exemplary in nature and do not limit the scope of the present disclosure.
  • The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.

Claims (20)

What is claimed is:
1. A container assembly for storing, shipping, and/or dispensing fluid, the container assembly comprising a container having first and second window openings for viewing an interior portion of the container and reinforcing material disposed adjacent the first and second window openings for enhancing strength of the container.
2. The container assembly of claim 1, wherein the container includes a side portion, wherein the first and second window openings are defined by the side portion, and wherein the side portion includes the reinforcing material.
3. The container assembly of claim 2, wherein the first window opening is offset from the second window opening.
4. The container assembly of claim 2, wherein the reinforcing material includes a continuous band of reinforcing material located within the side portion of the container.
5. The container assembly of claim 4, wherein the continuous band of reinforcing material is disposed between the first window opening and the second window opening defined by the side portion.
6. The container assembly of claim 4, wherein the continuous band of reinforcing material extends entirely around the container.
7. The container assembly of claim 2, wherein the side portion is a first side portion;
wherein the container further includes a top portion, a second side portion disposed opposite the first side portion, and an access opening defined at least partly in the second side portion and at least partly in the top portion.
8. The container assembly of claim 7, wherein the container further includes a third side portion disposed between the first side portion and the second side portion, and at least one beveled corner portion connecting the first and third side portions.
9. The container assembly of claim 2, wherein the container includes a bottom portion having a knockout configured to be removed from the bottom portion of the container to allow access into the interior portion of the container through said bottom portion.
10. The container assembly of claim 9, wherein the bottom portion of the container includes multiple perforations defining the knockout.
11. The container assembly of claim 2, wherein the container includes a bottom portion defining an opening for use in grasping the container.
12. The container assembly of claim 2, further comprising a receptacle configured to be disposed at least partly within the container, and wherein the first and second window openings of the container allow for viewing fluid level in the receptacle when the receptacle is disposed at least partly within the container.
13. The container assembly of claim 12, wherein the side portion is a first side portion;
wherein the container further includes a top portion, a second side portion disposed opposite the first side portion, and an access opening defined at least partly in the second side portion and at least partly in the top portion.
14. The container assembly of claim 13, wherein the receptacle includes an opening for dispensing fluid from the receptacle, and wherein said opening aligns with the access opening of the container when the receptacle is disposed at least partly within the container.
15. The container assembly of claim 14, wherein the receptacle includes a handle configured to allow for carrying the receptacle and the container together and to facilitate dispensing of fluid from the receptacle through the opening of the receptacle when the receptacle is disposed at least partly within the container.
16. A container assembly for storing, shipping, and/or dispensing fluid, the container assembly comprising:
a container having a first side portion and first and second window openings defined by the first side portion;
reinforcing material disposed within the first side portion adjacent the first and second window openings for enhancing strength of the container; and
a receptacle configured to be disposed at least partly within the container, the first and second window openings of the container configured to allow for viewing fluid level in the receptacle when the receptacle is disposed at least partly within the container.
17. The container assembly of claim 16, wherein the first window opening is offset from the second window opening in the first side portion; and
wherein the reinforcing material is disposed between the first window opening and the second window opening.
18. The container assembly of claim 17, wherein the container further includes:
a top portion and a second side portion disposed adjacent the top portion and opposite the first side portion; and
an access opening defined at least partly in the top portion and at least partly in the second side portion of the container; and
wherein the receptacle includes an opening for dispensing fluid from the receptacle, and wherein said opening aligns with the access opening of the container when the receptacle is disposed at least partly within the container.
19. The container assembly of claim 18, wherein the container includes a bottom portion having a knockout configured to be removed from the bottom portion of the container to allow access into the interior portion of the container through said bottom portion.
20. The container assembly of claim 18, wherein the container includes a bottom portion defining an opening for use in grasping the container.
US16/258,381 2010-02-26 2019-01-25 Container Assemblies For Storing, Shipping, And/Or Dispensing Fluids, And Related Methods Abandoned US20190152671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/258,381 US20190152671A1 (en) 2010-02-26 2019-01-25 Container Assemblies For Storing, Shipping, And/Or Dispensing Fluids, And Related Methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30877910P 2010-02-26 2010-02-26
PCT/US2011/026317 WO2011106698A1 (en) 2010-02-26 2011-02-25 Container assemblies for storing,shipping, and/or dispensing fluids, and related methods
US201213580610A 2012-08-22 2012-08-22
US16/258,381 US20190152671A1 (en) 2010-02-26 2019-01-25 Container Assemblies For Storing, Shipping, And/Or Dispensing Fluids, And Related Methods

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2011/026317 Division WO2011106698A1 (en) 2010-02-26 2011-02-25 Container assemblies for storing,shipping, and/or dispensing fluids, and related methods
US13/580,610 Division US10189623B2 (en) 2010-02-26 2011-02-25 Container assemblies for storing, shipping, and/or dispensing fluids, and related methods

Publications (1)

Publication Number Publication Date
US20190152671A1 true US20190152671A1 (en) 2019-05-23

Family

ID=43897063

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/580,610 Active 2031-11-08 US10189623B2 (en) 2010-02-26 2011-02-25 Container assemblies for storing, shipping, and/or dispensing fluids, and related methods
US16/258,381 Abandoned US20190152671A1 (en) 2010-02-26 2019-01-25 Container Assemblies For Storing, Shipping, And/Or Dispensing Fluids, And Related Methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/580,610 Active 2031-11-08 US10189623B2 (en) 2010-02-26 2011-02-25 Container assemblies for storing, shipping, and/or dispensing fluids, and related methods

Country Status (7)

Country Link
US (2) US10189623B2 (en)
EP (1) EP2539238A1 (en)
AR (1) AR080335A1 (en)
BR (1) BR112012021442B1 (en)
CA (1) CA2790821C (en)
MX (1) MX359193B (en)
WO (1) WO2011106698A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD871206S1 (en) * 2017-11-30 2019-12-31 Chevron U.S.A. Inc. Motor oil container
US11485536B2 (en) 2020-02-14 2022-11-01 Georgia-Pacific Corrugated Llc Multi piece corrugated box assemblies, blanks, and systems for heavy bag in box dispensed products

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2790821C (en) 2010-02-26 2019-05-07 Monsanto Technology Llc Container assemblies for storing, shipping, and/or dispensing fluids, and related methods
USD668951S1 (en) 2010-02-26 2012-10-16 Monsanto Technology Llc Container pack
DE202012002847U1 (en) * 2012-03-20 2012-04-19 Adam Hall Gmbh boxes handle
CN104271456A (en) * 2012-05-08 2015-01-07 雀巢产品技术援助有限公司 Containers having improved load-bearing capacity
US9738417B2 (en) 2012-06-01 2017-08-22 Danny Ness Tank apparatus
USD787324S1 (en) 2015-01-09 2017-05-23 A & R Carton Oy Cardboard box having a childproof lock system
USD796319S1 (en) * 2015-04-29 2017-09-05 Graphic Packaging International, Inc. Carton
USD779936S1 (en) * 2015-07-30 2017-02-28 Nature Delivered Limited Delivery box
USD800552S1 (en) * 2015-08-06 2017-10-24 Barry Mark Silverman Container
EP3271158B1 (en) * 2016-05-12 2019-12-04 Hewlett-Packard Development Company, L.P. Build material containers
US20190061252A1 (en) * 2016-05-12 2019-02-28 Hewlett-Packard Development Company, L.P. Build material containers
US10308411B2 (en) * 2016-12-05 2019-06-04 Snyder Industries, Llc Shell and retainer containment system for dual bottles
RU2734638C1 (en) * 2017-04-28 2020-10-21 Майр-Мельнхоф Картон Аг Package and workpiece therefor
USD833282S1 (en) * 2017-06-22 2018-11-13 Ring Container Technologies, Llc Combined container and packaging
US11639246B2 (en) * 2017-06-22 2023-05-02 Ring Container Technologies, Llc Container and packaging system
CN111918762A (en) 2018-05-15 2020-11-10 惠普发展公司,有限责任合伙企业 Resource consumption control
JP2020117292A (en) * 2019-01-25 2020-08-06 藤森工業株式会社 Packaging container
USD920778S1 (en) * 2019-02-14 2021-06-01 Kelly Merket Beverage box
USD1002376S1 (en) 2020-02-21 2023-10-24 Altium Packaging Lp Container
CA3168733A1 (en) * 2020-02-21 2021-08-26 Jr. Grover J. Manderfield Boxed container system
ES2910084A1 (en) * 2020-11-10 2022-05-11 Envases Soplados S L Liquid transport container (Machine-translation by Google Translate, not legally binding)
USD979241S1 (en) 2021-02-23 2023-02-28 Monsanto Technology Llc Caged co-pack container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163508A (en) * 1977-06-13 1979-08-07 Carthage Cup Company Disposable cup dispenser
US20030106927A1 (en) * 2001-12-12 2003-06-12 International Paper Company Bulk container with inventory viewing means and pour spout
US6935508B2 (en) * 1999-09-03 2005-08-30 B.A.G. Corp. Octagon shaped stackable flexible intermediate bulk container and method of maufacture
US20080073317A1 (en) * 2006-09-25 2008-03-27 Dygert Douglas M T Ergonomic plastic container and package system

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965503A (en) * 1933-06-17 1934-07-03 Lowman Folding Box Corp Carton
US2780402A (en) 1953-09-08 1957-02-05 Hamper Tainer Co Inc Diaper hamper with deodorizing means
US3054549A (en) 1960-02-15 1962-09-18 Albert E Reed And Company Ltd Cases for containers
US3167221A (en) * 1961-04-10 1965-01-26 Feinstein Ben Reversible and vented spout unit and can
US3066819A (en) * 1961-07-20 1962-12-04 Richard R Cox Free-pouring jug
US3119544A (en) * 1962-03-30 1964-01-28 Procter & Gamble Composite package
GB1098401A (en) * 1965-03-26 1968-01-10 Reed Paper Group Ltd Improvements in or relating to packs for collapsible bottles and like containers
US3375715A (en) 1965-11-10 1968-04-02 Westinghouse Electric Corp Sea direction indicator
US3400846A (en) 1966-08-31 1968-09-10 Haskon Inc Container construction
US3506167A (en) * 1968-04-01 1970-04-14 Clair S Orr Venting device for water bottles
AT317712B (en) * 1971-10-26 1974-09-10 Schiemann Dr Wolfram Device for venting canisters
US3765574A (en) 1973-02-16 1973-10-16 I Urquiza Container for liquids
US3957179A (en) 1974-01-14 1976-05-18 Olinkraft, Inc. Bulk material container with pouring spout
US3931916A (en) 1974-08-15 1976-01-13 Slip-Not Corporation Dispensing-type box
US4013168A (en) 1975-12-22 1977-03-22 Olinkraft, Inc. Shipping container
USD248831S (en) 1976-10-08 1978-08-08 Shell Oil Company Jug
USD252257S (en) 1977-01-31 1979-07-03 Southeastern Steel Container Company Liquid container
US4134531A (en) 1978-02-06 1979-01-16 Champion International Corporation Self locking octagonal box
US4368827A (en) * 1979-05-21 1983-01-18 Thompson Mortimer S Container with integral handle and method of forming same
USD274223S (en) 1981-11-02 1984-06-12 The Dow Chemical Company Jug
USD270998S (en) 1982-03-01 1983-10-18 Tetra Pak International Ab Packaging container
US4413734A (en) 1982-08-11 1983-11-08 Atlantic Coast Carton Company Multiple component film package
USD279078S (en) 1983-01-03 1985-06-04 Mobil Oil Corporation Oil container
US4614298A (en) 1983-01-17 1986-09-30 Weyerhaeuser Company Octagonal bulk bin
US4502624A (en) 1983-06-13 1985-03-05 Owens-Illinois, Inc. Octagonal container and blank therefor
US4567070A (en) 1984-07-20 1986-01-28 Karass Thomas J Fibrous material reinforcing tape, method of making the same and containers reinforced by said tape
US4828929A (en) 1987-04-16 1989-05-09 Weyerhaeuser Company Octagonal box with integral liner
DE3722691A1 (en) 1987-07-09 1989-01-19 Stengel Roland Stelioplast Canister with a solid handle
FR2629012B1 (en) 1988-03-22 1994-01-14 Embal Systems PROCESS AND MACHINE FOR MAKING POLYGONAL SECTION CRATES IN SHEET MATERIAL AND CRATES THUS OBTAINED
EP0341550A1 (en) 1988-05-09 1989-11-15 Henkel Kommanditgesellschaft auf Aktien Folding carton for a bag-in-box package
US4969571A (en) 1988-06-14 1990-11-13 Innovative Technology Inc. Container for fluids
US4927042A (en) 1989-03-30 1990-05-22 Ring Can Corporation Dispensing bottle container assembly including separable composite packages
USD328168S (en) 1989-10-18 1992-07-21 Bartle Andrew D Waste or storage bin
USD319019S (en) 1989-12-15 1991-08-13 Tdj, Inc. Holder for a beverage carton
US5114028A (en) 1990-06-20 1992-05-19 Ring Can Corporation Container with integral handle structure
FR2665137B1 (en) 1990-07-24 1994-07-01 Otor Sa CRATES IN A SHEET MATERIAL, BLANKS AND MACHINE FOR THE PRODUCTION OF SUCH CRATES.
USD334805S (en) 1991-02-12 1993-04-13 Ivey Kenneth R Medical waste container
FR2690415B1 (en) 1992-04-24 1996-02-02 Otor Sa PACKAGING WITH POLYGONAL SECTION OF SHEET AND BLANK MATERIAL FOR THE PRODUCTION OF SUCH A PACKAGING.
US5353982A (en) 1992-06-12 1994-10-11 Paper Systems, Inc. Fluent container
US5524787A (en) 1993-02-02 1996-06-11 The Procter & Gamble Company Lightweight, composite container
US5400955A (en) 1993-02-05 1995-03-28 Otor Box formed from a sheet material, blank
US5351849A (en) 1993-03-12 1994-10-04 Eugene Jagenburg Container for free-flowing material
US5301829A (en) * 1993-03-24 1994-04-12 Blitz U.S.A., Inc. Combination fuel container and tool tray
US5348186A (en) 1993-04-02 1994-09-20 Longview Fibre Company Paperboard container for fluids having top opening fitment and exposed lip for engagement by handling implements
USD353541S (en) 1993-06-30 1994-12-20 Monsanto Company Container
US5713509A (en) 1993-07-06 1998-02-03 Correll; John D. Convertible box
US5340000A (en) 1993-07-13 1994-08-23 Ring Can Corporation Vented plastic bottle
US5396985A (en) 1993-10-13 1995-03-14 Purisys Inc. Package assembly having inner positioning means cooperating with a window
US5472124A (en) 1994-06-30 1995-12-05 Martushev; Nikolai K. Small engine fluid dispensing containers
US5462169A (en) 1994-09-23 1995-10-31 Ring Can Corporation Composite package for hazardous materials
US5497899A (en) 1995-02-02 1996-03-12 Ring Can Corporation Composite package
US5628450A (en) 1995-06-12 1997-05-13 Willamette Industries Octagonal box structure and setting up apparatus
USD371967S (en) 1995-09-22 1996-07-23 SST Industries, Inc. Container
US5715992A (en) 1995-09-26 1998-02-10 J & M Coffee Container Company, Inc. Beverage container
USD387984S (en) 1995-12-12 1997-12-23 Victorian Gift Box, Inc. Ornamental octagonal box
USD378494S (en) 1996-02-05 1997-03-18 SST Industries, Inc. Corner pour container
US5749489A (en) 1996-02-07 1998-05-12 Longview Fibre Company Paperboard container for fluids having an improved lower fitment restraint structure
US5584430A (en) * 1996-03-15 1996-12-17 Amway Corporation Flip-top container with integral handles
USRE38631E1 (en) 1996-04-24 2004-10-19 ConPac South, Inc. Paperboard container reinforcing method
US5772108A (en) 1996-04-24 1998-06-30 Con Pac South, Inc. Reinforced paperboard container
US5713469A (en) 1996-07-19 1998-02-03 The Mead Corporation Carton with integral core
US5779051A (en) 1996-09-09 1998-07-14 Boutin; Raymond Two-plane stacking container for liquids
US5765711A (en) 1996-09-30 1998-06-16 Container Specialties, Inc. Composite package
USD395004S (en) 1997-04-25 1998-06-09 Dennis J. Perrin Corrugated box
USD402201S (en) 1997-11-13 1998-12-08 Greenleaf, Inc. Multi-sided tapered box for candle
USD401147S (en) 1997-11-13 1998-11-17 Greenleaf, Inc. Multi-sided box for candle
USD402896S (en) 1997-12-24 1998-12-22 Ball Corporation Octagonal container with pinch grip
US5954216A (en) 1998-01-23 1999-09-21 Great Spring Waters Of America, Inc. Container with integral ergonomic handle
US5988389A (en) 1998-02-25 1999-11-23 The Mead Corporation Article cradle
AU137163S (en) 1998-06-30 1999-05-03 Zeneca Ltd Container
GB9827899D0 (en) * 1998-12-18 1999-02-10 Burnham Douglas P Portable liquid container showing improved pouring capabilities
US6378733B1 (en) * 1998-12-23 2002-04-30 Fleurfontein Mountain Estates (Proprietary) Limited Box
US6045036A (en) 1999-01-20 2000-04-04 Ring Can Corporation Composite container
USD434666S (en) 1999-03-26 2000-12-05 Aloe Health LC Container with handle
US6394742B1 (en) 1999-04-30 2002-05-28 The Mead Corporation Method for stacking boxes and removal of individual boxes from the stack
US6419087B1 (en) 1999-05-24 2002-07-16 Professional Package Company Floral shipper
EP1060995A3 (en) 1999-06-15 2002-06-12 Dr. Ing. W. Frohn GmbH & Co. KG Stackable container with optimal emptying when turned upside-down
US6237840B1 (en) * 1999-08-04 2001-05-29 Prestolite Corporation Container with improved hand hole
US6358191B1 (en) 1999-08-27 2002-03-19 The Mead Corporation System and method for flexible control and adjustment of a box forming machine
USD428341S (en) 1999-09-14 2000-07-18 Raychar Inc. Container
USD434326S (en) 1999-12-16 2000-11-28 Conagra Grocery Products Company Dispenser bottle
USD489939S1 (en) 2000-04-25 2004-05-18 International Dispensing Corporation Disposable beverage container
US6688514B2 (en) 2000-12-15 2004-02-10 International Paper Company Bulk box with a quick lock bottom and smooth interior bottom surface
US6588651B2 (en) 2001-01-22 2003-07-08 International Paper Company Octagonal bulk bin
US6598785B2 (en) 2001-07-25 2003-07-29 International Paper Company Container with improved stacking strength and resistance to lateral distortion
US6868982B2 (en) 2001-12-05 2005-03-22 Cold Chain Technologies, Inc. Insulated shipping container and method of making the same
US20030132275A1 (en) 2002-01-16 2003-07-17 Ingalls Samuel L. Multi-ply corrugated containers, such as bulk bins, and fitment retainers, such as drain fitment retainers usable with bulk bins
US20030160092A1 (en) 2002-02-26 2003-08-28 Philips Nicholas A. Liquid container
US7077309B2 (en) 2002-07-24 2006-07-18 J & M Coffee Container Company, Inc. Beverage container
WO2004011336A2 (en) * 2002-07-26 2004-02-05 Mitsukan Group Corporation Carton for bag-in-box
USD480972S1 (en) 2002-08-22 2003-10-21 Dan Cheresko Fluid carrying container exhibiting a rearwardly disposed handle
US6877654B2 (en) 2002-11-06 2005-04-12 Reliance Products Limited Partnership Disposable container for liquids with molded liner
US7137521B2 (en) 2003-02-24 2006-11-21 Graham Packaging Co., Lp Plastic container having chamfered corners for improved top-loading strength
US7090115B2 (en) 2003-03-26 2006-08-15 Leon William Pierce Container for bagged beverages
USD523343S1 (en) 2003-04-16 2006-06-20 Castner John B Food and beverage container
GB0314815D0 (en) 2003-06-25 2003-07-30 Stephenson John Bag in box
USD513991S1 (en) 2003-06-26 2006-01-31 International Paper Company Handled container
US20050139645A1 (en) 2003-10-21 2005-06-30 Tetra Laval Holdings & Finance, S.A. Multi-sided package with easily openable lid
USD496865S1 (en) 2003-10-23 2004-10-05 Graham Packaging Company, L.P. Plastic container with a handle
USD527647S1 (en) 2003-11-03 2006-09-05 Captive Plastic, Inc. Container
WO2005047169A2 (en) 2003-11-10 2005-05-26 First Austin Funding Corporation Beverage container with rigid inner container
US7520410B2 (en) 2004-03-01 2009-04-21 Masterchem Industries, Llc Container sealing system
USD505076S1 (en) 2004-04-02 2005-05-17 W.M. Barr & Co., Inc. Container
USD516918S1 (en) 2005-03-08 2006-03-14 Lebanon Chemical Corporation Sculptured container with integral handle
US7249674B2 (en) 2005-08-17 2007-07-31 Der Liang Mu Multi-functional shoe storage box
USD517415S1 (en) 2005-04-19 2006-03-21 Kranson Industries, Inc. Bottle with handle
USD527639S1 (en) 2005-08-15 2006-09-05 Plastipak Packaging, Inc. Plastic container
US20070051642A1 (en) 2005-08-25 2007-03-08 Carol Godwin Transparent hat box
USD521870S1 (en) 2005-09-06 2006-05-30 Plasticpak Packaging, Inc. Plastic container
US20070075123A1 (en) 2005-09-30 2007-04-05 Keefe Walter D Jr Octagon shaped tray and corresponding blank
US7137533B1 (en) 2005-10-13 2006-11-21 Jennifer Heath Beverage dispensing system
USD563234S1 (en) 2005-11-14 2008-03-04 Tony E Moreno Rectangular beverage container
US7798391B2 (en) 2006-03-27 2010-09-21 Innovative Packaging Designs L.P. Display ready container
US7857743B2 (en) 2006-03-29 2010-12-28 Smurfit-Stone Container Enterprises, Inc. Blank, apparatus and method for constructing container
USD538167S1 (en) 2006-04-04 2007-03-13 Robert Michael Jennings Container
US7708186B2 (en) 2006-11-20 2010-05-04 Conagra Foods Rdm, Inc. Liquid-in-box container
USD575637S1 (en) 2007-04-20 2008-08-26 Arlington Services, Inc. Food and drink container
USD573885S1 (en) 2007-07-12 2008-07-29 Berlin Packaging, Llc Container
US7717324B2 (en) 2007-09-28 2010-05-18 International Paper Company Shipping and display container with removable cover and the associated container blank
US20090104324A1 (en) 2007-10-17 2009-04-23 Brainsmith Concepts, Llc Inflatable insulating food substance container holder
US7984845B2 (en) * 2008-05-19 2011-07-26 Millercoors, Llc Regulated fluid dispensing system packaging
US7922069B2 (en) 2008-07-07 2011-04-12 International Paper Co. Reinforced container
USD617635S1 (en) 2008-10-22 2010-06-15 Direct Dimensional Design Coffee box cover
MX2011004203A (en) 2008-10-23 2011-09-27 Dow Agrosciences Llc Foldable container for holding a pourable product.
USD595583S1 (en) 2008-12-03 2009-07-07 Plastipak Packaging, Inc. Plastic container
USD671405S1 (en) 2009-03-27 2012-11-27 Sunless, Inc. Box
USD640133S1 (en) 2009-11-11 2011-06-21 The Wine Group, Inc. Packaging for a beverage container
USD625600S1 (en) 2010-01-25 2010-10-19 OTB Packaging, Inc. Beverage container
USD628884S1 (en) 2010-02-11 2010-12-14 Smurfit-Stone Container Enterprises, Inc. Beverage dispensing container
CA138748S (en) 2010-02-26 2012-02-20 Monsanto Technology Llc Packaging for container
USD668951S1 (en) 2010-02-26 2012-10-16 Monsanto Technology Llc Container pack
USD631358S1 (en) 2010-02-26 2011-01-25 Monsanto Technology Llc Container
CA2790821C (en) 2010-02-26 2019-05-07 Monsanto Technology Llc Container assemblies for storing, shipping, and/or dispensing fluids, and related methods
US7959044B1 (en) * 2010-05-17 2011-06-14 Alharr Technologies, Inc Dual air vent bypass (DAVB) container
WO2012061175A2 (en) * 2010-11-01 2012-05-10 Graphic Packaging International, Inc. Carton with handle
USD670170S1 (en) 2011-02-25 2012-11-06 Monsanto Technology Llc Container
USD696131S1 (en) 2011-02-25 2013-12-24 Monsanto Technology Llc Container
USD668144S1 (en) 2011-07-08 2012-10-02 Kohler Co. Packaging for plumbing fixtures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163508A (en) * 1977-06-13 1979-08-07 Carthage Cup Company Disposable cup dispenser
US6935508B2 (en) * 1999-09-03 2005-08-30 B.A.G. Corp. Octagon shaped stackable flexible intermediate bulk container and method of maufacture
US20030106927A1 (en) * 2001-12-12 2003-06-12 International Paper Company Bulk container with inventory viewing means and pour spout
US20080073317A1 (en) * 2006-09-25 2008-03-27 Dygert Douglas M T Ergonomic plastic container and package system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD871206S1 (en) * 2017-11-30 2019-12-31 Chevron U.S.A. Inc. Motor oil container
US11485536B2 (en) 2020-02-14 2022-11-01 Georgia-Pacific Corrugated Llc Multi piece corrugated box assemblies, blanks, and systems for heavy bag in box dispensed products

Also Published As

Publication number Publication date
CA2790821A1 (en) 2011-09-01
EP2539238A1 (en) 2013-01-02
US20120312813A1 (en) 2012-12-13
AR080335A1 (en) 2012-03-28
US10189623B2 (en) 2019-01-29
MX2012009930A (en) 2012-10-05
BR112012021442A2 (en) 2016-05-31
WO2011106698A1 (en) 2011-09-01
MX359193B (en) 2018-09-18
BR112012021442B1 (en) 2020-11-17
CA2790821C (en) 2019-05-07

Similar Documents

Publication Publication Date Title
US20190152671A1 (en) Container Assemblies For Storing, Shipping, And/Or Dispensing Fluids, And Related Methods
US7699171B2 (en) Stackable containers and methods of manufacturing, stacking, and shipping the same
US8231029B2 (en) Flexible container having flexible handles
US7389909B2 (en) Bag-in-box container
US20040226989A1 (en) Portable food dispenser
US20080073347A1 (en) Container closure system
US9469423B2 (en) Flexible package with reinforced top and method of filling the same
US20070177828A1 (en) Packaging bag with pour spout
WO2011002925A2 (en) Bag in box packaging having a tap articulating assembly
US20130068764A1 (en) Economically improved plastic bottle and package system
US9403618B2 (en) Sealable carton with handle
US20050035128A1 (en) Household product package with tamper evident cap
US20130264380A1 (en) Sealable carton for liquid-based materials
KR20220084354A (en) A CUP, A BLANK FOR A CUP AND A METHOD OF FORMING A CUP
US6168039B1 (en) Household product package
EP1925565A1 (en) A packaging assembly comprising lightweight containers and manufacturing process
CN108602583B (en) Package containing a drinking device constrained to move in a predetermined plane
CA2034992A1 (en) Packaging for liquid or pulverulent products
EP2599728B1 (en) Packaging kit for a flexible pouch
CA2944615C (en) Semi-rigid shipping container with peel-reseal closure
US4143768A (en) Folded blank container for receptacles
JPH0532272A (en) Package for liquid or powdery article
AU2010235952A1 (en) Container

Legal Events

Date Code Title Description
AS Assignment

Owner name: MONSANTO TECHNOLOGY LLC, MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VOELKER, SCOTT C.;REEL/FRAME:048189/0379

Effective date: 20120821

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION