US20190136296A1 - Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) - Google Patents
Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) Download PDFInfo
- Publication number
- US20190136296A1 US20190136296A1 US16/184,863 US201816184863A US2019136296A1 US 20190136296 A1 US20190136296 A1 US 20190136296A1 US 201816184863 A US201816184863 A US 201816184863A US 2019136296 A1 US2019136296 A1 US 2019136296A1
- Authority
- US
- United States
- Prior art keywords
- target
- nucleic acid
- wells
- variant
- analyzing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6848—Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
Definitions
- FIG. 1 illustrates a top view of a multi-layer, thin-film cassette according to an embodiment of the invention
- FIG. 2 illustrates a cross-section of the high-efficiency single-cell droplet generating cassette of FIG. 1 ;
- FIG. 3 illustrates a top view schematic of an active single-cell droplet generator according to an embodiment of the invention
- FIG. 4 illustrates a cross-section view of the active single-cell droplet generator of FIG. 3 ;
- FIGS. 5-11 illustrate a workflow and associated system according to an embodiment of the invention.
- Embodiments include a novel structure and method for performing digital PCR using a low-cost, easy-to-use consumable and a combined thermocycler/analyzer.
- a PCR supermix is deposited into a slide containing approximately 20,000 microwells with volumes on the order of femtoliters.
- Capping layers such as plastic or glass, are then added to seal each well to form individual reaction chambers for subsequent PCR.
- the femtoliter well chips may be placed into a fully integrated system (it can also be done using two separate systems, one for PCR and one for the analysis) that performs the thermalcycling required for PCR and then the analysis.
- the system may comprise a laser with a beam focused to interrogate only one well at a time, at least one photodetector for measuring the emitted fluorescence from each individual well, a laser steering assembly for scanning the laser over the 20,000+ wells, and a programmable microcontroller.
- the system will also likely need to be able to “align” the laser to the consumable so that it “knows” where all of the wells are located.
- the preferred embodiment will be a photodiode placed on the opposite side (likely under) the femtoliter well consumable.
- Embodiments include a structure and method for performing digital PCR using a low-cost, easy-to-use consumable and a combined thermocycler/analyzer. This is done by creating emulsion droplets using a low-cost, thin-film technology with an optional method to measure the size of the droplets, and to some extent, the contents of the droplets, just downstream of their production, all within the same structure/cassette.
- an embodiment provides low-cost, high-efficiency emulsion droplet generating cassettes (see FIG. 1 and FIG. 2 ).
- This 3-D, thin-film structure is unique and allows for the sample well to be positioned directly over the droplet generating orifice. By locating the sample well directly over the droplet orifice, the suspended cells can be allowed to settle to the bottom, via gravity, to greatly increase the resulting cell-in-droplet efficiency.
- a current Coulter-style particle interrogation structure (which may be described in one or more of U.S. Pat. Nos. 7,417,418, 7,515,268, 7,520,164, 7,579,823, 8,171,778, 8,329,437, and 8,804,105).
- DC direct current
- AC simultaneous alternating current
- An embodiment includes a system that works with the above described emulsion droplet generating cassette that will drive the droplet fabrication with Coulter orifice feedback to help control droplet size and (in some cases) single-cell encapsulation efficiency and/or determination. Control of droplet size, frequency, and efficiency can be accomplished by varying the applied pneumatic pressure and/or vacuum to the cassette.
- This system has the optional ability to perform the necessary thermal cycling to PRC on the prepared droplets when desired. This is done by thermally cycling the Retrieval Sample Well ( FIG. 1 ) prior to removal of the cassette from the system.
- the cassette could be simplified to have just the droplet orifice structure with no feedback.
- FIG. 1 illustrates the multi-layer, thin-film cassette having the high-efficiency droplet fabrication orifice, the downstream Coulter orifice (for size and content determination), and the Retrieval Sample Well where optional PCR can be performed.
- FIG. 2 illustrates a cross-section of the high-efficiency single-cell droplet generating cassette (from FIG. 1 ) showing the layers optionally advantageous to perform the emulsion droplet production and the downstream Coulter orifice for electric impedance-based particle analysis.
- An embodiment includes the multilayer thin-film droplet generator discussed above in Disclosure A with the addition of an epi fluorescence system to detect the presence of the cells of interest as they approach the droplet generating orifice. Also added is an electrical actuator (such as a piezoelectric actuator) capable of creating a transient pressure pulse to selectively force the desired cells through the droplet generating orifice, thereby only creating droplets containing cells, and driving efficiency towards 100%.
- an electrical actuator such as a piezoelectric actuator
- FIG. 3 shows the top-view of one possible configuration for an active single cell droplet generator.
- FIG. 4 is a cross-section view of the droplet generator orifice showing the seven thin film layers.
- the fabricated droplets flow through a downstream Coulter orifice to measure their size (DC current) and contents (i.e., if a cell is inside) using AC current.
- the Coulter data can be used in real-time to adjust the input variables (pressure transducer timing, input pressures and/or vacuums, and optional DC voltage across the droplet orifice), thereby manipulating the size of the droplets and the resulting single-cell efficiency.
- input variables pressure transducer timing, input pressures and/or vacuums, and optional DC voltage across the droplet orifice
- FIG. 3 illustrates a top view schematic of an active single-cell droplet generator.
- Epi fluorescence illumination is directed to the droplet generator orifice.
- the piezoelectric transducer is activated and the transient pressure differential forces the cell downward, through the droplet generator, thereby only producing droplets with the desired cells.
- FIG. 4 illustrates a cross-section view of the active single-cell droplet generator from FIG. 3 in a seven-layer thin-film cassette.
- the cassette is fabricated with two outer translucent capping layers, three double-sided pressure sensitive adhesive layers with fluidic channel, and a central polyester layer. Cells in suspension flow across and over the droplet orifice and into a waste reservoir. When a cell of interest approaches the droplet generator orifice, the piezoelectric transducer is activated and the transient pressure differential forces the cell downward, through the droplet generator, thereby only producing droplets with the desired cells.
- the resulting single-cell droplets flow into a downstream though an optional Coulter orifice where the size can be measured using direct current and the droplet constituents (i.e., if a cell is present or not) can be determined using high-frequency alternating current.
- the droplets Once the droplets pass the Coulter orifice they flow to a reservoir where they are re-collected and used for subsequent DNA sequencing.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- This application claims priority to U.S. Prov. Pat. Appl. No. 62/584,055 filed Nov. 9, 2017, the contents of which are hereby incorporated by reference as if fully set forth herein.
- Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawing figures.
-
FIG. 1 illustrates a top view of a multi-layer, thin-film cassette according to an embodiment of the invention; -
FIG. 2 illustrates a cross-section of the high-efficiency single-cell droplet generating cassette ofFIG. 1 ; -
FIG. 3 illustrates a top view schematic of an active single-cell droplet generator according to an embodiment of the invention; -
FIG. 4 illustrates a cross-section view of the active single-cell droplet generator ofFIG. 3 ; and -
FIGS. 5-11 illustrate a workflow and associated system according to an embodiment of the invention. - There is a clear need in biological related sciences to determine the presence of low abundance nucleic acid sequences for gene expression analysis, mRNA analysis, vial load determination, and pathogen detection, among others. There is also a strong need in research for absolute quantification of target nucleic acid sequences. Absolute quantification is possible by partitioning a quantitative PCR reaction into 1 Os of thousands of individual femtoliter volumes, or wells. Each well contains a single target molecule (positive) or no target molecule (negative). Sample partitioning allows sensitive, specific detection of single template molecules. The partitioning mitigates the effects of target competition, making digital PCR amplification less susceptible to inhibition and greatly improving the discriminatory capacity of assays.
- The only other currently available technology to perform absolute quantification of nucleic acid sequences (also known as Digital PCR) is to split the PCR reaction materials into thousands of individual emulsion droplets. This process is expensive, complicated, and cumbersome to perform and requires three separate instruments, a droplet generator, a thermocycler (for PC), and a flow-based droplet analyzer.
- Embodiments include a novel structure and method for performing digital PCR using a low-cost, easy-to-use consumable and a combined thermocycler/analyzer. A PCR supermix is deposited into a slide containing approximately 20,000 microwells with volumes on the order of femtoliters. Capping layers, such as plastic or glass, are then added to seal each well to form individual reaction chambers for subsequent PCR.
- Once prepared, the femtoliter well chips may be placed into a fully integrated system (it can also be done using two separate systems, one for PCR and one for the analysis) that performs the thermalcycling required for PCR and then the analysis. The system may comprise a laser with a beam focused to interrogate only one well at a time, at least one photodetector for measuring the emitted fluorescence from each individual well, a laser steering assembly for scanning the laser over the 20,000+ wells, and a programmable microcontroller. The system will also likely need to be able to “align” the laser to the consumable so that it “knows” where all of the wells are located. To do this, the preferred embodiment will be a photodiode placed on the opposite side (likely under) the femtoliter well consumable.
- Additionally, there is a clear need in biological related sciences to determine the presence of low abundance nucleic acid sequences for gene expression analysis, mRNA analysis, vial load determination, and pathogen detection, among others. There is also a strong need in research for absolute quantification of target nucleic acid sequences. Absolute quantification is possible by partitioning a quantitative PCR into 10s of thousands of individual picoliter volumes, or wells. Each well contains a single target molecule (positive) or no target molecule (negative). Sample partitioning allows sensitive, specific detection of single template molecules (i.e., the molecule of interest). The partitioning mitigates the effects of target competition, making digital PCR amplification less susceptible to inhibition and greatly improving the discriminatory capacity of assays.
- The only other currently available technology to perform absolute quantification of nucleic acid sequences (also known as Digital PCR) is to split the PCR reaction materials into thousands of individual emulsion droplets. This process is expensive, complicated, and cumbersome to perform and requires three separate instruments, a droplet generator, a thermocycler (for PC), and a flow-based droplet analyzer.
- Embodiments include a structure and method for performing digital PCR using a low-cost, easy-to-use consumable and a combined thermocycler/analyzer. This is done by creating emulsion droplets using a low-cost, thin-film technology with an optional method to measure the size of the droplets, and to some extent, the contents of the droplets, just downstream of their production, all within the same structure/cassette. By combining precision laser processing and multi-layer laminates, an embodiment provides low-cost, high-efficiency emulsion droplet generating cassettes (see
FIG. 1 andFIG. 2 ). This 3-D, thin-film structure is unique and allows for the sample well to be positioned directly over the droplet generating orifice. By locating the sample well directly over the droplet orifice, the suspended cells can be allowed to settle to the bottom, via gravity, to greatly increase the resulting cell-in-droplet efficiency. - Preferably, within the same cassette, it is also possible to incorporate a current Coulter-style particle interrogation structure (which may be described in one or more of U.S. Pat. Nos. 7,417,418, 7,515,268, 7,520,164, 7,579,823, 8,171,778, 8,329,437, and 8,804,105). When the optional Coulter orifice is added just downstream of the droplet fabricator, it is possible to measure the size of the particle using direct current (DC) and the contents of the droplet using simultaneous alternating current (AC). It is also feasible to use just DC or just AC current instead of both simultaneously.
- An embodiment includes a system that works with the above described emulsion droplet generating cassette that will drive the droplet fabrication with Coulter orifice feedback to help control droplet size and (in some cases) single-cell encapsulation efficiency and/or determination. Control of droplet size, frequency, and efficiency can be accomplished by varying the applied pneumatic pressure and/or vacuum to the cassette. This system has the optional ability to perform the necessary thermal cycling to PRC on the prepared droplets when desired. This is done by thermally cycling the Retrieval Sample Well (
FIG. 1 ) prior to removal of the cassette from the system. - Alternate embodiments may include:
- Instead of using the Coulter orifice for downstream QC and feedback, it is possible to run the sample through a flow cytometer immediately after fabrication to determine approximate droplet size and contents. This may be done with side-scatter (or forward light collection) and fluorescence.
- The cassette could be simplified to have just the droplet orifice structure with no feedback.
-
FIG. 1 illustrates the multi-layer, thin-film cassette having the high-efficiency droplet fabrication orifice, the downstream Coulter orifice (for size and content determination), and the Retrieval Sample Well where optional PCR can be performed. -
FIG. 2 illustrates a cross-section of the high-efficiency single-cell droplet generating cassette (fromFIG. 1 ) showing the layers optionally advantageous to perform the emulsion droplet production and the downstream Coulter orifice for electric impedance-based particle analysis. - One of the major challenges in forming droplets containing single cells, is the inability to control when a droplet should be formed such that it contains a desired cell. State of the art technologies use statistical models and cell concentrations to drive the efficiency of cell/droplets. Currently available commercial systems claim efficiencies of up to only 60%, and actual efficiencies can be much lower. Because the success of downstream single-cell sequencing operations depends on the success, efficiency, and purity, of correctly produced single-cell droplets, there is a strong market need for a highly efficient single-cell droplet generator that can produce droplets with desired cells (only) on demand. In addition, there are currently no commercially available droplet systems with built-in quality control checks of any kind.
- An embodiment includes the multilayer thin-film droplet generator discussed above in Disclosure A with the addition of an epi fluorescence system to detect the presence of the cells of interest as they approach the droplet generating orifice. Also added is an electrical actuator (such as a piezoelectric actuator) capable of creating a transient pressure pulse to selectively force the desired cells through the droplet generating orifice, thereby only creating droplets containing cells, and driving efficiency towards 100%.
- Cell/droplet efficiency, as well as purity (i.e., only desired cells and not debris) is absolutely critical as the success of downstream DNA sequencing operations relies heavily on both the percent efficiency and droplet purity. The best commercially available single-cell droplet systems have efficiencies approaching only 60%, and actual efficiencies are typically much lower.
FIG. 3 shows the top-view of one possible configuration for an active single cell droplet generator.FIG. 4 is a cross-section view of the droplet generator orifice showing the seven thin film layers. In the preferred embodiment, the fabricated droplets flow through a downstream Coulter orifice to measure their size (DC current) and contents (i.e., if a cell is inside) using AC current. The Coulter data can be used in real-time to adjust the input variables (pressure transducer timing, input pressures and/or vacuums, and optional DC voltage across the droplet orifice), thereby manipulating the size of the droplets and the resulting single-cell efficiency. Such a system will become a powerful tool in the rapidly growing field of single-cell genomics. -
FIG. 3 illustrates a top view schematic of an active single-cell droplet generator. Epi fluorescence illumination is directed to the droplet generator orifice. When a cell of interest approaches the droplet generator orifice, the piezoelectric transducer is activated and the transient pressure differential forces the cell downward, through the droplet generator, thereby only producing droplets with the desired cells. -
FIG. 4 illustrates a cross-section view of the active single-cell droplet generator fromFIG. 3 in a seven-layer thin-film cassette. The cassette is fabricated with two outer translucent capping layers, three double-sided pressure sensitive adhesive layers with fluidic channel, and a central polyester layer. Cells in suspension flow across and over the droplet orifice and into a waste reservoir. When a cell of interest approaches the droplet generator orifice, the piezoelectric transducer is activated and the transient pressure differential forces the cell downward, through the droplet generator, thereby only producing droplets with the desired cells. The resulting single-cell droplets flow into a downstream though an optional Coulter orifice where the size can be measured using direct current and the droplet constituents (i.e., if a cell is present or not) can be determined using high-frequency alternating current. Once the droplets pass the Coulter orifice they flow to a reservoir where they are re-collected and used for subsequent DNA sequencing.
Claims (10)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/184,863 US20190136296A1 (en) | 2017-11-09 | 2018-11-08 | Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) |
| US17/093,429 US11891657B2 (en) | 2017-11-09 | 2020-11-09 | Ultra-sensitive platform for nucleic acid detection using a novel method, scanning digital polymerase chain reaction (PCR) |
| US18/544,344 US20240344119A1 (en) | 2017-11-09 | 2023-12-18 | Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762584055P | 2017-11-09 | 2017-11-09 | |
| US16/184,863 US20190136296A1 (en) | 2017-11-09 | 2018-11-08 | Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/093,429 Continuation US11891657B2 (en) | 2017-11-09 | 2020-11-09 | Ultra-sensitive platform for nucleic acid detection using a novel method, scanning digital polymerase chain reaction (PCR) |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20190136296A1 true US20190136296A1 (en) | 2019-05-09 |
Family
ID=66328328
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/184,863 Abandoned US20190136296A1 (en) | 2017-11-09 | 2018-11-08 | Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) |
| US17/093,429 Active 2040-06-13 US11891657B2 (en) | 2017-11-09 | 2020-11-09 | Ultra-sensitive platform for nucleic acid detection using a novel method, scanning digital polymerase chain reaction (PCR) |
| US18/544,344 Pending US20240344119A1 (en) | 2017-11-09 | 2023-12-18 | Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/093,429 Active 2040-06-13 US11891657B2 (en) | 2017-11-09 | 2020-11-09 | Ultra-sensitive platform for nucleic acid detection using a novel method, scanning digital polymerase chain reaction (PCR) |
| US18/544,344 Pending US20240344119A1 (en) | 2017-11-09 | 2023-12-18 | Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US20190136296A1 (en) |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6899137B2 (en) * | 1999-06-28 | 2005-05-31 | California Institute Of Technology | Microfabricated elastomeric valve and pump systems |
| US8735853B2 (en) * | 2012-06-09 | 2014-05-27 | E.I. Spectra, Llc | Fluorescence flow cytometry |
-
2018
- 2018-11-08 US US16/184,863 patent/US20190136296A1/en not_active Abandoned
-
2020
- 2020-11-09 US US17/093,429 patent/US11891657B2/en active Active
-
2023
- 2023-12-18 US US18/544,344 patent/US20240344119A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| US20240344119A1 (en) | 2024-10-17 |
| US11891657B2 (en) | 2024-02-06 |
| US20210054441A1 (en) | 2021-02-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20220155251A1 (en) | Droplet-based surface modification and washing | |
| TWI684644B (en) | Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis | |
| US9448157B2 (en) | Microparticle sorting apparatus, microchip for sorting microparticles and microparticle sorting method | |
| EP2016189B1 (en) | Droplet-based pyrosequencing | |
| EP3677905B1 (en) | Integrated biochip system for nucleic acid analysis | |
| US8613889B2 (en) | Droplet-based washing | |
| US9476856B2 (en) | Droplet-based affinity assays | |
| CN107262170B (en) | A kind of multiplex digital PCR chip and using method thereof | |
| US8936762B2 (en) | High throughput multichannel reader and uses thereof | |
| EP2839029B1 (en) | Method of performing digital pcr | |
| US9387489B2 (en) | Devices for separation of biological materials | |
| US20070242111A1 (en) | Droplet-based diagnostics | |
| US20110100823A1 (en) | Droplet-Based Nucleic Acid Amplification Apparatus and System | |
| CN1767898A (en) | Microfluidic device with thin-film electronic devices | |
| CN1860363A (en) | Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network | |
| CN107532128A (en) | Use the digital pcr system and method for digital micro-fluid | |
| AU2010257244A1 (en) | Closed-system multi-stage nucleic acid amplification reactions | |
| CN103221529A (en) | Devices and methods for integrated sample preparation, reaction and detection | |
| CN107513495A (en) | Multichannel droplet detection chip for detection of nucleic acids | |
| US20240344119A1 (en) | Ultra-Sensitive Platform for Nucleic acid detection using a novel method, Scanning Digital polymerase chain reaction (PCR) | |
| WO2013158860A1 (en) | Devices and methods for nucleic acid preparation and analysis | |
| WO2019136153A1 (en) | High-efficiency, array-based, single-cell sequencing prep system that correlates cell phenotype with genotype | |
| US20190025183A1 (en) | Gene analysis method | |
| HK1206673B (en) | Methods and devices for correlated, multi-parameter single cell measurements and recovery of remnant biological material | |
| HK1206673A1 (en) | Methods and devices for correlated, multi-parameter single cell measurements and recovery of remnant biological material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: E.I. SPECTRA, LLC, IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AYLIFFE, HAROLD E.;O'NEIL, DONALD;REEL/FRAME:047457/0467 Effective date: 20180103 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| AS | Assignment |
Owner name: E.I. SPECTRA, LLC, IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAROLD E. AYLIFFE;O'NEIL, DONALD;REEL/FRAME:054336/0322 Effective date: 20181113 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |