US20190134380A1 - Devices and methods for treatment of ventilator associated dysphagia - Google Patents
Devices and methods for treatment of ventilator associated dysphagia Download PDFInfo
- Publication number
- US20190134380A1 US20190134380A1 US15/779,566 US201615779566A US2019134380A1 US 20190134380 A1 US20190134380 A1 US 20190134380A1 US 201615779566 A US201615779566 A US 201615779566A US 2019134380 A1 US2019134380 A1 US 2019134380A1
- Authority
- US
- United States
- Prior art keywords
- tube
- ventilator
- dysphagia
- endotracheal
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0519—Endotracheal electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/04—Tracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/04—Tracheal tubes
- A61M16/0402—Special features for tracheal tubes not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0517—Esophageal electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0548—Oral electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/05—General characteristics of the apparatus combined with other kinds of therapy
- A61M2205/054—General characteristics of the apparatus combined with other kinds of therapy with electrotherapy
Definitions
- the present invention relates to devices and methods for the treatment of Ventilator Associated Dysphagia (from hereonin referred to as VAD).
- VAD Ventilator Associated Dysphagia
- Dysphagia can be defined as a difficulty or inability to swallow effectively or safely. Dysphagia is not a disease, it is a symptom associated with many different types of diseases or medical conditions.
- Complications that have been associated with dysphagia post-stroke include pneumonia, malnutrition, dehydration, poorer long-term outcome, increased length of hospital stay, increased rehabilitation time and the need for long-term care assistance, increased mortality, and increased health care costs. These complications impact the physical and social well being of patients, quality of life of both patients and caregivers, and the utilization of health care resources.
- dysphagia due to disruption of the control centres in the brain that are responsible for modulating or coordinating swallowing activities. For this reason they can be described as neurogenic dysphagia.
- dysphagia There are other types of dysphagia that are related to local physical trauma or physical abnormalities in the tissues or musculature involved in the swallowing process itself. In these cases the centres of the brain involved in the modulation or control of swallowing are likely to be undamaged. This type of dysphagia would not be described as neurogenic dysphagia.
- VAD dysphagia
- tracheal tubes of which there are two types: endotracheal tubes that are introduced orally (orotracheal) or nasally (nasotracheal), or, tracheostomy tubes that are introduced via a tracheostomy, i.e. an incision directly into a patient's trachea. Both classes of tube are designed to be connected as required to a mechanical ventilator that can maintain supply of the necessary gases to the patient's lungs. Endotracheal tubes are designed primarily to provide a means to mechanically ventilate or provide a safe airway for patients who have either compromised respiratory function or dysphagia. They may also be used in anaesthesiology.
- endotracheal tubes are provided as sterile disposable units. They are generally made from PVC with an internal diameter ranging from 2-10.5 mm. In it's simplest form at the proximal end there is a standard connector compatible with machine ventilators and at the distal end are ports or openings to allow passage of gases into the lungs. There is also usually an inflatable balloon or cuff designed to provide a seal at the entrance to the airways at a location below the vocal cords.
- endotracheal tube variants that include a variety of additional features—suction ports and channels to allow removal of secretions pooled above the cuff, multiple channel tubes to allow selective inflation or deflation of lungs, reinforced or preformed tubes to facilitate positioning or tolerability and tubes made of alternative materials such as silicone.
- Tracheostomy tubes are introduced via a tracheostomy. They generally comprise an outer cannula designed to maintain the opening into the trachea and an inner cannula.
- the outer cannula has a faceplate and this is where the ties or sutures are connected to secure the tube in place.
- the inner cannula can be cleaned or disposed of as required.
- the tube is usually of the order of 75 mm in length.
- an inflatable cuff to prevent ingress of secretions.
- Another common feature of tracheostomy tubes, an obturator is a curved device designed to facilitate placement/introduction and is removed once the outer cannula is correctly in position. The obturator is then replaced by the inner cannula.
- Endotracheal tubes can also directly interfere with swallowing by decreasing the elevation and anterior displacement of the larynx or by compressing the oesophagus
- Chronic idiopathic neuropathy, Parkinson's Disease, Poliomyelitis and many other conditions can contribute to disruption of the neurological component of swallowing function
- Vocal cords show reduced sensitivity and movement in response to thermal stimulation (ice water) after prolonged mechanical ventilation. Sensory deficit in the pharyngeal mucosa may contribute to dysphagia as, after anaesthesia a significant decrease in swallowing speed and capacity can be demonstrated. Reversible swallowing defects seen after prolonged mechanical ventilation have also been claimed to be primarily due to disuse muscle atrophy.
- VAD may be caused by a combination of factors—local trauma or injury, muscle atrophy and/or changes in neurological sensitivity or responsiveness or co-morbidities. Whilst the root causes of VAD may not be fully understood, it is clear that they are not the same as the root cause of neurogenic dysphagia. In the latter case regardless of the underlying condition the main issue is direct injury to the centers of the brain responsible for swallowing instigation, modulation or control. There is no evidence that the presence of a ventilation tube alone could give rise to this kind of injury in the brain.
- Pharyngeal Electrical Stimulation also referred to herein simply as electrical stimulation, is a treatment recognised as being effective at treating neurogenic dysphagia and is designed to restore functionality in the higher brain centres responsible for swallowing control and coordination.
- PES involves the delivery of patient specific levels of electrical stimulation to the pharyngeal mucosa. This stimulation acts on sensory nerve clusters in the region (mainly the pharyngeal branches and/or laryngeal and lingual branches of the glossopharyngeal and vagus nerves). The resulting sensory signals pass upwards via afferent pathways through the brainstem and act on the swallow control centres in the motor cortex.
- the net result of the stimulation is that it facilitates a functional reorganization in the brain such that the majority of activity involved in swallowing coordination and control is moved from the damaged area of the brain to a site on the other side of the brain.
- PES requires the positioning of a pair of electrodes in the pharyngeal region and establishing good electrical contact with the pharyngeal mucosa.
- TMS Trancranial Magnetic Stimulation
- tDCS Transcranial Direct Current Stimulation
- PES has the advantage that by delivering sensory input to the pharynx, base of the tongue and upper laryngeal regions in a manner that is not lateralized, it can provide the kind of local stimulation associated with a conventional swallowing action but at a higher intensity.
- the endotracheal tube may prevent the PES electrodes coming in contact with the target tissues and prevent treatment initiation, or, the electrodes may deliver electrical stimulation to the surface of endotracheal tube thus directing the current away from the target tissue
- TMS and tDCS have the limitations described above but also have a common advantage in that the location of the applied stimulus is remote from the location of the endotracheal or tracheotomy tubes. This means they effectively avoid one of the challenges in delivering PES to patients i.e., unwanted interaction between the catheter for PES treatment delivery and the tubes for providing ventilation.
- an orotracheal tube Whilst the presence of an orotracheal tube may contribute to oropharyngeal dysphagia post extubation, it also serves as a safe airway in the presence of dysphagia. As a result there is a challenge associated with removing the tube as it may at the same time as contributing to the development of the dysphagia be the most effective way of managing the risks associated with the problem.
- the present invention seeks to provide solutions to the aforementioned problems.
- Described herein are methods and devices to enable effective treatment of VAD including methods and devices that allow a ventilation tube to be left in place to protect a patient's airway, but also enable the delivery of treatment by way of electrical stimulation.
- Electrical stimulation of the pharyngeal mucosa provides a sensory input to induce swallowing activity, overcome the effects of tissue trauma and/or atrophy and/or re-establish dormant neurological pathways (in the case of neurogenic dysphagia) and the presence of a ventilation tube provides a means to safely mechanically ventilate the patient, should this be needed.
- the patient may be fully or partially weaned from the ventilator, and/or the ventilation tube may be removed, prior to electrical stimulation being delivered.
- the present invention also provides devices and methods for the delivery of electrical stimulation to patients who are mechanically ventilated. These patients may be suffering from VAD or from other forms of dysphagia, as discussed herein, such as neurogenic dysphagia (for example, where stroke is the primary cause). Treating these patients whilst they are still mechanically ventilated should lead to quicker recovery times and reduce the need for ongoing mechanical ventilation as a means to prevent dysphagia associated respiratory problems.
- the presence of an endotracheal tube creates technical challenges to the delivery of electrical stimulation using the methods and devices of the prior art.
- the endotracheal tube may prevent the electrodes coming in contact with the target tissues and prevent treatment initiation, the electrodes may deliver electrical stimulation to the endotracheal tube directing the current away from the target tissues and into or along the surface of the endotracheal tube.
- Ventilator Associated Dysphagia refers to dysphagia whose primary cause is mechanical ventilation and/or the presence of the associated mechanical ventilation devices, e.g. an endotracheal or tracheostomy tube.
- a first aspect of the invention provides an endotracheal ventilator tube for the treatment of dysphagia comprising an elongate tube and at least one electrode positioned on or about the elongate tube, wherein the at least one electrode is configured to deliver electrical stimulation to the oropharyngeal region and is electrically connected to an electrical stimulation generating means.
- the ventilator tube comprises a sleeve selectively positionable around the elongate tube, wherein the at least one electrode is positioned on the sleeve.
- the sleeve may be split along its length.
- the elongate tube defines a pre-curved shape for urging the at least one electrode against target tissue.
- a second aspect of the invention provides an endotracheal ventilator tube comprising an elongate tube, wherein the elongate tube comprises at least one channel for receiving a catheter for delivering PES.
- a third aspect of the invention provides a method of treating ventilator associated dysphagia, the method comprising: inserting a ventilation tube as claimed in any one of the preceding claims into a patient either orally or nasally; positioning the ventilation tube such that the at least one electrode is located proximate a pre-defined target tissue; and stimulating the pre-defined target tissue by electrical stimulation.
- FIG. 1 illustrates a first embodiment of a device for administering electrical stimulation to a patient's pharyngeal tissue
- FIG. 2 illustrates a second embodiment of a device for administering electrical stimulation to a patient's pharyngeal tissue
- FIG. 3 illustrates a third embodiment of a device for administering electrical stimulation to a patient's pharyngeal tissue.
- FIG. 1 shows a first embodiment of a device ( 10 ) for administering electrical stimulation to a patient's pharynx.
- the device ( 10 ) comprises a ventilator tube ( 12 ) with at least one electrode ( 14 , 16 ) located on its outer surface in such a position that when the ventilator tube ( 12 ) is properly inserted into a patient, the at least one electrode ( 14 , 16 ) is aligned and in contact with the target pharyngeal mucosa.
- the device ( 10 ) additionally comprises conducting wires ( 18 ) located within the walls of the ventilator tube ( 12 ) extending from the at least one electrode ( 14 , 16 ) and terminating at a connector ( 20 ) suitable for attachment to a control unit ( 22 ).
- the control unit ( 20 ) comprises electrical current generating means for delivering an electrical current to the at least one electrode ( 14 , 16 ) and a control interface means ( 24 ) for selectively varying the delivered electrical current.
- a further feature of this first embodiment is a pre-curved fixed shape that advantageously brings the electrodes into better contact with target pharyngeal mucosa.
- a further feature of the first embodiment of the device ( 10 ) provides a means to selectively change the shape of the ventilator tube, or a portion of the ventilator tube, such that the at least one electrode is brought into better contact with the patient's pharyngeal mucosa. Examples of such means of selectively changing the shape of the ventilator tube include a guide wire inserted longitudinally through the tube or walls of the tube, structures within or inserted into the tube with spring like properties including those with regions of different spring tension along the length of the ventilator tube and also inflatable features ( 12 ).
- FIG. 2 shows a second embodiment of a device for administering electrical stimulation.
- the device ( 100 ) comprises a sleeve ( 102 ) split ( 118 ) along its length with at least one electrode ( 104 , 106 ) located on its outer surface, conducting wires ( 108 ) along its length and a connector ( 110 ) suitable for attachment to a control unit ( 112 ).
- the control unit ( 112 ) comprises electrical current generating means for delivering an electrical current to the at least one electrode ( 104 , 106 ) and a control interface means ( 114 ) for selectively varying the delivered electrical current.
- the sleeve ( 102 ) is configured such that it can be reversibly positioned around a standard endotracheal ventilator tube ( 116 ) and secured in place.
- the sleeve ( 102 ) may also be capable of being moved along the length of the endotracheal ventilator tube ( 116 ) and being reversibly fixed into position longitudinally as required in order to position the electrodes ( 104 , 106 ) optimally.
- the sleeve ( 102 ) may also be capable of being added to or removed from the endotracheal ventilator tube ( 116 ) after the endotracheal ventilator tube has been inserted into a patient.
- the electrodes ( 104 , 106 ) may be formed from a flexible printed conductive material.
- FIG. 3 shows another embodiment of a device for administering electrical stimulation.
- the device ( 200 ) is a pre-curved endotracheal ventilator tube ( 202 ) oriented such that the exterior surface of the curve of the endotracheal ventilator tube ( 202 ) is substantially in contact with the posterior wall of a patient's pharynx.
- the device ( 200 ) further comprises a channel ( 204 ) disposed within the curved surface designed to receive a treatment catheter ( 206 ) comprising at least one electrode ( 208 , 210 ) and urges the at least one electrode ( 208 , 210 ) into contact with the preferred contact area on the posterior wall of the patient's pharynx.
- the treatment catheter ( 206 ) is also designed to provide nutritional support it may act to facilitate passage of the tip of the catheter into the oesophagus and onwards to the stomach whether introduced nasally or orally.
Landscapes
- Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Emergency Medicine (AREA)
- Cardiology (AREA)
- Electrotherapy Devices (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1520900.0 | 2015-11-26 | ||
GB1520900.0A GB2544780A (en) | 2015-11-26 | 2015-11-26 | Devices and methods for treatment of ventilator associated dysphagia |
PCT/GB2016/053628 WO2017089752A1 (fr) | 2015-11-26 | 2016-11-22 | Dispositifs et procédés pour le traitement de la dysphagie associée à un ventilateur |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2016/053628 A-371-Of-International WO2017089752A1 (fr) | 2015-11-26 | 2016-11-22 | Dispositifs et procédés pour le traitement de la dysphagie associée à un ventilateur |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/313,289 Continuation US20230302244A1 (en) | 2015-11-26 | 2023-05-05 | Devices and methods for treatment of ventilator associated dysphagia |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190134380A1 true US20190134380A1 (en) | 2019-05-09 |
Family
ID=55177295
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/779,566 Abandoned US20190134380A1 (en) | 2015-11-26 | 2016-11-22 | Devices and methods for treatment of ventilator associated dysphagia |
US18/313,289 Pending US20230302244A1 (en) | 2015-11-26 | 2023-05-05 | Devices and methods for treatment of ventilator associated dysphagia |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/313,289 Pending US20230302244A1 (en) | 2015-11-26 | 2023-05-05 | Devices and methods for treatment of ventilator associated dysphagia |
Country Status (5)
Country | Link |
---|---|
US (2) | US20190134380A1 (fr) |
EP (1) | EP3380187A1 (fr) |
CA (1) | CA3006012A1 (fr) |
GB (1) | GB2544780A (fr) |
WO (1) | WO2017089752A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11617881B2 (en) | 2014-11-06 | 2023-04-04 | Phagenesis Limited | Catheter for recovery of dysphagia |
US11992681B2 (en) | 2020-11-20 | 2024-05-28 | Phagenesis Limited | Devices, systems, and methods for treating disease using electrical stimulation |
US12059537B2 (en) | 2019-04-11 | 2024-08-13 | Phagenesis Limited | Safety clasp and garment clip |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2594296A1 (fr) * | 2004-08-28 | 2006-03-09 | The University Of Manchester | Guerison d'une dysphagie par stimulation electrique |
US20120203058A1 (en) * | 2011-02-09 | 2012-08-09 | Brian Keith Kanapkey | Motion activated electronic therapeutic cue device and method |
US20140303617A1 (en) * | 2013-03-05 | 2014-10-09 | Neuro Ablation, Inc. | Intravascular nerve ablation devices & methods |
US10028885B2 (en) * | 2013-03-15 | 2018-07-24 | The University Of Western Ontario | Oral mouthpiece and method for the use thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7280873B2 (en) * | 1995-10-27 | 2007-10-09 | Esd, Llc | Treatment of oropharyngeal disorders by application of neuromuscular electrical stimulation |
DE59607241D1 (en) * | 1995-12-22 | 2001-08-09 | Wolfram Lamade | Endotracheal-tubus |
US6735471B2 (en) * | 1996-04-30 | 2004-05-11 | Medtronic, Inc. | Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure |
DE10019956C2 (de) * | 2000-04-20 | 2002-07-18 | Vbm Medizintechnik Gmbh | Hyperpharynx-Tubus |
US7201168B2 (en) * | 2004-04-14 | 2007-04-10 | King Systems Corporation | Non-tracheal ventilation tube |
US7379767B2 (en) * | 2006-01-03 | 2008-05-27 | James Lee Rea | Attachable and size adjustable surface electrode for laryngeal electromyography |
US8886280B2 (en) * | 2007-01-23 | 2014-11-11 | The Magstim Company Limited | Nerve monitoring device |
US20100249639A1 (en) * | 2009-01-20 | 2010-09-30 | Samir Bhatt | Airway management devices, endoscopic conduits, surgical kits, and methods of using the same |
GB201105622D0 (en) * | 2011-04-01 | 2011-05-18 | Phangenesis Ltd | Multi functional catheter |
US8864791B2 (en) * | 2011-04-08 | 2014-10-21 | John R. Roberts | Catheter systems and methods of use |
US20120260921A1 (en) * | 2011-04-18 | 2012-10-18 | Yashvir Singh Sangwan | Endotracheal tube with bronchoscope viewing port |
US9913594B2 (en) * | 2013-03-14 | 2018-03-13 | Medtronic Xomed, Inc. | Compliant electrode for EMG endotracheal tube |
-
2015
- 2015-11-26 GB GB1520900.0A patent/GB2544780A/en not_active Withdrawn
-
2016
- 2016-11-22 WO PCT/GB2016/053628 patent/WO2017089752A1/fr active Application Filing
- 2016-11-22 US US15/779,566 patent/US20190134380A1/en not_active Abandoned
- 2016-11-22 CA CA3006012A patent/CA3006012A1/fr active Pending
- 2016-11-22 EP EP16804849.4A patent/EP3380187A1/fr active Pending
-
2023
- 2023-05-05 US US18/313,289 patent/US20230302244A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2594296A1 (fr) * | 2004-08-28 | 2006-03-09 | The University Of Manchester | Guerison d'une dysphagie par stimulation electrique |
US20120203058A1 (en) * | 2011-02-09 | 2012-08-09 | Brian Keith Kanapkey | Motion activated electronic therapeutic cue device and method |
US20140303617A1 (en) * | 2013-03-05 | 2014-10-09 | Neuro Ablation, Inc. | Intravascular nerve ablation devices & methods |
US10028885B2 (en) * | 2013-03-15 | 2018-07-24 | The University Of Western Ontario | Oral mouthpiece and method for the use thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11617881B2 (en) | 2014-11-06 | 2023-04-04 | Phagenesis Limited | Catheter for recovery of dysphagia |
US11980753B2 (en) | 2014-11-06 | 2024-05-14 | Phagenesis Limited | Catheter for recovery of dysphagia |
US12059537B2 (en) | 2019-04-11 | 2024-08-13 | Phagenesis Limited | Safety clasp and garment clip |
US11992681B2 (en) | 2020-11-20 | 2024-05-28 | Phagenesis Limited | Devices, systems, and methods for treating disease using electrical stimulation |
Also Published As
Publication number | Publication date |
---|---|
US20230302244A1 (en) | 2023-09-28 |
EP3380187A1 (fr) | 2018-10-03 |
GB2544780A (en) | 2017-05-31 |
WO2017089752A1 (fr) | 2017-06-01 |
GB201520900D0 (en) | 2016-01-13 |
CA3006012A1 (fr) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230302244A1 (en) | Devices and methods for treatment of ventilator associated dysphagia | |
US8925551B2 (en) | Method and device for the treatment of obstructive sleep apnea and snoring | |
JP6108410B2 (ja) | 食道刺激装置および方法 | |
US5584290A (en) | Combined laryngeal mask airway and muscular or neuro-muscular response device | |
US8568438B2 (en) | Sleep apnea therapy with naso-phyrangeal bypass | |
US20220160537A1 (en) | Devices, systems, and methods for treating disease using electrical stimulation | |
Gonzalez-Bermejo et al. | Respiratory neuromodulation in patients with neurological pathologies: for whom and how? | |
Mwenge et al. | Hypoglossal nerve stimulation for obstructive sleep apnea | |
US9999767B2 (en) | Esophageal stimulation system | |
US9550059B2 (en) | Respiration sensors for recording of triggered respiratory signals in neurostimulators | |
WO2001032249A1 (fr) | Tracheotrode et systeme d'electroventilation tracheale | |
Qureshi | Tracheostomy decannulation; a catch-22 for patients with spinal cord injuries | |
AU2013267024B2 (en) | Device for the treatment of a breathing disorder | |
Wadhawa et al. | A Prospective Randomized Study to Evaluate and Compare ILMA and Air-Q Intubating Laryngeal Airway. | |
Clark et al. | Nasotracheal Intubation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PHAGENESIS LIMITED, GREAT BRITAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MULROONEY, CONOR;REEL/FRAME:046369/0498 Effective date: 20180716 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |