US20190106495A1 - Methods and compositions for treating aging-associated impairments - Google Patents
Methods and compositions for treating aging-associated impairments Download PDFInfo
- Publication number
- US20190106495A1 US20190106495A1 US16/167,647 US201816167647A US2019106495A1 US 20190106495 A1 US20190106495 A1 US 20190106495A1 US 201816167647 A US201816167647 A US 201816167647A US 2019106495 A1 US2019106495 A1 US 2019106495A1
- Authority
- US
- United States
- Prior art keywords
- aging
- cognitive
- disease
- young
- mammal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000032683 aging Effects 0.000 title claims abstract description 146
- 238000000034 method Methods 0.000 title claims abstract description 138
- 230000006735 deficit Effects 0.000 title claims abstract description 56
- 239000000203 mixture Substances 0.000 title description 15
- 102100027314 Beta-2-microglobulin Human genes 0.000 claims abstract description 183
- 208000010877 cognitive disease Diseases 0.000 claims abstract description 95
- 241000124008 Mammalia Species 0.000 claims abstract description 64
- 208000028698 Cognitive impairment Diseases 0.000 claims abstract description 59
- 108010081355 beta 2-Microglobulin Proteins 0.000 claims abstract description 43
- 101000937544 Homo sapiens Beta-2-microglobulin Proteins 0.000 claims description 188
- 230000014509 gene expression Effects 0.000 claims description 46
- 102000015736 beta 2-Microglobulin Human genes 0.000 claims description 43
- 239000003795 chemical substances by application Substances 0.000 claims description 41
- 230000009885 systemic effect Effects 0.000 claims description 36
- 230000027455 binding Effects 0.000 claims description 27
- 239000012634 fragment Substances 0.000 claims description 13
- 230000002829 reductive effect Effects 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 239000003112 inhibitor Substances 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 7
- 102000039446 nucleic acids Human genes 0.000 claims description 6
- 108020004707 nucleic acids Proteins 0.000 claims description 6
- 241000288906 Primates Species 0.000 claims description 5
- 150000007523 nucleic acids Chemical class 0.000 claims description 5
- 150000003384 small molecules Chemical class 0.000 claims description 5
- 241000699670 Mus sp. Species 0.000 description 77
- 210000004027 cell Anatomy 0.000 description 74
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 71
- 238000011282 treatment Methods 0.000 description 55
- 108090000623 proteins and genes Proteins 0.000 description 50
- 230000015654 memory Effects 0.000 description 48
- 201000010099 disease Diseases 0.000 description 47
- 241001465754 Metazoa Species 0.000 description 46
- 210000004556 brain Anatomy 0.000 description 46
- 238000012360 testing method Methods 0.000 description 43
- 230000004766 neurogenesis Effects 0.000 description 41
- 210000001947 dentate gyrus Anatomy 0.000 description 37
- 230000000694 effects Effects 0.000 description 37
- 102000004169 proteins and genes Human genes 0.000 description 36
- 235000018102 proteins Nutrition 0.000 description 34
- 230000006999 cognitive decline Effects 0.000 description 32
- 210000004369 blood Anatomy 0.000 description 31
- 239000008280 blood Substances 0.000 description 31
- 208000024827 Alzheimer disease Diseases 0.000 description 29
- 230000003930 cognitive ability Effects 0.000 description 29
- 230000013016 learning Effects 0.000 description 29
- 208000024891 symptom Diseases 0.000 description 27
- 239000003981 vehicle Substances 0.000 description 27
- 210000001519 tissue Anatomy 0.000 description 26
- 241000699666 Mus <mouse, genus> Species 0.000 description 25
- 230000006870 function Effects 0.000 description 25
- 230000000971 hippocampal effect Effects 0.000 description 25
- 210000002569 neuron Anatomy 0.000 description 25
- 201000011240 Frontotemporal dementia Diseases 0.000 description 24
- 208000035475 disorder Diseases 0.000 description 23
- 206010012289 Dementia Diseases 0.000 description 22
- 230000003750 conditioning effect Effects 0.000 description 22
- 230000003956 synaptic plasticity Effects 0.000 description 22
- 230000003920 cognitive function Effects 0.000 description 21
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 20
- 230000000692 anti-sense effect Effects 0.000 description 20
- 230000001419 dependent effect Effects 0.000 description 20
- 238000012549 training Methods 0.000 description 20
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 19
- 239000003814 drug Substances 0.000 description 19
- 230000008014 freezing Effects 0.000 description 19
- 238000007710 freezing Methods 0.000 description 19
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 18
- 210000003169 central nervous system Anatomy 0.000 description 18
- 230000007423 decrease Effects 0.000 description 18
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 18
- 210000000225 synapse Anatomy 0.000 description 17
- 239000000427 antigen Substances 0.000 description 16
- 108091007433 antigens Proteins 0.000 description 16
- 102000036639 antigens Human genes 0.000 description 16
- 210000002381 plasma Anatomy 0.000 description 16
- 108090000765 processed proteins & peptides Proteins 0.000 description 16
- 208000018737 Parkinson disease Diseases 0.000 description 15
- 238000000692 Student's t-test Methods 0.000 description 14
- 230000019771 cognition Effects 0.000 description 14
- 230000001149 cognitive effect Effects 0.000 description 14
- 229940079593 drug Drugs 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 238000002347 injection Methods 0.000 description 14
- 102000043129 MHC class I family Human genes 0.000 description 13
- 108091054437 MHC class I family Proteins 0.000 description 13
- 230000003247 decreasing effect Effects 0.000 description 13
- 102000004196 processed proteins & peptides Human genes 0.000 description 13
- 238000011002 quantification Methods 0.000 description 13
- 230000000750 progressive effect Effects 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- 238000012353 t test Methods 0.000 description 12
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 11
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 11
- 239000013543 active substance Substances 0.000 description 11
- 150000001413 amino acids Chemical group 0.000 description 11
- 230000003542 behavioural effect Effects 0.000 description 11
- 239000010836 blood and blood product Substances 0.000 description 11
- 229940125691 blood product Drugs 0.000 description 11
- 210000001320 hippocampus Anatomy 0.000 description 11
- 230000001537 neural effect Effects 0.000 description 11
- 238000012552 review Methods 0.000 description 11
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 10
- 206010003591 Ataxia Diseases 0.000 description 10
- 208000023105 Huntington disease Diseases 0.000 description 10
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 10
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 10
- 201000002832 Lewy body dementia Diseases 0.000 description 10
- 238000000540 analysis of variance Methods 0.000 description 10
- 230000009368 gene silencing by RNA Effects 0.000 description 10
- 229920001184 polypeptide Polymers 0.000 description 10
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 10
- 208000010412 Glaucoma Diseases 0.000 description 9
- 208000001089 Multiple system atrophy Diseases 0.000 description 9
- 208000006011 Stroke Diseases 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 201000006417 multiple sclerosis Diseases 0.000 description 9
- 230000003716 rejuvenation Effects 0.000 description 9
- 230000009870 specific binding Effects 0.000 description 9
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 230000006399 behavior Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000008449 language Effects 0.000 description 8
- 208000015122 neurodegenerative disease Diseases 0.000 description 8
- 210000000056 organ Anatomy 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 108091030071 RNAI Proteins 0.000 description 7
- 208000018642 Semantic dementia Diseases 0.000 description 7
- 201000004810 Vascular dementia Diseases 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000000306 component Substances 0.000 description 7
- 230000004064 dysfunction Effects 0.000 description 7
- 102000047279 human B2M Human genes 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 210000000653 nervous system Anatomy 0.000 description 7
- -1 nucleic acid compounds Chemical class 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 101001092197 Homo sapiens RNA binding protein fox-1 homolog 3 Proteins 0.000 description 6
- 206010068871 Myotonic dystrophy Diseases 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 102100035530 RNA binding protein fox-1 homolog 3 Human genes 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 230000001143 conditioned effect Effects 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000000502 dialysis Methods 0.000 description 6
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 238000002483 medication Methods 0.000 description 6
- 210000003491 skin Anatomy 0.000 description 6
- 239000004055 small Interfering RNA Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 5
- 101710197836 HLA class I histocompatibility antigen, alpha chain G Proteins 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000012744 immunostaining Methods 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 230000007996 neuronal plasticity Effects 0.000 description 5
- 230000003650 pro-aging effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000001172 regenerating effect Effects 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 238000007619 statistical method Methods 0.000 description 5
- 210000000130 stem cell Anatomy 0.000 description 5
- 239000000829 suppository Substances 0.000 description 5
- 230000007470 synaptic degeneration Effects 0.000 description 5
- 101150080773 tap-1 gene Proteins 0.000 description 5
- 210000003478 temporal lobe Anatomy 0.000 description 5
- 230000001755 vocal effect Effects 0.000 description 5
- 208000037259 Amyloid Plaque Diseases 0.000 description 4
- 101150076800 B2M gene Proteins 0.000 description 4
- 238000010152 Bonferroni least significant difference Methods 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- 206010034010 Parkinsonism Diseases 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 108020004459 Small interfering RNA Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 238000010162 Tukey test Methods 0.000 description 4
- 230000030741 antigen processing and presentation Effects 0.000 description 4
- 210000001130 astrocyte Anatomy 0.000 description 4
- 230000037444 atrophy Effects 0.000 description 4
- 230000002146 bilateral effect Effects 0.000 description 4
- 210000005013 brain tissue Anatomy 0.000 description 4
- 230000001684 chronic effect Effects 0.000 description 4
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 230000007850 degeneration Effects 0.000 description 4
- 230000003412 degenerative effect Effects 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004424 eye movement Effects 0.000 description 4
- 238000003197 gene knockdown Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000007928 intraperitoneal injection Substances 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 230000003340 mental effect Effects 0.000 description 4
- 230000004770 neurodegeneration Effects 0.000 description 4
- 230000001272 neurogenic effect Effects 0.000 description 4
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 4
- 230000036407 pain Effects 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 230000031836 visual learning Effects 0.000 description 4
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 3
- 206010003694 Atrophy Diseases 0.000 description 3
- 108010078791 Carrier Proteins Proteins 0.000 description 3
- 108090000994 Catalytic RNA Proteins 0.000 description 3
- 102000053642 Catalytic RNA Human genes 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- 102100030960 DNA replication licensing factor MCM2 Human genes 0.000 description 3
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 3
- 206010015548 Euthanasia Diseases 0.000 description 3
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 3
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000583807 Homo sapiens DNA replication licensing factor MCM2 Proteins 0.000 description 3
- 101000720704 Homo sapiens Neuronal migration protein doublecortin Proteins 0.000 description 3
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 3
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 3
- 208000009829 Lewy Body Disease Diseases 0.000 description 3
- 208000010428 Muscle Weakness Diseases 0.000 description 3
- 206010028372 Muscular weakness Diseases 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 208000009668 Neurobehavioral Manifestations Diseases 0.000 description 3
- 102100025929 Neuronal migration protein doublecortin Human genes 0.000 description 3
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000000074 antisense oligonucleotide Substances 0.000 description 3
- 238000012230 antisense oligonucleotides Methods 0.000 description 3
- 201000007201 aphasia Diseases 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000004227 basal ganglia Anatomy 0.000 description 3
- 239000000090 biomarker Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 210000003710 cerebral cortex Anatomy 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 208000020832 chronic kidney disease Diseases 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000004624 confocal microscopy Methods 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 125000000151 cysteine group Chemical class N[C@@H](CS)C(=O)* 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 229960003638 dopamine Drugs 0.000 description 3
- 210000003414 extremity Anatomy 0.000 description 3
- 210000001652 frontal lobe Anatomy 0.000 description 3
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 3
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 210000004884 grey matter Anatomy 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 230000009808 hippocampal neurogenesis Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 210000002414 leg Anatomy 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 208000027061 mild cognitive impairment Diseases 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003988 neural development Effects 0.000 description 3
- 210000005155 neural progenitor cell Anatomy 0.000 description 3
- 230000000626 neurodegenerative effect Effects 0.000 description 3
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 3
- 230000004723 neuronal vulnerability Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 230000002450 orbitofrontal effect Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000003994 retinal ganglion cell Anatomy 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 108091092562 ribozyme Proteins 0.000 description 3
- 201000000980 schizophrenia Diseases 0.000 description 3
- 230000006886 spatial memory Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 239000003656 tris buffered saline Substances 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 102000001049 Amyloid Human genes 0.000 description 2
- 108010094108 Amyloid Proteins 0.000 description 2
- 102000009091 Amyloidogenic Proteins Human genes 0.000 description 2
- 108010048112 Amyloidogenic Proteins Proteins 0.000 description 2
- 206010002942 Apathy Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 241000282465 Canis Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 208000003164 Diplopia Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- 208000037357 HIV infectious disease Diseases 0.000 description 2
- 101001018431 Homo sapiens DNA replication licensing factor MCM7 Proteins 0.000 description 2
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 238000001265 Jonckheere trend test Methods 0.000 description 2
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 2
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 2
- 108010023335 Member 2 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 2
- 208000026139 Memory disease Diseases 0.000 description 2
- 208000005314 Multi-Infarct Dementia Diseases 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 206010061533 Myotonia Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 208000003435 Optic Neuritis Diseases 0.000 description 2
- 108090000526 Papain Proteins 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 2
- 208000027089 Parkinsonian disease Diseases 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 2
- 208000010291 Primary Progressive Nonfluent Aphasia Diseases 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 208000008039 Secondary Parkinson Disease Diseases 0.000 description 2
- 208000032023 Signs and Symptoms Diseases 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- 102000052935 T-box transcription factor Human genes 0.000 description 2
- 108700035811 T-box transcription factor Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 230000007000 age related cognitive decline Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- 210000004727 amygdala Anatomy 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 230000037424 autonomic function Effects 0.000 description 2
- 208000013404 behavioral symptom Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000007177 brain activity Effects 0.000 description 2
- 210000000133 brain stem Anatomy 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 229940087828 buprenex Drugs 0.000 description 2
- UAIXRPCCYXNJMQ-RZIPZOSSSA-N buprenorphine hydrochlorie Chemical compound [Cl-].C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)C[NH+]2CC1CC1 UAIXRPCCYXNJMQ-RZIPZOSSSA-N 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000021617 central nervous system development Effects 0.000 description 2
- 230000007278 cognition impairment Effects 0.000 description 2
- 230000007370 cognitive improvement Effects 0.000 description 2
- 230000001054 cortical effect Effects 0.000 description 2
- 229940109239 creatinine Drugs 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 230000010326 executive functioning Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 230000004438 eyesight Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 2
- 230000030279 gene silencing Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 210000004565 granule cell Anatomy 0.000 description 2
- 238000001631 haemodialysis Methods 0.000 description 2
- 210000005154 hemibrain Anatomy 0.000 description 2
- 230000000322 hemodialysis Effects 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000002991 immunohistochemical analysis Methods 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 201000006370 kidney failure Diseases 0.000 description 2
- 238000011813 knockout mouse model Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000000627 locus coeruleus Anatomy 0.000 description 2
- 230000027928 long-term synaptic potentiation Effects 0.000 description 2
- 238000009593 lumbar puncture Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BUGYDGFZZOZRHP-UHFFFAOYSA-N memantine Chemical compound C1C(C2)CC3(C)CC1(C)CC2(N)C3 BUGYDGFZZOZRHP-UHFFFAOYSA-N 0.000 description 2
- 229960004640 memantine Drugs 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000007230 neural mechanism Effects 0.000 description 2
- 210000001178 neural stem cell Anatomy 0.000 description 2
- 238000002610 neuroimaging Methods 0.000 description 2
- 230000016273 neuron death Effects 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- ADIMAYPTOBDMTL-UHFFFAOYSA-N oxazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1 ADIMAYPTOBDMTL-UHFFFAOYSA-N 0.000 description 2
- 208000021090 palsy Diseases 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 229920002477 rna polymer Polymers 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 208000002320 spinal muscular atrophy Diseases 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000002739 subcortical effect Effects 0.000 description 2
- 210000003523 substantia nigra Anatomy 0.000 description 2
- 230000003949 synaptic integrity Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 102000013498 tau Proteins Human genes 0.000 description 2
- 108010026424 tau Proteins Proteins 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- PHLBKPHSAVXXEF-UHFFFAOYSA-N trazodone Chemical compound ClC1=CC=CC(N2CCN(CCCN3C(N4C=CC=CC4=N3)=O)CC2)=C1 PHLBKPHSAVXXEF-UHFFFAOYSA-N 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- AWNBSWDIOCXWJW-WTOYTKOKSA-N (2r)-n-[(2s)-1-[[(2s)-1-(2-aminoethylamino)-1-oxopropan-2-yl]amino]-3-naphthalen-2-yl-1-oxopropan-2-yl]-n'-hydroxy-2-(2-methylpropyl)butanediamide Chemical compound C1=CC=CC2=CC(C[C@H](NC(=O)[C@@H](CC(=O)NO)CC(C)C)C(=O)N[C@@H](C)C(=O)NCCN)=CC=C21 AWNBSWDIOCXWJW-WTOYTKOKSA-N 0.000 description 1
- XJOTXKZIRSHZQV-RXHOOSIZSA-N (3S)-3-amino-4-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S,3S)-1-[[(1R,6R,12R,17R,20S,23S,26R,31R,34R,39R,42S,45S,48S,51S,59S)-51-(4-aminobutyl)-31-[[(2S)-6-amino-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-1-oxohexan-2-yl]carbamoyl]-20-benzyl-23-[(2S)-butan-2-yl]-45-(3-carbamimidamidopropyl)-48-(hydroxymethyl)-42-(1H-imidazol-4-ylmethyl)-59-(2-methylsulfanylethyl)-7,10,19,22,25,33,40,43,46,49,52,54,57,60,63,64-hexadecaoxo-3,4,14,15,28,29,36,37-octathia-8,11,18,21,24,32,41,44,47,50,53,55,58,61,62,65-hexadecazatetracyclo[32.19.8.26,17.212,39]pentahexacontan-26-yl]amino]-3-methyl-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-oxobutanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H]1CCCN1C(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1cnc[nH]1)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)[C@@H](C)O)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@@H]4CSSC[C@H](NC(=O)[C@H](Cc5ccccc5)NC(=O)[C@@H](NC1=O)[C@@H](C)CC)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](Cc1cnc[nH]1)NC3=O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N2)C(=O)NCC(=O)N4)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XJOTXKZIRSHZQV-RXHOOSIZSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 description 1
- XIYOPDCBBDCGOE-IWVLMIASSA-N (4s,4ar,5s,5ar,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylidene-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C=C1C2=CC=CC(O)=C2C(O)=C2[C@@H]1[C@H](O)[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O XIYOPDCBBDCGOE-IWVLMIASSA-N 0.000 description 1
- RNIADBXQDMCFEN-IWVLMIASSA-N (4s,4ar,5s,5ar,12ar)-7-chloro-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylidene-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C=C1C2=C(Cl)C=CC(O)=C2C(O)=C2[C@@H]1[C@H](O)[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O RNIADBXQDMCFEN-IWVLMIASSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- WSEQXVZVJXJVFP-HXUWFJFHSA-N (R)-citalopram Chemical compound C1([C@@]2(C3=CC=C(C=C3CO2)C#N)CCCN(C)C)=CC=C(F)C=C1 WSEQXVZVJXJVFP-HXUWFJFHSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- HFJMJLXCBVKXNY-IVZWLZJFSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C#CC)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 HFJMJLXCBVKXNY-IVZWLZJFSA-N 0.000 description 1
- WSEQXVZVJXJVFP-UHFFFAOYSA-N 1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrile Chemical compound O1CC2=CC(C#N)=CC=C2C1(CCCN(C)C)C1=CC=C(F)C=C1 WSEQXVZVJXJVFP-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- MXHRCPNRJAMMIM-SHYZEUOFSA-N 2'-deoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-SHYZEUOFSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- YFGHCGITMMYXAQ-UHFFFAOYSA-N 2-[(diphenylmethyl)sulfinyl]acetamide Chemical compound C=1C=CC=CC=1C(S(=O)CC(=O)N)C1=CC=CC=C1 YFGHCGITMMYXAQ-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- ZRFXOICDDKDRNA-IVZWLZJFSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidin-2-one Chemical compound O=C1N=C(N)C(C#CC)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 ZRFXOICDDKDRNA-IVZWLZJFSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-ULQXZJNLSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-tritiopyrimidin-2-one Chemical compound O=C1N=C(N)C([3H])=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-ULQXZJNLSA-N 0.000 description 1
- KISUPFXQEHWGAR-RRKCRQDMSA-N 4-amino-5-bromo-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound C1=C(Br)C(N)=NC(=O)N1[C@@H]1O[C@H](CO)[C@@H](O)C1 KISUPFXQEHWGAR-RRKCRQDMSA-N 0.000 description 1
- LUCHPKXVUGJYGU-XLPZGREQSA-N 5-methyl-2'-deoxycytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 LUCHPKXVUGJYGU-XLPZGREQSA-N 0.000 description 1
- 206010065040 AIDS dementia complex Diseases 0.000 description 1
- 101150018624 ARF6 gene Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000017194 Affective disease Diseases 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 241001439211 Almeida Species 0.000 description 1
- 102100033312 Alpha-2-macroglobulin Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102100026882 Alpha-synuclein Human genes 0.000 description 1
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 102100032187 Androgen receptor Human genes 0.000 description 1
- NICZYMKKWKYGHT-BAQLRCJTSA-N Anhydrochlortetracycline Chemical compound C1=CC(O)=C2C(O)=C(C(=O)[C@@]3(O)[C@H]([C@@H](C(=C(C(N)=O)C3=O)O)N(C)C)C3)C3=C(C)C2=C1Cl NICZYMKKWKYGHT-BAQLRCJTSA-N 0.000 description 1
- 241001464363 Anomia Species 0.000 description 1
- 102100030346 Antigen peptide transporter 1 Human genes 0.000 description 1
- 206010002869 Anxiety symptoms Diseases 0.000 description 1
- 101100321455 Arabidopsis thaliana ZHD7 gene Proteins 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 description 1
- 239000012583 B-27 Supplement Substances 0.000 description 1
- SPFYMRJSYKOXGV-UHFFFAOYSA-N Baytril Chemical compound C1CN(CC)CCN1C(C(=C1)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 SPFYMRJSYKOXGV-UHFFFAOYSA-N 0.000 description 1
- 208000027496 Behcet disease Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 1
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 1
- 238000011741 C57BL/6-aged mouse Methods 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 208000001408 Carbon monoxide poisoning Diseases 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 108090000026 Caveolin 1 Proteins 0.000 description 1
- 102100035888 Caveolin-1 Human genes 0.000 description 1
- 206010008748 Chorea Diseases 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000005853 Clathrin Human genes 0.000 description 1
- 108010019874 Clathrin Proteins 0.000 description 1
- 206010009696 Clumsiness Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010010947 Coordination abnormal Diseases 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 241000709700 Coxsackievirus A9 Species 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 102100030074 Dickkopf-related protein 1 Human genes 0.000 description 1
- 101710099518 Dickkopf-related protein 1 Proteins 0.000 description 1
- 206010013142 Disinhibition Diseases 0.000 description 1
- 102000015554 Dopamine receptor Human genes 0.000 description 1
- 108050004812 Dopamine receptor Proteins 0.000 description 1
- 101100379471 Drosophila melanogaster Arf51F gene Proteins 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 102000043859 Dynamin Human genes 0.000 description 1
- 108700021058 Dynamin Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 206010015995 Eyelid ptosis Diseases 0.000 description 1
- 208000035126 Facies Diseases 0.000 description 1
- 108010008177 Fd immunoglobulins Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010048748 Graft loss Diseases 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- 101710088172 HTH-type transcriptional regulator RipA Proteins 0.000 description 1
- 206010019075 Hallucination, visual Diseases 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 208000018565 Hemochromatosis Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 206010065973 Iron Overload Diseases 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102100032241 Lactotransferrin Human genes 0.000 description 1
- 241000283953 Lagomorpha Species 0.000 description 1
- 206010024264 Lethargy Diseases 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- DIWRORZWFLOCLC-UHFFFAOYSA-N Lorazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-UHFFFAOYSA-N 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 206010052178 Lymphocytic lymphoma Diseases 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 208000005903 Manganese Poisoning Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 102000011202 Member 2 Subfamily B ATP Binding Cassette Transporter Human genes 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 206010027439 Metal poisoning Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- 208000019430 Motor disease Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100128415 Mus musculus Lilrb3 gene Proteins 0.000 description 1
- 101100533947 Mus musculus Serpina3k gene Proteins 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 1
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 1
- RTHCYVBBDHJXIQ-UHFFFAOYSA-N N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine Chemical compound C=1C=CC=CC=1C(CCNC)OC1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-UHFFFAOYSA-N 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 102000008730 Nestin Human genes 0.000 description 1
- 108010088225 Nestin Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000012161 NuPAGE LDS loading buffer Substances 0.000 description 1
- 238000001430 Omnibus test Methods 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- BYPFEZZEUUWMEJ-UHFFFAOYSA-N Pentoxifylline Chemical compound O=C1N(CCCCC(=O)C)C(=O)N(C)C2=C1N(C)C=N2 BYPFEZZEUUWMEJ-UHFFFAOYSA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 108010002724 Pheromone Receptors Proteins 0.000 description 1
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 1
- 108010015078 Pregnancy-Associated alpha 2-Macroglobulins Proteins 0.000 description 1
- 206010036631 Presenile dementia Diseases 0.000 description 1
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Natural products C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 206010037180 Psychiatric symptoms Diseases 0.000 description 1
- 101100236064 Rattus norvegicus Lilrb3l gene Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- 206010071390 Resting tremor Diseases 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 1
- 206010039729 Scotoma Diseases 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 206010039966 Senile dementia Diseases 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 206010040021 Sensory abnormalities Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 238000011869 Shapiro-Wilk test Methods 0.000 description 1
- 208000002667 Subdural Hematoma Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 102000006467 TATA-Box Binding Protein Human genes 0.000 description 1
- 108010044281 TATA-Box Binding Protein Proteins 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 206010043298 Testicular atrophy Diseases 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- BMQYVXCPAOLZOK-UHFFFAOYSA-N Trihydroxypropylpterisin Natural products OCC(O)C(O)C1=CN=C2NC(N)=NC(=O)C2=N1 BMQYVXCPAOLZOK-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 102100037108 Vasopressin V2 receptor Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 102100038344 Vomeronasal type-1 receptor 2 Human genes 0.000 description 1
- 208000002579 Wernicke Aphasia Diseases 0.000 description 1
- 102000013814 Wnt Human genes 0.000 description 1
- 108050003627 Wnt Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 208000014619 adult acute lymphoblastic leukemia Diseases 0.000 description 1
- 201000011184 adult acute lymphocytic leukemia Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 206010001584 alcohol abuse Diseases 0.000 description 1
- 208000025746 alcohol use disease Diseases 0.000 description 1
- 230000036626 alertness Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 108090000185 alpha-Synuclein Proteins 0.000 description 1
- 230000007792 alzheimer disease pathology Effects 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003941 amyloidogenesis Effects 0.000 description 1
- 230000003942 amyloidogenic effect Effects 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 108010080146 androgen receptors Proteins 0.000 description 1
- 210000002226 anterior horn cell Anatomy 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 230000000648 anti-parkinson Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000025318 associative visual agnosia Diseases 0.000 description 1
- 229940072698 ativan Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000010788 atrophy of testis Diseases 0.000 description 1
- 239000003693 atypical antipsychotic agent Substances 0.000 description 1
- 229940127236 atypical antipsychotics Drugs 0.000 description 1
- 230000036621 balding Effects 0.000 description 1
- 229940105596 baytril Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 108091011213 beta-2-microglobulin binding proteins Proteins 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000001159 caudate nucleus Anatomy 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 210000004970 cd4 cell Anatomy 0.000 description 1
- 229940047493 celexa Drugs 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 230000003727 cerebral blood flow Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 230000007213 cerebrovascular event Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229960002327 chloral hydrate Drugs 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 208000012601 choreatic disease Diseases 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960001653 citalopram Drugs 0.000 description 1
- 229930193282 clathrin Natural products 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 229940072645 coumadin Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 230000000959 cryoprotective effect Effects 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005786 degenerative changes Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 210000003520 dendritic spine Anatomy 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-M deoxycholate Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-M 0.000 description 1
- MXHRCPNRJAMMIM-UHFFFAOYSA-N desoxyuridine Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000009266 disease activity Effects 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 229960003530 donepezil Drugs 0.000 description 1
- 229940052760 dopamine agonists Drugs 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 210000004002 dopaminergic cell Anatomy 0.000 description 1
- 208000029444 double vision Diseases 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 230000020595 eating behavior Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000002310 elbow joint Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 230000004970 emotional disturbance Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000006390 fear memory Effects 0.000 description 1
- 230000035557 fibrillogenesis Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 230000009760 functional impairment Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 229960003980 galantamine Drugs 0.000 description 1
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 229940003380 geodon Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 230000021061 grooming behavior Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 102000018511 hepcidin Human genes 0.000 description 1
- 108060003558 hepcidin Proteins 0.000 description 1
- 229940066919 hepcidin Drugs 0.000 description 1
- 208000003906 hydrocephalus Diseases 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- JUMYIBMBTDDLNG-OJERSXHUSA-N hydron;methyl (2r)-2-phenyl-2-[(2r)-piperidin-2-yl]acetate;chloride Chemical compound Cl.C([C@@H]1[C@H](C(=O)OC)C=2C=CC=CC=2)CCCN1 JUMYIBMBTDDLNG-OJERSXHUSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000016290 incoordination Diseases 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 1
- 210000004558 lewy body Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000003520 lipogenic effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000020796 long term synaptic depression Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 229960004391 lorazepam Drugs 0.000 description 1
- 230000004777 loss-of-function mutation Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 210000004705 lumbosacral region Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 229940087857 lupron Drugs 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 208000024714 major depressive disease Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 101150070711 mcm2 gene Proteins 0.000 description 1
- 229960000826 meclocycline Drugs 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 206010027175 memory impairment Diseases 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 230000003924 mental process Effects 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 210000001259 mesencephalon Anatomy 0.000 description 1
- 238000010197 meta-analysis Methods 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229940042016 methacycline Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 229960001165 modafinil Drugs 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000001665 muscle stem cell Anatomy 0.000 description 1
- 201000000585 muscular atrophy Diseases 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- BMQYVXCPAOLZOK-XINAWCOVSA-N neopterin Chemical compound OC[C@@H](O)[C@@H](O)C1=CN=C2NC(N)=NC(=O)C2=N1 BMQYVXCPAOLZOK-XINAWCOVSA-N 0.000 description 1
- 230000007830 nerve conduction Effects 0.000 description 1
- 210000005055 nestin Anatomy 0.000 description 1
- 210000002241 neurite Anatomy 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000007658 neurological function Effects 0.000 description 1
- 230000004031 neuronal differentiation Effects 0.000 description 1
- 230000003955 neuronal function Effects 0.000 description 1
- 230000006576 neuronal survival Effects 0.000 description 1
- 229940072228 neurontin Drugs 0.000 description 1
- 230000007171 neuropathology Effects 0.000 description 1
- 230000004112 neuroprotection Effects 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 description 1
- 210000000956 olfactory bulb Anatomy 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000004768 organ dysfunction Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229960004535 oxazepam Drugs 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 210000001152 parietal lobe Anatomy 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000011458 pharmacological treatment Methods 0.000 description 1
- 239000002427 pheromone receptor Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical group NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 238000010149 post-hoc-test Methods 0.000 description 1
- 230000001144 postural effect Effects 0.000 description 1
- 210000002442 prefrontal cortex Anatomy 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000000575 proteomic method Methods 0.000 description 1
- 229940035613 prozac Drugs 0.000 description 1
- 201000003004 ptosis Diseases 0.000 description 1
- 229940069576 puralube Drugs 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 210000002637 putamen Anatomy 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 229960004431 quetiapine Drugs 0.000 description 1
- URKOMYMAXPYINW-UHFFFAOYSA-N quetiapine Chemical compound C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 URKOMYMAXPYINW-UHFFFAOYSA-N 0.000 description 1
- ZTHJULTYCAQOIJ-WXXKFALUSA-N quetiapine fumarate Chemical compound [H+].[H+].[O-]C(=O)\C=C\C([O-])=O.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12.C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 ZTHJULTYCAQOIJ-WXXKFALUSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000029865 regulation of blood pressure Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 description 1
- 229940099204 ritalin Drugs 0.000 description 1
- 229960004136 rivastigmine Drugs 0.000 description 1
- 229960005009 rolitetracycline Drugs 0.000 description 1
- HMEYVGGHISAPJR-IAHYZSEUSA-N rolitetracycline Chemical compound O=C([C@@]1(O)C(O)=C2[C@@H]([C@](C3=CC=CC(O)=C3C2=O)(C)O)C[C@H]1[C@@H](C=1O)N(C)C)C=1C(=O)NCN1CCCC1 HMEYVGGHISAPJR-IAHYZSEUSA-N 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 229940035004 seroquel Drugs 0.000 description 1
- 229960002073 sertraline Drugs 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 230000007958 sleep Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 208000003755 striatonigral degeneration Diseases 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000007755 survival signaling Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 230000008337 systemic blood flow Effects 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 231100001044 testicular atrophy Toxicity 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000011491 transcranial magnetic stimulation Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229960003991 trazodone Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 231100000216 vascular lesion Toxicity 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000007497 verbal memory Effects 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
- 229960000607 ziprasidone Drugs 0.000 description 1
- 229940020965 zoloft Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2833—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/07—Proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/341—Gapmers, i.e. of the type ===---===
Definitions
- Aging in an organism is accompanied by an accumulation of changes over time.
- aging is accompanied by structural and neurophysiological changes that drive cognitive decline and susceptibility to degenerative disorders in healthy individuals.
- Raz et al. “Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging,” Neuropsychology (1998) 12:95-114; Mattson & Magnus, “Ageing and neuronal vulnerability,” Nat. Rev. Neurosci. (2006) 7: 278-294: and Rapp & Heindel, “Memory systems in normal and pathological aging,” Curr.
- AD Alzheimer's disease
- synapse loss is an early pathological event common to many neurodegenerative conditions, and is the best correlate to the neuronal and cognitive impairment associated with these conditions.
- aging remains the single most dominant risk factor for dementia-related neurodegenerative diseases such as Alzheimer's disease (AD) (Bishop et al., “Neural mechanisms of ageing and cognitive decline,” Nature (2010) 464: 529-535 (2010); Heeden & Gabrieli, “Insights into the ageing mind: a view from cognitive neuroscience,” Nat. Rev. Neurosci. (2004) 5:87-96; Mattson & Magnus, “Ageing and neuronal vulnerability,” Nat. Rev. Neurosci. (2006) 7:278-294).
- AD Alzheimer's disease
- ⁇ -2 microglobulin is a component of the class I major histocompatibility complex (MHC), a multi-protein complex found on the surface of nearly all nucleated mammalian cells. These complexes function by presenting foreign antigens or peptide fragments on the cell surface so that the immune system may recognize and destroy infected cells.
- MHC major histocompatibility complex
- the protein components of the class I MHC are encoded by several genes, each with multiple alleles, and the types of expressed class I MHC's vary among individuals. Because the MHC is polymorphic, it is an important factor for consideration during organ transplant as the host immune system may reject organs with foreign MHC's. In cancerous cells, MHC expression may be defective, allowing such cells to escape immune detection and destruction.
- B2M Free extracellular B2M is also found in human physiological fluids such as the blood serum, urine, and cerebral spinal fluid. Due to its small size, the protein is normally filtered from the blood and then reabsorbed in some amount by the kidney. High serum concentrations of B2M often accompany the presence of several diseases such as non-Hodgkin lymphoma and meningitis (Hallgren et al., “Lactoferrin, lysozyme, and beta 2-microglobulin levels in cerebrospinal fluid: differential indices of CNS inflammation,” Inflammation (1982) 6:291-304; et al., “Prognostic significance of serum beta-2 microglobulin in patients with non-Hodgkin lymphoma,” Oncology (2014) 87:40-7).
- diseases such as non-Hodgkin lymphoma and meningitis (Hallgren et al., “Lactoferrin, lysozyme, and beta 2-microglobulin levels in cerebrospinal fluid:
- Urine B2M levels are measured to indicate kidney damage and filtration disorders (Acchiardo et al., “Beta 2-microglobulin levels in patients with renal insufficiency,” American Journal of Kidney Diseases (1989) 13:70-4; Astor et al., “Serum Beta-2-microglobulin at discharge predicts mortality and graft loss following kidney transplantation,” Kidney International (2013) 84:810-817).
- the protein has been implicated in neuronal development, normal hippocampus dependent memory and synapse formation and plasticity (Bilousova et al., “Major histocompatibility complex class I molecules modulate embryonic neuritogenesis and neuronal polarization,” Journal of Neuroimmunology (2012) 247:1-8; Harrison et al., “Human brain weight is correlated with expression of the ‘housekeeping genes’ beta-2-microglobulin and TATA-binding protein,” Neuropathology and Applied Neurobiology (2010) 36:498-504).
- B2M serves as a molecular marker that can be used to determine immune compromise or central nervous system immune activation (Svatonfova et al., “Beta2-microglobulin as a diagnostic marker in cerebrospinal fluid: a follow-up study,” Disease Markers (2014) 2014). Levels of the protein may signify the extent of the central nervous system inflammatory response.
- B2M and its use as a disease marker states that elevated levels of B2M in the cerebral spinal fluid is reflective of multiple sclerosis, neuro-Behçet's disease, sarcoidosis, acquired immunodeficiency syndrome-dementia complex and meningeal metastasis of malignant tumors (Adachi, “Beta-2-microglobulin levels in the cerebrospinal fluid: their value as a disease marker.
- B2M could potentially serve as a clinical marker for cognitive impairment risk or a tool for disease prognosis for individuals experiencing a range of diseases including kidney failure, HIV infection, and Alzheimer's (Almeida, “Cognitive impairment and major depressive disorder in HIV infection and cerebrospinal fluid biomarkers,” Arquivos de Neuro-Psiquiatria (2013) 71:689-92; Annunziata at al., “Serum beta-2-microglobulin levels and cognitive function in chronic dialysis patients,” Clinica Chimica Acta (1991) 201:139-41; Doecke et al., “Blood-based protein biomarkers for diagnosis of Alzheimer disease,” Archives of Neurology (2012) 69:1318-25; Isshiki et al., “Cerebral blood flow in patients with peritoneal dialysis by an easy Z-score imaging system for brain perfusion single photon emission tomography,” Therapeutic Apheresis and Dialysis (2014) 18:291-6).
- Elevated serum levels hold particular prognostic significance for adult multiple myeloma, lymphocytic leukemia and lymphoma (Kantarjian at al., “Prognostic significance of elevated serum beta 2-microglobulin levels in adult acute lymphocytic leukemia,” The American Journal of Medicine (1992) 93:599-604; Wu et al., “Prognostic significance of serum beta-2 microglobulin in patients with non-Hodgkin lymphoma,” Oncology (2014) 87:40-7).
- B2M has been the target of disease therapies (Morabito et al., “Analysis and clinical relevance of human leukocyte antigen class I, heavy chain, and beta2-microglobulin down regulation in breast cancer,” Human Immunology (2009) 70:492-5; Yang et al., “Identification of beta2-microglobulin as a potential target for ovarian cancer,” Cancer Biology & Therapy (2009) 8:232-8).
- Methods of treating an adult mammal for an aging-associated impairment are provided. Aspects of the methods include reducing the ⁇ 2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the mammal for the aging-associated impairment.
- B2M ⁇ 2-microglobulin
- a variety of aging-associated impairments may be treated by practice of the methods, which impairments include cognitive impairments.
- FIGS. 1 a -1 k B2M are a component of the aging systemic environment that impairs hippocampal-dependent cognitive function and adult neurogenesis.
- FIGS. 1 a & 1 c Schematic of unpaired young versus aged mice ( FIG. 1 a ), and young isochronic versus heterochronic parabionts ( FIG. 1 c ).
- FIGS. 1 b & 1 c Changes in plasma concentration of B2M with age at 3, 6, 12, 18 and 24 months ( FIG. 1 b ) and between young isochronic and young heterochronic parabionts five weeks after parabiosis ( FIG. 1 d ). Data from 5 mice per group.
- FIGS. 1 a & 1 c Schematic of unpaired young versus aged mice ( FIG. 1 a ), and young isochronic versus heterochronic parabionts ( FIG. 1 c ).
- FIGS. 1 b & 1 c Changes in plasma concentration of B2M with age at 3, 6,
- FIGS. 1 g & 1 k Young adult (3 months) mice were injected intraorbitally with B2M or PBS (vehicle) control five times over 12 days.
- FIG. 1 g Schematic of illustrating the chronological order used for B2M treatment and cognitive testing.
- FIGS. 1 h & 1 i Hippocampal learning and memory was assessed by RAWM ( FIG. 1 h ) and contextual fear conditioning ( FIG. 1 i ).
- FIG. 1 i Schematic of illustrating the chronological order used for B2M treatment and cognitive testing.
- FIG. 1 h Number of entry arm errors prior to finding platform. i, Percent freezing time 24 h after training. Data from 9-10 mice per group.
- FIG. 1 j Representative field of Dcx-positive cells for each treatment group (scale bar 100 ⁇ m).
- FIG. 1 k Quantification of neurogenesis in the dentate gyrus (DG) after treatment. Data from 7-8 mice per group. All data represented as dot plots with Mean or bar graphs with Mean ⁇ SEM; *P ⁇ 0.05; **P ⁇ 0.01; **P ⁇ 0.001 t-test ( FIGS. 1 d , 1 f , 1 i & 1 k ), ANOVA, Tukey's post-hoc test ( FIG. 1 b ), Mann-Whitney U Test (e) and repeated measures ANOVA, Bonferroni post-hoc test ( FIG. 1 k ).
- FIGS. 2 a -2 e Hippocampal dependent learning and memory.
- FIG. 2 a Old mice demonstrate impaired learning and memory for platform location during the testing phase of the RAWM task. Cognitive deficits were quantified as the number of entry arm errors made prior to finding the target platform.
- FIG. 2 b No differences in swim speeds of were detected between young and old animals.
- FIG. 2 c Young and old animals exhibited similar baseline freezing time during fear conditioning training.
- FIG. 2 d During contextual fear conditioning old mice demonstrate decreased freezing time during contextual memory testing.
- FIG. 2 e No differences in cued memory were detected 24 hours after training. Data represented as mean ⁇ s.e.m.; *P ⁇ 0.05; *P ⁇ 0.01; n.s., not significant; t-test ( FIGS. 2 a -2 c & 2 e ), repeated measures ANOVA, Bonferroni post-hoc test ( FIG. 2 d ).
- FIGS. 3 a -3 d Weight, swim speeds and cued memory are not altered by systemic B2M administration.
- FIGS. 3 a -3 d Young adult (3 months) mice were injected intraorbitally with B2M or PBS (vehicle) control five times over 10 days prior to behavioral testing.
- FIG. 3 a Average mouse weight of B2M and vehicle treated groups.
- FIG. 3 b Swim speeds of mice injected with B2M or vehicle during the testing phase of the RAWM.
- FIGS. 3 c & 3 d Conditioned fear was displayed as freezing behavior.
- FIG. 3 c Animals from all treatment groups exhibited similar baseline freezing time during training.
- FIGS. 4 a & 4 b Systemic administration of B2M decreases neurogenesis in the DG of young animals.
- FIGS. 4 a & 4 b Young adult mice (3-4 months) were injected with B2M or PBS (vehicle) control through intraorbital injections five times over 12 days. Prior to euthanasia Bromodeoxyuridne (BrdU) was administered by intraperitoneal injections for three days. Quantification of MCM2-positive and BrdU-positive in the dentate gyrus (DG) after treatment. Data from 5 mice per group. All data represented as Mean+SEM; *P ⁇ 0.05; **P ⁇ 0.01; t-test.
- FIGS. 5 a -5 h Local B2M expression increases in the hippocampus during aging and impairs hippocampal-dependent cognitive function and adult neurogenesis.
- FIGS. 5 a & 5 b Representative Western blot and quantification of hippocampal lysates probed with anti-B2M and anti-Actin antibodies from young (3 months) and old (18 months) unpaired animals ( FIG. 5 a ), or young isochronic and young heterochronic parabionts five weeks after parabiosis ( FIG. 5 b ).
- FIGS. 5 a -5 h Local B2M expression increases in the hippocampus during aging and impairs hippocampal-dependent cognitive function and adult neurogenesis.
- FIGS. 5 a & 5 b Representative Western blot and quantification of hippocampal lysates probed with anti-B2M and anti-Actin antibodies from young (3 months) and old (18 months) unpaired animals ( FIG. 5 a ), or young isochronic and young
- FIG. 5 c -5 e Young adult (3 months) wild type (WT) and transporter associated with antigen processing 1 knock out (Tap1 ⁇ / ⁇ ) mice were given unilateral stereotaxic injections of B2M or vehicle control
- FIG. 5 c Representative field of Dcx-positive cells in adjacent sides of the DG within the same section are shown for WT and Tap1 ⁇ / ⁇ treatment groups.
- FIGS. 5 d & 5 e Quantification of neurogenesis in the DG of WT (d) and Tap1 ⁇ / ⁇ ( FIG. 5 e ) mice after stereotaxic B2M administration. Data from five mice per group.
- FIGS. 5 f -5 h Young adult mice were given bilateral stereotaxic injections of B2M or vehicle six days prior to behavioral testing.
- FIG. 5 f Schematic illustrating chronological order used for local B2M administration and cognitive testing.
- FIGS. 5 g & 5 h Learning and memory was assessed by RAWM ( FIG. 5 h ) and contextual fear conditioning ( FIG. 5 g ) following stereotaxic injections. Data from 10 animals per group. All data represented as Mean ⁇ SEM; *P ⁇ 0.05; **P ⁇ 0.01; n.s. not significant; ANOVA, t-test ( FIGS. 5 a ,5 b ,5 d ,5 e & 5 h ); repeated measures ANOVA, Bonferroni post-hoc test ( FIG. 5 g ).
- FIGS. 6 a -6 c Swim speeds and cued memory are not altered by local B2M administration.
- FIGS. 6 a -6 c Young adult mice were given bilateral stereotaxic injections of B2M or PBS (vehicle) control six days prior to behavioral testing.
- FIG. 6 a Swim speeds of mice injected with B2M or vehicle during the testing phase of the RAWM.
- FIG. 6 b Animals from all treatment groups exhibited similar baseline freezing time during fear conditioning training.
- FIG. 6 c No differences in cued memory were detected between groups when re-exposed to the conditioned stimulus (tone and light) in a novel context 24 hours after training. Data from 10 mice per group. All data represented as Mean+SEM; n.s. not significant; t-test.
- FIGS. 7 a -7 e No differences in neurogenesis are observed in the DG of young unpaired or young isochronic WT and Tap1 ⁇ / ⁇ animals.
- FIG. 7 a Quantification of Doublecortin (Dcx)-positive cells in the DG of young adult (3 months) wild type (WT) and Tap1 ⁇ / ⁇ unpaired mice. Data from 5 mice per group.
- FIG. 7 b Schematic of young WT and Tap1 ⁇ / ⁇ isochronic parabionts.
- FIGS. 7 c -7 e Quantification of Dcx, T-box transcription factor Tbr2, and BrdU immunostaining of young WT and Tap1 ⁇ / ⁇ isochronic parabionts five weeks after parabiosis. Data from 6-8 mice per group. All data represented as Mean+SEM; n.s. not significant; t-test ( FIG. 7 a ); ANOVA, Tukey's post-hoc test ( FIGS. 7 c -7 e ).
- FIGS. 8 a -8 d Reducing endogenous MHC I surface expression mitigates in part the negative effects of heterochronic parabiosis on adult neurogenesis in young animals.
- FIG. 8 a Schematic of young wild type (WT) and Tap1 knock out (Tap1 ⁇ / ⁇ ) isochronic parabionts and young WT and Tap1 ⁇ / ⁇ heterochronic parabionts.
- FIGS. 8 b & 8 c Representative fields ( FIG. 8 b ) and quantification ( FIG. 8 c ) of Doublecortin immunostaining of young isochronic and heterochronic parabionts five weeks after parabiosis (arrowheads point to individual cells, scale bar: 100 ⁇ m).
- FIG. 8 a Schematic of young wild type (WT) and Tap1 knock out (Tap1 ⁇ / ⁇ ) isochronic parabionts and young WT and Tap1 ⁇ / ⁇ heterochronic parabionts.
- FIGS. 8 b & 8 c Representative fields
- FIGS. 9 a & 9 b Reducing endogenous MHC I surface expression mitigates in part the decrease in neuronal progenitor cell number in young mice after heterochronic parabiosis.
- FIG. 9 a Schematic of young wild type (WT) and Tap1 knock out (Tap1 ⁇ / ⁇ ) isochronic parabionts and young WT and Tap1 ⁇ / ⁇ heterochronic parabionts.
- FIGS. 10 a -10 j Absence of endogenous B2M enhances hippocampal-dependent cognitive function and adult neurogenesis in old animals.
- FIGS. 10 a -10 d Learning and memory was assessed in young (3 months) and old (15-16 months) wild type (WT) and B2M knock out (B2M ⁇ / ⁇ ) mice by RAWM ( FIGS. 10 a , 10 c ) and contextual fear conditioning ( FIGS. 10 b & 10 d ). Data from 10 young and 8-12 old mice per genotype.
- FIGS. 10 e -10 j Neurogenesis was analyzed by immunostaining for Dcx-positive cells in the DG of young and old WT and B2M ⁇ / ⁇ mice.
- FIGS. 10 e & 10 f Representative field and quantification of Dcx-positive cells are shown for young ( FIGS. 10 e & 10 f ) and old ( FIGS. 10 e & 10 g ) WT and B2M ⁇ / ⁇ animals (arrowheads point to individual immature neurons, scale bar: 100 m). Data from 8 young and 10 old mice per genotype.
- FIGS. 10 h & 10 j WT and B2M ⁇ / ⁇ mice were administered BrdU by intraperitoneal injections for six days and euthanized 28 days later.
- FIG. 10 h Representative confocal microscopy from the DG of brain sections immunostained for BrdU (red) in combination with NeuN (green).
- FIGS. 10 h Representative confocal microscopy from the DG of brain sections immunostained for BrdU (red) in combination with NeuN (green).
- FIGS. 11 a -11 f Swim speeds and cued memory are not altered in old B2M ⁇ / ⁇ animals.
- FIGS. 11 a -11 f Hippocampal learning and memory was assessed old adult (17 months) WT and during the testing phase of the RAWM. Animals exhibited similar baseline freezing time during fear conditioning training regardless of genotype. No differences in cued memory were detected between genotypes when mice were re-exposed to the conditioned stimulus (tone and light) in a novel context 24 hours after training. Data from 12 WT and 8 B2M ⁇ / ⁇ mice. All data represented as Mean+SEM; n.s. not significant; t-test.
- FIGS. 12 a -12 e Absence of endogenous B2M increases proliferation but not astrocyte differentiation in an age-dependent manner in vivo.
- FIGS. 12 a -12 c To assess proliferation young (3 months) and old (15-16 months) wild type (WT) and B2M knock out (B2M ⁇ / ⁇ ) mice were administered BrdU by intraperitoneal injections for three days prior to euthanasia.
- FIGS. 12 b & 12 c Immunostaining of BrdU-positive cells was quantified in the DG of young ( FIG. 12 b ) and old ( FIG. 12 c ) animals. Data from 8 young and 10 old mice per genotype.
- FIGS. 12 b To assess proliferation young (3 months) and old (15-16 months) wild type (WT) and B2M knock out mice were administered BrdU by intraperitoneal injections for three days prior to euthanasia.
- FIGS. 12 b & 12 c Immunostaining of BrdU-positive
- FIG. 12 c Representative confocal microscopy from the DG of brain sections immunostained for BrdU (red) in combination with GFAP (blue).
- FIGS. 12 d & 12 e Quantification of the relative number of BrdU and GFAP-double positive cells out of the total BrdU-positive cells in the young ( FIG. 12 d ) and old ( FIG. 12 e ) DG of WT and B2M ⁇ / ⁇ animals. Data from 8 mice per group (3 sections per mouse). All data represented as Mean+SEM; **P ⁇ 0.01; n.s. not significant; t-test.
- FIG. 13 Relative levels of beta2-microglobulin were determined in plasma samples of healthy male human donors of 18, 30, 45, 55, and 66 years of age by the SomaScan Proteomic Assay (Somalogic, Inc, Boulder, Colo.). For each age group, plasma from 40 individuals was analyzed as 8 pools of 5 individuals per pool. Statistical analysis was performed by two-sided Student's t-test of log-transformed values, and also by trend-analysis of untransformed data using the Jonckheere-Terpstra test.
- Methods of treating an adult mammal for an aging-associated impairment are provided. Aspects of the methods include reducing the ⁇ 2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the mammal for the aging-associated impairment.
- B2M ⁇ 2-microglobulin
- a variety of aging-associated impairments may be treated by practice of the methods, which impairments include cognitive impairments.
- aspects of the invention include methods of treating an aging-associated impairment in an adult mammal.
- the aging-associated impairment may manifest in a number of different ways, e.g., as aging-associated cognitive impairment and/or physiological impairment, e.g., in the form of damage to central or peripheral organs of the body, such as but not limited to: cell injury, tissue damage, organ dysfunction, aging-associated lifespan shortening and carcinogenesis, where specific organs and tissues of interest include, but are not limited to skin, neuron, muscle, pancreas, brain, kidney, lung, stomach, intestine, spleen, heart, adipose tissue, testes, ovary, uterus, liver and bone; in the form of decreased neurogenesis, etc.
- the aging-associated impairment is an aging-associated impairment in cognitive ability in an individual, i.e., an aging-associated cognitive impairment.
- cognitive ability or “cognition” it is meant the mental processes that include attention and concentration, learning complex tasks and concepts, memory (acquiring, retaining, and retrieving new information in the short and/or long term), information processing (dealing with information gathered by the five senses), visuospatial function (visual perception, depth perception, using mental imagery, copying drawings, constructing objects or shapes), producing and understanding language, verbal fluency (word-finding), solving problems, making decisions, and executive functions (planning and prioritizing).
- cognitive decline it is meant a progressive decrease in one or more of these abilities, e.g., a decline in memory, language, thinking, judgment, etc.
- an impairment in cognitive ability and “cognitive impairment”, it is meant a reduction in cognitive ability relative to a healthy individual, e.g., an age-matched healthy individual, or relative to the ability of the individual at an earlier point in time, e.g., 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, or 10 years or more previously.
- Aging-associated cognitive impairments include impairments in cognitive ability that are typically associated with aging, including, for example, cognitive impairment associated with the natural aging process, e.g., mild cognitive impairment (M.C.I.); and cognitive impairment associated with an aging-associated disorder, that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and the like.
- cognitive impairment associated with the natural aging process e.g., mild cognitive impairment (M.C.I.)
- cognitive impairment associated with an aging-associated disorder that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, am
- treatment it is meant that at least an amelioration of one or more symptoms associated with an aging-associated impairment afflicting the adult mammal is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g., a symptom associated with the impairment being treated.
- amelioration also includes situations where a pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g., prevented from happening, or stopped, e.g., terminated, such that the adult mammal no longer suffers from the impairment, or at least the symptoms that characterize the impairment.
- “treatment”, “treating” and the like refer to obtaining a desired pharmacologic and/or physiologic effect.
- the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease.
- Treatment may be any treatment of a disease in a mammal, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease. Treatment may result in a variety of different physical manifestations, e.g., modulation in gene expression, increased neurogenesis, rejuvenation of tissue or organs, etc.
- Treatment of ongoing disease where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, occurs in some embodiments. Such treatment may be performed prior to complete loss of function in the affected tissues.
- the subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
- treatment by methods of the present disclosure slows, or reduces, the progression of aging-associated cognitive decline.
- cognitive abilities in the individual decline more slowly, if at all, following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods.
- treatment by methods of the present disclosure stabilizes the cognitive abilities of an individual.
- the progression of cognitive decline in an individual suffering from aging-associated cognitive decline is halted following treatment by the disclosed methods.
- cognitive decline in an individual e.g., an individual 40 years old or older, that is projected to suffer from aging-associated cognitive decline, is prevented following treatment by the disclosed methods. In other words, no (further) cognitive impairment is observed.
- treatment by methods of the present disclosure reduces, or reverses, cognitive impairment, e.g., as observed by improving cognitive abilities in an individual suffering from aging-associated cognitive decline.
- the cognitive abilities of the individual suffering from aging-associated cognitive decline following treatment by the disclosed methods are better than they were prior to treatment by the disclosed methods, i.e., they improve upon treatment.
- treatment by methods of the present disclosure abrogates cognitive impairment.
- the cognitive abilities of the individual suffering from aging-associated cognitive decline are restored, e.g., to their level when the individual was about 40 years old or less, following treatment by the disclosed methods, e.g., as evidenced by improved cognitive abilities in an individual suffering from aging-associated cognitive decline.
- treatment of an adult mammal in accordance with the methods results in a change in a central organ, e.g., a central nervous system organ, such as the brain, spinal cord, etc., where the change may manifest in a number of different ways, e.g., as described in greater detail below, including but not limited to molecular, structural and/or functional, e.g., in the form of enhanced neurogenesis.
- a central organ e.g., a central nervous system organ, such as the brain, spinal cord, etc.
- the change may manifest in a number of different ways, e.g., as described in greater detail below, including but not limited to molecular, structural and/or functional, e.g., in the form of enhanced neurogenesis.
- methods described herein are methods of treating an aging-associated impairment, e.g., as described above, in an adult mammal.
- adult mammal is meant a mammal that has reached maturity, i.e., that is fully developed. As such, adult mammals are not juvenile.
- Mammalian species that may be treated with the present methods include canines and felines; equines; bovines; ovines; etc., and primates, including humans.
- the subject methods, compositions, and reagents may also be applied to animal models, including small mammals, e.g., murine, lagomorpha, etc., for example, in experimental investigations.
- small mammals e.g., murine, lagomorpha, etc.
- the age of the adult mammal may vary, depending on the type of mammal that is being treated. Where the adult mammal is a human, the age of the human is generally 18 years or older. In some instances, the adult mammal is an individual suffering from or at risk of suffering from an aging-associated impairment, such as an aging-associated cognitive impairment, where the adult mammal may be one that has been determined, e.g., in the form of receiving a diagnosis, to be suffering from or at risk of suffering from an aging-associated impairment, such as an aging-associated cognitive impairment.
- an aging-associated impairment such as an aging-associated cognitive impairment
- an individual suffering from or at risk of suffering from an aging-associated cognitive impairment refers to an individual that is about 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, and sometimes no older than 100 years old, such as 90 years old, i.e., between the ages of about 50 and 100, e.g., 50, 55, 60, 65, 70, 75, 80, 85 or about 90 years old.
- the individual may suffer from an aging associated condition, e.g., cognitive impairment, associated with the natural aging process, e.g., M.C.I.
- the individual may be 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and sometimes no older than 100 years old, i.e., between the ages of about 50 and 100, e.g., 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or about 100 years old, and has not yet begun to show symptoms of an aging associated condition, e.g., cognitive impairment.
- an aging associated condition e.g., cognitive impairment.
- the individual may be of any age where the individual is suffering from a cognitive impairment due to an aging-associated disease, e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, dementia, and the like.
- an aging-associated disease e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, dementia, and the like.
- the individual is an individual of any age that has been diagnosed with an aging-associated disease that is typically accompanied by cognitive impairment, e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, progressive supranuclear palsy, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, multiple sclerosis, multi-system atrophy, glaucoma, ataxias, myotonic dystrophy, dementia, and the like, where the individual has not yet begun to show symptoms of cognitive impairment.
- cognitive impairment e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, progressive supranuclear palsy, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, multiple sclerosis, multi-system atrophy, glaucoma, ataxias, myotonic dystrophy, dementia, and the like, where the individual has not yet begun to show symptoms of cognitive impairment.
- aspects of the methods include reducing the ⁇ 2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the aging impairment in the mammal, e.g., as described above.
- B2M ⁇ 2-microglobulin
- reducing the B2M level is meant lowering the amount of B2M in the mammal, such as the amount of extracellular B2M in the mammal.
- the magnitude of the reduction may vary, in some instances the magnitude is 2-fold or greater, such as 5-fold or greater, including 10-fold or greater, e.g., 15-fold or greater, 20-fold or greater, 25-fold or greater (as compared to a suitable control), where in some instances the magnitude is such that the amount of detectable free B2M in the circulatory system of the individual is 50% or less, such as 25% or less, including 10% or less, e.g., 1% or less, relative to the amount that was detectable prior to intervention according to the invention, and in some instances the amount is undetectable following intervention.
- the B2M level may be reduced using any convenient protocol.
- the B2M level is reduced by removing systemic B2M from the adult mammal, e.g., by removing B2M from the circulatory system of the adult mammal.
- any convenient protocol for removing circulatory B2M may be employed.
- blood may be obtained from the adult mammal and extra-corporeally processed to remove B2M from the blood to produce B2M depleted blood, which resultant B2M depleted blood may then be returned to the adult mammal.
- Such protocols may employ a variety of different techniques in order to remove B2M from the obtained blood.
- the obtained blood may be contacted with a filtering component, e.g., a membrane, etc., which allows passage of B2M but inhibits passage of other blood components, e.g., cells, etc.
- a filtering component e.g., a membrane, etc.
- the obtained blood may be contacted with a B2M absorptive component, e.g., porous bead or particulate composition, which absorbs B2M from the blood.
- the obtained blood may be contacted with a B2M binding member stably associated with a solid support, such that B2M binds to the binding member and is thereby immobilized on the solid support, thereby providing for separation of B2M from other blood constituents.
- the protocol employed may or may not be configured to selectively remove B2M from the obtained blood, as desired.
- a number of different technologies are known for removing B2M from blood, and may be employed in embodiments of the invention, where such technologies include those described in U.S. Pat. Nos. 4,872,983; 5,240,614; 6,416,487; 6,419,830; 6,423,024; 6,855,121; 7,066,900; 8,211,310; 8,349,550; as well as published United States Patent Application Publication No. 20020143283 and published PCT Application Publication Nos.: WO/1999/006098 and WO/2003/020403; the disclosures of which applications are herein incorporated by reference.
- the B2M level is reduced by administering to the mammal an effective amount of a B2M level reducing agent.
- an effective amount of the active agent e.g., B2M modulatory agent, is provided to the adult mammal.
- the agent modulates expression of the RNA and/or protein from the gene, such that it changes the expression of the RNA or protein from the target gene in some manner. In these instances, the agent may change expression of the RNA or protein in a number of different ways. In certain embodiments, the agent is one that reduces, including inhibits, expression of a B2M protein.
- Inhibition of B2M protein expression may be accomplished using any convenient means, including use of an agent that inhibits B2M protein expression, such as, but not limited to: RNAi agents, antisense agents, agents that interfere with a transcription factor binding to a promoter sequence of the B2M gene, or inactivation of the B2M gene, e.g., through recombinant techniques, etc.
- an agent that inhibits B2M protein expression such as, but not limited to: RNAi agents, antisense agents, agents that interfere with a transcription factor binding to a promoter sequence of the B2M gene, or inactivation of the B2M gene, e.g., through recombinant techniques, etc.
- RNAi agents e.g., double-strand RNA
- RNAi agents such as double-stranded RNA interference (dsRNAi) or small interfering RNA (siRNA)
- dsRNAi double-stranded RNA interference
- siRNA small interfering RNA
- RNAi agents may be dsRNA or a transcriptional template of the interfering ribonucleic acid which can be used to produce dsRNA in a cell.
- the transcriptional template may be a DNA that encodes the interfering ribonucleic acid.
- Methods and procedures associated with RNAi are also described in published PCT Application Publication Nos. WO 03/010180 and WO 01/68836, the disclosures of which applications are incorporated herein by reference.
- dsRNA can be prepared according to any of a number of methods that are known in the art, including in vitro and in vivo methods, as well as by synthetic chemistry approaches. Examples of such methods include, but are not limited to, the methods described by Sadher et al., Biochem. Int. (1987) 14:1015; Bhattacharyya, Nature (1990) 343:484; and U.S. Pat. No.
- Single-stranded RNA can also be produced using a combination of enzymatic and organic synthesis or by total organic synthesis.
- the use of synthetic chemical methods enable one to introduce desired modified nucleotides or nucleotide analogs into the dsRNA.
- dsRNA can also be prepared in vivo according to a number of established methods (see, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed.; Transcription and Translation (B. D. Hames, and S. J. Higgins, Eds., 1984); DNA Cloning, volumes I and II (D. N.
- RNA can be directly introduced intracellularly.
- Various physical methods are generally utilized in such instances, such as administration by microinjection (see, e.g., Zernicka-Goetz, et al. Development (1997)124:1133-1137; and Wianny, et al., Chromosoma (1998) 107: 430-439).
- cellular delivery include permeabilizing the cell membrane and electroporation in the presence of the dsRNA, liposome-mediated transfection, or transfection using chemicals such as calcium phosphate.
- a number of established gene therapy techniques can also be utilized to introduce the dsRNA into a cell. By introducing a viral construct within a viral particle, for instance, one can achieve efficient introduction of an expression construct into the cell and transcription of the RNA encoded by the construct.
- RNAi agents that may be employed to reduce B2M expression include, but are not limited to: dsRNA and short interfering RNA (siRNA) corresponding to B2M with the following sense and antisense sequences (sense) 5′-GAUUCAGGUUUACUCACGUdTdT-3′ (SEQ ID NO:01) and (antisense) 5′-ACGUGAGUAAACCUGAAUCdTdT-3′ (SEQ ID NO:02)(as described in Matin, et al., “Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells,” Stem Cells (2004) 22: 659-68) and WO/2004/085654; shRNA (GCCACTCCCACCCTTTCTCAT)(SEQ ID NO:03) (as disclosed in Goyos, et al., “Involvement of nonclassical MHC class Ib molecules in heat shock protein-mediated anti-tumor responses,”
- antisense molecules can be used to down-regulate expression of a B2M gene in the cell.
- the anti-sense reagent may be antisense oligodeoxynucleotides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA.
- ODN antisense oligodeoxynucleotides
- the antisense sequence is complementary to the mRNA of the targeted protein, and inhibits expression of the targeted protein.
- Antisense molecules inhibit gene expression through various mechanisms, e.g., by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance.
- One or a combination of antisense molecules may be administered, where a combination may include multiple different sequences.
- Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule.
- the antisense molecule is a synthetic oligonucleotide.
- Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. Short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al., Nature Biotechnol. (1996)14:840-844).
- a specific region or regions of the endogenous sense strand mRNA sequence are chosen to be complemented by the antisense sequence.
- Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an in vitro or animal model.
- a combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.
- Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993), supra.) Oligonucleotides may be chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases. Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates.
- Achiral phosphate derivatives include 3′-O-5′-S-phosphorothioate, 3′-S-5′-O-phosphorothioate, 3′-CH.sub.2-5′-O-phosphonate and 3′-NH-5′-O-phosphoroamidate.
- Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and affinity.
- the ⁇ -anomer of deoxyribose may be used, where the base is inverted with respect to the natural ⁇ -anomer.
- the 2′-OH of the ribose sugar may be altered to form 2 ′-O-methyl or 2′-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine. 5-propynyl-2′-deoxyuridine and 5-propynyl-2′-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively. Specific examples of antisense agents that may be employed to reduce B2M expression include, but are not limited to:
- catalytic nucleic acid compounds e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression.
- Ribozymes may be synthesized in vitro and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman et al. Nucl. Acids Res. (1995) 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764.
- Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin at al. Appl. Biochem. Biotechnol. (1995) 54:43-56.
- the B2M gene is inactivated so that it no longer expresses a functional protein.
- inactivated is meant that the gene, e.g., coding sequence and/or regulatory elements thereof, is genetically modified so that it no longer expresses a functional B2M protein, e.g., at least with respect to B2M aging impairment activity.
- the alteration or mutation may take a number of different forms, e.g., through deletion of one or more nucleotide residues, through exchange of one or more nucleotide residues, and the like.
- One means of making such alterations in the coding sequence is by homologous recombination.
- Also of interest in certain embodiments are dominant negative mutants of B2M proteins, where expression of such mutants in the cell result in a modulation, e.g., decrease, in B2M mediated aging impairment.
- Dominant negative mutants of B2M are mutant proteins that exhibit dominant negative B2M activity.
- the term “dominant-negative B2M activity” or “dominant negative activity” refers to the inhibition, negation, or diminution of certain particular activities of B2M, and specifically to B2M mediated aging impairment. Dominant negative mutations are readily generated for corresponding proteins.
- mutant polypeptide may interact with wild-type polypeptides (made from the other allele) and form a non-functional multimer. In certain embodiments, the mutant polypeptide will be overproduced. Point mutations are made that have such an effect.
- fusion of different polypeptides of various lengths to the terminus of a protein, or deletion of specific domains can yield dominant negative mutants. General strategies are available for making dominant negative mutants (see for example, Herskowitz.
- RNA capable of encoding gene product sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in “Oligonucleotide Synthesis”, 1984, Gait, M. J. ed., IRL Press, Oxford.
- the agent is an agent that modulates, e.g., inhibits, B2M activity by binding to B2M and/or inhibiting binding of B2M to a second protein, e.g., a protein member of MHC1.
- a second protein e.g., a protein member of MHC1.
- small molecules that bind to the B2M and inhibit its activity are of interest.
- Naturally occurring or synthetic small molecule compounds of interest include numerous chemical classes, such as organic molecules, e.g., small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons.
- Candidate agents comprise functional groups for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups.
- the candidate agents may include cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups.
- Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Such molecules may be identified, among other ways, by employing the screening protocols described below.
- small molecule agents agents that may be employed to reduce B2M expression include, but are not limited to: Riamycin SV: (7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-26- ⁇ (E)-[(4-methylpiperazin-1-yl)imino]methyl ⁇ -6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.14,7.05,28]triaconta-1(28),2,4,9,19,21,25(29),26-octaen-13-yl acetate (as disclosed in Woods, et al., “Ligand binding to distinct states diverts aggregation of an amyloid-forming protein” Nature Chemical Biology (2011) 7: 730-9); meclocycl
- the administered active agent is a B2M specific binding member.
- useful B2M specific binding members exhibit an affinity (Kd) for a target B2M, such as human B2M, that is sufficient to provide for the desired reduction in aging associated impairment B2M activity.
- affinity refers to the equilibrium constant for the reversible binding of two agents; “affinity” can be expressed as a dissociation constant (Kd).
- Affinity can be at least 1-fold greater, at least 2-fold greater, at least 3-fold greater, at least 4-fold greater, at least 5-fold greater, at least 6-fold greater, at least 7-fold greater, at least 8-fold greater, at least 9-fold greater, at least 10-fold greater, at least 20-fold greater, at least 30-fold greater, at least 40-fold greater, at least 50-fold greater, at least 60-fold greater, at least 70-fold greater, at least 80-fold greater, at least 90-fold greater, at least 100-fold greater, or at least 1000-fold greater, or more, than the affinity of an antibody for unrelated amino acid sequences.
- Affinity of a specific binding member to a target protein can be, for example, from about 100 nanomolar (nM) to about 0.1 nM, from about 100 nM to about 1 picomolar (pM), or from about 100 nM to about 1 femtomolar (fM) or more.
- binding refers to a direct association between two molecules, due to, for example, covalent, electrostatic, hydrophobic, and ionic and/or hydrogen-bond interactions, including interactions such as salt bridges and water bridges.
- the antibodies bind human B2M with nanomolar affinity or picomolar affinity.
- the antibodies bind human B2M with a Kd of less than about 100 nM, 50 nM, 20 nM, 20 nM, or 1 nM.
- B2M specific binding members include B2M antibodies and binding fragments thereof.
- Non-limiting examples of such antibodies include antibodies directed against any epitope of B2M.
- bispecific antibodies i.e., antibodies in which each of the two binding domains recognizes a different binding epitope.
- the amino acid sequence of human B2M is disclosed in Cunningham, et al., “The complete amino acid sequence of beta-2-microglobulin,” Biochemistry (1973) 12: 4811-4821.
- Antibody specific binding members that may be employed include full antibodies or immunoglobulins of any isotype, as well as fragments of antibodies which retain specific binding to antigen, including, but not limited to, Fab, Fv, scFv, and Fd fragments, chimeric antibodies, humanized antibodies, single-chain antibodies, and fusion proteins comprising an antigen-binding portion of an antibody and a non-antibody protein.
- the antibodies may be detectably labeled, e.g., with a radioisotope, an enzyme which generates a detectable product, a fluorescent protein, and the like.
- the antibodies may be further conjugated to other moieties, such as members of specific binding pairs, e.g., biotin (member of biotin-avidin specific binding pair), and the like. Also encompassed by the term are Fab′, Fv, F(ab′)2, and or other antibody fragments that retain specific binding to antigen, and monoclonal antibodies.
- An antibody may be monovalent or bivalent.
- Antibody fragments comprise a portion of an intact antibody, for example, the antigen binding or variable region of the intact antibody.
- antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8(10): 1057-1062 (1995)); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
- Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily.
- Pepsin treatment yields an F(ab′)2 fragment that has two antigen combining sites and is still capable of cross-linking antigen.
- “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRS of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
- the “Fab” fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain.
- Fab fragments differ from Fab′ fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
- Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group.
- F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
- immunoglobulins The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.
- immunoglobulins There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG
- Single-chain Fv or “sFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain.
- the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains, which enables the sFv to form the desired structure for antigen binding.
- Antibodies that may be used in connection with the present disclosure thus can encompass monoclonal antibodies, polyclonal antibodies, bispecific antibodies, Fab antibody fragments, F(ab)2 antibody fragments, Fv antibody fragments (e.g., VH or VL), single chain Fv antibody fragments and dsFv antibody fragments.
- the antibody molecules may be fully human antibodies, humanized antibodies, or chimeric antibodies. In some embodiments, the antibody molecules are monoclonal, fully human antibodies.
- the antibodies that may be used in connection with the present disclosure can include any antibody variable region, mature or unprocessed, linked to any immunoglobulin constant region. If a light chain variable region is linked to a constant region, it can be a kappa chain constant region. If a heavy chain variable region is linked to a constant region, it can be a human gamma 1, gamma 2, gamma 3 or gamma 4 constant region, more preferably, gamma 1, gamma 2 or gamma 4 and even more preferably gamma 1 or gamma 4.
- Fully human monoclonal antibodies directed against B2M are generated using transgenic mice carrying parts of the human immune system rather than the mouse system.
- amino acid sequences of antibodies or immunoglobulin molecules are encompassed by the present invention, providing that the variations in the amino acid sequence maintain at least 75%, e.g., at least 80%, 90%, 95%, or 99% of the sequence.
- conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Whether an amino acid change results in a functional peptide can readily be determined by assaying the specific activity of the polypeptide derivative.
- Fragments (or analogs) of antibodies or immunoglobulin molecules can be readily prepared by those of ordinary skill in the art. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains.
- Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases.
- computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. Sequence motifs and structural conformations may be used to define structural and functional domains in accordance with the invention.
- antibody agents that may be employed to reduce B2M expression include, but are not limited to: Anti-B2m B1-1G6 (immunoglobulin G2a [IgG2]), B2-62-2 (IgG2a), and C21-48A (IgG2b) from Immunotech S.A.
- the active agent(s) may be administered to the adult mammal using any convenient administration protocol capable of resulting in the desired activity.
- the agent can be incorporated into a variety of formulations, e.g., pharmaceutically acceptable vehicles, for therapeutic administration.
- the agents of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments (e.g., skin creams), solutions, suppositories, injections, inhalants and aerosols.
- administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.
- the agents may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds.
- the following methods and excipients are merely exemplary and are in no way limiting.
- the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- conventional additives such as lactose, mannitol, corn starch or potato starch
- binders such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins
- disintegrators such as corn starch, potato starch or sodium carboxymethylcellulose
- lubricants such as talc or magnesium stearate
- the agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- an aqueous or nonaqueous solvent such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol
- solubilizers isotonic agents
- suspending agents emulsifying agents, stabilizers and preservatives.
- the agents can be utilized in aerosol formulation to be administered via inhalation.
- the compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.
- the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases.
- bases such as emulsifying bases or water-soluble bases.
- the compounds of the present invention can be administered rectally via a suppository.
- the suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors.
- unit dosage forms for injection or intravenous administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle.
- the specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- the pharmaceutically acceptable excipients such as vehicles, adjuvants, carriers or diluents, are readily available to the public.
- pharmaceutically acceptable auxiliary substances such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- the agent is a polypeptide, polynucleotide, analog or mimetic thereof
- it may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth et al., Anal Biochem. (1992) 205:365-368.
- the DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or “gene gun” as described in the literature (see, for example, Tang et al., Nature (1992) 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.
- a number of different delivery vehicles find use, including viral and non-viral vector systems, as are known in the art.
- dose levels can vary as a function of the specific compound, the nature of the delivery vehicle, and the like. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means.
- an effective amount of an active agent is administered to the adult mammal
- the amount or dosage is effective when administered for a suitable period of time, such as one week or longer, including two weeks or longer, such as 3 weeks or longer, 4 weeks or longer, 8 weeks or longer, etc., so as to evidence a reduction in the impairment, e.g., cognition decline and/or cognitive improvement in the adult mammal.
- an effective dose is the dose that, when administered for a suitable period of time, such as at least about one week, and maybe about two weeks, or more, up to a period of about 3 weeks, 4 weeks, 8 weeks, or longer, will slow e.g., by about 20% or more, e.g., by 30% or more, by 40% or more, or by 50% or more, in some instances by 60% or more, by 70% or more, by 80% or more, or by 90% or more, e.g., will halt, cognitive decline in a patient suffering from natural aging or an aging-associated disorder.
- a suitable period of time such as at least about one week, and maybe about two weeks, or more, up to a period of about 3 weeks, 4 weeks, 8 weeks, or longer, will slow e.g., by about 20% or more, e.g., by 30% or more, by 40% or more, or by 50% or more, in some instances by 60% or more, by 70% or more, by 80% or more, or by 90% or more, e.g.
- an effective amount or dose of active agent will not only slow or halt the progression of the disease condition but will also induce the reversal of the condition, i.e., will cause an improvement in cognitive ability.
- an effective amount is the amount that when administered for a suitable period of time, usually at least about one week, and maybe about two weeks, or more, up to a period of about 3 weeks, 4 weeks, 8 weeks, or longer will improve the cognitive abilities of an individual suffering from an aging-associated cognitive impairment by, for example 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, in some instances 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold or more relative to cognition prior to administration of the blood product.
- Cognition tests and IQ test for measuring cognitive ability, e.g., attention and concentration, the ability to learn complex tasks and concepts, memory, information processing, visuospatial function, the ability to produce and understanding language, the ability to solve problems and make decisions, and the ability to perform executive functions, are well known in the art, any of which may be used to measure the cognitive ability of the individual before and/or during and after treatment with the subject blood product, e.g., to confirm that an effective amount has been administered.
- GPCG General Practitioner Assessment of Cognition
- MMSE Mini Mental State Examination
- the method comprises the step of measuring cognitive ability, and detecting a decreased rate of cognitive decline, a stabilization of cognitive ability, and/or an increase in cognitive ability after administration of the blood product as compared to the cognitive ability of the individual before the blood product was administered.
- Such measurements may be made a week or more after administration of the blood product, e.g., 1 week, 2 weeks, 3 weeks, or more, for instance, 4 weeks, 6 weeks, or 8 weeks or more, e.g., 3 months, 4 months, 5 months, or 6 months or more.
- an “effective amount” or “effective dose” of active agent is meant an amount of active agent that will inhibit, antagonize, decrease, reduce, or suppress by about 20% or more, e.g., by 30% or more, by 40% or more, or by 50% or more, in some instances by 60% or more, by 70% or more, by 80% or more, or by 90% or more, in some cases by about 100%, i.e., to negligible amounts, and in some instances reverse, the reduction in synaptic plasticity and loss of synapses that occurs during the natural aging process or during the progression of an aging-associated disorder.
- cells present in adult mammals treated in accordance with methods of the invention will become more responsive to cues, e.g., activity cues, which promote the formation and maintenance of synapses.
- Performance of methods of the invention may manifest as improvements in observed synaptic plasticity, both in vitro and in vivo as an induction of long term potentiation.
- the induction of LTP in neural circuits may be observed in awake individuals, e.g., by performing non-invasive stimulation techniques on awake individuals to induce LTP-like long-lasting changes in localized neural activity (Cooke S F, Bliss T V (2006) Plasticity in the human central nervous system. Brain.
- mapping plasticity and increased neural circuit activity in individuals e.g., by using positron emission tomography, functional magnetic resonance imaging, and/or transcranial magnetic stimulation (Cramer and Bastings, “Mapping clinically relevant plasticity after stroke,” Neuropharmacology (2000)39:842-51); and by detecting neural plasticity following learning, i.e., improvements in memory, e.g., by assaying retrieval-related brain activity (Buchmann et al., “Prion protein M129V polymorphism affects retrieval-related brain activity,” Neuropsychologia.
- the method includes the step of measuring synaptic plasticity, and detecting a decreased rate of loss of synaptic plasticity, a stabilization of synaptic plasticity, and/or an increase in synaptic plasticity after administration of the blood product as compared to the synaptic plasticity of the individual before the blood product was administered.
- Such measurements may be made a week or more after administration of the blood product, e.g., 1 week, 2 weeks, 3 weeks, or more, for instance, 4 weeks, 6 weeks, or 8 weeks or more, e.g., 3 months, 4 months, 5 months, or 6 months or more.
- the methods result in a change in expression levels of one or more genes in one or more tissues of the host, e.g., as compared to a suitable control (such as described in the Experimental section, below).
- the change in expression level of a given gene may be 0.5 fold or greater, such as 1.0 fold or greater, including 1.5 fold or greater.
- the tissue may vary, and in some instances is nervous system tissue, e.g., central nervous system tissue, including brain tissue, e.g., hippocampal tissue.
- the modulation of hippocampal gene expression is manifested as enhanced hippocampal plasticity, e.g., as compared to a suitable control.
- treatment results in an enhancement in the levels of one or more proteins in one or more tissues of the host, e.g., as compared to a suitable control (such as described in the Experimental section, below).
- the change in protein level of a given protein may be 0.5 fold or greater, such as 1.0 fold or greater, including 1.5 fold or greater, where in some instances the level may approach that of a healthy wild-type level, e.g., within 50% or less, such as 25% or less, including 10% or less, e.g., 5% or less of the healthy wild-type level.
- the tissue may vary, and in some instances is nervous system tissue, e.g., central nervous system tissue, including brain tissue, e.g., hippocampal tissue.
- the methods result in one or more structural changes in one or more tissues.
- the tissue may vary, and in some instances is nervous system tissue, e.g., central nervous system tissue, including brain tissue, e.g., hippocampal tissue.
- Structure changes of interest include an increase in dendritic spine density of mature neurons in the dentate gyrus (DG) of the hippocampus, e.g., as compared to a suitable control.
- DG dentate gyrus
- the modulation of hippocampal structure is manifested as enhanced synapse formation, e.g., as compared to a suitable control.
- the methods may result in an enhancement of long term potentiation, e.g., as compared to a suitable control.
- practice of the methods results in an increase in neurogenesis in the adult mammal.
- the increase may be identified in a number of different ways, e.g., as described below in the Experimental section.
- the increase in neurogenesis manifests as an increase the amount of Dcx-positive immature neurons, e.g., where the increase may be 2-fold or greater.
- the increase in neurogenesis manifests as an increase in the number of BrdU/NeuN positive cells, where the increase may be 2-fold or greater.
- Enhancement in learning and memory may be evaluated in a number of different ways, e.g., the contextual fear conditioning and/or radial arm water maze (RAWM) paradigms described in the experimental section, below.
- RAWM radial arm water maze
- treatment results in some instances in increased freezing in contextual, but not cued, memory testing.
- RAWM radial arm water maze
- treatment results in some instances in enhanced learning and memory for platform location during the testing phase of the task.
- treatment is manifested as enhanced cognitive improvement in hippocampal-dependent learning and memory, e.g., as compared to a suitable control.
- B2M level reduction may be performed in conjunction with an active agent having activity suitable to treat aging-associated cognitive impairment.
- an active agent having activity suitable to treat aging-associated cognitive impairment.
- active agents e.g., cholinesterase inhibitors (e.g., Donepezil, Rivastigmine, Galantamine, Tacrine), Memantine, and Vitamin E.
- citalopram Celexa
- fluoxetine Prozac
- paroxeine Paxil
- sertraline Zoloft
- trazodone Desyrel
- lorazepam Ativan
- oxazepam Serax
- aripiprazole Abilify
- clozapine Clozaril
- haloperidol Haldol
- olanzapine Zyprexa
- quetiapine Seerdal
- risperidone Rosinal
- ziprasidone ziprasidone
- the method further comprises the step of measuring cognition and/or synaptic plasticity after treatment, e.g., using the methods described herein or known in the art, and determining that the rate of cognitive decline or loss of synaptic plasticity have been reduced and/or that cognitive ability or synaptic plasticity have improved in the individual.
- the determination is made by comparing the results of the cognition or synaptic plasticity test to the results of the test performed on the same individual at an earlier time, e.g., 2 weeks earlier, 1 month earlier, 2 months earlier, 3 months earlier, 6 months earlier, 1 year earlier, 2 years earlier, 5 years earlier, or 10 years earlier, or more.
- the subject methods further include diagnosing an individual as having a cognitive impairment, e.g., using the methods described herein or known in the art for measuring cognition and synaptic plasticity, prior to administering the subject plasma-comprising blood product.
- the diagnosing will comprise measuring cognition and/or synaptic plasticity and comparing the results of the cognition or synaptic plasticity test to one or more references, e.g., a positive control and/or a negative control.
- the reference may be the results of the test performed by one or more age-matched individuals that experience aging-associated cognitive impairments (i.e., positive controls) or that do not experience aging-associated cognitive impairments (i.e., negative controls).
- the reference may be the results of the test performed by the same individual at an earlier time, e.g., 2 weeks earlier, 1 month earlier, 2 months earlier, 3 months earlier, 6 months earlier, 1 year earlier, 2 years earlier, 5 years earlier, or 10 years earlier, or more.
- the subject methods further comprise diagnosing an individual as having an aging-associated disorder, e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, progressive supranuclear palsy, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, multiple sclerosis, multi-system atrophy, glaucoma, ataxias, myotonic dystrophy, dementia, and the like.
- an aging-associated disorder e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, progressive supranuclear palsy, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, multiple sclerosis, multi-system atrophy, glaucoma, ataxias, myotonic dystrophy, dementia, and the like.
- Methods for diagnosing such aging-associated disorders are well-known in the art, any of which may be used by the ordinarily skilled artisan in diagnosing the individual.
- the subject methods further comprise
- the subject methods find use in treating, including preventing, aging-associated impairments and conditions associated therewith, such as impairments in the cognitive ability of individuals.
- Individuals suffering from or at risk of developing an aging-associated cognitive impairments include individuals that are about 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and usually no older than 100 years old, i.e., between the ages of about 50 and 100, e.g., 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or about 100 years old, and are suffering from cognitive impairment associated with natural aging process, e.g., mild cognitive impairment (M.C.I.); and individuals that are about 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and usually no older than 100 years old, i.e., between the ages of about 50 and 90, e.g., 50
- Mild cognitive impairment is a modest disruption of cognition that manifests as problems with memory or other mental functions such as planning, following instructions, or making decisions that have worsened over time while overall mental function and daily activities are not impaired.
- M.C.I. Mild cognitive impairment
- neurons in the aging brain are vulnerable to sub-lethal age-related alterations in structure, synaptic integrity, and molecular processing at the synapse, all of which impair cognitive function.
- Individuals suffering from or at risk of developing an aging-associated cognitive impairment that will benefit from treatment with the subject plasma-comprising blood product, e.g., by the methods disclosed herein, also include individuals of any age that are suffering from a cognitive impairment due to an aging-associated disorder; and individuals of any age that have been diagnosed with an aging-associated disorder that is typically accompanied by cognitive impairment, where the individual has not yet begun to present with symptoms of cognitive impairment.
- aging-associated disorders include the following:
- Alzheimer's disease is a progressive, inexorable loss of cognitive function associated with an excessive number of senile plaques in the cerebral cortex and subcortical gray matter, which also contains b-amyloid and neurofibrillary tangles consisting of tau protein.
- the common form affects persons >60 yr old, and its incidence increases as age advances. It accounts for more than 65% of the dementias in the elderly.
- Alzheimer's disease The cause of Alzheimer's disease is not known. The disease runs in families in about 15 to 20% of cases. The remaining, so-called sporadic cases have some genetic determinants. The disease has an autosomal dominant genetic pattern in most early-onset and some late-onset cases but a variable late-life penetrance. Environmental factors are the focus of active investigation.
- Cerebral glucose use and perfusion is reduced in some areas of the brain (parietal lobe and temporal cortices in early-stage disease, prefrontal cortex in late-stage disease).
- Neuritic or senile plaques (composed of neurites, astrocytes, and glial cells around an amyloid core) and neurofibrillary tangles (composed of paired helical filaments) play a role in the pathogenesis of Alzheimer's disease.
- Senile plaques and neurofibrillary tangles occur with normal aging, but they are much more prevalent in persons with Alzheimer's disease.
- Parkinson's Disease is an idiopathic, slowly progressive, degenerative CNS disorder characterized by slow and decreased movement, muscular rigidity, resting tremor, and postural instability. Originally considered primarily a motor disorder, PD is now recognized to also affect cognition, behavior, sleep, autonomic function, and sensory function. The most common cognitive impairments include an impairment in attention and concentration, working memory, executive function, producing language, and visuospatial function.
- Secondary parkinsonism results from loss of or interference with the action of dopamine in the basal ganglia due to other idiopathic degenerative diseases, drugs, or exogenous toxins.
- the most common cause of secondary parkinsonism is ingestion of antipsychotic drugs or reserpine, which produce parkinsonism by blocking dopamine receptors.
- Less common causes include carbon monoxide or manganese poisoning, hydrocephalus, structural lesions (tumors, infarcts affecting the midbrain or basal ganglia), subdural hematoma, and degenerative disorders, including striatonigral degeneration.
- Frontotemporal dementia is a condition resulting from the progressive deterioration of the frontal lobe of the brain. Over time, the degeneration may advance to the temporal lobe. Second only to Alzheimer's disease (AD) in prevalence, FTD accounts for 20% of pre-senile dementia cases.
- AD Alzheimer's disease
- Symptoms are classified into three groups based on the functions of the frontal and temporal lobes affected: Behavioural variant FTD (bvFTD), with symptoms include lethargy and aspontaneity on the one hand, and disinhibition on the other; progressive nonfluent aphasia (PNFA), in which a breakdown in speech fluency due to articulation difficulty, phonological and/or syntactic errors is observed but word comprehension is preserved; and semantic dementia (SD), in which patients remain fluent with normal phonology and syntax but have increasing difficulty with naming and word comprehension.
- PNFA progressive nonfluent aphasia
- SD semantic dementia
- Other cognitive symptoms common to all FTD patients include an impairment in executive function and ability to focus. Other cognitive abilities, including perception, spatial skills, memory and praxis typically remain intact.
- FTD can be diagnosed by observation of reveal frontal lobe and/or anterior temporal lobe atrophy in structural MRI scans.
- SD Semantic Dementia
- SA is characterized by a loss of semantic memory in both the verbal and non-verbal domains.
- SD patients often present with the complaint of word-finding difficulties.
- Clinical signs include fluent aphasia, anomia, impaired comprehension of word meaning, and associative visual agnosia (the inability to match semantically related pictures or objects).
- fluent aphasia anomia
- impaired comprehension of word meaning and associative visual agnosia (the inability to match semantically related pictures or objects).
- associative visual agnosia the inability to match semantically related pictures or objects.
- Structural MRI imaging shows a characteristic pattern of atrophy in the temporal lobes (predominantly on the left), with inferior greater than superior involvement and anterior temporal lobe atrophy greater than posterior.
- Pd Pick's disease
- a defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver-staining, spherical aggregations known as “Pick bodies”.
- Symptoms include loss of speech (aphasia) and dementia.
- Patients with orbitofrontal dysfunction can become aggressive and socially inappropriate. They may steal or demonstrate obsessive or repetitive stereotyped behaviors.
- Patients with dorsomedial or dorsolateral frontal dysfunction may demonstrate a lack of concern, apathy, or decreased spontaneity. Patients can demonstrate an absence of self-monitoring, abnormal self-awareness, and an inability to appreciate meaning.
- Patients with gray matter loss in the bilateral posterolateral orbitofrontal cortex and right anterior insula may demonstrate changes in eating behaviors, such as a pathologic sweet tooth. Patients with more focal gray matter loss in the anterolateral orbitofrontal cortex may develop hyperphagia. While some of the symptoms can initially be alleviated, the disease progresses and patients often die within two to ten years.
- Huntington's disease is a hereditary progressive neurodegenerative disorder characterized by the development of emotional, behavioral, and psychiatric abnormalities; loss of intellectual or cognitive functioning; and movement abnormalities (motor disturbances).
- the classic signs of HD include the development of chorea—involuntary, rapid, irregular, jerky movements that may affect the face, arms, legs, or trunk—as well as cognitive decline including the gradual loss of thought processing and acquired intellectual abilities.
- symptoms typically become evident during the fourth or fifth decades of life, the age at onset is variable and ranges from early childhood to late adulthood (e.g., 70s or 80s).
- HD is transmitted within families as an autosomal dominant trait.
- the disorder occurs as the result of abnormally long sequences or “repeats” of coded instructions within a gene on chromosome 4 (4p16.3).
- the progressive loss of nervous system function associated with HD results from loss of neurons in certain areas of the brain, including the basal ganglia and cerebral cortex.
- Amyotrophic lateral sclerosis is a rapidly progressive, invariably fatal neurological disease that attacks motor neurons. Muscular weakness and atrophy and signs of anterior horn cell dysfunction are initially noted most often in the hands and less often in the feet. The site of onset is random, and progression is asymmetric. Cramps are common and may precede weakness. Rarely, a patient survives 30 years; 50% die within 3 years of onset. 20% live 5 years, and 10% live 10 years. Diagnostic features include onset during middle or late adult life and progressive, generalized motor involvement without sensory abnormalities. Nerve conduction velocities are normal until late in the disease. Recent studies have documented the presentation of cognitive impairments as well, particularly a reduction in immediate verbal memory, visual memory, language, and executive function.
- MS Multiple Sclerosis.
- Multiple Sclerosis is characterized by various symptoms and signs of CNS dysfunction, with remissions and recurring exacerbations. The most common presenting symptoms are parenthesis in one or more extremities, in the trunk, or on one side of the face; weakness or clumsiness of a leg or hand; or visual disturbances, e.g., partial blindness and pain in one eye (retrobulbar optic neuritis), dimness of vision, or scotomas.
- Common cognitive impairments include impairments in memory (acquiring, retaining, and retrieving new information), attention and concentration (particularly divided attention), information processing, executive functions, visuospatial functions, and verbal fluency.
- Glaucoma is a common neurodegenerative disease that affects retinal ganglion cells (RGCs). Evidence supports the existence of compartmentalized degeneration programs in synapses and dendrites, including in RGCs. Recent evidence also indicates a correlation between cognitive impairment in older adults and glaucoma (Yochim B P, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma. 2012; 21(4):250-254).
- Myotonic dystrophy is an autosomal dominant multisystem disorder characterized by dystrophic muscle weakness and myotonia.
- the molecular defect is an expanded trinucleotide (CTG) repeat in the 3′ untranslated region of the myotonin-protein kinase gene on chromosome 19q.
- CCG trinucleotide
- Symptoms can occur at any age, and the range of clinical severity is broad. Myotonia is prominent in the hand muscles, and ptosis is common even in mild cases. In severe cases, marked peripheral muscular weakness occurs, often with cataracts, premature balding, hatchet facies, cardiac arrhythmias, testicular atrophy, and endocrine abnormalities (e.g., diabetes mellitus).
- Mental retardation is common in severe congenital forms, while an aging-related decline of frontal and temporal cognitive functions, particularly language and executive functions, is observed in milder adult forms of the disorder. Severely affected persons die by their early 50s
- Dementia describes class of disorders having symptoms affecting thinking and social abilities severely enough to interfere with daily functioning.
- Other instances of dementia in addition to the dementia observed in later stages of the aging-associated disorders discussed above include vascular dementia, and dementia with Lewy bodies, described below.
- vascular dementia In vascular dementia, or “multi-infarct dementia”, cognitive impairment is caused by problems in supply of blood to the brain, typically by a series of minor strokes, or sometimes, one large stroke preceded or followed by other smaller strokes.
- vascular lesions can be the result of diffuse cerebrovascular disease, such as small vessel disease, or focal lesions, or both.
- Patients suffering from vascular dementia present with cognitive impairment, acutely or subacutely, after an acute cerebrovascular event, after which progressive cognitive decline is observed.
- Cognitive impairments are similar to those observed in Alzheimer's disease, including impairments in language, memory, complex visual processing, or executive function, although the related changes in the brain are not due to AD pathology but to chronic reduced blood flow in the brain, eventually resulting in dementia.
- Single photon emission computed tomography (SPECT) and positron emission tomography (PET) neuroimaging may be used to confirm a diagnosis of multi-infarct dementia in conjunction with evaluations involving mental status examination.
- SPECT single photon emission
- Lewy body dementia also known under a variety of other names including Lewy body dementia, diffuse Lewy body disease, cortical Lewy body disease, and senile dementia of Lewy type
- Lewy body dementia a type of dementia characterized anatomically by the presence of Lewy bodies (clumps of alpha-synuclein and ubiquitin protein) in neurons, detectable in post mortem brain histology. Its primary feature is cognitive decline, particularly of executive functioning. Alertness and short term memory will rise and fall. Persistent or recurring visual hallucinations with vivid and detailed pictures are often an early diagnostic symptom.
- DLB it is often confused in its early stages with Alzheimer's disease and/or vascular dementia, although, where Alzheimer's disease usually begins quite gradually, DLB often has a rapid or acute onset. DLB symptoms also include motor symptoms similar to those of Parkinson's. DLB is distinguished from the dementia that sometimes occurs in Parkinson's disease by the time frame in which dementia symptoms appear relative to Parkinson symptoms. Parkinson's disease with dementia (PDD) would be the diagnosis when dementia onset is more than a year after the onset of Parkinson's. DLB is diagnosed when cognitive symptoms begin at the same time or within a year of Parkinson symptoms.
- PDD Parkinson's disease with dementia
- Progressive supranuclear palsy is a brain disorder that causes serious and progressive problems with control of gait and balance, along with complex eye movement and thinking problems.
- One of the classic signs of the disease is an inability to aim the eyes properly, which occurs because of lesions in the area of the brain that coordinates eye movements. Some individuals describe this effect as a blurring.
- Affected individuals often show alterations of mood and behavior, including depression and apathy as well as progressive mild dementia.
- the disorder's long name indicates that the disease begins slowly and continues to get worse (progressive), and causes weakness (palsy) by damaging certain parts of the brain above pea-sized structures called nuclei that control eye movements (supranuclear).
- PSP was first described as a distinct disorder in 1964, when three scientists published a paper that distinguished the condition from Parkinson's disease. It is sometimes referred to as Steele-Richardson-Olszewski syndrome, reflecting the combined names of the scientists who defined the disorder. Although PSP gets progressively worse, no one dies from PSP itself.
- Ataxia People with ataxia have problems with coordination because parts of the nervous system that control movement and balance are affected. Ataxia may affect the fingers, hands, arms, legs, body, speech, and eye movements.
- the word ataxia is often used to describe a symptom of incoordination which can be associated with infections, injuries, other diseases, or degenerative changes in the central nervous system.
- Ataxia is also used to denote a group of specific degenerative diseases of the nervous system called the hereditary and sporadic ataxias which are the National Ataxia Foundation's primary emphases.
- MSA Multiple-system atrophy
- MSA is a degenerative neurological disorder.
- MSA is associated with the degeneration of nerve cells in specific areas of the brain. This cell degeneration causes problems with movement, balance, and other autonomic functions of the body such as bladder control or blood-pressure regulation.
- the cause of MSA is unknown and no specific risk factors have been identified. Around 55% of cases occur in men, with typical age of onset in the late 50s to early 60s. MSA often presents with some of the same symptoms as Parkinson's disease. However, MSA patients generally show minimal if any response to the dopamine medications used for Parkinson's.
- the subject methods and compositions find use in slowing the progression of aging-associated cognitive impairment.
- cognitive abilities in the individual will decline more slowly following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods.
- the subject methods of treatment include measuring the progression of cognitive decline after treatment, and determining that the progression of cognitive decline is reduced.
- the determination is made by comparing to a reference, e.g., the rate of cognitive decline in the individual prior to treatment, e.g., as determined by measuring cognition prior at two or more time points prior to administration of the subject blood product.
- the subject methods and compositions also find use in stabilizing the cognitive abilities of an individual, e.g., an individual suffering from aging-associated cognitive decline or an individual at risk of suffering from aging-associated cognitive decline.
- the individual may demonstrate some aging-associated cognitive impairment, and progression of cognitive impairment observed prior to treatment with the disclosed methods will be halted following treatment by the disclosed methods.
- the individual may be at risk for developing an aging-associated cognitive decline (e.g., the individual may be aged 50 years old or older, or may have been diagnosed with an aging-associated disorder), and the cognitive abilities of the individual are substantially unchanged, i.e., no cognitive decline can be detected, following treatment by the disclosed methods as compared to prior to treatment with the disclosed methods.
- the subject methods and compositions also find use in reducing cognitive impairment in an individual suffering from an aging-associated cognitive impairment.
- cognitive ability is improved in the individual following treatment by the subject methods.
- the cognitive ability in the individual is increased, e.g., by 2-fold or more, 5-fold or more, 10-fold or more, 15-fold or more, 20-fold or more, 30-fold or more, or 40-fold or more, including 50-fold or more, 60-fold or more, 70-fold or more, 80-fold or more, 90-fold or more, or 100-fold or more, following treatment by the subject methods relative to the cognitive ability that is observed in the individual prior to treatment by the subject methods.
- treatment by the subject methods and compositions restores the cognitive ability in the individual suffering from aging-associated cognitive decline, e.g., to their level when the individual was about 40 years old or less. In other words, cognitive impairment is abrogated.
- reagents, devices and kits thereof for practicing one or more of the above-described methods.
- the subject reagents, devices and kits thereof may vary greatly.
- Reagents and devices of interest include those mentioned above with respect to the methods of reducing B2M levels in an adult mammal.
- the subject kits will further include instructions for practicing the subject methods. These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit.
- One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc.
- Yet another means would be a computer readable medium, e.g., diskette, CD, portable flash drive, etc., on which the information has been recorded.
- Yet another means that may be present is a website address which may be used via the internet to access the information at a removed site. Any convenient means may be present in the kits.
- a 2 ⁇ l volume was injected stereotaxically over 10 minutes (injection speed: 0.20 ⁇ l/min) using a 5 ⁇ l 26s gauge Hamilton syringe. To limit reflux along the injection track, the needle was maintained in situ for 8 minutes, slowly pulled out half way and kept in position for an additional two minutes. The skin was closed using silk suture. Each mouse was injected subcutaneously with the analgesic Buprenex. Mice were single-housed and monitored during recovery.
- Carrier free purified human ⁇ 2-Microglobulin (Lee Biosolutions) was dissolved in PBS and administered systemically (100 ⁇ g/kg) via intraorbital in young (3 months) wild type animals, or stereotaxically (0.50 ⁇ l; 0.1 ⁇ g/ ⁇ l) into the DG of the hippocampus in young (3 months) wild type and Tap1 ⁇ / ⁇ mutant.
- B2M and vehicle were administered into contralateral DG of the same animal.
- B2M or vehicle were administered bilaterally into the DG and mice were allowed to recover for six or 30 days prior to cognitive testing.
- Brdu labeling 50 mg/kg of BrdU was injected intraperitoneally into mice daily either three or six days before sacrifice.
- BrdU labeling 50 mg/kg of BrdU was injected into mice once a day for six days and animals were sacrificed 28 days after first administration.
- DAB staining for BrdU on every sixth hemibrain section for a total of six sections.
- the number of BrdU-positive cells in the granule cell and subgranular cell layer of the DG were counted and multiplied by 12 to estimate the total number of BrdU-positive cells in the entire DG.
- mice were anesthetized with 400 mg/kg chloral hydrate (Sigma-Aldrich) and transcardially perfused with 0.9% saline. Brains were removed and fixed in phosphate-buffered 4% paraformaldehyde, pH 7.4, at 4° C. for 48 h before they were sunk through 30% sucrose for cryoprotection.
- Primary antibodies were: goat anti-Dcx (1:500; Santa Cruz Biotechnology; sc-8066, clone: C-18), rat anti-BrdU (1:5000, Accurate Chemical and Scientific Corp.; ab6326, clone: BU1/75), mouse anti-Nestin (1:500; Millipore; MAB353; clone: rat-401) MCM2 (1:500, BD Biosciences; 610700; clone: 46/BM28), chicken anti-Tbr2 (1:500; Millipore; AB15894), mouse anti-NeuN (1:1000; Millipore; MAB377; clone: A60), rabbit anti-GFAP (1:500; DAKO; Z0334).
- Mouse hippocampi were dissected after perfusion of animals, snap frozen and lysed in RIPA lysis buffer (500 mM Tris, pH 7.4, 150 mM NaCl, 0.5% Na deoxycholate, 1% NP40, 0.1% SDS, and complete protease inhibitors; Roche). Tissue lysates were mixed with 4 ⁇ NuPage LDS loading buffer (Invitrogen) and loaded on a 4-12% SDS polyacrylamide gradient gel (Invitrogen) and subsequently transferred onto a nitrocellulose membrane.
- RIPA lysis buffer 500 mM Tris, pH 7.4, 150 mM NaCl, 0.5% Na deoxycholate, 1% NP40, 0.1% SDS, and complete protease inhibitors; Roche.
- Tissue lysates were mixed with 4 ⁇ NuPage LDS loading buffer (Invitrogen) and loaded on a 4-12% SDS polyacrylamide gradient gel (Invitrogen) and subsequently transferred onto a nitrocellulose membrane.
- the blots were blocked in 5% milk in Tris-Buffered Saline with Tween (TBST) and incubated with rabbit anti-actin (1:5000, Sigma; A5060) and rabbit anti-B2M (1:2500, Abcam; ab75853; clone: EP2978Y).
- Horseradish peroxidase-conjugated secondary antibodies (1:5000, GE Healthcare; NA934) and an ECL kit (GE Healthcare/Amersham Pharmacia Biotech) were used to detect protein signals. Multiple exposures were taken to select images within the dynamic range of the film (GE Healthcare Amersham HyperfilmTM ECL). Selected films were scanned (300 dpi) and quantified using ImageJ software (Version 1.46k). Actin bands were used for normalization.
- Mouse neural progenitor cells were isolated from C57BL/6 mice or Dcx-reporter mice (Couillard-Despres S, et al. “In vivo optical imaging of neurogenesis: watching new neurons in the intact brain.” Molecular imaging. 2008; 7:28-34.) as previously described (Villeda, S. A., et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94), (Mosher K I, et al. “Neural progenitor cells regulate microglia functions and activity.” Nature neuroscience. 2012; 15:1485-1487). Brains from postnatal animals (1 day-old) were dissected to remove olfactory bulbs, cortex, cerebellum and brainstem.
- NSC/progenitors were purified using a 65% Percoll gradient and plated on uncoated tissue culture dishes at a density of 10 5 cells/cm 2 .
- NPCs were cultured under standard conditions for 48 hours in NeuroBasal A medium supplemented with penicillin (100 U/ml), streptomycin (100 mg/ml), 2 mM L-glutamine, serum-free B27 supplement without vitamin A (Sigma-Aldrich), bFGF (20 ng/ml) and EGF (20 ng/ml).
- Carrier free forms of human recombinant B2M (Vendor) were dissolved in PBS and added to cell cultures under self-renewal conditions every other day following cell plating.
- BrdU incorporation was measured using a cell proliferation assay system that uses a peroxidase-coupled anti-BrdU antibody together with a color substrate for detection (Fisher).
- Dcx-luciferase activity was measured using a luciferase assay system (Promega). Differentiation was assessed by immunocytochemistry using mouse anti-MAP2 (1:1000, Sigma; M9942; clone: HM-2) and rabbit anti-GFAP (1:500, DAKO; Z0334) antibodies. Cytotoxicity was measured by lactate dehydrogenase (LDH) detection using a Pierce LDH Cytotoxicity Assay system (Life Technologies).
- LDH lactate dehydrogenase
- mice learned to associate the environmental context (fear conditioning chamber) with an aversive stimulus (mild foot shock; unconditioned stimulus, US) enabling testing for hippocampal-dependent contextual fear conditioning.
- contextual fear conditioning is hippocampus and amygdala dependent
- the mild foot shock was paired with a light and tone cue (conditioned stimulus, CS) in order to also assess amygdala-dependent cued fear conditioning.
- Conditioned fear was displayed as freezing behavior.
- Specific training parameters are as follows: tone duration is 30 seconds; level is 70 dB, 2 kHz; shock duration is 2 seconds; intensity is 0.6 mA. This intensity is not painful and can easily be tolerated but will generate an unpleasant feeling.
- each mouse was placed in a fear-conditioning chamber and allowed to explore for 2 minutes before delivery of a 30-second tone (70 dB) ending with a 2-second foot shock (0.6 mA). Two minutes later, a second CS-US pair was delivered.
- each mouse was first placed in the fear-conditioning chamber containing the same exact context, but with no CS or foot shock. Freezing was analyzed for 1-3 minutes. One hour later, the mice were placed in a new context containing a different odor, cleaning solution, floor texture, chamber walls and shape. Animals were allowed to explore for 2 minutes before being re-exposed to the CS. Freezing was analyzed for 1-3 minutes. Freezing was measured using a FreezeScan video tracking system and software (Cleversys, Inc).
- RAWM radial arm water maze
- Mouse blood was collected into EDTA coated tubes via tail vein bleed, mandibular vein bleed, or intracardial bleed at time of sacrifice.
- EDTA plasma was generated by centrifugation at 1000 g of freshly collected blood and aliquots were stored at ⁇ 80° C. until use.
- Human plasma and CSF samples were obtained from University of Washington School of Medicine, Veterans Affairs Northwest Network Mental Illness Research, Education, and Clinical Center, Oregon Health Science University and University of California San Diego. Subjects were chosen based on standardized inclusion and exclusion criteria as previously described (Villeda, S. A., et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94), (Zhang, J.
- Permitted medications include: AChE- anticoagulant, platelets ⁇ 100,000; deformity inhibitors, Memantine, HRT or surgery affecting lumbosacral spine which (estrogen +/ ⁇ progesterone, Lupron), is severe enough to make lumbar puncture Thyroid hormone, difficult, cutaneous sepsis at lumbosacral Antidepressants, statins. region.
- BUN normal basic laboratory tests: BUN
- Neurological disorders neurodegenerative creatinine (will allow creatinine up diseases such as Alzheimer's Disease, Parkinson's to 1.5), B12, TSH.
- Exclusionary medications in 4 weeks before visit to draw blood or CSF
- Neuroleptics/atypical antipsychotics Anti-Parkinson's Disease medications (L-dopa, dopamine agonists)
- CNS stimulants modafinil, Ritalin Antiepileptic drugs (exceptions for Neurontin or similar newer AEDs given for pain control)
- Insulin treatment Cortisone oral prohibited-topical or inhaler use allowed
- anti-immune drugs e.g. methotrexate, cytoxan, IVIg, tacrolimus, cyclosporine
- antineoplastic drugs Anti-HIV medications
- cytokines and signaling molecules were measured in human and mouse plasma samples using standard antibody-based multiplex immunoassays (Luminex) by Rules Based Medicine Inc., a fee-for-service provider. All Luminex measurements where obtained in a blinded fashion. All assays were developed and validated to Clinical Laboratory Standards Institute (formerly NCCLS) guidelines based upon the principles of immunoassay as described by the manufacturers.
- Aging remains the single most dominant risk factor for dementia-related neurodegenerative diseases, such as Alzheimer's disease (Hedden & Gabrieli, “Insights into the ageing mind: a view from cognitive neuroscience.,” Nature reviews. Neuroscience (2004) 5:87-96; Mattson & Magnus, “Ageing and neuronal vulnerability.,” Nature reviews. Neuroscience (2006) 7:278-294; Small et al., “A pathophysiological framework of hippocampal dysfunction in ageing and disease.,” Nature reviews. Neuroscience (2011) 12:585-601). As such, it is imperative to gain mechanistic insight into what drives aging phenotypes in the brain in order to maintain cognitive integrity in the elderly, and consequently counteract vulnerability to neurodegenerative disease.
- Alzheimer's disease Hedden & Gabrieli, “Insights into the ageing mind: a view from cognitive neuroscience.,” Nature reviews. Neuroscience (2004) 5:87-96; Mattson & Magnus, “Ageing and neuronal vulnerability.,” Nature reviews. Neuroscience (2006) 7:278
- heterochronic parabiosis studies have revealed an age-dependent bi-directionality in the influence of the systemic environment indicating pro-youthful factors in young blood elicit rejuvenation while pro-aging factors in old blood drive aging (Katsimpardi et al., “Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.,” Science (2014) 344:630-634; Villeda et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94; Ruckh et al., “Rejuvenation of regeneration in the aging central nervous system.,” Cell stem cell (2012) 10:96-103; Conboy et al., “Rejuvenation of aged progenitor cells by exposure to a young systemic environment.,” Nature (2005) 433:760-764; Brack et al., “Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis.,” Science (2007) 317:
- mitigating the effect of pro-aging factors may also provide an effective approach to rejuvenate aging phenotypes (Villeda et al., “Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.,” Nature medicine (2014) 20:659-663; Laviano, “Young blood.,” The New England journal of medicine (2014) 371:573-575; Bouchard & Villeda, “Aging and brain rejuvenation as systemic events.,” Journal of neurochemistry (2014)).
- B2M represents the light chain of the MHC I molecules that form an active part of the adaptive immune system (Zijlstra et al., “Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells.,” Nature (1990) 344:742-746).
- B2M and MHC I can act independent of their canonical immune function to regulate normal brain development, synaptic plasticity and even behavior (Lee et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db.
- B2M in its soluble form, B2M accumulates in the systemic blood circulation as a result of cell surface shedding.
- increased systemic levels of B2M have been implicated in cognitive impairments associated with chronic hemodialysis (Murray, “Cognitive impairment in the aging dialysis and chronic kidney disease populations: an occult burden.,” Advances in chronic kidney disease (2008) 15:123-132; Corlin et al., “Quantification of cleaved beta2-microglobulin in serum from patients undergoing chronic hemodialysis.,” Clinical chemistry (2005) 51:1177-1184).
- CSF cerebral spinal fluid
- FIG. 1A ,B We first characterized changes in systemic levels of B2M in mouse plasma during normal aging ( FIG. 1A ,B), and in the experimental aging model of heterochronic parabiosis ( FIG. 1C ,D).
- FIG. 1B We observed a three-fold increase in B2M levels in plasma derived from aged compared to young animals ( FIG. 1B ), and detected a corresponding increase in B2M levels in plasma derived from young heterochronic parabionts after exposure to aged blood compared to young isochronic parabionts ( FIG. 1D ).
- FIG. 1D To corroborate systemic changes observed for B2M in aging mice with systemic changes occurring in humans, we measured B2M in archived plasma and CSF samples from healthy individuals between 20 and 90 years of age (Table 1, above).
- mice showed no signs of illness or weight loss regardless of treatment ( FIG. 3A ).
- all mice showed similar swim speeds ( FIG. 3B ) and learning capacity for the task ( FIG. 1H ).
- animals receiving B2M exhibited impaired learning and memory deficits, committing significantly more errors in locating the target platform than animals receiving vehicle control ( FIG. 1H ).
- fear conditioning training all mice, regardless of treatment, exhibited no differences in baseline freezing time ( FIG. 3C ).
- mice receiving B2M demonstrated decreased freezing time during contextual ( FIG. 1I ), but not cued ( FIG. 3D ), memory testing compared to vehicle treated control animals. Together, these behavioral data demonstrate that systemic administration of exogenous B2M can impair learning and memory.
- Impairments in hippocampal-dependent learning and memory have been previously linked with decreased adult neurogenesis (Clelland et al., “A functional role for adult hippocampal neurogenesis in spatial pattern separation.,” Science (2009) 325:210-213; Kitamura et al., “Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory.,” Cell (2009) 139:814-827; Zhang et al., “A role for adult TLX-positive neural stem cells in learning and behaviour.,” Nature (2008) 451:1004-1007).
- mice showed similar swim speeds ( FIG. 6A ) and learning capacity ( FIG. 5D ) during the training phase of the RAWM.
- animals receiving B2M committed significantly more errors in locating the target platform than animals receiving vehicle control ( FIG. 5D ).
- fear conditioning training no mice exhibited differences in baseline freezing time ( FIG. 6B ).
- mice receiving B2M demonstrated decreased freezing time during contextual ( FIG. 5E ), but not cued ( FIG. 6C ), memory testing.
- FIG. 8A we sought to investigate whether decreasing surface MHC I expression could also mitigate in part the negative effects of aged blood on adult neurogenesis elicited by heterochronic parabiosis.
- FIGS. 8B ,C we observed a decrease in the number of Dcx-positive immature neurons ( FIGS. 8B ,C), Tbr2-positive progenitors ( FIGS.
- B2M ⁇ / ⁇ mice B2M knockout mice
- FIG. 10A we assessed hippocampal-dependent learning and memory in young and aged B2M ⁇ / ⁇ and WT controls using RAWM and contextual fear conditioning.
- FIG. 10A we assessed hippocampal-dependent learning and memory in young and aged B2M ⁇ / ⁇ and WT controls using RAWM and contextual fear conditioning.
- FIG. 10A we assessed hippocampal-dependent learning and memory in young and aged B2M ⁇ / ⁇ and WT controls during RAWM training or testing.
- FIG. 10C aged B2M ⁇ / ⁇ mice showed enhanced spatial learning capacity during the training phase of the RAWM paradigm, as well as enhanced learning and memory for platform location during the testing phase of the task compared to WT controls.
- Beta2-microglobulin Relative levels of beta2-microglobulin were determined in plasma samples of healthy male human donors of 18, 30, 45, 55, and 66 years of age by the SomaScan Proteomic Assay (Somalogic, Inc, Boulder, Colo.). For each age group, plasma from 40 individuals was analyzed as 8 pools of 5 individuals per pool. Statistical analysis was performed by two-sided Student's t-test of log-transformed values, and also by trend-analysis of untransformed data using the Jonckheere-Terpstra test.
- a method of treating an adult mammal for an aging-associated impairment comprising:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Pharmacology & Pharmacy (AREA)
- Heart & Thoracic Surgery (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Vascular Medicine (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hospice & Palliative Care (AREA)
- General Chemical & Material Sciences (AREA)
- Psychiatry (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cardiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 15/574,795, filed Nov. 16, 2017, which is a U.S. 371 national phase entry of International Patent Application No. PCT/US2016/032907, filed May 17, 2016, which claims priority to the filing date of the U.S. Provisional Patent Application Ser. No. 62/163,222 filed May 18, 2015, the disclosure of which applications are incorporated herein by reference in their entireties.
- This application is also a continuation-in-part application of U.S. patent application Ser. No. 14/280,939 filed on May 19, 2014; which application is a continuation application of U.S. patent application Ser. No. 13/575,437 filed on Oct. 9, 2012, now abandoned; which application is a United States national phase application of PCT Application Serial No. PCT/US2011/022916 filed on Jan. 28, 2011; which application, pursuant to 35 U.S.C. § 119 (e), claims priority to the filing date of the U.S. Provisional Patent Application Ser. No. 61/298,998 filed Jan. 28, 2010; the disclosures of which applications are incorporated herein by reference.
- This invention was made with Government support under contracts AG027505, OD012178, and TR000004 awarded by the National Institutes of Health. The Government has certain rights in the invention.
- Aging in an organism is accompanied by an accumulation of changes over time. In the nervous system, aging is accompanied by structural and neurophysiological changes that drive cognitive decline and susceptibility to degenerative disorders in healthy individuals. (Heeden & Gabrieli, “Insights into the ageing mind: a view from cognitive neuroscience,” Nat. Rev. Neurosci. (2004) 5: 87-96; Raz et al., “Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging,” Neuropsychology (1998) 12:95-114; Mattson & Magnus, “Ageing and neuronal vulnerability,” Nat. Rev. Neurosci. (2006) 7: 278-294: and Rapp & Heindel, “Memory systems in normal and pathological aging,” Curr. Opin. Neurol. (1994) 7:294-298). Included in these changes are synapse loss and the loss of neuronal function that results. Thus, although significant neuronal death is typically not observed during the natural aging process, neurons in the aging brain are vulnerable to sub-lethal age-related alterations in structure, synaptic integrity, and molecular processing at the synapse, all of which impair cognitive function.
- In addition to the normal synapse loss during natural aging, synapse loss is an early pathological event common to many neurodegenerative conditions, and is the best correlate to the neuronal and cognitive impairment associated with these conditions. Indeed, aging remains the single most dominant risk factor for dementia-related neurodegenerative diseases such as Alzheimer's disease (AD) (Bishop et al., “Neural mechanisms of ageing and cognitive decline,” Nature (2010) 464: 529-535 (2010); Heeden & Gabrieli, “Insights into the ageing mind: a view from cognitive neuroscience,” Nat. Rev. Neurosci. (2004) 5:87-96; Mattson & Magnus, “Ageing and neuronal vulnerability,” Nat. Rev. Neurosci. (2006) 7:278-294).
- As human lifespan increases, a greater fraction of the population suffers from aging-associated cognitive impairments, making it crucial to elucidate means by which to maintain cognitive integrity by protecting against, or even counteracting, the effects of aging (Hebert et al., “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Arch. Neurol. (2003) 60:1119-1122; Bishop et al., “Neural mechanisms of ageing and cognitive decline,” Nature (2010) 464:529-535).
- β-2 microglobulin (B2M) is a component of the class I major histocompatibility complex (MHC), a multi-protein complex found on the surface of nearly all nucleated mammalian cells. These complexes function by presenting foreign antigens or peptide fragments on the cell surface so that the immune system may recognize and destroy infected cells. The protein components of the class I MHC are encoded by several genes, each with multiple alleles, and the types of expressed class I MHC's vary among individuals. Because the MHC is polymorphic, it is an important factor for consideration during organ transplant as the host immune system may reject organs with foreign MHC's. In cancerous cells, MHC expression may be defective, allowing such cells to escape immune detection and destruction.
- Free extracellular B2M is also found in human physiological fluids such as the blood serum, urine, and cerebral spinal fluid. Due to its small size, the protein is normally filtered from the blood and then reabsorbed in some amount by the kidney. High serum concentrations of B2M often accompany the presence of several diseases such as non-Hodgkin lymphoma and meningitis (Hallgren et al., “Lactoferrin, lysozyme, and beta 2-microglobulin levels in cerebrospinal fluid: differential indices of CNS inflammation,” Inflammation (1982) 6:291-304; et al., “Prognostic significance of serum beta-2 microglobulin in patients with non-Hodgkin lymphoma,” Oncology (2014) 87:40-7). When present in body serum at high concentrations, the protein can form amyloid fibrils (Corland & Heegaard, “B (2)-microglobulin amyloidosis,” Sub-cellular Biochemistry (2012) 65:517-40). The buildup of B2M in body tissue and fluids as a complication of chronic kidney disease in individuals on dialysis has been extensively studied. In patients with reduced kidney function, buildup is associated with joint and bone weakness and pain. Urine B2M levels are measured to indicate kidney damage and filtration disorders (Acchiardo et al., “Beta 2-microglobulin levels in patients with renal insufficiency,” American Journal of Kidney Diseases (1989) 13:70-4; Astor et al., “Serum Beta-2-microglobulin at discharge predicts mortality and graft loss following kidney transplantation,” Kidney International (2013) 84:810-817).
- Because protein aggregates of B2M play a role in provoking osteoarthritis, there is concern that the protein may be toxic to neuronal cells sensitive to abnormal protein deposits (Giorgetti et al., “beta2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity.” Nephrology Dialysis Transplantation (2009) 24:1176-81). The protein has been implicated in neuronal development, normal hippocampus dependent memory and synapse formation and plasticity (Bilousova et al., “Major histocompatibility complex class I molecules modulate embryonic neuritogenesis and neuronal polarization,” Journal of Neuroimmunology (2012) 247:1-8; Harrison et al., “Human brain weight is correlated with expression of the ‘housekeeping genes’ beta-2-microglobulin and TATA-binding protein,” Neuropathology and Applied Neurobiology (2010) 36:498-504). Changes in proteins of the class I MHC such as
beta 2 microglobulin could disrupt synaptic plasticity and lead to cognitive deficits in an aging, damaged, or diseased brain (Nelson at al., “MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression,” Learning & Memory (2013) 20:505-17). A deficiency in B2M may also result in the loss of left-right asymmetries in the hippocampal region of the brain (Kawahara et al., “Neuronal major histocompatibility complex class I molecules are implicated in the generation of asymmetries in hippocampal circuitry,” The Journal of Physiology (2013) 591:4777-91). - In addition, B2M serves as a molecular marker that can be used to determine immune compromise or central nervous system immune activation (Svatonfova et al., “Beta2-microglobulin as a diagnostic marker in cerebrospinal fluid: a follow-up study,” Disease Markers (2014) 2014). Levels of the protein may signify the extent of the central nervous system inflammatory response. A review of B2M and its use as a disease marker states that elevated levels of B2M in the cerebral spinal fluid is reflective of multiple sclerosis, neuro-Behçet's disease, sarcoidosis, acquired immunodeficiency syndrome-dementia complex and meningeal metastasis of malignant tumors (Adachi, “Beta-2-microglobulin levels in the cerebrospinal fluid: their value as a disease marker. A review of the recent literature,” European Neurology (1991) 31:181-5). Other studies suggest that B2M could potentially serve as a clinical marker for cognitive impairment risk or a tool for disease prognosis for individuals experiencing a range of diseases including kidney failure, HIV infection, and Alzheimer's (Almeida, “Cognitive impairment and major depressive disorder in HIV infection and cerebrospinal fluid biomarkers,” Arquivos de Neuro-Psiquiatria (2013) 71:689-92; Annunziata at al., “Serum beta-2-microglobulin levels and cognitive function in chronic dialysis patients,” Clinica Chimica Acta (1991) 201:139-41; Doecke et al., “Blood-based protein biomarkers for diagnosis of Alzheimer disease,” Archives of Neurology (2012) 69:1318-25; Isshiki et al., “Cerebral blood flow in patients with peritoneal dialysis by an easy Z-score imaging system for brain perfusion single photon emission tomography,” Therapeutic Apheresis and Dialysis (2014) 18:291-6). Elevated serum levels hold particular prognostic significance for adult multiple myeloma, lymphocytic leukemia and lymphoma (Kantarjian at al., “Prognostic significance of elevated serum beta 2-microglobulin levels in adult acute lymphocytic leukemia,” The American Journal of Medicine (1992) 93:599-604; Wu et al., “Prognostic significance of serum beta-2 microglobulin in patients with non-Hodgkin lymphoma,” Oncology (2014) 87:40-7). More studies continue to explore the implications of abnormal serum and tissue B2M levels for cancer, cardiovascular disease, schizophrenia, and systemic disease activity (Chittiprol et al., “Longitudinal study of beta2-microglobulin abnormalities in schizophrenia,” International Immunopharmacology (2009) 9:1215-7). In some cases, B2M has been the target of disease therapies (Morabito et al., “Analysis and clinical relevance of human leukocyte antigen class I, heavy chain, and beta2-microglobulin down regulation in breast cancer,” Human Immunology (2009) 70:492-5; Yang et al., “Identification of beta2-microglobulin as a potential target for ovarian cancer,” Cancer Biology & Therapy (2009) 8:232-8).
- Methods of treating an adult mammal for an aging-associated impairment are provided. Aspects of the methods include reducing the β2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the mammal for the aging-associated impairment. A variety of aging-associated impairments may be treated by practice of the methods, which impairments include cognitive impairments.
-
FIGS. 1a-1k . B2M are a component of the aging systemic environment that impairs hippocampal-dependent cognitive function and adult neurogenesis.FIGS. 1a & 1 c, Schematic of unpaired young versus aged mice (FIG. 1a ), and young isochronic versus heterochronic parabionts (FIG. 1c ).FIGS. 1b & 1 c, Changes in plasma concentration of B2M with age at 3, 6, 12, 18 and 24 months (FIG. 1b ) and between young isochronic and young heterochronic parabionts five weeks after parabiosis (FIG. 1d ). Data from 5 mice per group.FIGS. 1e & 1 f, Changes in plasma (FIG. 1e ; r=0.51; p<0.0001; 95% confidence interval=0.19-0.028) and CSF (FIG. 1f ) B2M concentrations with age in healthy human subjects.FIGS. 1g & 1 k, Young adult (3 months) mice were injected intraorbitally with B2M or PBS (vehicle) control five times over 12 days.FIG. 1g , Schematic of illustrating the chronological order used for B2M treatment and cognitive testing.FIGS. 1h & 1 i, Hippocampal learning and memory was assessed by RAWM (FIG. 1h ) and contextual fear conditioning (FIG. 1i ).FIG. 1h , Number of entry arm errors prior to finding platform. i, Percent freezing time 24 h after training. Data from 9-10 mice per group.FIG. 1j , Representative field of Dcx-positive cells for each treatment group (scale bar 100 μm).FIG. 1k , Quantification of neurogenesis in the dentate gyrus (DG) after treatment. Data from 7-8 mice per group. All data represented as dot plots with Mean or bar graphs with Mean±SEM; *P<0.05; **P<0.01; **P<0.001 t-test (FIGS. 1d, 1f, 1i & 1 k), ANOVA, Tukey's post-hoc test (FIG. 1b ), Mann-Whitney U Test (e) and repeated measures ANOVA, Bonferroni post-hoc test (FIG. 1k ). -
FIGS. 2a-2e . Hippocampal dependent learning and memory.FIGS. 2a-2e , Learning and memory was examined during normal aging in young (3-month-old) versus old (18-month-old) animals using RAWM (FIGS. 2a & 2 b) and contextual fear conditioning (FIGS. 2c & 2 e) paradigms. n=10 per group.FIG. 2a , Old mice demonstrate impaired learning and memory for platform location during the testing phase of the RAWM task. Cognitive deficits were quantified as the number of entry arm errors made prior to finding the target platform.FIG. 2b , No differences in swim speeds of were detected between young and old animals.FIG. 2c , Young and old animals exhibited similar baseline freezing time during fear conditioning training.FIG. 2d , During contextual fear conditioning old mice demonstrate decreased freezing time during contextual memory testing.FIG. 2e , No differences in cued memory were detected 24 hours after training. Data represented as mean±s.e.m.; *P<0.05; *P<0.01; n.s., not significant; t-test (FIGS. 2a-2c & 2 e), repeated measures ANOVA, Bonferroni post-hoc test (FIG. 2d ). -
FIGS. 3a-3d . Weight, swim speeds and cued memory are not altered by systemic B2M administration.FIGS. 3a-3d . Young adult (3 months) mice were injected intraorbitally with B2M or PBS (vehicle) control five times over 10 days prior to behavioral testing.FIG. 3a , Average mouse weight of B2M and vehicle treated groups.FIG. 3b , Swim speeds of mice injected with B2M or vehicle during the testing phase of the RAWM.FIGS. 3c & 3 d, Conditioned fear was displayed as freezing behavior.FIG. 3c , Animals from all treatment groups exhibited similar baseline freezing time during training.FIG. 3d , No differences in cued memory were detected between groups when re-exposed to the conditioned stimulus (tone and light) in anovel context 24 hours after training. Data from 9 mice per group. All data represented as Mean+SEM; n.s. not significant; t-test. -
FIGS. 4a & 4 b. Systemic administration of B2M decreases neurogenesis in the DG of young animals.FIGS. 4a & 4 b, Young adult mice (3-4 months) were injected with B2M or PBS (vehicle) control through intraorbital injections five times over 12 days. Prior to euthanasia Bromodeoxyuridne (BrdU) was administered by intraperitoneal injections for three days. Quantification of MCM2-positive and BrdU-positive in the dentate gyrus (DG) after treatment. Data from 5 mice per group. All data represented as Mean+SEM; *P<0.05; **P<0.01; t-test. -
FIGS. 5a-5h . Local B2M expression increases in the hippocampus during aging and impairs hippocampal-dependent cognitive function and adult neurogenesis.FIGS. 5a & 5 b, Representative Western blot and quantification of hippocampal lysates probed with anti-B2M and anti-Actin antibodies from young (3 months) and old (18 months) unpaired animals (FIG. 5a ), or young isochronic and young heterochronic parabionts five weeks after parabiosis (FIG. 5b ).FIGS. 5c-5e , Young adult (3 months) wild type (WT) and transporter associated withantigen processing 1 knock out (Tap1−/−) mice were given unilateral stereotaxic injections of B2M or vehicle controlFIG. 5c , Representative field of Dcx-positive cells in adjacent sides of the DG within the same section are shown for WT and Tap1−/− treatment groups.FIGS. 5d & 5 e, Quantification of neurogenesis in the DG of WT (d) and Tap1−/−(FIG. 5e ) mice after stereotaxic B2M administration. Data from five mice per group. -
FIGS. 5f-5h , Young adult mice were given bilateral stereotaxic injections of B2M or vehicle six days prior to behavioral testing.FIG. 5f , Schematic illustrating chronological order used for local B2M administration and cognitive testing.FIGS. 5g & 5 h, Learning and memory was assessed by RAWM (FIG. 5h ) and contextual fear conditioning (FIG. 5g ) following stereotaxic injections. Data from 10 animals per group. All data represented as Mean±SEM; *P<0.05; **P<0.01; n.s. not significant; ANOVA, t-test (FIGS. 5a,5b,5d,5e & 5 h); repeated measures ANOVA, Bonferroni post-hoc test (FIG. 5g ). -
FIGS. 6a-6c . Swim speeds and cued memory are not altered by local B2M administration.FIGS. 6a-6c , Young adult mice were given bilateral stereotaxic injections of B2M or PBS (vehicle) control six days prior to behavioral testing.FIG. 6a , Swim speeds of mice injected with B2M or vehicle during the testing phase of the RAWM.FIG. 6b , Animals from all treatment groups exhibited similar baseline freezing time during fear conditioning training.FIG. 6c , No differences in cued memory were detected between groups when re-exposed to the conditioned stimulus (tone and light) in anovel context 24 hours after training. Data from 10 mice per group. All data represented as Mean+SEM; n.s. not significant; t-test. -
FIGS. 7a-7e . No differences in neurogenesis are observed in the DG of young unpaired or young isochronic WT and Tap1−/− animals.FIG. 7a , Quantification of Doublecortin (Dcx)-positive cells in the DG of young adult (3 months) wild type (WT) and Tap1−/− unpaired mice. Data from 5 mice per group.FIG. 7b , Schematic of young WT and Tap1−/− isochronic parabionts.FIGS. 7c-7e , Quantification of Dcx, T-box transcription factor Tbr2, and BrdU immunostaining of young WT and Tap1−/− isochronic parabionts five weeks after parabiosis. Data from 6-8 mice per group. All data represented as Mean+SEM; n.s. not significant; t-test (FIG. 7a ); ANOVA, Tukey's post-hoc test (FIGS. 7c-7e ). -
FIGS. 8a-8d . Reducing endogenous MHC I surface expression mitigates in part the negative effects of heterochronic parabiosis on adult neurogenesis in young animals.FIG. 8a , Schematic of young wild type (WT) and Tap1 knock out (Tap1−/−) isochronic parabionts and young WT and Tap1−/− heterochronic parabionts.FIGS. 8b & 8 c Representative fields (FIG. 8b ) and quantification (FIG. 8c ) of Doublecortin immunostaining of young isochronic and heterochronic parabionts five weeks after parabiosis (arrowheads point to individual cells, scale bar: 100 μm).FIG. 8d , Prior to euthanasia animals were injected with Bromodeoxyuridne (BrdU) for three days, and proliferating cells having incorporated BrdU were quantified in DG after parabiosis. Data from 8 young isochronic WT, 6 young isochronic Tap1−/−, 8 young heterochronic WT, and 8 young heterochronic Tap1−/− parabionts. All data represented as Mean±SEM; *P<0.05; ANOVA, Tukey's post-hoc test. -
FIGS. 9a & 9 b. Reducing endogenous MHC I surface expression mitigates in part the decrease in neuronal progenitor cell number in young mice after heterochronic parabiosis.FIG. 9a , Schematic of young wild type (WT) and Tap1 knock out (Tap1−/−) isochronic parabionts and young WT and Tap1−/− heterochronic parabionts.FIG. 9b , Quantification of the T-box transcription factor Tbr2 immunostaining of young isochronic and heterochronic parabionts five weeks after parabiosis Data from 8 young isochronic WT, 6 young isochronic Tap1−/−, 8 young heterochronic WT, and 8 young heterochronic Tap1−/− parabionts. All data represented as Mean±SEM; *P<0.05; ANOVA. Tukey's post-hoc test. -
FIGS. 10a-10j . Absence of endogenous B2M enhances hippocampal-dependent cognitive function and adult neurogenesis in old animals.FIGS. 10a-10d , Learning and memory was assessed in young (3 months) and old (15-16 months) wild type (WT) and B2M knock out (B2M−/−) mice by RAWM (FIGS. 10a, 10c ) and contextual fear conditioning (FIGS. 10b & 10 d). Data from 10 young and 8-12 old mice per genotype.FIGS. 10e-10j , Neurogenesis was analyzed by immunostaining for Dcx-positive cells in the DG of young and old WT and B2M−/− mice. Representative field and quantification of Dcx-positive cells are shown for young (FIGS. 10e & 10 f) and old (FIGS. 10e & 10 g) WT and B2M−/− animals (arrowheads point to individual immature neurons, scale bar: 100 m). Data from 8 young and 10 old mice per genotype.FIGS. 10h & 10 j, WT and B2M−/− mice were administered BrdU by intraperitoneal injections for six days and euthanized 28 days later.FIG. 10h , Representative confocal microscopy from the DG of brain sections immunostained for BrdU (red) in combination with NeuN (green).FIGS. 10i & 10 j, Quantification of the relative number of BrdU and NeuN-double positive cells out of the total BrdU-positive cells in the young (FIG. 10i ) and old (FIG. 10j ) DG of WT and B2M−/− animals. Data from 8 mice per group (3 sections per mouse). All data represented as Mean±SEM; *P<0.05; **P<0.01; n.s. not significant; t-test (FIGS. 10b, 10d, 10f, 10i, 10j ); repeated measures ANOVA, Bonferroni post-hoc test (FIG. 10a ,FIG. 10c ). -
FIGS. 11a-11f . Swim speeds and cued memory are not altered in old B2M−/− animals.FIGS. 11a-11f , Hippocampal learning and memory was assessed old adult (17 months) WT and during the testing phase of the RAWM. Animals exhibited similar baseline freezing time during fear conditioning training regardless of genotype. No differences in cued memory were detected between genotypes when mice were re-exposed to the conditioned stimulus (tone and light) in anovel context 24 hours after training. Data from 12 WT and 8 B2M−/− mice. All data represented as Mean+SEM; n.s. not significant; t-test. -
FIGS. 12a-12e . Absence of endogenous B2M increases proliferation but not astrocyte differentiation in an age-dependent manner in vivo.FIGS. 12a-12c , To assess proliferation young (3 months) and old (15-16 months) wild type (WT) and B2M knock out (B2M−/−) mice were administered BrdU by intraperitoneal injections for three days prior to euthanasia.FIGS. 12b & 12 c, Immunostaining of BrdU-positive cells was quantified in the DG of young (FIG. 12b ) and old (FIG. 12c ) animals. Data from 8 young and 10 old mice per genotype.FIGS. 12c-12e , For examine astrocyte differentiation WT and B2M−/− mice were administered BrdU by intraperitoneal injections for six days and euthanized 28 days later.FIG. 12c , Representative confocal microscopy from the DG of brain sections immunostained for BrdU (red) in combination with GFAP (blue).FIGS. 12d & 12 e, Quantification of the relative number of BrdU and GFAP-double positive cells out of the total BrdU-positive cells in the young (FIG. 12d ) and old (FIG. 12e ) DG of WT and B2M−/− animals. Data from 8 mice per group (3 sections per mouse). All data represented as Mean+SEM; **P<0.01; n.s. not significant; t-test. -
FIG. 13 . Relative levels of beta2-microglobulin were determined in plasma samples of healthy male human donors of 18, 30, 45, 55, and 66 years of age by the SomaScan Proteomic Assay (Somalogic, Inc, Boulder, Colo.). For each age group, plasma from 40 individuals was analyzed as 8 pools of 5 individuals per pool. Statistical analysis was performed by two-sided Student's t-test of log-transformed values, and also by trend-analysis of untransformed data using the Jonckheere-Terpstra test. Observed changes were found to be highly significant with the p-value of the t-test being 1.1×10−4 (66 vs 18 year old) and the p-value for the JT-test being 1.3×10−7 (all age groups). (RFU refers to “relative fluorescence units” by SomaScan Proteomic Assay.) - Methods of treating an adult mammal for an aging-associated impairment are provided. Aspects of the methods include reducing the β2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the mammal for the aging-associated impairment. A variety of aging-associated impairments may be treated by practice of the methods, which impairments include cognitive impairments.
- Before the present methods and compositions are described, it is to be understood that this invention is not limited to a particular method or composition described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, some potential and preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. It is understood that the present disclosure supersedes any disclosure of an incorporated publication to the extent there is a contradiction.
- As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
- It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and reference to “the peptide” includes reference to one or more peptides and equivalents thereof, e.g., polypeptides, known to those skilled in the art, and so forth.
- The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
- As summarized above, aspects of the invention include methods of treating an aging-associated impairment in an adult mammal. The aging-associated impairment may manifest in a number of different ways, e.g., as aging-associated cognitive impairment and/or physiological impairment, e.g., in the form of damage to central or peripheral organs of the body, such as but not limited to: cell injury, tissue damage, organ dysfunction, aging-associated lifespan shortening and carcinogenesis, where specific organs and tissues of interest include, but are not limited to skin, neuron, muscle, pancreas, brain, kidney, lung, stomach, intestine, spleen, heart, adipose tissue, testes, ovary, uterus, liver and bone; in the form of decreased neurogenesis, etc.
- In some embodiments, the aging-associated impairment is an aging-associated impairment in cognitive ability in an individual, i.e., an aging-associated cognitive impairment. By cognitive ability, or “cognition”, it is meant the mental processes that include attention and concentration, learning complex tasks and concepts, memory (acquiring, retaining, and retrieving new information in the short and/or long term), information processing (dealing with information gathered by the five senses), visuospatial function (visual perception, depth perception, using mental imagery, copying drawings, constructing objects or shapes), producing and understanding language, verbal fluency (word-finding), solving problems, making decisions, and executive functions (planning and prioritizing). By “cognitive decline”, it is meant a progressive decrease in one or more of these abilities, e.g., a decline in memory, language, thinking, judgment, etc. By “an impairment in cognitive ability” and “cognitive impairment”, it is meant a reduction in cognitive ability relative to a healthy individual, e.g., an age-matched healthy individual, or relative to the ability of the individual at an earlier point in time, e.g., 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, or 10 years or more previously. Aging-associated cognitive impairments include impairments in cognitive ability that are typically associated with aging, including, for example, cognitive impairment associated with the natural aging process, e.g., mild cognitive impairment (M.C.I.); and cognitive impairment associated with an aging-associated disorder, that is, a disorder that is seen with increasing frequency with increasing senescence, e.g., a neurodegenerative condition such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, vascular dementia, and the like.
- By “treatment” it is meant that at least an amelioration of one or more symptoms associated with an aging-associated impairment afflicting the adult mammal is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g., a symptom associated with the impairment being treated. As such, treatment also includes situations where a pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g., prevented from happening, or stopped, e.g., terminated, such that the adult mammal no longer suffers from the impairment, or at least the symptoms that characterize the impairment. In some instances, “treatment”, “treating” and the like refer to obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. “Treatment” may be any treatment of a disease in a mammal, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; or (c) relieving the disease, i.e., causing regression of the disease. Treatment may result in a variety of different physical manifestations, e.g., modulation in gene expression, increased neurogenesis, rejuvenation of tissue or organs, etc. Treatment of ongoing disease, where the treatment stabilizes or reduces the undesirable clinical symptoms of the patient, occurs in some embodiments. Such treatment may be performed prior to complete loss of function in the affected tissues. The subject therapy may be administered during the symptomatic stage of the disease, and in some cases after the symptomatic stage of the disease.
- In some instances where the aging-associated impairment is aging-associated cognitive decline, treatment by methods of the present disclosure slows, or reduces, the progression of aging-associated cognitive decline. In other words, cognitive abilities in the individual decline more slowly, if at all, following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods. In some instances, treatment by methods of the present disclosure stabilizes the cognitive abilities of an individual. For example, the progression of cognitive decline in an individual suffering from aging-associated cognitive decline is halted following treatment by the disclosed methods. As another example, cognitive decline in an individual, e.g., an individual 40 years old or older, that is projected to suffer from aging-associated cognitive decline, is prevented following treatment by the disclosed methods. In other words, no (further) cognitive impairment is observed. In some instances, treatment by methods of the present disclosure reduces, or reverses, cognitive impairment, e.g., as observed by improving cognitive abilities in an individual suffering from aging-associated cognitive decline. In other words, the cognitive abilities of the individual suffering from aging-associated cognitive decline following treatment by the disclosed methods are better than they were prior to treatment by the disclosed methods, i.e., they improve upon treatment. In some instances, treatment by methods of the present disclosure abrogates cognitive impairment. In other words, the cognitive abilities of the individual suffering from aging-associated cognitive decline are restored, e.g., to their level when the individual was about 40 years old or less, following treatment by the disclosed methods, e.g., as evidenced by improved cognitive abilities in an individual suffering from aging-associated cognitive decline.
- In some instances, treatment of an adult mammal in accordance with the methods results in a change in a central organ, e.g., a central nervous system organ, such as the brain, spinal cord, etc., where the change may manifest in a number of different ways, e.g., as described in greater detail below, including but not limited to molecular, structural and/or functional, e.g., in the form of enhanced neurogenesis.
- As summarized above, methods described herein are methods of treating an aging-associated impairment, e.g., as described above, in an adult mammal. By adult mammal is meant a mammal that has reached maturity, i.e., that is fully developed. As such, adult mammals are not juvenile. Mammalian species that may be treated with the present methods include canines and felines; equines; bovines; ovines; etc., and primates, including humans. The subject methods, compositions, and reagents may also be applied to animal models, including small mammals, e.g., murine, lagomorpha, etc., for example, in experimental investigations. The discussion below will focus on the application of the subject methods, compositions, reagents, devices and kits to humans, but it will be understood by the ordinarily skilled artisan that such descriptions can be readily modified to other mammals of interest based on the knowledge in the art.
- The age of the adult mammal may vary, depending on the type of mammal that is being treated. Where the adult mammal is a human, the age of the human is generally 18 years or older. In some instances, the adult mammal is an individual suffering from or at risk of suffering from an aging-associated impairment, such as an aging-associated cognitive impairment, where the adult mammal may be one that has been determined, e.g., in the form of receiving a diagnosis, to be suffering from or at risk of suffering from an aging-associated impairment, such as an aging-associated cognitive impairment. The phrase “an individual suffering from or at risk of suffering from an aging-associated cognitive impairment” refers to an individual that is about 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, and sometimes no older than 100 years old, such as 90 years old, i.e., between the ages of about 50 and 100, e.g., 50, 55, 60, 65, 70, 75, 80, 85 or about 90 years old. The individual may suffer from an aging associated condition, e.g., cognitive impairment, associated with the natural aging process, e.g., M.C.I. Alternatively, the individual may be 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and sometimes no older than 100 years old, i.e., between the ages of about 50 and 100, e.g., 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or about 100 years old, and has not yet begun to show symptoms of an aging associated condition, e.g., cognitive impairment. In yet other embodiments, the individual may be of any age where the individual is suffering from a cognitive impairment due to an aging-associated disease, e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, myotonic dystrophy, dementia, and the like. In some instances, the individual is an individual of any age that has been diagnosed with an aging-associated disease that is typically accompanied by cognitive impairment, e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, progressive supranuclear palsy, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, multiple sclerosis, multi-system atrophy, glaucoma, ataxias, myotonic dystrophy, dementia, and the like, where the individual has not yet begun to show symptoms of cognitive impairment.
- As summarized above, aspects of the methods include reducing the β2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the aging impairment in the mammal, e.g., as described above. By reducing the B2M level is meant lowering the amount of B2M in the mammal, such as the amount of extracellular B2M in the mammal. While the magnitude of the reduction may vary, in some instances the magnitude is 2-fold or greater, such as 5-fold or greater, including 10-fold or greater, e.g., 15-fold or greater, 20-fold or greater, 25-fold or greater (as compared to a suitable control), where in some instances the magnitude is such that the amount of detectable free B2M in the circulatory system of the individual is 50% or less, such as 25% or less, including 10% or less, e.g., 1% or less, relative to the amount that was detectable prior to intervention according to the invention, and in some instances the amount is undetectable following intervention.
- The B2M level may be reduced using any convenient protocol. In some instances, the B2M level is reduced by removing systemic B2M from the adult mammal, e.g., by removing B2M from the circulatory system of the adult mammal. In such instances, any convenient protocol for removing circulatory B2M may be employed. For example, blood may be obtained from the adult mammal and extra-corporeally processed to remove B2M from the blood to produce B2M depleted blood, which resultant B2M depleted blood may then be returned to the adult mammal. Such protocols may employ a variety of different techniques in order to remove B2M from the obtained blood. For example, the obtained blood may be contacted with a filtering component, e.g., a membrane, etc., which allows passage of B2M but inhibits passage of other blood components, e.g., cells, etc. In some instances, the obtained blood may be contacted with a B2M absorptive component, e.g., porous bead or particulate composition, which absorbs B2M from the blood. In yet other instances, the obtained blood may be contacted with a B2M binding member stably associated with a solid support, such that B2M binds to the binding member and is thereby immobilized on the solid support, thereby providing for separation of B2M from other blood constituents. The protocol employed may or may not be configured to selectively remove B2M from the obtained blood, as desired. A number of different technologies are known for removing B2M from blood, and may be employed in embodiments of the invention, where such technologies include those described in U.S. Pat. Nos. 4,872,983; 5,240,614; 6,416,487; 6,419,830; 6,423,024; 6,855,121; 7,066,900; 8,211,310; 8,349,550; as well as published United States Patent Application Publication No. 20020143283 and published PCT Application Publication Nos.: WO/1999/006098 and WO/2003/020403; the disclosures of which applications are herein incorporated by reference.
- In some embodiments, the B2M level is reduced by administering to the mammal an effective amount of a B2M level reducing agent. As such, in practicing methods according to these embodiments of the invention, an effective amount of the active agent, e.g., B2M modulatory agent, is provided to the adult mammal.
- Depending on the particular embodiments being practiced, a variety of different types of active agents may be employed. In some instances, the agent modulates expression of the RNA and/or protein from the gene, such that it changes the expression of the RNA or protein from the target gene in some manner. In these instances, the agent may change expression of the RNA or protein in a number of different ways. In certain embodiments, the agent is one that reduces, including inhibits, expression of a B2M protein. Inhibition of B2M protein expression may be accomplished using any convenient means, including use of an agent that inhibits B2M protein expression, such as, but not limited to: RNAi agents, antisense agents, agents that interfere with a transcription factor binding to a promoter sequence of the B2M gene, or inactivation of the B2M gene, e.g., through recombinant techniques, etc.
- For example, the transcription level of a B2M protein can be regulated by gene silencing using RNAi agents, e.g., double-strand RNA (see e.g., Sharp, Genes and Development (1999) 13: 139-141). RNAi, such as double-stranded RNA interference (dsRNAi) or small interfering RNA (siRNA), has been extensively documented in the nematode C. elegans (Fire, et al, Nature (1998) 391:806-811) and routinely used to “knock down” genes in various systems. RNAi agents may be dsRNA or a transcriptional template of the interfering ribonucleic acid which can be used to produce dsRNA in a cell. In these embodiments, the transcriptional template may be a DNA that encodes the interfering ribonucleic acid. Methods and procedures associated with RNAi are also described in published PCT Application Publication Nos. WO 03/010180 and WO 01/68836, the disclosures of which applications are incorporated herein by reference. dsRNA can be prepared according to any of a number of methods that are known in the art, including in vitro and in vivo methods, as well as by synthetic chemistry approaches. Examples of such methods include, but are not limited to, the methods described by Sadher et al., Biochem. Int. (1987) 14:1015; Bhattacharyya, Nature (1990) 343:484; and U.S. Pat. No. 5,795,715, the disclosures of which are incorporated herein by reference. Single-stranded RNA can also be produced using a combination of enzymatic and organic synthesis or by total organic synthesis. The use of synthetic chemical methods enable one to introduce desired modified nucleotides or nucleotide analogs into the dsRNA. dsRNA can also be prepared in vivo according to a number of established methods (see, e.g., Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed.; Transcription and Translation (B. D. Hames, and S. J. Higgins, Eds., 1984); DNA Cloning, volumes I and II (D. N. Glover, Ed., 1985); and Oligonucleotide Synthesis (M. J. Gait, Ed., 1984, each of which is incorporated herein by reference). A number of options can be utilized to deliver the dsRNA into a cell or population of cells such as in a cell culture, tissue, organ or embryo. For instance, RNA can be directly introduced intracellularly. Various physical methods are generally utilized in such instances, such as administration by microinjection (see, e.g., Zernicka-Goetz, et al. Development (1997)124:1133-1137; and Wianny, et al., Chromosoma (1998) 107: 430-439). Other options for cellular delivery include permeabilizing the cell membrane and electroporation in the presence of the dsRNA, liposome-mediated transfection, or transfection using chemicals such as calcium phosphate. A number of established gene therapy techniques can also be utilized to introduce the dsRNA into a cell. By introducing a viral construct within a viral particle, for instance, one can achieve efficient introduction of an expression construct into the cell and transcription of the RNA encoded by the construct. Specific examples of RNAi agents that may be employed to reduce B2M expression include, but are not limited to: dsRNA and short interfering RNA (siRNA) corresponding to B2M with the following sense and antisense sequences (sense) 5′-GAUUCAGGUUUACUCACGUdTdT-3′ (SEQ ID NO:01) and (antisense) 5′-ACGUGAGUAAACCUGAAUCdTdT-3′ (SEQ ID NO:02)(as described in Matin, et al., “Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells,” Stem Cells (2004) 22: 659-68) and WO/2004/085654; shRNA (GCCACTCCCACCCTTTCTCAT)(SEQ ID NO:03) (as disclosed in Goyos, et al., “Involvement of nonclassical MHC class Ib molecules in heat shock protein-mediated anti-tumor responses,” (2007) 37: 1494-501); as well as the RNAi agents disclosed in Figueiredo, et al., “Generation of HLA-deficient platelets from hematopoietic progenitor cells,” Transfusion (2010) 50: 1690-701. Bhatt, et al., “Knockdown of beta2-microglobulin perturbs the subcellular distribution of HFE and hepcidin,” Biochemical and Biophysical Research Communications (2009) 378: 727-31, Elders, et al., “Targeted knockdown of canine KIT (stem cell factor receptor) using RNA interference,” Veterinary Immunology and Immunopathology (2011) 141:151-6, Heikkila, et al., “Internalization of coxsackievirus A9 is mediated by beta 2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin,” (2010) 84: 3666-81, Figueiredo, et al., “Class-, gene-, and group-specific HLA silencing by lentiviral shRNA delivery (2006) 84: 425-37, WO/2004/020586, US20040127445 and US20130096370.
- In some instances, antisense molecules can be used to down-regulate expression of a B2M gene in the cell. The anti-sense reagent may be antisense oligodeoxynucleotides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted protein, and inhibits expression of the targeted protein. Antisense molecules inhibit gene expression through various mechanisms, e.g., by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may include multiple different sequences.
- Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. Short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al., Nature Biotechnol. (1996)14:840-844).
- A specific region or regions of the endogenous sense strand mRNA sequence are chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an in vitro or animal model. A combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.
- Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993), supra.) Oligonucleotides may be chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases. Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3′-O-5′-S-phosphorothioate, 3′-S-5′-O-phosphorothioate, 3′-CH.sub.2-5′-O-phosphonate and 3′-NH-5′-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and affinity. The α-anomer of deoxyribose may be used, where the base is inverted with respect to the natural β-anomer. The 2′-OH of the ribose sugar may be altered to form 2′-O-methyl or 2′-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2′-deoxycytidine and 5-bromo-2′-deoxycytidine for deoxycytidine. 5-propynyl-2′-deoxyuridine and 5-propynyl-2′-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively. Specific examples of antisense agents that may be employed to reduce B2M expression include, but are not limited to:
-
Code Oligonucleotide MB-00027 βA*βG*dT*dT*dG*dC*dC*dA*dG*dC*dC*dC*dT*βZ*βZ MB-00540 Eru*SS*βA*βG*dT*dT*dG*dC*dC*dA*dG*dC*dC*dC*dT*βZ*βZ MB-00541 Myr*SS*βA*βG*dT*dT*dG*dC*dC*dA*dG*dC*dC*dC*dT*βZ*βZ MB-00542 Dier*SS*βA*βG*dT*dT*dG*dC*dC*dA*dG*dC*dC*dC*dT*βZ*βZ MB-00543 Ermy*SS*βA*βG*dT*dT*dG*dC*dC*dA*dG*dC*dC*dC*dT*βZ*βZ - as described in WO/2004/004575; as well as those antisense agents described in: Lichtenstein, et al., “Effects of beta-2 microglobulin anti-sense oligonucleotides on sensitivity of HER2/neu oncogene-expressing and nonexpressing target cells to lymphocyte-mediated lysis,” Cell Immunology (1992) 141: 219-32, Ogretmen, et al., “Molecular mechanisms of loss of beta 2-microglobulin expression in drug-resistant breast cancer sublines and its involvement in drug resistance,” Biochemistry (1998) 37: 11679-91, WO/2004/020586; WO/2006/130949; U.S. Pat. Nos. 7,553,484; and 8,715,654.
- As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes may be synthesized in vitro and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application WO 9523225, and Beigelman et al. Nucl. Acids Res. (1995) 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin at al. Appl. Biochem. Biotechnol. (1995) 54:43-56.
- In another embodiment, the B2M gene is inactivated so that it no longer expresses a functional protein. By inactivated is meant that the gene, e.g., coding sequence and/or regulatory elements thereof, is genetically modified so that it no longer expresses a functional B2M protein, e.g., at least with respect to B2M aging impairment activity. The alteration or mutation may take a number of different forms, e.g., through deletion of one or more nucleotide residues, through exchange of one or more nucleotide residues, and the like. One means of making such alterations in the coding sequence is by homologous recombination. Methods for generating targeted gene modifications through homologous recombination are known in the art, including those described in: U.S. Pat. Nos. 6,074,853; 5,998,209; 5,998,144; 5,948,653; 5,925,544; 5,830,698; 5,780,296; 5,776,744; 5,721,367; 5,614.396; 5,612.205; the disclosures of which are herein incorporated by reference.
- Also of interest in certain embodiments are dominant negative mutants of B2M proteins, where expression of such mutants in the cell result in a modulation, e.g., decrease, in B2M mediated aging impairment. Dominant negative mutants of B2M are mutant proteins that exhibit dominant negative B2M activity. As used herein, the term “dominant-negative B2M activity” or “dominant negative activity” refers to the inhibition, negation, or diminution of certain particular activities of B2M, and specifically to B2M mediated aging impairment. Dominant negative mutations are readily generated for corresponding proteins. These may act by several different mechanisms, including mutations in a substrate-binding domain; mutations in a catalytic domain; mutations in a protein binding domain (e.g., multimer forming, effector, or activating protein binding domains); mutations in cellular localization domain, etc. A mutant polypeptide may interact with wild-type polypeptides (made from the other allele) and form a non-functional multimer. In certain embodiments, the mutant polypeptide will be overproduced. Point mutations are made that have such an effect. In addition, fusion of different polypeptides of various lengths to the terminus of a protein, or deletion of specific domains can yield dominant negative mutants. General strategies are available for making dominant negative mutants (see for example, Herskowitz. Nature (1987) 329:219, and the references cited above). Such techniques are used to create loss of function mutations, which are useful for determining protein function. Methods that are well known to those skilled in the art can be used to construct expression vectors containing coding sequences and appropriate transcriptional and translational control signals for increased expression of an exogenous gene introduced into a cell. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Alternatively, RNA capable of encoding gene product sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in “Oligonucleotide Synthesis”, 1984, Gait, M. J. ed., IRL Press, Oxford.
- In yet other embodiments, the agent is an agent that modulates, e.g., inhibits, B2M activity by binding to B2M and/or inhibiting binding of B2M to a second protein, e.g., a protein member of MHC1. For example, small molecules that bind to the B2M and inhibit its activity are of interest. Naturally occurring or synthetic small molecule compounds of interest include numerous chemical classes, such as organic molecules, e.g., small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents may include cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Such molecules may be identified, among other ways, by employing the screening protocols described below. Specific examples of small molecule agents agents that may be employed to reduce B2M expression include, but are not limited to: Riamycin SV: (7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-26-{(E)-[(4-methylpiperazin-1-yl)imino]methyl}-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.14,7.05,28]triaconta-1(28),2,4,9,19,21,25(29),26-octaen-13-yl acetate (as disclosed in Woods, et al., “Ligand binding to distinct states diverts aggregation of an amyloid-forming protein” Nature Chemical Biology (2011) 7: 730-9); meclocycline, doxycycline, 4-epi-oxytetracylcine, rolitetracycline, anhydrochlortetracycline, methacycline and oxytetracycline (as described in Giorgetti, et al., “Effect of tetracyclines on the dynamics of formation and destructuration of beta2-microglobulin amyloid fibrils,” The Journal of Biological Chemistry (2011) 286: 2121-31); peptides D-TLKIVW, D-TWKLVL, D-YVIIER and D-DYYFEF (as described in U.S. Pat. No. 8,754,034); as well as the agents described in: Morozov, et al., “Survey of small molecule and ion binding to beta 2-microglobulin-possible relation to BEN,” (1991) 34: S85-8, Regazzoni, et al., “Screening of fibrillogenesis inhibitors of B2-microglobulin: integrated strategies by mass spectrometry capillary electrophoresis and in silico simulations,” Analytica Chimica Acta (2011) 685: 153-61, Quaglia, et al., “Search of ligands for the amyloidogenic protein beta2-microglobulin by capillary electrophoresis and other techniques,” Electrophoresis (2005) 26: 4055-63, Ozawa, et al., “Inhibition of beta2-microglobulin amyloid fibril formation by alpha2-macroglobulin,” The Journal of Biological Chemistry (2011) 286: 9668-9676, Pullara and Emanuele, “Early stages of beta2-microglobulin aggregation and the inhibiting action of alphaB-crystallin,” (2008) 73: 1037-46, Wanchu, et al., “Suppression of
beta 2 microglobulin by pentoxiphylline therapy in asymptomatic HIV infected individuals,” (2001) 113: 75-7. Brancolini, et al., “Can small hydrophobic gold nanoparticles inhibit B2-microglobulin fibrillation?,” Nanoscale (2014) 6: 7903-11, US20040127445 and US20130331327. - In certain embodiments, the administered active agent is a B2M specific binding member. In general, useful B2M specific binding members exhibit an affinity (Kd) for a target B2M, such as human B2M, that is sufficient to provide for the desired reduction in aging associated impairment B2M activity. As used herein, the term “affinity” refers to the equilibrium constant for the reversible binding of two agents; “affinity” can be expressed as a dissociation constant (Kd). Affinity can be at least 1-fold greater, at least 2-fold greater, at least 3-fold greater, at least 4-fold greater, at least 5-fold greater, at least 6-fold greater, at least 7-fold greater, at least 8-fold greater, at least 9-fold greater, at least 10-fold greater, at least 20-fold greater, at least 30-fold greater, at least 40-fold greater, at least 50-fold greater, at least 60-fold greater, at least 70-fold greater, at least 80-fold greater, at least 90-fold greater, at least 100-fold greater, or at least 1000-fold greater, or more, than the affinity of an antibody for unrelated amino acid sequences. Affinity of a specific binding member to a target protein can be, for example, from about 100 nanomolar (nM) to about 0.1 nM, from about 100 nM to about 1 picomolar (pM), or from about 100 nM to about 1 femtomolar (fM) or more. The term “binding” refers to a direct association between two molecules, due to, for example, covalent, electrostatic, hydrophobic, and ionic and/or hydrogen-bond interactions, including interactions such as salt bridges and water bridges. In some embodiments, the antibodies bind human B2M with nanomolar affinity or picomolar affinity. In some embodiments, the antibodies bind human B2M with a Kd of less than about 100 nM, 50 nM, 20 nM, 20 nM, or 1 nM.
- Examples of B2M specific binding members include B2M antibodies and binding fragments thereof. Non-limiting examples of such antibodies include antibodies directed against any epitope of B2M. Also encompassed are bispecific antibodies, i.e., antibodies in which each of the two binding domains recognizes a different binding epitope. The amino acid sequence of human B2M is disclosed in Cunningham, et al., “The complete amino acid sequence of beta-2-microglobulin,” Biochemistry (1973) 12: 4811-4821.
- Antibody specific binding members that may be employed include full antibodies or immunoglobulins of any isotype, as well as fragments of antibodies which retain specific binding to antigen, including, but not limited to, Fab, Fv, scFv, and Fd fragments, chimeric antibodies, humanized antibodies, single-chain antibodies, and fusion proteins comprising an antigen-binding portion of an antibody and a non-antibody protein. The antibodies may be detectably labeled, e.g., with a radioisotope, an enzyme which generates a detectable product, a fluorescent protein, and the like. The antibodies may be further conjugated to other moieties, such as members of specific binding pairs, e.g., biotin (member of biotin-avidin specific binding pair), and the like. Also encompassed by the term are Fab′, Fv, F(ab′)2, and or other antibody fragments that retain specific binding to antigen, and monoclonal antibodies. An antibody may be monovalent or bivalent.
- “Antibody fragments” comprise a portion of an intact antibody, for example, the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8(10): 1057-1062 (1995)); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen combining sites and is still capable of cross-linking antigen.
- “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRS of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
- The “Fab” fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab′ fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
- The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.
- “Single-chain Fv” or “sFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. In some embodiments, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains, which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).
- Antibodies that may be used in connection with the present disclosure thus can encompass monoclonal antibodies, polyclonal antibodies, bispecific antibodies, Fab antibody fragments, F(ab)2 antibody fragments, Fv antibody fragments (e.g., VH or VL), single chain Fv antibody fragments and dsFv antibody fragments. Furthermore, the antibody molecules may be fully human antibodies, humanized antibodies, or chimeric antibodies. In some embodiments, the antibody molecules are monoclonal, fully human antibodies.
- The antibodies that may be used in connection with the present disclosure can include any antibody variable region, mature or unprocessed, linked to any immunoglobulin constant region. If a light chain variable region is linked to a constant region, it can be a kappa chain constant region. If a heavy chain variable region is linked to a constant region, it can be a
human gamma 1,gamma 2,gamma 3 orgamma 4 constant region, more preferably,gamma 1,gamma 2 orgamma 4 and even more preferablygamma 1 orgamma 4. - In some embodiments, fully human monoclonal antibodies directed against B2M are generated using transgenic mice carrying parts of the human immune system rather than the mouse system.
- Minor variations in the amino acid sequences of antibodies or immunoglobulin molecules are encompassed by the present invention, providing that the variations in the amino acid sequence maintain at least 75%, e.g., at least 80%, 90%, 95%, or 99% of the sequence. In particular, conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Whether an amino acid change results in a functional peptide can readily be determined by assaying the specific activity of the polypeptide derivative. Fragments (or analogs) of antibodies or immunoglobulin molecules, can be readily prepared by those of ordinary skill in the art. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. Sequence motifs and structural conformations may be used to define structural and functional domains in accordance with the invention.
- Specific examples of antibody agents that may be employed to reduce B2M expression include, but are not limited to: Anti-B2m B1-1G6 (immunoglobulin G2a [IgG2]), B2-62-2 (IgG2a), and C21-48A (IgG2b) from Immunotech S.A. (Marseille, France); Anti-B2m MAb HC11-151-1 (IgG1) (as disclosed in Corbeau, et al., “An early postinfection signal mediated by monocional anti-beta 2 microglobulin antibody is responsible for delayed production of human immunodeficiency virus type 1 in peripheral blood mononuclear cells,” Journal of Virology (1990) 64: 1459-64); clone B2, mouse IgG1 (Sero-tec Ltd., Oxford, UK); mouse mAbs against human B2M as disclosed in Yang, et al., “Targeting beta(2)-microglobulin for induction of tumor apoptosis in human hematological malignancies,” (2006) 10: 295-307; 1B749 (IgG2a) and HB28 (IgG2b) (as disclosed in Pokrass, et al., “Activation of complement by monoclonal antibodies that target cell-associated B2-microglobulin: implications for cancer immunotherapy,” (2013) 56: 549-60); anti-B2-microglobulin (BBM.1 antibody) (as disclosed in Brodsky, et al., “Characterization of a monoclonal anti-beta 2-microglobulin antibody and its use in the genetic and biochemical analysis of major histocompatibility antigens,” European Journal of Immunology (1979) 9: 536-45; BBM-1 (as disclosed in Korkolopoulou, “Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer,” British Journal of Cancer (1996) 73: 148-53; B1.1G6, C23.24.2, B2.62.2, and C21.48A1 antibodies (as disclosed in Liabeuf, et al., “An antigenic determinant of human beta 2-microglobulin masked by the association with HLA heavy chains at the cell surface: analysis using monoclonal antibodies,” Journal of Immunology (1981) 127: 1542-8); as well as those antibody agents described in: Zhang, et al., “Anti-B2M monoclonal antibodies kill myeloma cells via cell- and complement-mediated cytotoxicity,” International Journal of Cancer (2014) 135: 1132-41, Yang, at al., “Anti beta2-microglobulin monoclonal antibodies induce apoptosis in myeloma cells by recruiting MHC class I to and excluding growth and survival cytokine receptors from lipid rafts,” Blood (2007) 110: 3028-35, Josson, et al., “Inhibition of B2-microglobulin/hemochromatosis enhances radiation sensitivity by induction of iron overload in prostate cancer cells,” (2013) 8: e68366, Par and Falus, “Serum beta 2-microglobulin (beta 2m) and anti-beta 2m antibody in chronic hepatitis,” Acta Medica Hungarica (1986) 43:343-9, Huang, et al., “Androgen receptor survival signaling is blocked by anti-beta2-microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells,” The Journal of Biological Chemistry (2010) 285: 7947-56, Tam and Messner, “Differential inhibition of mitogenic responsiveness by monoclonal antibodies to beta 2-microglobulin,” (1991) 133: 219-33, Domanska, et al., “Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant,” Proc Natl Acad Sci USA. (2011) 108(4):1314-9, Falus, et al., “Prevalence of anti-beta-2 microglobulin autoantibodies in sera of rheumatoid arthritis patients with extra-articular manifestations,” Annals of the Rheumatic Diseases, (1981) 40: 409-413, Shabunina, et al., “Immunosorbent for Removal of B2-microglobulin from Human Blood Plasma,” Bulletin of Experimental Biology and Medicine (2001) 132: 984-986), WO/2010/017443, U.S. Pat. No. 7,341,721, WO/1996/002278, WO/2003/079023, and WO/1990/013657.
- In those embodiments where an active agent is administered to the adult mammal, the active agent(s) may be administered to the adult mammal using any convenient administration protocol capable of resulting in the desired activity. Thus, the agent can be incorporated into a variety of formulations, e.g., pharmaceutically acceptable vehicles, for therapeutic administration. More particularly, the agents of the present invention can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments (e.g., skin creams), solutions, suppositories, injections, inhalants and aerosols. As such, administration of the agents can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.
- In pharmaceutical dosage forms, the agents may be administered in the form of their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds. The following methods and excipients are merely exemplary and are in no way limiting.
- For oral preparations, the agents can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- The agents can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- The agents can be utilized in aerosol formulation to be administered via inhalation. The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.
- Furthermore, the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors. Similarly, unit dosage forms for injection or intravenous administration may comprise the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- The term “unit dosage form,” as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- Where the agent is a polypeptide, polynucleotide, analog or mimetic thereof, it may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as described by Furth et al., Anal Biochem. (1992) 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or “gene gun” as described in the literature (see, for example, Tang et al., Nature (1992) 356:152-154), where gold microprojectiles are coated with the DNA, then bombarded into skin cells. For nucleic acid therapeutic agents, a number of different delivery vehicles find use, including viral and non-viral vector systems, as are known in the art.
- Those of skill in the art will readily appreciate that dose levels can vary as a function of the specific compound, the nature of the delivery vehicle, and the like. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means.
- In those embodiments where an effective amount of an active agent is administered to the adult mammal, the amount or dosage is effective when administered for a suitable period of time, such as one week or longer, including two weeks or longer, such as 3 weeks or longer, 4 weeks or longer, 8 weeks or longer, etc., so as to evidence a reduction in the impairment, e.g., cognition decline and/or cognitive improvement in the adult mammal. For example, an effective dose is the dose that, when administered for a suitable period of time, such as at least about one week, and maybe about two weeks, or more, up to a period of about 3 weeks, 4 weeks, 8 weeks, or longer, will slow e.g., by about 20% or more, e.g., by 30% or more, by 40% or more, or by 50% or more, in some instances by 60% or more, by 70% or more, by 80% or more, or by 90% or more, e.g., will halt, cognitive decline in a patient suffering from natural aging or an aging-associated disorder. In some instances, an effective amount or dose of active agent will not only slow or halt the progression of the disease condition but will also induce the reversal of the condition, i.e., will cause an improvement in cognitive ability. For example, in some instances, an effective amount is the amount that when administered for a suitable period of time, usually at least about one week, and maybe about two weeks, or more, up to a period of about 3 weeks, 4 weeks, 8 weeks, or longer will improve the cognitive abilities of an individual suffering from an aging-associated cognitive impairment by, for example 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, in some instances 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold or more relative to cognition prior to administration of the blood product.
- Where desired, effectiveness of treatment may be assessed using any convenient protocol. Cognition tests and IQ test for measuring cognitive ability, e.g., attention and concentration, the ability to learn complex tasks and concepts, memory, information processing, visuospatial function, the ability to produce and understanding language, the ability to solve problems and make decisions, and the ability to perform executive functions, are well known in the art, any of which may be used to measure the cognitive ability of the individual before and/or during and after treatment with the subject blood product, e.g., to confirm that an effective amount has been administered. These include, for example, the General Practitioner Assessment of Cognition (GPCOG) test, the Memory Impairment Screen, the Mini Mental State Examination (MMSE), the California Verbal Learning Test. Second Edition, Short Form, for memory, the Delis-Kaplan Executive Functioning System test, the Alzheimer's Disease Assessment Scale (ADAS-Cog), the Psychogeriatric Assessment Scale (PAS) and the like. Progression of functional brain improvements may be detected by brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET) and the like. A wide range of additional functional assessments may be applied to monitor activities of daily living, executive functions, mobility, etc. In some embodiments, the method comprises the step of measuring cognitive ability, and detecting a decreased rate of cognitive decline, a stabilization of cognitive ability, and/or an increase in cognitive ability after administration of the blood product as compared to the cognitive ability of the individual before the blood product was administered. Such measurements may be made a week or more after administration of the blood product, e.g., 1 week, 2 weeks, 3 weeks, or more, for instance, 4 weeks, 6 weeks, or 8 weeks or more, e.g., 3 months, 4 months, 5 months, or 6 months or more.
- Biochemically, by an “effective amount” or “effective dose” of active agent is meant an amount of active agent that will inhibit, antagonize, decrease, reduce, or suppress by about 20% or more, e.g., by 30% or more, by 40% or more, or by 50% or more, in some instances by 60% or more, by 70% or more, by 80% or more, or by 90% or more, in some cases by about 100%, i.e., to negligible amounts, and in some instances reverse, the reduction in synaptic plasticity and loss of synapses that occurs during the natural aging process or during the progression of an aging-associated disorder. In other words, cells present in adult mammals treated in accordance with methods of the invention will become more responsive to cues, e.g., activity cues, which promote the formation and maintenance of synapses.
- Performance of methods of the invention, e.g., as described above, may manifest as improvements in observed synaptic plasticity, both in vitro and in vivo as an induction of long term potentiation. For example, the induction of LTP in neural circuits may be observed in awake individuals, e.g., by performing non-invasive stimulation techniques on awake individuals to induce LTP-like long-lasting changes in localized neural activity (Cooke S F, Bliss T V (2006) Plasticity in the human central nervous system. Brain. 129(Pt 7):1659-73); mapping plasticity and increased neural circuit activity in individuals, e.g., by using positron emission tomography, functional magnetic resonance imaging, and/or transcranial magnetic stimulation (Cramer and Bastings, “Mapping clinically relevant plasticity after stroke,” Neuropharmacology (2000)39:842-51); and by detecting neural plasticity following learning, i.e., improvements in memory, e.g., by assaying retrieval-related brain activity (Buchmann et al., “Prion protein M129V polymorphism affects retrieval-related brain activity,” Neuropsychologia. (2008) 46:2389-402) or, e.g., by imaging brain tissue by functional magnetic resonance imaging (fMRI) following repetition priming with familiar and unfamiliar objects (Soldan et al., “Global familiarity of visual stimuli affects repetition-related neural plasticity but not repetition priming,” Neuroimage. (2008) 39:515-26; Soldan at al., “Aging does not affect brain pattems of repetition effects associated with perceptual priming of novel objects,” J. Cogn. Neurosci. (2008) 20:1762-76). In some embodiments, the method includes the step of measuring synaptic plasticity, and detecting a decreased rate of loss of synaptic plasticity, a stabilization of synaptic plasticity, and/or an increase in synaptic plasticity after administration of the blood product as compared to the synaptic plasticity of the individual before the blood product was administered. Such measurements may be made a week or more after administration of the blood product, e.g., 1 week, 2 weeks, 3 weeks, or more, for instance, 4 weeks, 6 weeks, or 8 weeks or more, e.g., 3 months, 4 months, 5 months, or 6 months or more.
- In some instances, the methods result in a change in expression levels of one or more genes in one or more tissues of the host, e.g., as compared to a suitable control (such as described in the Experimental section, below). The change in expression level of a given gene may be 0.5 fold or greater, such as 1.0 fold or greater, including 1.5 fold or greater. The tissue may vary, and in some instances is nervous system tissue, e.g., central nervous system tissue, including brain tissue, e.g., hippocampal tissue. In some instances, the modulation of hippocampal gene expression is manifested as enhanced hippocampal plasticity, e.g., as compared to a suitable control.
- In some instances, treatment results in an enhancement in the levels of one or more proteins in one or more tissues of the host, e.g., as compared to a suitable control (such as described in the Experimental section, below). The change in protein level of a given protein may be 0.5 fold or greater, such as 1.0 fold or greater, including 1.5 fold or greater, where in some instances the level may approach that of a healthy wild-type level, e.g., within 50% or less, such as 25% or less, including 10% or less, e.g., 5% or less of the healthy wild-type level. The tissue may vary, and in some instances is nervous system tissue, e.g., central nervous system tissue, including brain tissue, e.g., hippocampal tissue.
- In some instances, the methods result in one or more structural changes in one or more tissues. The tissue may vary, and in some instances is nervous system tissue, e.g., central nervous system tissue, including brain tissue, e.g., hippocampal tissue. Structure changes of interest include an increase in dendritic spine density of mature neurons in the dentate gyrus (DG) of the hippocampus, e.g., as compared to a suitable control. In some instances, the modulation of hippocampal structure is manifested as enhanced synapse formation, e.g., as compared to a suitable control. In some instances, the methods may result in an enhancement of long term potentiation, e.g., as compared to a suitable control.
- In some instances, practice of the methods, e.g., as described above, results in an increase in neurogenesis in the adult mammal. The increase may be identified in a number of different ways, e.g., as described below in the Experimental section. In some instances, the increase in neurogenesis manifests as an increase the amount of Dcx-positive immature neurons, e.g., where the increase may be 2-fold or greater. In some instances, the increase in neurogenesis manifests as an increase in the number of BrdU/NeuN positive cells, where the increase may be 2-fold or greater.
- In some instances, the methods result in enhancement in learning and memory, e.g., as compared to a suitable control. Enhancement in learning and memory may be evaluated in a number of different ways, e.g., the contextual fear conditioning and/or radial arm water maze (RAWM) paradigms described in the experimental section, below. When measured by contextual fear conditioning, treatment results in some instances in increased freezing in contextual, but not cued, memory testing. When measured by RAWM, treatment results in some instances in enhanced learning and memory for platform location during the testing phase of the task. In some instances, treatment is manifested as enhanced cognitive improvement in hippocampal-dependent learning and memory, e.g., as compared to a suitable control.
- In some embodiments, B2M level reduction, e.g., as described above, may be performed in conjunction with an active agent having activity suitable to treat aging-associated cognitive impairment. For example, a number of active agents have been shown to have some efficacy in treating the cognitive symptoms of Alzheimer's disease (e.g., memory loss, confusion, and problems with thinking and reasoning), e.g., cholinesterase inhibitors (e.g., Donepezil, Rivastigmine, Galantamine, Tacrine), Memantine, and Vitamin E. As another example, a number of agents have been shown to have some efficacy in treating behavioral or psychiatric symptoms of Alzheimer's Disease, e.g., citalopram (Celexa), fluoxetine (Prozac), paroxeine (Paxil), sertraline (Zoloft), trazodone (Desyrel), lorazepam (Ativan), oxazepam (Serax), aripiprazole (Abilify), clozapine (Clozaril), haloperidol (Haldol), olanzapine (Zyprexa), quetiapine (Seroquel), risperidone (Risperdal), and ziprasidone (Geodon).
- In some aspects of the subject methods, the method further comprises the step of measuring cognition and/or synaptic plasticity after treatment, e.g., using the methods described herein or known in the art, and determining that the rate of cognitive decline or loss of synaptic plasticity have been reduced and/or that cognitive ability or synaptic plasticity have improved in the individual. In some such instances, the determination is made by comparing the results of the cognition or synaptic plasticity test to the results of the test performed on the same individual at an earlier time, e.g., 2 weeks earlier, 1 month earlier, 2 months earlier, 3 months earlier, 6 months earlier, 1 year earlier, 2 years earlier, 5 years earlier, or 10 years earlier, or more.
- In some embodiments, the subject methods further include diagnosing an individual as having a cognitive impairment, e.g., using the methods described herein or known in the art for measuring cognition and synaptic plasticity, prior to administering the subject plasma-comprising blood product. In some instances, the diagnosing will comprise measuring cognition and/or synaptic plasticity and comparing the results of the cognition or synaptic plasticity test to one or more references, e.g., a positive control and/or a negative control. For example, the reference may be the results of the test performed by one or more age-matched individuals that experience aging-associated cognitive impairments (i.e., positive controls) or that do not experience aging-associated cognitive impairments (i.e., negative controls). As another example, the reference may be the results of the test performed by the same individual at an earlier time, e.g., 2 weeks earlier, 1 month earlier, 2 months earlier, 3 months earlier, 6 months earlier, 1 year earlier, 2 years earlier, 5 years earlier, or 10 years earlier, or more.
- In some embodiments, the subject methods further comprise diagnosing an individual as having an aging-associated disorder, e.g., Alzheimer's disease, Parkinson's disease, frontotemporal dementia, progressive supranuclear palsy, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, multiple sclerosis, multi-system atrophy, glaucoma, ataxias, myotonic dystrophy, dementia, and the like. Methods for diagnosing such aging-associated disorders are well-known in the art, any of which may be used by the ordinarily skilled artisan in diagnosing the individual. In some embodiments, the subject methods further comprise both diagnosing an individual as having an aging-associated disorder and as having a cognitive impairment.
- The subject methods find use in treating, including preventing, aging-associated impairments and conditions associated therewith, such as impairments in the cognitive ability of individuals. Individuals suffering from or at risk of developing an aging-associated cognitive impairments include individuals that are about 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and usually no older than 100 years old, i.e., between the ages of about 50 and 100, e.g., 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or about 100 years old, and are suffering from cognitive impairment associated with natural aging process, e.g., mild cognitive impairment (M.C.I.); and individuals that are about 50 years old or older, e.g., 60 years old or older, 70 years old or older, 80 years old or older, 90 years old or older, and usually no older than 100 years old, i.e., between the ages of about 50 and 90, e.g., 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or about 100 years old, that have not yet begun to show symptoms of cognitive impairment. Examples of cognitive impairments that are due to natural aging include the following:
- Mild cognitive impairment (M.C.I.) is a modest disruption of cognition that manifests as problems with memory or other mental functions such as planning, following instructions, or making decisions that have worsened over time while overall mental function and daily activities are not impaired. Thus, although significant neuronal death does not typically occur, neurons in the aging brain are vulnerable to sub-lethal age-related alterations in structure, synaptic integrity, and molecular processing at the synapse, all of which impair cognitive function.
- Individuals suffering from or at risk of developing an aging-associated cognitive impairment that will benefit from treatment with the subject plasma-comprising blood product, e.g., by the methods disclosed herein, also include individuals of any age that are suffering from a cognitive impairment due to an aging-associated disorder; and individuals of any age that have been diagnosed with an aging-associated disorder that is typically accompanied by cognitive impairment, where the individual has not yet begun to present with symptoms of cognitive impairment. Examples of such aging-associated disorders include the following:
- Alzheimer's disease (AD). Alzheimer's disease is a progressive, inexorable loss of cognitive function associated with an excessive number of senile plaques in the cerebral cortex and subcortical gray matter, which also contains b-amyloid and neurofibrillary tangles consisting of tau protein. The common form affects persons >60 yr old, and its incidence increases as age advances. It accounts for more than 65% of the dementias in the elderly.
- The cause of Alzheimer's disease is not known. The disease runs in families in about 15 to 20% of cases. The remaining, so-called sporadic cases have some genetic determinants. The disease has an autosomal dominant genetic pattern in most early-onset and some late-onset cases but a variable late-life penetrance. Environmental factors are the focus of active investigation.
- In the course of the disease, synapses, and ultimately neurons are lost within the cerebral cortex, hippocampus, and subcortical structures (including selective cell loss in the nucleus basalis of Meynert), locus caeruleus, and nucleus raphae dorsalis. Cerebral glucose use and perfusion is reduced in some areas of the brain (parietal lobe and temporal cortices in early-stage disease, prefrontal cortex in late-stage disease). Neuritic or senile plaques (composed of neurites, astrocytes, and glial cells around an amyloid core) and neurofibrillary tangles (composed of paired helical filaments) play a role in the pathogenesis of Alzheimer's disease. Senile plaques and neurofibrillary tangles occur with normal aging, but they are much more prevalent in persons with Alzheimer's disease.
- Parkinson's Disease. Parkinson's Disease (PD) is an idiopathic, slowly progressive, degenerative CNS disorder characterized by slow and decreased movement, muscular rigidity, resting tremor, and postural instability. Originally considered primarily a motor disorder, PD is now recognized to also affect cognition, behavior, sleep, autonomic function, and sensory function. The most common cognitive impairments include an impairment in attention and concentration, working memory, executive function, producing language, and visuospatial function.
- In primary Parkinson's disease, the pigmented neurons of the substantia nigra, locus caeruleus, and other brain stem dopaminergic cell groups are lost. The cause is not known. The loss of substantia nigra neurons, which project to the caudate nucleus and putamen, results in depletion of the neurotransmitter dopamine in these areas. Onset is generally after
age 40, with increasing incidence in older age groups. - Secondary parkinsonism results from loss of or interference with the action of dopamine in the basal ganglia due to other idiopathic degenerative diseases, drugs, or exogenous toxins. The most common cause of secondary parkinsonism is ingestion of antipsychotic drugs or reserpine, which produce parkinsonism by blocking dopamine receptors. Less common causes include carbon monoxide or manganese poisoning, hydrocephalus, structural lesions (tumors, infarcts affecting the midbrain or basal ganglia), subdural hematoma, and degenerative disorders, including striatonigral degeneration.
- Frontotemporal dementia. Frontotemporal dementia (FTD) is a condition resulting from the progressive deterioration of the frontal lobe of the brain. Over time, the degeneration may advance to the temporal lobe. Second only to Alzheimer's disease (AD) in prevalence, FTD accounts for 20% of pre-senile dementia cases. Symptoms are classified into three groups based on the functions of the frontal and temporal lobes affected: Behavioural variant FTD (bvFTD), with symptoms include lethargy and aspontaneity on the one hand, and disinhibition on the other; progressive nonfluent aphasia (PNFA), in which a breakdown in speech fluency due to articulation difficulty, phonological and/or syntactic errors is observed but word comprehension is preserved; and semantic dementia (SD), in which patients remain fluent with normal phonology and syntax but have increasing difficulty with naming and word comprehension. Other cognitive symptoms common to all FTD patients include an impairment in executive function and ability to focus. Other cognitive abilities, including perception, spatial skills, memory and praxis typically remain intact. FTD can be diagnosed by observation of reveal frontal lobe and/or anterior temporal lobe atrophy in structural MRI scans.
- A number of forms of FTD exist, any of which may be treated or prevented using the subject methods and compositions. For example, one form of frontotemporal dementia is Semantic Dementia (SD). SD is characterized by a loss of semantic memory in both the verbal and non-verbal domains. SD patients often present with the complaint of word-finding difficulties. Clinical signs include fluent aphasia, anomia, impaired comprehension of word meaning, and associative visual agnosia (the inability to match semantically related pictures or objects). As the disease progresses, behavioral and personality changes are often seen similar to those seen in frontotemporal dementia although cases have been described of ‘pure’ semantic dementia with few late behavioral symptoms. Structural MRI imaging shows a characteristic pattern of atrophy in the temporal lobes (predominantly on the left), with inferior greater than superior involvement and anterior temporal lobe atrophy greater than posterior.
- As another example, another form of frontotemporal dementia is Pick's disease (PiD, also PcD). A defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver-staining, spherical aggregations known as “Pick bodies”. Symptoms include loss of speech (aphasia) and dementia. Patients with orbitofrontal dysfunction can become aggressive and socially inappropriate. They may steal or demonstrate obsessive or repetitive stereotyped behaviors. Patients with dorsomedial or dorsolateral frontal dysfunction may demonstrate a lack of concern, apathy, or decreased spontaneity. Patients can demonstrate an absence of self-monitoring, abnormal self-awareness, and an inability to appreciate meaning. Patients with gray matter loss in the bilateral posterolateral orbitofrontal cortex and right anterior insula may demonstrate changes in eating behaviors, such as a pathologic sweet tooth. Patients with more focal gray matter loss in the anterolateral orbitofrontal cortex may develop hyperphagia. While some of the symptoms can initially be alleviated, the disease progresses and patients often die within two to ten years.
- Huntington's disease. Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder characterized by the development of emotional, behavioral, and psychiatric abnormalities; loss of intellectual or cognitive functioning; and movement abnormalities (motor disturbances). The classic signs of HD include the development of chorea—involuntary, rapid, irregular, jerky movements that may affect the face, arms, legs, or trunk—as well as cognitive decline including the gradual loss of thought processing and acquired intellectual abilities. There may be impairment of memory, abstract thinking, and judgment; improper perceptions of time, place, or identity (disorientation); increased agitation; and personality changes (personality disintegration). Although symptoms typically become evident during the fourth or fifth decades of life, the age at onset is variable and ranges from early childhood to late adulthood (e.g., 70s or 80s).
- HD is transmitted within families as an autosomal dominant trait. The disorder occurs as the result of abnormally long sequences or “repeats” of coded instructions within a gene on chromosome 4 (4p16.3). The progressive loss of nervous system function associated with HD results from loss of neurons in certain areas of the brain, including the basal ganglia and cerebral cortex.
- Amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, invariably fatal neurological disease that attacks motor neurons. Muscular weakness and atrophy and signs of anterior horn cell dysfunction are initially noted most often in the hands and less often in the feet. The site of onset is random, and progression is asymmetric. Cramps are common and may precede weakness. Rarely, a patient survives 30 years; 50% die within 3 years of onset. 20% live 5 years, and 10% live 10 years. Diagnostic features include onset during middle or late adult life and progressive, generalized motor involvement without sensory abnormalities. Nerve conduction velocities are normal until late in the disease. Recent studies have documented the presentation of cognitive impairments as well, particularly a reduction in immediate verbal memory, visual memory, language, and executive function.
- A decrease in cell body area, number of synapses and total synaptic length has been reported in even normal-appearing neurons of the ALS patients. It has been suggested that when the plasticity of the active zone reaches its limit, a continuing loss of synapses can lead to functional impairment. Promoting the formation or new synapses or preventing synapse loss may maintain neuron function in these patients.
- Multiple Sclerosis. Multiple Sclerosis (MS) is characterized by various symptoms and signs of CNS dysfunction, with remissions and recurring exacerbations. The most common presenting symptoms are parenthesis in one or more extremities, in the trunk, or on one side of the face; weakness or clumsiness of a leg or hand; or visual disturbances, e.g., partial blindness and pain in one eye (retrobulbar optic neuritis), dimness of vision, or scotomas. Common cognitive impairments include impairments in memory (acquiring, retaining, and retrieving new information), attention and concentration (particularly divided attention), information processing, executive functions, visuospatial functions, and verbal fluency. Common early symptoms are ocular palsy resulting in double vision (diplopia), transient weakness of one or more extremities, slight stiffness or unusual fatigability of a limb, minor gait disturbances, difficulty with bladder control, vertigo, and mild emotional disturbances; all indicate scattered CNS involvement and often occur months or years before the disease is recognized. Excess heat may accentuate symptoms and signs.
- The course is highly varied, unpredictable, and, in most patients, remittent. At first, months or years of remission may separate episodes, especially when the disease begins with retrobulbar optic neuritis. However, some patients have frequent attacks and are rapidly incapacitated; for a few the course can be rapidly progressive.
- Glaucoma. Glaucoma is a common neurodegenerative disease that affects retinal ganglion cells (RGCs). Evidence supports the existence of compartmentalized degeneration programs in synapses and dendrites, including in RGCs. Recent evidence also indicates a correlation between cognitive impairment in older adults and glaucoma (Yochim B P, et al. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma. 2012; 21(4):250-254).
- Myotonic dystrophy. Myotonic dystrophy (DM) is an autosomal dominant multisystem disorder characterized by dystrophic muscle weakness and myotonia. The molecular defect is an expanded trinucleotide (CTG) repeat in the 3′ untranslated region of the myotonin-protein kinase gene on chromosome 19q. Symptoms can occur at any age, and the range of clinical severity is broad. Myotonia is prominent in the hand muscles, and ptosis is common even in mild cases. In severe cases, marked peripheral muscular weakness occurs, often with cataracts, premature balding, hatchet facies, cardiac arrhythmias, testicular atrophy, and endocrine abnormalities (e.g., diabetes mellitus). Mental retardation is common in severe congenital forms, while an aging-related decline of frontal and temporal cognitive functions, particularly language and executive functions, is observed in milder adult forms of the disorder. Severely affected persons die by their early 50s.
- Dementia. Dementia describes class of disorders having symptoms affecting thinking and social abilities severely enough to interfere with daily functioning. Other instances of dementia in addition to the dementia observed in later stages of the aging-associated disorders discussed above include vascular dementia, and dementia with Lewy bodies, described below.
- In vascular dementia, or “multi-infarct dementia”, cognitive impairment is caused by problems in supply of blood to the brain, typically by a series of minor strokes, or sometimes, one large stroke preceded or followed by other smaller strokes. Vascular lesions can be the result of diffuse cerebrovascular disease, such as small vessel disease, or focal lesions, or both. Patients suffering from vascular dementia present with cognitive impairment, acutely or subacutely, after an acute cerebrovascular event, after which progressive cognitive decline is observed. Cognitive impairments are similar to those observed in Alzheimer's disease, including impairments in language, memory, complex visual processing, or executive function, although the related changes in the brain are not due to AD pathology but to chronic reduced blood flow in the brain, eventually resulting in dementia. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) neuroimaging may be used to confirm a diagnosis of multi-infarct dementia in conjunction with evaluations involving mental status examination.
- Dementia with Lewy bodies (DLB, also known under a variety of other names including Lewy body dementia, diffuse Lewy body disease, cortical Lewy body disease, and senile dementia of Lewy type) is a type of dementia characterized anatomically by the presence of Lewy bodies (clumps of alpha-synuclein and ubiquitin protein) in neurons, detectable in post mortem brain histology. Its primary feature is cognitive decline, particularly of executive functioning. Alertness and short term memory will rise and fall. Persistent or recurring visual hallucinations with vivid and detailed pictures are often an early diagnostic symptom. DLB it is often confused in its early stages with Alzheimer's disease and/or vascular dementia, although, where Alzheimer's disease usually begins quite gradually, DLB often has a rapid or acute onset. DLB symptoms also include motor symptoms similar to those of Parkinson's. DLB is distinguished from the dementia that sometimes occurs in Parkinson's disease by the time frame in which dementia symptoms appear relative to Parkinson symptoms. Parkinson's disease with dementia (PDD) would be the diagnosis when dementia onset is more than a year after the onset of Parkinson's. DLB is diagnosed when cognitive symptoms begin at the same time or within a year of Parkinson symptoms.
- Progressive supranuclear palsy. Progressive supranuclear palsy (PSP) is a brain disorder that causes serious and progressive problems with control of gait and balance, along with complex eye movement and thinking problems. One of the classic signs of the disease is an inability to aim the eyes properly, which occurs because of lesions in the area of the brain that coordinates eye movements. Some individuals describe this effect as a blurring. Affected individuals often show alterations of mood and behavior, including depression and apathy as well as progressive mild dementia. The disorder's long name indicates that the disease begins slowly and continues to get worse (progressive), and causes weakness (palsy) by damaging certain parts of the brain above pea-sized structures called nuclei that control eye movements (supranuclear). PSP was first described as a distinct disorder in 1964, when three scientists published a paper that distinguished the condition from Parkinson's disease. It is sometimes referred to as Steele-Richardson-Olszewski syndrome, reflecting the combined names of the scientists who defined the disorder. Although PSP gets progressively worse, no one dies from PSP itself.
- Ataxia. People with ataxia have problems with coordination because parts of the nervous system that control movement and balance are affected. Ataxia may affect the fingers, hands, arms, legs, body, speech, and eye movements. The word ataxia is often used to describe a symptom of incoordination which can be associated with infections, injuries, other diseases, or degenerative changes in the central nervous system. Ataxia is also used to denote a group of specific degenerative diseases of the nervous system called the hereditary and sporadic ataxias which are the National Ataxia Foundation's primary emphases.
- Multiple-system atrophy. Multiple-system atrophy (MSA) is a degenerative neurological disorder. MSA is associated with the degeneration of nerve cells in specific areas of the brain. This cell degeneration causes problems with movement, balance, and other autonomic functions of the body such as bladder control or blood-pressure regulation. The cause of MSA is unknown and no specific risk factors have been identified. Around 55% of cases occur in men, with typical age of onset in the late 50s to early 60s. MSA often presents with some of the same symptoms as Parkinson's disease. However, MSA patients generally show minimal if any response to the dopamine medications used for Parkinson's.
- In some embodiments, the subject methods and compositions find use in slowing the progression of aging-associated cognitive impairment. In other words, cognitive abilities in the individual will decline more slowly following treatment by the disclosed methods than prior to or in the absence of treatment by the disclosed methods. In some such instances, the subject methods of treatment include measuring the progression of cognitive decline after treatment, and determining that the progression of cognitive decline is reduced. In some such instances, the determination is made by comparing to a reference, e.g., the rate of cognitive decline in the individual prior to treatment, e.g., as determined by measuring cognition prior at two or more time points prior to administration of the subject blood product.
- The subject methods and compositions also find use in stabilizing the cognitive abilities of an individual, e.g., an individual suffering from aging-associated cognitive decline or an individual at risk of suffering from aging-associated cognitive decline. For example, the individual may demonstrate some aging-associated cognitive impairment, and progression of cognitive impairment observed prior to treatment with the disclosed methods will be halted following treatment by the disclosed methods. As another example, the individual may be at risk for developing an aging-associated cognitive decline (e.g., the individual may be aged 50 years old or older, or may have been diagnosed with an aging-associated disorder), and the cognitive abilities of the individual are substantially unchanged, i.e., no cognitive decline can be detected, following treatment by the disclosed methods as compared to prior to treatment with the disclosed methods.
- The subject methods and compositions also find use in reducing cognitive impairment in an individual suffering from an aging-associated cognitive impairment. In other words, cognitive ability is improved in the individual following treatment by the subject methods. For example, the cognitive ability in the individual is increased, e.g., by 2-fold or more, 5-fold or more, 10-fold or more, 15-fold or more, 20-fold or more, 30-fold or more, or 40-fold or more, including 50-fold or more, 60-fold or more, 70-fold or more, 80-fold or more, 90-fold or more, or 100-fold or more, following treatment by the subject methods relative to the cognitive ability that is observed in the individual prior to treatment by the subject methods. In some instances, treatment by the subject methods and compositions restores the cognitive ability in the individual suffering from aging-associated cognitive decline, e.g., to their level when the individual was about 40 years old or less. In other words, cognitive impairment is abrogated.
- Also provided are reagents, devices and kits thereof for practicing one or more of the above-described methods. The subject reagents, devices and kits thereof may vary greatly. Reagents and devices of interest include those mentioned above with respect to the methods of reducing B2M levels in an adult mammal.
- In addition to the above components, the subject kits will further include instructions for practicing the subject methods. These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit. One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc. Yet another means would be a computer readable medium, e.g., diskette, CD, portable flash drive, etc., on which the information has been recorded. Yet another means that may be present is a website address which may be used via the internet to access the information at a removed site. Any convenient means may be present in the kits.
- The following examples are provided by way of illustration and not by way of limitation.
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.
- The following mouse lines were used: C57BL/6 (The Jackson Laboratory), C57BL/6 aged mice (National Institutes of Aging), β2-Microglobulin (B2M−/−) mutant mice and transporter associated with antigen processing 1 (Tap1−/−) mutant mice (The Jackson Laboratory). All studies were done in male mice. The numbers of mice used to result in statistically significant differences was calculated using standard power calculations with α=0.05 and a power of 0.8. We used an online tool (http://www.stat.uiowa.edu/˜rlenth/Power/index.html) to calculate power and sample size based on experience with the respective tests, variability of the assays and inter-individual differences within groups. Mice were housed under specific pathogen-free conditions under a 12 h light-dark cycle and all animal handling and use was in accordance with institutional guidelines approved by the University of California San Francisco IACUC and the VA Palo Alto Committee on Animal Research.
- Parabiosis surgery followed previously described procedures (Villeda, S. A., et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94), (Villeda, S. A. et al., “Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.,” Nature medicine (2014) 20:659-663). Mirror-image incisions at the left and right flanks were made through the skin and shorter incisions made through the abdominal wall. The peritoneal openings of the adjacent parabionts were sutured together. Elbow and knee joints from each parabiont were sutured together and the skin of each mouse was stapled (9 mm Autoclip, Clay Adams) to the skin of the adjacent parabiont. Each mouse was injected subcutaneously with Baytril antibiotic and Buprenex as directed for pain and monitored during recovery. For overall health and maintenance behavior, several recovery characteristics were analyzed at various times after surgery, including paired weights and grooming behavior.
- Animals were placed in a stereotaxic frame and anesthetized with 2% isoflurane (2 L/min oxygen flow rate) delivered through an anesthesia nose cone. Ophthalmic eye ointment (Puralube Vet Ointment, Dechra) was applied to the cornea to prevent desiccation during surgery. The area around the incision was trimmed. Solutions were injected bilaterally into the DG of the dorsal hippocampi using the following coordinates: (from bregma) anterior=−2 mm, lateral=1.5 mm, (from skull surface) height=−2.1 mm. A 2 μl volume was injected stereotaxically over 10 minutes (injection speed: 0.20 μl/min) using a 5 μl 26s gauge Hamilton syringe. To limit reflux along the injection track, the needle was maintained in situ for 8 minutes, slowly pulled out half way and kept in position for an additional two minutes. The skin was closed using silk suture. Each mouse was injected subcutaneously with the analgesic Buprenex. Mice were single-housed and monitored during recovery.
- Carrier free purified human β2-Microglobulin (Lee Biosolutions) was dissolved in PBS and administered systemically (100 μg/kg) via intraorbital in young (3 months) wild type animals, or stereotaxically (0.50 μl; 0.1 μg/μl) into the DG of the hippocampus in young (3 months) wild type and Tap1−/− mutant. For histological analysis B2M and vehicle were administered into contralateral DG of the same animal. For behavioral analysis B2M or vehicle were administered bilaterally into the DG and mice were allowed to recover for six or 30 days prior to cognitive testing.
- For short
term Brdu labeling 50 mg/kg of BrdU was injected intraperitoneally into mice daily either three or six days before sacrifice. For long term BrdU labeling 50 mg/kg of BrdU was injected into mice once a day for six days and animals were sacrificed 28 days after first administration. To estimate the total number of BrdU-positive cells in the brain, we performed DAB staining for BrdU on every sixth hemibrain section for a total of six sections. The number of BrdU-positive cells in the granule cell and subgranular cell layer of the DG were counted and multiplied by 12 to estimate the total number of BrdU-positive cells in the entire DG. To determine the fate of dividing cells a total of 200 BrdU-positive cells across 4-6 sections per mouse were analyzed by confocal microscopy for co-expression with NeuN and GFAP. The number of double-positive cells was expressed as a percentage of BrdU-positive cells. - Tissue processing and immunohistochemistry was performed on free-floating sections following standard published techniques (Villeda, S. A., et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94). Briefly, mice were anesthetized with 400 mg/kg chloral hydrate (Sigma-Aldrich) and transcardially perfused with 0.9% saline. Brains were removed and fixed in phosphate-buffered 4% paraformaldehyde, pH 7.4, at 4° C. for 48 h before they were sunk through 30% sucrose for cryoprotection. Brains were then sectioned coronally at 40 in with a cryomicrotome (Leica Camera, Inc.) and stored in cryoprotective medium. Primary antibodies were: goat anti-Dcx (1:500; Santa Cruz Biotechnology; sc-8066, clone: C-18), rat anti-BrdU (1:5000, Accurate Chemical and Scientific Corp.; ab6326, clone: BU1/75), mouse anti-Nestin (1:500; Millipore; MAB353; clone: rat-401) MCM2 (1:500, BD Biosciences; 610700; clone: 46/BM28), chicken anti-Tbr2 (1:500; Millipore; AB15894), mouse anti-NeuN (1:1000; Millipore; MAB377; clone: A60), rabbit anti-GFAP (1:500; DAKO; Z0334). After overnight incubation, primary antibody staining was revealed using biotinylated secondary antibodies (Vector) and the ABC kit (Vector) with Diaminobenzidine (DAB, Sigma-Aldrich) or fluorescence conjugated secondary antibodies (Life Technologies). For BrdU labeling, brain sections were pre-treated with 2N HCl at 37° C. for 30 min and washed three times with Tris-Buffered Saline with Tween (TBST) before incubation with primary antibody. For Nestin and Tbr2 labeling, brain sections were pre-treated three times with 0.1M Citrate at 95° C. for 5 min and washed three times with Tris-Buffered Saline with Tween (TBST) before incubation with primary antibody. To estimate the total number of Dcx positive cells per DG immunopositive cells in the granule cell and subgranular cell layer of the DG were counted in every sixth coronal hemibrain section through the hippocampus for a total of six sections and multiplied by 12.
- Mouse hippocampi were dissected after perfusion of animals, snap frozen and lysed in RIPA lysis buffer (500 mM Tris, pH 7.4, 150 mM NaCl, 0.5% Na deoxycholate, 1% NP40, 0.1% SDS, and complete protease inhibitors; Roche). Tissue lysates were mixed with 4× NuPage LDS loading buffer (Invitrogen) and loaded on a 4-12% SDS polyacrylamide gradient gel (Invitrogen) and subsequently transferred onto a nitrocellulose membrane. The blots were blocked in 5% milk in Tris-Buffered Saline with Tween (TBST) and incubated with rabbit anti-actin (1:5000, Sigma; A5060) and rabbit anti-B2M (1:2500, Abcam; ab75853; clone: EP2978Y). Horseradish peroxidase-conjugated secondary antibodies (1:5000, GE Healthcare; NA934) and an ECL kit (GE Healthcare/Amersham Pharmacia Biotech) were used to detect protein signals. Multiple exposures were taken to select images within the dynamic range of the film (GE Healthcare Amersham Hyperfilm™ ECL). Selected films were scanned (300 dpi) and quantified using ImageJ software (Version 1.46k). Actin bands were used for normalization.
- Mouse neural progenitor cells were isolated from C57BL/6 mice or Dcx-reporter mice (Couillard-Despres S, et al. “In vivo optical imaging of neurogenesis: watching new neurons in the intact brain.” Molecular imaging. 2008; 7:28-34.) as previously described (Villeda, S. A., et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94), (Mosher K I, et al. “Neural progenitor cells regulate microglia functions and activity.” Nature neuroscience. 2012; 15:1485-1487). Brains from postnatal animals (1 day-old) were dissected to remove olfactory bulbs, cortex, cerebellum and brainstem. After removing superficial blood vessels hippocampi were finally minced with a scalpel, digested for 30 minutes at 37° C. in DMEMB media containing 2.5 U/ml Papain (Worthington Biochemicals), 1 U/ml Dispase II (Boeringher Mannheim), and 250 U/ml DNase I (Worthington Biochemicals) and mechanically dissociated. NSC/progenitors were purified using a 65% Percoll gradient and plated on uncoated tissue culture dishes at a density of 105 cells/cm2. NPCs were cultured under standard conditions for 48 hours in NeuroBasal A medium supplemented with penicillin (100 U/ml), streptomycin (100 mg/ml), 2 mM L-glutamine, serum-free B27 supplement without vitamin A (Sigma-Aldrich), bFGF (20 ng/ml) and EGF (20 ng/ml). Carrier free forms of human recombinant B2M (Vendor) were dissolved in PBS and added to cell cultures under self-renewal conditions every other day following cell plating. For proliferation BrdU incorporation was measured using a cell proliferation assay system that uses a peroxidase-coupled anti-BrdU antibody together with a color substrate for detection (Fisher). For bioluminescence assays Dcx-luciferase activity was measured using a luciferase assay system (Promega). Differentiation was assessed by immunocytochemistry using mouse anti-MAP2 (1:1000, Sigma; M9942; clone: HM-2) and rabbit anti-GFAP (1:500, DAKO; Z0334) antibodies. Cytotoxicity was measured by lactate dehydrogenase (LDH) detection using a Pierce LDH Cytotoxicity Assay system (Life Technologies).
- In this task, mice learned to associate the environmental context (fear conditioning chamber) with an aversive stimulus (mild foot shock; unconditioned stimulus, US) enabling testing for hippocampal-dependent contextual fear conditioning. As contextual fear conditioning is hippocampus and amygdala dependent, the mild foot shock was paired with a light and tone cue (conditioned stimulus, CS) in order to also assess amygdala-dependent cued fear conditioning. Conditioned fear was displayed as freezing behavior. Specific training parameters are as follows: tone duration is 30 seconds; level is 70 dB, 2 kHz; shock duration is 2 seconds; intensity is 0.6 mA. This intensity is not painful and can easily be tolerated but will generate an unpleasant feeling. More specifically, on
day 1 each mouse was placed in a fear-conditioning chamber and allowed to explore for 2 minutes before delivery of a 30-second tone (70 dB) ending with a 2-second foot shock (0.6 mA). Two minutes later, a second CS-US pair was delivered. Onday 2 each mouse was first placed in the fear-conditioning chamber containing the same exact context, but with no CS or foot shock. Freezing was analyzed for 1-3 minutes. One hour later, the mice were placed in a new context containing a different odor, cleaning solution, floor texture, chamber walls and shape. Animals were allowed to explore for 2 minutes before being re-exposed to the CS. Freezing was analyzed for 1-3 minutes. Freezing was measured using a FreezeScan video tracking system and software (Cleversys, Inc). - Spatial learning and memory was assessed using the radial arm water maze (RAWM) paradigm following the protocol described by Alamed et al. Nat. Protocols (2006) 1: 1671-1679). In this task the goal arm location containing a platform remains constant throughout the training and testing phase, while the start arm is changed during each trial. On day one during the training phase, mice are trained for 15 trails, with trials alternating between a visible and hidden platform. On day two during the testing phase, mice are tested for 15 trials with a hidden platform. Entry into an incorrect arm is scored as an error, and errors are averaged over training blocks (three consecutive trials). Investigators were blinded to genotype and treatment when scoring.
- Mouse blood was collected into EDTA coated tubes via tail vein bleed, mandibular vein bleed, or intracardial bleed at time of sacrifice. EDTA plasma was generated by centrifugation at 1000 g of freshly collected blood and aliquots were stored at −80° C. until use. Human plasma and CSF samples were obtained from University of Washington School of Medicine, Veterans Affairs Northwest Network Mental Illness Research, Education, and Clinical Center, Oregon Health Science University and University of California San Diego. Subjects were chosen based on standardized inclusion and exclusion criteria as previously described (Villeda, S. A., et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94), (Zhang, J. et al., “CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases.,” American journal of clinical pathology (2008) 129: 526-529), (Li, G. et al., “Cerebrospinal fluid concentration of brain-derived neurotrophic factor and cognitive function in non-demented subjects.,” PloS one (2009) 4: e5424) and outlined in Supplementary Table 1. Informed consent was obtained from human subjects according to the institutional review board guidelines at the respective centers.
-
TABLE 1 Normal aging subject inclusion criteria Normal aging subject exclusion criteria Age: Subject meets age cutoffs for Vision and/or hearing too impaired (even with entry to the specific diagnostic group. correction) to allow compliance with Informant: Presence of an informant psychometric testing for all subjects. Medical problems: unstable, poorly controlled, General health: good enough to or severe medical problems or diseases. complete study visits. Cancer in the past 12 months (excludes Body Mass Index (BMI): 18-34 squamous CA of the skin or stage 1 prostate CA).Stable medications for 4 weeks before Contraindications to lumbar puncture: Bleeding the visit to draw blood or CSF. disorder, use of Coumadin, heparin or similar Permitted medications include: AChE- anticoagulant, platelets < 100,000; deformity inhibitors, Memantine, HRT or surgery affecting lumbosacral spine which (estrogen +/− progesterone, Lupron), is severe enough to make lumbar puncture Thyroid hormone, difficult, cutaneous sepsis at lumbosacral Antidepressants, statins. region. Normal basic laboratory tests: BUN, Neurological disorders: neurodegenerative creatinine (will allow creatinine up diseases such as Alzheimer's Disease, Parkinson's to 1.5), B12, TSH. Disease, CJD, FTD, PSP; stroke in past 12 months MMSE > 27/30 (exemptions if low or severe enough residual effects of earlier stroke education and control status to impair neurological or cognitive function; established by detailed evaluation) Multiple sclerosis; epilepsy Memory performance on logical Psychiatric disorders: schizophrenia, bipolar Memory within normal limits. affective disorder CDR = 0 Active/uncontrolled depression: by history or Neurological exam is normal, i.e. no GDS score evidence of stroke, Parkinsonism Drug or alcohol abuse in past 2 years or major abnormalities. Exclusionary medications (in 4 weeks before visit to draw blood or CSF) Neuroleptics/atypical antipsychotics Anti-Parkinson's Disease medications (L-dopa, dopamine agonists) CNS stimulants: modafinil, Ritalin Antiepileptic drugs (exceptions for Neurontin or similar newer AEDs given for pain control) Insulin treatment Cortisone (oral prohibited-topical or inhaler use allowed), anti-immune drugs (e.g. methotrexate, cytoxan, IVIg, tacrolimus, cyclosporine) or antineoplastic drugs Anti-HIV medications - The plasma concentrations of cytokines and signaling molecules were measured in human and mouse plasma samples using standard antibody-based multiplex immunoassays (Luminex) by Rules Based Medicine Inc., a fee-for-service provider. All Luminex measurements where obtained in a blinded fashion. All assays were developed and validated to Clinical Laboratory Standards Institute (formerly NCCLS) guidelines based upon the principles of immunoassay as described by the manufacturers.
- All experiments were randomized and blinded by an independent researcher prior to pharmacological treatment or assessment of genetic mouse models. Researchers remained blinded throughout histological, biochemical and behavioral assessments. Groups were un-blinded at the end of each experiment upon statistical analysis. Data are expressed as mean±SEM. The distribution of data in each set of experiments was tested for normality using D'Agostino-Pearson omnibus test or Shapiro-Wilk test. No significant differences in variance between groups were detected using an F test. Statistical analysis was performed with Prism 5.0 software (GraphPad Software). Means between two groups were compared with two-tailed, unpaired Student's t test. Comparisons of means from multiple groups with each other or against one control group were analyzed with 1-way ANOVA followed by appropriate post-hoc tests (indicated in figure legends).
- Aging remains the single most dominant risk factor for dementia-related neurodegenerative diseases, such as Alzheimer's disease (Hedden & Gabrieli, “Insights into the ageing mind: a view from cognitive neuroscience.,” Nature reviews. Neuroscience (2004) 5:87-96; Mattson & Magnus, “Ageing and neuronal vulnerability.,” Nature reviews. Neuroscience (2006) 7:278-294; Small et al., “A pathophysiological framework of hippocampal dysfunction in ageing and disease.,” Nature reviews. Neuroscience (2011) 12:585-601). As such, it is imperative to gain mechanistic insight into what drives aging phenotypes in the brain in order to maintain cognitive integrity in the elderly, and consequently counteract vulnerability to neurodegenerative disease. We, and others, have recently shown that systemic manipulations such as heterochronic parabiosis (in which the circulatory system of a young and old animal are joined) or young plasma administration can partially reverse age-related loss of cognitive and regenerative faculties in the aged brain (Katsimpardi et al., “Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.,” Science (2014) 344:630-634; Villeda et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477:90-94; Villeda et al., “Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.,” Nature medicine (2014) 20:659-663). Interestingly, heterochronic parabiosis studies have revealed an age-dependent bi-directionality in the influence of the systemic environment indicating pro-youthful factors in young blood elicit rejuvenation while pro-aging factors in old blood drive aging (Katsimpardi et al., “Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.,” Science (2014) 344:630-634; Villeda et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94; Ruckh et al., “Rejuvenation of regeneration in the aging central nervous system.,” Cell stem cell (2012) 10:96-103; Conboy et al., “Rejuvenation of aged progenitor cells by exposure to a young systemic environment.,” Nature (2005) 433:760-764; Brack et al., “Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis.,” Science (2007) 317: 807-810). It has been proposed that mitigating the effect of pro-aging factors may also provide an effective approach to rejuvenate aging phenotypes (Villeda et al., “Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.,” Nature medicine (2014) 20:659-663; Laviano, “Young blood.,” The New England journal of medicine (2014) 371:573-575; Bouchard & Villeda, “Aging and brain rejuvenation as systemic events.,” Journal of neurochemistry (2014)).
- In its traditional role, B2M represents the light chain of the MHC I molecules that form an active part of the adaptive immune system (Zijlstra et al., “Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells.,” Nature (1990) 344:742-746). In the central nervous system (CNS), B2M and MHC I can act independent of their canonical immune function to regulate normal brain development, synaptic plasticity and even behavior (Lee et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature (2014) 509:195-200; Loconto et al., “Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules.,” Cell (2003) 112:607-618; Boulanger & Shatz, “Immune signalling in neural development, synaptic plasticity and disease.,” Nature reviews. Neuroscience (2004) 5: 521-531; Shatz, “MHC class I: an unexpected role in neuronal plasticity.,” Neuron (2009) 64:40-45; Huh et al., “Functional requirement for class I MHC in CNS development and plasticity.,” Science (2000) 290:2155-2159; Goddard et al., “Regulation of CNS synapses by neuronal MHC class I.,” Proceedings of the National Academy of Sciences of the United States of America (2007) 104:6828-6833; Glynn et al., “MHCI negatively regulates synapse density during the establishment of cortical connections.,” Nature neuroscience (2011) 14:442-451). Additionally, in its soluble form, B2M accumulates in the systemic blood circulation as a result of cell surface shedding. Interestingly increased systemic levels of B2M have been implicated in cognitive impairments associated with chronic hemodialysis (Murray, “Cognitive impairment in the aging dialysis and chronic kidney disease populations: an occult burden.,” Advances in chronic kidney disease (2008) 15:123-132; Corlin et al., “Quantification of cleaved beta2-microglobulin in serum from patients undergoing chronic hemodialysis.,” Clinical chemistry (2005) 51:1177-1184). Moreover, increase in soluble B2M has also been observed in the cerebral spinal fluid (CSF) of patients with HIV-dementia (McArthur et al., “The diagnostic utility of elevation in cerebrospinal fluid beta 2-microglobulin in HIV-1 dementia. Multicenter AIDS Cohort Study.,” Neurology (1992) 42:1707-1712; Brew et al., “Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin.,” The Journal of infectious diseases (1996) 174:294-298) and Alzheimer's disease (Carrette et al., “A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer's disease.” Proteomics (2003) 3:1486-1494), further implicating B2M in cognitive dysfunction.
- We first characterized changes in systemic levels of B2M in mouse plasma during normal aging (
FIG. 1A ,B), and in the experimental aging model of heterochronic parabiosis (FIG. 1C ,D). We observed a three-fold increase in B2M levels in plasma derived from aged compared to young animals (FIG. 1B ), and detected a corresponding increase in B2M levels in plasma derived from young heterochronic parabionts after exposure to aged blood compared to young isochronic parabionts (FIG. 1D ). To corroborate systemic changes observed for B2M in aging mice with systemic changes occurring in humans, we measured B2M in archived plasma and CSF samples from healthy individuals between 20 and 90 years of age (Table 1, above). We detected an age-related increase in B2M measured in both plasma and CSF, consistent with changes observed in aging mice (FIG. 1E ,F). Having identified B2M as a potential pro-aging systemic factor we next asked whether increasing B2M systemically could elicit cognitive impairments reminiscent of age-related dysfunction. As a control, we first tested hippocampal-dependent learning and memory using radial arm water maze (RAWM) and contextual fear conditioning paradigms in a cohort of young and old untreated animals and observed age-related cognitive impairments with both behavioral paradigms (FIG. 2A-E ). Subsequently, we cognitively tested young adult mice systemically administered soluble B2M protein or vehicle through intraorbital injections (FIG. 1G ). Animals showed no signs of illness or weight loss regardless of treatment (FIG. 3A ). During the training phase of the RAWM task all mice showed similar swim speeds (FIG. 3B ) and learning capacity for the task (FIG. 1H ). However, during the testing phase animals receiving B2M exhibited impaired learning and memory deficits, committing significantly more errors in locating the target platform than animals receiving vehicle control (FIG. 1H ). During fear conditioning training all mice, regardless of treatment, exhibited no differences in baseline freezing time (FIG. 3C ). However, mice receiving B2M demonstrated decreased freezing time during contextual (FIG. 1I ), but not cued (FIG. 3D ), memory testing compared to vehicle treated control animals. Together, these behavioral data demonstrate that systemic administration of exogenous B2M can impair learning and memory. - Impairments in hippocampal-dependent learning and memory have been previously linked with decreased adult neurogenesis (Clelland et al., “A functional role for adult hippocampal neurogenesis in spatial pattern separation.,” Science (2009) 325:210-213; Kitamura et al., “Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory.,” Cell (2009) 139:814-827; Zhang et al., “A role for adult TLX-positive neural stem cells in learning and behaviour.,” Nature (2008) 451:1004-1007). While a causal link between age-related cognitive decline and decreased adult neurogenesis remains obfuscated (Drapeau et al., “Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis.,” Proceedings of the National Academy of Sciences of the United States of America (2003) 100:14385-14390: Merrill et al., “Hippocampal cell genesis does not correlate with spatial learning ability in aged rats.,” The Journal of comparative neurology (2003) 459:201-207; Bizon & Gallagher, “Production of new cells in the rat dentate gyrus over the lifespan: relation to cognitive decline.,” The European journal of neuroscience (2003) 18:215-219; Seib et al. “Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline.” Cell stem cell (2013) 12:204-214), recent studies using heterochronic parabiosis indicate that cognitive changes elicited by blood are associated with corresponding changes in adult neurogenesis (Katsimpardi et al., “Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors,” Science (2014) 344:630-634; Villeda et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94). Consequently, we investigated whether decreased levels of adult hippocampal neurogenesis also accompanied cognitive impairments elicited by increased systemic exposure to B2M. Using immunohistochemical analysis we detected a significant decrease in the number of Doublecortin (Dcx)-positive newly born neurons (
FIGS. 1J ,K), and Mcm2-positive progenitors (FIG. 4A ) in the DG of mice systemically administrated exogenous B2M compared to mice injected with vehicle control. Consistent with changes in neurogenesis we detected a decrease in the number of proliferating cells having incorporated Bromodeoxyuridne (BrdU) in animals injected with B2M compared to vehicle (FIG. 4B ). These data indicate that systemic exposure to exogenous B2M is sufficient to decrease adult neurogenesis. - To determine whether systemic age-related changes in B2M levels were also accompanied by local changes within the brain, we measured B2M levels within the hippocampus of young and aged animals by Western blot analysis and detected an age-related increase in B2M protein (
FIG. 5A ). Subsequently, we asked whether systemic changes in the levels of B2M, elicited by heterochronic parabiosis, were also associated with corresponding local changes within the young hippocampus after exposure to an old systemic environment. We detected an increase in B2M protein expression in the hippocampal lysates of young heterochronic parabionts compared to young isochronic controls (FIG. 5B ). Together, these data show that age-related changes in B2M observed in the systemic environment are accompanied by corresponding changes within the brain. - To test the effect of local exposure to exogenous B2M on learning and memory we administered B2M or vehicle control by bilateral stereotaxic injections followed by cognitive testing using RAWM and contextual fear conditioning (
FIG. 5C ). All mice showed similar swim speeds (FIG. 6A ) and learning capacity (FIG. 5D ) during the training phase of the RAWM. During the testing phase animals receiving B2M committed significantly more errors in locating the target platform than animals receiving vehicle control (FIG. 5D ). During fear conditioning training no mice exhibited differences in baseline freezing time (FIG. 6B ). However, mice receiving B2M demonstrated decreased freezing time during contextual (FIG. 5E ), but not cued (FIG. 6C ), memory testing. These functional data indicate that local exposure to B2M in the DG impairs learning and memory. - To examine the effect of local exposure to exogenous B2M in the brain, we stereotaxically injected B2M into the right DG and vehicle control into the left contralateral DG of young adult mice. Local exposure of the DG to B2M resulted in a decrease in the number of Dcx-positive cells compared with the contralateral DG treated with vehicle control (
FIG. 5F ,G). Given B2M is an active component of the MHC I complex through non-covalent interactions on the cell surface, we next investigated whether the inhibitory effect of exogenous B2M on adult neurogenesis was mediated by MHC I cell surface expression. The transporter associated with antigen processing 1 (Tap1) protein is required for transport of MHC I molecules to the cell surface, and absence of Tap1 results in very few classical MHC I molecules reaching the cell surface (Boulanger & Shatz, “Immune signalling in neural development, synaptic plasticity and disease,” Nature reviews. Neuroscience (2004) 5:521-531; Shatz, “MHC class I: an unexpected role in neuronal plasticity.,” Neuron (2009) 64:40-45; Van Kaer at al., “TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells.,” Cell (1992) 71:1205-1214). Therefore, to test whether decreased surface MHC I expression could mitigate the inhibitory effect of exogenous B2M, we stereotaxically injected young adult Tap1 knock out mice (Tap1−/−) with B2M into the right DG and vehicle control into the left contralateral DG. No difference in the number of Dcx-positive cells was detected between the B2M treated DG compared to the control treated DG of TAP1−/− mice (FIG. 5F ,H). Consistent with previous reports (Laguna Goya et al., “Adult neurogenesis is unaffected by a functional knock-out of MHC class I in mice,” Neuroreport (2010) 21:349-353), we observed no differences in baseline levels of neurogenesis between young adult Tap1−/− and wild type (WT) littermates (FIG. 7A ). Together, these data suggest that increased local levels of exogenous B2M is sufficient to decrease adult neurogenesis in a classical MHC I dependent manner. - Next, we sought to investigate whether decreasing surface MHC I expression could also mitigate in part the negative effects of aged blood on adult neurogenesis elicited by heterochronic parabiosis (
FIG. 8A ). Consistent with previous reports (Katsimpardi et al., “Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.,” Science (2014) 344:630-634; Villeda et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function.,” Nature (2011) 477: 90-94), we observed a decrease in the number of Dcx-positive immature neurons (FIGS. 8B ,C), Tbr2-positive progenitors (FIGS. 9A ,B), and BrdU-positive proliferating cells (FIG. 8D ) in young wild type heterochronic compared to young wild type isochronic parabionts. In contrast, we did not detect robust changes in the levels of neurogenesis in young Tap1−/− heterochronic parabionts (FIGS. 8B-D ). As a control, no changes in neurogenesis were detected between young wild type and young Tap1−/− isochronic parabionts (FIGS. 7B-D ). Together, our data further substantiate the role of pro-aging factors as drivers of regenerative impairment in the adult brain, and furthermore implicate MHC I molecules in this process. - Lastly, we investigated the potential benefit abrogating endogenous B2M expression could have on the age-related cognitive decline observed during aging. We utilized B2M knockout mice (B2M−/−), which lack protein expression both in the systemic environment and locally within the brain. We assessed hippocampal-dependent learning and memory in young and aged B2M−/− and WT controls using RAWM and contextual fear conditioning. In young animals no difference in spatial learning and memory were observed between B2M−/− and WT controls during RAWM training or testing (
FIG. 10A ). Interestingly, aged B2M−/− mice showed enhanced spatial learning capacity during the training phase of the RAWM paradigm, as well as enhanced learning and memory for platform location during the testing phase of the task compared to WT controls (FIG. 10C ). Animals in each age group showed no differences in swim speed regardless of genotype (FIG. 11A ,D). During fear conditioning training, all mice exhibited similar baseline freezing independent of genotype (FIG. 11B ,E). Additionally, no difference in freezing was observed in young B2M−/− and WT mice during either contextual (FIG. 10B ) or cued fear conditioning (FIG. 11C ) paradigms. However, aged B2M−/− mice demonstrated significantly increased freezing in contextual (FIG. 10D ), but not cued (FIG. 11F ) memory testing compared to WT controls. Our data indicate absence of endogenous B2M ameliorates age-related impairments in hippocampal-dependent learning and memory in old animals further implicating B2M as a pro-aging factor mediating cognitive decline during aging. - Subsequently, we investigated whether absence of endogenous B2M could also counteract age-related decline in adult neurogenesis. We examined changes in neurogenesis in young and aged adult B2M−/− and WT littermates by immunohistochemical analysis. We observed that in young adult animals the absence of endogenous B2M expression had no effect on the number of Dcx-positive cells (
FIG. 10E ,F). Importantly, in aged animals we observed an almost 2-fold increase in the number of Dcx-positive newly born neurons in B2M−/− mice compared to wild type littermates (FIG. 10E ,G). Consistent with our Dcx data, we did not detect changes in proliferation by BrdU labeling in young animals regardless of B2M expression (FIG. 12A ). However, aged B2M−/− animals showed a significant increase in the number of BrdU-positive cells compared to WT controls (FIG. 12B ). Subsequently, we assessed neuronal differentiation and survival in B2M−/− mice using a long-term BrdU incorporation paradigm, in which mature differentiated neurons express both BrdU and the neuronal marker NeuN (FIG. 10H ). Young adult B2M−/− mice showed no differences in the percentage of cells expressing both BrdU and NeuN compared to their WT counterparts (FIG. 10I ); while aged adult B2M−/− mice showed a significant increase in the percentage of cells expressing both BrdU and NeuN compared to age matched WT littermates (FIG. 10J ). We detected no differences in astrocyte differentiation at any age quantified as the percentage of cells expressing BrdU and GFAP markers (FIG. 12C-E ). Together, these data indicate that loss of endogenous B2M enhances the levels of neurogenesis in the aged brain, but not the young brain, indicating an active role for B2M in the decline in regenerative capacity during aging. - B2M in concert with MHC I molecules continue to be demonstrated to have a unique involvement in the CNS (Lee et al., “Synapse elimination and learning rules co-regulated by MHC class I H2-Db.,” Nature (2014) 509:195-200; Boulanger & Shatz, “Immune signalling in neural development, synaptic plasticity and disease.,” Nature reviews. Neuroscience (2004) 5:521-531; Shatz, “MHC class I: an unexpected role in neuronal plasticity.,” Neuron (2009) 64:40-45; Huh et al., “Functional requirement for class I MHC in CNS development and plasticity.,” Science (2000) 290:2155-2159; Goddard et al., “Regulation of CNS synapses by neuronal MHC class I.,” Proceedings of the National Academy of Sciences of the United States of America (2007) 104:6828-6833; Glynn et al., “MHCI negatively regulates synapse density during the establishment of cortical connections.,” Nature neuroscience (2011) 14:442-451), with recent studies beginning to explore the curative effect of abrogating MHC I expression in brain injury models such as stroke (Adelson et al., “Neuroprotection from stroke in the absence of MHCI or PirB.” Neuron (2012) 73:1100-1107). However, the functional involvement of these molecules during aging in either the CNS or peripheral tissues had not yet been investigated. Our study thus elucidates a previously unrecognized role for B2M in the progression of age-related impairments in both cognitive and regenerative processes. Moreover, our study also implicates MHC I surface expression in mediating, in part, the negative effects of B2M and heterochronic parabiosis on regenerative function. Notably, human Genome-Wide Association studies (GWAS) have linked the MHC locus on chromosome 6p21 with degenerative diseases of aging, suggesting an active role for these molecules in age-dependent impairments (Jeck et al., “Review: a meta-analysis of GWAS and age-associated diseases.,” Aging cell (2012) 11:727-731). Our data now provide functional evidence for such an involvement in aging phenotypes. Our data provide mechanistic insight into how aging-related changes in the systemic environment drive impairments locally in the aged brain, and highlight the involvement of B2M and MHC I molecules in this process. From a translational perspective, our data show that age-related cognitive and regenerative dysfunction observed during aging could be ameliorated by targeting B2M at old age.
- Relative levels of beta2-microglobulin were determined in plasma samples of healthy male human donors of 18, 30, 45, 55, and 66 years of age by the SomaScan Proteomic Assay (Somalogic, Inc, Boulder, Colo.). For each age group, plasma from 40 individuals was analyzed as 8 pools of 5 individuals per pool. Statistical analysis was performed by two-sided Student's t-test of log-transformed values, and also by trend-analysis of untransformed data using the Jonckheere-Terpstra test. Observed changes were found to be highly significant with the p-value of the t-test being 1.1×10−4 (66 vs 18 year old) and the p-value for the JT-test being 1.3×10−7 (all age groups). (RFU refers to “relative fluorescence units” by SomaScan Proteomic Assay.) The results are graphically illustrated in
FIG. 13 . - Notwithstanding the appended clauses, the disclosure is also defined by the following clauses:
- 1. A method of treating an adult mammal for an aging-associated impairment, the method comprising:
-
- reducing the β2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the adult mammal for the aging-associated impairment.
2. The method according toClause 1, wherein the method comprises reducing systemic B2M of the mammal.
3. The method according toClause 2, wherein systemic B2M of the mammal is reduced by removing B2M from blood of the mammal.
4. The method according toClause 3, wherein the method comprises extra-corporally removing B2M from blood of the mammal.
5. The method according toClause 1, wherein the B2M level is reduced by administering to the mammal an effective amount of a B2M level reducing agent.
6. The method according toClause 5, wherein the B2M level reducing agent is a B2M binding agent.
7. The method according toClause 6, wherein the B2M binding agent comprises an antibody or binding fragment thereof.
8. The method according toClause 6, wherein the B2M binding agent comprises a small molecule.
9. The method according toClause 5, wherein the B2M level reducing agent comprises a B2M expression inhibitor agent.
10. The method according toClause 9, wherein the B2M expression inhibitory agent comprises a nucleic acid.
11. The method according to any of the preceding clauses, wherein the mammal is a primate.
12. The method according to Clause 11, wherein the primate is a human.
13. The method according to any of the preceding clauses, wherein the adult mammal is an elderly mammal.
14. The method according toClause 13, wherein the elderly mammal is a human that is 60 years or older.
15. The method according to any of the preceding clauses, wherein the aging-associated impairment comprises a cognitive impairment.
16. The method according to any of the preceding clauses, wherein the adult mammal suffers from an aging associated disease condition.
17. The method according to any of the preceding clauses, wherein the aging associated disease condition is a cognitive decline disease condition.
- reducing the β2-microglobulin (B2M) level in the mammal in a manner sufficient to treat the adult mammal for the aging-associated impairment.
- The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of the present invention is embodied by the appended claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/167,647 US20190106495A1 (en) | 2010-01-28 | 2018-10-23 | Methods and compositions for treating aging-associated impairments |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29899810P | 2010-01-28 | 2010-01-28 | |
PCT/US2011/022916 WO2011094535A2 (en) | 2010-01-28 | 2011-01-28 | Biomarkers of aging for detection and treatment of disorders |
US201213575437A | 2012-10-09 | 2012-10-09 | |
US14/280,939 US20140255424A1 (en) | 2010-01-28 | 2014-05-19 | Biomarkers of aging for detection and treatment of disorders |
US201562163222P | 2015-05-18 | 2015-05-18 | |
PCT/US2016/032907 WO2016187217A2 (en) | 2015-05-18 | 2016-05-17 | Methods and compositions for treating aging-associated impairments |
US201715574795A | 2017-11-16 | 2017-11-16 | |
US16/167,647 US20190106495A1 (en) | 2010-01-28 | 2018-10-23 | Methods and compositions for treating aging-associated impairments |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/574,795 Continuation US10487148B2 (en) | 2010-01-28 | 2016-05-17 | Methods and compositions for treating aging-associated impairments |
PCT/US2016/032907 Continuation WO2016187217A2 (en) | 2010-01-28 | 2016-05-17 | Methods and compositions for treating aging-associated impairments |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190106495A1 true US20190106495A1 (en) | 2019-04-11 |
Family
ID=65993829
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/574,795 Active US10487148B2 (en) | 2010-01-28 | 2016-05-17 | Methods and compositions for treating aging-associated impairments |
US16/167,647 Pending US20190106495A1 (en) | 2010-01-28 | 2018-10-23 | Methods and compositions for treating aging-associated impairments |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/574,795 Active US10487148B2 (en) | 2010-01-28 | 2016-05-17 | Methods and compositions for treating aging-associated impairments |
Country Status (1)
Country | Link |
---|---|
US (2) | US10487148B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7396681B2 (en) * | 2018-12-17 | 2023-12-12 | 株式会社夏目綜合研究所 | Brain disease diagnostic equipment |
Family Cites Families (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4708713A (en) | 1984-11-16 | 1987-11-24 | Anisa Medical, Inc. | Method and system for removing immunosuppressive components from the blood of mammals |
DE3887114D1 (en) | 1987-12-11 | 1994-02-24 | Akzo Nv | Biocompatible dialysis membrane made of cellulose with increased beta-2 microglobulin adsorption. |
JP3156082B2 (en) | 1989-03-21 | 2001-04-16 | アメリカ合衆国 | Matrix metalloproteinase inhibitor peptide |
US5240614A (en) | 1992-01-10 | 1993-08-31 | Baxter International Inc. | Process for removing unwanted materials from fluids and for producing biological products |
US6544761B2 (en) | 1994-12-13 | 2003-04-08 | Human Genome Sciences, Inc. | Human tissue inhibitor of metalloproteinase-4 |
GB9607287D0 (en) | 1996-04-09 | 1996-06-12 | British Biotech Pharm | Diagnosis method |
US5916202A (en) | 1996-08-30 | 1999-06-29 | Haswell; John N. | Umbilical cord blood collection |
US20020159995A1 (en) | 1997-07-30 | 2002-10-31 | Renal Tech International | Devices, systems, and methods for reducing levels of pro-inflammatory or anti-inflammatory stimulators or mediators in the blood, generated as a result of extracorporeal blood processing |
US6416487B1 (en) | 1997-07-30 | 2002-07-09 | Renal Tech International Llc | Method of removing beta-2 microglobulin from blood |
US5904663A (en) | 1997-07-30 | 1999-05-18 | Braverman; Andrew | Method of removing beta-2 microglobulin from blood |
AUPP790898A0 (en) | 1998-12-23 | 1999-01-28 | Life Therapeutics Limited | Renal dialysis |
AUPR748501A0 (en) | 2001-09-04 | 2001-09-27 | Life Therapeutics Limited | Renal dialysis |
AU1853600A (en) | 1999-01-06 | 2000-07-24 | Choong-Chin Liew | Method for the detection of gene transcripts in blood and uses thereof |
CA2358949A1 (en) | 1999-01-22 | 2000-07-27 | Robert M. Strom | Surface modified divinylbenzene resin having a hemocompatible coating |
UA35656C2 (en) | 1999-12-27 | 2001-04-16 | Олександр Миколайович Макаренко | Method for treating continuously progressive psychic diseases leading to dementia |
US7582292B2 (en) | 2000-02-26 | 2009-09-01 | Artecel, Inc. | Adipose tissue derived stromal cells for the treatment of neurological disorders |
US6946546B2 (en) | 2000-03-06 | 2005-09-20 | Cambridge Antibody Technology Limited | Human antibodies against eotaxin |
GB0015761D0 (en) | 2000-06-27 | 2000-08-16 | Univ Bristol | Polypeptide |
US6632174B1 (en) | 2000-07-06 | 2003-10-14 | Cognifit Ltd (Naiot) | Method and apparatus for testing and training cognitive ability |
US20020151064A1 (en) | 2001-02-07 | 2002-10-17 | Children's Hospital Medical Center | Regulation of CCR3 expression |
WO2003006006A1 (en) | 2001-07-09 | 2003-01-23 | The Regents Of The University Of California | Use of matrix metalloproteinase inhibitors to mitigate nerve damage |
WO2003025122A2 (en) | 2001-08-13 | 2003-03-27 | University Of Kentucky Research Foundation | Gene expression profile biomarkers and therapeutic targets for brain aging and age-related cognitive impairment |
US6906036B2 (en) | 2001-08-16 | 2005-06-14 | Kimberly-Clark Worldwide, Inc. | Anti-aging and wound healing compounds |
US7608406B2 (en) | 2001-08-20 | 2009-10-27 | Biosite, Inc. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
US8105580B2 (en) | 2001-12-07 | 2012-01-31 | Cytori Therapeutics, Inc. | Methods of using adipose derived stem cells to promote wound healing |
EP2221620B1 (en) | 2002-08-23 | 2013-10-02 | Bayer Pharma Aktiengesellschaft | Polypeptide biomarkers for diagnosing Alzheimer's disease |
EP1394549A1 (en) | 2002-08-23 | 2004-03-03 | Bayer HealthCare AG | Biomarkers for diagnosing Alzheimer's disease |
US20040127445A1 (en) | 2002-08-28 | 2004-07-01 | Chondrogene Limited | Beta-2 microglobulin (B2M) and B2M related gene products for the regulation of osteoarthritis pathogenesis and chondrocyte proliferation |
US20050244448A1 (en) | 2002-10-14 | 2005-11-03 | The Board Of Trustees Of The Leland Stanford Jr. University | Diagnosis and treatment of disorders of collagen and elastin metabolism |
US20040120937A1 (en) | 2002-12-19 | 2004-06-24 | Therapy Patent Corporation | Blood therapy process |
WO2004060425A2 (en) | 2002-12-27 | 2004-07-22 | Angiotech International Ag | Compositions and methods of using collagen and mmpi |
US7785601B2 (en) | 2002-12-31 | 2010-08-31 | Sygnis Bioscience Gmbh & Co. Kg | Methods of treating neurological conditions with hematopoietic growth factors |
GB0305133D0 (en) | 2003-03-06 | 2003-04-09 | Sinvent As | Product |
DK1608374T5 (en) | 2003-03-24 | 2010-01-25 | Axikin Pharmaceuticals Inc | 2-Phenoxy and 2-phenylsulfanylbenzenesulfonamide derivatives with CCR3 antagonistic activity for the treatment of asthma and other inflammatory or immunological diseases |
US20040254152A1 (en) | 2003-04-17 | 2004-12-16 | Monje Michelle L. | Prevention of deficits in neurogenesis with anti-inflammatory agents |
ES2411455T3 (en) | 2003-11-19 | 2013-07-05 | Rules-Based Medicine, Inc. | Procedure for diagnosis and monitoring of Alzheimer's disease |
US20060094064A1 (en) | 2003-11-19 | 2006-05-04 | Sandip Ray | Methods and compositions for diagnosis, stratification, and monitoring of alzheimer's disease and other neurological disorders in body fluids |
WO2005106492A2 (en) | 2004-04-30 | 2005-11-10 | Bayer Healthcare Ag | Diagnostics and therapeutics for diseases associated with c-c chemokine receptor 3 (ccr3) |
JP4908216B2 (en) | 2004-07-23 | 2012-04-04 | 株式会社カネカ | Adsorber for direct blood perfusion filled with adsorbent from which water-insoluble fine particles have been removed, and method for obtaining adsorbent for direct blood perfusion from which water-insoluble fine particles have been removed |
WO2006036928A2 (en) | 2004-09-27 | 2006-04-06 | Wayne State University | Inhibitors of matrix metalloproteinases to treat neurological disorders |
CA2590337C (en) | 2004-12-15 | 2017-07-11 | Neuralab Limited | Humanized amyloid beta antibodies for use in improving cognition |
CA2638892A1 (en) | 2005-03-18 | 2006-09-28 | Oregon Health & Science University | Recombinant mhc molecules useful for manipulation of antigen-specific t cells |
WO2007041245A2 (en) | 2005-09-29 | 2007-04-12 | Biogen Idec Ma Inc. | Biomarkers for multiple sclerosis and methods of use thereof |
WO2007059135A2 (en) | 2005-11-10 | 2007-05-24 | Satoris, Inc. | Methods of treating alzheimer's disease |
US20080125354A1 (en) | 2005-11-21 | 2008-05-29 | Florida Atlantic University | Selective inhibition of matrix metalloproteinases |
US7908090B2 (en) | 2005-11-30 | 2011-03-15 | The Board Of Trustees Of The Leland Stanford Junior University | Signatures for human aging |
EP1986657A4 (en) | 2006-02-16 | 2011-07-20 | Discogen Llc | Method of treating a subject suffering from degenerative disc disease using a matrix metalloprotease inhibitor |
US10344095B2 (en) | 2006-02-16 | 2019-07-09 | University Of Kentucky Research Foundation | CCR3 inhibition for ocular angiogenesis and macular degeneration |
JP2009149524A (en) | 2006-03-16 | 2009-07-09 | Kyushu Univ | Prophylactic and therapeutic agent for alzheimer's disease |
WO2007123976A2 (en) | 2006-04-18 | 2007-11-01 | The Board Of Trustees Of The Leland Stanford Junior University | Antibody profiling for determination of patient responsiveness |
US20080057590A1 (en) | 2006-06-07 | 2008-03-06 | Mickey Urdea | Markers associated with arteriovascular events and methods of use thereof |
US7851172B2 (en) | 2006-07-25 | 2010-12-14 | University Of Kentucky Research Foundation | Biomarkers of mild cognitive impairment and alzheimer's disease |
US7592009B2 (en) | 2006-10-10 | 2009-09-22 | Ecole Polytechnique Federale De Lausanne (Epfl) | Polypeptide ligands for targeting cartilage and methods of use thereof |
US8211310B2 (en) | 2006-11-20 | 2012-07-03 | Cytosorbents, Inc. | Size-selective polymer system |
WO2009008928A2 (en) | 2007-04-13 | 2009-01-15 | Stemnion, Inc. | Methods for treating nervous system injury and disease |
GB0710522D0 (en) | 2007-06-01 | 2007-07-11 | Royal Veterinary College The | Drug delivery system comprising matrix metalloproteinase inhibitors |
BRPI0815551A2 (en) | 2007-08-15 | 2015-02-18 | Univ South Florida | TREATMENT THROUGH HUCBC OF BETA-AMYLOID DISEASE |
WO2009051660A2 (en) | 2007-10-12 | 2009-04-23 | The Board Of Trustees Of The Leland Stanford Junior University | Compounds for activating tgf-beta signaling |
US20090227018A1 (en) | 2007-10-25 | 2009-09-10 | Revalesio Corporation | Compositions and methods for modulating cellular membrane-mediated intracellular signal transduction |
US20100310609A1 (en) | 2007-10-25 | 2010-12-09 | Revalesio Corporation | Compositions and methods for treatment of neurodegenerative diseases |
EP2216060B2 (en) | 2007-12-06 | 2021-03-17 | Asahi Kasei Medical Co., Ltd. | Porous hollow fiber membrane for blood treatment |
CN102223896A (en) | 2008-08-07 | 2011-10-19 | 西塞医疗中心 | Anti-beta-2-microglobulin agents and the use thereof |
WO2010041617A1 (en) | 2008-10-09 | 2010-04-15 | 公立大学法人横浜市立大学 | Fusion protein composed of matrix metalloproteinase-2 inhibitor peptide derived from amyloid-β precursor protein and tissue inhibitor of metalloproteinase-2 |
US20100124756A1 (en) | 2008-10-10 | 2010-05-20 | Sandip Ray | Collection of biomarkers for diagnosis and monitoring of alzheimer's disease in body fluids |
US20110117100A1 (en) | 2008-11-03 | 2011-05-19 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for diagnosis, stratification and treatment of amyloidogenic diseases |
WO2017120461A1 (en) | 2016-01-08 | 2017-07-13 | The Board Of Trustees Of The Leland Stanford Junior University | Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same |
WO2011094535A2 (en) | 2010-01-28 | 2011-08-04 | The Board Of Trustees Of The Leland Stanford Junior University | Biomarkers of aging for detection and treatment of disorders |
US20160208011A1 (en) | 2010-01-28 | 2016-07-21 | The Board Of Trustees Of The Leland Stanford Junior University | Ccr3 modulation in the treatment of aging-associated impairments, and compositions for practicing the same |
US20110202284A1 (en) | 2010-02-10 | 2011-08-18 | Mcreynolds Cristopher | Novel groups of biomarkers for diagnosing alzheimer's disease |
RU2428997C1 (en) | 2010-03-01 | 2011-09-20 | Федеральное государственное образовательное учреждение высшего профессионального образования Волгоградская государственная сельскохозяйственная академия | Method of obtaining medications from fetus umbilical cord |
AR080698A1 (en) | 2010-04-01 | 2012-05-02 | Imclone Llc | ANTIBODY OR FRAGMENT OF THE SAME THAT SPECIFICALLY LINKS THE VARIOUS OF HUMAN CSF -1R, PHARMACEUTICAL COMPOSITION THAT INCLUDES IT, ITS USE FOR THE MANUFACTURE OF A USEFUL MEDICINAL PRODUCT FOR THE TREATMENT OF CANCER AND METHOD TO DETERMINE IF A BASED SUBJECT MATTER AND |
BR112012027994B1 (en) | 2010-05-04 | 2021-10-13 | Five Prime Therapeutics, Inc | ANTIBODY, PHARMACEUTICAL COMPOSITION AND USE OF AN ANTIBODY |
US9161968B2 (en) | 2011-04-08 | 2015-10-20 | The Board Of Trustees Of The Leland Stanford Junior University | Methods of neuroprotection involving macrophage colony stimulating factor receptor agonists |
US9782457B2 (en) | 2011-10-07 | 2017-10-10 | Tissue Repair Company | Flowable formulations for tissue repair and regeneration |
RU2470677C1 (en) | 2011-10-19 | 2012-12-27 | Надежда Михайловна Цулая | Method for stimulation of repair and trophic skin processes |
WO2013063086A1 (en) | 2011-10-24 | 2013-05-02 | Intellect Neurosciences, Inc. | Compositions and methods for treatment of proteinopathies |
US20150079045A1 (en) | 2012-02-13 | 2015-03-19 | Wuyi Kong | Nprcps, pfdncs and uses thereof |
MX2014011186A (en) | 2012-03-20 | 2015-03-06 | Einstein Coll Med | Method of enhancing efficacy of blood transfusions. |
US20130302322A1 (en) | 2012-05-11 | 2013-11-14 | Five Prime Therapeutics, Inc. | Methods of treating conditions with antibodies that bind colony stimulating factor 1 receptor (csf1r) |
RU2635560C2 (en) | 2012-10-29 | 2017-11-14 | Чайна Петролеум Энд Кемикал Корпорейшн | Method of adsorption desulfurization of hydrocarbons and reactor apparatus for its implementation |
WO2015081166A1 (en) | 2013-11-26 | 2015-06-04 | University Of North Texas Health Science Center At Fort Worth | Personalized medicine approach for treating cognitive loss |
AU2014364182B2 (en) | 2013-12-09 | 2019-03-07 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for treating aging-associated conditions |
US10905779B2 (en) | 2013-12-09 | 2021-02-02 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for screening human blood products comprising plasma using immunocompromised rodent models |
AU2015247542A1 (en) | 2014-04-16 | 2016-11-24 | Blood Systems Research Institute | Method and composition for conferring neuroprotection |
EA035799B1 (en) | 2015-05-18 | 2020-08-12 | Зе Боард Оф Трастиз Оф Зе Леланд Стэнфорд Джуниор Юниверсити | Method of treating an adult mammal for an aging-associated impairment |
EA201890020A1 (en) | 2015-06-15 | 2018-05-31 | Зе Боард Оф Трастиз Оф Зе Леланд Стэнфорд Джуниор Юниверсити | METHODS AND COMPOSITIONS FOR THE TREATMENT OF ASSOCIATED WITH AGING STATES |
-
2016
- 2016-05-17 US US15/574,795 patent/US10487148B2/en active Active
-
2018
- 2018-10-23 US US16/167,647 patent/US20190106495A1/en active Pending
Non-Patent Citations (15)
Title |
---|
Casset et al. (2003) BBRC 307, 198-205 (Year: 2003) * |
Chen et al. J. Mol. Bio. (1999) 293, 865-881 (Year: 1999) * |
Culig et al., Aging Research Reviews, 78(2022): 101636. (Year: 2022) * |
Holm et al. (2007) 44, 1075-1084 (Year: 2007) * |
Ligand (biochemistry), Wikipedia [online]. Retrieved from <https://en.wikipedia.org/wiki/Ligand_(biochemistry)>. Retrieved on: 27 June 2023. (Year: 2023) * |
MacCallum et al. J. Mol. Biol. (1996) 262, 732-745 (Year: 1996) * |
Nissen et al., Clin. Exp. Immunol.(1987) 67:425-432. (Year: 1987) * |
Pascalis et al. The Journal of Immunology (2002) 169, 3076-3084 (Year: 2002) * |
Petrik D and Encinas JM (2019) Perspective: Of Mice and Men – How Widespread Is Adult Neurogenesis? Front. Neurosci. 13:923. (Year: 2019) * |
Ritzel et al., J Immunol. 2016 April 15; 196(8): 3318–3330. (Year: 2016) * |
Rudikoff et al (Proc Natl Acad Sci USA 1982 Vol 79 page 1979 (Year: 1982) * |
Smith et al., Nature Medicine, Vol. 21, No. 8: 932-937 (2015) (Year: 2015) * |
Spriggs et al., PNAS, 89:6070-6074, July 1992. (Year: 1992) * |
Vajdos et al. (2002) 320, 415-428 (Year: 2002) * |
Wu et al. J. Mol. Biol. (1999) 294, 151-162 (Year: 1999) * |
Also Published As
Publication number | Publication date |
---|---|
US10487148B2 (en) | 2019-11-26 |
US20180298102A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020210181B2 (en) | Methods and compositions for treating aging-associated impairments | |
US11912998B2 (en) | Method of treating aging-associated cognitive impairment by reducing CCR3 | |
US10626399B2 (en) | Methods of treating cognitive symptoms of an aging-associated impairment by modulating C-C chemokine receptor type 3 (CCR3) | |
Wang et al. | Nogo receptor impairs the clearance of fibril amyloid‐β by microglia and accelerates Alzheimer’s‐like disease progression | |
US20210171626A1 (en) | Methods and Compositions for Treating Aging-Associated Impairments with Trefoil Factor Family Member 2 Modulators | |
US20190106495A1 (en) | Methods and compositions for treating aging-associated impairments | |
US20180318379A1 (en) | Inhibition of triggering receptor expressed on myeloid cells 1 (trem1) to treat central nervous system disorders | |
US20210322422A1 (en) | Use of akt inhibitors in ophthalmology | |
US20210301013A1 (en) | Methods and Compositions for Treating Aging-Associated Impairments with Trefoil Factor Family Member 2 Modulators | |
EA045040B1 (en) | METHODS AND COMPOSITIONS FOR TREATING DISORDERS ASSOCIATED WITH AGING | |
AU2022274703A9 (en) | Methods and compositions for treating aging-associated impairments with trefoil factor family member 2 modulators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: ALKAHEST, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NIKOLICH, KAROLY;REEL/FRAME:062517/0455 Effective date: 20190626 Owner name: U.S. GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS, DISTRICT OF COLUMBIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WYSS-CORAY, ANTON;REEL/FRAME:062517/0563 Effective date: 20190330 Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WYSS-CORAY, ANTON;REEL/FRAME:062517/0563 Effective date: 20190330 Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VILLEDA, SAUL A.;REEL/FRAME:062517/0475 Effective date: 20221201 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS, DISTRICT OF COLUMBIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 62517 FRAME 563. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WYSS-CORAY, ANTON;REEL/FRAME:067924/0842 Effective date: 20190330 Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 62517 FRAME 563. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WYSS-CORAY, ANTON;REEL/FRAME:067924/0842 Effective date: 20190330 |