US20190086442A1 - Test coaxial connector - Google Patents

Test coaxial connector Download PDF

Info

Publication number
US20190086442A1
US20190086442A1 US16/192,578 US201816192578A US2019086442A1 US 20190086442 A1 US20190086442 A1 US 20190086442A1 US 201816192578 A US201816192578 A US 201816192578A US 2019086442 A1 US2019086442 A1 US 2019086442A1
Authority
US
United States
Prior art keywords
coaxial connector
probe
test
switch
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/192,578
Other versions
US10436816B2 (en
Inventor
Shinichi Kenzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Assigned to MURATA MANUFACTURING CO., LTD. reassignment MURATA MANUFACTURING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KENZAKI, SHINICHI
Publication of US20190086442A1 publication Critical patent/US20190086442A1/en
Application granted granted Critical
Publication of US10436816B2 publication Critical patent/US10436816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2442Contacts for co-operating by abutting resilient; resiliently-mounted with a single cantilevered beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/42Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches
    • H01R24/46Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches comprising switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/20Connectors or connections adapted for particular applications for testing or measuring purposes

Definitions

  • the present disclosure relates to a test coaxial connector, and more specifically, relates to a test coaxial connector that has a probe portion with a small height and that prevents breakage of a switch-equipped coaxial connector even when the test coaxial connector is not properly fitted to the switch-equipped coaxial connector.
  • a method for connecting an electronic device and a measuring instrument in measuring characteristics of the electronic device a method in which a switch-equipped coaxial connector provided to the electronic device and a test coaxial connector connected to the measuring instrument are fitted to each other, is widely used. More specifically, a switch-equipped coaxial connector is provided to a wiring portion of a board housed in an electronic device, the wiring portion being to be measured for electric characteristics. For example, in the case where the electronic device is a cellular phone, a switch-equipped coaxial connector is provided between a transmitting/receiving circuit formed on the board and an antenna by surface-mounting. The switch-equipped coaxial connector normally connects the transmitting/receiving circuit and the antenna.
  • the switch-equipped coaxial connector disconnects the transmitting/receiving circuit and the antenna from each other and newly connects the transmitting/receiving circuit and the test coaxial connector.
  • the transmitting/receiving circuit of the cellular phone and the measuring instrument are connected to each other, so that it is possible to measure characteristics of the cellular phone by the measuring instrument.
  • FIG. 6 shows a test coaxial connector 1000 disclosed in International Publication No. WO2010/113536.
  • the test coaxial connector 1000 has a structure in which a probe 102 is housed in a conductive housing 101 .
  • the probe 102 includes a conductive tubular barrel 103 , and a coil spring 104 and a plunger (central terminal) 105 that are housed in a tubular portion of the barrel 103 .
  • the barrel 103 and the plunger 105 are electrically conducted to each other.
  • An insulating bushing 106 is provided between the housing 101 and the probe 102 , whereby the housing 101 and the probe 102 are insulated from each other.
  • a coaxial cable 108 connected to a measuring instrument 107 is connected to the test coaxial connector 1000 . More specifically, a central conductor 108 a of the coaxial cable 108 is connected to the plunger 105 via the barrel 103 . In addition, a shield conductor 108 b of the coaxial cable 108 is connected to the housing 101 via a conductive adapter 109 .
  • the plunger 105 Since the coil spring 104 is provided in the tubular portion of the barrel 103 , the plunger 105 is retractable in the upward direction in the drawing.
  • the reason why the plunger 105 is configured to be retractable is to prevent the plunger 105 from breaking a switch-equipped coaxial connector (not shown) due to unnecessary force applied from the plunger 105 to the switch-equipped coaxial connector, when the test coaxial connector 1000 is not properly fitted to the switch-equipped coaxial connector. That is, when the test coaxial connector 1000 is not properly fitted to the switch-equipped coaxial connector, the plunger 105 retracts in the upward direction due to shrinkage of the coil spring 104 , thereby avoiding breakage of the switch-equipped coaxial connector.
  • the height of the probe 102 portion is large as indicated by reference sign H in FIG. 6 (reference sign H and a leader line therefor in FIG. 6 are added by the applicant for explanation, and are not shown in the drawing of International Publication No. WO2010/113536).
  • the reason why the height H of the probe 102 portion of the test coaxial connector 1000 is made large is as follows.
  • Characteristics of an electronic device are measured during manufacture of the electronic device or after completion of the electronic device, and, in some cases, another electronic component having a large height is mounted around a switch-equipped coaxial connector mounted on a board. In this case, if the height H of the probe 102 portion is not large, the other electronic component becomes an obstacle and thus the test coaxial connector 1000 may not be successfully fitted to the switch-equipped coaxial connector.
  • a case of the electronic device in which the board is housed is detached before the measurement in some cases.
  • a measurement hole is formed in the case in advance, and the probe 102 portion is inserted into the measurement hole before the measurement.
  • the height H of the probe 102 portion has to be large.
  • the height H of the probe 102 portion of the test coaxial connector 1000 is made large.
  • a test coaxial connector is fitted to a switch-equipped connector provided to a board housed in a case, a coaxial cable is drawn to the outside from a gap of the case, and characteristic measurement is conducted. For this measurement, the height of the probe portion of the test coaxial connector has to be small.
  • the test coaxial connector 1000 in order to decrease the height H of the probe 102 portion, first, it is necessary to decrease the length of the plunger (central terminal) 105 . Next, the other portion is desired to be made smaller, but, in the test coaxial connector 1000 , it is impossible to decrease the length of the tubular portion of the barrel 103 , since the coil spring 104 is housed in the tubular portion of the barrel 103 .
  • test coaxial connector 1000 it is difficult to decrease the height of the probe portion to such a degree that, while the function to prevent breakage of a switch-equipped coaxial connector when the test coaxial connector 1000 is not properly fitted to the switch-equipped coaxial connector is maintained, it is possible to fit the test coaxial connector 1000 to a switch-equipped connector provided to a board housed in a case and to conduct measurement.
  • the present disclosure has been made to provide a test coaxial connector that is fitted to a switch-equipped coaxial connector when being used, and includes a housing and a probe housed in the housing.
  • the probe is formed of one continuous structure having elasticity, the structure including a contact at or near an end portion thereof and including, at or near another end portion thereof, a connection portion to which a central conductor of a coaxial cable is to be connected.
  • a bent portion may be provided between the contact and the connection portion of the probe. In this case, it is possible to exhibit elasticity (spring property) by the bent portion.
  • a zigzag portion may be provided between the contact and the connection portion of the probe. In this case, it is possible to exhibit elasticity by the zigzag portion.
  • the probe may include a portion having a different diameter or thickness, between the contact and the connection portion. In this case, it is possible to exhibit elasticity by a portion having a small diameter or a portion having a small thickness.
  • the contact of the probe may be curled. In this case, it is possible to exhibit elasticity by the curled contact.
  • test coaxial connector of the present disclosure since the probe is formed from one continuous structure, it is possible to decrease the height of the probe portion. In addition, since the probe has elasticity, even when the test coaxial connector of the present disclosure is not properly fitted to the switch-equipped coaxial connector, the test coaxial connector does not break the switch-equipped coaxial connector.
  • FIG. 1A is a perspective view showing a test coaxial connector according to a first embodiment
  • FIG. 1B is an exploded perspective view showing the test coaxial connector
  • FIGS. 2A and 2B are each a perspective view showing a probe of the test coaxial connector
  • FIG. 3A is a perspective view showing a state before the test coaxial connector is fitted to a switch-equipped coaxial connector
  • FIG. 3B is a perspective view showing a state after the test coaxial connector is fitted to the switch-equipped coaxial connector
  • FIG. 4A is a cross-sectional view showing the state before the test coaxial connector is fitted to the switch-equipped coaxial connector
  • FIG. 4B is a cross-sectional view showing the state after the test coaxial connector is fitted to the switch-equipped coaxial connector
  • FIGS. 5A to 5E are cross-sectional views showing probes according to second to sixth embodiments, respectively.
  • FIG. 6 is a cross-sectional view showing a test coaxial connector disclosed in International Publication No. WO2010/113536.
  • each embodiment represents an embodiment of the present disclosure, and the present disclosure is not limited to the contents of the embodiments.
  • the contents described in different embodiments may be combined and implemented, and the implementation contents in that case are also included in the present disclosure.
  • the drawings are provided to help the understanding of the embodiments, and the drawings may not be necessarily illustrated strictly.
  • the ratios of dimensions of the illustrated components or the ratio of dimensions between the components may not correspond to the ratios of dimensions of those described in the specification.
  • the components described in the specification may be omitted in the drawings, or some of the components may be omitted in the drawings.
  • FIGS. 1A and 1B show a test coaxial connector 100 according to a first embodiment.
  • FIG. 1A is a perspective view of the test coaxial connector 100
  • FIG. 1B is an exploded perspective view of the test coaxial connector 100 .
  • the test coaxial connector 100 includes a conductive housing 1 .
  • the housing 1 is produced from, for example, beryllium copper.
  • a tubular fitting portion 1 a for fitting to a switch-equipped connector (not shown) is formed at a front portion of the housing 1 .
  • the test coaxial connector 100 includes a conductive probe (central terminal) 2 .
  • FIGS. 2A and 2B show the probe 2 .
  • FIG. 2A is a perspective view of the probe 2 as seen from the front side
  • FIG. 2B is a perspective view of the probe 2 as seen from the rear side.
  • the probe 2 is produced from, for example, one plate-shaped beryllium copper.
  • the probe 2 has a contact 2 a at a front portion thereof.
  • the probe 2 has a cut 2 b as a connection portion for connecting a central conductor 4 a of a later-described coaxial cable 4 , at a rear portion thereof.
  • a bent portion 2 c is provided between the contact 2 a and the cut 2 b of the probe 2 is provided by the probe 2 being bent at two locations. Since the bent portion 2 c is provided, the probe 2 exhibits elasticity (spring property).
  • the probe 2 is attached to an insulting member 3 formed from a resin. More specifically, a groove 3 a is formed on the insulting member 3 , and the probe 2 is press-fitted into the groove 3 a.
  • a tapered annular guide 3 b that is used for positioning in fitting the test coaxial connector 100 to the switch-equipped connector is further formed at a front portion thereof.
  • the insulting member 3 to which the probe 2 is attached is crimped with a claw 1 b provided in the housing 1 , and thereby attached to the housing 1 .
  • the coaxial cable 4 connected to a measuring instrument (not shown) is connected to the test coaxial connector 100 .
  • the coaxial cable 4 is configured to have a four-layer structure having the central conductor 4 a , a first insulating layer 4 b covering the central conductor 4 a , a shield conductor 4 c covering the first insulating layer 4 b , and a second insulating layer 4 d covering the shield conductor 4 c.
  • the central conductor 4 a of the coaxial cable 4 is fitted into the cut 2 b of the probe 2 and thereby fixed and electrically connected.
  • the shield conductor 4 c of the coaxial cable 4 is crimped with a claw 1 c provided in the housing 1 , and thereby fixed and electrically connected to the housing 1 .
  • the entire coaxial cable 4 is crimped with a claw 1 d provided in the housing 1 , and thereby fixed to the housing 1 .
  • the probe 2 is composed of only one structure without using a barrel or a coil spring, and thus it is possible to decrease the height H of the probe 2 portion shown in FIG. 1A .
  • the bent portion 2 c is provided by the probe 2 being bent at two locations, and thus the probe 2 has elasticity (spring property). Therefore, when the test coaxial connector 100 is not properly fitted to the switch-equipped coaxial connector, the contact 2 a of the probe 2 retracts in the upward direction owing to the elasticity, so that it is possible to avoid breakage of the switch-equipped coaxial connector.
  • test coaxial connector 100 having the above structure according to the present embodiment, for example, by the following method.
  • the central conductor 4 a of the coaxial cable 4 is fitted into the cut 2 b of the probe 2 , and thereby fixed and electrically connected.
  • the probe 2 is press-fitted into the groove 3 a of the insulting member 3 and thereby attached.
  • the insulting member 3 to which the probe 2 has been attached is crimped with the claw 1 b and thereby attached to the housing 1 .
  • the shield conductor 4 c of the coaxial cable 4 is crimped with the claw 1 c and thereby electrically connected to the housing 1 .
  • FIG. 3A is a perspective view showing a state before the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500 .
  • FIG. 3B is a perspective view showing a state after the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500 .
  • FIG. 4A is a cross-sectional view showing the state before the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500 .
  • FIG. 4B is a cross-sectional view showing the state after the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500 .
  • the reference signs for the components that are not relevant to the description in this part may be omitted.
  • the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500 .
  • the switch-equipped coaxial connector 500 is an element that is not included in the present disclosure.
  • the switch-equipped coaxial connector 500 is surface-mounted on a land electrode, which is formed on a board (not shown) housed in an electronic device, by means of solder reflow or the like.
  • the switch-equipped coaxial connector 500 includes a case 50 formed from a resin.
  • a first terminal electrode 53 , a second terminal electrode 54 , and a third terminal electrode 55 are formed on the bottom surface of the case 50 .
  • the first terminal electrode 53 is connected to a transmitting/receiving circuit of the electronic device.
  • the second terminal electrode 54 is connected to an antenna of the electronic device.
  • the third terminal electrode 55 is connected to ground of the electronic device.
  • a conductive and tubular fitting portion 56 for fitting to the fitting portion 1 a of the test coaxial connector 100 is formed on the upper surface of the switch-equipped coaxial connector 500 .
  • the fitting portion 56 is connected to the third terminal electrode 55 .
  • a movable terminal 57 and a fixed terminal 58 are disposed in a space within the fitting portion 56 .
  • the movable terminal 57 is formed so as to be integrated with the first terminal electrode 53 .
  • the fixed terminal 58 is formed so as to be integrated with the second terminal electrode 54 .
  • FIG. 4A when the test coaxial connector 100 is not fitted to the switch-equipped coaxial connector 500 , the movable terminal 57 and the fixed terminal 58 are connected to each other.
  • the transmitting/receiving circuit and the antenna of the electronic device are connected to each other via a path connecting the first terminal electrode 53 , the movable terminal 57 , the fixed terminal 58 , and the second terminal electrode 54 .
  • the transmitting/receiving circuit and the antenna of the electronic device become disconnected from each other, and the transmitting/receiving circuit and the measuring instrument become connected to each other via a path connecting the first terminal electrode 53 , the movable terminal 57 , the probe 2 , and the central conductor 4 a of the coaxial cable 4 .
  • the bent portion 2 c is formed by the probe 2 being bent at two locations, so that the probe 2 has elasticity (spring property).
  • the probe 2 retracts upward at the time when the probe 2 comes into contact with a portion other than the movable terminal 57 of the switch-equipped coaxial connector 500 , so that breakage of the switch-equipped coaxial connector 500 by the probe 2 is prevented.
  • FIG. 5 shows a probe 22 of a test coaxial connector according to the second embodiment.
  • a zigzag portion 22 c is formed between a contact 22 a and a cut 22 b for connecting the shield conductor 4 c of the coaxial cable 4 .
  • the probe 22 has elasticity (spring property) since the zigzag portion 22 c is formed in the probe 2 .
  • FIG. 5B shows a probe 32 of a test coaxial connector according to the third embodiment.
  • a rounded bent portion 32 c is formed between a contact 32 a and a cut 32 b .
  • the probe 32 has elasticity since the rounded bent portion 32 c is formed in the probe 22 .
  • FIG. 5C shows a probe 42 of a test coaxial connector according to the fourth embodiment.
  • a contact 42 a is formed in a curled shape.
  • the probe 42 has elasticity since the contact 42 a is formed in a curled shape.
  • the contact 42 a of the probe 42 is not formed at an end portion of the probe 42 but formed near the end portion.
  • FIG. 5D shows a probe 52 of a test coaxial connector according to the fifth embodiment.
  • a bent portion 52 c is formed between a contact 52 a and a cut 52 b , and the contact 52 a is formed in a curled shape.
  • the probe 52 has elasticity since the bent portion 52 c is formed in the probe 52 and the contact 52 a is formed in a curled shape.
  • the contact 52 a of the probe 52 is not formed at an end portion of the probe 52 but formed near the end portion.
  • FIG. 5E shows a probe 62 of a test coaxial connector according to the sixth embodiment.
  • a bent portion 62 c is formed between a contact 62 a and a cut 62 b , and the thickness of the bent portion 62 c is smaller than that of the other portions.
  • the probe 62 has elasticity since the bent portion 62 c is formed in the probe 62 and the thickness of the bent portion 62 c is smaller.
  • the probes 2 to 62 are formed of plate-like structures, but may be formed of rod-like structures instead.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

A test coaxial connector has a probe portion with a small height, and prevents breakage of a switch-equipped coaxial connector even when the test coaxial connector is not properly fitted to the switch-equipped coaxial connector. The test coaxial connector includes a housing and a probe housed in the housing. The probe is formed of one continuous structure having elasticity, the structure including a contact at or near an end portion of the structure and including, at or near another end portion of the structure, a connection portion to which a central conductor of a coaxial cable is to be connected.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of priority to International Patent Application No. PCT/JP2017/018593, filed May 17, 2017, and to Japanese Patent Application No. 2016-105189, filed May 26, 2016, the entire contents of each are incorporated herein by reference.
  • BACKGROUND Technical Field
  • The present disclosure relates to a test coaxial connector, and more specifically, relates to a test coaxial connector that has a probe portion with a small height and that prevents breakage of a switch-equipped coaxial connector even when the test coaxial connector is not properly fitted to the switch-equipped coaxial connector.
  • Background Art
  • As a method for connecting an electronic device and a measuring instrument in measuring characteristics of the electronic device, a method in which a switch-equipped coaxial connector provided to the electronic device and a test coaxial connector connected to the measuring instrument are fitted to each other, is widely used. More specifically, a switch-equipped coaxial connector is provided to a wiring portion of a board housed in an electronic device, the wiring portion being to be measured for electric characteristics. For example, in the case where the electronic device is a cellular phone, a switch-equipped coaxial connector is provided between a transmitting/receiving circuit formed on the board and an antenna by surface-mounting. The switch-equipped coaxial connector normally connects the transmitting/receiving circuit and the antenna.
  • When the test coaxial connector is fitted to the switch-equipped coaxial connector, the switch-equipped coaxial connector disconnects the transmitting/receiving circuit and the antenna from each other and newly connects the transmitting/receiving circuit and the test coaxial connector. As a result, the transmitting/receiving circuit of the cellular phone and the measuring instrument are connected to each other, so that it is possible to measure characteristics of the cellular phone by the measuring instrument.
  • Such a test coaxial connector is disclosed in International Publication No. WO2010/113536. FIG. 6 shows a test coaxial connector 1000 disclosed in International Publication No. WO2010/113536.
  • The test coaxial connector 1000 has a structure in which a probe 102 is housed in a conductive housing 101. The probe 102 includes a conductive tubular barrel 103, and a coil spring 104 and a plunger (central terminal) 105 that are housed in a tubular portion of the barrel 103. The barrel 103 and the plunger 105 are electrically conducted to each other.
  • An insulating bushing 106 is provided between the housing 101 and the probe 102, whereby the housing 101 and the probe 102 are insulated from each other. A coaxial cable 108 connected to a measuring instrument 107 is connected to the test coaxial connector 1000. More specifically, a central conductor 108 a of the coaxial cable 108 is connected to the plunger 105 via the barrel 103. In addition, a shield conductor 108 b of the coaxial cable 108 is connected to the housing 101 via a conductive adapter 109.
  • Since the coil spring 104 is provided in the tubular portion of the barrel 103, the plunger 105 is retractable in the upward direction in the drawing. The reason why the plunger 105 is configured to be retractable is to prevent the plunger 105 from breaking a switch-equipped coaxial connector (not shown) due to unnecessary force applied from the plunger 105 to the switch-equipped coaxial connector, when the test coaxial connector 1000 is not properly fitted to the switch-equipped coaxial connector. That is, when the test coaxial connector 1000 is not properly fitted to the switch-equipped coaxial connector, the plunger 105 retracts in the upward direction due to shrinkage of the coil spring 104, thereby avoiding breakage of the switch-equipped coaxial connector.
  • In the test coaxial connector 1000, generally, the height of the probe 102 portion is large as indicated by reference sign H in FIG. 6 (reference sign H and a leader line therefor in FIG. 6 are added by the applicant for explanation, and are not shown in the drawing of International Publication No. WO2010/113536). The reason why the height H of the probe 102 portion of the test coaxial connector 1000 is made large is as follows.
  • Characteristics of an electronic device are measured during manufacture of the electronic device or after completion of the electronic device, and, in some cases, another electronic component having a large height is mounted around a switch-equipped coaxial connector mounted on a board. In this case, if the height H of the probe 102 portion is not large, the other electronic component becomes an obstacle and thus the test coaxial connector 1000 may not be successfully fitted to the switch-equipped coaxial connector.
  • In addition, when characteristics of the electronic device are measured after completion of the electronic device, a case of the electronic device in which the board is housed is detached before the measurement in some cases. In some cases, a measurement hole is formed in the case in advance, and the probe 102 portion is inserted into the measurement hole before the measurement. In order to insert the probe 102 portion into the measurement hole and conduct the measurement, the height H of the probe 102 portion has to be large.
  • Due to the above reason, the height H of the probe 102 portion of the test coaxial connector 1000 is made large.
  • SUMMARY
  • In measurement of characteristics of the electronic device, in order to achieve high measurement accuracy, it is necessary to conduct the measurement under the same conditions as in an actual use state. Therefore, in a state where the case of the electronic device is detached, high measurement accuracy is not achieved in some cases. Also, when a measurement hole is provided in the case for measurement of characteristics, a problem that waterproofness of the electronic device is not maintained, a problem that the measurement hole is not preferable in terms of appearance, and the like arise.
  • Therefore, a method is conceivable in which a test coaxial connector is fitted to a switch-equipped connector provided to a board housed in a case, a coaxial cable is drawn to the outside from a gap of the case, and characteristic measurement is conducted. For this measurement, the height of the probe portion of the test coaxial connector has to be small.
  • For example, in the test coaxial connector 1000, in order to decrease the height H of the probe 102 portion, first, it is necessary to decrease the length of the plunger (central terminal) 105. Next, the other portion is desired to be made smaller, but, in the test coaxial connector 1000, it is impossible to decrease the length of the tubular portion of the barrel 103, since the coil spring 104 is housed in the tubular portion of the barrel 103.
  • In addition, in order to decrease the height H of the probe 102 portion, it is also conceivable to omit the coil spring 104. However, in this case, if the test coaxial connector 1000 is not properly fitted to the switch-equipped coaxial connector, the switch-equipped coaxial connector is broken. Thus, it is impossible to adopt omission of the coil spring 104.
  • Specifically, in the structure of the existing test coaxial connector 1000, it is difficult to decrease the height of the probe portion to such a degree that, while the function to prevent breakage of a switch-equipped coaxial connector when the test coaxial connector 1000 is not properly fitted to the switch-equipped coaxial connector is maintained, it is possible to fit the test coaxial connector 1000 to a switch-equipped connector provided to a board housed in a case and to conduct measurement.
  • The present disclosure has been made to provide a test coaxial connector that is fitted to a switch-equipped coaxial connector when being used, and includes a housing and a probe housed in the housing. The probe is formed of one continuous structure having elasticity, the structure including a contact at or near an end portion thereof and including, at or near another end portion thereof, a connection portion to which a central conductor of a coaxial cable is to be connected.
  • A bent portion may be provided between the contact and the connection portion of the probe. In this case, it is possible to exhibit elasticity (spring property) by the bent portion.
  • A zigzag portion may be provided between the contact and the connection portion of the probe. In this case, it is possible to exhibit elasticity by the zigzag portion.
  • The probe may include a portion having a different diameter or thickness, between the contact and the connection portion. In this case, it is possible to exhibit elasticity by a portion having a small diameter or a portion having a small thickness.
  • The contact of the probe may be curled. In this case, it is possible to exhibit elasticity by the curled contact.
  • In the test coaxial connector of the present disclosure, since the probe is formed from one continuous structure, it is possible to decrease the height of the probe portion. In addition, since the probe has elasticity, even when the test coaxial connector of the present disclosure is not properly fitted to the switch-equipped coaxial connector, the test coaxial connector does not break the switch-equipped coaxial connector.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view showing a test coaxial connector according to a first embodiment, and FIG. 1B is an exploded perspective view showing the test coaxial connector;
  • FIGS. 2A and 2B are each a perspective view showing a probe of the test coaxial connector;
  • FIG. 3A is a perspective view showing a state before the test coaxial connector is fitted to a switch-equipped coaxial connector, and FIG. 3B is a perspective view showing a state after the test coaxial connector is fitted to the switch-equipped coaxial connector;
  • FIG. 4A is a cross-sectional view showing the state before the test coaxial connector is fitted to the switch-equipped coaxial connector, and FIG. 4B is a cross-sectional view showing the state after the test coaxial connector is fitted to the switch-equipped coaxial connector;
  • FIGS. 5A to 5E are cross-sectional views showing probes according to second to sixth embodiments, respectively; and
  • FIG. 6 is a cross-sectional view showing a test coaxial connector disclosed in International Publication No. WO2010/113536.
  • DETAILED DESCRIPTION
  • Hereinafter, modes for carrying out the present disclosure will be described with reference to the drawings.
  • Each embodiment represents an embodiment of the present disclosure, and the present disclosure is not limited to the contents of the embodiments. In addition, the contents described in different embodiments may be combined and implemented, and the implementation contents in that case are also included in the present disclosure. The drawings are provided to help the understanding of the embodiments, and the drawings may not be necessarily illustrated strictly. For example, the ratios of dimensions of the illustrated components or the ratio of dimensions between the components may not correspond to the ratios of dimensions of those described in the specification. The components described in the specification may be omitted in the drawings, or some of the components may be omitted in the drawings.
  • FIRST EMBODIMENT
  • FIGS. 1A and 1B show a test coaxial connector 100 according to a first embodiment. FIG. 1A is a perspective view of the test coaxial connector 100, and FIG. 1B is an exploded perspective view of the test coaxial connector 100.
  • The test coaxial connector 100 includes a conductive housing 1. The housing 1 is produced from, for example, beryllium copper. A tubular fitting portion 1 a for fitting to a switch-equipped connector (not shown) is formed at a front portion of the housing 1.
  • The test coaxial connector 100 includes a conductive probe (central terminal) 2. FIGS. 2A and 2B show the probe 2. FIG. 2A is a perspective view of the probe 2 as seen from the front side, and FIG. 2B is a perspective view of the probe 2 as seen from the rear side.
  • The probe 2 is produced from, for example, one plate-shaped beryllium copper. The probe 2 has a contact 2 a at a front portion thereof. In addition, the probe 2 has a cut 2 b as a connection portion for connecting a central conductor 4 a of a later-described coaxial cable 4, at a rear portion thereof. Furthermore, a bent portion 2 c is provided between the contact 2 a and the cut 2 b of the probe 2 is provided by the probe 2 being bent at two locations. Since the bent portion 2 c is provided, the probe 2 exhibits elasticity (spring property).
  • The probe 2 is attached to an insulting member 3 formed from a resin. More specifically, a groove 3 a is formed on the insulting member 3, and the probe 2 is press-fitted into the groove 3 a.
  • On the insulting member 3, a tapered annular guide 3 b that is used for positioning in fitting the test coaxial connector 100 to the switch-equipped connector is further formed at a front portion thereof. The insulting member 3 to which the probe 2 is attached is crimped with a claw 1 b provided in the housing 1, and thereby attached to the housing 1.
  • The coaxial cable 4 connected to a measuring instrument (not shown) is connected to the test coaxial connector 100. The coaxial cable 4 is configured to have a four-layer structure having the central conductor 4 a, a first insulating layer 4 b covering the central conductor 4 a, a shield conductor 4 c covering the first insulating layer 4 b, and a second insulating layer 4 d covering the shield conductor 4 c.
  • The central conductor 4 a of the coaxial cable 4 is fitted into the cut 2 b of the probe 2 and thereby fixed and electrically connected. The shield conductor 4 c of the coaxial cable 4 is crimped with a claw 1 c provided in the housing 1, and thereby fixed and electrically connected to the housing 1. Furthermore, the entire coaxial cable 4 is crimped with a claw 1 d provided in the housing 1, and thereby fixed to the housing 1.
  • In the test coaxial connector 100 having the above structure according to the present embodiment, the probe 2 is composed of only one structure without using a barrel or a coil spring, and thus it is possible to decrease the height H of the probe 2 portion shown in FIG. 1A. In addition, in the test coaxial connector 100, the bent portion 2 c is provided by the probe 2 being bent at two locations, and thus the probe 2 has elasticity (spring property). Therefore, when the test coaxial connector 100 is not properly fitted to the switch-equipped coaxial connector, the contact 2 a of the probe 2 retracts in the upward direction owing to the elasticity, so that it is possible to avoid breakage of the switch-equipped coaxial connector.
  • It is possible to produce the test coaxial connector 100 having the above structure according to the present embodiment, for example, by the following method.
  • First, the central conductor 4 a of the coaxial cable 4 is fitted into the cut 2 b of the probe 2, and thereby fixed and electrically connected.
  • Next, the probe 2 is press-fitted into the groove 3 a of the insulting member 3 and thereby attached.
  • Next, the insulting member 3 to which the probe 2 has been attached is crimped with the claw 1 b and thereby attached to the housing 1.
  • Next, the shield conductor 4 c of the coaxial cable 4 is crimped with the claw 1 c and thereby electrically connected to the housing 1.
  • Finally, the entire coaxial cable 4 is crimped with the claw 1 d and thereby attached to the housing 1, whereby the test coaxial connector 100 is completed.
  • Next, an example of a method for using the test coaxial connector 100, that is, an example of a method for fitting the test coaxial connector 100 to a switch-equipped coaxial connector (receptacle) 500, will be described with reference to FIGS. 3A, 3B, 4A, and 4B. FIG. 3A is a perspective view showing a state before the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500. FIG. 3B is a perspective view showing a state after the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500. FIG. 4A is a cross-sectional view showing the state before the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500. FIG. 4B is a cross-sectional view showing the state after the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500. In the drawings, the reference signs for the components that are not relevant to the description in this part may be omitted.
  • The test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500. The switch-equipped coaxial connector 500 is an element that is not included in the present disclosure. The switch-equipped coaxial connector 500 is surface-mounted on a land electrode, which is formed on a board (not shown) housed in an electronic device, by means of solder reflow or the like.
  • The switch-equipped coaxial connector 500 includes a case 50 formed from a resin. A first terminal electrode 53, a second terminal electrode 54, and a third terminal electrode 55 are formed on the bottom surface of the case 50. The first terminal electrode 53 is connected to a transmitting/receiving circuit of the electronic device. The second terminal electrode 54 is connected to an antenna of the electronic device. The third terminal electrode 55 is connected to ground of the electronic device.
  • A conductive and tubular fitting portion 56 for fitting to the fitting portion 1 a of the test coaxial connector 100 is formed on the upper surface of the switch-equipped coaxial connector 500. The fitting portion 56 is connected to the third terminal electrode 55.
  • In a space within the fitting portion 56, a movable terminal 57 and a fixed terminal 58 are disposed. The movable terminal 57 is formed so as to be integrated with the first terminal electrode 53. In addition, the fixed terminal 58 is formed so as to be integrated with the second terminal electrode 54. As shown in FIG. 4A, when the test coaxial connector 100 is not fitted to the switch-equipped coaxial connector 500, the movable terminal 57 and the fixed terminal 58 are connected to each other. As a result, when the test coaxial connector 100 is not fitted to the switch-equipped coaxial connector 500, the transmitting/receiving circuit and the antenna of the electronic device are connected to each other via a path connecting the first terminal electrode 53, the movable terminal 57, the fixed terminal 58, and the second terminal electrode 54.
  • Also, as shown in FIG. 4B, when the fitting portion 56 is fitted to the fitting portion 1 a such that the test coaxial connector 100 is fitted to the switch-equipped coaxial connector 500, the contact 2 a of the probe 2 presses down the movable terminal 57, so that the movable terminal 57 and the fixed terminal 58 become disconnected from each other and the movable terminal 57 and the probe 2 become connected to each other. As a result, the transmitting/receiving circuit and the antenna of the electronic device become disconnected from each other, and the transmitting/receiving circuit and the measuring instrument become connected to each other via a path connecting the first terminal electrode 53, the movable terminal 57, the probe 2, and the central conductor 4 a of the coaxial cable 4.
  • As described above, in the probe 2 of the present embodiment, the bent portion 2 c is formed by the probe 2 being bent at two locations, so that the probe 2 has elasticity (spring property). Thus, if the positions of the switch-equipped coaxial connector 500 and the test coaxial connector 100 are displaced such that the switch-equipped coaxial connector 500 and the test coaxial connector 100 are not properly fitted to each other, the probe 2 retracts upward at the time when the probe 2 comes into contact with a portion other than the movable terminal 57 of the switch-equipped coaxial connector 500, so that breakage of the switch-equipped coaxial connector 500 by the probe 2 is prevented.
  • Hereinafter, second to sixth embodiments will be described. In each of the second to sixth embodiments, the shape of the probe 2 of the test coaxial connector 100 according to the first embodiment is changed. The other components of the second to sixth embodiments are the same as those of the first embodiment. Therefore, only the probe is shown in the drawing showing each embodiment.
  • SECOND EMBODIMENT
  • FIG. 5 shows a probe 22 of a test coaxial connector according to the second embodiment.
  • In the probe 22, a zigzag portion 22 c is formed between a contact 22 a and a cut 22 b for connecting the shield conductor 4 c of the coaxial cable 4. The probe 22 has elasticity (spring property) since the zigzag portion 22 c is formed in the probe 2.
  • THIRD EMBODIMENT
  • FIG. 5B shows a probe 32 of a test coaxial connector according to the third embodiment.
  • In the probe 32, a rounded bent portion 32 c is formed between a contact 32 a and a cut 32 b. The probe 32 has elasticity since the rounded bent portion 32 c is formed in the probe 22.
  • FOURTH EMBODIMENT
  • FIG. 5C shows a probe 42 of a test coaxial connector according to the fourth embodiment.
  • In the probe 42, a contact 42 a is formed in a curled shape. The probe 42 has elasticity since the contact 42 a is formed in a curled shape. The contact 42 a of the probe 42 is not formed at an end portion of the probe 42 but formed near the end portion.
  • FIFTH EMBODIMENT
  • FIG. 5D shows a probe 52 of a test coaxial connector according to the fifth embodiment.
  • In the probe 52, a bent portion 52 c is formed between a contact 52 a and a cut 52 b, and the contact 52 a is formed in a curled shape. The probe 52 has elasticity since the bent portion 52 c is formed in the probe 52 and the contact 52 a is formed in a curled shape. The contact 52 a of the probe 52 is not formed at an end portion of the probe 52 but formed near the end portion.
  • SIXTH EMBODIMENT
  • FIG. 5E shows a probe 62 of a test coaxial connector according to the sixth embodiment.
  • In the probe 62, a bent portion 62 c is formed between a contact 62 a and a cut 62 b, and the thickness of the bent portion 62 c is smaller than that of the other portions. The probe 62 has elasticity since the bent portion 62 c is formed in the probe 62 and the thickness of the bent portion 62 c is smaller.
  • The embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above contents, and various modifications may be made according to the principles of the present disclosure.
  • For example, in the first to sixth embodiments, the probes 2 to 62 are formed of plate-like structures, but may be formed of rod-like structures instead.

Claims (8)

What is claimed is:
1. A test L-shaped coaxial connector which is fitted to a switch-equipped coaxial connector when being used, the test L-shaped coaxial connector comprising:
a housing;
an insulator attached to the housing; and
a probe housed in the housing, wherein
the probe is formed of one continuous structure having elasticity, the structure including a contact at or near an end portion thereof and including, at or near another end portion thereof, a connection portion to which a central conductor of a coaxial cable is to be connected,
a bent portion is provided between the contact and the connection portion of the probe by the probe being bent at least at two locations, and
a portion between the connection portion and the bent portion is in contact with the insulator in a direction opposite to a direction of fitting to the switch-equipped coaxial connector.
2. The test L-shaped coaxial connector according to claim 1, wherein a zigzag portion is provided between the contact and the connection portion of the probe.
3. The test L-shaped coaxial connector according to claim 1, wherein the probe includes a portion having a different diameter or thickness, between the contact and the connection portion.
4. The test L-shaped coaxial connector according to claim 1, wherein the contact of the probe is curled.
5. The test L-shaped coaxial connector according to claim 2, wherein the probe includes a portion having a different diameter or thickness, between the contact and the connection portion.
6. The test L-shaped coaxial connector according to claim 2, wherein the contact of the probe is curled.
7. The test L-shaped coaxial connector according to claim 3, wherein the contact of the probe is curled.
8. The test L-shaped coaxial connector according to claim 5, wherein the contact of the probe is curled.
US16/192,578 2016-05-26 2018-11-15 Test coaxial connector Active US10436816B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016105189 2016-05-26
JP2016-105189 2016-05-26
PCT/JP2017/018593 WO2017204062A1 (en) 2016-05-26 2017-05-17 Coaxial connector for inspection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018593 Continuation WO2017204062A1 (en) 2016-05-26 2017-05-17 Coaxial connector for inspection

Publications (2)

Publication Number Publication Date
US20190086442A1 true US20190086442A1 (en) 2019-03-21
US10436816B2 US10436816B2 (en) 2019-10-08

Family

ID=60411270

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/192,578 Active US10436816B2 (en) 2016-05-26 2018-11-15 Test coaxial connector

Country Status (3)

Country Link
US (1) US10436816B2 (en)
CN (1) CN209570612U (en)
WO (1) WO2017204062A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910739B2 (en) * 2018-12-21 2021-02-02 Hirose Electric Co., Ltd. Coaxial cable connector provided with a housing comprising paired crimping pieces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065158A (en) * 1992-02-28 1994-01-14 Sprecher Energ Ag Winding method for winding-energy storing spring in driving mechanism of high-voltage or medium-voltage circuit breaker and circuit breaker for performing winding method thereof
JP2004362832A (en) * 2003-06-02 2004-12-24 Sumitomo Wiring Syst Ltd Terminal fitting
JP2008198532A (en) * 2007-02-14 2008-08-28 Itt Mfg Enterp Inc Connector for ffc/fpc
JP2011119174A (en) * 2009-12-07 2011-06-16 Hirose Electric Co Ltd Antenna installation method, and coaxial connector used for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584689Y2 (en) * 1992-06-23 1998-11-05 本多通信工業株式会社 Thin coaxial connector
FR2828022B1 (en) * 2001-07-27 2003-11-21 Framatome Connectors Int INTEGRATED ASSEMBLY COMPRISING AN ANTENNA AND A SWITCH
JP2007139712A (en) * 2005-11-22 2007-06-07 Nhk Spring Co Ltd Probe holder and probe unit
KR101183809B1 (en) 2009-04-01 2012-09-17 가부시키가이샤 무라타 세이사쿠쇼 Coaxial connector for inspection
JP2011106980A (en) * 2009-11-18 2011-06-02 Advantest Corp Probe card

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065158A (en) * 1992-02-28 1994-01-14 Sprecher Energ Ag Winding method for winding-energy storing spring in driving mechanism of high-voltage or medium-voltage circuit breaker and circuit breaker for performing winding method thereof
JP2004362832A (en) * 2003-06-02 2004-12-24 Sumitomo Wiring Syst Ltd Terminal fitting
JP2008198532A (en) * 2007-02-14 2008-08-28 Itt Mfg Enterp Inc Connector for ffc/fpc
JP2011119174A (en) * 2009-12-07 2011-06-16 Hirose Electric Co Ltd Antenna installation method, and coaxial connector used for the same
US8414328B2 (en) * 2009-12-07 2013-04-09 Hirose Electric Co., Ltd. Method of installing antenna and coaxial connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910739B2 (en) * 2018-12-21 2021-02-02 Hirose Electric Co., Ltd. Coaxial cable connector provided with a housing comprising paired crimping pieces

Also Published As

Publication number Publication date
US10436816B2 (en) 2019-10-08
WO2017204062A1 (en) 2017-11-30
CN209570612U (en) 2019-11-01

Similar Documents

Publication Publication Date Title
US9172194B2 (en) Coaxial connector plug
CN107148575B (en) Probe needle
US7909613B2 (en) Coaxial connecting device
US8668521B2 (en) Coaxial connector
US10700461B2 (en) Coaxial connector with an outer conductor part having a rear plate part
US8007325B2 (en) Cable connecting apparatus
KR20060052285A (en) Method of manufacturing inspection unit
CN103138084A (en) Coaxial connector plug and manufacturing method thereof
US9214751B2 (en) Coaxial connector plug and coaxial connector receptacle
JP2014123482A (en) Coaxial connector for inspection
US20080068276A1 (en) Antenna device
JP2012099246A (en) Coaxial connector for inspection, and probe
US10436816B2 (en) Test coaxial connector
US10158185B2 (en) Connector assembly
US9281640B2 (en) Connector
US9716353B2 (en) Coaxial connector
CN107959199B (en) Mounting structure of coaxial connector
US20160276788A1 (en) Connection device and reception device
KR101910293B1 (en) Connector
US9634443B2 (en) Connector and contact
KR20180054230A (en) Coaxial connector plug and RF connector including the same
US11058016B2 (en) Connector and connector manufacturing method
JPH076828A (en) Coaxial connector device
JP2006140028A (en) Connector and connection method for cable

Legal Events

Date Code Title Description
AS Assignment

Owner name: MURATA MANUFACTURING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KENZAKI, SHINICHI;REEL/FRAME:047519/0053

Effective date: 20181101

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4