US20190055550A1 - LNA-G Process - Google Patents

LNA-G Process Download PDF

Info

Publication number
US20190055550A1
US20190055550A1 US15/771,223 US201615771223A US2019055550A1 US 20190055550 A1 US20190055550 A1 US 20190055550A1 US 201615771223 A US201615771223 A US 201615771223A US 2019055550 A1 US2019055550 A1 US 2019055550A1
Authority
US
United States
Prior art keywords
lna
amino
group
modifier
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/771,223
Inventor
Dennis Jul Hansen
Joerg Hoernschemeyer
Jacob Ravn
Christoph Rosenbohm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Innovation Center Copenhagen AS
Original Assignee
Roche Innovation Center Copenhagen AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Innovation Center Copenhagen AS filed Critical Roche Innovation Center Copenhagen AS
Assigned to F. HOFFMANN-LA ROCHE AG reassignment F. HOFFMANN-LA ROCHE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOERNSCHEMEYER, Joerg
Assigned to ROCHE INNOVATION CENTER COPENHAGEN A/S reassignment ROCHE INNOVATION CENTER COPENHAGEN A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANSEN, Dennis Jul, RAVN, JACOB, ROSENBOHM, CHRISTOPH
Assigned to ROCHE INNOVATION CENTER COPENHAGEN A/S reassignment ROCHE INNOVATION CENTER COPENHAGEN A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F. HOFFMANN-LA ROCHE AG
Publication of US20190055550A1 publication Critical patent/US20190055550A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/311Phosphotriesters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/312Phosphonates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/314Phosphoramidates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/336Modified G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Definitions

  • the present invention relates to the field of LNA antisense oligonucleotide conjugates and to methods of synthesis thereof.
  • LNA oligonucleotides include the use of amine linkers to link an LNA antisense oligonucleotide to a conjugate group.
  • LNA linkers to link an LNA antisense oligonucleotide to a conjugate group.
  • the present invention originates from the identification of a problem when de-protecting LNA oligonucleotides which comprise an aliphatic amine group and DMF protected LNA G nucleoside, which results in the production of a +28 Da impurity. This problem is solved by using acyl protection groups on the exocyclic nitrogen of the LNA-G residue, rather than the standard DMF protection group.
  • the invention provides for a method of preparing a LNA oligonucleotide comprising the steps of:
  • the invention provides for a method of preparing an LNA oligonucleotide which is essentially free from a +28 adduct comprising the steps of:
  • the invention provides for a method of preparing an LNA oligonucleotide comprising the steps of:
  • the invention provides for a LNA oligonucleotide which comprises at least one LNA-G monomer comprising an acyl protected exocyclic nitrogen and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide is attached to a solid support.
  • the invention provides for a LNA oligonucleotide which comprises at least one G monomer comprising an acyl protected exocyclic nitrogen and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide is attached to a solid support.
  • the invention provides for an LNA oligonucleotide which comprises at least one LNA-G monomer and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide, wherein said oligonucleotide is essentially free of +28 adduct.
  • the invention provides for an LNA oligonucleotide which comprises at least one G monomer and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide, wherein said oligonucleotide is essentially free of +28 adduct.
  • the invention provides for a pharmaceutical composition
  • a pharmaceutical composition comprising an LNA oligomer conjugate which comprises an LNA-G monomer and an aliphatic amine linker positioned between the 5′ nucleotide of LNA oligomer and a conjugate moiety, and a pharmaceutically acceptable diluent, carrier or adjuvant, wherein said composition is essentially free of +28 adduct.
  • the invention provides for a pharmaceutical composition
  • a pharmaceutical composition comprising an LNA oligomer conjugate which comprises an G monomer and an aliphatic amine linker positioned between the 5′ nucleotide of LNA oligomer and a conjugate moiety, and a pharmaceutically acceptable diluent, carrier or adjuvant, wherein said composition is essentially free of +28 adduct.
  • the invention provides for the use of an LNA-G monomer comprising an acyl protected exocyclic nitrogen for use in the synthesis of an aliphatic amine containing LNA oligonucleotide.
  • the invention provides for the use of an LNA-G monomer comprising an acyl protected exocyclic nitrogen for use in the synthesis of an aliphatic amine containing LNA oligonucleotide conjugate.
  • R may be selected from an optionally substituted alkyl-, alkenyl-, alkynyl-, cycloalkyl- or aryl-group, preferably from an optionally substituted C 1-6 -alkyl-, C 2-6 -alkenyl-, C 2-6 -alkinyl-, C 3-7 -cycloalkyl- or phenyl-group.
  • the R group may be mono or poly substituted, for example with one or more substituents selected from the group consisting of halogen, C 1-6 -alkyl, C 2-6 -alkenyl, C 2-6 -alkynyl, C 1-6 -alkoxy, optionally substituted aryloxy or optionally substituted aryl.
  • Aryl includes phenyl and the optional substituents for aryl are as above.
  • FIG. 1 Examples of commercially available amino-linkers comprising an aliphatic amine group.
  • FIG. 2 Examples of GalNAc conjugates.
  • FIG. 3 Mass spectra of FL and FL+28 (five-fold charged ion displayed).
  • FIG. 4 MS/MS (MS2MS3 fragmentation pattern (excerpt mass range 500-1500 Da) of b4 ions. Peaks with mass difference +28 Da and corresponding peaks in the unmodified molecule are indicated.
  • FIG. 5 Structure of the b4-fragment and the resulting a2-Base (a2-B) and the b4-Cytosine (b4-C) fragment from MS3 experiment.
  • the invention provides a method of preparing an oligonucleotide which comprises at least one LNA-G nucleoside and an aliphatic amine group. It has been found by the present inventors that a +28 Da adduct (referred to as the +28 adduct herein) is formed when deprotecting DMF protected LNA-G in the presence of an aliphatic amine. The formation of the +28 adduct may be avoided by using an acyl protection group. The presence of +28 adduct may be identified using mass spectroscopy, by a contaminant in the oligonucleotide with +28 molecular weight.
  • a +28 Da adduct referred to as the +28 adduct herein
  • the +28 adduct may be measured using mass spectroscopy, and may have a MW of about +28, for example the +28 adduct may have a MW of +27.5-+28.5 (Da), such as +27.9-+28.1 (Da).
  • Da +27.5-+28.5
  • This impurity is difficult to separate from the desired oligonucleotide product, and requires additional down-stream purification steps, increasing the cost of production and dramatically reducing the oligonucleotide yield. It is therefore highly desirable to avoid the production of the +28 adduct, and it has been found by the present inventors that this may be achieved by using G-protection groups other than DMF, in particular an acyl or carbamate protection group.
  • An LNA oligonucleotide is an oligonucleotide which comprises at least one LNA nucleoside.
  • the invention therefore relates to methods of preparing LNA antisense oligonucleotides which comprise at least one LNA-G monomer and at least one aliphatic amine group.
  • the LNA oligonucleotide may be an antisense oligonucleotide.
  • oligonucleotide as used herein is defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides.
  • oligonucleotides are typically synthesised as 7-30 nucleotides in length.
  • antisense oligonucleotide refers to oligonucleotides capable of modulating expression of a target gene by hybridizing to a target nucleic acid, in particular to a contiguous sequence on a target nucleic acid.
  • An antisense oligonucleotide can also be defined by it's complementary to a target nucleic acid.
  • Antisense oligonucleotides are single stranded.
  • Antisense oligonucleotides are not essentially double stranded and are not therefore siRNAs.
  • An antisense oligonucleotide comprises a contiguous nucleotide which is complementary to a target nucleic acid.
  • Antisense oligonucleotides typically comprise one or more modified internucleoside linkages, and may by way of a non-limiting example be in the form of a a LNA gapmer or a mixed wing gapmer.
  • the oligonucleotide may be an LNA mixmers (LNA and non-LNA nucleotides, e.g. LNA and DNA (see e.g. WO2007/112754 hereby incorporated by reference), or LNA and 2′-O-MOE nucleotides, or LNA, DNA and 2′O-MOE nucleotides), or a LNA totalmers (only LNA nucleotides—see. E.g. WO2009/043353 hereby incorporated by reference).
  • modified internucleoside linkage is defined as generally understood by the skilled person as linkages other than phosphodiester (PO) linkages, that covalently couples two nucleosides together. Modified internucleoside linkages are particularly useful in stabilizing oligonucleotides for in vivo use, and may serve to protect against nuclease cleavage. A phosphorothioate internucleoside linkage is particularly useful due to nuclease resistance, beneficial pharmakokinetics and ease of manufacture.
  • At least 70%, such as at least 80 or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate. In some embodiments all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate. Further internucleoside linkers are disclosed in WO2009/124238 (incorporated herein by reference).
  • essentially free is defined by the level of +28 adduct is less than 5%, such as less than 1%, such as less than 0.5%, such as less than 0.1%, of the oligonucleotide composition prepared by the methods of the invention.
  • An oligonucleotide which is “essentially free” of the +28 adduct may therefore comprise a small amount of +28 adduct, and in some embodiments the level of +28 adduct may be below the level of detection using mass spectroscopy.
  • essentially free comprises the embodiment where the oligonucleotide product is free of +28 adduct.
  • nucleobase includes the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moiety present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization.
  • nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases, but are functional during nucleic acid hybridization.
  • nucleobase moiety is modified by modifying or replacing the nucleobase.
  • nucleobase refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants. Such variants are for example described in Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1.
  • Nucleotides are the building blocks of oligonucleotides and polynucleotides, and for the purposes of the present invention include both naturally occurring and non-naturally occurring nucleotides.
  • nucleotides such as DNA and RNA nucleotides comprise a ribose sugar moiety, a nucleobase moiety and one or more phosphate groups (which is absent in nucleosides).
  • Modified nucleosides and nucleotides are modified as compared to the equivalent DNA or RNA nucleoside/tide by the introduction of a modification to the ribose sugar moiety, the nucleobase moiety, or in the case of modified nucleotides, the internucleoside linkage.
  • Nucleosides and nucleotides may also interchangeably be referred to as “units” or “monomers”.
  • modified nucleoside or “nucleoside modification” as used herein refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo)base moiety.
  • modified nucleoside may also be used herein interchangeably with the term “nucleoside analogue” or modified “units” or modified “monomers”. Examples of modified nucleosides are described in the separate section “Oligomer modifications” and its sub-sections.
  • exocyclic nitrogen group of guanine is illustrated below (encircled). This group is protected by an acyl group during steps a) and b) of the method of the invention, and is removed during the deprotection step c).
  • An aliphatic amine is an amine where there are no aromatic rings directly on the nitrogen atom, and is therefore typically a non nucleosidic amine group.
  • a nucleosidic amine group is an amine group where the nitrogen atom of the amine is directly bound to the aromatic ring of a purine or pyrimidine base.
  • the aliphatic amine group may be a primary amine or a secondary amine.
  • the aliphatic amine group is selected from the group consisting of an amino alkyl, alkylamino alkyl, piperidine, piperazine, pyrrolidine, and imidazole.
  • the aliphatic amine group is selected from the group consisting of 5′-TFA-Amino-Modifier-C5-CE Phosphoramidite, 5′-TFA-Amino-Modifier C6-CE Phosphoramidite, 11-(trifluoroacetamido)-3,6,9-trioxaundecan-1-yl-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, 5′-TFA-Amino-Modifier-C12-CE Phosphoramidite, Amino-Modifier C2-dT-CE Phosphoramidite, Amino-Modifier C6-dA-CE Phosphoramidite, Amino-Modifier C6-dA-CE Phosphoramidite, Amino-Modifier C6-dT-CE Phosphoramidite, N2-Amino-Modifier C6 dG, Fmoc Amino-Modifier C6 dT,
  • the aliphatic amine group is in the form of an amino linker (i.e. the amino linker comprises the aliphatic amine group). Examples of commercially available amino linkers are shown in FIG. 1 .
  • the amino linker is an aminoalkyl linker, such as a C 2-12 aminoalkyl linker, for example an amino hexyl linker.
  • the aliphatic amino group is protected, for example with a protection group selected from the list comprising of trifluoroacetyl (TFA), trichloroacetyl (TCA), monomethoxytrityl (MMT), dimethoxytrityl (DMT), fluorenylmethyloxycarbonyl (Fmoc), phtalimide or 2-(methylaminocarbonyl)-benzoate.
  • a protection group selected from the list comprising of trifluoroacetyl (TFA), trichloroacetyl (TCA), monomethoxytrityl (MMT), dimethoxytrityl (DMT), fluorenylmethyloxycarbonyl (Fmoc), phtalimide or 2-(methylaminocarbonyl)-benzoate.
  • TFA trifluoroacetyl
  • TCA trichloroacetyl
  • MMT monomethoxytrityl
  • DMT dime
  • the invention therefore provides an alternative method of preparing a LNA oligonucleotide comprising the steps of:
  • the deprotection step c) may comprise exposure of the oligonucleotide to ammonium hydroxide, and suitably the aliphatic amine protection group are not cleaved under the deprotection conditions of step c) (i.e. by ammonium hydroxide treatment).
  • the exocyclic nitrogen protection group may be an acyl group or may be another protection group such as dimethylformamide (DMF).
  • the aliphatic amine protection group may, for example, be selected from the group consisting of TFA, monomethoxytrityl (MMT), DMT, Fmoc, phtalimide or 2-(methylaminocarbonyl)-benzoate
  • the aliphatic amine group such as the amino linker, is attached to a solid support used for oligonucleotide synthesis.
  • the cleavage of the oligonucleotide from the solid support (which may be during step c)) will therefore result in the cleavage of the alpiphatic amine group from the solid support and thereby release of the oligonucleotide from the solid support.
  • the aliphatic amine group is incorporated into the oligonucleotide via the incorporation of an amino-modified monomer.
  • the aliphatic amino-modified monomer is a phosphoramidite, a H-phosphonate or a phosphotriester monomer.
  • the amino-modified monomer is a phosphoramidite. Examples of such amino-modified monomers are shown in FIG. 1 .
  • the aliphatic amine group may be incorporated into the oligonucelotide via any suitable oligonucleotide synthesis method, such as H-phosphonate synthesis, phosphodiester synthesis, phosphotriester synthesis, phosphite trimester synthesis or phosphoramidite oligonucleotide synthesis.
  • the aliphatic amine group is incorporated into the oligonucleotide as phosphoramidite, a H-phosphonate or a phosphotriester.
  • the aliphatic amine group is incorporated into the oligonucleotide during phosphoramidite oligonucleotide synthesis.
  • Suitable acyl protection groups on the exocyclic nitrogen of the LNA-G monomer(s) may be selected from the group consisting of Isobuturyl (iBu), Acetyl (Ac), Phenoxyacetyl (PAC), p-Isopropylphenoxyacetyl (iPrPAC), phenylacetyl, Isopropyloxyacetyl, methoxyacetyl, benzoyl, p-methoxyphenylacetyl, diphenylacetyl, cyclohexylcarbonyl, 1,1-dimethylpropanoyl, and p-tert-Butyl-phenoxyacetyl.
  • the acyl protection group on the exocyclic nitrogen of the LNA-G monomer(s) is selected from the group consisting of Isobuturyl (iBu), Acetyl (Ac), Phenoxyacetyl (PAC), & p-Isopropylphenoxyacetyl (iPrPAC).
  • the acyl protection group may be replaced with a carbamate protection group.
  • LNA-G refers to a nucleoside which comprises a 2′-4′ biradical in the furanose ring and a guanine nucleobase.
  • the LNA-G monomer may be incorporated into the oligonucleotide via any suitable oligonucleotide synthesis method, such as H-phosphonate synthesis, phosphodiester synthesis, phosphotriester synthesis, phosphite trimester synthesis or phosphoramidite oligonucleotide synthesis.
  • the LNA-G monomer(s) is incorporated into the oligonucleotide as phosphoramidite, a H-phosphonate or a phosphotriester.
  • the LNA-G monomer is incorporated into the oligonucleotide during phosphoramidite oligonucleotide synthesis.
  • the LNA oligonucleotide comprises at least 1 G monomers, such as at least 2 G monomers, such as at least 3 G monomers, such as at least 4 G monomers.
  • the method of preparing an oligonucleotide may utilise any suitable oligonucleotide synthesis method, such as H-phosphonate synthesis, phosphodiester synthesis, phosphotriester synthesis, phosphite trimester synthesis or phosphoramidite oligonucleotide synthesis.
  • oligonucleotide synthesis method such as H-phosphonate synthesis, phosphodiester synthesis, phosphotriester synthesis, phosphite trimester synthesis or phosphoramidite oligonucleotide synthesis.
  • the LNA-G monomer and optionally the aliphatic amine group may in a form which allows for incorporation into the oligonucleotide during such standard oligonucleotide methods (e.g. as a phosphoramidite).
  • Step c) of the method of the invention comprises the removal of the acyl protection group from the exocyclic nitrogen in the LNA-G monomer incorporated into the oligonucleotide.
  • Deprotection may further comprise the removal of other base protection groups, and optionally the removal of the aliphatic amine protection group, when present.
  • the deprotection step may further result in the cleavage of the oligonucleotide from the solid support.
  • deprotection (and optionally cleavage) of the oligonucleotide may performed in the presence of ammonia, such as using a solution comprising ammonium hydroxide.
  • concentrated ammonium hydroxide may be used (e.g. (28 to 33% NH3 in water), or a 1:1 mixture of ammonium hydroxide and aqueous methylamine (AMA).
  • AMA aqueous methylamine
  • oligonucleotides synthesised according to the method of the invention are particularly useful for making oligonucleotide conjugates as the aliphatic amine group provides an amenable conjugation site.
  • Oligonucleotide conjugates comprise an oligonucleotide which is covalently linked to a non-nucleoside moiety, which may for example be a lipid, a sterol, a carbohydrate, a peptide and a protein. Examples of conjugate moieties are disclosed in WO2014/076195 and Wo2014/179620, which are hereby incorporated by reference.
  • the method of the invention comprises an additional step performed subsequent to step c) which comprises comprises incorporating a conjugate group onto the aliphatic primary amine group.
  • the invention therefore provides for a method of preparing a LNA oligonucleotide conjugate comprising the steps of:
  • steps a) and b) can occur in either order or simultaneously.
  • the conjugate moiety is a carbohydrate, such as a N-Acetylgalactosamine(GalNAc) conjugates, see WO2014/118267, which is hereby incorporated by reference.
  • GalNaC conjugates are useful in enhancing uptake into cells, such as liver cells, and are typically use as a GalNAc cluster, such as a trivalent GalNAc cluster. Examples of GalNAc conjugates which may be incorporated into oligonucleotides using the methods of the invention are illustrated in FIG. 2 .
  • a linkage or linker is a connection between two atoms that links one chemical group or segment of interest to another chemical group or segment of interest via one or more covalent bonds.
  • Conjugate moieties can be attached to the oligonucleotide directly or through a linking moiety (e.g. linker or tether).
  • Linkers serve to covalently connect a third region, e.g. a conjugate moiety to a first region, e.g. an oligonucleotide (region A).
  • the linker may comprise the aliphatic amine group, such as a primary or secondary aliphatic amine group.
  • the linker is an aliphatic amino alkyl, such as a C 2 -C 36 aliphatic amino alkyl group, including, for example C 6 to C 12 aliphatic amino alkyl groups. In some embodiments the linker is a C 6 aliphatic amino alkyl group.
  • the oligonucleotide comprises a region of DNA phosphodiester nucleotides, e.g. 1-5 DNA PO nucleotides which are positioned between the antisense oligonucleotide and the aliphatic amino linker—see WO2014/076195 hereby incorporated by reference.
  • LNA Locked Nucleic Acid Nucleosides
  • LNA nucleosides are modified nucleosides which comprise a linker group (referred to as a biradicle or a bridge) between C2′ and C4′ of the ribose sugar ring of a nucleotide. These nucleosides are also termed bridged nucleic acid or bicyclic nucleic acid (BNA) in the literature.
  • a linker group referred to as a biradicle or a bridge
  • the modified nucleoside or the LNA nucleosides of the oligomer of the invention has a general structure of the formula I or II:
  • W is selected from —O—, —S—, —N(R a )—, —C(R a R b )—, such as, in some embodiments —O—;
  • Z designates an internucleoside linkage to an adjacent nucleoside, or a 5′-terminal group
  • Z designates an internucleoside linkage to an adjacent nucleoside, or a 3′-terminal group
  • X designates a group selected from the list consisting of —C(R a R b )—, —C(R a ) ⁇ C(R b )—, —C(R a ) ⁇ N—, —O—, —Si(R a ) 2 —, —S—, —SO 2 —, —N(R a )—, and >C ⁇ Z
  • Y designates a group selected from the group consisting of —C(R a R b )—, —C(R a ) ⁇ C(R b )—, —C(R a ) ⁇ N—, —O—, —Si(R a ) 2 —, —S—, —SO 2 —, —N(R a )—, and >C ⁇ Z
  • bivalent linker group also referred to as a radicle
  • a bivalent linker group consisting of 1, 2, or 3 groups/atoms selected from the group consisting of —C(R a R b )—, —C(R a ) ⁇ C(R b )—, —C(R a ) ⁇ N—, —O—, —Si(R a ) 2 —, —S—, —SO 2 —, —N(R a )—, and >C ⁇ Z
  • Z is selected from —O—, —S—, and —N(R a )—
  • R a and R a and, when present R b each is independently selected from hydrogen, optionally substituted C 1-6 -alkyl, optionally substituted C 2-6 -alkenyl, optionally substituted C 2-6 -alkynyl, hydroxy, optionally substituted C 1-6 -alkoxy, C 2-6 -alkoxyalkyl, C 2-6 -alkenyloxy, carboxy, C 1-6 -alkoxycarbonyl, C 1-6 -alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C 1-6 -alkyl)amino, carbamoyl, mono- and di(C 1-6 -alkyl)-amino-carbonyl, amino-C 1-6 -alkyl-aminocarbonyl, mono- and di
  • R 1 , R 2 , R 3 , R 5 and R 5* are independently selected from the group consisting of: hydrogen, optionally substituted C 1-6 -alkyl, optionally substituted C 2-6 -alkenyl, optionally substituted C 2-6 -alkynyl, hydroxy, C 1-6 -alkoxy, C 2-6 -alkoxyalkyl, C 2-6 -alkenyloxy, carboxy, C 1-6 -alkoxycarbonyl, C 1-6 -alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C 1-6 -alkyl)amino, carbamoyl, mono- and di(C 1-6 -alkyl)-amino-carbonyl, amino-C 1-6 -alkyl-aminocarbonyl
  • the biradicle -X-Y- is —O—CH 2 —
  • W is O
  • all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • LNA nucleosides are disclosed in WO99/014226, WO00/66604, WO98/039352 and WO2004/046160 which are all hereby incorporated by reference, and include what are commonly known as beta-D-oxy LNA and alpha-L-oxy LNA nucleosides.
  • the biradicle -X-Y- is —S—CH 2 —, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • Such thio LNA nucleosides are disclosed in WO99/014226 and WO2004/046160 which are hereby incorporated by reference.
  • the biradicle -X-Y- is —NH—CH 2 —, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • Such amino LNA nucleosides are disclosed in WO99/014226 and WO2004/046160 which are hereby incorporated by reference.
  • the biradicle -X-Y- is —O—CH 2 —CH 2 — or —O—CH 2 —CH 2 — CH 2 —, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • LNA nucleosides are disclosed in WO00/047599 and Morita et al, Bioorganic & Med.Chem. Lett. 12 73-76, which are hereby incorporated by reference, and include what are commonly known as 2′-O-4′O-ethylene bridged nucleic acids (ENA).
  • ENA 2′-O-4′O-ethylene bridged nucleic acids
  • the biradicle -X-Y- is —O—CH 2 —
  • W is O
  • all of R 1 , R 2 , R 3 , and one of R 5 and R 5* are hydrogen
  • the other of R 5 and R 5* is other than hydrogen such as C 1-6 alkyl, such as methyl.
  • Such 5′ substituted LNA nucleosides are disclosed in WO2007/134181 which is hereby incorporated by reference.
  • the biradicle -X-Y- is —O—CR a R b —, wherein one or both of R a and R b are other than hydrogen, such as methyl, W is O, and all of R 1 , R 2 , R 3 , and one of R 5 and R 5* are hydrogen, and the other of R 5 and R 5* is other than hydrogen such as O 1-6 alkyl, such as methyl.
  • R a and R b are other than hydrogen, such as methyl
  • W is O
  • R 1 , R 2 , R 3 , and one of R 5 and R 5* are hydrogen
  • the other of R 5 and R 5* is other than hydrogen such as O 1-6 alkyl, such as methyl.
  • the biradicle -X-Y- designate the bivalent linker group —O—CH(CH 2 OCH 3 )— (2′ O-methoxyethyl bicyclic nucleic acid—Seth at al., 2010, J. Org. Chem., 2010, 75 (5), pp 1569-1581). In some embodiments, the biradicle -X-Y-designate the bivalent linker group —O—CH(CH 2 CH 3 )— (2′O-ethyl bicyclic nucleic acid —Seth at al., 2010, J. Org. Chem).
  • the biradicle -X-Y- is —O—CHR a —, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • Such 6′ substituted LNA nucleosides are disclosed in WO10036698 and WO07090071 which are both hereby incorporated by reference.
  • the biradicle -X-Y- is —O—CH(CH 2 OCH 3 )—, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • LNA nucleosides are also known as cyclic MOEs in the art (cMOE) and are disclosed in WO07090071.
  • the biradicle -X-Y- designate the bivalent linker group —O—CH(CH 3 )—.—in either the R- or S-configuration.
  • the biradicle -X-Y-together designate the bivalent linker group —O—CH 2 —O—CH 2 — (Seth at al., 2010, J. Org. Chem).
  • the biradicle -X-Y- is —O—CH(CH 3 )—, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • Such 6′ methyl LNA nucleosides are also known as cET nucleosides in the art, and may be either (S)cET or (R)cET stereoisomers, as disclosed in WO07090071 (beta-D) and WO2010/036698 (alpha-L) which are both hereby incorporated by reference).
  • the biradicle -X-Y- is —O—CR a R b —, wherein in neither R a or R b is hydrogen, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • R a and R b are both methyl.
  • the biradicle -X-Y- is —S—CHR a —, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • R a is methyl.
  • the biradicle -X-Y- is —C( ⁇ CH2)-C(R a R b )—, such as —C( ⁇ CH 2 )—CH 2 —, or —C( ⁇ CH 2 )—CH(CH 3 )—W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • vinyl carbo LNA nucleosides are disclosed in WO08154401 and WO09067647 which are both hereby incorporated by reference.
  • the biradicle -X-Y- is —N(—OR a )—, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • R a is C 1-6 alkyl such as methyl.
  • LNA nucleosides are also known as N substituted LNAs and are disclosed in WO2008/150729 which is hereby incorporated by reference.
  • the biradicle -X-Y- together designate the bivalent linker group —O—NR a —CH 3 — (Seth at al., 2010, J. Org. Chem).
  • the biradicle -X-Y- is —N(R a )—, W is O, and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • R a is C 1-6 alkyl such as methyl.
  • R 5 and R 5* is hydrogen and, when substituted the other of R 5 and R 5* is C 1-6 alkyl such as methyl.
  • R 1 , R 2 , R 3 may all be hydrogen, and the biradicle -X-Y- may be selected from —O-CH2- or —O—C(HCR a )—, such as —O—C(HCH3)-.
  • the biradicle is —CR a R b —O—CR a R b —, such as CH 2 —O—CH 2 —, W is O and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • R a is C 1-6 alkyl such as methyl.
  • LNA nucleosides are also known as conformationally restricted nucleotides (CRNs) and are disclosed in WO2013036868 which is hereby incorporated by reference.
  • the biradicle is —O—CR a R b —O—CR a R b —, such asO—CH 2 —O—CH 2 —, W is O and all of R 1 , R 2 , R 3 , R 5 and R 5* are all hydrogen.
  • R a is C 1-6 alkyl such as methyl.
  • LNA nucleosides are also known as COC nucleotides and are disclosed in Mitsuoka et al., Nucleic Acids Research 2009 37(4), 1225-1238, which is hereby incorporated by reference.
  • the LNA nucleosides may be in the beta-D or alpha-L stereoisoform.
  • the LNA nucleosides in the oligonucleotides are or comprise beta-D-oxy-LNA nucleosides.
  • gapmer refers to an antisense oligonucleotide which comprises a region of RNase H recruiting oligonucleotides (gap) which is flanked 5′ and 3′ by one or more affinity enhancing modified nucleosides (flanks).
  • oligonucleotides capable of recruiting RNase H where one of the flanks are missing, i.e. only one of the ends of the oligonucleotide comprises affinity enhancing modified nucleosides.
  • the 3′ flank is missing (i.e. the 5′ flanc comprise affinity enhancing modified nucleosides) and for tailmers the 5′ flank is missing (i.e. the 3′ flank comprises affinity enhancing modified nucleosides).
  • LNA gapmer is a gapmer oligonucleotide wherein at least one of the affinity enhancing modified nucleosides is an LNA nucleoside.
  • mixed wing gapmer refers to a LNA gapmer wherein the flank regions comprise at least one LNA nucleoside and at least one non-LNA modified nucleoside, such as at least one 2′ substituted modified nucleoside, such as, for example, 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (MOE), 2′-amino-DNA, 2′-Fluoro-DNA, arabino nucleic acid (ANA), 2′-fluoro-ANA and 2′-F-ANA nucleoside(s).
  • the mixed wing gapmer has one flank which comprises LNA nucleosides (e.g. 5′ or 3′) and the other flank (3′ or 5′ respectfully) comprises 2′ substituted modified nucleoside(s).
  • the length of a nucleotide molecule corresponds to the number of monomer units, i.e. nucleotides, irrespective as to whether those monomer units are nucleotides or nucleotide analogues.
  • monomer and unit are used interchangeably herein.
  • the process of the present invention is particularly suitable for the purification of short oligonucleotides, for example, consisting of 7 to 30 nucleotides, such as 7-10, such as 7, 8, 9, 10 or 10 to 20 nucleotides, such as 12 to 18 nucleotides, for example, 12, 13, 14, 15, 16, 17 or 18 nucleotides.
  • 5′-TFA-Amino-Modifier C6-CE phosphoramidite available from Link Technologies, Lanakshire, Scotland, was used to introduce the 6-aminohexyl linker (AM-C6) in the 5′-end.
  • Amino-Modifier C6-dT-CE Phosphoramidite (5′-Dimethoxytrityl-5-[N-(trifluoroacetylaminohexyl)-3-acrylimido]-2′-deoxyUridine,3′-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite), available from Glen Research, Sterling, Va., was used to introduce the 5-[N-(aminohexyl)-3-acrylimido]-2′-deoxyuridine linker (t AMC6 ).
  • 3′-Amino-Modifier C7 CPG (2-Dimethoxytrityloxymethyl-6-fluorenylmethoxycarbonylamino-hexane-1-succinoyl)-long chain alkylamino-CPG), available from Glen Research, Sterling, Va., was used to introduce the 6-amino-2-(hydroxymethyl)-hexyl group (AM-C7) in the 3′-end.
  • A-C7 6-amino-2-(hydroxymethyl)-hexyl group
  • the support was washed with a solution of diethylamine and then suspended in 1 mL concentrated ammonium hydroxide at 60° C. over night. The support was filtered off and the solution was evaporated to dryness under vacuum. The crude material was analyzed by UPLC-MS and ratios of +28 Da impurity compared to correct product was estimated by peak area at 260 nm.
  • AM-C6 6-aminohexyl
  • t AMC6 5-[N-(aminohexyl)-3-acrylimido]-2′-deoxyuridine
  • AM-TEG 11-amino-3,6,9-trioxaundecan-1-yl
  • AM-C7 6-amino-2-(hydroxymethyl)-hexyl.
  • the examples were fully phosphorothioate oligonucleotides, where the LNA monomers were beta-D-oxy LNA.
  • the LNA-C monomers are 5-methyl cytosine LNA monomers.
  • a 5′-aminohexyl linked phosphorthioate oligonucleotide with sequence 5′-AM-C6-caGCGtaaagagAGG-3′ was prepared using DMF-protected LNA-G and iBu-protected DNA-G phosphoramidites as described in example 1.
  • the crude material contained the full length product (FL) and approximately 20% of the formyl (HCO, +28) impurity (FL+28)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Recent advancements in LNA oligonucleotides include the use of amine linkers to link an LNA antisense oligonucleotide to a conjugate group. For example please see WO2014/118267. The present invention originates from the identification of a problem when de-protecting LNA oligonucleotides which comprise an aliphatic amine group and DMF protected LNA G nucleoside, which results in the production of a +28 Da impurity. This problem is solved by using acyl protection groups on the exocyclic nitrogen of the LNA-G residue, rather than the standard DMF protection group.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of LNA antisense oligonucleotide conjugates and to methods of synthesis thereof.
  • BACKGROUND TO THE INVENTION
  • Recent advancements in LNA oligonucleotides include the use of amine linkers to link an LNA antisense oligonucleotide to a conjugate group. For example please see WO2014/118267. The present invention originates from the identification of a problem when de-protecting LNA oligonucleotides which comprise an aliphatic amine group and DMF protected LNA G nucleoside, which results in the production of a +28 Da impurity. This problem is solved by using acyl protection groups on the exocyclic nitrogen of the LNA-G residue, rather than the standard DMF protection group.
  • STATEMENT OF INVENTION
  • The invention provides for a method of preparing a LNA oligonucleotide comprising the steps of:
  • a) Incorporating at least one LNA-G monomer comprising an acyl protected exocyclic nitrogen into an oligonucleotide;
  • b) Incorporating at least one optionally protected aliphatic amine group into the oligonucleotide;
  • c) deprotecting the acyl protected exocyclic nitrogen of the at least one LNA-G monomer by removal of the acyl protection group;
      • wherein steps a) and b) can occur in either order.
      • Suitably, when present, other G monomers, e.g. DNA G-monomers incorporated into the LNA oligonucleotide, they are also acyl protected on their exocyclic nitrogen, for example by a step of incorporating G-monomer, e.g. a DNA G-monomer or a 2′substituted G-monomer (e.g. 2′-O-methoxyethyl G-monomer, or a 2′methyl G monomer), wherein the G monomer comprises an acyl protected exocyclic nitrogen into an oligonucleotide, e.g. using a acyl protection group as described herein, e.g. as defined by the R group of formula I.
  • The invention provides for a method of preparing an LNA oligonucleotide which is essentially free from a +28 adduct comprising the steps of:
  • a) Incorporating at least one LNA-G monomer comprising an acyl protected exocyclic nitrogen into an oligonucleotide;
  • b) Incorporating at least one optionally protected aliphatic amine group into the oligonucleotide;
  • c) deprotecting the acyl protected exocyclic nitrogen of the at least one LNA-G monomer by removal of the acyl protection group;
      • wherein steps a) and b) can occur in either order.
  • The invention provides for a method of preparing an LNA oligonucleotide comprising the steps of:
  • a) Incorporating at least one G monomer comprising an acyl protected exocyclic nitrogen into an oligonucleotide;
  • b) Incorporating at least one optionally protected aliphatic amine group into the oligonucleotide;
  • c) deprotecting the acyl protected exocyclic nitrogen of the at least one G monomer by removal of the acyl protection group;
      • wherein steps a) and b) can occur in either order.
  • The invention provides for a LNA oligonucleotide which comprises at least one LNA-G monomer comprising an acyl protected exocyclic nitrogen and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide is attached to a solid support.
  • The invention provides for a LNA oligonucleotide which comprises at least one G monomer comprising an acyl protected exocyclic nitrogen and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide is attached to a solid support.
  • The invention provides for an LNA oligonucleotide which comprises at least one LNA-G monomer and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide, wherein said oligonucleotide is essentially free of +28 adduct.
  • The invention provides for an LNA oligonucleotide which comprises at least one G monomer and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide, wherein said oligonucleotide is essentially free of +28 adduct.
  • The invention provides for a pharmaceutical composition comprising an LNA oligomer conjugate which comprises an LNA-G monomer and an aliphatic amine linker positioned between the 5′ nucleotide of LNA oligomer and a conjugate moiety, and a pharmaceutically acceptable diluent, carrier or adjuvant, wherein said composition is essentially free of +28 adduct.
  • The invention provides for a pharmaceutical composition comprising an LNA oligomer conjugate which comprises an G monomer and an aliphatic amine linker positioned between the 5′ nucleotide of LNA oligomer and a conjugate moiety, and a pharmaceutically acceptable diluent, carrier or adjuvant, wherein said composition is essentially free of +28 adduct.
  • The invention provides for the use of an LNA-G monomer comprising an acyl protected exocyclic nitrogen for use in the synthesis of an aliphatic amine containing LNA oligonucleotide.
  • The invention provides for the use of an LNA-G monomer comprising an acyl protected exocyclic nitrogen for use in the synthesis of an aliphatic amine containing LNA oligonucleotide conjugate.
  • In some embodiments the LNA-G monomer is a monomer of formula I:
  • Figure US20190055550A1-20190221-C00001
  • wherein R may be selected from an optionally substituted alkyl-, alkenyl-, alkynyl-, cycloalkyl- or aryl-group, preferably from an optionally substituted C1-6-alkyl-, C2-6-alkenyl-, C2-6-alkinyl-, C3-7-cycloalkyl- or phenyl-group.
  • If substituted, the R group may be mono or poly substituted, for example with one or more substituents selected from the group consisting of halogen, C1-6-alkyl, C2-6-alkenyl, C2-6-alkynyl, C1-6-alkoxy, optionally substituted aryloxy or optionally substituted aryl. Aryl includes phenyl and the optional substituents for aryl are as above.
  • FIGURES
  • FIG. 1: Examples of commercially available amino-linkers comprising an aliphatic amine group.
  • FIG. 2: Examples of GalNAc conjugates.
  • FIG. 3: Mass spectra of FL and FL+28 (five-fold charged ion displayed).
  • FIG. 4: MS/MS (MS2MS3 fragmentation pattern (excerpt mass range 500-1500 Da) of b4 ions. Peaks with mass difference +28 Da and corresponding peaks in the unmodified molecule are indicated.
  • FIG. 5: Structure of the b4-fragment and the resulting a2-Base (a2-B) and the b4-Cytosine (b4-C) fragment from MS3 experiment.
  • DETAILED DESCRIPTION
  • The invention provides a method of preparing an oligonucleotide which comprises at least one LNA-G nucleoside and an aliphatic amine group. It has been found by the present inventors that a +28 Da adduct (referred to as the +28 adduct herein) is formed when deprotecting DMF protected LNA-G in the presence of an aliphatic amine. The formation of the +28 adduct may be avoided by using an acyl protection group. The presence of +28 adduct may be identified using mass spectroscopy, by a contaminant in the oligonucleotide with +28 molecular weight. As is illustrated in the example the +28 adduct may be measured using mass spectroscopy, and may have a MW of about +28, for example the +28 adduct may have a MW of +27.5-+28.5 (Da), such as +27.9-+28.1 (Da). This impurity is difficult to separate from the desired oligonucleotide product, and requires additional down-stream purification steps, increasing the cost of production and dramatically reducing the oligonucleotide yield. It is therefore highly desirable to avoid the production of the +28 adduct, and it has been found by the present inventors that this may be achieved by using G-protection groups other than DMF, in particular an acyl or carbamate protection group.
  • An LNA oligonucleotide is an oligonucleotide which comprises at least one LNA nucleoside. The invention therefore relates to methods of preparing LNA antisense oligonucleotides which comprise at least one LNA-G monomer and at least one aliphatic amine group. The LNA oligonucleotide may be an antisense oligonucleotide. The term oligonucleotide as used herein is defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides. For use as an antisense oligonucleotide, oligonucleotides are typically synthesised as 7-30 nucleotides in length.
  • The term “antisense oligonucleotide” as used herein is refers to oligonucleotides capable of modulating expression of a target gene by hybridizing to a target nucleic acid, in particular to a contiguous sequence on a target nucleic acid. An antisense oligonucleotide can also be defined by it's complementary to a target nucleic acid. Antisense oligonucleotides are single stranded. Antisense oligonucleotides are not essentially double stranded and are not therefore siRNAs. An antisense oligonucleotide comprises a contiguous nucleotide which is complementary to a target nucleic acid. Antisense oligonucleotides typically comprise one or more modified internucleoside linkages, and may by way of a non-limiting example be in the form of a a LNA gapmer or a mixed wing gapmer. In other embodiments the oligonucleotide may be an LNA mixmers (LNA and non-LNA nucleotides, e.g. LNA and DNA (see e.g. WO2007/112754 hereby incorporated by reference), or LNA and 2′-O-MOE nucleotides, or LNA, DNA and 2′O-MOE nucleotides), or a LNA totalmers (only LNA nucleotides—see. E.g. WO2009/043353 hereby incorporated by reference).
  • The term “modified internucleoside linkage” is defined as generally understood by the skilled person as linkages other than phosphodiester (PO) linkages, that covalently couples two nucleosides together. Modified internucleoside linkages are particularly useful in stabilizing oligonucleotides for in vivo use, and may serve to protect against nuclease cleavage. A phosphorothioate internucleoside linkage is particularly useful due to nuclease resistance, beneficial pharmakokinetics and ease of manufacture. In some embodiments at least 70%, such as at least 80 or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate. In some embodiments all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate. Further internucleoside linkers are disclosed in WO2009/124238 (incorporated herein by reference).
  • The term “essentially free” is defined by the level of +28 adduct is less than 5%, such as less than 1%, such as less than 0.5%, such as less than 0.1%, of the oligonucleotide composition prepared by the methods of the invention. An oligonucleotide which is “essentially free” of the +28 adduct may therefore comprise a small amount of +28 adduct, and in some embodiments the level of +28 adduct may be below the level of detection using mass spectroscopy. In term essentially free comprises the embodiment where the oligonucleotide product is free of +28 adduct.
  • The term nucleobase includes the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moiety present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization. In the context of the present invention the term nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases, but are functional during nucleic acid hybridization. In some embodiments the nucleobase moiety is modified by modifying or replacing the nucleobase. In this context “nucleobase” refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants. Such variants are for example described in Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1.
  • Nucleotides are the building blocks of oligonucleotides and polynucleotides, and for the purposes of the present invention include both naturally occurring and non-naturally occurring nucleotides. In nature, nucleotides, such as DNA and RNA nucleotides comprise a ribose sugar moiety, a nucleobase moiety and one or more phosphate groups (which is absent in nucleosides). Modified nucleosides and nucleotides are modified as compared to the equivalent DNA or RNA nucleoside/tide by the introduction of a modification to the ribose sugar moiety, the nucleobase moiety, or in the case of modified nucleotides, the internucleoside linkage. Nucleosides and nucleotides may also interchangeably be referred to as “units” or “monomers”.
  • The term “modified nucleoside” or “nucleoside modification” as used herein refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo)base moiety. The term modified nucleoside may also be used herein interchangeably with the term “nucleoside analogue” or modified “units” or modified “monomers”. Examples of modified nucleosides are described in the separate section “Oligomer modifications” and its sub-sections.
  • Acyl Protected Exocyclic Nitrogen
  • The exocyclic nitrogen group of guanine is illustrated below (encircled). This group is protected by an acyl group during steps a) and b) of the method of the invention, and is removed during the deprotection step c).
  • Figure US20190055550A1-20190221-C00002
  • The Aliphatic Amine Group
  • An aliphatic amine is an amine where there are no aromatic rings directly on the nitrogen atom, and is therefore typically a non nucleosidic amine group. A nucleosidic amine group is an amine group where the nitrogen atom of the amine is directly bound to the aromatic ring of a purine or pyrimidine base. The aliphatic amine group may be a primary amine or a secondary amine. In some embodiments, the aliphatic amine group is selected from the group consisting of an amino alkyl, alkylamino alkyl, piperidine, piperazine, pyrrolidine, and imidazole. In some embodiments, the aliphatic amine group is selected from the group consisting of 5′-TFA-Amino-Modifier-C5-CE Phosphoramidite, 5′-TFA-Amino-Modifier C6-CE Phosphoramidite, 11-(trifluoroacetamido)-3,6,9-trioxaundecan-1-yl-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, 5′-TFA-Amino-Modifier-C12-CE Phosphoramidite, Amino-Modifier C2-dT-CE Phosphoramidite, Amino-Modifier C6-dA-CE Phosphoramidite, Amino-Modifier C6-dA-CE Phosphoramidite, Amino-Modifier C6-dT-CE Phosphoramidite, N2-Amino-Modifier C6 dG, Fmoc Amino-Modifier C6 dT, 3′-Amino-Modifier C7 CPG 1000, 3′-Amino-Modifier C6-dC CPG, 3′-Amino-Modifier C6-dC CPG, 3′-PT-Amino-Modifier C6 CPG, 3′-Amino-Modifier C6-dT CPG, PC 5′-Amino-Modifier-CE Phosphoramidite, 5′-Amino-Modifier C6-PDA, 5′-Amino-Modifier C12-PDA, 5′-Amino-Modifier TEG PDA, Amino-Modifier Serinol, 3′-Amino-Modifier Serinol CPG
  • In some embodiments, the aliphatic amine group is in the form of an amino linker (i.e. the amino linker comprises the aliphatic amine group). Examples of commercially available amino linkers are shown in FIG. 1. In some embodiments, the amino linker is an aminoalkyl linker, such as a C2-12 aminoalkyl linker, for example an amino hexyl linker.
  • In some embodiments the aliphatic amino group is protected, for example with a protection group selected from the list comprising of trifluoroacetyl (TFA), trichloroacetyl (TCA), monomethoxytrityl (MMT), dimethoxytrityl (DMT), fluorenylmethyloxycarbonyl (Fmoc), phtalimide or 2-(methylaminocarbonyl)-benzoate. In some embodiments the amine protection group, when present, is removed prior to or during the deprotection step c).
  • It is recognised that some aliphatic amine protection groups may survive step c), and as such they provide an alternative method of avoiding the +28 adduct. The invention therefore provides an alternative method of preparing a LNA oligonucleotide comprising the steps of:
      • a) Incorporating at least one protected exocyclic nitrogen LNA-G monomer into an oligonucleotide
      • b) Incorporating at least one protected aliphatic amine group into the oligonucleotide
      • c) deprotecting the at least one exocyclic nitrogen LNA-G monomer containing oligonucleotide by removal of the exocyclic nitrogen protection group
      • d) subsequent to step c), deprotecting the aliphatic amine group.
  • The deprotection step c) may comprise exposure of the oligonucleotide to ammonium hydroxide, and suitably the aliphatic amine protection group are not cleaved under the deprotection conditions of step c) (i.e. by ammonium hydroxide treatment). In the above method the exocyclic nitrogen protection group may be an acyl group or may be another protection group such as dimethylformamide (DMF). The aliphatic amine protection group may, for example, be selected from the group consisting of TFA, monomethoxytrityl (MMT), DMT, Fmoc, phtalimide or 2-(methylaminocarbonyl)-benzoate
  • In some embodiments, the aliphatic amine group, such as the amino linker, is attached to a solid support used for oligonucleotide synthesis. The cleavage of the oligonucleotide from the solid support (which may be during step c)) will therefore result in the cleavage of the alpiphatic amine group from the solid support and thereby release of the oligonucleotide from the solid support. In some embodiments, the aliphatic amine group is incorporated into the oligonucleotide via the incorporation of an amino-modified monomer. In some embodiments, the aliphatic amino-modified monomer is a phosphoramidite, a H-phosphonate or a phosphotriester monomer. In some embodiments, the amino-modified monomer is a phosphoramidite. Examples of such amino-modified monomers are shown in FIG. 1.
  • The aliphatic amine group may be incorporated into the oligonucelotide via any suitable oligonucleotide synthesis method, such as H-phosphonate synthesis, phosphodiester synthesis, phosphotriester synthesis, phosphite trimester synthesis or phosphoramidite oligonucleotide synthesis. In some embodiments the aliphatic amine group is incorporated into the oligonucleotide as phosphoramidite, a H-phosphonate or a phosphotriester. In some embodiments the aliphatic amine group is incorporated into the oligonucleotide during phosphoramidite oligonucleotide synthesis.
  • The Acyl Protection Group
  • The use of an acyl protection group on the exocyclic nitrogen of G residues allows for the avoidance of the +28 adduct in methods of synthesis of aliphatic amine containing oligonucleotides.
  • Some non-limiting examples of suitable acyl protection groups on the exocyclic nitrogen of the LNA-G monomer(s) may be selected from the group consisting of Isobuturyl (iBu), Acetyl (Ac), Phenoxyacetyl (PAC), p-Isopropylphenoxyacetyl (iPrPAC), phenylacetyl, Isopropyloxyacetyl, methoxyacetyl, benzoyl, p-methoxyphenylacetyl, diphenylacetyl, cyclohexylcarbonyl, 1,1-dimethylpropanoyl, and p-tert-Butyl-phenoxyacetyl.
  • In some embodiments, the acyl protection group on the exocyclic nitrogen of the LNA-G monomer(s) is selected from the group consisting of Isobuturyl (iBu), Acetyl (Ac), Phenoxyacetyl (PAC), & p-Isopropylphenoxyacetyl (iPrPAC).
  • In an alternative embodiment, the acyl protection group may be replaced with a carbamate protection group.
  • The LNA G Monomer
  • The term LNA-G refers to a nucleoside which comprises a 2′-4′ biradical in the furanose ring and a guanine nucleobase. The LNA-G monomer may be incorporated into the oligonucleotide via any suitable oligonucleotide synthesis method, such as H-phosphonate synthesis, phosphodiester synthesis, phosphotriester synthesis, phosphite trimester synthesis or phosphoramidite oligonucleotide synthesis. In some embodiments the LNA-G monomer(s) is incorporated into the oligonucleotide as phosphoramidite, a H-phosphonate or a phosphotriester. In some embodiments the LNA-G monomer is incorporated into the oligonucleotide during phosphoramidite oligonucleotide synthesis.
  • In some embodiments, the LNA oligonucleotide comprises at least 1 G monomers, such as at least 2 G monomers, such as at least 3 G monomers, such as at least 4 G monomers.
  • Oligonucleotide Synthesis (Step a or Step a) and b))
  • The method of preparing an oligonucleotide may utilise any suitable oligonucleotide synthesis method, such as H-phosphonate synthesis, phosphodiester synthesis, phosphotriester synthesis, phosphite trimester synthesis or phosphoramidite oligonucleotide synthesis. The LNA-G monomer and optionally the aliphatic amine group (optionally protected) may in a form which allows for incorporation into the oligonucleotide during such standard oligonucleotide methods (e.g. as a phosphoramidite).
  • Deprotection Step c)
  • Step c) of the method of the invention comprises the removal of the acyl protection group from the exocyclic nitrogen in the LNA-G monomer incorporated into the oligonucleotide. Deprotection may further comprise the removal of other base protection groups, and optionally the removal of the aliphatic amine protection group, when present. During solid phase synthesis of oligonucleotides, the deprotection step may further result in the cleavage of the oligonucleotide from the solid support. deprotection (and optionally cleavage) of the oligonucleotide may performed in the presence of ammonia, such as using a solution comprising ammonium hydroxide. For example, concentrated ammonium hydroxide may be used (e.g. (28 to 33% NH3 in water), or a 1:1 mixture of ammonium hydroxide and aqueous methylamine (AMA). Other deprotection methods are known in the art.
  • Conjugation Step
  • The oligonucleotides synthesised according to the method of the invention are particularly useful for making oligonucleotide conjugates as the aliphatic amine group provides an amenable conjugation site. Oligonucleotide conjugates comprise an oligonucleotide which is covalently linked to a non-nucleoside moiety, which may for example be a lipid, a sterol, a carbohydrate, a peptide and a protein. Examples of conjugate moieties are disclosed in WO2014/076195 and Wo2014/179620, which are hereby incorporated by reference.
  • In some embodiments, the method of the invention comprises an additional step performed subsequent to step c) which comprises comprises incorporating a conjugate group onto the aliphatic primary amine group.
  • The invention therefore provides for a method of preparing a LNA oligonucleotide conjugate comprising the steps of:
  • a) Incorporating at least one nitrogen LNA-G monomer comprising an acyl protected exocyclic nitrogen into an oligonucleotide
  • b) Incorporating at least one optionally protected aliphatic amine group into the oligonucleotide
  • c) deprotecting the at least one acyl protected exocyclic nitrogen of the at least one LNA-G monomer oligonucleotide by removal of the acyl protection group.
  • d) Incorporating a conjugate group onto the aliphatic amine group. wherein steps a) and b) can occur in either order or simultaneously.
  • In some embodiments the conjugate moiety is a carbohydrate, such as a N-Acetylgalactosamine(GalNAc) conjugates, see WO2014/118267, which is hereby incorporated by reference. GalNaC conjugates are useful in enhancing uptake into cells, such as liver cells, and are typically use as a GalNAc cluster, such as a trivalent GalNAc cluster. Examples of GalNAc conjugates which may be incorporated into oligonucleotides using the methods of the invention are illustrated in FIG. 2.
  • Linkers
  • A linkage or linker is a connection between two atoms that links one chemical group or segment of interest to another chemical group or segment of interest via one or more covalent bonds. Conjugate moieties can be attached to the oligonucleotide directly or through a linking moiety (e.g. linker or tether). Linkers serve to covalently connect a third region, e.g. a conjugate moiety to a first region, e.g. an oligonucleotide (region A). In the context of the present invention the linker may comprise the aliphatic amine group, such as a primary or secondary aliphatic amine group. In some embodiments the linker is an aliphatic amino alkyl, such as a C2-C36 aliphatic amino alkyl group, including, for example C6 to C12 aliphatic amino alkyl groups. In some embodiments the linker is a C6 aliphatic amino alkyl group. In some embodiments the oligonucleotide comprises a region of DNA phosphodiester nucleotides, e.g. 1-5 DNA PO nucleotides which are positioned between the antisense oligonucleotide and the aliphatic amino linker—see WO2014/076195 hereby incorporated by reference.
  • Locked Nucleic Acid Nucleosides (LNA).
  • LNA nucleosides are modified nucleosides which comprise a linker group (referred to as a biradicle or a bridge) between C2′ and C4′ of the ribose sugar ring of a nucleotide. These nucleosides are also termed bridged nucleic acid or bicyclic nucleic acid (BNA) in the literature.
  • In some embodiments, the modified nucleoside or the LNA nucleosides of the oligomer of the invention has a general structure of the formula I or II:
  • Figure US20190055550A1-20190221-C00003
  • wherein W is selected from —O—, —S—, —N(Ra)—, —C(RaRb)—, such as, in some embodiments —O—;
  • B designates a nucleobase or modified nucleobase moiety;
  • Z designates an internucleoside linkage to an adjacent nucleoside, or a 5′-terminal group;
  • Z designates an internucleoside linkage to an adjacent nucleoside, or a 3′-terminal group;
  • X designates a group selected from the list consisting of —C(RaRb)—, —C(Ra)═C(Rb)—, —C(Ra)═N—, —O—, —Si(Ra)2—, —S—, —SO2—, —N(Ra)—, and >C═Z
      • In some embodiments, X is selected from the group consisting of: —O—, —S—, NH—, NRaRb, —CH2—, CRaRb, —C(═CH2)—, and —C(═CRaRb)—
      • In some embodiments, X is —O—
  • Y designates a group selected from the group consisting of —C(RaRb)—, —C(Ra)═C(Rb)—, —C(Ra)═N—, —O—, —Si(Ra)2—, —S—, —SO2—, —N(Ra)—, and >C═Z
      • In some embodiments, Y is selected from the group consisting of: —CH2—, —C(RaRb)—, —CH2CH2—, —C(RaRb)—C(RaRb)—, —CH2CH2CH2—, —C(RaRb)C(RaRb)C(RaRb)—, —C(Ra)═C(Rb)—, and —C(Ra)═N—
      • In some embodiments, Y is selected from the group consisting of: —CH2—, —CHRa—, —CHCH3—, CRaRb
  • or -X-Y- together designate a bivalent linker group (also referred to as a radicle) together designate a bivalent linker group consisting of 1, 2, or 3 groups/atoms selected from the group consisting of —C(RaRb)—, —C(Ra)═C(Rb)—, —C(Ra)═N—, —O—, —Si(Ra)2—, —S—, —SO2—, —N(Ra)—, and >C═Z,
      • In some embodiments, -X-Y- designates a biradicle selected from the groups consisting of: —X—CH2—, —X—CRaRb—, —X—CHRa−, —X—C(HCH3), —O—Y—, —O—CH2—, —S—CH2—, —NH—CH2—, —O—CHCH3—, —CH2—O—CH2, —O—CH(CH3CH3)—, —O—CH2—CH2—, OCH2—CH2—CH2—, —O—CH2OCH2—, —O—NCH2—, —C(═CH2)—CH2—, —NRa—CH2—, N—O—CH2, —S—CRaRb— and —S—CHRa—.
      • In some embodiments -X-Y- designates —O—CH2— or —O—CH(CH3)—.
  • wherein Z is selected from —O—, —S—, and —N(Ra)—,
  • and Ra and, when present Rb, each is independently selected from hydrogen, optionally substituted C1-6-alkyl, optionally substituted C2-6-alkenyl, optionally substituted C2-6-alkynyl, hydroxy, optionally substituted C1-6-alkoxy, C2-6-alkoxyalkyl, C2-6-alkenyloxy, carboxy, C1-6-alkoxycarbonyl, C1-6-alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C1-6-alkyl)amino, carbamoyl, mono- and di(C1-6-alkyl)-amino-carbonyl, amino-C1-6-alkyl-aminocarbonyl, mono- and di(C1-6-alkyl)amino-C1-6-alkyl-aminocarbonyl, C1-6-alkyl-carbonylamino, carbamido, C1-6-alkanoyloxy, sulphono, C1-6-alkylsulphonyloxy, nitro, azido, sulphanyl, C1-6-alkylthio, halogen, where aryl and heteroaryl may be optionally substituted and where two geminal substituents Ra and Rb together may designate optionally substituted methylene (═CH2), wherein for all chiral centers, asymmetric groups may be found in either R or S orientation.
  • wherein R1, R2, R3, R5 and R5* are independently selected from the group consisting of: hydrogen, optionally substituted C1-6-alkyl, optionally substituted C2-6-alkenyl, optionally substituted C2-6-alkynyl, hydroxy, C1-6-alkoxy, C2-6-alkoxyalkyl, C2-6-alkenyloxy, carboxy, C1-6-alkoxycarbonyl, C1-6-alkylcarbonyl, formyl, aryl, aryloxy-carbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxy-carbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C1-6-alkyl)amino, carbamoyl, mono- and di(C1-6-alkyl)-amino-carbonyl, amino-C1-6-alkyl-aminocarbonyl, mono- and di(C1-6-alkyl)amino-C1-6-alkyl-aminocarbonyl, C1-6-alkyl-carbonylamino, carbamido, C1-6-alkanoyloxy, sulphono, C1-6-alkylsulphonyloxy, nitro, azido, sulphanyl, C1-6-alkylthio, halogen, where aryl and heteroaryl may be optionally substituted, and where two geminal substituents together may designate oxo, thioxo, imino, or optionally substituted methylene.
      • In some embodiments R1, R2, R3, R5 and R5* are independently selected from C1-6alkyl, such as methyl, and hydrogen.
      • In some embodiments R1, R2, R3, R5 and R5* are all hydrogen.
      • In some embodiments R1, R2, R3, are all hydrogen, and either R5 and R5* is also hydrogen and the other of R5 and R5*is other than hydrogen, such as C1-6 alkyl such as methyl.
      • In some embodiments, Ra is either hydrogen or methyl. In some embodiments, when present, Rb is either hydrogen or methyl.
      • In some embodiments, one or both of Ra and Rb is hydrogen
      • In some embodiments, one of Ra and Rb is hydrogen and the other is other than hydrogen
      • In some embodiments, one of Ra and Rb is methyl and the other is hydrogen
      • In some embodiments, both of Ra and Rb are methyl.
  • In some embodiments, the biradicle -X-Y- is —O—CH2—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such LNA nucleosides are disclosed in WO99/014226, WO00/66604, WO98/039352 and WO2004/046160 which are all hereby incorporated by reference, and include what are commonly known as beta-D-oxy LNA and alpha-L-oxy LNA nucleosides.
  • In some embodiments, the biradicle -X-Y- is —S—CH2—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such thio LNA nucleosides are disclosed in WO99/014226 and WO2004/046160 which are hereby incorporated by reference.
  • In some embodiments, the biradicle -X-Y- is —NH—CH2—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such amino LNA nucleosides are disclosed in WO99/014226 and WO2004/046160 which are hereby incorporated by reference. In some embodiments, the biradicle -X-Y- is —O—CH2—CH2— or —O—CH2—CH2— CH2—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such LNA nucleosides are disclosed in WO00/047599 and Morita et al, Bioorganic & Med.Chem. Lett. 12 73-76, which are hereby incorporated by reference, and include what are commonly known as 2′-O-4′O-ethylene bridged nucleic acids (ENA).
  • In some embodiments, the biradicle -X-Y- is —O—CH2—, W is O, and all of R1, R2, R3, and one of R5 and R5* are hydrogen, and the other of R5 and R5* is other than hydrogen such as C1-6 alkyl, such as methyl. Such 5′ substituted LNA nucleosides are disclosed in WO2007/134181 which is hereby incorporated by reference.
  • In some embodiments, the biradicle -X-Y- is —O—CRaRb—, wherein one or both of Ra and Rb are other than hydrogen, such as methyl, W is O, and all of R1, R2, R3, and one of R5 and R5* are hydrogen, and the other of R5 and R5* is other than hydrogen such as O1-6 alkyl, such as methyl. Such bis modified LNA nucleosides are disclosed in WO2010/077578 which is hereby incorporated by reference.
  • In some embodiments, the biradicle -X-Y- designate the bivalent linker group —O—CH(CH2OCH3)— (2′ O-methoxyethyl bicyclic nucleic acid—Seth at al., 2010, J. Org. Chem., 2010, 75 (5), pp 1569-1581). In some embodiments, the biradicle -X-Y-designate the bivalent linker group —O—CH(CH2CH3)— (2′O-ethyl bicyclic nucleic acid —Seth at al., 2010, J. Org. Chem). In some embodiments, the biradicle -X-Y- is —O—CHRa—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such 6′ substituted LNA nucleosides are disclosed in WO10036698 and WO07090071 which are both hereby incorporated by reference.
  • In some embodiments, the biradicle -X-Y- is —O—CH(CH2OCH3)—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such LNA nucleosides are also known as cyclic MOEs in the art (cMOE) and are disclosed in WO07090071.
  • In some embodiments, the biradicle -X-Y- designate the bivalent linker group —O—CH(CH3)—.—in either the R- or S-configuration. In some embodiments, the biradicle -X-Y-together designate the bivalent linker group —O—CH2—O—CH2— (Seth at al., 2010, J. Org. Chem). In some embodiments, the biradicle -X-Y- is —O—CH(CH3)—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such 6′ methyl LNA nucleosides are also known as cET nucleosides in the art, and may be either (S)cET or (R)cET stereoisomers, as disclosed in WO07090071 (beta-D) and WO2010/036698 (alpha-L) which are both hereby incorporated by reference).
  • In some embodiments, the biradicle -X-Y- is —O—CRaRb—, wherein in neither Ra or Rb is hydrogen, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. In some embodiments, Ra and Rb are both methyl. Such 6′ di-substituted LNA nucleosides are disclosed in WO 2009006478 which is hereby incorporated by reference.
  • In some embodiments, the biradicle -X-Y- is —S—CHRa—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such 6′ substituted thio LNA nucleosides are disclosed in WO11156202 which is hereby incorporated by reference. In some 6′ substituted thio LNA embodiments Ra is methyl.
  • In some embodiments, the biradicle -X-Y- is —C(═CH2)-C(RaRb)—, such as —C(═CH2)—CH2—, or —C(═CH2)—CH(CH3)—W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. Such vinyl carbo LNA nucleosides are disclosed in WO08154401 and WO09067647 which are both hereby incorporated by reference.
  • In some embodiments the biradicle -X-Y- is —N(—ORa)—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. In some embodiments Ra is C1-6 alkyl such as methyl. Such LNA nucleosides are also known as N substituted LNAs and are disclosed in WO2008/150729 which is hereby incorporated by reference. In some embodiments, the biradicle -X-Y- together designate the bivalent linker group —O—NRa—CH3— (Seth at al., 2010, J. Org. Chem). In some embodiments the biradicle -X-Y- is —N(Ra)—, W is O, and all of R1, R2, R3, R5 and R5* are all hydrogen. In some embodiments Ra is C1-6 alkyl such as methyl.
  • In some embodiments, one or both of R5 and R5* is hydrogen and, when substituted the other of R5 and R5* is C1-6 alkyl such as methyl. In such an embodiment, R1, R2, R3, may all be hydrogen, and the biradicle -X-Y- may be selected from —O-CH2- or —O—C(HCRa)—, such as —O—C(HCH3)-.
  • In some embodiments, the biradicle is —CRaRb—O—CRaRb—, such as CH2—O—CH2—, W is O and all of R1, R2, R3, R5 and R5* are all hydrogen. In some embodiments Ra is C1-6 alkyl such as methyl. Such LNA nucleosides are also known as conformationally restricted nucleotides (CRNs) and are disclosed in WO2013036868 which is hereby incorporated by reference.
  • In some embodiments, the biradicle is —O—CRaRb—O—CRaRb—, such asO—CH2—O—CH2—, W is O and all of R1, R2, R3, R5 and R5* are all hydrogen. In some embodiments Ra is C1-6 alkyl such as methyl. Such LNA nucleosides are also known as COC nucleotides and are disclosed in Mitsuoka et al., Nucleic Acids Research 2009 37(4), 1225-1238, which is hereby incorporated by reference.
  • It will be recognized than, unless specified, the LNA nucleosides may be in the beta-D or alpha-L stereoisoform.
  • Certain examples of LNA nucleosides are presented in Scheme 1.
  • Figure US20190055550A1-20190221-C00004
    Figure US20190055550A1-20190221-C00005
  • As illustrated in the examples, in some embodiments of the invention the LNA nucleosides in the oligonucleotides are or comprise beta-D-oxy-LNA nucleosides.
  • Gapmer
  • The term gapmer as used herein refers to an antisense oligonucleotide which comprises a region of RNase H recruiting oligonucleotides (gap) which is flanked 5′ and 3′ by one or more affinity enhancing modified nucleosides (flanks). Various gapmer designs are described herein. Headmers and tailmers are oligonucleotides capable of recruiting RNase H where one of the flanks are missing, i.e. only one of the ends of the oligonucleotide comprises affinity enhancing modified nucleosides. For headmers the 3′ flank is missing (i.e. the 5′ flanc comprise affinity enhancing modified nucleosides) and for tailmers the 5′ flank is missing (i.e. the 3′ flank comprises affinity enhancing modified nucleosides).
  • LNA Gapmer
  • The term LNA gapmer is a gapmer oligonucleotide wherein at least one of the affinity enhancing modified nucleosides is an LNA nucleoside.
  • Mixed Wing Gapmer
  • The term mixed wing gapmer refers to a LNA gapmer wherein the flank regions comprise at least one LNA nucleoside and at least one non-LNA modified nucleoside, such as at least one 2′ substituted modified nucleoside, such as, for example, 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (MOE), 2′-amino-DNA, 2′-Fluoro-DNA, arabino nucleic acid (ANA), 2′-fluoro-ANA and 2′-F-ANA nucleoside(s). In some embodiments the mixed wing gapmer has one flank which comprises LNA nucleosides (e.g. 5′ or 3′) and the other flank (3′ or 5′ respectfully) comprises 2′ substituted modified nucleoside(s).
  • Length
  • When referring to the length of a nucleotide molecule as referred to herein, the length corresponds to the number of monomer units, i.e. nucleotides, irrespective as to whether those monomer units are nucleotides or nucleotide analogues. With respect to nucleotides, the terms monomer and unit are used interchangeably herein.
  • The process of the present invention is particularly suitable for the purification of short oligonucleotides, for example, consisting of 7 to 30 nucleotides, such as 7-10, such as 7, 8, 9, 10 or 10 to 20 nucleotides, such as 12 to 18 nucleotides, for example, 12, 13, 14, 15, 16, 17 or 18 nucleotides.
  • EXAMPLES Example 1
  • Synthesis of isobuturyl protected LNA-G phosporamidite is described in Koshkin et al, Tetrahedron (1998), 54(14), 3607-3630.
  • Crude phosphorthioate oligonucleotides were synthesized in DMT-OFF mode at 20 μmol scale on a NittoPhase UnyLinker 200 polystyrene support by standard phosphoramidite chemistry, except for oligonucleotides in entry 17-18 which were synthesized on a 3′-Amino-Modifier C7 CPG support. 4,5-dicyanoimidazole was used as activator and xanthane hydride was used for thiooxidation. Standard DNA phosphoramidites with benzoyl protected A and C were used. LNA phosphoramidites with benzoyl protected A and 5-methyl-C were used. LNA-G was DMF- or iBu-protected as indicated in the table below.
  • 5′-TFA-Amino-Modifier C6-CE phosphoramidite, available from Link Technologies, Lanakshire, Scotland, was used to introduce the 6-aminohexyl linker (AM-C6) in the 5′-end.
  • Amino-Modifier C6-dT-CE Phosphoramidite (5′-Dimethoxytrityl-5-[N-(trifluoroacetylaminohexyl)-3-acrylimido]-2′-deoxyUridine,3′-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite), available from Glen Research, Sterling, Va., was used to introduce the 5-[N-(aminohexyl)-3-acrylimido]-2′-deoxyuridine linker (tAMC6).
  • 11-(trifluoroacetamido)-3,6,9-trioxaundecan-1-yl-[(2-cyanoethyl)- (N,N-diisopropyl)]-phosphoramidite, available from Link Technologies, Lanakshire, Scotland, was used to introduce the 11-amino-3,6,9-trioxaundecan-1-yl group in the 5′-end (AM-TEG).
  • 3′-Amino-Modifier C7 CPG (2-Dimethoxytrityloxymethyl-6-fluorenylmethoxycarbonylamino-hexane-1-succinoyl)-long chain alkylamino-CPG), available from Glen Research, Sterling, Va., was used to introduce the 6-amino-2-(hydroxymethyl)-hexyl group (AM-C7) in the 3′-end. In this case, after end of synthesis the support was treated with first a solution of diethylamine and then with 20% piperidine in DMF to remove the Fmoc group.
  • After end synthesis, the support was washed with a solution of diethylamine and then suspended in 1 mL concentrated ammonium hydroxide at 60° C. over night. The support was filtered off and the solution was evaporated to dryness under vacuum. The crude material was analyzed by UPLC-MS and ratios of +28 Da impurity compared to correct product was estimated by peak area at 260 nm.
  • Entry Amount of
    (SEQ +28 Da
    ID NO) Sequence LNA-G impurity
    1 5′-AM-C6-TGctatttcatctTGG-3′ DMF 10.0%
    2 5′-AM-C6-TTctatttcatctTCT-3′  0.0%
    3 5′-AM-C6-AtGcTcGaTG-3′ DMF  9.3%
    4 5′-AM-C6-AtGcTcGaTG-3′ iBu  0.0%
    5 5′-AM-C6-GCTGATGAGT-3′ DMF  7.5%
    6 5′-AM-C6-GCTGATGAGT-3′ iBu  0.0%
    7 5′-AM-C6-CGGtaacttcaGCA-3′ DMF 15.3%
    8 5′-AM-C6-CGGtaacttcaGCA-3′ iBu  0.0%
    9 5′-AM-C6-atGTtcGGcaTGtG-3′ DMF 17.7%
    10 5′-AM-C6-atGTtcGGcaTGtG-3′ iBu  0.0%
    11 5′-AM-C6-GGatGGtcGTaaGG-3′ DMF 21.7%
    12 5′-AM-C6-GGatGGtcGTaaGG-3′ iBu  0.0%
    13 5′-atGTtAMC6cGGcaTGtG-3 DMF 25.0%
    14 5′-atGTtAMC6cGGcaTGtG-3′ iBu  0.0%
    15 5′-AM-TEG-GGatGGtcGTaaGG-3′ DMF 19.6%
    16 5′-AM-TEG-GGatGGtcGTaaGG-3′ iBu  0.0%
    17 5′-GGatGGtcGTaaGG-AM-C7-3′ DMF 13.4%
    18 5′-GGatGGtcGTaaGG-AM-C7-3′ iBu  0.0%
    Upper case = LNA, lower case = DNA.
    AM-C6 = 6-aminohexyl, tAMC6 = 5-[N-(aminohexyl)-3-acrylimido]-2′-deoxyuridine, AM-TEG = 11-amino-3,6,9-trioxaundecan-1-yl, AM-C7 = 6-amino-2-(hydroxymethyl)-hexyl.
    The examples were fully phosphorothioate oligonucleotides, where the LNA monomers were beta-D-oxy LNA.
    The LNA-C monomers are 5-methyl cytosine LNA monomers.
  • Figure US20190055550A1-20190221-C00006
  • Example 2
  • A 5′-aminohexyl linked phosphorthioate oligonucleotide with sequence 5′-AM-C6-caGCGtaaagagAGG-3′ was prepared using DMF-protected LNA-G and iBu-protected DNA-G phosphoramidites as described in example 1. The crude material contained the full length product (FL) and approximately 20% of the formyl (HCO, +28) impurity (FL+28)
  • By analysis with an ultra-high resolution mass spectrometer (FT-ICR-MS type; Thermo LTQ-FT Ultra) we determined the exact mass difference of the two [M-5H]5 peaks to 27.9968 Da (for FL 1044.11945 Da, for FL+28 1049.71881 Da) (FIG. 1) The mass difference of 5.59936 Da for the 5-times charged ions results in 5.59936 Da*5=27.9968 Da for the uncharged molecule (FIG. 3).
  • The measured mass is within Δ=1.885 mmu accuracy to a carbonyl group (CO) and the potential next modification with a nominal mass of +28 Da is “N2” where the exact mass difference is −9.348 mmu which is already outside of the mass accuracy of the instrument used.
  • For determination of the exact position of the CO-modification a mass spectrometric sequencing of the molecule was done by MS/MS with the same instrument. For nomenclature of oligonuclteotide fragmentation see McLuckey et al, J. Am. Chem. Soc., 115, 25, 12085-12095.
  • In the MS/MS experiment both 5-time charged ions (w/ and w/o modification) were fragmented. Here we located the modification on ions from the 5′-end up to the eighth nucleotide whereas the nucleotides from the 3′-end broke up at the same position with no modification. No further 3′-fragments with longer sequences were detectable. In the resulting spectra the b4-ion (FIG. 4) was observed for FL and also for FL+28. A further fragmentation with MS3 of the b4-ion (FIG. 4) resulted in spectra which show amongst other signals the a2-B ion and the b4-Cytosine ion at the first nucleotide (b4-C). This two ions lead to the proposal that the modification is located on the C6-aminolinker (FIG. 5).
  • Since only the amino linker group is present in both structures as possible reaction partner for modification we conclude that a formyl amide is formed at that position (FIG. 6).

Claims (26)

1. A method of preparing a LNA oligonucleotide comprising the steps of:
a) Incorporating at least one LNA-G monomer comprising an acyl protected exocyclic nitrogen into an oligonucleotide
b) Incorporating at least one optionally protected aliphatic amine group into the oligonucleotide
c) deprotecting the acyl protected exocyclic nitrogen of the at least one LNA-G monomer by removal of the acyl protection group.
wherein steps a) and b) can occur in either order.
2. The method according to claim 1 wherein the optionally protected aliphatic amine group is a primary or secondary amine.
3. The method according to any one of claim 1 or 2, wherein the optionally protected aliphatic amine group is a non nucleosidic amine group.
4. The method according to any one of claims 1-3, wherein the optionally aliphatic amine group is selected from the group consisting of an amino alkyl, alkylamino alkyl, piperidine, piperazine, pyrrolidine, & imidazole.
5. The method according to any one of claims 1-3, wherein the optionally aliphatic amine group is selected from the group consisting of 5′-TFA-Amino-Modifier-C5-CE Phosphoramidite, 5′-TFA-Amino-Modifier C6-CE Phosphoramidite, 11-(trifluoroacetamido)-3,6,9-trioxaundecan-1-yl-[(2-cyanoethyl)- (N,N-diisopropyl)]-phosphoramidite, 5′-TFA-Amino-Modifier-C12-CE Phosphoramidite, Amino-Modifier C2-dT-CE Phosphoramidite, Amino-Modifier C6-dA-CE Phosphoramidite, Amino-Modifier C6-dA-CE Phosphoramidite, Amino-Modifier C6-dT-CE Phosphoramidite, N2-Amino-Modifier C6 dG, Fmoc Amino-Modifier C6 dT, 3′-Amino-Modifier C7 CPG 1000, 3′-Amino-Modifier C6-dC CPG, 3′-Amino-Modifier C6-dC CPG, 3′-PT-Amino-Modifier C6 CPG, 3′-Amino-Modifier C6-dT CPG, PC 5′-Amino-Modifier-CE Phosphoramidite, 5′-Amino-Modifier C6-PDA, 5′-Amino-Modifier C12-PDA, 5′-Amino-Modifier TEG PDA, Amino-Modifier Serinol, & 3′-Amino-Modifier Serinol CPG.
6. The method according to any one of claims 1-3, wherein the optionally protected aliphatic amine group is an amino hexyl linker.
7. The method according to any one of claims 1-6, wherein the aliphatic amine group is incorporated into the oligonucleotide via the incorporation of an amino-modified monomer.
8. The method according to claim 7, wherein the aliphatic amino-modified monomer is a phosphoramidite, a H phosphonate or a phosphotriester monomer.
9. The method according to claim 7, wherein the amino-modified monomer is a phosphoramidite.
10. The method according to any one of claims 1-9, wherein the acyl protection group on the exocyclic nitrogen of the LNA-G monomer(s) consists or comprises a group selected from the group consisting of an optionally substituted alkyl-, alkenyl-, alkynyl-, cycloalkyl- or aryl-group, preferably from an optionally substituted C1-6-alkyl-, C2-6-alkenyl-, C2-6-alkinyl-, C3-7-cycloalkyl- or phenyl-group; wherein when substituted, the R group may be mono or poly substituted, e.g. with one or more substituents selected from the group consisting of halogen, C1-6-alkyl, C2-6-alkenyl, Cm-alkynyl, C1-6-alkoxy, optionally substituted aryloxy or optionally substituted aryl.
11. The method according to any one of claims 1-10, wherein the acyl protection group on the exocyclic nitrogen of the LNA-G monomer(s) is selected from the group consisting of Isobuturyl (iBu), Acetyl (Ac), Phenoxyacetyl (PAC), p-Isopropylphenoxyacetyl (iPrPAC), phenylacetyl, Isopropyloxyacetyl, methoxyacetyl, benzoyl, p-methoxyphenylacetyl, diphenylacetyl, cyclohexylcarbonyl, 1,1-dimethylpropanoyl, and p-tert-Butyl-phenoxyacetyl.
12. The method according to any one of claims 1-10, wherein the acyl protection group on the exocyclic nitrogen of the LNA-G monomer(s) is selected from the group consisting of Isobuturyl (iBu), Acetyl (Ac), Phenoxyacetyl (PAC), & p-Isopropylphenoxyacetyl (iPrPAC).
13. The method according to any one of claims 1-12, wherein, if present, other G residues incorporated into the oligonucleotide also comprise an acyl protection group, such as the acyl protection groups of any one of claims 10-12.
14. The method according to any one of claims 1-13, wherein the LNA-G monomer(s), and optionally when present other G monomers, is a phosphoramidite, a H-phosphonate or a phosphotriester monomer.
15. The method according to any one of claims 1-14, wherein the LNA-G monomer(s), and optionally when present other G monomers, is a phosphoramidite.
16. The method according to any one of claims 1-15 wherein the LNA-G monomer comprises a 2′-O—CH2-4′ biradical in the furanose ring.
17. The method according to any one of claims 1-16, wherein step c) further comprises deprotection of the primary amine group.
18. The method according to any one of claims 1-17, wherein step c) comprises deprotection of the oligonucleotide is performed in the presence of ammonia, such as using a solution comprising ammonium hydroxide.
19. The method according to any one of claims 1-18, wherein step c) is followed by an additional step (d) which comprises incorporating a conjugate group onto the aliphatic primary amine group.
20. The method according to claim 19, wherein the conjugate group is a non-nucleotide moiety, selected from the group consisting of a lipid, a sterol, a carbohydrate, a peptide and a protein.
21. The method according to any one of claims 1-20, wherein at least steps a)-c) are performed on a solid support and are followed by the cleavage of the oligonucleotide from the solid support which may be performed during step c) or subsequent to step c).
22. The method according to any one of claims 1-21, wherein the acyl protection group(s) is isobuturyl and the aliphatic primary amine group(s) is an aminohexyl linker.
23. An LNA oligonucleotide which comprises at least one LNA-G monomer comprising an acyl protected exocyclic nitrogen and at least one optionally protected aliphatic amine group, wherein said LNA oligonucleotide is attached to a solid support.
24. A pharmaceutical composition comprising an LNA oligomer conjugate which comprises an LNA-G monomer and an aliphatic amine linker positioned between the 5′ nucleotide of LNA oligomer and a conjugate moiety, and a pharmaceutically acceptable diluent, carrier or adjuvant, wherein said composition is essentially free of +28 adduct.
25. Use of an LNA-G monomer comprising an acyl protected exocyclic nitrogen for use in the synthesis of an aliphatic amine containing LNA oligonucleotide.
26. Use of an LNA-G monomer comprising an acyl protected exocyclic nitrogen for use in the synthesis of an aliphatic amine containing LNA oligonucleotide conjugate.
US15/771,223 2015-08-24 2016-08-22 LNA-G Process Abandoned US20190055550A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15182172 2015-08-24
EP15182172.5 2015-08-24
PCT/EP2016/069765 WO2017032726A1 (en) 2015-08-24 2016-08-22 Lna-g process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/069765 A-371-Of-International WO2017032726A1 (en) 2015-08-24 2016-08-22 Lna-g process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/812,233 Continuation US11591594B2 (en) 2015-08-24 2020-03-06 LNA-G process

Publications (1)

Publication Number Publication Date
US20190055550A1 true US20190055550A1 (en) 2019-02-21

Family

ID=54014512

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/771,223 Abandoned US20190055550A1 (en) 2015-08-24 2016-08-22 LNA-G Process
US16/812,233 Active US11591594B2 (en) 2015-08-24 2020-03-06 LNA-G process

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/812,233 Active US11591594B2 (en) 2015-08-24 2020-03-06 LNA-G process

Country Status (8)

Country Link
US (2) US20190055550A1 (en)
EP (1) EP3341479B1 (en)
JP (1) JP6835826B2 (en)
KR (1) KR20180043819A (en)
CN (1) CN107922945A (en)
DK (1) DK3341479T3 (en)
HK (1) HK1252479A1 (en)
WO (1) WO2017032726A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11591594B2 (en) 2015-08-24 2023-02-28 Roche Innovation Center Copenhagen A/S LNA-G process

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0923225A2 (en) 2008-12-02 2016-10-04 Chiralgen Ltd Phosphorus-modified nucleic acid synthesis method
KR101885383B1 (en) 2009-07-06 2018-08-03 웨이브 라이프 사이언시스 리미티드 Novel nucleic acid prodrugs and methods of use thereof
JP5868324B2 (en) 2010-09-24 2016-02-24 株式会社Wave Life Sciences Japan Asymmetric auxiliary group
CN103796657B (en) 2011-07-19 2017-07-11 波涛生命科学有限公司 The method for synthesizing functionalization nucleic acid
EP4219516A3 (en) 2012-07-13 2024-01-10 Wave Life Sciences Ltd. Chiral control
SG11201500239VA (en) 2012-07-13 2015-03-30 Wave Life Sciences Japan Asymmetric auxiliary group
JPWO2015108048A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant and antitumor agent having antitumor activity
WO2015108047A1 (en) 2014-01-15 2015-07-23 株式会社新日本科学 Chiral nucleic acid adjuvant having immunity induction activity, and immunity induction activator
KR102423317B1 (en) 2014-01-16 2022-07-22 웨이브 라이프 사이언시스 리미티드 Chiral design
WO2018177881A1 (en) * 2017-03-29 2018-10-04 Roche Innovation Center Copenhagen A/S Unylinker rapid cleavage
KR102624804B1 (en) * 2018-11-16 2024-01-12 에프. 호프만-라 로슈 아게 Streptavidin coated solid phase with absence of binding pairs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998484B2 (en) * 2000-10-04 2006-02-14 Santaris Pharma A/S Synthesis of purine locked nucleic acid analogues
WO2014076195A1 (en) * 2012-11-15 2014-05-22 Santaris Pharma A/S Oligonucleotide conjugates

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756313B2 (en) 1997-03-07 2006-03-15 武 今西 Novel bicyclonucleosides and oligonucleotide analogues
NZ503765A (en) * 1997-09-12 2002-04-26 Exiqon As Bi-cyclic and tri-cyclic nucleotide analogues
ID30093A (en) 1999-02-12 2001-11-01 Sankyo Co NEW ANALOGUE OF NUCLEOSIDE AND OLIGONUKLEOTIDE
CA2368135C (en) * 1999-03-18 2010-06-08 Exiqon A/S Xylo-lna analogues
JP2002543214A (en) 1999-05-04 2002-12-17 エクシコン エ/エス L-ribo-LNA analog
JP4402454B2 (en) * 2001-07-12 2010-01-20 サンタリス ファーマ アー/エス Method for producing LNA phosphoramidite
DK2752488T3 (en) 2002-11-18 2020-04-20 Roche Innovation Ct Copenhagen As Antisense design
WO2004069991A2 (en) * 2003-02-10 2004-08-19 Santaris Pharma A/S Oligomeric compounds for the modulation of survivin expression
AU2004303464B2 (en) * 2003-12-23 2009-10-01 Santaris Pharma A/S Oligomeric compounds for the modulation of BCL-2
CA2640171C (en) 2006-01-27 2014-10-28 Isis Pharmaceuticals, Inc. 6-modified bicyclic nucleic acid analogs
CA3042781C (en) 2006-04-03 2021-10-19 Roche Innovation Center Copenhagen A/S Pharmaceutical composition comprising anti-mirna antisense oligonucleotides
WO2007134181A2 (en) 2006-05-11 2007-11-22 Isis Pharmaceuticals, Inc. 5'-modified bicyclic nucleic acid analogs
US7666854B2 (en) 2006-05-11 2010-02-23 Isis Pharmaceuticals, Inc. Bis-modified bicyclic nucleic acid analogs
US8278425B2 (en) 2007-05-30 2012-10-02 Isis Pharmaceuticals, Inc. N-substituted-aminomethylene bridged bicyclic nucleic acid analogs
EP2173760B2 (en) 2007-06-08 2015-11-04 Isis Pharmaceuticals, Inc. Carbocyclic bicyclic nucleic acid analogs
CA2692579C (en) 2007-07-05 2016-05-03 Isis Pharmaceuticals, Inc. 6-disubstituted bicyclic nucleic acid analogs
EP2623599B1 (en) 2007-10-04 2019-01-02 Roche Innovation Center Copenhagen A/S Micromirs
WO2009067647A1 (en) 2007-11-21 2009-05-28 Isis Pharmaceuticals, Inc. Carbocyclic alpha-l-bicyclic nucleic acid analogs
DK2285819T3 (en) 2008-04-04 2013-12-02 Isis Pharmaceuticals Inc OLIGOMER COMPOUNDS INCLUDING NEUTRAL BONDED, TERMINAL BICYCLIC NUCLEOSIDES
DK2356129T3 (en) 2008-09-24 2013-05-13 Isis Pharmaceuticals Inc Substituted alpha-L bicyclic nucleosides
US8846637B2 (en) 2010-06-08 2014-09-30 Isis Pharmaceuticals, Inc. Substituted 2′-amino and 2′-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
WO2013036868A1 (en) 2011-09-07 2013-03-14 Marina Biotech Inc. Synthesis and uses of nucleic acid compounds with conformationally restricted monomers
EP2951305B1 (en) * 2013-01-30 2018-08-15 F.Hoffmann-La Roche Ag Lna oligonucleotide carbohydrate conjugates
AU2014259759B2 (en) 2013-05-01 2020-06-18 Ionis Pharmaceuticals, Inc. Compositions and methods
US20190055550A1 (en) 2015-08-24 2019-02-21 Roche Innovation Center Copenhagen A/S LNA-G Process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998484B2 (en) * 2000-10-04 2006-02-14 Santaris Pharma A/S Synthesis of purine locked nucleic acid analogues
WO2014076195A1 (en) * 2012-11-15 2014-05-22 Santaris Pharma A/S Oligonucleotide conjugates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11591594B2 (en) 2015-08-24 2023-02-28 Roche Innovation Center Copenhagen A/S LNA-G process

Also Published As

Publication number Publication date
HK1252479A1 (en) 2019-05-24
CN107922945A (en) 2018-04-17
US20200318109A1 (en) 2020-10-08
WO2017032726A1 (en) 2017-03-02
JP2018526991A (en) 2018-09-20
DK3341479T3 (en) 2020-02-24
JP6835826B2 (en) 2021-02-24
KR20180043819A (en) 2018-04-30
EP3341479B1 (en) 2019-12-18
EP3341479A1 (en) 2018-07-04
US11591594B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
US11591594B2 (en) LNA-G process
AU2019204784B2 (en) Compositions and methods for modulating hbv and ttr expression
US11261209B2 (en) Enhanced coupling of stereodefined oxazaphospholidine phosphoramidite monomers to nucleoside or oligonucleotide
KR20190040033A (en) Compositions comprising reversibly modified oligonucleotides and uses thereof
US11267843B2 (en) Stereodefining L-monomers
EP3152308A2 (en) Polynucleotide constructs having bioreversible and non-bioreversible groups
US20090203132A1 (en) Pyrrolidinyl groups for attaching conjugates to oligomeric compounds
US20200148714A1 (en) Multiple coupling & oxidation method
JP2019534862A (en) Synthesis of backbone-modified morpholino oligonucleotides and chimeras using phosphoramidite chemistry
US10751419B2 (en) Method for synthesis of reactive conjugate clusters
WO2018035380A1 (en) Polynucleotide constructs
US11591362B2 (en) Orthogonal protecting groups for the preparation of stereodefined phosphorothioate oligonucleotides
US11400161B2 (en) Method of conjugating oligomeric compounds
KR20220053048A (en) Antisense nucleic acids
WO2020072991A1 (en) Modified oligomeric compounds and uses thereof
US20220042022A1 (en) Antisense oligonucleotides for modulating htra1 expression
Barman et al. 2′-N-Guanidino, 4′-C-ethylene bridged thymidine (GENA-T) modified oligonucleotide exhibits triplex formation with excellent enzymatic stability
KR20200003031A (en) Oligonucleotide derivatives or salts thereof
WO2022250155A1 (en) Antisense nucleic acid
JP7231147B2 (en) RNA introduction reagent and its use

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCHE INNOVATION CENTER COPENHAGEN A/S, SWITZERLAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F. HOFFMANN-LA ROCHE AG;REEL/FRAME:047808/0777

Effective date: 20160415

Owner name: ROCHE INNOVATION CENTER COPENHAGEN A/S, SWITZERLAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANSEN, DENNIS JUL;RAVN, JACOB;ROSENBOHM, CHRISTOPH;REEL/FRAME:047808/0668

Effective date: 20150928

Owner name: F. HOFFMANN-LA ROCHE AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOERNSCHEMEYER, JOERG;REEL/FRAME:047808/0468

Effective date: 20150914

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION