US20190048709A1 - Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment - Google Patents
Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment Download PDFInfo
- Publication number
- US20190048709A1 US20190048709A1 US16/162,971 US201816162971A US2019048709A1 US 20190048709 A1 US20190048709 A1 US 20190048709A1 US 201816162971 A US201816162971 A US 201816162971A US 2019048709 A1 US2019048709 A1 US 2019048709A1
- Authority
- US
- United States
- Prior art keywords
- tool
- wellbore
- imaging
- detectors
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000005855 radiation Effects 0.000 title claims abstract description 16
- 238000011156 evaluation Methods 0.000 title description 2
- 238000003384 imaging method Methods 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 16
- 238000003491 array Methods 0.000 claims abstract description 11
- 230000001419 dependent effect Effects 0.000 claims abstract description 5
- 229920002492 poly(sulfone) Polymers 0.000 claims abstract description 3
- 238000005259 measurement Methods 0.000 claims description 6
- 238000010801 machine learning Methods 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 2
- 229910052721 tungsten Inorganic materials 0.000 claims 2
- 239000010937 tungsten Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 10
- 238000007689 inspection Methods 0.000 description 7
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- CJDRUOGAGYHKKD-XMTJACRCSA-N (+)-Ajmaline Natural products O[C@H]1[C@@H](CC)[C@@H]2[C@@H]3[C@H](O)[C@@]45[C@@H](N(C)c6c4cccc6)[C@@H](N1[C@H]3C5)C2 CJDRUOGAGYHKKD-XMTJACRCSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001427 incoherent neutron scattering Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/002—Survey of boreholes or wells by visual inspection
- E21B47/0025—Survey of boreholes or wells by visual inspection generating an image of the borehole wall using down-hole measurements, e.g. acoustic or electric
-
- E21B47/0002—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/04—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
- G01V5/08—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
- G01V5/12—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma or X-ray sources
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/002—Survey of boreholes or wells by visual inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/203—Measuring back scattering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/025—X-ray tubes with structurally associated circuit elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/32—Tubes wherein the X-rays are produced at or near the end of the tube or a part thereof which tube or part has a small cross-section to facilitate introduction into a small hole or cavity
Definitions
- the present invention relates generally to methods and means for monitoring and determining casing and sand-screen integrity within wellbore environments.
- calipers or cameras are employed to determine whether the casing/tubing is cylindrical and or not-corroded.
- cameras require the wellbore to contain optically clear fluids; otherwise, they are incapable of distinguishing features within the fluid/borehole.
- ultrasonic tools are run within the well in an attempt to image the casing/tubing, or elements outside of the tubing, such as the parts of a downhole safety valve.
- ultrasonic tools are model dependent, so prior knowledge of the precise makeup and status of the well is typically required for the ultrasound data to be compared against.
- Prior art teaches a variety of techniques that use x-rays or other radiant energy to inspect or obtain information about the structures within or surrounding the borehole of a water, oil or gas well, yet none teach a method or system to use first order detectors (which are typically used to compensate for mud-cake/fluid variations) to create a photograph-like image of the casing itself.
- U.S. Pat. No. 8,481,919 to Teague teaches a method of producing Compton-spectrum radiation in a borehole without the use of radioactive isotopes.
- the reference further teaches rotating collimators around a fixed source installed internally to the apparatus but does not have solid-state detectors with collimators. It further teaches the use of conical and radially symmetrical anode arrangements to pen tit the production of panoramic x-ray radiation.
- U.S. Pat. No. 7,705,294 to Teague teaches an apparatus that measures backscattered x-rays from the inner layers of a borehole in selected radial directions, with the missing segment data being populated through movement of the apparatus through the borehole.
- the apparatus permits generation of data for a two-dimensional reconstruction of the well or borehole, but the publication does not disclose the necessary geometry for the illuminating x-ray beam to permit discrimination of the depth from which the backscattered photons originated, rather, only the direction.
- U.S. Pat. No. 3,564,251 to Youmans discloses the use of a azimuthally scanning collimated x-ray beam to produce an attenuated signal at a detector for the purposes of producing a spiral-formed log of the inside of a casing or borehole surface immediately surrounding the tool, effectively embodied as an x-ray caliper.
- the reference fails to teach or suggest a means or method to create a photo-like image, other than a two-dimensional radial plot on an oscilloscope.
- U.S. Pat. No. 7,634,059 to Wraight discloses an apparatus that may be used to produce individual two-dimensional x-ray images of the inner surface inside of a borehole using a single pin-hole camera without the technical possibility to ascertain the azimuth of the image being taken, so that a tessellation/stitching of multiple images is also not disclosed.
- US2013/0009049 by Smaardyk discloses an apparatus that allows measurement of backscattered x-rays from the inner layers of a borehole.
- the reference fails to disclose a means or method to create photo-like two dimensional images of the inner surfaces of the casing while the tool is being axially moved (‘logged’) through the wellbore so that a consolidated two-dimensional image of the well casing can be produced.
- U.S. Pat. No. 8,138,471 to Shedlock discloses provides a scanning-beam apparatus based on an x-ray source, a rotatable x-ray beam collimator, and solid-state radiation detectors enabling the imaging of only the inner surfaces of borehole casings and pipelines.
- the reference fails to disclose a means or method to create photo-like two dimensional images of the inner surfaces of the casing while the tool is being axially moved (‘logged’) through the wellbore so that a consolidated two-dimensional image of the well casing can be produced.
- U.S. Pat. No. 5,326,970 to Bayless discloses a tool that attempts to measure backscattered x-rays azimuthally in a single direction in order to measure formation density, with the x-ray source being based on a linear accelerator.
- the reference fails to teach a means or method to create photo-like two dimensional images of the inner surfaces of the casing while the tool is being axially moved (‘logged’) through the wellbore so that a consolidated two-dimensional image of the well casing can be produced. It also fails to teach or suggest a method and means that uses a fixed conical/panoramic beam to illuminate the well casing, whereas the directional collimation is located at the rotating detector.
- U.S. Pat. No. 5,081,611 to Hornby discloses a method of back projection to determine acoustic physical parameters of the earth formation longitudinally along the borehole using a single ultrasonic transducer and a number of receivers, which are distributed along the primary axis of the tool.
- U.S. Pat. No. 6,725,161 to Hillis discloses a method of placing a transmitter in a borehole and a receiver on the surface of the earth, or a receiver in a borehole and a transmitter on the surface of the earth, with the aim to determine structural information regarding the geological materials between the transmitter and receiver.
- U.S. Pat. No. 6,876,721 to Siddiqui discloses a method to correlate information taken from a core-sample with information from a borehole density log.
- the core-sample information is derived from a CT scan of the core-sample, whereby the x-ray source and detectors are located on the outside of the sample, and thereby configured as an outside-looking-in arrangement.
- Various kinds of information from the CT scan such as its bulk density is compared to and correlated with the log information.
- U.S. Pat. No. 4,464,569 to Flaum discloses a method to determine the elemental composition of earth formations surrounding a well borehole by processing the detected neutron capture gamma radiation emanating from the earth formation after neutron irradiation of the earth formation by a neutron spectroscopy logging tool.
- U.S. Pat. No. 4,433,240 to Seeman discloses a borehole logging tool that detects natural radiation from the rock of the formation and logs said information so that it may be represented in an intensity versus depth plot format.
- U.S. Pat. No. 3,976,879 to Turcotte discloses a borehole logging tool that detects and records the backscattered radiation from the formation surrounding the borehole by means of a pulsed electromagnetic energy or photon source, so that characteristic information may be represented in an intensity versus depth plot format.
- U.S. Pat. No. 8,664,587 to Evans et al. discloses a method and means for creating azimuthal neutron porosity images in a logging while drilling environment. Since bottom hole assembly based systems historically relied upon the rotation of the drill string to assist in the acquisition of azimuthally dependent data, the reference discusses an arrangement of azimuthally static detectors which could be implemented in a modern BHA that does not necessarily rotate with the bit, by subdividing the neutron detectors into a plurality of azimuthally arranged detectors which are shielded within a moderator to infer directionality to incident neutrons and gamma.
- U.S. Pat. No. 9,012,836 to Wilson et al. discloses a method and means for creating azimuthal neutron porosity images in a wireline environment. Similar to U.S. Pat. No. 8,664,587, the reference discusses an arrangement of azimuthally static detectors which could be implemented in a wireline tool to assist an operator in interpreting logs post-fracking by subdividing the neutron detectors into a plurality of azimuthally arranged detectors, which are in turn shielded within a moderator to infer directionality to incident neutrons and gamma.
- U.S. Pat. No. 4,883,956 to Manente et al. discloses an apparatus and method for investigation of subsurface earth formations, in particular using an apparatus adapted for movement through a borehole.
- the apparatus may include a natural or artificial radiation source for irradiating the formations with penetrating radiation such as gamma rays, x-rays or neutrons.
- penetrating radiation such as gamma rays, x-rays or neutrons.
- the light produced by a scintillator in response to detected radiation is used to generate a signal representative of at least one characteristic of the radiation and that signal is recorded.
- U.S. Pat. No. 6,078,867 to Plumb discloses a method for generating a three-dimensional graphical representation of a borehole, comprising the steps of: receiving caliper data relating to the borehole, generating a three-dimensional wire mesh model of the borehole from the caliper data, and color mapping the three-dimensional wire mesh model from the caliper data based on either borehole form, rugosity and/or lithology.
- An x-ray-based cased wellbore environment imaging tool including at least an x-ray source; a radiation shield to define the output form of the produced x-rays; a direction controllable two-dimensional per-pixel collimated imaging detector array; sonde-dependent electronics; and a plurality of tool logic electronics and PSUs.
- a method of using an x-ray-based cased wellbore environment imaging tool to monitor and determine the integrity of materials within wellbore environments including at least the steps of: producing x-rays in a shaped output; measuring the intensity of backscatter x-rays returning from materials surrounding the wellbore; controlling two-dimensional per-pixel collimated imaging detector arrays; and converting image data from said detectors into consolidated images of the wellbore materials.
- FIG. 1 illustrates an x-ray-based casing imaging tool being deployed into a borehole via wireline conveyance. Regions of interest within the materials surrounding the borehole are also indicated.
- FIG. 2 illustrates one example of an x-ray-based casing imaging tool, arranged so as to enable imaging of the inner-most casing or tubing in addition to segments of the materials located outside of the casing or tubing.
- the methods and means described herein for casing integrity evaluation while simultaneously imaging equipment/features located immediately surrounding the borehole, through x-ray backscatter imaging in a cased wellbore environment, is disclosed in a package so as to not require direct physical contact with the well casings (i.e., non-padded).
- the methods and means disclosed herein further comprise the use of a combination of collimators, located cylindrically around an X-ray source located within a non-padded concentrically-located borehole logging tool, together with a single or plurality of rotatable two dimensional per-pixel collimated imaging detector array(s) to also be used as the primary imaging detector(s).
- the ability to control the viewing direction of the collimated detectors permits the operator to either log the tool through the well casing while the detectors rotated azimuthally, to produce a two dimension helical ribbon backscatter x-ray image, or to hold the tool stationary as the collimated detector rotates azimuthally to capture a cylindrical image that can be improved upon ‘statically’ (as the detector continues to recapture casing images that can be added to the existing image set), and/or to actuate the detector such that a closer inspection of a particular region may be performed by pan-tilt control of the collimated detector.
- an x-ray-based casing imaging tool [ 101 ] is deployed by wireline conveyance [ 103 . 104 ] into a cased borehole [ 102 ], wherein the well casing or tubing [ 102 ] is imaged.
- the tool is enclosed by a pressure housing that ensures well fluids are maintained outside of the housing.
- FIG. 2 illustrates a pressure housing [ 201 ] that is conveyed through a well casing or tubing [ 202 ].
- the pressure housing contains an electronic x-ray source [ 203 ] configured to produce x-rays panoramically in a conical output, the shape and distribution of said x-ray output is determined by the geometry of the collimator [ 204 ], which is formed by creating a non-blocking region of the radiation shielding.
- the conical x-ray beam illuminates a cylindrical section of the casing/tubing [ 205 ].
- the radiation scattering from the casing is imaged by a two-dimensional detector array [ 208 ], which is attached to a per-pixel array collimator [ 207 ].
- the detector collimator [ 207 ] reduces the field of view of each pixel of the detector array [ 208 ] such that each pixel images a distinct and unique section of the illuminated casing/tubing [ 205 ].
- a motor/servo [ 209 ] is used to rotate the detector azimuthally, such that the collimated detector array images the illuminated ring section of the casing/tubing [ 205 ].
- a further detector assembly [ 210 ] rotates upon the same armature but is geometrically configured to image a section of the wellbore that is illuminated by the x-rays but lays outside of the inner surfaces of the tubing/casing [ 211 ].
- the deeper depth of radial inspection detector assemblies are used to create images of sand-screens, to aid inspection.
- the deeper depth of radial inspection detector assemblies are used to create images of perforations, to aid inspection.
- the deeper depth of radial inspection detector assemblies would be used to create images of gravel-packs, to aid inspection.
- each axial ‘column’ of pixels of the detector arrays are sampled such that each column would image a similar section of the casing/tubing that had been imaged by its neighbor prior during the last sample.
- the separate image pixel columns associated with each imaged ‘slit’ section of the casing/tubing could be summated/averaged to produce a higher quality image within a single pass.
- two detectors are used back-to-back facing outwards, or side-by-side facing opposite directions, for each detector set, such that when the detector assembly is rotated, a double-helical image ribbon is produced as the tool is conveyed through the wellbore.
- ‘n’ detectors are used facing outwards, or arranged for maximal volumetric packing efficiency, for each detector assembly position, such that when the detector assembly is rotated, n-helical image ribbons are produced for each radial depth being images, as the tool is conveyed through the wellbore.
- the logging speed and detector assembly rotational rate are matched such, that a single azimuthal rotation of the detector assembly is performed while the tool is conveyed axially by one imaged axial tubing/casing section [ 9 ] height, such that the resulting images of the casing/tubing, and the outer layer ‘skin’ is complete and helically welded.
- the detector assemblies' rotation and axial/radial tilt are controlled through the use of servos/actuators such that the operator may stop the tool within the borehole and inspect certain sections of the casing/tubing (i.e. without the detector assembly being in continual rotation mode).
- the operator can stop the conveyance of the tool and use the azimuthal rotation of the detector assembly to continually sample the same images tubing/casing illuminated cylinder [ 9 ] section, such that the resulting data set can build/summate statistically to improve image quality.
- the backscatter images also comprise spectral information so that a photo-electric or characteristic-energy measurement may be taken, and the imaged material analyzed for scale-build up, casing corrosion, etc.
- machine learning is employed to automatically analyze the spectral (photo electric or characteristic energy) content of the images to identify key features, such as corrosion, holes, cracks, scratches, and/or scale-buildup.
- the per-pixel collimated imaging detector array further comprises a single ‘strip’ array (i.e., one pixel wide azimuthally) and multiple pixels long axially—the imaging result is then a ‘cylindrical’ ribbon image.
- a single ‘strip’ array i.e., one pixel wide azimuthally
- multiple pixels long axially the imaging result is then a ‘cylindrical’ ribbon image.
- machine learning is employed to automatically reformat (or re-tesselate) the resulting images, as a function of depth and varying logging speeds or logging steps, such that the finalized casing and/or cement image is accurately correlated for azimuthal direction and axial depth, by comparing with CCL, wireline run-in measurements, and/or other pressure/depth data.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Geophysics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Environmental & Geological Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2018/056258 WO2019079429A1 (fr) | 2017-10-18 | 2018-10-17 | Procédés et moyens d'évaluation de tubage, de perforation et de claie à sable au moyen d'un rayonnement de rayons x rétrodiffusé dans un environnement de puits de forage |
US16/162,971 US20190048709A1 (en) | 2017-10-18 | 2018-10-17 | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment |
US16/386,023 US10605069B2 (en) | 2017-10-18 | 2019-04-16 | Methods and means for casing, perforation and sand-screen evaluation using backscattered X-ray radiation in a wellbore environment |
US16/716,779 US11041379B2 (en) | 2017-10-18 | 2019-12-17 | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762573864P | 2017-10-18 | 2017-10-18 | |
US16/162,971 US20190048709A1 (en) | 2017-10-18 | 2018-10-17 | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/386,023 Division US10605069B2 (en) | 2017-10-18 | 2019-04-16 | Methods and means for casing, perforation and sand-screen evaluation using backscattered X-ray radiation in a wellbore environment |
US16/716,779 Continuation US11041379B2 (en) | 2017-10-18 | 2019-12-17 | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190048709A1 true US20190048709A1 (en) | 2019-02-14 |
Family
ID=65274880
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/162,971 Abandoned US20190048709A1 (en) | 2017-10-18 | 2018-10-17 | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment |
US16/386,023 Active US10605069B2 (en) | 2017-10-18 | 2019-04-16 | Methods and means for casing, perforation and sand-screen evaluation using backscattered X-ray radiation in a wellbore environment |
US16/716,779 Active US11041379B2 (en) | 2017-10-18 | 2019-12-17 | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/386,023 Active US10605069B2 (en) | 2017-10-18 | 2019-04-16 | Methods and means for casing, perforation and sand-screen evaluation using backscattered X-ray radiation in a wellbore environment |
US16/716,779 Active US11041379B2 (en) | 2017-10-18 | 2019-12-17 | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment |
Country Status (3)
Country | Link |
---|---|
US (3) | US20190048709A1 (fr) |
EP (1) | EP3698179A1 (fr) |
WO (1) | WO2019079429A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019169282A1 (fr) | 2018-03-01 | 2019-09-06 | Philip Teague | Procédés et moyens pour la mesure par imagerie de tubage, de caisson, de perforation et de tamis à sable à l'aide d'un rayonnement de rayons x rétrodiffusé dans un environnement de puits de forage |
WO2019222730A1 (fr) | 2018-05-18 | 2019-11-21 | Philip Teague | Procédés et moyens de mesure de plusieurs épaisseurs de paroi de tubage à l'aide d'un rayonnement de rayons x dans un environnement de puits foré |
US20200047336A1 (en) * | 2018-08-07 | 2020-02-13 | Frank's International, Llc | Connection analyzed make-up systems and methods |
CN112649840A (zh) * | 2020-11-30 | 2021-04-13 | 莱西市鑫喆工程技术服务中心 | 一种能源勘测设备 |
WO2024030160A1 (fr) | 2022-08-03 | 2024-02-08 | Visuray Intech Ltd (Bvi) | Procédés et moyens de mesure d'images de colonne de production, de tubage, de perforation et de crible à sable par rayonnement x rétrodiffusé dans un environnement de puits de forage |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3564251A (en) | 1968-03-04 | 1971-02-16 | Dresser Ind | Casing inspection method and apparatus |
US3976879A (en) | 1975-05-22 | 1976-08-24 | Schlumberger Technology Corporation | Well logging method and apparatus using a continuous energy spectrum photon source |
FR2485752A1 (fr) | 1980-06-25 | 1981-12-31 | Schlumberger Prospection | Procede et dispositif de mesure de rayons gamma dans un sondage |
US4464569A (en) | 1981-06-19 | 1984-08-07 | Schlumberger Technology Corporation | Method and apparatus for spectroscopic analysis of a geological formation |
US4883956A (en) | 1985-12-23 | 1989-11-28 | Schlumberger Technology Corporation | Methods and apparatus for gamma-ray spectroscopy and like measurements |
US5081611A (en) | 1991-03-06 | 1992-01-14 | Schlumberger Technology Corporation | Methods for determining formation and borehole parameters via two-dimensional tomographic reconstruction of formation slowness |
US5326970A (en) | 1991-11-12 | 1994-07-05 | Bayless John R | Method and apparatus for logging media of a borehole |
US6078867A (en) | 1998-04-08 | 2000-06-20 | Schlumberger Technology Corporation | Method and apparatus for generation of 3D graphical borehole analysis |
US6725161B1 (en) | 2001-04-26 | 2004-04-20 | Applied Minds, Inc. | Method for locating and identifying underground structures with horizontal borehole to surface tomography |
US6876721B2 (en) | 2003-01-22 | 2005-04-05 | Saudi Arabian Oil Company | Method for depth-matching using computerized tomography |
NO321851B1 (no) | 2003-08-29 | 2006-07-10 | Offshore Resource Group As | Apparat og fremgangsmate for objektavbildning og materialtypeidentifisering i en fluidforende rorledning ved hjelp av rontgen- og gammastraler |
US8269162B2 (en) * | 2007-11-07 | 2012-09-18 | Baker Hughes Incorporated | Azimuthal elemental imaging |
US7634059B2 (en) * | 2007-12-05 | 2009-12-15 | Schlumberger Technology Corporation | Downhole imaging tool utilizing x-ray generator |
US8878126B2 (en) | 2009-07-01 | 2014-11-04 | Ge Oil & Gas Logging Services, Inc. | Method for inspecting a subterranean tubular |
NO330708B1 (no) | 2009-10-23 | 2011-06-20 | Latent As | Apparat og fremgangsmate for kontrollert, nedihullsproduksjon av ioniserende straling uten anvendelse av radioaktive, kjemiske isotoper |
US8664587B2 (en) | 2010-11-19 | 2014-03-04 | Schlumberger Technology Corporation | Non-rotating logging-while-drilling neutron imaging tool |
US8138471B1 (en) | 2010-12-09 | 2012-03-20 | Gas Technology Institute | X-ray backscatter device for wellbore casing and pipeline inspection |
CA2793472C (fr) | 2011-10-27 | 2015-12-15 | Weatherford/Lamb, Inc. | Outil de mesure de neutrons dote de detecteurs multiples |
US20150177409A1 (en) * | 2013-12-20 | 2015-06-25 | Visuray Intech Ltd (Bvi) | Methods and Means for Creating Three-Dimensional Borehole Image Data |
US9746583B2 (en) * | 2014-08-27 | 2017-08-29 | General Electric Company | Gas well integrity inspection system |
BR112017004278B1 (pt) * | 2014-10-02 | 2022-03-29 | Halliburton Energy Services, Inc | Aparelho para geração de imagem de fótons e método para gerar imagens de fótons do fundo do poço |
-
2018
- 2018-10-17 EP EP18799940.4A patent/EP3698179A1/fr active Pending
- 2018-10-17 WO PCT/US2018/056258 patent/WO2019079429A1/fr unknown
- 2018-10-17 US US16/162,971 patent/US20190048709A1/en not_active Abandoned
-
2019
- 2019-04-16 US US16/386,023 patent/US10605069B2/en active Active
- 2019-12-17 US US16/716,779 patent/US11041379B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019169282A1 (fr) | 2018-03-01 | 2019-09-06 | Philip Teague | Procédés et moyens pour la mesure par imagerie de tubage, de caisson, de perforation et de tamis à sable à l'aide d'un rayonnement de rayons x rétrodiffusé dans un environnement de puits de forage |
WO2019222730A1 (fr) | 2018-05-18 | 2019-11-21 | Philip Teague | Procédés et moyens de mesure de plusieurs épaisseurs de paroi de tubage à l'aide d'un rayonnement de rayons x dans un environnement de puits foré |
US20200047336A1 (en) * | 2018-08-07 | 2020-02-13 | Frank's International, Llc | Connection analyzed make-up systems and methods |
US11613009B2 (en) * | 2018-08-07 | 2023-03-28 | Frank's International, Llc | Connection analyzed make-up systems and methods |
CN112649840A (zh) * | 2020-11-30 | 2021-04-13 | 莱西市鑫喆工程技术服务中心 | 一种能源勘测设备 |
WO2024030160A1 (fr) | 2022-08-03 | 2024-02-08 | Visuray Intech Ltd (Bvi) | Procédés et moyens de mesure d'images de colonne de production, de tubage, de perforation et de crible à sable par rayonnement x rétrodiffusé dans un environnement de puits de forage |
Also Published As
Publication number | Publication date |
---|---|
US11041379B2 (en) | 2021-06-22 |
US20200123890A1 (en) | 2020-04-23 |
WO2019079429A1 (fr) | 2019-04-25 |
EP3698179A1 (fr) | 2020-08-26 |
US10605069B2 (en) | 2020-03-31 |
US20190242239A1 (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11041379B2 (en) | Methods and means for casing, perforation and sand-screen evaluation using backscattered x-ray radiation in a wellbore environment | |
US11542808B2 (en) | Methods and means for determining the existence of cement debonding within a cased borehole using x-ray techniques | |
AU2018352730B2 (en) | Methods and means for simultaneous casing integrity evaluation and cement inspection in a multiple-casing wellbore environment | |
AU2018225203A1 (en) | Detecting anomalies in annular materials of single and dual casing string environments | |
US10705247B2 (en) | Methods and means for fracture mapping in a well bore | |
US20220196577A1 (en) | Methods and Means for the Measurement of Tubing, Casing, Perforation and Sand-Screen Imaging Using Backscattered X-Ray Radiation in a Wellbore Environment | |
US11035220B2 (en) | Methods and means for casing integrity evaluation using backscattered x-ray radiation in a wellbore environment | |
US20230203936A1 (en) | Methods and Means for Measuring Multiple Casing Wall Thicknesses Using X-Ray Radiation in a Wellbore Environment | |
WO2024030160A1 (fr) | Procédés et moyens de mesure d'images de colonne de production, de tubage, de perforation et de crible à sable par rayonnement x rétrodiffusé dans un environnement de puits de forage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: VISURAY INTECH LTD (BVI), VIRGIN ISLANDS, BRITISH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TEAGUE, PHILIP;SPANNUTH, MELISSA;REEL/FRAME:050586/0516 Effective date: 20190925 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |