US20190048479A1 - Bypass electrolysis system and method - Google Patents

Bypass electrolysis system and method Download PDF

Info

Publication number
US20190048479A1
US20190048479A1 US16/164,400 US201816164400A US2019048479A1 US 20190048479 A1 US20190048479 A1 US 20190048479A1 US 201816164400 A US201816164400 A US 201816164400A US 2019048479 A1 US2019048479 A1 US 2019048479A1
Authority
US
United States
Prior art keywords
electrolysis system
housing
membrane
internal volume
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/164,400
Inventor
Forrest A. King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King Power Co LLC
Original Assignee
King Power Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Power Co LLC filed Critical King Power Co LLC
Priority to US16/164,400 priority Critical patent/US20190048479A1/en
Assigned to KING POWER COMPANY LLC reassignment KING POWER COMPANY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KING, FORREST A.
Publication of US20190048479A1 publication Critical patent/US20190048479A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • C25B1/10
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • C25B9/08
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • Y02E60/366

Definitions

  • the present invention relates to a method and apparatus for commercially producing hydrogen and/or oxygen.
  • Electrolysis in commercial production normally occurs with many adjacent sets of plates for separating oxygen and hydrogen.
  • Membranes between special cathodes and anodes with various catalysts are typically employed.
  • FIG. 1 is a side plan view of the presently preferred embodiment of the present invention
  • FIG. 2 is a cross sectional view taken along line A-A of FIG. 1 ;
  • FIG. 3 is a cross-sectional view taking along line A-A of FIG. 2 with the membrane and cover plate included from internal portions of FIG. 1 ;
  • FIG. 4 is a side plan view of an alternatively preferred embodiment of the present invention.
  • FIG. 1 shows an electrolyzer 10 of the presently preferred embodiment of the present invention.
  • a positive/negative direct current charge can be provided and is represented by positive charge with positive pole 12 and negative charge with negative pole 14 .
  • These poles can be obtained from any direct current electrical power source.
  • the applicant has successfully used solar panels providing a maximum of 28 V DC rather effectively.
  • a robust design is provided which does not require any specific voltage or current requirement from the positive and negative electrical poles 12 , 14 .
  • the 28 V DC electrical solar panel may drop voltage and/or current with cloud cover conditions during the day. While output of oxygen and hydrogen may slow down, the output has been found to be more than satisfactory to run the system. In an industrial system, it may be that the voltage will be more consistent but there is certainly no need for such consistency with many embodiments of the preferred embodiments.
  • First and second housing portions 20 , 22 may be cylindrical for easy construction to accommodate various shapes of the anode 16 and the cathode 18 as would be understood by those of ordinary skill in the art. Other shaped first and second housing portions 20 , 22 could be utilized in other embodiments. Copper has been used for first and second housing portions 20 , 22 as has PVC and other materials. Anode 16 and cathode 18 are not electrically connected together within housing portions 20 , 22 .
  • a hydrogen bypass line 26 can be provided as will be discussed in further detail below.
  • Membrane 30 and/or 32 may be provided as shown in FIG. 3 substantially along membrane axis 28 and parallel thereto for at least some embodiments.
  • Membrane holder 24 is believed to be of somewhat unique a construction, however, membrane holders known in the art could be utilized as well. However, the preferred embodiment of this membrane holder 24 does not allow for flexure of the membrane.
  • Membrane 30 and/or 32 is preferably secured within plates 44 , 46 and/or center support 48 in a secure manner.
  • All of the anode(s) 16 may be on one side of the membrane(s) 30 , 32 and all of the cathode(s) 18 may be on the opposite side (i.e., for some embodiments the membrane axis 28 may separate the cathode(s) 18 and anode(s) 16 ).
  • Fluid, such as water, from supply 34 can be provided through supply lines 36 , 38 into the first and second housing portions 20 , 22 respectively.
  • a catalyst such as a platinum, cobalt and/or other catalyst material as are well known in the art to facilitate separating water into hydrogen and oxygen as the charges are applied.
  • Hydrogen and oxygen are preferably separated. Oxygen will be directed toward the anode 16 and discharged. As the oxygen has a high degree of electro-negativity (a 3.4 on a scale of 4) thus causing the oxygen to be held in a charged field.
  • the hydrogen that builds up can be bypassed through hydrogen bypass 26 to the oxygen side whereby the hydrogen almost immediately passes somewhat in a one way direction through the membrane(s) 30 and/or 32 back to the hydrogen side to effectively increase the pressure on the system while also contributing to the purity of the hydrogen drawn off the hydrogen line.
  • Oxygen may be drawn off the oxygen line 40 in a steady manner.
  • the relative scale of the system can be scaled relative to any scale even easily up to 500 KW which could produce roughly 2,000 cubic feet of oxygen per hour and 4,000 cubic feet of hydrogen per hour.
  • Catalyst may include potassium hydroxide and other catalysts for such members.
  • membranes for use with electrolysis are well known 30 , 32 and they can be made with various thicknesses depending on the efficiency and the pressures exerted.
  • membrane perforated holding plates 44 , 46 can be utilized to hold the membranes 30 , 32 against a water support membrane holder 24 .
  • the membrane holder 24 preferably has a center support 48 which has perforations 50 as do the plates 44 , 46 whereby the perforations 50 are effectively illustrated as bores 52 , 54 , 56 and extend through respective member membrane holder 24 and plates 46 and 44 respectively.
  • the membranes 30 , 32 By securing the membranes 30 , 32 against the center portion 48 with the plates 44 , 46 the membranes cannot pulse in and out as they are retained in position and are held safely. Even without the center portion 48 , the membranes 30 , 32 should not pulsate.
  • Heat exchangers 70 , 72 are provided for cooling of both the first and second housing portions 20 , 22 of the preferred embodiment. Heat exchanger 70 can direct cooling through in and out of first and second ports 74 , 76 such as through internal exchanger internal pipes 78 as would be understood by those of ordinary skill in the art. Similarly, the second heat exchanger 72 may be similarly or dissimilarly constructed with cooling lines internally directed through first and second ports 80 , 82 .
  • the membrane holder 24 can effectively be a single piece type structure to assist in preventing leaks from housing portions 20 , 22 .
  • Threads 62 , 64 can securely connect to the membrane holder 24 .
  • the plates 44 , 46 can assist in connecting the membranes 30 and/or 32 mechanically while not pulsating.
  • Hydrogen bypass line 26 can emphasize the electronegativity of oxygen which may assist in the separation of hydrogen from the oxygen. Furthermore, the bypass line may also assist at reducing the flux on the membrane or membranes 30 , 32 to thus provide for superior hydrogen and oxygen separation directed through the respective outlets 40 , 42 possibly producing less heat.
  • bypass line By using the bypass line with a check valve 84 , effectively one way gas separation can occur to assist in reducing heat build-up and to reduce the potential surface area needed for separation versus conventional electrolyzer constructions.
  • Hydrogen bypass line 26 can also serve as an extra safety line to a port 86 . This could potentially be opened to evacuate hydrogen gas if necessary such as in an emergency or otherwise.
  • Check valve 84 can control the flow of gas for separation to occur in a cyclical manner. One way flux across the membrane is believed to increase the efficiency of the unit.
  • double sealing the housings 20 , 22 was one effective way to mechanically seal versus plate edges to prevent hydrogen leakage. This can be performed by various means such as by having an internal plug 88 cooperating internal to an external plug 90 as would be understood by those of ordinary skill in another method.
  • Internal piping 78 in the heat exchangers 70 , 72 can take away heat as would be understood by those of ordinary skill in the art with cooler fluid directed in one port 74 , 80 and warmer fluid directed out of the other port 76 , 82 , etc.
  • this electrolyzer 10 is believed to be different from those of prior art designs. Although one set of cathodes and anodes 16 , 18 is illustrated in the preferred embodiment, multiple cathodes 18 and anodes 16 could be provided on opposite sides of the membrane plane 28 with the hydrogen bypass 26 connecting the opposing sides for gas fluid flow while still maintaining the electrical separation necessary to conduct electrolysis. This is believed to be a novel feature while the hydrogen and oxygen are directed out of opposing ports 40 , 42 with the hydrogen able to cross through the membrane(s) 30 , and/or 32 as would be understood by those of ordinary skill in the art particularly as the hydrogen is small enough to pass through the membrane in a more efficient manner than other molecules due to its extremely small size.
  • the bypass electrolysis system; or electrolyzer 10 has positively and negatively charged electrodes such as anode 16 and cathode 18 which can be separately disposed in first and second housings 20 , 22 , respectively.
  • Liquid preferably water, but possibly containing other dissolved materials and/or fluids such as ionic fluids, molten salts or other fluids, is separated relative to the first and second housings 20 , 22 by at least one membrane 30 and/or 32 with at least one membrane holder 24 .
  • the membranes 30 and/or 32 provide an ability to allow hydrogen to pass, while preventing the flow of liquid between the first and second housings.
  • the membrane is sized to allow oxygen to flow through, but not water.
  • the first housing 20 has an oxygen outlet 40
  • the second housing 22 has a hydrogen outlet 42 , for respectively directing the gasses from the electrolyzer 10 when used as an electrolyzer 10 in operation.
  • at least one hydrogen bypass line is preferably provided during electrolysis of water into component hydrogen and oxygen to at least assist in passing hydrogen from the cathode side (second housing 22 ) to the anode side (first housing 20 ) to assist in equalizing pressure across the at least one membrane 30 and/or 32 , principally due to the high electronegativity of oxygen and thus its attraction to the anode 16 and out the oxygen outlet 40 .
  • a check valve 84 can be located in the bypass line 26 to assist in proper direction of passing hydrogen (but preferably for many embodiments, not passing oxygen) from the second housing 22 to the first housing 20 , and not passing fluid or gasses from the first housing 20 to the second housing 22 .
  • Either of the electrodes 16 , 18 can be horizontally disposed/oriented in a portion of the first and second housings 20 , 22 respectively, such as in a cylindrical portion of each. The cylindrical portions can extend toward the membrane housing 24 .
  • Other embodiments, such as the embodiment of FIG. 4 may have vertically oriented electrodes, possibly extending in vertically extending cylindrical portions as will be explained in further detail below.
  • Catalysts such as on or part of the electrodes and/or in solution of the liquid are within at least one of the first and second housings 20 , 22 for many embodiments.
  • Perforated holding plates 44 , 46 are useful to hold the membranes 30 and/or 32 o the membrane holder 24 . These can threadedly connect to the membrane holder 24 which can at least assist in supporting the at least one membrane 30 and/or 32 . Furthermore, the membrane holder 24 can threadedly connect to portions of the housings 20 , 22 as described above or otherwise. A hydrogen port 86 on the bypass line 26 can be useful for some embodiments. Multiple electrodes 16 , 18 within either of the housings 20 , 22 may be appropriate for some embodiments as well.
  • FIG. 4 shows an alternatively preferred embodiment of the present invention in the form of a system 100 having electrodes in the form of anode(s) 1 . 16 and cathode(s) 118 which could be vertical anode 102 and vertical cathode 104 or horizontally disposed as shown, or otherwise.
  • Fluid supplies 136 and 138 may be useful to replenish fluids to either side of the membranes in the membrane holders 124 , 106 , 108 and 110 .
  • Four membrane holders 124 , 106 , 108 , 110 are shown, there could be more or fewer in other embodiments, and although they are shown along a membrane plane 128 , other embodiments may be constructed differently.
  • Heat exchanger inlet 174 and outlet 176 may cool vertical portion 112 of first housing 120 .
  • Heat exchanger inlet 180 and outlet 182 may cool vertical portion 114 of second housing 122 .
  • Heat exchanger inlet 172 and outlet 178 may cool horizontal portion 113 of first housing 120 .
  • Heat exchanger inlet 190 and outlet 192 may cool horizontal portion 115 of second housing 122 .
  • Similar heat exchanger inlets 172 , 190 and outlets 178 , 192 can be provided for the various horizontal portions (cylindrical for many embodiments which can form tee's with cylindrical vertical portions, if so constructed) of housings 120 , 122 as well.
  • Bypass lines 126 are shown with check valves 184 and also valves 150 so as to be able to re the bypass line 126 under certain circumstances (some embodiments may not require bypass lines 126 ).
  • the system 100 or 10 could be a fuel cell.
  • oxygen and hydrogen could be input, such as through ports 140 and 142 (referred to as oxygen outlet 140 and hydrogen outlet 142 ) to then combine in the system 100 to form water and give off heat (which could be used by heat exchangers shown, or others) and meanwhile provide a potential across anode and cathode 116 , 118 which could drive an electrical load as a fuel cell or otherwise.
  • Bypass lines 126 may not be so useful for many embodiments of a fuel cell operation since the pressures could be controlled on both sides of membrane(s) (not shown) such as by monitoring pressures and/or using valves 152 , 154 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A bypass electrolyzer system provides a system for separating oxygen and hydrogen from water, whereby electrodes are respectively disposed in first and second housings spaced apart by at least one membrane supported by at least one membrane holder. At least one bypass line connects the first and second housings so that during operation, hydrogen can pass to through the bypass line to the oxygen side and then back through the membrane to assist in equalizing pressure across the membrane during operation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/016,512, filed Feb. 5, 2016, which claims the benefit of US Provisional Application No. 62/112,201 filed Feb. 5, 2015, the contents of both of which are hereby incorporated by reference in their entireties.
  • FIELD
  • The present invention relates to a method and apparatus for commercially producing hydrogen and/or oxygen.
  • BACKGROUND
  • Electrolysis in commercial production normally occurs with many adjacent sets of plates for separating oxygen and hydrogen. Membranes between special cathodes and anodes with various catalysts are typically employed.
  • Improved methods and devices for electrolyzing water to form oxygen and hydrogen are believed to be necessary in the marketplace.
  • SUMMARY
  • It is an object of many embodiments of the present invention to provide an improved electrolysis method and apparatus for separating hydrogen and oxygen from water.
  • It is another object of many embodiments of the present invention to provide a relatively, inexpensive and highly efficient method and apparatus for separating hydrogen and water.
  • It is another object of many embodiments of the present invention to provide an improved method and apparatus for separating hydrogen and oxygen preferably utilizing a one way hydrogen bypass.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The particular features and advantages of the invention as well as other objects will become apparent from the following description taken in connection with the accompanying drawings in which:
  • FIG. 1 is a side plan view of the presently preferred embodiment of the present invention;
  • FIG. 2 is a cross sectional view taken along line A-A of FIG. 1;
  • FIG. 3 is a cross-sectional view taking along line A-A of FIG. 2 with the membrane and cover plate included from internal portions of FIG. 1;
  • FIG. 4 is a side plan view of an alternatively preferred embodiment of the present invention.
  • DETAILED DESCRIPTION
  • FIG. 1 shows an electrolyzer 10 of the presently preferred embodiment of the present invention. When electrolyzing water into the components of hydrogen and oxygen, a positive/negative direct current charge can be provided and is represented by positive charge with positive pole 12 and negative charge with negative pole 14. These poles can be obtained from any direct current electrical power source. The applicant has successfully used solar panels providing a maximum of 28 V DC rather effectively. For at least some embodiments of this particular system, a robust design is provided which does not require any specific voltage or current requirement from the positive and negative electrical poles 12,14. The 28 V DC electrical solar panel may drop voltage and/or current with cloud cover conditions during the day. While output of oxygen and hydrogen may slow down, the output has been found to be more than satisfactory to run the system. In an industrial system, it may be that the voltage will be more consistent but there is certainly no need for such consistency with many embodiments of the preferred embodiments.
  • Current from a positive connection 12 can be provided to an anode 16 and from a negative source 14 can be provided to a cathode 18 internal to first and second housing portions 20,22, respectively, which are preferably electrically separated but physically connected at a membrane holder 24 which could take various forms. Membrane holder 24 and/or portions thereof may be non-conductive to electricity. First and second housing portions 20,22 may be cylindrical for easy construction to accommodate various shapes of the anode 16 and the cathode 18 as would be understood by those of ordinary skill in the art. Other shaped first and second housing portions 20,22 could be utilized in other embodiments. Copper has been used for first and second housing portions 20,22 as has PVC and other materials. Anode 16 and cathode 18 are not electrically connected together within housing portions 20,22.
  • Unlike prior art electrical electrolyzers there may be a single anode 16 and cathode 18 as opposed to alternating series of sheets of such. Of course, there could be multiple anodes 16 and cathodes 18 with various embodiments preferably separated by a planar and/or other membrane wall in the preferred embodiments. By constructing it in this manner or otherwise, a hydrogen bypass line 26 can be provided as will be discussed in further detail below.
  • Water is preferably provided to both sides of the membrane axis 28 or opposite membrane(s) 30,32. Other liquids such as other electrically active fluids could be used with other embodiments including ionic liquids and/or molten salts, etc. Membrane 30 and/or 32 may be provided as shown in FIG. 3 substantially along membrane axis 28 and parallel thereto for at least some embodiments. Membrane holder 24 is believed to be of somewhat unique a construction, however, membrane holders known in the art could be utilized as well. However, the preferred embodiment of this membrane holder 24 does not allow for flexure of the membrane. Membrane 30 and/or 32 is preferably secured within plates 44,46 and/or center support 48 in a secure manner. All of the anode(s) 16 may be on one side of the membrane(s) 30,32 and all of the cathode(s) 18 may be on the opposite side (i.e., for some embodiments the membrane axis 28 may separate the cathode(s) 18 and anode(s) 16).
  • Fluid, such as water, from supply 34 can be provided through supply lines 36,38 into the first and second housing portions 20,22 respectively. When the DC charge is applied, power from positive and negative sources 12,14 enter the water in the housing portions 20, 22 and electrolysis can thereby commence which is preferably facilitated with a catalyst such as a platinum, cobalt and/or other catalyst material as are well known in the art to facilitate separating water into hydrogen and oxygen as the charges are applied. Hydrogen and oxygen are preferably separated. Oxygen will be directed toward the anode 16 and discharged. As the oxygen has a high degree of electro-negativity (a 3.4 on a scale of 4) thus causing the oxygen to be held in a charged field. Meanwhile, the hydrogen that builds up can be bypassed through hydrogen bypass 26 to the oxygen side whereby the hydrogen almost immediately passes somewhat in a one way direction through the membrane(s) 30 and/or 32 back to the hydrogen side to effectively increase the pressure on the system while also contributing to the purity of the hydrogen drawn off the hydrogen line. Oxygen may be drawn off the oxygen line 40 in a steady manner. As has been discovered by the applicant, the relative scale of the system can be scaled relative to any scale even easily up to 500 KW which could produce roughly 2,000 cubic feet of oxygen per hour and 4,000 cubic feet of hydrogen per hour.
  • Catalyst may include potassium hydroxide and other catalysts for such members.
  • For the membrane, membranes for use with electrolysis are well known 30,32 and they can be made with various thicknesses depending on the efficiency and the pressures exerted. In order to minimize wear and tear on the membranes 30,32, membrane perforated holding plates 44,46 can be utilized to hold the membranes 30,32 against a water support membrane holder 24. The membrane holder 24 preferably has a center support 48 which has perforations 50 as do the plates 44,46 whereby the perforations 50 are effectively illustrated as bores 52,54,56 and extend through respective member membrane holder 24 and plates 46 and 44 respectively. This way, in order to change the membranes especially the membrane holder if utilized as per the preferred embodiment having internally directed threads 58,60 which not only receive the plates 44,46, but also threaded connections 62,64 of first and second housing portions 20,22 respectively so that the membrane holder 24 could be relatively easily changed out by putting a wrench on flats 66,68. The membrane housing 24 may seal against first and second housing portions 20,22 in the in use position and yet be unscrewed to replace membranes 30,32 as would be understood by those of ordinary skill in the art. Center support 48 need not be used in all embodiments. By securing the membranes 30,32 against the center portion 48 with the plates 44,46 the membranes cannot pulse in and out as they are retained in position and are held safely. Even without the center portion 48, the membranes 30,32 should not pulsate.
  • The applicant has discovered that the hydrogen bypass line 26 can significantly reduce the heat created by the system. The system has been effectively operated at about 50 to about 100 psi. Heat exchangers 70,72 are provided for cooling of both the first and second housing portions 20,22 of the preferred embodiment. Heat exchanger 70 can direct cooling through in and out of first and second ports 74,76 such as through internal exchanger internal pipes 78 as would be understood by those of ordinary skill in the art. Similarly, the second heat exchanger 72 may be similarly or dissimilarly constructed with cooling lines internally directed through first and second ports 80,82.
  • With what is believed to be a unique construction for some embodiments, the membrane holder 24 can effectively be a single piece type structure to assist in preventing leaks from housing portions 20,22. Threads 62,64 can securely connect to the membrane holder 24. The plates 44,46 can assist in connecting the membranes 30 and/or 32 mechanically while not pulsating.
  • Hydrogen bypass line 26 can emphasize the electronegativity of oxygen which may assist in the separation of hydrogen from the oxygen. Furthermore, the bypass line may also assist at reducing the flux on the membrane or membranes 30,32 to thus provide for superior hydrogen and oxygen separation directed through the respective outlets 40,42 possibly producing less heat.
  • By using the bypass line with a check valve 84, effectively one way gas separation can occur to assist in reducing heat build-up and to reduce the potential surface area needed for separation versus conventional electrolyzer constructions.
  • Hydrogen bypass line 26 can also serve as an extra safety line to a port 86. This could potentially be opened to evacuate hydrogen gas if necessary such as in an emergency or otherwise. Check valve 84 can control the flow of gas for separation to occur in a cyclical manner. One way flux across the membrane is believed to increase the efficiency of the unit.
  • In earlier prototypes, the applicant discovered that double sealing the housings 20,22 was one effective way to mechanically seal versus plate edges to prevent hydrogen leakage. This can be performed by various means such as by having an internal plug 88 cooperating internal to an external plug 90 as would be understood by those of ordinary skill in another method.
  • Internal piping 78 in the heat exchangers 70,72 can take away heat as would be understood by those of ordinary skill in the art with cooler fluid directed in one port 74,80 and warmer fluid directed out of the other port 76,82, etc.
  • The design of this electrolyzer 10 is believed to be different from those of prior art designs. Although one set of cathodes and anodes 16,18 is illustrated in the preferred embodiment, multiple cathodes 18 and anodes 16 could be provided on opposite sides of the membrane plane 28 with the hydrogen bypass 26 connecting the opposing sides for gas fluid flow while still maintaining the electrical separation necessary to conduct electrolysis. This is believed to be a novel feature while the hydrogen and oxygen are directed out of opposing ports 40,42 with the hydrogen able to cross through the membrane(s) 30, and/or 32 as would be understood by those of ordinary skill in the art particularly as the hydrogen is small enough to pass through the membrane in a more efficient manner than other molecules due to its extremely small size.
  • The bypass electrolysis system; or electrolyzer 10, has positively and negatively charged electrodes such as anode 16 and cathode 18 which can be separately disposed in first and second housings 20,22, respectively. Liquid, preferably water, but possibly containing other dissolved materials and/or fluids such as ionic fluids, molten salts or other fluids, is separated relative to the first and second housings 20,22 by at least one membrane 30 and/or 32 with at least one membrane holder 24. The membranes 30 and/or 32 provide an ability to allow hydrogen to pass, while preventing the flow of liquid between the first and second housings. In some embodiments, the membrane is sized to allow oxygen to flow through, but not water.
  • Additionally, the first housing 20 has an oxygen outlet 40, the second housing 22 has a hydrogen outlet 42, for respectively directing the gasses from the electrolyzer 10 when used as an electrolyzer 10 in operation. Furthermore, at least one hydrogen bypass line is preferably provided during electrolysis of water into component hydrogen and oxygen to at least assist in passing hydrogen from the cathode side (second housing 22) to the anode side (first housing 20) to assist in equalizing pressure across the at least one membrane 30 and/or 32, principally due to the high electronegativity of oxygen and thus its attraction to the anode 16 and out the oxygen outlet 40.
  • A check valve 84 can be located in the bypass line 26 to assist in proper direction of passing hydrogen (but preferably for many embodiments, not passing oxygen) from the second housing 22 to the first housing 20, and not passing fluid or gasses from the first housing 20 to the second housing 22. Either of the electrodes 16,18 can be horizontally disposed/oriented in a portion of the first and second housings 20,22 respectively, such as in a cylindrical portion of each. The cylindrical portions can extend toward the membrane housing 24. Other embodiments, such as the embodiment of FIG. 4, may have vertically oriented electrodes, possibly extending in vertically extending cylindrical portions as will be explained in further detail below.
  • Catalysts, such as on or part of the electrodes and/or in solution of the liquid are within at least one of the first and second housings 20,22 for many embodiments.
  • Perforated holding plates 44,46 are useful to hold the membranes 30 and/or 32 o the membrane holder 24. These can threadedly connect to the membrane holder 24 which can at least assist in supporting the at least one membrane 30 and/or 32. Furthermore, the membrane holder 24 can threadedly connect to portions of the housings 20,22 as described above or otherwise. A hydrogen port 86 on the bypass line 26 can be useful for some embodiments. Multiple electrodes 16, 18 within either of the housings 20,22 may be appropriate for some embodiments as well.
  • FIG. 4 shows an alternatively preferred embodiment of the present invention in the form of a system 100 having electrodes in the form of anode(s) 1.16 and cathode(s) 118 which could be vertical anode 102 and vertical cathode 104 or horizontally disposed as shown, or otherwise. Fluid supplies 136 and 138 may be useful to replenish fluids to either side of the membranes in the membrane holders 124, 106,108 and 110. Four membrane holders 124,106,108,110 are shown, there could be more or fewer in other embodiments, and although they are shown along a membrane plane 128, other embodiments may be constructed differently.
  • Heat exchanger inlet 174 and outlet 176 may cool vertical portion 112 of first housing 120. Heat exchanger inlet 180 and outlet 182 may cool vertical portion 114 of second housing 122. Heat exchanger inlet 172 and outlet 178 may cool horizontal portion 113 of first housing 120. Heat exchanger inlet 190 and outlet 192 may cool horizontal portion 115 of second housing 122. Similar heat exchanger inlets 172,190 and outlets 178,192 can be provided for the various horizontal portions (cylindrical for many embodiments which can form tee's with cylindrical vertical portions, if so constructed) of housings 120,122 as well.
  • By providing a vertical arrangement as shown in FIG. 4 versus the construction of FIG. 1, it may be that flux, and thus output, can be significantly increased with an at least somewhat vertical orientation of system 100, such as at least three, if not seven fold. Furthermore, multiple electrodes, whether horizontal and/or vertical can be provided either on the cathode or anode side.
  • Bypass lines 126 are shown with check valves 184 and also valves 150 so as to be able to re the bypass line 126 under certain circumstances (some embodiments may not require bypass lines 126). For instance if the system 100 or 10 were run in reverse, it could be a fuel cell. Specifically, oxygen and hydrogen could be input, such as through ports 140 and 142 (referred to as oxygen outlet 140 and hydrogen outlet 142) to then combine in the system 100 to form water and give off heat (which could be used by heat exchangers shown, or others) and meanwhile provide a potential across anode and cathode 116,118 which could drive an electrical load as a fuel cell or otherwise. Bypass lines 126 may not be so useful for many embodiments of a fuel cell operation since the pressures could be controlled on both sides of membrane(s) (not shown) such as by monitoring pressures and/or using valves 152,154.
  • Numerous alterations of the structure herein disclosed will suggest themselves to those skilled in the art. However, it is to be understood that the present disclosure relates to the preferred embodiment of the invention which is for purposes of illustration only and not to be construed as a limitation of the invention. All such modifications which do not depart from the spirit of the invention are intended to be included within the scope of the appended claims.

Claims (20)

What is claimed is:
1. A bypass electrolysis system comprising:
a first housing comprising a first liquid inlet, a first internal volume, at least one first electrode disposed within the first internal volume, and a first gas outlet capable of directing a first gas out of the first housing during operation;
a second housing comprising a second liquid inlet, a second internal volume, at least one second electrode disposed within the second internal volume, and a second gas outlet capable of directing a second gas out of the second housing during operation;
a membrane holder that physically connects and electrically separates the first housing and the second housing;
at least one membrane disposed within the membrane holder and separating the first internal volume from the second internal volume, wherein the membrane is capable of allowing hydrogen to pass therethrough while restricting the flow of a liquid therethrough; and
at least one conduit that extends from a first position proximate the top of the second housing to a second position on the first housing, wherein the first internal volume and the second internal volume are in fluid communication through the at least one conduit.
2. The bypass electrolysis system of claim 1, wherein the at least one conduit comprises a check valve capable of permitting gas flow from the second housing to the first housing while preventing flow from the first housing to the second housing.
3. The bypass electrolysis system of claim 1, wherein the at least one conduit comprises a port capable of releasing gas from the conduit.
4. The bypass electrolysis system of claim 1, wherein the first electrode is an anode and wherein the first gas comprises oxygen.
5. The bypass electrolysis system of claim 1, wherein the second electrode is a cathode and wherein the second gas comprises hydrogen.
6. The bypass electrolysis system of claim 1, wherein at least one of the first and second electrodes is horizontally oriented.
7. The bypass electrolysis system of claim 1, further comprising a first portion of a liquid disposed within the first internal volume and a second portion of the liquid disposed within the second internal volume.
8. The bypass electrolysis system of claim 7, wherein the liquid comprises water.
9. The bypass electrolysis system of claim 7, wherein the liquid comprises an ionic fluid.
10. The bypass electrolysis system of claim 1, comprising first and second membranes both disposed within the membrane holder and separating the first internal volume from the second internal volume.
11. The bypass electrolysis system of claim 10, wherein the membrane holder comprises a center support disposed between the first and second membranes.
12. The bypass electrolysis system of claim 1, comprising at least two membranes and at least two membrane holders between the first and second housings.
13. The bypass electrolysis system of claim 1, comprising more than one conduit capable of allowing gas to flow from the second internal volume into the first internal volume.
14. The bypass electrolysis system of claim 1, further comprising a catalyst selected from the group of potassium hydroxide, platinum, and cobalt, wherein the catalyst is located in at least one of the first and second housings.
15. The bypass electrolysis system of claim 1, wherein the membrane holder comprises perforated holding plates connected thereto.
16. The bypass electrolysis system of claim 11, further comprising first and second holding plates threadedly connected into the membrane holder and contacting the at least one membrane.
17. The bypass electrolysis system of claim 1, wherein at least one of the first and second housings comprises a heat exchanger capable of removing heat during operation.
18. The bypass electrolysis system of claim 4, further comprising multiple anodes in the first housing.
19. The bypass electrolysis system of claim 5, further comprising multiple cathodes in the second housing.
20. The bypass electrolysis system of claim 1, wherein the membrane is sized to allow oxygen to flow through, but not water.
US16/164,400 2015-02-05 2018-10-18 Bypass electrolysis system and method Abandoned US20190048479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/164,400 US20190048479A1 (en) 2015-02-05 2018-10-18 Bypass electrolysis system and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562112201P 2015-02-05 2015-02-05
US15/016,512 US10151036B2 (en) 2015-02-05 2016-02-05 Bypass electrolysis system and method
US16/164,400 US20190048479A1 (en) 2015-02-05 2018-10-18 Bypass electrolysis system and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/016,512 Continuation US10151036B2 (en) 2015-02-05 2016-02-05 Bypass electrolysis system and method

Publications (1)

Publication Number Publication Date
US20190048479A1 true US20190048479A1 (en) 2019-02-14

Family

ID=56564738

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/016,512 Active 2036-06-06 US10151036B2 (en) 2015-02-05 2016-02-05 Bypass electrolysis system and method
US16/164,400 Abandoned US20190048479A1 (en) 2015-02-05 2018-10-18 Bypass electrolysis system and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/016,512 Active 2036-06-06 US10151036B2 (en) 2015-02-05 2016-02-05 Bypass electrolysis system and method

Country Status (4)

Country Link
US (2) US10151036B2 (en)
CA (1) CA2974403A1 (en)
MX (1) MX2017009630A (en)
WO (1) WO2016127046A1 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US736868A (en) * 1902-04-22 1903-08-18 Arthur Coppell Process of decomposing water by electrolysis.
US813105A (en) * 1904-11-08 1906-02-20 Thomas A Darby Process for decomposing water by electrolysis.
US3992271A (en) * 1973-02-21 1976-11-16 General Electric Company Method for gas generation
US3969201A (en) * 1975-01-13 1976-07-13 Canadian Patents And Development Limited Electrolytic production of alkaline peroxide solutions
US3984303A (en) * 1975-07-02 1976-10-05 Diamond Shamrock Corporation Membrane electrolytic cell with concentric electrodes
JPH0293088A (en) * 1988-09-29 1990-04-03 Permelec Electrode Ltd Method and device for water electrolysis
DE4207117C1 (en) * 1992-03-06 1993-04-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
JP3220607B2 (en) * 1995-01-18 2001-10-22 三菱商事株式会社 Hydrogen / oxygen gas generator
DE19544585C1 (en) * 1995-11-30 1997-06-26 Dornier Gmbh Electrolyzer with liquid electrolyte
US6432376B1 (en) * 2000-09-05 2002-08-13 Council Of Scientific & Industrial Research Membrane process for the production of hydrogen peroxide by non-hazardous direct oxidation of hydrogen by oxygen using a novel hydrophobic composite Pd-membrane catalyst
EP1396558A1 (en) * 2002-05-10 2004-03-10 Proton Energy Systems, Inc. Anode/cathode feed high pressure electrolysis system
JP2004058006A (en) * 2002-07-31 2004-02-26 First Ocean Kk Method of manufacturing electrolytic water
US7159444B2 (en) * 2002-11-26 2007-01-09 Proton Energy Systems, Inc. Combustible gas detection systems and method thereof
US7638228B2 (en) * 2002-11-27 2009-12-29 Saint Louis University Enzyme immobilization for use in biofuel cells and sensors
DE10258525A1 (en) * 2002-12-14 2004-07-01 GHW Gesellschaft für Hochleistungselektrolyseure zur Wasserstofferzeugung mbH Pressure electrolyzer and method for switching off a pressure electrolyzer
US6942766B2 (en) * 2003-01-16 2005-09-13 Chris Alan Lemke Chlorine generator
US7226529B2 (en) * 2003-10-02 2007-06-05 General Motors Corporation Electrolyzer system to produce gas at high pressure
US7615138B2 (en) * 2006-06-09 2009-11-10 Nehemia Davidson Electrolysis apparatus with pulsed, dual voltage, multi-composition electrode assembly
US20080202942A1 (en) * 2007-02-22 2008-08-28 Hydrogen Production Werks, Llc Method and apparatus for converting water into hydrogen and oxygen for a heat and/or fuel source
CA2590487A1 (en) * 2007-05-30 2008-11-30 Kuzo Holding Inc. Multi-cell dual voltage electrolysis apparatus and method of using same
US20110089029A1 (en) * 2009-10-16 2011-04-21 Volk Jr Robert Charles Compact hybrid cell hydrogen generator
JP5192004B2 (en) * 2010-02-12 2013-05-08 本田技研工業株式会社 How to stop water electrolysis system
US9017528B2 (en) * 2011-04-14 2015-04-28 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus

Also Published As

Publication number Publication date
MX2017009630A (en) 2018-03-28
US10151036B2 (en) 2018-12-11
US20160230293A1 (en) 2016-08-11
CA2974403A1 (en) 2016-08-11
WO2016127046A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US10900131B2 (en) High pressure gas system
EP1356134B1 (en) Electrochemical cell stacks
US7559978B2 (en) Gas-liquid separator and method of operation
JP2652609B2 (en) Electrolyzed water generator
CN108701801A (en) The electrochemical cell and its component that can be worked under high voltages
US20160200573A1 (en) Electrolytic water generator, electrolytic water generating method and electrolytic water
US4369102A (en) Electrolysis apparatus for decomposing water into hydrogen gas and oxygen gas
US20180179089A1 (en) High Efficiency Electrochemical Desalination System That Incorporates Participating Electrodes
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
JPH0243987A (en) Bipolar system electrolytic cell
US10435315B2 (en) Modular manifold for an electrolyzed water processor
CN103097589B (en) Device is separated out in tinsel electrolysis
US20190048479A1 (en) Bypass electrolysis system and method
TW202323592A (en) Method for the electrolysis of water at variable current densities
CN212581571U (en) Electrolytic bath
CN108310979B (en) Cooling device for electrodialyzer cathode and anode
JP5366062B2 (en) Electrolysis tank and electrolysis apparatus provided with the same
RU2078737C1 (en) Apparatus for electrochemical treatment of water
CA2435902C (en) Electrochemical cell stacks
EP2762614B1 (en) A gas generator
JP2005097746A (en) Hydrogen-feeding device using solid polymer type water electrolysis tank
US8486236B1 (en) Electrolysis chamber
EP0105956A1 (en) Electrolysis apparatus for decomposing water into hydrogen gas and oxygen gas
JPS63199888A (en) Single-electrode electrolytic cell plant
CN101956207A (en) Membrane-electrode electrolytic water tank

Legal Events

Date Code Title Description
AS Assignment

Owner name: KING POWER COMPANY LLC, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KING, FORREST A.;REEL/FRAME:047220/0628

Effective date: 20180730

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION