US20190040505A1 - High strength forged aluminum alloy products - Google Patents

High strength forged aluminum alloy products Download PDF

Info

Publication number
US20190040505A1
US20190040505A1 US16/158,198 US201816158198A US2019040505A1 US 20190040505 A1 US20190040505 A1 US 20190040505A1 US 201816158198 A US201816158198 A US 201816158198A US 2019040505 A1 US2019040505 A1 US 2019040505A1
Authority
US
United States
Prior art keywords
product
forged
grains
aluminum alloy
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/158,198
Inventor
Dustin M. Bush
Edward L. Colvin
Roberto J. Rioja
Ralph R. Sawtell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Arconic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arconic Inc filed Critical Arconic Inc
Priority to US16/158,198 priority Critical patent/US20190040505A1/en
Assigned to ALCOA INC. reassignment ALCOA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUSH, DUSTIN M., COLVIN, EDWARD L., RIOJA, ROBERTO J., SAWTELL, RALPH R.
Publication of US20190040505A1 publication Critical patent/US20190040505A1/en
Assigned to ARCONIC INC. reassignment ARCONIC INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALCOA INC.
Assigned to HOWMET AEROSPACE INC. reassignment HOWMET AEROSPACE INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ARCONIC INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • Forged aluminum alloy products may have lower strength than similar wrought products, which may be reflected in industry specifications.
  • the 7055-T74X allowable properties for extruded products are much higher than the typical 7055-T74X properties for forged products, as illustrated in Table 1, below. While the transverse strength properties are similar, the extruded product realizes about 10 ksi higher strength in the longitudinal direction.
  • allowable properties i.e., guaranteed minimums
  • the difference between the below extruded and forged properties is even more pronounced.
  • the present disclosure relates to new forged aluminum alloy products, and methods for producing such products.
  • the new forged aluminum alloy products achieve high strength, especially in the longitudinal direction. This increase in strength may be attributable to the unique microstructure of the new forged aluminum alloy products, as described in further detail below.
  • the forged aluminum alloy product comprises a crystalline microstructure made up of grains.
  • the grains include first type grains and second type grains, as defined in further detail below.
  • the forged product comprises from about 5 vol. % to about 50 vol. % of the first type grains, and the first type grains at least include representative first grains.
  • the representative first grains have an average aspect ratio of at least about 3.5:1 in the LT-ST plane. In some embodiments, the representative first grains have an average aspect ratio of at least about 5:1 in the L-ST plane. It is believed that the high aspect ratio of such grains at least partially contributes to the high strength of the new forged products.
  • the forged product includes at least about 7 vol. % first type grains (defined below). In other embodiments, the forged product includes at least about 10 vol. %, or at least about 12.5 vol. %, or at least about 15 vol. %, or at least about 17.5 vol. %, or at least about 20 vol. % first type grains. In one embodiment, the forged product includes not greater than about 45 vol. % first type grains. In other embodiments, the forged product includes at not greater than about 40 vol. %, or not greater than about 35 vol. %, or not greater than about 32.5 vol. % first type grains. In one embodiment, the forged product includes from about 20 vol. % to about 32.5 vol. % first type grains.
  • the representative first grains (defined below) have an average aspect ratio of at least about 3.75:1 in the LT-ST plane. In other embodiments, the representative first grains have an average aspect ratio of at least about 4:1, or at least about 4.25:1, or at least about 4.5:1, or at least about 4.75:1, or at least about 5:1, or at least about 5.25:1, or at least about 5.5:1, or at least about 5.75:1, or at least about 6:1, or more, in the LT-ST plane. In one embodiment, the representative first grains have an average aspect ratio of not greater than about 20:1 in the LT-ST plane.
  • the representative first grains have an average aspect ratio of at least about 5:1 in the L-ST plane. In other embodiments, the representative first grains have an average aspect ratio of at least about 6:1, or at least about 7:1, or at least about 8:1, or at least about 9:1, or at least about 10:1, or at least about 11:1, or at least about 12:1, or at least about 13:1, or at least about 14:1, or more, in the L-ST plane. In one embodiment, the representative first grains have an average aspect ratio of not greater than about 30:1 in the L-ST plane.
  • the forged product may have a high amount of texture.
  • Texture means a preferred orientation of at least some of the grains of a crystalline structure.
  • Textured aluminum alloys have grains whose axes are not randomly distributed.
  • the amount of texture of an aluminum alloy can be measured using orientation imaging microscopy (OIM).
  • OIM orientation imaging microscopy
  • SEM Scanning Electron Microscope
  • EBSPs electron backscatter patterns
  • measured texture intensities are generally normalized by calculating the amount of background intensity, or random intensity, and comparing that background intensity to the intensity of the textures of the image.
  • the relative intensities of the obtained texture measurements are dimensionless quantities that can be compared to one another to determine the relative amount of the different textures within a polycrystalline material.
  • an OIM analysis may determine a background (random) intensity and use orientation distribution functions (ODFs) to produce ODF intensity values. These ODF intensity values may be representative of the amount of texture within a given aluminum alloy (or other polycrystalline material).
  • ODF intensities are measured according to the OIM sample procedure (described below), or a substantially similar OIM procedure (x-ray diffraction is not used), where a series of ODF plots containing intensity (times random) representations may be created.
  • a series of ODF plots is illustrated in FIG. 4 , which were obtained from a conventionally forged product made from Aluminum Association alloy 7085. These ODF plots contain maximum intensity ratings relative to a predetermined scale (right-side of FIG. 4 ).
  • the conventionally produced 7085 forged product contains relatively low ODF intensities, generally having a greenish color for any texture, and achieves a maximum ODF intensity of about 24.15 (times random).
  • the new forged aluminum alloy products generally have a high maximum ODF intensity, indicating a high amount of texture. It is believed that the high amount of texture in the new forged aluminum alloy products may contribute to its high strength.
  • the new forged aluminum alloy product has a maximum ODF intensity of at least about 30 (times random). In other embodiments, the new forged aluminum alloy product has a maximum ODF intensity of at least about 35, or at least about 40, or at least about 45, or at least about 50, or at least about 55, or at least about 60, or at least about 65, or at least about 67, or higher.
  • the new forged aluminum alloy product realizes a maximum ODF intensity that is at least about 10% higher than a conventionally-forged aluminum alloy product of comparable product form, composition and temper (e.g., a maximum ODF intensity of 27.5 when the conventional product has a maximum ODF intensity of 25).
  • the new forged aluminum alloy product may realize a maximum ODF intensity that is at least about 20% higher, or at least about 30% higher, or at least about 40% higher, or at least about 50% higher, or at least about 60% higher, or at least about 70% higher, or at least about 80% higher, or at least about 90% higher, or at least about 100% higher, or at least about 110% higher, or at least about 120% higher, or at least about 130% higher, or at least about 140% higher, or at least about 150% higher, or at least about 160% higher, or at least about 170% higher, or at least about 180% higher, or at least about 190% higher, or at least about 200%, or at least about 210% higher, or at least about 220% higher, or at least about 230% higher, or at least about 240% higher, or at least about 250% higher, or at least about 260% higher, or at least about 270% higher, or at least about 280% higher, or more, than a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
  • Pole figures are stereographic projections, with a specified orientation relative to a specimen that shows the variation of pole density with the pole orientation for a selected set of crystal planes, e.g., the (111) or (200) planes.
  • pole figures are calculated using the OIM sample procedure (described below), or a substantially similar OIM procedure (x-ray diffraction is not used).
  • FIG. 2 is the (111) pole figure of the above-noted conventionally prepared 7085 forged product.
  • the 7085 pole figure has a generally random distribution of intensity representations, and with a maximum intensity of about 6.1 (times random). There is no symmetry relative to the intensity representations. These results all indicate that the 7085 forged product contains some texture, but not a significant amount of texture.
  • the new forged aluminum alloy products may realize higher intensity representations and/or more symmetrical intensity representations in one or more pole figures relative to a conventionally-forged aluminum alloy product of comparable composition.
  • a (111) pole figure, of a new forged product made from aluminum association alloy 7255 contains a plurality of high value intensity representations. These intensity representations are generally yellow, orange and/or red, and with a maximum intensity of about 20.1. These high value intensity representations are also generally symmetrical. These results indicate that the new forged products have a high amount of texture.
  • a new forged product realizes at least about 5% higher tensile yield strength in the longitudinal (L) direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
  • a new forged product realizes at least about 6% higher, or at least about 7% higher, or at least about 8% higher, or at least about 9% higher, or at least about 10% higher, or at least about 11% higher, or at least about 12% higher, or at least about 13% higher, or at least about 14% higher, or at least about 15% higher, or at least about 16% higher, or at least about 17% higher, or at least about 18% higher, or more, in the L direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
  • the improved strength is generally achieved across the entire forged product.
  • a new forged aluminum alloy product realizes at least about 5% higher tensile yield strength in the longitudinal transverse (LT) direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper. In other embodiments, a new forged product realizes at least about 5.5% higher, or at least about 6% higher, or at least about 6.5% higher, or at least about 7% higher, or at least about 7.5% higher, or at least about 8% higher, or more, in the LT direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
  • the new forged products also generally retain the majority of the strength of its predecessor extruded product.
  • the new forged products generally have a tensile strength that is not greater than about 10% less than the tensile strength of its predecessor extruded product (e.g., a tensile strength of not less than about 81 ksi when its predecessor extruded product had a tensile strength of 90 ksi).
  • the new forged product has a tensile strength that is not greater than about 9% less than the tensile strength of its predecessor extruded product.
  • the new forged product may have a tensile strength that is not greater than about 8% less than, or not greater than about 7% less than, or not greater than about 6% less than, or not greater than about 5% less than, or not greater than about 4% less than, or not greater than about 3% less than the tensile strength of its predecessor extruded product.
  • the new forged product generally has a tensile strength that is not greater than about 10 ksi less than its predecessor extruded product.
  • the new forged product has a tensile strength that is not greater than about 9 ksi less than its predecessor extruded product.
  • the new forged product may have a tensile strength that is not greater than about 8 ksi less than, or not greater than about 7 ksi less than, or not greater than about 6 ksi less than, or not greater than about 5 ksi less than, or not greater than about 4 ksi less than, or not greater than about 3 ksi less than, or not greater than about 2 ksi less than, or not greater than about 1 ksi less than its predecessor extruded product.
  • the forged aluminum alloy product is a 7 ⁇ 55 Aluminum Association alloy, such as 7055, 7155, or 7255.
  • a 7 ⁇ 55 forged product may realize a longitudinal tensile yield strength of at least about 72 ksi.
  • a 7 ⁇ 55 forged product may realize a longitudinal tensile yield strength of at least about 73 ksi, or at least about 74 ksi, or at least about 75 ksi, or at least about 76 ksi, or at least about 77 ksi, or at least about 78 ksi, or at least about 79 ksi, or at least about 80 ksi, or at least about 81 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or at least about 85 ksi, or at least about 86 ksi, or at least about 87 ksi, or at least about 87 ksi, or at least about 89 ksi, or at least about 90 ksi, or at least about 91 ksi, or more, depending on temper.
  • a 7 ⁇ 55 forged product may realize a long transverse (LT) tensile yield strength of at least about 76 ksi.
  • a 7 ⁇ 55 forged product may realize an LT tensile yield strength of at least about 77 ksi, or at least about 78 ksi, or at least about 79 ksi, or at least about 80 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or at least about 85 ksi, or at least about 86 ksi, or at least about 87 ksi, or at least about 88 ksi, or at least about 89 ksi, or more, depending on temper.
  • LT long transverse
  • the alloy of the forged product is a 2xxx+Li alloy.
  • a 2xxx+Li forged product realizes a longitudinal tensile yield strength of at least about 80 ksi.
  • a 2xxx+Li forged product may realize a longitudinal tensile yield strength of at least about 81 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or at least about 85 ksi, or at least about 86 ksi, or at least about 87 ksi, or at least about 88 ksi, or at least about 89 ksi, or at least about 90 ksi, or at least about 91 ksi, or at least about 92 ksi, or at least about 93 ksi, or at least about 94 ksi, or more.
  • a 2xxx+Li forged product realize a long transverse (LT) tensile yield strength of at least about 77 ksi.
  • a 2xxx+Li forged product may realize a long transverse (LT) tensile yield strength of at least about 78 ksi, or at least about 79 ksi, or at least about 80 ksi, or at least about 81 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or more.
  • the 2xxx+Li alloy includes 3.4-4.2 wt. % Cu, 0.9-1.4 wt. % Li, 0.3-0.7 wt. % Ag, 0.1-0.6 wt. % Mg, 0.2-0.8 wt. % Zn, and 0.1-0.6 wt. % Mn, the balance being aluminum, incidental elements, and impurities.
  • Other 2xxx+Li alloys and 7xxx alloys are described below.
  • the new forged product may be corrosion resistant and/or tough.
  • a new forged product realizes a toughness that is at least equivalent to a conventionally forged product of comparable product form, composition and temper, but having high strength, as described above.
  • a new forged product realizes a corrosion resistance (e.g., SCC, exfoliation) that is at least equivalent to a conventionally forged product of comparable product form, composition and temper, but having high strength, as described above.
  • both equivalent corrosion resistance and toughness are realized, and with high strength.
  • the new forged products are generally produced from heat treatable aluminum alloys.
  • the aluminum alloy of the forged product is a 2xxx aluminum alloy.
  • the aluminum alloy of the forged product is a 7xxx aluminum alloy.
  • the aluminum alloy of the forged product is a 6xxx aluminum alloy.
  • the 2xxx aluminum alloys may be any of those alloys listed in the Teal Sheets by the Aluminum Association, with or without lithium and/or silver, such as 2524, or any other 2 ⁇ 24 alloys, as well as 2040, 2139, 2219, 2195, and 2050, among others. Particularly useful 2xxx alloys are anticipated to include those having 2-6 wt. % Cu and 0.1-1 wt. % Mg, optionally with up to 2 wt. % Li, up to 1 wt. % Mn, and up to 1 wt. % Ag.
  • the 7xxx aluminum alloys may be any of those alloys listed in the Teal Sheets by the Aluminum Association, such as 7085, 7 ⁇ 40, 7 ⁇ 55, 7 ⁇ 49, 7081, 7037, 7056, 7 ⁇ 75, and 7 ⁇ 50, among others. Particularly useful 7xxx alloys are anticipated to include those having 5.2-10 wt. % Zn, 1.4-2.6 wt. % Cu, and 1.3-2.7 wt. % Mg.
  • the 6xxx aluminum alloys may be any of those alloys listed in the Teal Sheets by the Aluminum Association, such as 6 ⁇ 13, 6 ⁇ 56, 6061, and 6 ⁇ 82, among others. Particularly useful 6xxx alloys are anticipated to include those having 0.6-1.3 wt. % Si, 0.6-1.2 wt. % Mg, up to 0.5 wt. % Fe, up to 1.1 wt. % Cu, up to 1.0 wt. % Mn, up to 0.35 wt. % Cr, up to 0.7 wt. % Zn, up to 0.15 wt. % Ti, and up to 0.2 wt. % Zr.
  • the heat treatable alloys may include incidental elements, such as grain structure control agents (e.g., Zr, Sc, Hf), grain refiners (e.g., Ti with or without B or C), and casting aids (e.g., Ca, Sr), among others. These incidental elements may be added in amounts from about 0.01 wt. % to about 1.0 wt. %, depending on alloy type and requisite properties, as known to those skilled in the art.
  • the balance of the heat treatable aluminum alloy is generally aluminum and impurities.
  • the method ( 200 ) includes the steps of casting an aluminum alloy ( 210 ), extruding the aluminum alloy into an extruded product ( 220 ), and forging the extruded product into a forged product ( 240 ).
  • the extruding step ( 220 ) may be carried out in a manner that facilitates production of the extruded product while restricting the amount of first type grains within the extruded product.
  • the forging step ( 240 ) may be carried out in a manner that restricts the increase in the amount of first type grains within the forged product relative to the extruded product and/or in a manner that at least maintains, if not increases, the amount of texture within the forged product relative to the extruded product. In turn, high strength forged products may be realized.
  • the casting step ( 210 ) generally comprises casting an aluminum alloy into ingot or billet form, such as by direct chill casting or similar methods.
  • the casting ( 210 ) may include filtering ( 212 ) of the aluminum alloy and/or degassing ( 214 ) of the aluminum alloy.
  • the filtering ( 212 ) may increase the cleanliness and/or purity of the cast aluminum alloy, and may be conducted with a single or dual stage filter, and with a pore size of 20 PPI or better.
  • the degassing step ( 214 ) may reduce the amount of hydrogen in the aluminum alloy, such as via an inert gas box.
  • the degassing step ( 214 ) should reduce the amount of hydrogen in the aluminum alloy to not greater than about 0.15 ppm, or, in some embodiments, to about 0.05 ppm. Such casting conditions may facilitate production of extruded products having a low amount of first type grains.
  • the aluminum alloy ingot or billet may be homogenized ( 216 ).
  • This homogenization step ( 216 ) should be accomplished in such a manner so as to dissolve substantially all soluble constituent phases without creating melting reactions.
  • the extruding step ( 220 ) is generally carried out in a manner to that restricts the amount of first type grains within the extruded product.
  • the extrusion step ( 220 ) is generally completed with an indirect extrusion process, but could be completed with a direct extrusion process.
  • the extrusion ratio ( 222 ) is generally in the range of from about 3:1 to 100:1. In some embodiments, the extrusion ratio is at least about 7:1. In some embodiments, the extrusion ratio is not greater than about 50:1.
  • the extruding step ( 220 ) should generally be accomplished with accurate and precise temperature control.
  • induction heating ( 224 ) may be used, which allows for temperature control of +/ ⁇ 15° F., or better.
  • the ram speed ( 226 ) may also be precisely regulated so as to achieve adiabatic heating of the metal.
  • the ram speed ( 226 ) is generally related to both the extrusion ratio ( 222 ) and the heating ( 224 ) of the extrusion.
  • the exit temperature ( 228 ) of the extruded product may be measured and the ram speed ( 226 ) controlled accordingly.
  • a high exit temperature ( 228 ) should be utilized to facilitate production of extruded products having a low amount of first type grains. High exit temperatures ( 228 ) may also facilitate production of extruded products having a high amount of texture.
  • an extruded product contains not greater than about 40 vol. % of first type grains. In other embodiments, an extruded product contains not greater than about 35 vol. %, or not greater than about 30 vol. %, or not greater than about 25 vol. %, or not greater than about 20 vol. %, or not greater than about 17.5 vol. %, or not greater than about 15 vol. %, or less, of first type grains.
  • an extruded product realizes a maximum ODF intensity of at least about 8.
  • the extruded product may realize a maximum ODF intensity of at least about 10, or at least about 12, or at least about 14, at least about 16, or at least about 18, or at least about 20, or higher.
  • the extruded product used for the forging step (240) is generally of a bar or a rod shape.
  • the extruded product generally has a thickness and/or diameter of at least about 2 inches. In one embodiment, the extruded product has a thickness and/or diameter of at least about 2.5 inches. In other embodiments, the extruded product may have a thickness and/or diameter of at least about 3 inches, or at least about 3.5 inches, or at least about 4 inches, or at least about 4.5 inches, or at least about 5 inches, or more.
  • the forging step ( 240 ) is generally completed after the extrusion step ( 220 ).
  • the forging step ( 240 ) generally comprises hot working ( 242 ) of the extruded product to produce a forged product.
  • the hot working ( 242 ) may be completed in one or multiple steps.
  • the heat ( 244 ) and strain ( 246 ) applied to the extruded product during the hot working ( 242 ) should be controlled such that the forged product realizes a restricted increase in the amount of first type grains and/or such that the texture of the forged product is at least equivalent to that of the extruded product (i.e., the forged product realizes a forged maximum ODF intensity that is at least equivalent to the extruded maximum ODF intensity).
  • low strain rates and/or high temperatures e.g., above the recrystallization temperature of the alloy
  • These strain rates and temperatures generally depend on the type of alloy being processed, as well as the type of forged product being produced.
  • a hydraulic press may be used. The hydraulic press should be capable of forging at a rate of from about 10 inches to about 30 inches per minute ram speed.
  • the temperature during the forging ( 240 ) should be precisely and accurately regulated (e.g., to +/ ⁇ 20° F.) to facilitate restricted production of first type grains. Additionally, the forging temperature should be maintained within close proximity to the incipient melting temperature of the alloy, but without reaching the incipient melting temperature. In one embodiment, the set point of the forging temperature is about 20° F. below the incipient melting temperature of the alloy, and the temperature is controlled to +/ ⁇ 20° F. In one embodiment, a forging step comprises forging the extruded product at a temperature that is not greater than 45° F. below the incipient melting temperature of the alloy at any point during the forging operation. In other embodiments, the forging temperature may be not greater than 44° F.
  • the forging step ( 240 ) may include an optional anneal ( 248 ) after the hot working step ( 242 ).
  • the forging step ( 240 ) may result in the production of a forged product having a low amount of first type grains, such as in the range of 5 vol. % to 50 vol. %, as described above (e.g., after solution heat treating ( 250 ), described below).
  • the forging step ( 240 ) may also result in a relatively small increase in the amount of first type grains in the forged product relative to its predecessor extruded product.
  • a forged product contains not greater than about 30 vol. % more first type grains than its predecessor extruded product (e.g., if an extruded product contained 17.5 vol. % of first type grains, the forged product would contain not more than 47.5 vol. % of first type grains).
  • a forged product contains not greater than about 25 vol. % more, or not greater than about 20 vol. % more, or not greater than about 18 vol. % more, or not greater than about 16 vol. % more, or not greater than about 14 vol. % more, or not greater than about 12 vol. % more, or not greater than about 10 vol. % more, or not greater than about 8 vol. % more first type grains than its predecessor extruded product.
  • the forging step may also result in first type grains having the high aspect ratios in the L-ST and/or LT-ST planes, as described above.
  • the forging step ( 240 ) may result in the production of a forged product having a high amount of texture, such as having a maximum ODF intensity of at least about 30, as described above.
  • the forging step ( 240 ) may also result in maintaining, if not increasing, the amount of texture in the forged product relative to its predecessor extruded product.
  • the forged product may realize a forged maximum ODF intensity, and its predecessor extruded product may realize an extruded maximum ODF intensity, each of which are measured separately; the extruded maximum ODF intensity being measured on the extruded product after it has been produced, and before it is turned into a forged product, and the forged maximum ODF intensity being measured on the forged product after it has been produced and after it has been solution heat treated, and optionally quenched and/or artificially aged.
  • the forging step ( 240 ) generally results in a forged maximum ODF intensity that is at least as high as the extruded maximum ODF intensity.
  • the forged maximum ODF intensity is at least 5% higher than that of the extruded maximum ODF intensity (e.g., a maximum ODF intensity of 25.2 if the extruded maximum ODF intensity is 24).
  • the forged maximum ODF intensity may be at least 10% higher, or at least about 20% higher, or at least about 30% higher, or at least about 40% higher, or at least about 50% higher, or at least about 60% higher, or at least about 70% higher, or at least about 80% higher, or at least about 90% higher, or at least about 100% higher, or at least about 110% higher, or at least about 120% higher, or at least about 130% higher, or at least about 140% higher, or at least about 150% higher, or at least about 160% higher, or at least about 170% higher, or at least about 180% higher, or at least about 190% higher, or at least about 200%, or at least about 210% higher, or at least about 220% higher, or at least about 230% higher, or at least about 240% higher, or at least about 250% higher, or at least about 260% higher, or at least about 270% higher, or at least about 280% higher, or more, than that of the extruded maximum ODF intensity.
  • the new forged product may be processed to any suitable temper.
  • the forged product may be solution heat treated ( 250 ), optionally quenched and/or artificially aged ( 260 ).
  • a recovery anneal may be employed, if appropriate.
  • One particularly useful temper for 7xxx alloys is the T74 temper, as this temper may achieve the strength values noted above, but is corrosion resistant, by definition.
  • T6- and T8-type temper are particularly useful.
  • Other significant tempers include the T3, T6, T8, and T9, as well as other T7X type tempers (described below), although other tempers may be applied, based on product requirements, as recognized by those skilled in the art.
  • the forged products may be die forged or hand forged.
  • the new forged products generally have a sectional thickness of at least about 1 inch.
  • a new forged product has a sectional thickness of at least about 1.5 inches.
  • the new forged product may have a sectional thickness of at least about 1.75 inches, or at least about 2 inches, or at least about 2.25 inches, or at least about 2.5 inches, or at least about 2.75 inches, or at least about 3 inches, or at least about 3.25 inches, or at least about 3.5 inches, or at least about 3.75 inches, or at least about 4 inches, or more.
  • a “crystalline microstructure” is the structure of a polycrystalline material.
  • a crystalline microstructure has crystals, referred to herein as grains.
  • a forged product aluminum alloy product generally has a crystalline microstructure.
  • Grams are crystals of a polycrystalline material.
  • First type grains means those grains of a crystalline microstructure that meet the “first grain criteria”, defined below, and as measured using the OIM sampling procedure. Due to the unique microstructure of the product, the present application is not using the traditional terms “recrystallized” or “unrecrystallized”, which can be ambiguous and the subject of debate, in certain circumstances. Instead, the microstructure is being defined as “first type grains” and “second type grains”, where the amount of these types of grains is accurately and precisely determined by use the of computerized methods detailed in the OIM sampling procedure. Thus, the term “first type grains” includes any grains that meet the first grain criteria, and irrespective of whether those skilled in the art would consider such grains to be unrecrystallized or recrystallized.
  • the “OIM sample procedure” is as follows: the software used is TexSEM Lab OIM Data Collection Software version 5.31 (EDAX Inc., New Jersey, U.S.A.), which is connected via FIREWIRE (Apple, Inc., California, U.S.A.) to a DigiView 1612 CCD camera (TSL/EDAX, Utah, U.S.A.).
  • the SEM is a JEOL JSM840A (JEOL Ltd. Tokyo, Japan).
  • OIM run conditions are 70° tilt with a 18 mm working distance and an accelerating voltage of 25 kV with dynamic focusing and spot size of 1 times 10 ⁇ 7 amp.
  • the mode of collection is a square grid. Only orientations are collected (i.e., Hough peaks information is not collected).
  • the area size per scan is 3.4 mm by 1.1 mm at 3 micron steps at 75 ⁇ .
  • the collected data is output in an *.osc file. This data may be used to (i) calculate the volume fraction of first type grains, (ii) obtain ODF plots and relative texture intensities, and (iii) obtain pole figures, as described below.
  • “Second type grains” means any grains that are not first type grains.
  • First grain volume means the volume of first type grains of the crystalline material.
  • “Representative first grains” means those first type grains that are representative of the majority (e.g., from about 60-90 vol. %) of the first grain volume.
  • Aspect ratio means the ratio of a first dimension of an object (e.g., length, L) to a second dimension of an object (e.g., width, W). With respect to grains of a crystalline microstructure, the aspect ratio is generally calculated using the linear intercept method.
  • Average aspect ratio means the average of the aspect ratios of representative grains of a microstructure.
  • L Longitudinal
  • LT long transverse
  • ST short transverse
  • “Comparable composition” means an aluminum alloy composition that is within the standard tolerances provided for by the Aluminum Association (AA).
  • AA alloy 7055 includes 7.6-8.4 wt. % Zn, 2.0-2.6 wt. % Cu, 1.8-2.3 wt. % Mg, up to 0.1 wt. % Si, up 0.15 wt. % Fe, up to 0.05 wt. % Mn, up to 0.04 wt. % Cr, up to 0.06 wt. % Ti, and 0.08-0.25 wt. % Zr, the balance being aluminum and other impurities, with no other impurity exceeding 0.05 wt.
  • AA alloy 7055 includes 7.6-8.4 wt. % Zn, 2.0-2.6 wt. % Cu, 1.8-2.3 wt. % Mg, up to 0.1 wt. % Si, up 0.15 wt. % Fe, up to 0.05 wt. % Mn, up
  • any alloys within this composition range are comparable to one another in terms of composition.
  • the products should also be of similar product form, size and dimensions. Difference in measured properties, especially toughness properties, can vary greatly with differing product forms, sizes and/or dimensions.
  • FIG. 1 a is an optical micrograph (50 ⁇ magnification) of a conventional forged 7xxx aluminum alloy product.
  • FIG. 1 b is an optical micrograph (100 ⁇ magnification) of a conventional forged 7xxx aluminum alloy product.
  • FIG. 2 is the ( 111 ) pole figure for a conventional forged product 7xxx aluminum alloy product (log. scale).
  • FIG. 3 is the ( 200 ) pole figure for a conventional forged product 7xxx aluminum alloy product (log. scale).
  • FIG. 4 contains ODF plots for a conventional forged product 7xxx aluminum alloy product (linear scale).
  • FIG. 5 a is an optical micrograph (50 ⁇ magnification) of an extruded 7xxx aluminum alloy product having a low amount of first type grains.
  • FIG. 5 b is an optical micrograph (100 ⁇ magnification) of an extruded 7xxx aluminum alloy product having a low amount of first type grains.
  • FIG. 5 c is the ( 111 ) pole figure for an extruded 7xxx aluminum alloy product having a low amount of first type grains (log. scale).
  • FIG. 5 d is the ( 200 ) pole figure for an extruded 7xxx aluminum alloy product having a low amount of first type grains (log. scale).
  • FIG. 5 e contains ODF plots or an extruded 7xxx aluminum alloy product having a low amount of first type grains (linear scale).
  • FIG. 6 a is an optical micrograph (50 ⁇ magnification) of a new forged 7xxx aluminum alloy product at 50 ⁇ magnification.
  • FIG. 6 b is an optical micrograph (100 ⁇ magnification) of a new forged 7xxx aluminum alloy product.
  • FIG. 7 is the ( 111 ) pole figure for a new forged product 7xxx aluminum alloy product.
  • FIG. 8 is the ( 200 ) pole figure for a new forged product 7xxx aluminum alloy product.
  • FIG. 9 contains ODF plots for a new forged product 7xxx aluminum alloy product.
  • FIG. 10 is a flow chart relating to methods of producing forged products in accordance with the present disclosure.
  • FIG. 11 a is a flow chart relating to the methods of FIG. 10 .
  • FIG. 11 b is a flow chart relating to the methods of FIG. 10 .
  • FIG. 11 c is a flow chart relating to the methods of FIG. 10 .
  • FIG. 12 is a schematic view of a product showing the L, LT and ST directions/dimensions.
  • Aluminum association alloy 7085 is die forged and heat treated to a T74-type temper from ingot stock using conventional forging procedures. Optical micrographs of the 7085 forged product are obtained at the midplane (T/2); samples are anodized (electro-polished) and the images are obtained using cross-polarized light at both 50 33 and 100 ⁇ magnification. As illustrated in FIGS. 1 a - 1 b, the 7085 forged product comprises a mixed microstructure having grains of a first type and a second type. OIM analysis indicates that the 7085 forged product contains about 31.4 vol. % grains of the first grain type. The first grain types (“first grains”) are large and equiaxed in the LT-ST plane. The representative first grains of the 7085 forged product have an aspect ratio of about 2.4 in the LT-ST plane using the linear intercept method. The representative first grains of the 7085 forged product have an aspect ratio of about 15.2 in the L-ST plane.
  • Pole figures in the ( 111 ) and ( 200 ) planes and ODF plots of the 7085 forged product are also obtained using the OIM sample procedure.
  • Both the ( 111 ) and ( 200 ) pole figures have relatively low intensity (times random) texture species realizing a maximum intensity of about 6.1 and 5.66 respectively, as illustrated in FIGS. 2-3 .
  • the texture is also fairly randomly distributed in each of the pole figures.
  • the maximum ODF intensity from the ODF plots is 24.15.
  • Aluminum association alloy 7255 is cast and extruded as rod.
  • the billet used to produce the rod was cast using 30 PPI filters to keep the metal clean, and an inert degassing box to reduce hydrogen levels to about 5 ppm.
  • the billet is extruded via indirect extrusion at an extrusion ratio of about 17.3:1.
  • the extrusion speed averaged about 6.2 feet/minute and the temperature was about 630° F. Induction heating was used in an effort to maintain adiabatic extrusion conditions.
  • the 7255 extruded product comprises a mixed microstructure having grains of a first type and a second type. OIM analysis indicates that the 7255 extruded product contains about 17 vol. % grains of the first grain type. Those skilled in the art may consider this microstructure to be completely unrecrystallized, but, as described above, to reduce ambiguity “first grain type” is being used in the patent application.
  • Pole figures in the (111) and (200) planes and ODF plots of the 7255 extruded rod are also obtained using the OIM sample procedure.
  • Both the ( 111 ) and ( 200 ) pole figures have a good amount of texture (times random) and realize a maximum intensity of about 21.5 and 7.9 respectively, as illustrated in FIGS. 5 c - 5 d.
  • the higher intensity texture is generally symmetrical in each of the pole figures.
  • the maximum ODF intensity from the ODF plots is about 23.3. The results indicate that some texture, but not a significant amount of texture, is present in the extruded product.
  • the 7255 extruded stock is die forged into two forged products in the T74 temper; one a 4-inch blade and the other a 2.9-inch blade.
  • the die forging process takes two steps.
  • the extruded product is first preheated to about 820°+/ ⁇ 20° F., after which it is squeezed into an intermediate shape at about 30 inches per minute, with a die tool temperature of at least about 650° F.
  • the product is then cooled, preheated and squeezed into a final shape at the same conditions.
  • the final product is solution heat treated, quenched, and artificially aged to a T74 temper.
  • the 4′′ 7255 forged product comprises a mixed microstructure having grains of a first type and a second type.
  • OIM analysis indicates that the 7255 forged products contain about 25-32 vol. % grains of the first grain type at the T/2 location, an increase of only 8-15% relative to the extruded product.
  • the first grain types (“first grains”) have a small aspect ratio in both the L-ST and LT-ST planes.
  • the representative first grains of the 4′′ 7255 forged product have an aspect ratio of about 5.7 in the LT-ST plane using the linear intercept method.
  • the representative first grains of the 7255 forged product have an aspect ratio of about 9.1-1 in the L-ST plane. Similar results are realized with the 2.9′′ 7255 forged product.
  • Pole figures in the (111) and (200) planes and ODF plots of the 4′′ 7255 forged product are also obtained using the OIM sample procedure.
  • Both the ( 111 ) and ( 200 ) pole figures have relatively high intensity (times random) texture species in both poles, realizing a maximum intensity of about 20.0 and 14.7, respectively.
  • the high intensity portions are generally symmetrical to one another in the pole figures, indicating that a high degree of texture exists in the 4′′ 7255 forged product.
  • the (200) pole figure realizes a much higher maximum intensity than that of its predecessor extruded product.
  • the maximum ODF intensity from the ODF plots is about 67.44, which is 41.2 units higher than that of the extruded product, and a 290% increase over the extruded product. This indicates that the degree of texture increased significantly from the extruded product to the forged product. Similar results are realized with the 2.9′′ 7255 forged product.
  • Both the 4′′ and 2.9′′ 7255 forged products realize high strength.
  • the new 7255 forged products realize an average tensile yield strength in the L direction that is about 12.2 ksi higher than the typical values for conventionally forged 7055-T74 products, which equates to about an 18% increase in strength.
  • the new 7255 products also realize an average tensile yield strength in the LT direction that is about 5.8 ksi higher than the typical values for conventionally forged 7055-T74 products, which equates to about an 8% increase in strength.
  • the increase in strength may be due to the controlled extrusion and forging conditions, which create a microstructure having a low amount of first type grains. Additionally, these first type grains have a high aspect ratio in both the L-ST and the LT-ST planes, which may contribute to the high strength. The grains (both first and second type grains) are also highly aligned as evidenced by the pole figures and ODF plots, which may contribute to the high strength.

Abstract

High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application is a continuation of U.S. patent application Ser. No. 14/847,303, filed Sep. 8, 2015, which is a continuation of U.S. patent application Ser. No. 13/998,831, filed Dec. 12, 2013, now U.S. Pat. No. 10,053,754, which is a divisional of U.S. patent application Ser. No. 12/799,244, filed Apr. 20, 2010, now U.S. Pat. No. 9,163,304, each of which is incorporated herein by reference in its entirety.
  • BACKGROUND
  • Forged aluminum alloy products may have lower strength than similar wrought products, which may be reflected in industry specifications. For example, the 7055-T74X allowable properties for extruded products are much higher than the typical 7055-T74X properties for forged products, as illustrated in Table 1, below. While the transverse strength properties are similar, the extruded product realizes about 10 ksi higher strength in the longitudinal direction. When once takes into account that allowable properties (i.e., guaranteed minimums) are generally much lower than typical properties, the difference between the below extruded and forged properties is even more pronounced.
  • TABLE 1
    ½″ to 1″ Thick Heat Treat Section Tensile Properties for
    7055-T74X Extrusions and Forgings
    7055-
    T74XXX 7055-T74
    Extrusions Forgings
    Property (A-Basis) (Typical)
    Longitudinal Yield Strength (ksi) 78 68
    Longitudinal Ultimate Tensile Strength (ksi) 85 76
    Longitudinal Transverse Yield Strength (ksi) 74 72
    Longitudinal Transverse 80 79
    Ultimate Tensile Strength (ksi)
  • SUMMARY OF THE DISCLOSURE
  • Broadly, the present disclosure relates to new forged aluminum alloy products, and methods for producing such products. Generally, the new forged aluminum alloy products achieve high strength, especially in the longitudinal direction. This increase in strength may be attributable to the unique microstructure of the new forged aluminum alloy products, as described in further detail below.
  • In one aspect, the forged aluminum alloy product comprises a crystalline microstructure made up of grains. The grains include first type grains and second type grains, as defined in further detail below. The forged product comprises from about 5 vol. % to about 50 vol. % of the first type grains, and the first type grains at least include representative first grains. The representative first grains have an average aspect ratio of at least about 3.5:1 in the LT-ST plane. In some embodiments, the representative first grains have an average aspect ratio of at least about 5:1 in the L-ST plane. It is believed that the high aspect ratio of such grains at least partially contributes to the high strength of the new forged products.
  • In one embodiment, the forged product includes at least about 7 vol. % first type grains (defined below). In other embodiments, the forged product includes at least about 10 vol. %, or at least about 12.5 vol. %, or at least about 15 vol. %, or at least about 17.5 vol. %, or at least about 20 vol. % first type grains. In one embodiment, the forged product includes not greater than about 45 vol. % first type grains. In other embodiments, the forged product includes at not greater than about 40 vol. %, or not greater than about 35 vol. %, or not greater than about 32.5 vol. % first type grains. In one embodiment, the forged product includes from about 20 vol. % to about 32.5 vol. % first type grains.
  • In one embodiment, the representative first grains (defined below) have an average aspect ratio of at least about 3.75:1 in the LT-ST plane. In other embodiments, the representative first grains have an average aspect ratio of at least about 4:1, or at least about 4.25:1, or at least about 4.5:1, or at least about 4.75:1, or at least about 5:1, or at least about 5.25:1, or at least about 5.5:1, or at least about 5.75:1, or at least about 6:1, or more, in the LT-ST plane. In one embodiment, the representative first grains have an average aspect ratio of not greater than about 20:1 in the LT-ST plane.
  • In one embodiment, the representative first grains have an average aspect ratio of at least about 5:1 in the L-ST plane. In other embodiments, the representative first grains have an average aspect ratio of at least about 6:1, or at least about 7:1, or at least about 8:1, or at least about 9:1, or at least about 10:1, or at least about 11:1, or at least about 12:1, or at least about 13:1, or at least about 14:1, or more, in the L-ST plane. In one embodiment, the representative first grains have an average aspect ratio of not greater than about 30:1 in the L-ST plane.
  • In addition to the amount of, and the aspect ratio of, the first type grains, the forged product may have a high amount of texture. Texture means a preferred orientation of at least some of the grains of a crystalline structure. Using matchsticks as an analogy, consider a material composed of matchsticks. That material has a random (zero) texture if the matchsticks are included within the material in a completely random manner. However, if the heads of at least some of those matchsticks are aligned in that they all point the same direction, like a compass pointing north, then the material would have at least some texture due to the aligned matchsticks. The same principles apply with grains of a crystalline material.
  • Textured aluminum alloys have grains whose axes are not randomly distributed. The amount of texture of an aluminum alloy can be measured using orientation imaging microscopy (OIM). When the beam of a Scanning Electron Microscope (SEM) strikes a crystalline material mounted at an incline (e.g., around)70°, the electrons disperse beneath the surface, subsequently diffracting among the crystallographic planes. The diffracted beam produces a pattern composed of intersecting bands, termed electron backscatter patterns, or EBSPs. EBSPs can be used to determine the orientation of the crystal lattice with respect to some laboratory reference frame in a material of known crystal structure.
  • Since the images can vary based on various factors, measured texture intensities are generally normalized by calculating the amount of background intensity, or random intensity, and comparing that background intensity to the intensity of the textures of the image. Thus, the relative intensities of the obtained texture measurements are dimensionless quantities that can be compared to one another to determine the relative amount of the different textures within a polycrystalline material. For example, an OIM analysis may determine a background (random) intensity and use orientation distribution functions (ODFs) to produce ODF intensity values. These ODF intensity values may be representative of the amount of texture within a given aluminum alloy (or other polycrystalline material).
  • For the present application, ODF intensities are measured according to the OIM sample procedure (described below), or a substantially similar OIM procedure (x-ray diffraction is not used), where a series of ODF plots containing intensity (times random) representations may be created. One example of a series of ODF plots is illustrated in FIG. 4, which were obtained from a conventionally forged product made from Aluminum Association alloy 7085. These ODF plots contain maximum intensity ratings relative to a predetermined scale (right-side of FIG. 4). As illustrated in FIG. 4, the conventionally produced 7085 forged product contains relatively low ODF intensities, generally having a greenish color for any texture, and achieves a maximum ODF intensity of about 24.15 (times random). These results indicate that the conventional 7085 forged product contains some texture, but not a significant amount of texture.
  • The new forged aluminum alloy products generally have a high maximum ODF intensity, indicating a high amount of texture. It is believed that the high amount of texture in the new forged aluminum alloy products may contribute to its high strength. In one embodiment, the new forged aluminum alloy product has a maximum ODF intensity of at least about 30 (times random). In other embodiments, the new forged aluminum alloy product has a maximum ODF intensity of at least about 35, or at least about 40, or at least about 45, or at least about 50, or at least about 55, or at least about 60, or at least about 65, or at least about 67, or higher.
  • In one embodiment, the new forged aluminum alloy product realizes a maximum ODF intensity that is at least about 10% higher than a conventionally-forged aluminum alloy product of comparable product form, composition and temper (e.g., a maximum ODF intensity of 27.5 when the conventional product has a maximum ODF intensity of 25). In other embodiments, the new forged aluminum alloy product may realize a maximum ODF intensity that is at least about 20% higher, or at least about 30% higher, or at least about 40% higher, or at least about 50% higher, or at least about 60% higher, or at least about 70% higher, or at least about 80% higher, or at least about 90% higher, or at least about 100% higher, or at least about 110% higher, or at least about 120% higher, or at least about 130% higher, or at least about 140% higher, or at least about 150% higher, or at least about 160% higher, or at least about 170% higher, or at least about 180% higher, or at least about 190% higher, or at least about 200%, or at least about 210% higher, or at least about 220% higher, or at least about 230% higher, or at least about 240% higher, or at least about 250% higher, or at least about 260% higher, or at least about 270% higher, or at least about 280% higher, or more, than a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
  • Texture may also be determined from pole figures. Pole figures are stereographic projections, with a specified orientation relative to a specimen that shows the variation of pole density with the pole orientation for a selected set of crystal planes, e.g., the (111) or (200) planes. With respect to the instant application, pole figures are calculated using the OIM sample procedure (described below), or a substantially similar OIM procedure (x-ray diffraction is not used).
  • One example of a pole figure is illustrated in FIG. 2, which is the (111) pole figure of the above-noted conventionally prepared 7085 forged product. The 7085 pole figure has a generally random distribution of intensity representations, and with a maximum intensity of about 6.1 (times random). There is no symmetry relative to the intensity representations. These results all indicate that the 7085 forged product contains some texture, but not a significant amount of texture.
  • The new forged aluminum alloy products may realize higher intensity representations and/or more symmetrical intensity representations in one or more pole figures relative to a conventionally-forged aluminum alloy product of comparable composition. For example, as illustrated in FIG. 7, a (111) pole figure, of a new forged product made from aluminum association alloy 7255 contains a plurality of high value intensity representations. These intensity representations are generally yellow, orange and/or red, and with a maximum intensity of about 20.1. These high value intensity representations are also generally symmetrical. These results indicate that the new forged products have a high amount of texture.
  • One or more of the above features may contribute to the high strength properties of the new forged product. In one embodiment, a new forged product realizes at least about 5% higher tensile yield strength in the longitudinal (L) direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper. In other embodiments, a new forged product realizes at least about 6% higher, or at least about 7% higher, or at least about 8% higher, or at least about 9% higher, or at least about 10% higher, or at least about 11% higher, or at least about 12% higher, or at least about 13% higher, or at least about 14% higher, or at least about 15% higher, or at least about 16% higher, or at least about 17% higher, or at least about 18% higher, or more, in the L direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper. The improved strength is generally achieved across the entire forged product.
  • In one embodiment, a new forged aluminum alloy product realizes at least about 5% higher tensile yield strength in the longitudinal transverse (LT) direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper. In other embodiments, a new forged product realizes at least about 5.5% higher, or at least about 6% higher, or at least about 6.5% higher, or at least about 7% higher, or at least about 7.5% higher, or at least about 8% higher, or more, in the LT direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
  • The new forged products also generally retain the majority of the strength of its predecessor extruded product. In this regard, the new forged products generally have a tensile strength that is not greater than about 10% less than the tensile strength of its predecessor extruded product (e.g., a tensile strength of not less than about 81 ksi when its predecessor extruded product had a tensile strength of 90 ksi). In one embodiment, the new forged product has a tensile strength that is not greater than about 9% less than the tensile strength of its predecessor extruded product. In other embodiments, the new forged product may have a tensile strength that is not greater than about 8% less than, or not greater than about 7% less than, or not greater than about 6% less than, or not greater than about 5% less than, or not greater than about 4% less than, or not greater than about 3% less than the tensile strength of its predecessor extruded product. In this regard, the new forged product generally has a tensile strength that is not greater than about 10 ksi less than its predecessor extruded product. In one embodiment, the new forged product has a tensile strength that is not greater than about 9 ksi less than its predecessor extruded product. In other embodiments, the new forged product may have a tensile strength that is not greater than about 8 ksi less than, or not greater than about 7 ksi less than, or not greater than about 6 ksi less than, or not greater than about 5 ksi less than, or not greater than about 4 ksi less than, or not greater than about 3 ksi less than, or not greater than about 2 ksi less than, or not greater than about 1 ksi less than its predecessor extruded product.
  • In one embodiment, the forged aluminum alloy product is a 7×55 Aluminum Association alloy, such as 7055, 7155, or 7255. In some of these embodiments, a 7×55 forged product may realize a longitudinal tensile yield strength of at least about 72 ksi. In other of these embodiments, a 7×55 forged product may realize a longitudinal tensile yield strength of at least about 73 ksi, or at least about 74 ksi, or at least about 75 ksi, or at least about 76 ksi, or at least about 77 ksi, or at least about 78 ksi, or at least about 79 ksi, or at least about 80 ksi, or at least about 81 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or at least about 85 ksi, or at least about 86 ksi, or at least about 87 ksi, or at least about 87 ksi, or at least about 89 ksi, or at least about 90 ksi, or at least about 91 ksi, or more, depending on temper.
  • In one embodiment, a 7×55 forged product may realize a long transverse (LT) tensile yield strength of at least about 76 ksi. In other of these embodiments, a 7×55 forged product may realize an LT tensile yield strength of at least about 77 ksi, or at least about 78 ksi, or at least about 79 ksi, or at least about 80 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or at least about 85 ksi, or at least about 86 ksi, or at least about 87 ksi, or at least about 88 ksi, or at least about 89 ksi, or more, depending on temper.
  • In one embodiment, the alloy of the forged product is a 2xxx+Li alloy. In some of these embodiments, a 2xxx+Li forged product realizes a longitudinal tensile yield strength of at least about 80 ksi. In other of these embodiments, a 2xxx+Li forged product may realize a longitudinal tensile yield strength of at least about 81 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or at least about 85 ksi, or at least about 86 ksi, or at least about 87 ksi, or at least about 88 ksi, or at least about 89 ksi, or at least about 90 ksi, or at least about 91 ksi, or at least about 92 ksi, or at least about 93 ksi, or at least about 94 ksi, or more.
  • In one embodiment, a 2xxx+Li forged product realize a long transverse (LT) tensile yield strength of at least about 77 ksi. In other of these embodiments, a 2xxx+Li forged product may realize a long transverse (LT) tensile yield strength of at least about 78 ksi, or at least about 79 ksi, or at least about 80 ksi, or at least about 81 ksi, or at least about 82 ksi, or at least about 83 ksi, or at least about 84 ksi, or more.
  • In one embodiment, the 2xxx+Li alloy includes 3.4-4.2 wt. % Cu, 0.9-1.4 wt. % Li, 0.3-0.7 wt. % Ag, 0.1-0.6 wt. % Mg, 0.2-0.8 wt. % Zn, and 0.1-0.6 wt. % Mn, the balance being aluminum, incidental elements, and impurities. Other 2xxx+Li alloys and 7xxx alloys are described below.
  • In addition to having a high strength, the new forged product may be corrosion resistant and/or tough. In one embodiment, a new forged product realizes a toughness that is at least equivalent to a conventionally forged product of comparable product form, composition and temper, but having high strength, as described above. In one embodiment, a new forged product realizes a corrosion resistance (e.g., SCC, exfoliation) that is at least equivalent to a conventionally forged product of comparable product form, composition and temper, but having high strength, as described above. In one embodiment, both equivalent corrosion resistance and toughness are realized, and with high strength.
  • The new forged products are generally produced from heat treatable aluminum alloys. In one embodiment, the aluminum alloy of the forged product is a 2xxx aluminum alloy. In one embodiment, the aluminum alloy of the forged product is a 7xxx aluminum alloy. In one embodiment, the aluminum alloy of the forged product is a 6xxx aluminum alloy.
  • The 2xxx aluminum alloys may be any of those alloys listed in the Teal Sheets by the Aluminum Association, with or without lithium and/or silver, such as 2524, or any other 2×24 alloys, as well as 2040, 2139, 2219, 2195, and 2050, among others. Particularly useful 2xxx alloys are anticipated to include those having 2-6 wt. % Cu and 0.1-1 wt. % Mg, optionally with up to 2 wt. % Li, up to 1 wt. % Mn, and up to 1 wt. % Ag.
  • The 7xxx aluminum alloys may be any of those alloys listed in the Teal Sheets by the Aluminum Association, such as 7085, 7×40, 7×55, 7×49, 7081, 7037, 7056, 7×75, and 7×50, among others. Particularly useful 7xxx alloys are anticipated to include those having 5.2-10 wt. % Zn, 1.4-2.6 wt. % Cu, and 1.3-2.7 wt. % Mg.
  • The 6xxx aluminum alloys may be any of those alloys listed in the Teal Sheets by the Aluminum Association, such as 6×13, 6×56, 6061, and 6×82, among others. Particularly useful 6xxx alloys are anticipated to include those having 0.6-1.3 wt. % Si, 0.6-1.2 wt. % Mg, up to 0.5 wt. % Fe, up to 1.1 wt. % Cu, up to 1.0 wt. % Mn, up to 0.35 wt. % Cr, up to 0.7 wt. % Zn, up to 0.15 wt. % Ti, and up to 0.2 wt. % Zr.
  • The heat treatable alloys may include incidental elements, such as grain structure control agents (e.g., Zr, Sc, Hf), grain refiners (e.g., Ti with or without B or C), and casting aids (e.g., Ca, Sr), among others. These incidental elements may be added in amounts from about 0.01 wt. % to about 1.0 wt. %, depending on alloy type and requisite properties, as known to those skilled in the art. The balance of the heat treatable aluminum alloy is generally aluminum and impurities.
  • Methods of producing high strength forgings are also provided, one embodiment of which is illustrated in FIG. 10. In the illustrated embodiment, the method (200) includes the steps of casting an aluminum alloy (210), extruding the aluminum alloy into an extruded product (220), and forging the extruded product into a forged product (240). As described in further detail below, the extruding step (220) may be carried out in a manner that facilitates production of the extruded product while restricting the amount of first type grains within the extruded product. The forging step (240) may be carried out in a manner that restricts the increase in the amount of first type grains within the forged product relative to the extruded product and/or in a manner that at least maintains, if not increases, the amount of texture within the forged product relative to the extruded product. In turn, high strength forged products may be realized.
  • Referring now to FIG. 11a , the casting step (210) generally comprises casting an aluminum alloy into ingot or billet form, such as by direct chill casting or similar methods. The casting (210 ) may include filtering (212) of the aluminum alloy and/or degassing (214) of the aluminum alloy. The filtering (212) may increase the cleanliness and/or purity of the cast aluminum alloy, and may be conducted with a single or dual stage filter, and with a pore size of 20 PPI or better. The degassing step (214) may reduce the amount of hydrogen in the aluminum alloy, such as via an inert gas box. The degassing step (214) should reduce the amount of hydrogen in the aluminum alloy to not greater than about 0.15 ppm, or, in some embodiments, to about 0.05 ppm. Such casting conditions may facilitate production of extruded products having a low amount of first type grains.
  • Prior to the extruding step (220), the aluminum alloy ingot or billet may be homogenized (216). This homogenization step (216) should be accomplished in such a manner so as to dissolve substantially all soluble constituent phases without creating melting reactions.
  • Referring now to FIG. 11b , the extruding step (220) is generally carried out in a manner to that restricts the amount of first type grains within the extruded product. In this regard, the extrusion step (220) is generally completed with an indirect extrusion process, but could be completed with a direct extrusion process. The extrusion ratio (222) is generally in the range of from about 3:1 to 100:1. In some embodiments, the extrusion ratio is at least about 7:1. In some embodiments, the extrusion ratio is not greater than about 50:1.
  • The extruding step (220) should generally be accomplished with accurate and precise temperature control. In this regard, induction heating (224) may be used, which allows for temperature control of +/−15° F., or better. The ram speed (226) may also be precisely regulated so as to achieve adiabatic heating of the metal. The ram speed (226) is generally related to both the extrusion ratio (222) and the heating (224) of the extrusion. The exit temperature (228) of the extruded product may be measured and the ram speed (226) controlled accordingly. A high exit temperature (228) should be utilized to facilitate production of extruded products having a low amount of first type grains. High exit temperatures (228) may also facilitate production of extruded products having a high amount of texture.
  • With carefully controlled extrusion conditions, extruded products having a low amount of first type grains and/or high texture may be produced. Furthermore, with the appropriate extrusion ratio, the first type grains may realize a high aspect ratio in the L-ST direction. In one embodiment, an extruded product contains not greater than about 40 vol. % of first type grains. In other embodiments, an extruded product contains not greater than about 35 vol. %, or not greater than about 30 vol. %, or not greater than about 25 vol. %, or not greater than about 20 vol. %, or not greater than about 17.5 vol. %, or not greater than about 15 vol. %, or less, of first type grains. With respect to texture, in one embodiment, an extruded product realizes a maximum ODF intensity of at least about 8. In other embodiments, the extruded product may realize a maximum ODF intensity of at least about 10, or at least about 12, or at least about 14, at least about 16, or at least about 18, or at least about 20, or higher.
  • The extruded product used for the forging step (240) is generally of a bar or a rod shape. The extruded product generally has a thickness and/or diameter of at least about 2 inches. In one embodiment, the extruded product has a thickness and/or diameter of at least about 2.5 inches. In other embodiments, the extruded product may have a thickness and/or diameter of at least about 3 inches, or at least about 3.5 inches, or at least about 4 inches, or at least about 4.5 inches, or at least about 5 inches, or more.
  • Referring now to FIG. 11c , the forging step (240) is generally completed after the extrusion step (220). The forging step (240) generally comprises hot working (242) of the extruded product to produce a forged product. The hot working (242) may be completed in one or multiple steps. The heat (244) and strain (246) applied to the extruded product during the hot working (242) should be controlled such that the forged product realizes a restricted increase in the amount of first type grains and/or such that the texture of the forged product is at least equivalent to that of the extruded product (i.e., the forged product realizes a forged maximum ODF intensity that is at least equivalent to the extruded maximum ODF intensity). In this regard, low strain rates and/or high temperatures (e.g., above the recrystallization temperature of the alloy) during hot working may be used. These strain rates and temperatures generally depend on the type of alloy being processed, as well as the type of forged product being produced. To facilitate the use of appropriate strain rates, a hydraulic press may be used. The hydraulic press should be capable of forging at a rate of from about 10 inches to about 30 inches per minute ram speed.
  • The temperature during the forging (240) should be precisely and accurately regulated (e.g., to +/−20° F.) to facilitate restricted production of first type grains. Additionally, the forging temperature should be maintained within close proximity to the incipient melting temperature of the alloy, but without reaching the incipient melting temperature. In one embodiment, the set point of the forging temperature is about 20° F. below the incipient melting temperature of the alloy, and the temperature is controlled to +/−20° F. In one embodiment, a forging step comprises forging the extruded product at a temperature that is not greater than 45° F. below the incipient melting temperature of the alloy at any point during the forging operation. In other embodiments, the forging temperature may be not greater than 44° F. below, or not greater than 43° F. below, or not greater than 42° F. below, or not greater than 41° F. below, or not greater than 40° F., or not greater than 39° F. below, or not greater than 38° F. below, or not greater than 37° F. below, or not greater than 36° F. below, or not greater than 35° F. below, or not greater than 34° F. below, or not greater than 33° F. below, or not greater than 32° F. below, or not greater than 31° F. below, or not greater than 30° F. below, or not greater than 29° F. below, or not greater than 28° F. below, or not greater than 27° F. below, or not greater than 26° F. below, or not greater than 25° F. below, or not greater than 24° F. below, or not greater than 23° F. below, or not greater than 22° F. below, or not greater than 21° F. below, or not greater than 20° F. below the incipient melting temperature of the alloy at any point during the forging operation.
  • Those skilled in the art will understand that these examples are only a few of the ways to achieve the inventive microstructure, and that it is possible to change the forging processing variables to be outside of this shape and still achieve the same inventive microstructure. The forging step (240) may include an optional anneal (248) after the hot working step (242).
  • The forging step (240) may result in the production of a forged product having a low amount of first type grains, such as in the range of 5 vol. % to 50 vol. %, as described above (e.g., after solution heat treating (250), described below). The forging step (240) may also result in a relatively small increase in the amount of first type grains in the forged product relative to its predecessor extruded product. In one embodiment, a forged product contains not greater than about 30 vol. % more first type grains than its predecessor extruded product (e.g., if an extruded product contained 17.5 vol. % of first type grains, the forged product would contain not more than 47.5 vol. % of first type grains). In other embodiments, a forged product contains not greater than about 25 vol. % more, or not greater than about 20 vol. % more, or not greater than about 18 vol. % more, or not greater than about 16 vol. % more, or not greater than about 14 vol. % more, or not greater than about 12 vol. % more, or not greater than about 10 vol. % more, or not greater than about 8 vol. % more first type grains than its predecessor extruded product. The forging step may also result in first type grains having the high aspect ratios in the L-ST and/or LT-ST planes, as described above.
  • The forging step (240) may result in the production of a forged product having a high amount of texture, such as having a maximum ODF intensity of at least about 30, as described above. The forging step (240) may also result in maintaining, if not increasing, the amount of texture in the forged product relative to its predecessor extruded product. For example, the forged product may realize a forged maximum ODF intensity, and its predecessor extruded product may realize an extruded maximum ODF intensity, each of which are measured separately; the extruded maximum ODF intensity being measured on the extruded product after it has been produced, and before it is turned into a forged product, and the forged maximum ODF intensity being measured on the forged product after it has been produced and after it has been solution heat treated, and optionally quenched and/or artificially aged.
  • The forging step (240) generally results in a forged maximum ODF intensity that is at least as high as the extruded maximum ODF intensity. In one embodiment, the forged maximum ODF intensity is at least 5% higher than that of the extruded maximum ODF intensity (e.g., a maximum ODF intensity of 25.2 if the extruded maximum ODF intensity is 24). In other embodiments, the forged maximum ODF intensity may be at least 10% higher, or at least about 20% higher, or at least about 30% higher, or at least about 40% higher, or at least about 50% higher, or at least about 60% higher, or at least about 70% higher, or at least about 80% higher, or at least about 90% higher, or at least about 100% higher, or at least about 110% higher, or at least about 120% higher, or at least about 130% higher, or at least about 140% higher, or at least about 150% higher, or at least about 160% higher, or at least about 170% higher, or at least about 180% higher, or at least about 190% higher, or at least about 200%, or at least about 210% higher, or at least about 220% higher, or at least about 230% higher, or at least about 240% higher, or at least about 250% higher, or at least about 260% higher, or at least about 270% higher, or at least about 280% higher, or more, than that of the extruded maximum ODF intensity.
  • The new forged product may be processed to any suitable temper. In this regard, the forged product may be solution heat treated (250), optionally quenched and/or artificially aged (260). A recovery anneal may be employed, if appropriate. One particularly useful temper for 7xxx alloys is the T74 temper, as this temper may achieve the strength values noted above, but is corrosion resistant, by definition. For the 2xxx alloys, T6- and T8-type temper are particularly useful. Other significant tempers include the T3, T6, T8, and T9, as well as other T7X type tempers (described below), although other tempers may be applied, based on product requirements, as recognized by those skilled in the art.
  • T7X Tempers:
      • T79—Very limited overaging to achieve some improved corrosion resistance with limited reduction in strength as compared to the T6 Temper.
      • T76—Limited overaged condition to achieve moderate corrosion resistance with some reduction in strength. The T76 temper has lower strength and better corrosion resistance than the T79 temper.
      • T74—Overaged condition to achieve good corrosion resistance with a greater reduction in strength than the T76 temper. The T74 temper strength and corrosion resistance properties are between those of the T73 and T76 tempers.
      • T73—Fully overaged condition to achieve the best corrosion resistance of the T7X tempers with a greater reduction in strength than the T74 temper.
      • T77—Aged condition which provides strength at or near T6 temper and corrosion resistance similar to T76 temper.
  • The forged products may be die forged or hand forged. The new forged products generally have a sectional thickness of at least about 1 inch. In one embodiment, a new forged product has a sectional thickness of at least about 1.5 inches. In other embodiments, the new forged product may have a sectional thickness of at least about 1.75 inches, or at least about 2 inches, or at least about 2.25 inches, or at least about 2.5 inches, or at least about 2.75 inches, or at least about 3 inches, or at least about 3.25 inches, or at least about 3.5 inches, or at least about 3.75 inches, or at least about 4 inches, or more.
  • Definitions
  • A “crystalline microstructure” is the structure of a polycrystalline material. A crystalline microstructure has crystals, referred to herein as grains. A forged product aluminum alloy product generally has a crystalline microstructure.
  • “Grains” are crystals of a polycrystalline material.
  • “First type grains” means those grains of a crystalline microstructure that meet the “first grain criteria”, defined below, and as measured using the OIM sampling procedure. Due to the unique microstructure of the product, the present application is not using the traditional terms “recrystallized” or “unrecrystallized”, which can be ambiguous and the subject of debate, in certain circumstances. Instead, the microstructure is being defined as “first type grains” and “second type grains”, where the amount of these types of grains is accurately and precisely determined by use the of computerized methods detailed in the OIM sampling procedure. Thus, the term “first type grains” includes any grains that meet the first grain criteria, and irrespective of whether those skilled in the art would consider such grains to be unrecrystallized or recrystallized.
  • The “OIM sample procedure” is as follows: the software used is TexSEM Lab OIM Data Collection Software version 5.31 (EDAX Inc., New Jersey, U.S.A.), which is connected via FIREWIRE (Apple, Inc., California, U.S.A.) to a DigiView 1612 CCD camera (TSL/EDAX, Utah, U.S.A.). The SEM is a JEOL JSM840A (JEOL Ltd. Tokyo, Japan). OIM run conditions are 70° tilt with a 18 mm working distance and an accelerating voltage of 25 kV with dynamic focusing and spot size of 1 times 10−7 amp. The mode of collection is a square grid. Only orientations are collected (i.e., Hough peaks information is not collected). The area size per scan is 3.4 mm by 1.1 mm at 3 micron steps at 75×. The collected data is output in an *.osc file. This data may be used to (i) calculate the volume fraction of first type grains, (ii) obtain ODF plots and relative texture intensities, and (iii) obtain pole figures, as described below.
      • Calculation of volume fraction of first type grains: The volume fraction of first type grains is calculated using the data of the *.osc file and the TexSEM Lab OIM Analysis Software version 5.31. Prior to calculation, data cleanup may be performed with a 15° tolerance angle, a minimum grain size=3 data points, and a single iteration cleanup. Then, the amount of first type grains is calculated by the software using the first grain criteria (below).
      • First grain criteria: Calculated via grain orientation spread (GOS) with a grain tolerance angle of 5°, minimum grain size is three (3) data points, and confidence index is zero (0). All of “apply partition before calculation”, “include edge grains”, and “ignore twin boundary definitions” should be required, and the calculation should be completed using “grain average orientation”. Any grain whose GOS is ≤3° is a first type grain.
      • ODF plots: Orientation Distribution Function (ODF) are calculated using TexSEM Lab OIM Analysis Software version 5.31. The obtained data are processed with a single iteration dilation cleanup with a 15° grain tolerance angle and 3 points per grain minimum grain size (27 microns). The ODF is calculated by Harmonic Series Expansion with a series rank of L=16 and a Gaussian half-width of 5°. Triclinic sample symmetry is selected and all measured points in the partition are included in the calculation. Bunge Euler angles are selected for the ODF calculation with phi1, PHI, and phi2 starting at 0° and ending at 90° with 5° resolution.
      • Pole Figures: The TexSEM Lab OIM Analysis Software version 5.31 is used to calculate pole figures (e.g., (111) and/or (200)). The pole figures should be calculated with no inversion symmetry and with a resolution of 5°.
  • “Second type grains” means any grains that are not first type grains.
  • “First grain volume” means the volume of first type grains of the crystalline material.
  • “Representative first grains” means those first type grains that are representative of the majority (e.g., from about 60-90 vol. %) of the first grain volume.
  • “Aspect ratio” means the ratio of a first dimension of an object (e.g., length, L) to a second dimension of an object (e.g., width, W). With respect to grains of a crystalline microstructure, the aspect ratio is generally calculated using the linear intercept method.
  • “Average aspect ratio” means the average of the aspect ratios of representative grains of a microstructure.
  • “Longitudinal” (L), “long transverse”, (LT), and “short transverse” (ST), have the meaning provided for by FIG. 12.
  • Strength testing is conducted in accordance with ASTM E8 and B557. Tensile yield strength is at 0.2 offset.
  • “Comparable composition” means an aluminum alloy composition that is within the standard tolerances provided for by the Aluminum Association (AA). For example, AA alloy 7055 includes 7.6-8.4 wt. % Zn, 2.0-2.6 wt. % Cu, 1.8-2.3 wt. % Mg, up to 0.1 wt. % Si, up 0.15 wt. % Fe, up to 0.05 wt. % Mn, up to 0.04 wt. % Cr, up to 0.06 wt. % Ti, and 0.08-0.25 wt. % Zr, the balance being aluminum and other impurities, with no other impurity exceeding 0.05 wt. % individually, and with the total of all other impurities not exceeding 0.15 wt. %. Any alloys within this composition range are comparable to one another in terms of composition. For properties to be comparable, the products should also be of similar product form, size and dimensions. Difference in measured properties, especially toughness properties, can vary greatly with differing product forms, sizes and/or dimensions.
  • These and other aspects, advantages, and novel features of this new technology are set forth in part in the description that follows and will become apparent to those skilled in the art upon examination of the following description and figures, or may be learned by practicing one or more embodiments of the technology provided for by the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • FIG. 1a is an optical micrograph (50× magnification) of a conventional forged 7xxx aluminum alloy product.
  • FIG. 1b is an optical micrograph (100× magnification) of a conventional forged 7xxx aluminum alloy product.
  • FIG. 2 is the (111) pole figure for a conventional forged product 7xxx aluminum alloy product (log. scale).
  • FIG. 3 is the (200) pole figure for a conventional forged product 7xxx aluminum alloy product (log. scale).
  • FIG. 4 contains ODF plots for a conventional forged product 7xxx aluminum alloy product (linear scale).
  • FIG. 5a is an optical micrograph (50× magnification) of an extruded 7xxx aluminum alloy product having a low amount of first type grains.
  • FIG. 5b is an optical micrograph (100× magnification) of an extruded 7xxx aluminum alloy product having a low amount of first type grains.
  • FIG. 5c is the (111) pole figure for an extruded 7xxx aluminum alloy product having a low amount of first type grains (log. scale).
  • FIG. 5d is the (200) pole figure for an extruded 7xxx aluminum alloy product having a low amount of first type grains (log. scale).
  • FIG. 5e contains ODF plots or an extruded 7xxx aluminum alloy product having a low amount of first type grains (linear scale).
  • FIG. 6a is an optical micrograph (50× magnification) of a new forged 7xxx aluminum alloy product at 50× magnification.
  • FIG. 6b is an optical micrograph (100× magnification) of a new forged 7xxx aluminum alloy product.
  • FIG. 7 is the (111) pole figure for a new forged product 7xxx aluminum alloy product.
  • FIG. 8 is the (200) pole figure for a new forged product 7xxx aluminum alloy product.
  • FIG. 9 contains ODF plots for a new forged product 7xxx aluminum alloy product.
  • FIG. 10 is a flow chart relating to methods of producing forged products in accordance with the present disclosure.
  • FIG. 11a is a flow chart relating to the methods of FIG. 10.
  • FIG. 11b is a flow chart relating to the methods of FIG. 10.
  • FIG. 11c is a flow chart relating to the methods of FIG. 10.
  • FIG. 12 is a schematic view of a product showing the L, LT and ST directions/dimensions.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the accompanying drawings, which at least assist in illustrating various pertinent embodiments of the new technology provided for by the present disclosure.
  • EXAMPLE 1 Production of Conventionally Forged Aluminum Alloy Product
  • Aluminum association alloy 7085 is die forged and heat treated to a T74-type temper from ingot stock using conventional forging procedures. Optical micrographs of the 7085 forged product are obtained at the midplane (T/2); samples are anodized (electro-polished) and the images are obtained using cross-polarized light at both 5033 and 100× magnification. As illustrated in FIGS. 1a -1 b, the 7085 forged product comprises a mixed microstructure having grains of a first type and a second type. OIM analysis indicates that the 7085 forged product contains about 31.4 vol. % grains of the first grain type. The first grain types (“first grains”) are large and equiaxed in the LT-ST plane. The representative first grains of the 7085 forged product have an aspect ratio of about 2.4 in the LT-ST plane using the linear intercept method. The representative first grains of the 7085 forged product have an aspect ratio of about 15.2 in the L-ST plane.
  • Pole figures in the (111) and (200) planes and ODF plots of the 7085 forged product are also obtained using the OIM sample procedure. Both the (111) and (200) pole figures have relatively low intensity (times random) texture species realizing a maximum intensity of about 6.1 and 5.66 respectively, as illustrated in FIGS. 2-3. The texture is also fairly randomly distributed in each of the pole figures. As illustrated in FIG. 4, the maximum ODF intensity from the ODF plots is 24.15. These results indicate that some texture, but not a significant amount of texture, is present in the 7085 forged product.
  • These types of 7085 forged products generally realize a strength that is several ksi below the strength of a 7085 extruded product of a similar temper.
  • EXAMPLE 2 Production of New Forged Product
  • Aluminum association alloy 7255 is cast and extruded as rod. The billet used to produce the rod was cast using 30 PPI filters to keep the metal clean, and an inert degassing box to reduce hydrogen levels to about 5 ppm. The billet is extruded via indirect extrusion at an extrusion ratio of about 17.3:1. The extrusion speed averaged about 6.2 feet/minute and the temperature was about 630° F. Induction heating was used in an effort to maintain adiabatic extrusion conditions.
  • Optical micrographs of the extruded product are obtained at D/2; samples are anodized (electro-polished) and the images are obtained using cross-polarized light at both 50× and 100× magnification. As illustrated in FIGS. 5a -5 b, the 7255 extruded product comprises a mixed microstructure having grains of a first type and a second type. OIM analysis indicates that the 7255 extruded product contains about 17 vol. % grains of the first grain type. Those skilled in the art may consider this microstructure to be completely unrecrystallized, but, as described above, to reduce ambiguity “first grain type” is being used in the patent application.
  • Pole figures in the (111) and (200) planes and ODF plots of the 7255 extruded rod are also obtained using the OIM sample procedure. Both the (111) and (200) pole figures have a good amount of texture (times random) and realize a maximum intensity of about 21.5 and 7.9 respectively, as illustrated in FIGS. 5c -5 d. The higher intensity texture is generally symmetrical in each of the pole figures. As illustrated in FIG. 5e , the maximum ODF intensity from the ODF plots is about 23.3. The results indicate that some texture, but not a significant amount of texture, is present in the extruded product.
  • The 7255 extruded stock is die forged into two forged products in the T74 temper; one a 4-inch blade and the other a 2.9-inch blade. The die forging process takes two steps. The extruded product is first preheated to about 820°+/−20° F., after which it is squeezed into an intermediate shape at about 30 inches per minute, with a die tool temperature of at least about 650° F. The product is then cooled, preheated and squeezed into a final shape at the same conditions. The final product is solution heat treated, quenched, and artificially aged to a T74 temper.
  • Optical micrographs of the 4″ 7255 forged product are obtained at the midplane (T/2); samples are anodized (electro-polished) and the images are obtained using cross-polarized light at both 50× and 100× magnification. As illustrated in FIGS. 6a -6 b, the 4″ 7255 forged product comprises a mixed microstructure having grains of a first type and a second type. OIM analysis indicates that the 7255 forged products contain about 25-32 vol. % grains of the first grain type at the T/2 location, an increase of only 8-15% relative to the extruded product. The first grain types (“first grains”) have a small aspect ratio in both the L-ST and LT-ST planes. The representative first grains of the 4″ 7255 forged product have an aspect ratio of about 5.7 in the LT-ST plane using the linear intercept method. The representative first grains of the 7255 forged product have an aspect ratio of about 9.1-1 in the L-ST plane. Similar results are realized with the 2.9″ 7255 forged product.
  • Pole figures in the (111) and (200) planes and ODF plots of the 4″ 7255 forged product are also obtained using the OIM sample procedure. Both the (111) and (200) pole figures have relatively high intensity (times random) texture species in both poles, realizing a maximum intensity of about 20.0 and 14.7, respectively. Notably, the high intensity portions are generally symmetrical to one another in the pole figures, indicating that a high degree of texture exists in the 4″ 7255 forged product. Also, the (200) pole figure realizes a much higher maximum intensity than that of its predecessor extruded product. Further evidencing the high amount of texture, the maximum ODF intensity from the ODF plots is about 67.44, which is 41.2 units higher than that of the extruded product, and a 290% increase over the extruded product. This indicates that the degree of texture increased significantly from the extruded product to the forged product. Similar results are realized with the 2.9″ 7255 forged product.
  • Both the 4″ and 2.9″ 7255 forged products realize high strength. As illustrated in Table 2, below, the new 7255 forged products realize an average tensile yield strength in the L direction that is about 12.2 ksi higher than the typical values for conventionally forged 7055-T74 products, which equates to about an 18% increase in strength. The new 7255 products also realize an average tensile yield strength in the LT direction that is about 5.8 ksi higher than the typical values for conventionally forged 7055-T74 products, which equates to about an 8% increase in strength.
  • TABLE 2
    Typical strength properties of conventional
    versus new forged 7 × 55 products
    Conventional 7055-T74 New forged alloys Percent
    Strength (ksi) Forgings (typ.) (typical) Increase
    TYS L 68 80.2 17.94%
    UTS L 76 86.3 13.55%
    TYS LT 72 77.8 8.06%
    UTS LT 79 84.2 6.58%
  • It is postulated that the increase in strength may be due to the controlled extrusion and forging conditions, which create a microstructure having a low amount of first type grains. Additionally, these first type grains have a high aspect ratio in both the L-ST and the LT-ST planes, which may contribute to the high strength. The grains (both first and second type grains) are also highly aligned as evidenced by the pole figures and ODF plots, which may contribute to the high strength.
  • Although the above examples were completed relative to 7xxx series alloys, it is expected that these principles will apply equally to other aluminum alloys, especially heat treatable alloys, as described above. Furthermore, while various embodiments of the present technology have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present disclosure.

Claims (15)

What is claimed is:
1. A forged aluminum alloy product comprising a crystalline microstructure having grains, wherein the grains include first type grains and second type grains, wherein the crystalline microstructure comprises from about 5 vol. % to about 50 vol. % of the first type grains, wherein the first type grains at least include representative first grains, and wherein the representative first grains have an average aspect ratio of at least about 3.5:1 in the LT-ST plane.
2. The forged aluminum alloy product of claim 1, wherein the representative first grains have an average aspect ratio of at least about 5:1 in the L-ST plane.
3. The forged aluminum alloy product of claim 1, wherein the forged aluminum alloy product realizes a maximum ODF intensity of at least about 30.
4. The forged aluminum alloy product of claim 1, wherein a (111) pole figure of the forged aluminum alloy product comprises a plurality of maximum intensity representations, and wherein the maximum intensity representations are substantially symmetrical.
5. The forged aluminum alloy product of claim 1, wherein the forged aluminum alloy product realizes at least about 5% higher tensile yield strength in the longitudinal (L) direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
6. The forged aluminum alloy product of claim 5, wherein the forged aluminum alloy product realizes at least about 5% higher tensile yield strength in the long transverse (LT) direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
7. The forged aluminum alloy product of claim 5, wherein the forged aluminum alloy product comprises a 2xxx aluminum alloy with up to 2.0 wt. % Li.
8. A method comprising:
(a) extruding an aluminum alloy into an extruded product, wherein the extruded product has an extruded maximum ODF intensity;
(b) forging the extruded product into a forged product, wherein the forging comprises:
(i) hot working the extruded product into the forged product; and
(ii) solution heat treating the forged product;
wherein, after the solution heat treating step, the forged product realizes a maximum ODF intensity that is at least equivalent to the extruded maximum ODF intensity.
9. The method of claim 8, wherein the extruded product comprises an initial volume of first type grains, wherein the forged product comprises a final volume of first type grains, wherein the final volume of first type grains exceeds the initial volume of first type grains, and wherein the hot working step comprises:
applying heat and strain to the extruded product such that the amount of first type grains does not exceed 50 vol. % in the forged product.
10. The method of claim 9, wherein the first type grains of the forged product at least includes representative first grains, and wherein the representative first grains have an average aspect ratio of at least about 3.5:1 in the LT-ST plane.
11. The method of claim 10, wherein the representative first grains have an average aspect ratio of at least about 5:1 in the L-ST plane.
12. A forged product made of a 7×55 aluminum alloy, wherein the forged product realizes at least about 5% higher tensile yield strength in the longitudinal (L) direction relative to a conventionally-forged aluminum alloy product of comparable product form, composition and temper.
13. The forged product of claim 12, wherein the product has a maximum ODF intensity of at least about 60.
14. The forged product of claim 14, wherein the product first type grains, wherein the first type grains include representative first grains, and wherein the representative first grains have an average aspect ratio of at least about 5:1 in the LT-ST plane.
15. The forged product of claim 15, wherein the representative first grains have an average aspect ratio of at least about 9:1 in the L-ST plane.
US16/158,198 2010-04-20 2018-10-11 High strength forged aluminum alloy products Abandoned US20190040505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/158,198 US20190040505A1 (en) 2010-04-20 2018-10-11 High strength forged aluminum alloy products

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/799,244 US9163304B2 (en) 2010-04-20 2010-04-20 High strength forged aluminum alloy products
US13/998,831 US10053754B2 (en) 2010-04-20 2013-12-12 High strength forged aluminum alloy products
US14/847,303 US10119184B2 (en) 2010-04-20 2015-09-08 High strength forged aluminum alloy products
US16/158,198 US20190040505A1 (en) 2010-04-20 2018-10-11 High strength forged aluminum alloy products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/847,303 Continuation US10119184B2 (en) 2010-04-20 2015-09-08 High strength forged aluminum alloy products

Publications (1)

Publication Number Publication Date
US20190040505A1 true US20190040505A1 (en) 2019-02-07

Family

ID=44787265

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/799,244 Active 2032-06-03 US9163304B2 (en) 2010-04-20 2010-04-20 High strength forged aluminum alloy products
US13/998,831 Active 2032-01-21 US10053754B2 (en) 2010-04-20 2013-12-12 High strength forged aluminum alloy products
US14/847,303 Active 2031-08-08 US10119184B2 (en) 2010-04-20 2015-09-08 High strength forged aluminum alloy products
US16/158,198 Abandoned US20190040505A1 (en) 2010-04-20 2018-10-11 High strength forged aluminum alloy products

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/799,244 Active 2032-06-03 US9163304B2 (en) 2010-04-20 2010-04-20 High strength forged aluminum alloy products
US13/998,831 Active 2032-01-21 US10053754B2 (en) 2010-04-20 2013-12-12 High strength forged aluminum alloy products
US14/847,303 Active 2031-08-08 US10119184B2 (en) 2010-04-20 2015-09-08 High strength forged aluminum alloy products

Country Status (7)

Country Link
US (4) US9163304B2 (en)
EP (2) EP2561109B8 (en)
CN (2) CN104046932B (en)
CA (2) CA2830558C (en)
IL (1) IL217494B (en)
RU (1) RU2580261C2 (en)
WO (1) WO2011133248A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826677B2 (en) * 2012-03-07 2015-12-02 田中貴金属工業株式会社 Stirrer shaft pipe and manufacturing method thereof
JP5698695B2 (en) * 2012-03-30 2015-04-08 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
US20140050936A1 (en) * 2012-08-17 2014-02-20 Alcoa Inc. 2xxx series aluminum lithium alloys
CN104250696B (en) * 2013-06-25 2017-01-04 株式会社神户制钢所 Welded structural element aluminum alloy forged material and manufacture method thereof
EP3090128B1 (en) 2013-12-06 2020-04-29 United Technologies Corporation Aluminum alloy airfoil with designed crystallographic texture
JP6185870B2 (en) * 2014-03-27 2017-08-23 株式会社神戸製鋼所 Aluminum alloy forging for welded structural member and method for producing the same
US20150322556A1 (en) 2014-05-06 2015-11-12 Goodrich Corporation Lithium free elevated temperature aluminum copper magnesium silver alloy for forged aerospace products
JP2017155251A (en) * 2016-02-29 2017-09-07 株式会社神戸製鋼所 Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
WO2017169962A1 (en) * 2016-03-30 2017-10-05 アイシン軽金属株式会社 High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
FR3067044B1 (en) * 2017-06-06 2019-06-28 Constellium Issoire ALUMINUM ALLOY COMPRISING LITHIUM WITH IMPROVED FATIGUE PROPERTIES
CN111155041B (en) * 2020-01-19 2021-08-03 北京科技大学 Method for composite strengthening and toughening of regenerated wrought aluminum alloy

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333990A (en) 1965-02-05 1967-08-01 Aluminum Co Of America Aluminum base alloy forgings
US3791876A (en) * 1972-10-24 1974-02-12 Aluminum Co Of America Method of making high strength aluminum alloy forgings and product produced thereby
US4863528A (en) 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
US4954188A (en) 1981-12-23 1990-09-04 Aluminum Company Of America High strength aluminum alloy resistant to exfoliation and method of making
US4431467A (en) 1982-08-13 1984-02-14 Aluminum Company Of America Aging process for 7000 series aluminum base alloys
US4927469A (en) 1985-05-17 1990-05-22 Aluminum Company Of America Alloy toughening method
US4693747A (en) 1985-11-18 1987-09-15 Aluminum Company Of America Alloy having improved fatigue crack growth resistance
US5055257A (en) 1986-03-20 1991-10-08 Aluminum Company Of America Superplastic aluminum products and alloys
US4874440A (en) 1986-03-20 1989-10-17 Aluminum Company Of America Superplastic aluminum products and alloys
US4790884A (en) 1987-03-02 1988-12-13 Aluminum Company Of America Aluminum-lithium flat rolled product and method of making
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
US4861391A (en) 1987-12-14 1989-08-29 Aluminum Company Of America Aluminum alloy two-step aging method and article
US5108519A (en) 1988-01-28 1992-04-28 Aluminum Company Of America Aluminum-lithium alloys suitable for forgings
US5455003A (en) 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US4946517A (en) 1988-10-12 1990-08-07 Aluminum Company Of America Unrecrystallized aluminum plate product by ramp annealing
US4988394A (en) 1988-10-12 1991-01-29 Aluminum Company Of America Method of producing unrecrystallized thin gauge aluminum products by heat treating and further working
US5213639A (en) 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
US5151136A (en) 1990-12-27 1992-09-29 Aluminum Company Of America Low aspect ratio lithium-containing aluminum extrusions
US5277719A (en) 1991-04-18 1994-01-11 Aluminum Company Of America Aluminum alloy thick plate product and method
AU8128594A (en) 1993-12-17 1995-07-03 Wyman-Gordon Company Stepped, segmented, closed-die forging
FR2716896B1 (en) 1994-03-02 1996-04-26 Pechiney Recherche Alloy 7000 with high mechanical resistance and process for obtaining it.
US6113711A (en) 1994-03-28 2000-09-05 Aluminum Company Of America Extrusion of aluminum-lithium alloys
US5496426A (en) 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product
US5850755A (en) 1995-02-08 1998-12-22 Segal; Vladimir M. Method and apparatus for intensive plastic deformation of flat billets
US5865911A (en) 1995-05-26 1999-02-02 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
US6027582A (en) * 1996-01-25 2000-02-22 Pechiney Rhenalu Thick alZnMgCu alloy products with improved properties
US6071077A (en) 1996-04-09 2000-06-06 Rolls-Royce Plc Swept fan blade
JP3705320B2 (en) 1997-04-18 2005-10-12 株式会社神戸製鋼所 High strength heat treatment type 7000 series aluminum alloy with excellent corrosion resistance
US6315842B1 (en) 1997-07-21 2001-11-13 Pechiney Rhenalu Thick alznmgcu alloy products with improved properties
US5989306A (en) 1997-08-20 1999-11-23 Aluminum Company Of America Method of making a metal slab with a non-uniform cross-sectional shape and an associated integrally stiffened metal structure using spray casting
US7438772B2 (en) * 1998-06-24 2008-10-21 Alcoa Inc. Aluminum-copper-magnesium alloys having ancillary additions of lithium
US6134779A (en) 1998-11-16 2000-10-24 Walker; Bruce K. High performance forged aluminum connecting rod and method of making the same
ES2214907T3 (en) * 1998-12-22 2004-09-16 Corus Aluminium Walzprodukte Gmbh ALLOY PRODUCT OF ALUMINUM TOLERANT TO DAMAGES AND MANUFACTURING METHOD.
JP4712159B2 (en) 2000-05-23 2011-06-29 住友軽金属工業株式会社 Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
AU2001286386A1 (en) 2000-06-01 2001-12-11 Alcoa Inc. Corrosion resistant 6000 series alloy suitable for aerospace applications
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
RU2184166C2 (en) 2000-08-01 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Aluminum-based high-strength alloy and product manufactured therefrom
IL156386A0 (en) 2000-12-21 2004-01-04 Alcoa Inc Aluminum alloy products and artificial aging method
US6627012B1 (en) * 2000-12-22 2003-09-30 William Troy Tack Method for producing lightweight alloy stock for gun frames
US20050269000A1 (en) 2001-03-20 2005-12-08 Denzer Diana K Method for increasing the strength and/or corrosion resistance of 7000 Series AI aerospace alloy products
US20030026725A1 (en) 2001-07-30 2003-02-06 Sawtell Ralph R. Alloy composition for making blister-free aluminum forgings and parts made therefrom
US20030226935A1 (en) 2001-11-02 2003-12-11 Garratt Matthew D. Structural members having improved resistance to fatigue crack growth
FR2838135B1 (en) 2002-04-05 2005-01-28 Pechiney Rhenalu CORROSIVE ALLOY PRODUCTS A1-Zn-Mg-Cu WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
US7214281B2 (en) 2002-09-21 2007-05-08 Universal Alloy Corporation Aluminum-zinc-magnesium-copper alloy extrusion
US20040099352A1 (en) 2002-09-21 2004-05-27 Iulian Gheorghe Aluminum-zinc-magnesium-copper alloy extrusion
CA2506393C (en) 2002-11-15 2009-10-27 Alcoa Inc. Aluminum alloy product having improved combinations of properties
CN100547098C (en) * 2003-04-10 2009-10-07 克里斯铝轧制品有限公司 A kind of Al-zn-mg-cu alloy
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US20050034794A1 (en) 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
US8043445B2 (en) * 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
DE04767427T1 (en) 2003-06-24 2006-10-12 Alcan Rhenalu PRODUCTS FROM AL / ZN / MG / CU ALLOYS WITH IMPROVED COMPROMISE BETWEEN STATIC MECHANICAL PROPERTIES AND DAMAGE TO THE TOLERANCE
EP1522600B1 (en) 2003-09-26 2006-11-15 Kabushiki Kaisha Kobe Seiko Sho Forged aluminium alloy material having excellent high temperature fatigue strength
EP1544316B1 (en) 2003-12-16 2012-03-07 Constellium France Thick sheet made of Al-Zn-Cu-Mg recrystallised alloy with low Zirconium content
ES2393706T3 (en) 2003-12-16 2012-12-27 Constellium France Modeled product in the form of laminated sheet and structure element for Al-Zn-Cu-Mg alloy aircraft
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
FR2879217B1 (en) 2004-12-13 2007-01-19 Pechiney Rhenalu Sa STRONG ALLOY SHEETS AI-ZN-CU-MG WITH LOW INTERNAL CONSTRAINTS
DE502005001724D1 (en) 2005-01-19 2007-11-29 Fuchs Kg Otto Quench-resistant aluminum alloy and method for producing a semifinished product from this alloy
BRPI0606957B1 (en) 2005-02-10 2016-09-13 Alcan Rhenalu Rolled or forged aluminum alloy worked product and process for its production
US20060213591A1 (en) 2005-03-24 2006-09-28 Brooks Charles E High strength aluminum alloys and process for making the same
US20070151636A1 (en) 2005-07-21 2007-07-05 Corus Aluminium Walzprodukte Gmbh Wrought aluminium AA7000-series alloy product and method of producing said product
US8608876B2 (en) 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
FR2907467B1 (en) 2006-07-07 2011-06-10 Aleris Aluminum Koblenz Gmbh PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
US20100059151A1 (en) * 2006-12-13 2010-03-11 Shingo Iwamura High-strength aluminum alloy product and method of producing the same
JP5180496B2 (en) * 2007-03-14 2013-04-10 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5147272B2 (en) 2007-03-27 2013-02-20 株式会社神戸製鋼所 Cold forged non-tempered high-strength steel parts with excellent impact characteristics in the direction perpendicular to the axial direction
RU2468277C2 (en) 2007-04-27 2012-11-27 Алкоа Инк. Riser
US8673209B2 (en) 2007-05-14 2014-03-18 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US10161020B2 (en) 2007-10-01 2018-12-25 Arconic Inc. Recrystallized aluminum alloys with brass texture and methods of making the same
US8557062B2 (en) 2008-01-14 2013-10-15 The Boeing Company Aluminum zinc magnesium silver alloy

Also Published As

Publication number Publication date
CN102822376A (en) 2012-12-12
EP3354765A1 (en) 2018-08-01
CN104046932A (en) 2014-09-17
WO2011133248A2 (en) 2011-10-27
US20110253266A1 (en) 2011-10-20
US10053754B2 (en) 2018-08-21
EP2561109B1 (en) 2018-07-04
US20140102602A1 (en) 2014-04-17
US20150376743A1 (en) 2015-12-31
RU2012149117A (en) 2014-05-27
CA2830558C (en) 2016-03-29
EP2561109B8 (en) 2018-10-24
RU2580261C2 (en) 2016-04-10
CA2765587A1 (en) 2011-10-27
WO2011133248A3 (en) 2011-12-22
CN102822376B (en) 2014-07-30
CA2765587C (en) 2013-12-31
CA2830558A1 (en) 2011-10-27
EP2561109A4 (en) 2014-08-27
US10119184B2 (en) 2018-11-06
EP2561109A2 (en) 2013-02-27
IL217494A0 (en) 2012-02-29
IL217494B (en) 2018-05-31
US9163304B2 (en) 2015-10-20
CN104046932B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US20190040505A1 (en) High strength forged aluminum alloy products
CN108385003B (en) A kind of aerospace high-ductility corrosion aluminium alloy extrusions and preparation method thereof
CN102549185B (en) Aluminum alloy extrudate with excellent bending crushing strength and corrosion resistance
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
CN107130149A (en) Intensity and the excellent aluminum alloy forged material of ductility and its manufacture method
CN108884525A (en) Excellent corrosion resistance and the high-strength aluminum alloy extruded material and its manufacturing method with good quenching property
CN104619873A (en) Aluminum alloy plate for automobile part
CN104619872A (en) Aluminum alloy automobile part
CN107735503A (en) The excellent aluminum alloy extrusion material of exterior quality with anodic oxide coating and its manufacture method
CN107614718A (en) High-strength aluminum alloy hot forging material
JP2015189993A (en) Aluminium alloy forging
Zhang et al. Effects of Mn and Cr additions on the recrystallization behavior of Al-Mg-Si-Cu alloys
CN106574328A (en) Aluminum alloy sheet
Eivani et al. Microstructural evolution during the homogenization of Al-Zn-Mg aluminum alloys
US20210147964A1 (en) Magnesium alloy sheet and manufacturing method therefor
WO2020123096A2 (en) 2xxx aluminum alloys
EP3126536B1 (en) Aluminum alloy composition and method
JP7468931B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy rod, and methods for producing the same, and magnesium alloy member
WO2023229968A1 (en) New scrap-based aluminum alloy products
Selivanov et al. Structure and properties of high-strength aluminum alloy 1933 rolled plates
Pushkareva et al. Development of Al-Mg alloys with different levels of Mn and Fe for super-plastic forming
Radetić et al. Identification of Fe-bearing phases in the as-cast microstructure of AA6026 alloy and their evolution during homogenization treatment
WO2024086068A1 (en) New 6xxx aluminum alloys

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCOA INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUSH, DUSTIN M.;COLVIN, EDWARD L.;RIOJA, ROBERTO J.;AND OTHERS;SIGNING DATES FROM 20100520 TO 20100610;REEL/FRAME:047153/0359

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ARCONIC INC., PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:ALCOA INC.;REEL/FRAME:049827/0161

Effective date: 20161031

AS Assignment

Owner name: HOWMET AEROSPACE INC., PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:ARCONIC INC.;REEL/FRAME:053086/0762

Effective date: 20200331

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION