US20190028990A1 - System and Method for Device-to-Device Communications - Google Patents

System and Method for Device-to-Device Communications Download PDF

Info

Publication number
US20190028990A1
US20190028990A1 US16/140,038 US201816140038A US2019028990A1 US 20190028990 A1 US20190028990 A1 US 20190028990A1 US 201816140038 A US201816140038 A US 201816140038A US 2019028990 A1 US2019028990 A1 US 2019028990A1
Authority
US
United States
Prior art keywords
coverage
communication
ict
resource allocation
timer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/140,038
Inventor
Philippe Sartori
Anthony C.K. Soong
Hossein Bagheri
Mazin AI-Shalash
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FutureWei Technologies Inc
Original Assignee
FutureWei Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FutureWei Technologies Inc filed Critical FutureWei Technologies Inc
Priority to US16/140,038 priority Critical patent/US20190028990A1/en
Publication of US20190028990A1 publication Critical patent/US20190028990A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/02Hybrid access techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to a system and method for wireless communications, and, in particular, to a system and method for device-to-device communications.
  • D2D Device-to-device
  • a user equipment UE attempts to discover neighboring UEs, either on its own or directed by an enhanced Node B (eNB).
  • eNB enhanced Node B
  • one UE directly communicates with another UE without the data transiting through the eNB.
  • An embodiment method for device-to-device (D2D) communication includes determining that a first user equipment (UE) is out-of-coverage, the first UE having been previously in-coverage on a first cell. The method also includes starting a timer upon determining that the first UE is out-of-coverage and determining whether the first UE has returned to be in-coverage after starting the timer. Additionally, the method includes determining whether the timer has expired and communicating, by the first UE directly with a second UE, using out-of-coverage resources from the first cell when the timer has not expired and the first UE has not returned to be in-coverage.
  • UE user equipment
  • An embodiment method for device-to-device (D2D) communications includes computing an in-coverage threshold (ICT) parameter and determining whether to perform contention-based resource allocation or scheduling-based resource allocation in accordance with the ICT parameter.
  • the method also includes performing contention-based resource allocation to produce allocated resources when determining to perform contention-based resource allocation and performing scheduling-based resource allocation to produce the allocated resources when determining to perform scheduling-based resource allocation. Additionally, the method includes communicating, by a first user equipment (UE) directly with a second UE using the allocated resources.
  • UE user equipment
  • An embodiment first user equipment includes a processor and a non-transitory computer readable storage medium storing programming for execution by the processor.
  • the programming includes instructions to determine that the first UE is out-of-coverage, the first UE having been previously in-coverage on a first cell.
  • the programming also includes instructions to start a timer upon determining that the first UE is out-of-coverage and determine whether the first UE has returned to be in-coverage after starting the timer.
  • the programming includes instructions to determine whether the timer has expired and communicate, directly with a second UE, using out-of-coverage resources from the first cell when the timer has not expired and the first UE has not returned to be in-coverage.
  • FIG. 1 illustrates a diagram of a wireless network for communicating data
  • FIG. 2 illustrates coverage scenarios for user equipments (UEs);
  • FIG. 3 illustrates an idle mode state diagram
  • FIGS. 4A-B illustrate an idle mode cell selection and reselection state diagram
  • FIG. 5 illustrates a flowchart for an embodiment method of device-to-device (D2D) resource allocation
  • FIG. 6 illustrates an embodiment state diagram for D2D resource allocation
  • FIG. 7 illustrates another embodiment state diagram for D2D resource allocation
  • FIG. 8 illustrates a flowchart for another embodiment method of D2D resource allocation
  • FIG. 9 illustrates a flowchart for an additional embodiment method of D2D resource allocation.
  • FIG. 10 illustrates a block diagram of an embodiment computer system.
  • D2D device-to-device
  • a user equipment attempts to discover neighboring UEs, either on its own or directed by a communications controller, such as an enhanced Node B (eNB).
  • eNB enhanced Node B
  • one UE directly communicates with another UE without the data transiting through the eNB.
  • resource allocation may be performed for UEs engaged in D2D communication, whether they are in network coverage or out of network coverage.
  • Resource allocation may be contention-based or scheduling based.
  • scheduling-based resource allocation an eNB determines the resource allocation, while in contention-based resource allocation, the UEs contend (compete) for the use of the resources.
  • FIG. 1 illustrates network 100 for communicating data.
  • Network 100 includes communications controller 102 having a coverage area 106 , a plurality of UEs, including UE 104 and UE 105 , and backhaul network 108 . Two UEs are depicted, but many more may be present.
  • Communications controller 102 may be any component capable of providing wireless access by establishing uplink (dashed line) and/or downlink (dotted line) connections with UE 104 and UE 105 , such as a base station, a NodeB, an eNB, an access point, a picocell, a femtocell, and other wirelessly enabled devices. There may be D2D communication between UE 104 and UE 105 .
  • UE 104 and UE 105 may be any component capable of establishing a wireless connection with communications controller 102 , such as cell phones, smart phones, tablets, sensors, etc.
  • Backhaul network 108 may be any component or collection of components that allow data to be exchanged between communications controller 102 and a remote end.
  • the network 100 may include various other wireless devices, such as relays, etc.
  • FIG. 2 illustrates system 110 with eNB 111 .
  • UEs such as UE 118 and UE 120
  • in-network coverage area 112 UEs, such as UE 118 and UE 120
  • UEs In out-of-network coverage area 116 , UEs, such as UE 126 and UE 128 , cannot communicate with eNB 111 at all.
  • area 114 also known as partial coverage area or edge of network, UEs, such as UE 122 and UE 124 can receive messages from eNB 111 but cannot transmit messages to eNB 111 .
  • one UE is located in-network coverage and the other UE is out-of-network coverage or has partial coverage.
  • D2D Two approaches to D2D are a device-centric approach and a network-managed approach.
  • the functionality for D2D resides mostly on the UEs with minimal network involvement, and direct communications between devices forms an overlay on top of the cellular network.
  • Functions such as resource allocation and management are performed in an ad-hoc manner between the UEs without network oversight or management, limiting the potential performance gains from D2D and introducing challenges for supporting some functions of the cellular network.
  • Some challenges include the security of user data and protecting user identity and/or location from being discovered by unauthorized parties, charging for D2D and proximity as a service, supporting lawful intercept of communications, and the scalability to different deployment scenarios and device densities.
  • D2D complements and enhances the capabilities of the network for more efficient utilization of radio resources for proximate communications.
  • the network may constantly supervise the usage of direct versus infrastructure routing of user data to achieve efficient utilization of resources, minimize interference, and benefit the network.
  • Features of the cellular network may be extended to support D2D with a network-managed approach.
  • Two resource management schemes include scheduling-based resource allocation and contention-based resource allocation.
  • a central controller such as an eNB, allocates resources to each UE. The process may be similar to how a cellular communication is scheduled.
  • the UE may us a random access channel (RACH) or another contention-based channel to request resources.
  • RACH random access channel
  • the central controller allocates resources and transmits the resource allocation on a control channel which may be similar to a physical downlink control channel (PDCCH) or an enhanced PDCCH (ePDCCH).
  • PDCH physical downlink control channel
  • ePDCCH enhanced PDCCH
  • a central controller In contention-based resource allocation, a central controller is not used. Each UE attempts to obtain the channel and schedules its own resources for its transmission.
  • a resource allocation protocol such as carrier sensing multiple access (CSMA) may be used.
  • a UE in idle mode may perform processes such as public land mobile network (PLMN) selection, cell selection and reselection, location registration, and support for manual closed subscriber group (CSG) selection.
  • FIG. 3 illustrates state diagram 130 for idle mode processes.
  • PLMN public land mobile network
  • CSG manual closed subscriber group
  • FIG. 3 illustrates state diagram 130 for idle mode processes.
  • PLMN selection is performed by the non-access stratum (NAS) in the PLMN selection state 132 .
  • RAT radio access technology
  • the NAS provides a list of equivalent PLMNs.
  • the UE proceeds to cell selection and reselection state 136 .
  • the access stratum uses the list of equivalent PLMNs in cell selection and reselection state 136 .
  • the UE searches for a suitable cell for the selected PLMN, and chooses the selected cell to provide available services. Also, the UE tunes to its control channel. This selection is known as camping on the cell.
  • the UE When the registration area changes, the UE registers its presence using a NAS registration procedure in the tracking area of the chosen cell in location registration state 138 . As a result of a successful location registration, the selected PLMN becomes the registered PLMN, and the UE proceeds to the cell selection and reselection state 136 . When the location registration is rejected by the network, the UE may return to the PLMN selection state 132 , and select another PLMN when applicable.
  • the UE When the UE finds a more suitable cell in accordance with the cell selection criteria, the UE reselects that cell and camps on it. When the new cell does not belong to at least one tracking area to which the UE is registered, location registration is performed.
  • the UE may search for higher priority PLMNs at regular intervals.
  • the UE searches for a suitable cell when another PLMN has been selected by NAS.
  • a search of CSGs may be triggered by NAS in support CSG selection state 134 .
  • a new PLMN is selected automatically in automatic mode, or an indication of available PLMNs is given to the user, so that a manual selection may be performed in manual mode.
  • MBMS frequency prioritization state 140 is performed and MBMS frequencies are prioritized.
  • camp on a cell in idle mode entails a variety of functions. It facilitates the UE receiving system information from the PLMN. Also, when a registered UE wants to establish a radio resource control (RRC) connection, it may do so by initially accessing the network on the control channel of the cell on which it is camped. When the PLMN receives a call for the registered UE, it usually knows the set of tracking areas in which the UE is camped. It may then send a paging message for the UE on the control channels of all the cells in this set of tracking areas. The UE then receives the paging message because it is tuned to the control channel of a cell in one of the registered tracking areas, and the UE may respond on that control channel.
  • RRC radio resource control
  • the UE When the UE is unable to find a suitable cell to camp on, or when the location registration fails, it may attempt to camp on a cell irrespective of the PLMN identity, and enter a limited service state.
  • FIGS. 4A-B illustrate state diagram 150 for idle cell selection and reselection.
  • the UE goes to state 152 .
  • Initial cell selection is performed in initial cell selection state 156 .
  • Prior knowledge of which radio frequency (RF) channels are evolved universal mode telecommunications system (UMTS) terrestrial radio access network (E-UTRA) carriers is not required.
  • the UE scans the RF channels in the E-UTRA bands to find a suitable cell. On each carrier frequency, the UE only searches for the strongest cell. When a suitable cell is found, it is selected, and the UE proceeds to camped normally state 162 . When no suitable cell is found, the UE proceeds to any cell selection state 168 via state 174 .
  • RF radio frequency
  • UMTS evolved universal mode telecommunications system
  • E-UTRA terrestrial radio access network
  • stored information cell selection state 154 stored information of carrier frequencies and optionally information on cell parameters from previously received measurement control information elements or from previously detected cells is used.
  • the UE selects it, and proceeds to camped normally state 162 .
  • the UE proceeds to initial cell selection state 156 .
  • camped normally state 162 the UE is camped on an eNB. While the UE is in the camped normally state, it has only dedicated priorities, and the UE considers the current frequency to be the lowest priority frequency. When the UE is in camped normally state 162 , and it leaves idle mode, it goes to connected mode 164 . When the UE receives a trigger, it proceeds to cell reselection evaluation process state 166 . When NAS indicates that the registration on the selected PLMN has been rejected, it proceeds to any cell selection state 168 through state 174 .
  • connected mode 164 the UE operates in connected mode.
  • the UE communicates with the eNB.
  • the UE returns to idle mode, it proceeds to cell selection when leaving idle mode state 160 .
  • the UE proceeds to camped normally state 162 .
  • the UE proceeds to information cell selection state 154 .
  • the connected mode fails, it proceeds to cell selection when connected mode failed state 163 .
  • the UE performs cell selection.
  • the UE is able to connect to a cell, either a new cell or the cell it was previously connected to, it returns to connected mode 164 .
  • the UE is not able to connect to a cell, it proceeds to cell selection when leaving connected mode state 160 .
  • cell reselection evaluation process state 166 cell reselection evaluation is performed. When a suitable cell is found, either a new cell or the cell the UE was previously connected to, the UE returns to camped normally state 162 . On the other hand, when no suitable cell is found, the UE proceeds to any cell selection state 168 via state 174 .
  • any cell selection state 168 the UE attempts to find an acceptable cell of any PLMN to camp on, trying all RATs supported by the UE and searching first for a high quality cell.
  • USB universal subscriber identity module
  • the UE proceeds to state 152 .
  • an acceptable cell if found, the UE proceeds to camped on any cell state 172 .
  • the UE selects and monitors the indicated paging channels of the cell and monitors relevant system information. Also, the UE performs measurements for the cell reselection evaluation procedure. Additionally, the UE proceeds to the cell reselection evaluation process state 180 on UE internal triggers or when information on the broadcast control channel (BCCH) used for the cell reselection evaluation procedure has been modified. The UE regularly attempts to find a suitable cell trying all frequencies of all RATS supported by the UE. When a suitable cell is found, the UE proceeds to camped normally state 162 via state 158 .
  • BCCH broadcast control channel
  • the UE When the UE supports voice services and the current cell does not support emergency calls, the UE performs cell selection/reselection to an acceptable cell of any supported RAT regardless of priorities provided in system information from the current cell when no suitable cell is found. When the UE leaves idle mode, it proceeds to connected mode emergency calls only state 178 .
  • cell reselection evaluation process state 180 reselection priorities are handled. When an acceptable cell is found, the UE returns to camped on any cell state 172 . On the other hand, when no acceptable cell is found, the UE proceeds to any cell selection state 168 .
  • connected mode emergency calls only state 178 the UE only takes emergency calls. When the UE returns to idle mode, it proceeds to cell selection when leaving connected mode state 170 .
  • the UE performs cell selection. When an acceptable cell is found, the UE proceeds to camped on any cell state 172 . When no acceptable cell is found, the UE proceeds to any cell selection state 168 .
  • Embodiments include both in-network and out-of network coverage.
  • a UE When a UE is in-coverage, it receives scheduled resources for D2D communication transmissions from the network.
  • the UE When the UE is in out-of-network coverage, it uses a contention based scheme to select air interface resources for D2D transmission.
  • a UE is considered to be in coverage when the UE is in an connected mode, camped in a suitable cell, is in connected mode, or satisfies an in-coverage threshold.
  • a UE On the other hand, a UE is in out-of-network coverage when in the UE is out-of-coverage.
  • a UE may be considered to be out of coverage when it was previously in coverage and has lost coverage, is in cell selection when connected mode failed state, camped on any cell, or does not satisfy the in-coverage threshold.
  • An in-coverage threshold (ICT) is:
  • ICT Q rxlevmeas ⁇ ( Q rxlevmin +Q D2Doffset ) ⁇ P compensation
  • ICT is the in-coverage threshold in decibels (dB)
  • Q rxlevmeas is the measured reference signal received power (RSRP) from the serving or camping cell
  • Q rxlevmin is the minimum required reception level in the cell in dBm
  • Q D2Doffset is the offset used for D2D communications determinations
  • Pcompensation is the maximum of max(P EMAX ⁇ P PowerClass , 0) in dB.
  • P EMAX is the maximum transmission power level a UE may use when transmitting on the uplink cell in dBm
  • P PowerClass is the maximum RF output of the UE in dBm in accordance with the UE power class.
  • these values are computed on another time granularity, such as by slot or radio frame. In another example, they are determined in irregular intervals.
  • Q rxlevmeas cannot be defined, it may be set to minus infinity or another value, such as an arbitrary low value.
  • Q D2Doffset is transmitted by eNBs supporting D2D communications.
  • Q D2Doffset is transmitted in a system information block (SIB) defining the parameters for D2D communication.
  • SIB system information block
  • Q D2Doffset is a fixed value pre-configured in the UE, which may be specified, for example, by a standard. In one example, the default value of Q D2Doffset is 3 dB.
  • a set of subframes S meas is defined, where S meas is the set of subframes on which ICT is measured.
  • S meas may be the set of N consecutive subframes, where N is transmitted in a SIB or pre-configured when an SIB is not received.
  • N is predefined, for example defined by a standard.
  • S meas is any set of N subframes chosen by the UE within a time T, where N and T are transmitted in an SIB, pre-configured, or predefined.
  • the maximum ICT value over the set of subframes is:
  • ICT max max ⁇ ICT( s ), s ⁇ S meas ⁇ .
  • the criterion to be in coverage may be:
  • ICT Th is a threshold which may be predefined, for example from a standard specification, broadcasted by the network in an SIB, or a fixed predefined value.
  • the UE is determined to be out-of-coverage.
  • the minimum ICT value over the set of subframes is used, for example:
  • ICT min min ⁇ ICT( s ), s ⁇ S meas ⁇ .
  • the average ICT value over the set of subframes is used:
  • K is the number of subframes is S meas .
  • ICTs and ICTb are used. ICTs is used for obtaining the scheduling grants or only D2D broadcast resources, and ICTb is used only for discovery. In one example, ICTb is more useful for idle UEs. ICTs and ICTb are calculated similarly to ICT, with different D2D offsets, where:
  • the UE will not start registration to the cell even when it has successfully detected a cell and decoded the master information block (MIB) and SIBs unless:
  • a quality reference signal received quality (RSRQ) type threshold for in-coverage is:
  • INC _Qual Q qualmeas ⁇ ( Q qualmin +Q qualD2Doffset ).
  • the quality threshold may not be used when the serving cell of the D2D UE makes provisions for D2D resources, such as making them orthogonal to resources assigned to cellular information.
  • the SIB may indicate the value of Q qualD2Doffset .
  • a default value of Q qualD2Doffset may be + ⁇ .
  • the UE may need to satisfy the S-Criteria to obtain D2D resource allocation commands from the eNB, unless the commands are broadcast, for example in an SIB.
  • an ICT or ICT max may be greater than zero, but the UE only finds an acceptable cell where only emergency calls are allowed.
  • the UE may be considered to be in or out of network from a D2D perspective, and use the corresponding resource allocation method.
  • public safety UEs may be considered to be in-network, while an ordinary UE would be considered to be out-of-network.
  • the cell When the ICT or ICT max is greater than zero, but the cell is a barred cell, D2D service may not be allowed until another cell is found, unless the UE is a public safety UE.
  • a contention based scheme may be adopted.
  • the cell provides a pool of resources to UEs in a broadcast message, and the UE performs contention-based transmission using the broadcast resource pool.
  • the cell When no RSRP is measured, the cell is out-of-coverage from a D2D perspective. However, it may be in the coverage of another RAT. The UE is considered to have out-of-network coverage.
  • out-of-network coverage is defined when the UE is in the any cell selection state, i.e. the UE is searching for a cell to camp on, but cannot find one.
  • out-of-network coverage is defined when the UE was previously in connected mode and lost coverage.
  • There may be some default resource or band the UE may use for D2D in the any cell selection state for example preprogrammed or defined by the network during the last registration. However, this may be limiting, for example to public safety uses. For example, in the camped on any cell state, it is likely that a public safety UE should also be allowed to use D2D on the default band or resource, or another band or resource indicated by the network in an SIB message.
  • the network may also provide a timer to the UE for how long it may access these resources once it goes out of coverage.
  • the eNB may update this out-of-coverage D2D resource allocation on a relatively dynamic basis. For example, the eNB may eliminate it when there is no emergency incident necessitating D2D communication, and the UE is in the camped normally state and the connected mode state.
  • a UE assesses whether it is in-coverage or not using an ICT computation.
  • the UE uses a first resource assignment method, where the eNB schedules the D2D communication.
  • the D2D UE obtains its resource allocation through a contention based resource allocation method.
  • FIG. 5 illustrates flowchart 190 for a method of D2D communication.
  • the UE decides D2D resource allocation using a timer. Initially, in step 192 , the UE requests resource allocation from an eNB while in-coverage. The UE connects to the eNB to request its D2D resource allocation.
  • the UE obtains the resource allocation and/or a timer value from the eNB.
  • the UE reads the appropriate SIB and obtains the current value for out-of-coverage D2D resource allocation and the timer value for this cell.
  • the UE stores the resource allocation and/or a timer value. When these values have changed, the UE updates them.
  • step 196 the UE determines whether there is a loss of network coverage.
  • the UE loses coverage, it performs cell selection/reselection, and it is no longer camped on a cell.
  • the UE returns to step 192 to request resource allocation again.
  • the UE detects a loss of network coverage, it proceeds to step 198 .
  • the UE starts a timer.
  • the timer may be initialized to the timer value stored from the last cell it camped on received in step 194 .
  • the timer counts down from the timer value.
  • the timer value is predetermined.
  • step 198 the UE uses the out-of-coverage resources from the cell it camped on in step 194 for D2D communications. The UE continues to use these resources while the timer has not expired and the UE is not camped on or connected to a cell.
  • step 200 the UE determines whether it is camped on or connected to a cell again.
  • the UE may be camped on or connected to the same cell or another cell. This may be the same cell it was previously camped on or a totally new cell.
  • the UE proceeds to step 202 .
  • the UE has still not camped and connected to a cell, it proceeds to step 204 .
  • step 202 the UE stops the timer and returns to the in-coverage state.
  • the UE uses scheduling-based D2D resources from the eNB on which it is camped.
  • the UE returns to step 192 to request resource allocation while in coverage.
  • step 204 the UE uses out-of coverage resources obtained from the last cell it was connected to or camped on.
  • step 206 the UE determines whether the timer has expired. When the timer has not expired, the UE returns to step 200 to determine whether the UE is camped on or connected to a new cell. When the timer has expired without camping on a new cell, the UE proceeds to step 208 .
  • the UE is out-of-coverage, for example in the any cell selection state.
  • the UE stops using the out-of-coverage D2D resource from the last camped cell, and reverts back to using the pre-configured out-of-contact resource allocation.
  • the UE may use contention-based D2D resources.
  • FIG. 6 illustrates state diagram 210 with scheduling-based resource allocation state 212 and contention-based resource allocation state 214 .
  • scheduling-based resource allocation state 212 the UE is camped on a cell, and performs scheduling-based resource allocation.
  • the UE When the UE is in scheduling-based resource allocation state 212 , it computes g(ICT) and determines if g(ICT) is greater than zero.
  • g(ICT) may be equal to ICT max ⁇ ICT Th , ICT min ⁇ ICT Th , or ICT avg ⁇ ICT Th .
  • g(ICT) is greater than zero, the UE remains in scheduling-based resource allocation state 212 .
  • g(ICT) is less than or equal to zero, the UE proceeds to contention-based resource allocation state 214 .
  • contention-based resource allocation state 214 the UE is not camped on a cell, and performs contention-based resource allocation.
  • the UE calculates f(ICT) in contention-based resource allocation state 214 , and determines whether f(ICT) is less than or equal to zero. When f(ICT) is less than or equal to zero, the UE remains in contention-based resource allocation state 214 . When f(ICT) is greater than zero, the UE proceeds to scheduling-based resource allocation state 212 .
  • g(ICT) f(ICT)+d, where d is an offset. The offset d is used to avoid repeatedly switching back and forth between contention-based resource allocation and scheduling-based resource allocation
  • the UE remains in scheduling-based resource allocation state 212 as long as g(ICT)>0, even when it cannot obtain scheduling information.
  • FIG. 7 illustrates resource allocation state diagram 220 , which contains contention-based resource allocation with pre-configured resource pool state 222 , scheduling based resource allocation state 226 , and contention-based resource allocation with configurable resource pool state 224 .
  • contention-based resource allocation with pre-configured resource pool state 222 the UE is not camped on a cell and has never been in coverage.
  • the UE performs contention-based resource allocation with a pre-configured resource pool.
  • the UE determines f(ICTb), which may be ICT max ⁇ ICT Th , ICT min ⁇ ICT Th , or ICT avg ⁇ ICT Th .
  • f(ICTb) While f(ICTb) is less than zero, the UE remains in contention-based resource allocation with pre-configured resource pool state 222 . When f(ICTb) is greater or equal to zero, the UE proceeds to the scheduling-based resource allocation state 226 .
  • contention-based resource allocation with configurable resource pool state 224 the UE has previously been camped on a cell, and has come out of coverage.
  • the UE performs contention-based resource allocation with a configurable resource pool.
  • the UE determines f(ICTs) and f(ICTb).
  • f(ICTs) is greater than zero
  • the UE proceeds to scheduling-based resource allocation state 226 .
  • f(ICTb) is greater than zero and f(ICTs) is less than or equal to zero
  • the UE remains in contention-based resource allocation with configurable resource pool state 224 .
  • f(ICTb) is less than zero, the UE proceeds to the contention-based resource allocation with pre-configured resource pool state 222 .
  • scheduling-based resource allocation state 226 the UE performs scheduling-based resource allocation while it is camped on a cell.
  • the UE calculates f(ICTb) and f(ICTs).
  • f(ICTb) is less than zero
  • the UE proceeds to contention-based resource allocation with pre-configured resource pool state 222 .
  • f(ICTs) is greater than zero
  • the UE remains in scheduling based resource allocation state 226 .
  • f(ICTb) is greater than zero and f(ICTs) is less than or equal to zero
  • the UE proceeds to contention-based resource allocation with configurable resource pool state 224 .
  • FIG. 8 illustrates flowchart 230 for an embodiment method of deciding between contention based D2D resource allocation or schedule-based D2D resource allocation.
  • ICT max , ICT min , ICT avg , or another ICT parameter may be used.
  • the UE begins the procedure.
  • the UE obtains configuration information.
  • the configuration information is used to calculate the in-coverage criteria.
  • the in-coverage criteria are specified in the third generation project protocol (3GPP) specification.
  • the in-coverage criteria are manually preconfigured.
  • the in-coverage criteria are conveyed to the UE by another means, for example by receiving a message from a eNB, for example in the SIB.
  • the UE obtains the parameters for computing the ICT, as well as the threshold for determining the resource allocation method (scheduling-based or contention-based).
  • the UE computes the ICT parameters in step 236 , such as ICT and ICT max , ICT min and/or ICT avg .
  • ICT and ICT max are computed periodically, so the UE bases its decision to use either a contention based or scheduling based resource allocation policy with current information.
  • the periodicity may be known a priori or obtained in step 234 .
  • the computation is performed at irregular intervals.
  • the ICT is:
  • ICT Q rxlevmeas ⁇ ( Q rxlevmin +Q D2Doffset ) ⁇ P compensation.
  • ICT max is:
  • ICT max max ⁇ ICT( s ), s ⁇ S meas ⁇ .
  • the UE decides whether to use scheduling-based resource allocation or contention based resource allocation based on the ICT parameters.
  • other variables such as ICT, are used.
  • the UE may compare ICT max to the ICT threshold. In one example, when:
  • the UE determines that the UE is in-coverage, and uses scheduling-based resource allocation in step 244 .
  • the UE determines that the UE is in-coverage, and uses scheduling-based resource allocation in step 244 .
  • ICT min or ICT avg is used instead of ICT max .
  • ICT Th is a threshold which may be predefined, for example from a standard specification, broadcasted by the network in an SIB, or a fixed predefined value.
  • step 244 the UE performs scheduling-based resource allocation.
  • the UE requests D2D resources from the network, for example from the eNB.
  • the network then grants a resource to the UE for D2D transmission.
  • the UE is in RRC_Connected mode, and may use the RACH.
  • the UE proceeds to step 246 , and ends the procedure.
  • step 240 the UE uses contention based resource allocation.
  • the UE may perform transmission with a contention-based approach relying on the CSMA protocol used in international electrical and electronics engineers (IEEE) 802.11, or another contention-based mechanism.
  • IEEE international electrical and electronics engineers
  • the UE may notify the receivers of whether it is using scheduling or contention-based resource allocation.
  • the UE uses scheduled resources, and the allocation is performed semi-statically, it may be desirable for the receivers to know, so they can monitor this set of resources. For example, the receiver may want to avoid a discontinuous reception (DRX) like mode.
  • the transmitting UE may broadcast a scheduling message to all potential receivers, where the transmitter indicates the resource allocation for the actual data transmission. A field to indicate for how long this set of resources is valid for this transmitter may also be indicated in the broadcast message.
  • the UE In addition to the in-coverage case and out-of-coverage case, there may be a partial coverage case.
  • the UE cannot communicate directly with the eNB, but is attempting to communicate with a UE which is in coverage.
  • the resource allocation is contention-based.
  • contention-based resource allocation is used, but the resource pool is pre-configured, with a priori knowledge by the two UEs communicating D2D. This may reduce the UEs interfering with the eNB.
  • the resource allocation is scheduling-based, and the in-coverage UE relays the grant to the out-of-coverage UE.
  • FIG. 9 illustrates flowchart 250 for a method of determining resource allocation when scheduling-based resource allocation is used for partial coverage. Initially, in step 252 , the UE begins the procedure.
  • the UE obtains configuration information.
  • the configuration information is used to calculate the in-coverage criteria.
  • the in-coverage criteria are specified in the third generation project protocol (3GPP) specification.
  • the in-coverage criteria are manually preconfigured.
  • the in-coverage criteria are conveyed to the UE by another means, for example by receiving a message from a eNB, for example in the SIB.
  • the UE obtains the parameters for computing the ICT, as well as the threshold for determining the resource allocation method (scheduling-based or contention-based).
  • the UE computes the ICT parameters in step 256 , such as ICT and ICT max , ICT min and/or ICT avg .
  • ICT and ICT max are computed periodically, so the UE bases its decision to use either a contention based or scheduling based resource allocation policy with current information.
  • the periodicity may be known a priori or obtained in step 234 .
  • the computation is performed at irregular intervals.
  • the ICT is:
  • ICT Q rxlevmeas ⁇ ( Q rxlevmin +Q D2Doffset ) ⁇ P compensation.
  • ICT max is:
  • ICT max max(ICT( s ), s ⁇ S meas ).
  • the UE decides whether it is in coverage or out of coverage.
  • other variables such as ICT, are used.
  • the UE may compare ICT max to the ICT threshold. In one example, when:
  • the UE determines that the UE is in-coverage, and uses scheduling-based resource allocation in step 244 .
  • the UE determines that the UE is in-coverage, and uses scheduling-based resource allocation in step 244 .
  • ICT min or ICT avg is used instead of ICT max .
  • ICT Th is a threshold which may be predefined, for example from a standard specification, broadcasted by the network in an SIB, or a fixed predefined value.
  • step 264 the UE determines whether the other UE with which it wants to perform D2D communications is in coverage. For example, this determination may be performed by using different discovery signals for out-of-coverage UEs. When the other UE is in coverage, the UE proceeds to step 260 to perform scheduling based resource allocation. On the other hand, when the other UE is also out of coverage, the UE proceeds to step 266 to perform contention based resource allocation.
  • the UE performs scheduling-based resource allocation.
  • the out-of-coverage UE may blindly rely on grant requests and grant responses from and to the in-coverage UE, which communicates directly with the eNB.
  • the out-of-coverage UE decodes the grant request from the in-coverage UE, aggregates the grant response with its grant requests, and transmits a single grant request to the eNB. Then resources are allocated to the out-of-coverage UE based on the received grant from the eNB.
  • both UEs are in-coverage, both UEs directly communicate with the eNB.
  • the UE proceeds to step 262 , and ends the procedure.
  • step 266 the UE uses contention based resource allocation.
  • the UE may perform transmission with a contention-based approach relying on the CSMA protocol used in international electrical and electronics engineers (IEEE) 802.11, or another contention-based mechanism.
  • the UE proceeds to step 268 and ends this procedure.
  • an in-coverage UE may move to out-of-coverage or partial coverage.
  • the UE notifies the UE it is communicating with of its change of status.
  • an out-of-coverage UE moves to in-coverage.
  • the UE stops the contention-based transmission to avoid interference on the cellular resources.
  • the UE moving into coverage immediately suspends the D2D communication and notifies the communicating UE of its change of status.
  • Some techniques may be used to avoid rapidly switching back and forth between in-coverage and out-of-coverage.
  • a hysteresis mechanism may be used with a different threshold for moving into coverage and moving out of coverage.
  • the UE when the UE has switched, it may be prevented from switching again for a given duration.
  • a UE moving into coverage may interfere with the eNB, these mechanisms may only be used for switching out of coverage.
  • the timer may be set to 0 seconds for switching from in-coverage to out-of-coverage.
  • the thresholds may be such that there is no penalty for switching out-of-coverage, so the hysteresis essentially only applies for out-of-coverage UEs.
  • FIG. 10 illustrates a block diagram of processing system 270 that may be used for implementing the devices and methods disclosed herein.
  • Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device.
  • a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc.
  • the processing system may comprise a processing unit equipped with one or more input devices, such as a microphone, mouse, touchscreen, keypad, keyboard, and the like.
  • processing system 270 may be equipped with one or more output devices, such as a speaker, a printer, a display, and the like.
  • the processing unit may include central processing unit (CPU) 274 , memory 276 , mass storage device 278 , video adaptor 280 , and I/O interface 288 connected to a bus.
  • CPU central processing unit
  • the bus may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like.
  • CPU 274 may comprise any type of electronic data processor.
  • Memory 276 may comprise any type of non-transitory system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like.
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • ROM read-only memory
  • the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
  • Mass storage device 278 may comprise any type of non-transitory storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus. Mass storage device 278 may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
  • Video adaptor 280 and I/O interface 288 provide interfaces to couple external input and output devices to the processing unit.
  • input and output devices include the display coupled to the video adapter and the mouse/keyboard/printer coupled to the I/O interface.
  • Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized.
  • a serial interface card (not pictured) may be used to provide a serial interface for a printer.
  • the processing unit also includes one or more network interface 284 , which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks.
  • Network interface 284 allows the processing unit to communicate with remote units via the networks.
  • the network interface may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas.
  • the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.

Abstract

A method for device-to-device (D2D) communication includes determining that a first user equipment (UE) is out-of-coverage, the first UE having been previously in-coverage on a first cell. The method also includes starting a timer upon determining that the first UE is out-of-coverage and determining whether the first UE has returned to be in-coverage after starting the timer. Additionally, the method includes determining whether the timer has expired and communicating, by the first UE directly with a second UE, using out-of-coverage resources from the first cell when the timer has not expired and the first UE has not returned to be in-coverage.

Description

  • This application is a continuation of U.S. patent application Ser. No. 14/596,898 filed on Jan. 14, 2015, which claims the benefit of U.S. Provisional Application Ser. No. 61/927,347 filed on Jan. 14, 2014, and entitled “System and Method for Device-to-Device Communication Protocol,”. All of the afore-mentioned patent applications are hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a system and method for wireless communications, and, in particular, to a system and method for device-to-device communications.
  • BACKGROUND
  • Device-to-device (D2D) technology is expanding because of its ability to offer new services, improve system throughput, and offer a better user experience. D2D technologies include discovery and communication. In discovery, a user equipment (UE) attempts to discover neighboring UEs, either on its own or directed by an enhanced Node B (eNB). In communication, one UE directly communicates with another UE without the data transiting through the eNB.
  • SUMMARY
  • An embodiment method for device-to-device (D2D) communication includes determining that a first user equipment (UE) is out-of-coverage, the first UE having been previously in-coverage on a first cell. The method also includes starting a timer upon determining that the first UE is out-of-coverage and determining whether the first UE has returned to be in-coverage after starting the timer. Additionally, the method includes determining whether the timer has expired and communicating, by the first UE directly with a second UE, using out-of-coverage resources from the first cell when the timer has not expired and the first UE has not returned to be in-coverage.
  • An embodiment method for device-to-device (D2D) communications includes computing an in-coverage threshold (ICT) parameter and determining whether to perform contention-based resource allocation or scheduling-based resource allocation in accordance with the ICT parameter. The method also includes performing contention-based resource allocation to produce allocated resources when determining to perform contention-based resource allocation and performing scheduling-based resource allocation to produce the allocated resources when determining to perform scheduling-based resource allocation. Additionally, the method includes communicating, by a first user equipment (UE) directly with a second UE using the allocated resources.
  • An embodiment first user equipment (UE) includes a processor and a non-transitory computer readable storage medium storing programming for execution by the processor. The programming includes instructions to determine that the first UE is out-of-coverage, the first UE having been previously in-coverage on a first cell. The programming also includes instructions to start a timer upon determining that the first UE is out-of-coverage and determine whether the first UE has returned to be in-coverage after starting the timer. Additionally, the programming includes instructions to determine whether the timer has expired and communicate, directly with a second UE, using out-of-coverage resources from the first cell when the timer has not expired and the first UE has not returned to be in-coverage.
  • The foregoing has outlined rather broadly the features of an embodiment of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of embodiments of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
  • FIG. 1 illustrates a diagram of a wireless network for communicating data;
  • FIG. 2 illustrates coverage scenarios for user equipments (UEs);
  • FIG. 3 illustrates an idle mode state diagram;
  • FIGS. 4A-B illustrate an idle mode cell selection and reselection state diagram;
  • FIG. 5 illustrates a flowchart for an embodiment method of device-to-device (D2D) resource allocation;
  • FIG. 6 illustrates an embodiment state diagram for D2D resource allocation;
  • FIG. 7 illustrates another embodiment state diagram for D2D resource allocation;
  • FIG. 8 illustrates a flowchart for another embodiment method of D2D resource allocation;
  • FIG. 9 illustrates a flowchart for an additional embodiment method of D2D resource allocation; and
  • FIG. 10 illustrates a block diagram of an embodiment computer system.
  • Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • It should be understood at the outset that although an illustrative implementation of one or more embodiments are provided below, the disclosed systems and/or methods may be implemented using any number of techniques, whether currently known or in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, including the exemplary designs and implementations illustrated and described herein, but may be modified within the scope of the appended claims along with their full scope of equivalents.
  • Two device-to-device (D2D) technologies are discovery and communication. In discovery, a user equipment (UE) attempts to discover neighboring UEs, either on its own or directed by a communications controller, such as an enhanced Node B (eNB). In communication, one UE directly communicates with another UE without the data transiting through the eNB. One issue in D2D communications is resource allocation. Resource allocation may be performed for UEs engaged in D2D communication, whether they are in network coverage or out of network coverage.
  • Resource allocation may be contention-based or scheduling based. In scheduling-based resource allocation, an eNB determines the resource allocation, while in contention-based resource allocation, the UEs contend (compete) for the use of the resources.
  • FIG. 1 illustrates network 100 for communicating data. Network 100 includes communications controller 102 having a coverage area 106, a plurality of UEs, including UE 104 and UE 105, and backhaul network 108. Two UEs are depicted, but many more may be present. Communications controller 102 may be any component capable of providing wireless access by establishing uplink (dashed line) and/or downlink (dotted line) connections with UE 104 and UE 105, such as a base station, a NodeB, an eNB, an access point, a picocell, a femtocell, and other wirelessly enabled devices. There may be D2D communication between UE 104 and UE 105. UE 104 and UE 105 may be any component capable of establishing a wireless connection with communications controller 102, such as cell phones, smart phones, tablets, sensors, etc. Backhaul network 108 may be any component or collection of components that allow data to be exchanged between communications controller 102 and a remote end. In some embodiments, the network 100 may include various other wireless devices, such as relays, etc.
  • The locations of UEs relative to the eNB may affect the coverage. FIG. 2 illustrates system 110 with eNB 111. In in-network coverage area 112, UEs, such as UE 118 and UE 120, are able to transmit messages to eNB 111 and receive messages from eNB 111. In out-of-network coverage area 116, UEs, such as UE 126 and UE 128, cannot communicate with eNB 111 at all. On the other hand, in area 114, also known as partial coverage area or edge of network, UEs, such as UE 122 and UE 124 can receive messages from eNB 111 but cannot transmit messages to eNB 111. In another partial coverage scenario, of two UEs performing D2D communication, one UE is located in-network coverage and the other UE is out-of-network coverage or has partial coverage.
  • Two approaches to D2D are a device-centric approach and a network-managed approach. In a device-central approach, the functionality for D2D resides mostly on the UEs with minimal network involvement, and direct communications between devices forms an overlay on top of the cellular network. Functions such as resource allocation and management are performed in an ad-hoc manner between the UEs without network oversight or management, limiting the potential performance gains from D2D and introducing challenges for supporting some functions of the cellular network. Some challenges include the security of user data and protecting user identity and/or location from being discovered by unauthorized parties, charging for D2D and proximity as a service, supporting lawful intercept of communications, and the scalability to different deployment scenarios and device densities.
  • In a network-managed approach, D2D complements and enhances the capabilities of the network for more efficient utilization of radio resources for proximate communications. The network may constantly supervise the usage of direct versus infrastructure routing of user data to achieve efficient utilization of resources, minimize interference, and benefit the network. Features of the cellular network may be extended to support D2D with a network-managed approach.
  • Two resource management schemes include scheduling-based resource allocation and contention-based resource allocation. In scheduling-based resource allocation, a central controller, such as an eNB, allocates resources to each UE. The process may be similar to how a cellular communication is scheduled. The UE may us a random access channel (RACH) or another contention-based channel to request resources. The central controller allocates resources and transmits the resource allocation on a control channel which may be similar to a physical downlink control channel (PDCCH) or an enhanced PDCCH (ePDCCH).
  • In contention-based resource allocation, a central controller is not used. Each UE attempts to obtain the channel and schedules its own resources for its transmission. A resource allocation protocol such as carrier sensing multiple access (CSMA) may be used.
  • A UE in idle mode may perform processes such as public land mobile network (PLMN) selection, cell selection and reselection, location registration, and support for manual closed subscriber group (CSG) selection. FIG. 3 illustrates state diagram 130 for idle mode processes. When a UE is switched on, PLMN selection is performed by the non-access stratum (NAS) in the PLMN selection state 132. For the selected PLMN, associated radio access technology (RAT)(s) may be selected. The NAS provides a list of equivalent PLMNs. After PLMN selection, the UE proceeds to cell selection and reselection state 136.
  • The access stratum (AS) uses the list of equivalent PLMNs in cell selection and reselection state 136. The UE searches for a suitable cell for the selected PLMN, and chooses the selected cell to provide available services. Also, the UE tunes to its control channel. This selection is known as camping on the cell.
  • When the registration area changes, the UE registers its presence using a NAS registration procedure in the tracking area of the chosen cell in location registration state 138. As a result of a successful location registration, the selected PLMN becomes the registered PLMN, and the UE proceeds to the cell selection and reselection state 136. When the location registration is rejected by the network, the UE may return to the PLMN selection state 132, and select another PLMN when applicable.
  • When the UE finds a more suitable cell in accordance with the cell selection criteria, the UE reselects that cell and camps on it. When the new cell does not belong to at least one tracking area to which the UE is registered, location registration is performed.
  • The UE may search for higher priority PLMNs at regular intervals. The UE searches for a suitable cell when another PLMN has been selected by NAS.
  • A search of CSGs may be triggered by NAS in support CSG selection state 134.
  • When the UE loses coverage from the registered PLMN, either a new PLMN is selected automatically in automatic mode, or an indication of available PLMNs is given to the user, so that a manual selection may be performed in manual mode.
  • In multimedia broadcast multimedia service (MBMS) frequency prioritization state 140 is performed and MBMS frequencies are prioritized.
  • Camping on a cell in idle mode entails a variety of functions. It facilitates the UE receiving system information from the PLMN. Also, when a registered UE wants to establish a radio resource control (RRC) connection, it may do so by initially accessing the network on the control channel of the cell on which it is camped. When the PLMN receives a call for the registered UE, it usually knows the set of tracking areas in which the UE is camped. It may then send a paging message for the UE on the control channels of all the cells in this set of tracking areas. The UE then receives the paging message because it is tuned to the control channel of a cell in one of the registered tracking areas, and the UE may respond on that control channel.
  • When the UE is unable to find a suitable cell to camp on, or when the location registration fails, it may attempt to camp on a cell irrespective of the PLMN identity, and enter a limited service state.
  • FIGS. 4A-B illustrate state diagram 150 for idle cell selection and reselection. When a new PLMN selection is performed, the UE goes to state 152.
  • Initial cell selection is performed in initial cell selection state 156. Prior knowledge of which radio frequency (RF) channels are evolved universal mode telecommunications system (UMTS) terrestrial radio access network (E-UTRA) carriers is not required. The UE scans the RF channels in the E-UTRA bands to find a suitable cell. On each carrier frequency, the UE only searches for the strongest cell. When a suitable cell is found, it is selected, and the UE proceeds to camped normally state 162. When no suitable cell is found, the UE proceeds to any cell selection state 168 via state 174.
  • In stored information cell selection state 154, stored information of carrier frequencies and optionally information on cell parameters from previously received measurement control information elements or from previously detected cells is used. When the UE has found a suitable cell, the UE selects it, and proceeds to camped normally state 162. When no suitable cell is found, the UE proceeds to initial cell selection state 156.
  • In camped normally state 162, the UE is camped on an eNB. While the UE is in the camped normally state, it has only dedicated priorities, and the UE considers the current frequency to be the lowest priority frequency. When the UE is in camped normally state 162, and it leaves idle mode, it goes to connected mode 164. When the UE receives a trigger, it proceeds to cell reselection evaluation process state 166. When NAS indicates that the registration on the selected PLMN has been rejected, it proceeds to any cell selection state 168 through state 174.
  • In connected mode 164, the UE operates in connected mode. The UE communicates with the eNB.
  • Then, when the UE returns to idle mode, it proceeds to cell selection when leaving idle mode state 160. When a suitable cell is found, the UE proceeds to camped normally state 162. When no suitable cell is found, the UE proceeds to information cell selection state 154. When the connected mode fails, it proceeds to cell selection when connected mode failed state 163.
  • In cell selection when connected mode failed state 163, the UE performs cell selection. When the UE is able to connect to a cell, either a new cell or the cell it was previously connected to, it returns to connected mode 164. On the other hand, when the UE is not able to connect to a cell, it proceeds to cell selection when leaving connected mode state 160.
  • In cell reselection evaluation process state 166, cell reselection evaluation is performed. When a suitable cell is found, either a new cell or the cell the UE was previously connected to, the UE returns to camped normally state 162. On the other hand, when no suitable cell is found, the UE proceeds to any cell selection state 168 via state 174.
  • In any cell selection state 168, the UE attempts to find an acceptable cell of any PLMN to camp on, trying all RATs supported by the UE and searching first for a high quality cell. When universal subscriber identity module (USIM) is inserted, the UE proceeds to state 152. On the other hand, when an acceptable cell if found, the UE proceeds to camped on any cell state 172.
  • In camped on any cell state 172, the UE selects and monitors the indicated paging channels of the cell and monitors relevant system information. Also, the UE performs measurements for the cell reselection evaluation procedure. Additionally, the UE proceeds to the cell reselection evaluation process state 180 on UE internal triggers or when information on the broadcast control channel (BCCH) used for the cell reselection evaluation procedure has been modified. The UE regularly attempts to find a suitable cell trying all frequencies of all RATS supported by the UE. When a suitable cell is found, the UE proceeds to camped normally state 162 via state 158. When the UE supports voice services and the current cell does not support emergency calls, the UE performs cell selection/reselection to an acceptable cell of any supported RAT regardless of priorities provided in system information from the current cell when no suitable cell is found. When the UE leaves idle mode, it proceeds to connected mode emergency calls only state 178.
  • In cell reselection evaluation process state 180, reselection priorities are handled. When an acceptable cell is found, the UE returns to camped on any cell state 172. On the other hand, when no acceptable cell is found, the UE proceeds to any cell selection state 168.
  • In connected mode emergency calls only state 178, the UE only takes emergency calls. When the UE returns to idle mode, it proceeds to cell selection when leaving connected mode state 170.
  • In cell selection when leaving connected mode state 170, the UE performs cell selection. When an acceptable cell is found, the UE proceeds to camped on any cell state 172. When no acceptable cell is found, the UE proceeds to any cell selection state 168.
  • Embodiments include both in-network and out-of network coverage. When a UE is in-coverage, it receives scheduled resources for D2D communication transmissions from the network. When the UE is in out-of-network coverage, it uses a contention based scheme to select air interface resources for D2D transmission. A UE is considered to be in coverage when the UE is in an connected mode, camped in a suitable cell, is in connected mode, or satisfies an in-coverage threshold. On the other hand, a UE is in out-of-network coverage when in the UE is out-of-coverage. A UE may be considered to be out of coverage when it was previously in coverage and has lost coverage, is in cell selection when connected mode failed state, camped on any cell, or does not satisfy the in-coverage threshold.
  • An in-coverage threshold (ICT) is:

  • ICT=Q rxlevmeas−(Q rxlevmin +Q D2Doffset)−Pcompensation,
  • where ICT is the in-coverage threshold in decibels (dB), Qrxlevmeas is the measured reference signal received power (RSRP) from the serving or camping cell, Qrxlevmin is the minimum required reception level in the cell in dBm, QD2Doffset is the offset used for D2D communications determinations, and Pcompensation is the maximum of max(PEMAX−PPowerClass, 0) in dB. PEMAX is the maximum transmission power level a UE may use when transmitting on the uplink cell in dBm and PPowerClass is the maximum RF output of the UE in dBm in accordance with the UE power class. These values may be computed or measured on a per-subframe basis. Alternatively, these values are computed on another time granularity, such as by slot or radio frame. In another example, they are determined in irregular intervals. When Qrxlevmeas cannot be defined, it may be set to minus infinity or another value, such as an arbitrary low value.
  • QD2Doffset is transmitted by eNBs supporting D2D communications. For example, QD2Doffset is transmitted in a system information block (SIB) defining the parameters for D2D communication. When QD2Doffset is not received from the eNB, for example because the UE is out of coverage or the eNB does not transmit it, QD2Doffset is a fixed value pre-configured in the UE, which may be specified, for example, by a standard. In one example, the default value of QD2Doffset is 3 dB.
  • A set of subframes Smeas is defined, where Smeas is the set of subframes on which ICT is measured. For example, Smeas may be the set of N consecutive subframes, where N is transmitted in a SIB or pre-configured when an SIB is not received. In another example, N is predefined, for example defined by a standard. Alternatively, Smeas is any set of N subframes chosen by the UE within a time T, where N and T are transmitted in an SIB, pre-configured, or predefined.
  • The maximum ICT value over the set of subframes is:

  • ICTmax=max{ICT(s),s∈S meas}.
  • In one example, ICTmax is computed on a single subframe, and ICTmax=ICT. The criterion to be in coverage may be:

  • ICTmax≥ICTTh,
  • where ICTTh is a threshold which may be predefined, for example from a standard specification, broadcasted by the network in an SIB, or a fixed predefined value. When:

  • ICTmax<ICTTh,
  • the UE is determined to be out-of-coverage.
  • The criterion:

  • ICTmax≥ICTTh
  • is based on the fact that, when, during a given time, a single ICT value is measured larger than the threshold, the device is considered out-of-coverage. This provides extra protection for the cellular network, and, to some extent, and when in doubt, determines that the UE is in coverage. In another example, another criteria is used, for example, the minimum ICT value over the set of subframes is used, for example:

  • ICTmin≥ICTTh,

  • where:

  • ICTmin=min{ICT(s),s∈S meas}.
  • In another example, the average ICT value over the set of subframes is used:
  • ICT avg ICT Th , where : ICT ave = 1 K s S meas ICT ( s ) ,
  • and K is the number of subframes is Smeas.
  • In additional examples, other criteria, such as the harmonic mean or geometric mean, may be used.
  • In another example, two in-coverage thresholds, ICTs and ICTb are used. ICTs is used for obtaining the scheduling grants or only D2D broadcast resources, and ICTb is used only for discovery. In one example, ICTb is more useful for idle UEs. ICTs and ICTb are calculated similarly to ICT, with different D2D offsets, where:

  • Q D2Doffset _ B <Q D2Doffset _ S,

  • and:

  • 0≤Q D2Doffset _ S.
  • The UE will not start registration to the cell even when it has successfully detected a cell and decoded the master information block (MIB) and SIBs unless:

  • Srxlev=(Q rxlevmeas−(Q rxlevmin +Q rxlevminoffset)−Pcompensation)≥0.
  • A quality reference signal received quality (RSRQ) type threshold for in-coverage is:

  • INC_Qual=Q qualmeas−(Q qualmin +Q qualD2Doffset).
  • However, the quality threshold may not be used when the serving cell of the D2D UE makes provisions for D2D resources, such as making them orthogonal to resources assigned to cellular information. The SIB may indicate the value of QqualD2Doffset. A default value of QqualD2Doffset may be +∞. The UE may need to satisfy the S-Criteria to obtain D2D resource allocation commands from the eNB, unless the commands are broadcast, for example in an SIB.
  • In one situation, an ICT or ICTmax may be greater than zero, but the UE only finds an acceptable cell where only emergency calls are allowed. In such a case, depending on the UE category, the UE may be considered to be in or out of network from a D2D perspective, and use the corresponding resource allocation method. For example, public safety UEs may be considered to be in-network, while an ordinary UE would be considered to be out-of-network.
  • When the ICT or ICTmax is greater than zero, but the cell is a barred cell, D2D service may not be allowed until another cell is found, unless the UE is a public safety UE. When the UE is a public safety UE, a contention based scheme may be adopted. In another example, the cell provides a pool of resources to UEs in a broadcast message, and the UE performs contention-based transmission using the broadcast resource pool.
  • When no RSRP is measured, the cell is out-of-coverage from a D2D perspective. However, it may be in the coverage of another RAT. The UE is considered to have out-of-network coverage.
  • In another embodiment, out-of-network coverage is defined when the UE is in the any cell selection state, i.e. the UE is searching for a cell to camp on, but cannot find one. In another embodiment, out-of-network coverage is defined when the UE was previously in connected mode and lost coverage. There may be some default resource or band the UE may use for D2D in the any cell selection state, for example preprogrammed or defined by the network during the last registration. However, this may be limiting, for example to public safety uses. For example, in the camped on any cell state, it is likely that a public safety UE should also be allowed to use D2D on the default band or resource, or another band or resource indicated by the network in an SIB message.
  • The network may also provide a timer to the UE for how long it may access these resources once it goes out of coverage. The eNB may update this out-of-coverage D2D resource allocation on a relatively dynamic basis. For example, the eNB may eliminate it when there is no emergency incident necessitating D2D communication, and the UE is in the camped normally state and the connected mode state.
  • In an embodiment, a UE assesses whether it is in-coverage or not using an ICT computation. When the UE is in-coverage, it uses a first resource assignment method, where the eNB schedules the D2D communication. When the UE is out-of-coverage, the D2D UE obtains its resource allocation through a contention based resource allocation method.
  • FIG. 5 illustrates flowchart 190 for a method of D2D communication. The UE decides D2D resource allocation using a timer. Initially, in step 192, the UE requests resource allocation from an eNB while in-coverage. The UE connects to the eNB to request its D2D resource allocation.
  • Next, in step 194, the UE obtains the resource allocation and/or a timer value from the eNB. In one embodiment, the UE reads the appropriate SIB and obtains the current value for out-of-coverage D2D resource allocation and the timer value for this cell. The UE stores the resource allocation and/or a timer value. When these values have changed, the UE updates them.
  • Then, in step 196, the UE determines whether there is a loss of network coverage. When the UE loses coverage, it performs cell selection/reselection, and it is no longer camped on a cell. When there is no loss of coverage, the UE returns to step 192 to request resource allocation again. When the UE detects a loss of network coverage, it proceeds to step 198.
  • In step 198, the UE starts a timer. For example, the timer may be initialized to the timer value stored from the last cell it camped on received in step 194. The timer counts down from the timer value. In another example, the timer value is predetermined.
  • In step 198, the UE uses the out-of-coverage resources from the cell it camped on in step 194 for D2D communications. The UE continues to use these resources while the timer has not expired and the UE is not camped on or connected to a cell.
  • In step 200, the UE determines whether it is camped on or connected to a cell again. The UE may be camped on or connected to the same cell or another cell. This may be the same cell it was previously camped on or a totally new cell. When the UE is camped on and connected to a cell, it proceeds to step 202. On the other hand, when the UE has still not camped and connected to a cell, it proceeds to step 204.
  • In step 202, the UE stops the timer and returns to the in-coverage state. The UE uses scheduling-based D2D resources from the eNB on which it is camped. The UE returns to step 192 to request resource allocation while in coverage.
  • In step 204, the UE uses out-of coverage resources obtained from the last cell it was connected to or camped on.
  • Then, in step 206, the UE determines whether the timer has expired. When the timer has not expired, the UE returns to step 200 to determine whether the UE is camped on or connected to a new cell. When the timer has expired without camping on a new cell, the UE proceeds to step 208.
  • In step 208, the UE is out-of-coverage, for example in the any cell selection state. The UE stops using the out-of-coverage D2D resource from the last camped cell, and reverts back to using the pre-configured out-of-contact resource allocation. The UE may use contention-based D2D resources.
  • FIG. 6 illustrates state diagram 210 with scheduling-based resource allocation state 212 and contention-based resource allocation state 214. In scheduling-based resource allocation state 212, the UE is camped on a cell, and performs scheduling-based resource allocation. When the UE is in scheduling-based resource allocation state 212, it computes g(ICT) and determines if g(ICT) is greater than zero. For example, g(ICT) may be equal to ICTmax−ICTTh, ICTmin−ICTTh, or ICTavg−ICTTh. When g(ICT) is greater than zero, the UE remains in scheduling-based resource allocation state 212. On the other hand, when g(ICT) is less than or equal to zero, the UE proceeds to contention-based resource allocation state 214.
  • In contention-based resource allocation state 214, the UE is not camped on a cell, and performs contention-based resource allocation. The UE calculates f(ICT) in contention-based resource allocation state 214, and determines whether f(ICT) is less than or equal to zero. When f(ICT) is less than or equal to zero, the UE remains in contention-based resource allocation state 214. When f(ICT) is greater than zero, the UE proceeds to scheduling-based resource allocation state 212. In one example, and g(ICT)=f(ICT)+d, where d is an offset. The offset d is used to avoid repeatedly switching back and forth between contention-based resource allocation and scheduling-based resource allocation The UE remains in scheduling-based resource allocation state 212 as long as g(ICT)>0, even when it cannot obtain scheduling information.
  • FIG. 7 illustrates resource allocation state diagram 220, which contains contention-based resource allocation with pre-configured resource pool state 222, scheduling based resource allocation state 226, and contention-based resource allocation with configurable resource pool state 224. In contention-based resource allocation with pre-configured resource pool state 222, the UE is not camped on a cell and has never been in coverage. The UE performs contention-based resource allocation with a pre-configured resource pool. The UE determines f(ICTb), which may be ICTmax−ICTTh, ICTmin−ICTTh, or ICTavg−ICTTh. While f(ICTb) is less than zero, the UE remains in contention-based resource allocation with pre-configured resource pool state 222. When f(ICTb) is greater or equal to zero, the UE proceeds to the scheduling-based resource allocation state 226.
  • In contention-based resource allocation with configurable resource pool state 224, the UE has previously been camped on a cell, and has come out of coverage. The UE performs contention-based resource allocation with a configurable resource pool. The UE determines f(ICTs) and f(ICTb). When f(ICTs) is greater than zero, the UE proceeds to scheduling-based resource allocation state 226. When f(ICTb) is greater than zero and f(ICTs) is less than or equal to zero, the UE remains in contention-based resource allocation with configurable resource pool state 224. When f(ICTb) is less than zero, the UE proceeds to the contention-based resource allocation with pre-configured resource pool state 222.
  • In scheduling-based resource allocation state 226, the UE performs scheduling-based resource allocation while it is camped on a cell. The UE calculates f(ICTb) and f(ICTs). When f(ICTb) is less than zero, the UE proceeds to contention-based resource allocation with pre-configured resource pool state 222. When f(ICTs) is greater than zero, the UE remains in scheduling based resource allocation state 226. When f(ICTb) is greater than zero and f(ICTs) is less than or equal to zero, the UE proceeds to contention-based resource allocation with configurable resource pool state 224.
  • FIG. 8 illustrates flowchart 230 for an embodiment method of deciding between contention based D2D resource allocation or schedule-based D2D resource allocation. ICTmax, ICTmin, ICTavg, or another ICT parameter may be used. Initially, in step 232, the UE begins the procedure.
  • Next, in step 234, the UE obtains configuration information. The configuration information is used to calculate the in-coverage criteria. In one example, the in-coverage criteria are specified in the third generation project protocol (3GPP) specification. Alternatively, the in-coverage criteria are manually preconfigured. In another example, the in-coverage criteria are conveyed to the UE by another means, for example by receiving a message from a eNB, for example in the SIB. The UE obtains the parameters for computing the ICT, as well as the threshold for determining the resource allocation method (scheduling-based or contention-based).
  • After obtaining the configuration parameters, the UE computes the ICT parameters in step 236, such as ICT and ICTmax, ICTmin and/or ICTavg. In one example, ICT and ICTmax are computed periodically, so the UE bases its decision to use either a contention based or scheduling based resource allocation policy with current information. The periodicity may be known a priori or obtained in step 234. Alternatively, the computation is performed at irregular intervals. The ICT is:

  • ICT=Q rxlevmeas−(Q rxlevmin +Q D2Doffset)−Pcompensation.
  • ICTmax is:

  • ICTmax=max{ICT(s),s∈S meas}.
  • In one example, ICTmax is computed on a single subframe, and ICTmax=ICT.
  • In step 238, the UE decides whether to use scheduling-based resource allocation or contention based resource allocation based on the ICT parameters. In other examples, other variables, such as ICT, are used. For example, the UE may compare ICTmax to the ICT threshold. In one example, when:

  • ICTmax≥ICTTh,
  • the UE determines that the UE is in-coverage, and uses scheduling-based resource allocation in step 244. On the other hand, when:

  • ICTmax<ICTTh,
  • the UE determines that it is out-of-coverage, and uses contention-based resource allocation in step 240. In other examples, ICTmin or ICTavg is used instead of ICTmax. ICTTh is a threshold which may be predefined, for example from a standard specification, broadcasted by the network in an SIB, or a fixed predefined value.
  • In step 244, the UE performs scheduling-based resource allocation. The UE requests D2D resources from the network, for example from the eNB. The network then grants a resource to the UE for D2D transmission. In one example, the UE is in RRC_Connected mode, and may use the RACH. After step 244, the UE proceeds to step 246, and ends the procedure.
  • In step 240, the UE uses contention based resource allocation. For example, the UE may perform transmission with a contention-based approach relying on the CSMA protocol used in international electrical and electronics engineers (IEEE) 802.11, or another contention-based mechanism. After step 240, the UE proceeds to step 242 and ends this procedure.
  • The UE may notify the receivers of whether it is using scheduling or contention-based resource allocation. When the UE uses scheduled resources, and the allocation is performed semi-statically, it may be desirable for the receivers to know, so they can monitor this set of resources. For example, the receiver may want to avoid a discontinuous reception (DRX) like mode. The transmitting UE may broadcast a scheduling message to all potential receivers, where the transmitter indicates the resource allocation for the actual data transmission. A field to indicate for how long this set of resources is valid for this transmitter may also be indicated in the broadcast message.
  • In addition to the in-coverage case and out-of-coverage case, there may be a partial coverage case. In one example of partial-coverage, the UE cannot communicate directly with the eNB, but is attempting to communicate with a UE which is in coverage. In one example, with partial coverage, the resource allocation is contention-based. In another example, contention-based resource allocation is used, but the resource pool is pre-configured, with a priori knowledge by the two UEs communicating D2D. This may reduce the UEs interfering with the eNB. In an additional example, the resource allocation is scheduling-based, and the in-coverage UE relays the grant to the out-of-coverage UE.
  • FIG. 9 illustrates flowchart 250 for a method of determining resource allocation when scheduling-based resource allocation is used for partial coverage. Initially, in step 252, the UE begins the procedure.
  • Then, in step 254, the UE obtains configuration information. The configuration information is used to calculate the in-coverage criteria. In one example, the in-coverage criteria are specified in the third generation project protocol (3GPP) specification. Alternatively, the in-coverage criteria are manually preconfigured. In another example, the in-coverage criteria are conveyed to the UE by another means, for example by receiving a message from a eNB, for example in the SIB. The UE obtains the parameters for computing the ICT, as well as the threshold for determining the resource allocation method (scheduling-based or contention-based).
  • Next, after obtaining the configuration parameters, the UE computes the ICT parameters in step 256, such as ICT and ICTmax, ICTmin and/or ICTavg. In one example, ICT and ICTmax are computed periodically, so the UE bases its decision to use either a contention based or scheduling based resource allocation policy with current information. The periodicity may be known a priori or obtained in step 234. Alternatively, the computation is performed at irregular intervals. The ICT is:

  • ICT=Q rxlevmeas−(Q rxlevmin +Q D2Doffset)−Pcompensation.
  • ICTmax is:

  • ICTmax=max(ICT(s),s∈S meas).
  • In one example, ICTmax is computed on a single subframe, and ICTmax=ICT.
  • In step 258, the UE decides whether it is in coverage or out of coverage. In other examples, other variables, such as ICT, are used. For example, the UE may compare ICTmax to the ICT threshold. In one example, when:

  • ICTmax≥ICTTh,
  • the UE determines that the UE is in-coverage, and uses scheduling-based resource allocation in step 244. On the other hand, when:

  • ICTmax<ICTTh,
  • the UE determines that it is out-of-coverage, and uses contention-based resource allocation in step 240. In other examples, ICTmin or ICTavg is used instead of ICTmax. ICTTh is a threshold which may be predefined, for example from a standard specification, broadcasted by the network in an SIB, or a fixed predefined value.
  • In step 264, the UE determines whether the other UE with which it wants to perform D2D communications is in coverage. For example, this determination may be performed by using different discovery signals for out-of-coverage UEs. When the other UE is in coverage, the UE proceeds to step 260 to perform scheduling based resource allocation. On the other hand, when the other UE is also out of coverage, the UE proceeds to step 266 to perform contention based resource allocation.
  • In step 260, the UE performs scheduling-based resource allocation. When only one UE is in coverage, the out-of-coverage UE may blindly rely on grant requests and grant responses from and to the in-coverage UE, which communicates directly with the eNB. In another example, the out-of-coverage UE decodes the grant request from the in-coverage UE, aggregates the grant response with its grant requests, and transmits a single grant request to the eNB. Then resources are allocated to the out-of-coverage UE based on the received grant from the eNB. When both UEs are in-coverage, both UEs directly communicate with the eNB. After step 260, the UE proceeds to step 262, and ends the procedure.
  • In step 266, the UE uses contention based resource allocation. For example, the UE may perform transmission with a contention-based approach relying on the CSMA protocol used in international electrical and electronics engineers (IEEE) 802.11, or another contention-based mechanism. After step 266, the UE proceeds to step 268 and ends this procedure.
  • In one example, an in-coverage UE may move to out-of-coverage or partial coverage. The UE notifies the UE it is communicating with of its change of status. In another example, an out-of-coverage UE moves to in-coverage. In this example, the UE stops the contention-based transmission to avoid interference on the cellular resources. The UE moving into coverage immediately suspends the D2D communication and notifies the communicating UE of its change of status.
  • Some techniques may be used to avoid rapidly switching back and forth between in-coverage and out-of-coverage. A hysteresis mechanism may be used with a different threshold for moving into coverage and moving out of coverage. In another example, when the UE has switched, it may be prevented from switching again for a given duration.
  • Because a UE moving into coverage may interfere with the eNB, these mechanisms may only be used for switching out of coverage. For example, when a timer is used, the timer may be set to 0 seconds for switching from in-coverage to out-of-coverage. When hysteresis is used, the thresholds may be such that there is no penalty for switching out-of-coverage, so the hysteresis essentially only applies for out-of-coverage UEs.
  • FIG. 10 illustrates a block diagram of processing system 270 that may be used for implementing the devices and methods disclosed herein. Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device. Furthermore, a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc. The processing system may comprise a processing unit equipped with one or more input devices, such as a microphone, mouse, touchscreen, keypad, keyboard, and the like. Also, processing system 270 may be equipped with one or more output devices, such as a speaker, a printer, a display, and the like. The processing unit may include central processing unit (CPU) 274, memory 276, mass storage device 278, video adaptor 280, and I/O interface 288 connected to a bus.
  • The bus may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like. CPU 274 may comprise any type of electronic data processor. Memory 276 may comprise any type of non-transitory system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like. In an embodiment, the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
  • Mass storage device 278 may comprise any type of non-transitory storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus. Mass storage device 278 may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
  • Video adaptor 280 and I/O interface 288 provide interfaces to couple external input and output devices to the processing unit. As illustrated, examples of input and output devices include the display coupled to the video adapter and the mouse/keyboard/printer coupled to the I/O interface. Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized. For example, a serial interface card (not pictured) may be used to provide a serial interface for a printer.
  • The processing unit also includes one or more network interface 284, which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks. Network interface 284 allows the processing unit to communicate with remote units via the networks. For example, the network interface may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas. In an embodiment, the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.
  • While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods might be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.
  • In addition, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.

Claims (15)

What is claimed is:
1. A method for device-to-device (D2D) communications, the method comprising:
computing, by a user equipment (UE), an in-coverage threshold (ICT) parameter for a D2D communication;
determining, by the UE, that the UE is out of coverage of the D2D communication based on the ICT parameter; and
performing, by the UE upon determining that the UE is out of coverage, resource allocation for the D2D communication in accordance with a resource pool for the D2D communication, where the UE is configured with the resource pool for the D2D communication and allowed to use the resource pool while the UE is out of coverage of the D2D communication.
2. The method of claim 1, wherein the resource pool for the D2D communication is received from a serving cell where the UE is camped on before the UE is out of coverage.
3. The method of claim 1, wherein the ICT parameter is computed based on a measured reference signal received power (RSRP) and a D2D offset.
4. The method of claim 1, the method further comprising:
starting, by the UE, a timer upon determining that the UE is out of coverage for the D2D communication;
detecting, by the UE, that the UE returns to be in-coverage before the timer has expired;
requesting, by the UE from a serving cell upon determining that the UE returns to be in-coverage, resource allocations for the D2D communication.
5. The method of claim 1, the method further comprising:
starting, by the UE, a timer upon determining that the UE is out of coverage for the D2D communication;
performing, by the UE before the timer has expired, the resource allocation for the D2D in accordance with the resource pool for the D2D communication.
6. A method for device-to-device (D2D) communication resource allocation, the method comprising:
obtaining, by a user equipment (UE) from a serving cell while the UE is in coverage, resource allocations comprising first D2D resources used for a D2D communication while the UE is in coverage and second D2D resources allowed for the UE to use for the D2D communication while the UE is out of coverage;
determining, by the UE, that the UE is out of coverage of the D2D communication; and
performing, by the UE, resource allocation for the D2D communication in accordance with the second D2D resources allowed for the UE to use for the D2D communication while the UE is out of coverage.
7. The method of claim 6, wherein the determination that the UE is out of coverage for the D2D communication is based on configuration information about in-coverage criteria for the D2D communication, the configuration information being received by the UE from the serving cell.
8. The method of claim 6, wherein determining, by the UE, that the UE is out of coverage for the D2D communication comprises:
computing, by the UE, an in-coverage threshold (ICT) parameter based on a measured reference signal received power (RSRP) and a D2D offset;
determining, by the UE, that the UE is out of coverage based on a comparison of the ICT parameter and a threshold representing out of coverage.
9. The method of claim 6, the method further comprising:
starting, by the UE, a timer upon determining that the UE is out of coverage for the D2D communication;
detecting, by the UE, that the UE returns to be in-coverage before the timer has expired;
requesting, by the UE from the serving cell upon determining that the UE returns to be in-coverage, resource allocations for the D2D communication.
10. The method of claim 6, the method further comprising:
starting, by the UE, a timer upon determining that the UE is out of coverage for the D2D communication;
performing, by the UE before the timer has expired, the resource allocation for the D2D in accordance with the resource pool for the D2D communication.
11. A user equipment (UE) comprising:
a processor; and
a non-transitory computer readable storage medium storing programming for execution by the processor, the programming including instructions to:
obtain from a serving cell while the UE is in coverage, resource allocations comprising first D2D resources used for a D2D communication while the UE is in coverage and second D2D resources allowed for the UE to use for the D2D communication while the UE is out of coverage;
determine that the UE is out of coverage of the D2D communication; and
perform resource allocation for the D2D communication in accordance with the second D2D resources allowed for the UE to use for the D2D communication while the UE is out of coverage.
12. The UE of claim 11, wherein the determination that the UE is out of coverage for the D2D communication is based on configuration information about in-coverage criteria for the D2D communication, the configuration information being received by the UE from the serving cell.
13. The UE of claim 11, wherein the instructions to determine that the UE is out of coverage for the D2D communication comprises instructions to:
compute an in-coverage threshold (ICT) parameter based on a measured reference signal received power (RSRP) and a D2D offset;
determine that the UE is out of coverage based on a comparison of the ICT parameter and a threshold representing out of coverage.
14. The UE of claim 11, wherein the programming further comprises instructions to:
start a timer upon determining that the UE is out of coverage for the D2D communication;
detect that the UE returns to be in-coverage before the timer has expired;
requesting from the serving cell upon determining that the UE returns to be in-coverage, resource allocations for the D2D communication.
15. The UE of claim 11, wherein the programming further comprises instructions to:
start a timer upon determining that the UE is out of coverage for the D2D communication;
perform the resource allocation for the D2D in accordance with the resource pool for the D2D communication before the timer has expired.
US16/140,038 2014-01-14 2018-09-24 System and Method for Device-to-Device Communications Abandoned US20190028990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/140,038 US20190028990A1 (en) 2014-01-14 2018-09-24 System and Method for Device-to-Device Communications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461927347P 2014-01-14 2014-01-14
US14/596,898 US10085228B2 (en) 2014-01-14 2015-01-14 System and method for device-to-device communications
US16/140,038 US20190028990A1 (en) 2014-01-14 2018-09-24 System and Method for Device-to-Device Communications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/596,898 Continuation US10085228B2 (en) 2014-01-14 2015-01-14 System and method for device-to-device communications

Publications (1)

Publication Number Publication Date
US20190028990A1 true US20190028990A1 (en) 2019-01-24

Family

ID=53522544

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/596,898 Active 2036-02-11 US10085228B2 (en) 2014-01-14 2015-01-14 System and method for device-to-device communications
US16/140,038 Abandoned US20190028990A1 (en) 2014-01-14 2018-09-24 System and Method for Device-to-Device Communications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/596,898 Active 2036-02-11 US10085228B2 (en) 2014-01-14 2015-01-14 System and method for device-to-device communications

Country Status (2)

Country Link
US (2) US10085228B2 (en)
WO (1) WO2015109010A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109010A1 (en) * 2014-01-14 2015-07-23 Huawei Technologies Co., Ltd. System and method for device-to-device communications
EP3100572A1 (en) * 2014-01-30 2016-12-07 Telefonaktiebolaget LM Ericsson (publ) Pre-configuration of devices supporting national security and public safety communications
CN110087328B (en) * 2014-04-29 2023-02-03 华为技术有限公司 Resource multiplexing method and device
WO2015170937A1 (en) * 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Method and apparatus for performing communication by d2d communication terminal
TWI583231B (en) * 2014-05-09 2017-05-11 財團法人資訊工業策進會 Base station, device to device user equipment, transmission method, report method and resource adjustment method for wireless communication system
US10873901B2 (en) * 2014-09-04 2020-12-22 Htc Corporation Device of handling selection of public land mobile network for device-to-device communication
JP2017537536A (en) * 2014-10-31 2017-12-14 ソニー株式会社 User equipment, communication system, and method for controlling user equipment
WO2016072502A1 (en) * 2014-11-07 2016-05-12 京セラ株式会社 User terminal
WO2016126092A1 (en) * 2015-02-02 2016-08-11 엘지전자 주식회사 Method for selecting plmn of terminal in wireless communication system and apparatus for same
US9894698B2 (en) 2015-05-13 2018-02-13 Industrial Technology Research Institute Communication system, base station, user equipment, and discovery method for device-to-device communication
US9825840B2 (en) * 2015-07-17 2017-11-21 Qualcomm Incorporated Link-quality-based resource allocation in device-to-device communications
CN106488385B (en) 2015-08-31 2019-08-30 电信科学技术研究院 A kind of cell resource allocation method and device of equipment room system
US10681626B2 (en) * 2015-10-01 2020-06-09 Samsung Electronics Co., Ltd. User equipment and method for handling public land mobile network selection involving prose communication
US10477516B2 (en) 2015-10-08 2019-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Device to device operation in out of network coverage
KR102353202B1 (en) 2015-11-06 2022-01-19 삼성전자 주식회사 Method and apparatus for service enhancement in a communication system supporting public safety network service
CN106912113A (en) * 2015-12-22 2017-06-30 电信科学技术研究院 A kind of resource distribution and the method and apparatus of data transfer
CN110036666B (en) * 2016-11-03 2021-06-04 Oppo广东移动通信有限公司 Method for switching communication mode, terminal equipment, network equipment and computer readable medium
CN110100480B (en) * 2017-01-18 2020-11-17 华为技术有限公司 Radio resource controller for maintaining communication in out-of-coverage areas
CN109246774B (en) * 2017-06-16 2021-01-05 华为技术有限公司 Communication method and device
BR112020018842A2 (en) 2018-03-16 2021-02-09 Huawei Technologies Co., Ltd. devices and methods for d2d communication
KR102309697B1 (en) * 2018-11-27 2021-10-07 경상국립대학교산학협력단 System for transmitting data in d2d network

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322413A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Methods to enable scheduling and control of direct link communication in cellular communication systems
US20140029586A1 (en) * 2011-03-08 2014-01-30 Panasonic Corporation Propagation delay difference reporting for multiple component carriers
US20150056982A1 (en) * 2013-08-22 2015-02-26 Telefonaktiebolaget L M Ericsson (Publ) Methods and Network Nodes for Management of Resources
US20150117309A1 (en) * 2013-10-30 2015-04-30 Blackberry Limited Method and system for discovery of devices in a wireless network with partial coverage
US20160135171A1 (en) * 2014-11-07 2016-05-12 Nokia Technologies Oy Device-to-device (d2d) resource release
US20170019910A1 (en) * 2014-02-27 2017-01-19 Lg Electronics Inc. Method and apparatus for establishing resource pool for scheduling assignment signal of direct device-to-device communication in wireless communication system
US20170055240A1 (en) * 2014-05-09 2017-02-23 Lg Electronics Inc. Method for allocating resources for communication between transceiving terminals in communication system supporting device-to-device communication, and apparatus therefor
US20170164381A1 (en) * 2014-03-30 2017-06-08 Lg Electronics Inc. Method for transceiving signal in wireless communication system and apparatus therefor
US20170280486A1 (en) * 2014-09-25 2017-09-28 Lg Electronics Inc. Method and apparatus for canceling triggered prose bsr in wireless communication system
US20170311344A1 (en) * 2014-10-21 2017-10-26 Lg Electronics Inc. Method for transmitting/receiving d2d signal in wireless communication system and apparatus therefor
US20180338319A1 (en) * 2014-08-07 2018-11-22 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and device for same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667956B2 (en) 1998-05-01 2003-12-23 Nortel Networks Limited Multi-class network
US8458353B2 (en) 2009-08-13 2013-06-04 Qualcomm Incorporated Method and apparatus for link aggregation in a heterogeneous communication system
US8812657B2 (en) 2010-04-15 2014-08-19 Qualcomm Incorporated Network-assisted peer discovery
US20120155273A1 (en) 2010-12-15 2012-06-21 Advanced Micro Devices, Inc. Split traffic routing in a processor
CN103339979A (en) * 2011-01-26 2013-10-02 诺基亚公司 Apparatus and method for radio systems co-existence on secondary carriers
US8824300B2 (en) 2011-01-28 2014-09-02 Cisco Technology, Inc. System and method for using feedback to manage congestion in a network environment
GB2491139B (en) 2011-05-24 2014-02-19 Broadcom Corp Channel access control
US10045386B2 (en) * 2012-05-31 2018-08-07 Interdigital Patent Holdings, Inc. Method and apparatus for device-to-device (D2D) mobility in wireless systems
WO2015046155A1 (en) * 2013-09-27 2015-04-02 京セラ株式会社 Communication control method
WO2015109010A1 (en) * 2014-01-14 2015-07-23 Huawei Technologies Co., Ltd. System and method for device-to-device communications
WO2015160197A1 (en) * 2014-04-17 2015-10-22 엘지전자(주) Method for determining resource for transmitting signal in wireless communication system and apparatus therefor
WO2015168028A1 (en) * 2014-04-28 2015-11-05 Intel IP Corporation Listen before talk protocol selection
WO2015179821A1 (en) * 2014-05-22 2015-11-26 Kyocera Corporation Assignment of communication resources in an unlicensed frequency ban to equipment operating in a licensed frequency band
US20160050667A1 (en) * 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands
CN105592464B (en) * 2014-10-20 2021-06-15 索尼公司 Apparatus and method for base station side and user side of wireless communication

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029586A1 (en) * 2011-03-08 2014-01-30 Panasonic Corporation Propagation delay difference reporting for multiple component carriers
US20130322413A1 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Methods to enable scheduling and control of direct link communication in cellular communication systems
US20150056982A1 (en) * 2013-08-22 2015-02-26 Telefonaktiebolaget L M Ericsson (Publ) Methods and Network Nodes for Management of Resources
US20150117309A1 (en) * 2013-10-30 2015-04-30 Blackberry Limited Method and system for discovery of devices in a wireless network with partial coverage
US20170019910A1 (en) * 2014-02-27 2017-01-19 Lg Electronics Inc. Method and apparatus for establishing resource pool for scheduling assignment signal of direct device-to-device communication in wireless communication system
US20170164381A1 (en) * 2014-03-30 2017-06-08 Lg Electronics Inc. Method for transceiving signal in wireless communication system and apparatus therefor
US20170055240A1 (en) * 2014-05-09 2017-02-23 Lg Electronics Inc. Method for allocating resources for communication between transceiving terminals in communication system supporting device-to-device communication, and apparatus therefor
US20180338319A1 (en) * 2014-08-07 2018-11-22 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and device for same
US20170280486A1 (en) * 2014-09-25 2017-09-28 Lg Electronics Inc. Method and apparatus for canceling triggered prose bsr in wireless communication system
US20170311344A1 (en) * 2014-10-21 2017-10-26 Lg Electronics Inc. Method for transmitting/receiving d2d signal in wireless communication system and apparatus therefor
US20160135171A1 (en) * 2014-11-07 2016-05-12 Nokia Technologies Oy Device-to-device (d2d) resource release

Also Published As

Publication number Publication date
US10085228B2 (en) 2018-09-25
WO2015109010A1 (en) 2015-07-23
US20150201392A1 (en) 2015-07-16

Similar Documents

Publication Publication Date Title
US20190028990A1 (en) System and Method for Device-to-Device Communications
US10506604B2 (en) Device to-device communications apparatus and methods
CN109906632B (en) Method for determining cell, terminal equipment and network equipment
US10257871B2 (en) Device to-device communications apparatus and methods
US10912002B2 (en) Cell reselection race condition handling and reduction in unnecessary cell reselections
US10051678B2 (en) Device to-device communications apparatus and methods
US20150271841A1 (en) Device-to-device communications apparatus and methods
EP3136788A1 (en) Cell search and measurement in heterogeneous networks
US10136371B2 (en) RAT selection for devices capable of Device-to-Device (D2D) communication
US10499221B2 (en) Communication device and communication method
CN115380567A (en) Method and user equipment for cell (re) selection
CN116097762A (en) Cell selection or reselection method, information transmission method and device
US11044647B2 (en) Increase in-service time and robustness for sustained mobility in idle mode
WO2021016787A1 (en) Techniques for cell selection for dual-connectivity
US20230180089A1 (en) Efficient cell reselection during panic mode in a 5g standalone mode
CN113273249A (en) System and method for cell selection and reselection
WO2022056718A1 (en) Priority-based radio access technology reselection handling
CN112118612A (en) Method for detecting and accessing multi-mode user terminal signal
EP4319226A1 (en) Terminal and wireless communication method
US11595940B1 (en) Paging collision avoidance in a multi-subscriber identity module (MSIM) user equipment, and associated devices, systems, and methods
EP4319293A1 (en) Terminal and wireless communication method
US11917475B2 (en) Idle mode cell reselection priority configurations

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION