US20190021945A1 - Disposal container for used dialysate and extracorporeal blood purification system comprising said disposal container - Google Patents

Disposal container for used dialysate and extracorporeal blood purification system comprising said disposal container Download PDF

Info

Publication number
US20190021945A1
US20190021945A1 US16/039,971 US201816039971A US2019021945A1 US 20190021945 A1 US20190021945 A1 US 20190021945A1 US 201816039971 A US201816039971 A US 201816039971A US 2019021945 A1 US2019021945 A1 US 2019021945A1
Authority
US
United States
Prior art keywords
bag
connector
flexible bag
blood purification
disposal container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/039,971
Inventor
Alexander Rohde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B Braun Avitum AG
Original Assignee
B Braun Avitum AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62985965&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20190021945(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by B Braun Avitum AG filed Critical B Braun Avitum AG
Assigned to B. BRAUN AVITUM AG reassignment B. BRAUN AVITUM AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROHDE, ALEXANDER
Publication of US20190021945A1 publication Critical patent/US20190021945A1/en
Priority to US17/369,127 priority Critical patent/US20210330551A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1443Containers with means for dispensing liquid medicaments in a filtered or sterile way, e.g. with bacterial filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1475Inlet or outlet ports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1668Details of containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/168Sterilisation or cleaning before or after use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
    • A61M1/287Dialysates therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits

Definitions

  • the present invention relates to a disposal container, preferably a sterile disposal container, for used dialysate according to the preamble of the independent claim. Moreover, the invention is directed to an extracorporeal blood purification system, especially dialysis system, according to the preamble of the dependent claims.
  • Generic blood purification systems include a stationary system area, such as a stationary wastewater system, and a non-stationary system area adapted to be selectively connected thereto, such as at least one dialysis machine of the mobile type.
  • Dialysis machines of the mobile type such as machines for acute dialysis, are used for acute renal failure of a patient in all departments of a hospital, especially in an intensive care unit.
  • a quick/dynamic availability for use of the dialysis machine is an important criterion; therefore, pre-fabricated dialyzing solutions are arranged on the dialysis machine.
  • the used dialysate i.e., the dialysate which has been prepared by the dialysis machine and has passed through a dialyzer for blood purification of a patient, in dialysis machines of the mobile type is collected in a (sterile) disposal container consisting of a bag such as a reject bag.
  • the latter is sealed against the environment in a preferably sterile manner so that also the used dialysate is sealed against the germ-intensive environment such as e.g. the intensive care unit.
  • a bag filled with used dialysate is disposed of.
  • the bag is initially put/thrown into a sink so that the content of the bag, i.e. the used dialysate, will flow into a sewage system of the respective hospital.
  • the empty bag i.e. the bag wrapping emptied from dialysate, is supplied to a special refuse system.
  • Said special refuse system has to be treated separately from the other refuse; therefore, the disposal thereof entails comparatively high cost.
  • the bags that are emptied in appropriate sinks in which mixing with germs caught in the intensive care unit, for example, is possible are discharged including the bag content thereof, i.e., the bag wrapping plus used dialysate, in a special refuse system.
  • an object underlying the present invention is to eliminate or at least alleviate the drawbacks known from the state of the art and, especially, to drain the bag content, namely, the used dialysate, into the sewage system instead of into the special refuse system, while avoiding the risk of a mixing with germs present on the surface of the bag, however.
  • this object is achieved by a preferably sterile disposal container comprising the features of the independent claim.
  • a preferably sterile disposal container comprising the features of the independent claim.
  • an extracorporeal blood purification system according to the dependent claims is an aspect of the inventive idea.
  • Advantageous embodiments are the subject-matter of the subclaims.
  • the subject matter of the invention is a preferably sterile disposal container for used dialysate comprising (e.g. consisting of) a flexible bag in or at which an inlet connection for receiving the used dialysate is formed or arranged.
  • the inlet connection is prepared for connecting the bag to a dialysis machine of the mobile type, i.e. an “acute machine”. It is resulting herefrom that the e.g. sterile disposal container can be moved or displaced along with the dialysis machine so that the acute machine can be employed in many places without high expenditure.
  • the disposal container/bag includes an outlet connection or connector that is provided separately from the inlet connection and is prepared for connecting the bag to a sewer line present in the hospital environment in a way sealed against the connector environment so that no exchange is possible between the interior of the connector and the exterior of the connector.
  • the bag can be connected by means of a connector to the sewer line (of the sewage system) such that the used dialysate present in the, bag, i.e. caught received by the bag can be discharged via the sewer line from the blood purification system and later from the hospital.
  • the bag content i.e. the used dialysate
  • the bag content i.e. the used dialysate
  • the invention equally comprises an extracorporeal blood purification system including a stationary system area which has at least one sewer line of a sewage system and including a non-stationary system area which has at least one blood purification machine.
  • Such blood purification machine makes available dialysate which is prepared to pass through a dialyzer so as to purify e.g. the blood of a patient in this, way. After passing through the dialyzer, the blood purification machine guides the used dialysate further into/to the bag which is preferably designed as a single-use reject bag.
  • the invention can be functionally described so that the non-stationary system section of the blood treatment system is operatively connected to the stationary system area such that the (non-stationary) bag content communicates with the (stationary) sewage system without any bypass and without any further element step being interconnected.
  • the solution according to aspects of the invention also makes open emptying of bags such as reject bags superfluous.
  • the splashes and turbulences resulting herefrom, which in turn stain the sink with the used dialysate, will no longer occur according to aspects of the invention, thus causing the hygienic standard in a hospital to be further increased.
  • the connector ensuring such bridging is configured to be integral/made of one material with the bag.
  • the connector includes, at its end facing away from the bag, a connection, preferably in the form of a Luer lock or a three-way cock or a Walther coupling, so as to safely and time-efficiently couple the same with the sewer line.
  • a Walther coupling is a connection system in which a fixed coupling part is moved with respect to a coupling part displaceable in portions relative to the longitudinal axis of the connection so as to cause coupling and, respectively, uncoupling.
  • the fixed coupling part is provided on the connection side or alternatively on the sewer line side and the displaceable coupling part is complementary to the fixed one.
  • the connector may as well be in the form of an external component, i.e. a component that is separate from the bag in terms of material and/or space.
  • the connector as an external component in turn includes a bag connection so as to be adapted to be coupled/connected to the bag. All connecting mechanisms for connecting a tube (connector) to a bag are considered as bag connector.
  • the bag connector itself can be designed both integrally m one material piece with the connector and as an external component, i.e. as a component that is separate from the connector in terms of material and/or space.
  • the connector at its end facing away from the bag the connector includes a connection, preferably in the form of a Luer lock or a three-way cock or a Walther coupling.
  • a connection preferably in the form of a Luer lock or a three-way cock or a Walther coupling.
  • an inserting pin also referred to as spike
  • An inserting pin has a hollow tip, usually chamfered, which is prepared to pierce the bag. Further, it includes a seat defining a predefined stop surface of the inserting pin relative to the bag so that the inserting depth of the inserting pin is predetermined by means of the geometry.
  • the inserting pin is surrounded, at its tip, by a wrapping which is removed as late as immediately before piercing of the bag, thus avoiding the risk of contamination of the bag content by the tip of the inserting pin. It is an advantage of the configuration of the bag connection in the form of an inserting pin that conventional blood purification systems having no specifically formed bags in accordance with the invention may be retrofitted.
  • the bag connection can also be realized as a Luer lock.
  • the inner cone is formed by the bag and the outer cone is formed by the connector.
  • it is also imaginable to form the outer cone by the bag and to form the inner cone by the connector.
  • the Luer lock excels by a high degree of reliability, thus excluding, contamination of the bag content.
  • the fixed coupling part can be selectively attached to the bag or to the connector.
  • the movable coupling part displaceable in the longitudinal direction relative to the fixed coupling part (the travel distance of which enables coupling and uncoupling) is configured to be appropriately complementary to the fixed coupling part.
  • the connector of the extracorporeal blood purification system includes another so-railed auxiliary connection via which the connector can be coupled to an auxiliary (water) line.
  • Said auxiliary line advantageously guides water inside itself and toward the connector so that by means of pressurization it ensures an increased emptying rate of the dialysate out of the bag into the sewer line.
  • the extracorporeal blood purification system according to aspects of the invention with a folding mechanism which is prepared to transmit a compressing force to the bag so as to reduce the volume thereof and thus to ensure an increased emptying rate of the dialysate out of the bag into the sewer line with pressurization. Accordingly, a change of volume is employed instead of a change of flow (as shown in the afore-presented embodiment) so as to reach a maximum emptying rate.
  • a preferred embodiment excels by the fact that the bag is, surrounded at least in part/in portion by/with an, outer packaging/wrapping/packaging so that by such outer packaging an additional sterile barrier is realized between the environment and the outer surface of the bag.
  • This increases the safety of the extracorporeal blood purification system according to aspects of the invention by the fact that pathogenic germs are additionally hindered from contaminating the bag.
  • Said outer packaging is (equally) disposed of via the special refuse of a hospital, with the contamination thereof thus causing no hygienic problems for the refuse disposal.
  • the connector is at least in part/in portion surrounded by a movable housing and said housing is displaced as late as immediately before connecting the connector to the bag so that the housing constitutes an additional sterile barrier between the environment and the connector.
  • Said housing is (equally) disposed of via the special refuse of a hospital, with the contamination thereof thus causing no hygienic problems for the refuse disposal.
  • the sewer line of the sewage system is a supply and/or discharge line of a stationary blood purification system, preferably of a blood purification system for chronical dialysis treatment.
  • FIG. 1 shows an extracorporeal blood purification system according to aspects of the invention in schematic representation
  • FIG. 2 a shows a bag comprising a connector in a first embodiment
  • FIG. 2 b shows a bag comprising a connector in a second embodiment
  • FIG. 2 c shows a bag comprising a connector in a third embodiment
  • FIG. 3 a shows a bag comprising a connector in another embodiment
  • FIG. 3 b shows a connector in another embodiment shown per se
  • FIG. 4 shows another embodiment of the blood purification system according to aspects of the invention.
  • FIG. 5 shows a schematically represented bag including a folding mechanism
  • FIG. 6 shows a bag in another embodiment
  • FIG. 7 shows a connector in another embodiment.
  • FIG. 1 illustrates an extracorporeal blood purification system 1 . It includes a non-stationary system area 2 which incorporates, for example, a dialysis machine 4 , preferably of the mobile type. Apart from that, the extracorporeal blood purification system 1 includes a stationary system section 3 incorporating, for example, the stationary lines of a sewage system such as a sewer line 7 .
  • the non-stationary system section 2 may also include—unlike the representation in FIG. 1 —plural dialysis machines which then are connected to the sewer line 7 via plural connections.
  • a bag 5 such as a single-use reject bag, a so-called disposable, is connected downstream of a dialyzer 8 .
  • dialysate used by a dialysis is collected.
  • a connector 6 is arranged as a bridge between the non-stationary system area 2 and the stationary system area 3 and enables the used dialysate to be transferred transmitted/forwarded from the bag 5 into the, sewer line 7 .
  • the bag 5 is emptied in due time and directly with the connector 6 and the sewer line 7 and need not be transmitted to an external sink but has to be discharged directly into the special refuse after completion of the dialysis. In this way, possible contamination in both directions—i.e. both by germs in the environment to the used dialysate and thus into the sewer system and by the used dialysate into the environment—is prevented.
  • the connector 6 is connected to the bag 5 via a bag connection 10 .
  • Individual embodiments of the bag connection 10 will be illustrated in detail in connection with FIGS. 2 a , 2 b , 2 c .
  • a connection 9 facing away from the bag is arranged. Said connection ensures safe inexpensive and time-efficient connection of the connector 6 to the sewer line 7 .
  • a Luer lock 12 or a three-way cock or a Walther coupling are mentioned.
  • an extracorporeal blood purification system 1 of the generic type namely that blood from a patient is supplied via a first line 18 to the dialyzer 8 , preferably being operated by the counter-flow principle, where it is purified and returned to the patient again via a second line 19 , is known so that in this respect the state of the art is referred to.
  • the extracorporeal blood purification system 1 includes a pump 20 which delivers the fresh dialysate to the dialyzer 8 and from there delivers the used dialysate further into the bag 5 .
  • An inserting pin 11 here makes the connection between the bag 5 and the connector 6 .
  • the inserting pin is divided into a tip 21 and a seat 22 . While the tip 21 is prepared to pierce the bag 5 , the seat 22 ensures a stop, i.e. safe contact of the inserting pin 11 with the bag 5 .
  • the inserting pin 11 is either formed integrally with the connector 6 or is attached to the latter as an additional part.
  • FIG. 2 b shows another option of the bag connection 10 .
  • the bag connection 10 is realized as a Luer lock 12 (alternatively also a Walther coupling would be imaginable, as mentioned already).
  • the bag 5 forms an inner cone 23 to which an outer cone 24 formed by the connector 6 is attached so as to realize a secure connection between the bag 5 and the connector 6 .
  • the outer cone 24 is either formed integrally with the connector 6 or is attached to the latter as an additional part.
  • FIG. 2 c A third option of the bag connection 10 is finally illustrated in FIG. 2 c .
  • the bag 5 integrally includes the bag connection 10 .
  • the connector 6 and the bag 5 are configured as one component part, thus entailing logistic advantages as the bag connection 10 no longer needs to be mounted later.
  • FIG. 3 a Another embodiment of the interaction of the bag 5 and the connector 6 is shown in FIG. 3 a .
  • the connector 6 is coupled to an auxiliary line 14 via an auxiliary connection 13 and thus realizes a water jet pump.
  • the auxiliary line 14 primarily guides water along the direction of flow as shown with the upper arrow, Due to the tapering 25 of the auxiliary line 14 , an increase in the flow rate of the water guided in the auxiliary line 14 is reached, thus entailing a pressure drop (Bernoulli). Said pressure drop results in “suction” of the used dialysate out of the bag 5 (see arrow in the bag 5 ), which results in quick and efficient emptying of the bag 5 .
  • the connector 6 further includes a line (see lower arrow) which conveys the mixture of used dialysate (from the bag 5 ) and water (from the auxiliary line 14 ) in the direction of the sewer line 7 (see FIG. 1 ).
  • Said line can be configured either as an integral part of the connector 6 or as an additional component.
  • FIG. 3 b illustrates a similar functional principle with an auxiliary line 14 and an auxiliary connection 13 .
  • a Venturi nozzle 26 is inserted.
  • the active principle of the Venturi nozzle 26 can equally be traced back to Bernoulli and therefore is not explained in more detail in this context—because this has already been done in connection with FIG. 3 a.
  • FIG. 4 illustrates another embodiment of the invention in which the pump 20 is indicated as a peristaltic pump.
  • the connector 6 is coupled to the sewer line 7 while interconnecting a bridge line 27 and a dialysate line 28 .
  • a three-way cock 29 is arranged.
  • the three-way cock 29 In a first state in which the dialysis is carried out, the three-way cock 29 is in such position that no fluid is delivered through the bridge line 27 .
  • the pump 20 rotates along the first delivery direction 29 .
  • an inlet connection is preferably arranged in the upper area of the bag 5 .
  • the three-way cock 29 is, turned so that the path between the bridge line 27 and the line in which the pump 20 is disposed is released. In this state, the pump is reversed, namely, along the second delivery direction 30 .
  • the pump capacity of the pump 20 a delivery of the used dialysate out of the bag 5 toward the sewer line 7 is enabled.
  • FIG. 5 a further mechanism for emptying the bag 5 is disclosed.
  • a folding mechanism 15 is used to reduce the bag volume by mechanical force from outside.
  • two pivot arrows 31 , 32 are visible which crush the bag 5 in the manner of an aluminum can being compressed in the recycling operation so as to force the volume flow along the arrow 33 . This guarantees quick emptying of the bag S.
  • FIG. 6 schematically represents a bag 5 which is surrounded by an outer packaging 16 realizing an additional sterile barrier.
  • the outer packaging 16 includes an open constriction 34 at which an operator may release the outer packaging 16 by means of an opposite movement. This prevents contamination of the outer surface of the bag 5 .
  • FIG. 7 shows an embodiment in which a housing 17 is arranged around the connector 6 .
  • the housing 17 may surround the connector 6 completely or else only partly.
  • the housing 17 is displaceable relative to the connector 6 , for example against the bias of a spring.
  • the connector 6 for example in the embodiment in which it is configured as inserting pin 11 (see FIG. 2 a ), contacts the ambient air to which germs are complexed as late as immediately before piercing/inserting, thus causing an additional sterile barrier which further increases the hygienic standards reached by the solution according to aspects of the invention to be realized by means of the housing 17 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

A disposal container for used dialysate including a flexible bag in or at which an inlet connection is formed or arranged which is prepared for connecting the bag to a dialysis machine of the mobile type such that the disposal container is movable or displaceable along with the dialysis machine, wherein the disposal container includes an outlet connection or connector provided separately from the inlet connection, the connector being prepared for connecting the bag to a sewer line in a way sealed against the connector environment; and an extracorporeal blood purification system comprising a stationary system area and a non-stationary system area, the system including a bag according to the invention.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to German application DE 10 2017 116 394.8 filed Jul. 20, 2017, the contents of such application being incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates to a disposal container, preferably a sterile disposal container, for used dialysate according to the preamble of the independent claim. Moreover, the invention is directed to an extracorporeal blood purification system, especially dialysis system, according to the preamble of the dependent claims. Generic blood purification systems include a stationary system area, such as a stationary wastewater system, and a non-stationary system area adapted to be selectively connected thereto, such as at least one dialysis machine of the mobile type.
  • BACKGROUND OF THE INVENTION
  • Dialysis machines of the mobile type, such as machines for acute dialysis, are used for acute renal failure of a patient in all departments of a hospital, especially in an intensive care unit. Here a quick/dynamic availability for use of the dialysis machine is an important criterion; therefore, pre-fabricated dialyzing solutions are arranged on the dialysis machine. The used dialysate, i.e., the dialysate which has been prepared by the dialysis machine and has passed through a dialyzer for blood purification of a patient, in dialysis machines of the mobile type is collected in a (sterile) disposal container consisting of a bag such as a reject bag. The latter is sealed against the environment in a preferably sterile manner so that also the used dialysate is sealed against the germ-intensive environment such as e.g. the intensive care unit.
  • After or—depending on the volume of the bag—also during treatment a bag, filled with used dialysate is disposed of. The bag is initially put/thrown into a sink so that the content of the bag, i.e. the used dialysate, will flow into a sewage system of the respective hospital. After that, the empty bag, i.e. the bag wrapping emptied from dialysate, is supplied to a special refuse system. Said special refuse system has to be treated separately from the other refuse; therefore, the disposal thereof entails comparatively high cost.
  • In practice it has been observed that in the drain, namely, when the lag wrapping contaminated by the germ-intensive hospital environment contacts the draining used dialysate, the dialysate discharged into the sewage system is loaded with additional germs. In this way, ems pathogenic germs which usually would have to be disposed of via the ore-mentioned special refuse system may happen to enter into the sewage system of a hospital.
  • DESCRIPTION OF THE RELATED ART
  • In order to stop such risk, in the state of the art the bags that are emptied in appropriate sinks in which mixing with germs caught in the intensive care unit, for example, is possible are discharged including the bag content thereof, i.e., the bag wrapping plus used dialysate, in a special refuse system.
  • It is a drawback of said solution that the disposal of the special refuse with an increasing weight involves increased financial expenditure. In addition, the disposal of completely filled bags poses a risk of leakage of a bag, thus causing the used dialysate to spread in the special refuse showing the perversities of a liquid.
  • SUMMARY OF THE INVENTION
  • In view of said state of the art, an object underlying the present invention is to eliminate or at least alleviate the drawbacks known from the state of the art and, especially, to drain the bag content, namely, the used dialysate, into the sewage system instead of into the special refuse system, while avoiding the risk of a mixing with germs present on the surface of the bag, however.
  • According to aspects of the invention, this object is achieved by a preferably sterile disposal container comprising the features of the independent claim. In order to be able to efficiently integrate such disposal container/bag, which is a single-use article, in a hospital environment, also an extracorporeal blood purification system according to the dependent claims is an aspect of the inventive idea. Advantageous embodiments are the subject-matter of the subclaims.
  • From said configuration of the bag as well as an extracorporeal blood purification system according to aspects of the invention, for example the following advantages can be derived:
      • increased hygienic standard due to the suppressed possibility of contamination of the used dialysate;
      • an ergonomic advantage for the users of the blood purification system due to the temporary short circuit between the bag and the sewage system;
      • an economic advantage due to the decrease of special refuse costs.
  • Accordingly, the subject matter of the invention is a preferably sterile disposal container for used dialysate comprising (e.g. consisting of) a flexible bag in or at which an inlet connection for receiving the used dialysate is formed or arranged. The inlet connection is prepared for connecting the bag to a dialysis machine of the mobile type, i.e. an “acute machine”. It is resulting herefrom that the e.g. sterile disposal container can be moved or displaced along with the dialysis machine so that the acute machine can be employed in many places without high expenditure.
  • According to aspects of the invention, the disposal container/bag includes an outlet connection or connector that is provided separately from the inlet connection and is prepared for connecting the bag to a sewer line present in the hospital environment in a way sealed against the connector environment so that no exchange is possible between the interior of the connector and the exterior of the connector. As part of the inventive idea, the bag can be connected by means of a connector to the sewer line (of the sewage system) such that the used dialysate present in the, bag, i.e. caught received by the bag can be discharged via the sewer line from the blood purification system and later from the hospital. In this way, the bag content, i.e. the used dialysate, can be achieved to flow immediately and directly into the sewage system without taking up potential germs of the bag surface before. Thus, the risk of undesired contamination of the sewer flow is eliminated.
  • The invention equally comprises an extracorporeal blood purification system including a stationary system area which has at least one sewer line of a sewage system and including a non-stationary system area which has at least one blood purification machine. Such blood purification machine makes available dialysate which is prepared to pass through a dialyzer so as to purify e.g. the blood of a patient in this, way. After passing through the dialyzer, the blood purification machine guides the used dialysate further into/to the bag which is preferably designed as a single-use reject bag.
  • In other words, the invention can be functionally described so that the non-stationary system section of the blood treatment system is operatively connected to the stationary system area such that the (non-stationary) bag content communicates with the (stationary) sewage system without any bypass and without any further element step being interconnected.
  • In terms of structure, it is a fact that a bridging between the (non-stationary) bag and the (stationary) sewer line is realized by means of a connector which is arranged applied /taken into operation/laid by a user, preferably at the beginning of the acute dialysis.
  • Apart from the advantage of avoiding germ transmission into the sewage system, the solution according to aspects of the invention also makes open emptying of bags such as reject bags superfluous. The splashes and turbulences resulting herefrom, which in turn stain the sink with the used dialysate, will no longer occur according to aspects of the invention, thus causing the hygienic standard in a hospital to be further increased.
  • Of preference, the connector ensuring such bridging is configured to be integral/made of one material with the bag. In this way, possible transmission of the pathogenic germs, for example from the intensive care unit, into the interior of the bag and thus into the sewer line is excluded from the start, thus allowing maximum medical hygiene regulations to be observed without any additional effort. In addition, the connector includes, at its end facing away from the bag, a connection, preferably in the form of a Luer lock or a three-way cock or a Walther coupling, so as to safely and time-efficiently couple the same with the sewer line. A Walther coupling is a connection system in which a fixed coupling part is moved with respect to a coupling part displaceable in portions relative to the longitudinal axis of the connection so as to cause coupling and, respectively, uncoupling. Depending on the embodiment, the fixed coupling part is provided on the connection side or alternatively on the sewer line side and the displaceable coupling part is complementary to the fixed one.
  • As an alternative to the integral configuration, the connector may as well be in the form of an external component, i.e. a component that is separate from the bag in terms of material and/or space. The connector as an external component in turn includes a bag connection so as to be adapted to be coupled/connected to the bag. All connecting mechanisms for connecting a tube (connector) to a bag are considered as bag connector. The bag connector itself can be designed both integrally m one material piece with the connector and as an external component, i.e. as a component that is separate from the connector in terms of material and/or space. In this embodiment, too, at its end facing away from the bag the connector includes a connection, preferably in the form of a Luer lock or a three-way cock or a Walther coupling. Thus, also in this embodiment it can be safely and time-efficiently coupled to the sewer line.
  • In the afore-mentioned bag connection especially an inserting pin, also referred to as spike, can be used. An inserting pin has a hollow tip, usually chamfered, which is prepared to pierce the bag. Further, it includes a seat defining a predefined stop surface of the inserting pin relative to the bag so that the inserting depth of the inserting pin is predetermined by means of the geometry. The inserting pin is surrounded, at its tip, by a wrapping which is removed as late as immediately before piercing of the bag, thus avoiding the risk of contamination of the bag content by the tip of the inserting pin. It is an advantage of the configuration of the bag connection in the form of an inserting pin that conventional blood purification systems having no specifically formed bags in accordance with the invention may be retrofitted.
  • Alternatively to the configuration as an inserting pin, the bag connection can also be realized as a Luer lock. In this case, the inner cone is formed by the bag and the outer cone is formed by the connector. Vice versa, it is also imaginable to form the outer cone by the bag and to form the inner cone by the connector. The Luer lock excels by a high degree of reliability, thus excluding, contamination of the bag content.
  • As an alternative to the Luer lock, apart from a drain coupling, also a bag-side coupling by means of a Walther coupling is imaginable. In this context, the fixed coupling part can be selectively attached to the bag or to the connector. The movable coupling part displaceable in the longitudinal direction relative to the fixed coupling part (the travel distance of which enables coupling and uncoupling) is configured to be appropriately complementary to the fixed coupling part.
  • In an advantageous embodiment, the connector of the extracorporeal blood purification system includes another so-railed auxiliary connection via which the connector can be coupled to an auxiliary (water) line. Said auxiliary line advantageously guides water inside itself and toward the connector so that by means of pressurization it ensures an increased emptying rate of the dialysate out of the bag into the sewer line. In this way, while exploiting the principles of flow according to Bernoulli and Venturi, an objective is pursued that immediately after having been used at a first place, a dialysis machine of the mobile type can be reused at another place, as due to pressurization emptying of the bag is performed in no time at all.
  • Moreover, it is imaginable to provide the extracorporeal blood purification system according to aspects of the invention with a folding mechanism which is prepared to transmit a compressing force to the bag so as to reduce the volume thereof and thus to ensure an increased emptying rate of the dialysate out of the bag into the sewer line with pressurization. Accordingly, a change of volume is employed instead of a change of flow (as shown in the afore-presented embodiment) so as to reach a maximum emptying rate.
  • Furthermore, a preferred embodiment excels by the fact that the bag is, surrounded at least in part/in portion by/with an, outer packaging/wrapping/packaging so that by such outer packaging an additional sterile barrier is realized between the environment and the outer surface of the bag. This increases the safety of the extracorporeal blood purification system according to aspects of the invention by the fact that pathogenic germs are additionally hindered from contaminating the bag. Said outer packaging is (equally) disposed of via the special refuse of a hospital, with the contamination thereof thus causing no hygienic problems for the refuse disposal.
  • It is in addition advantageous when the connector is at least in part/in portion surrounded by a movable housing and said housing is displaced as late as immediately before connecting the connector to the bag so that the housing constitutes an additional sterile barrier between the environment and the connector. This, too, increases the safety of the extracorporeal blood purification system according to aspects of the invention by the fact that pathogenic germs are additionally hindered from contaminating the bag. Said housing is (equally) disposed of via the special refuse of a hospital, with the contamination thereof thus causing no hygienic problems for the refuse disposal.
  • Moreover, in a preferred embodiment the sewer line of the sewage system is a supply and/or discharge line of a stationary blood purification system, preferably of a blood purification system for chronical dialysis treatment. Hence the advantages of a dialysis machine of the mobile type for acute treatment, i.e. a mobile place of use, are combined with the advantages of a dialysis machine of the stationary type for chronical dialysis treatment, i.e. an established sewage system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is best understood from the following detailed description when read in connection with the accompanying drawings. Included in the drawings are the following figures:
  • FIG. 1 shows an extracorporeal blood purification system according to aspects of the invention in schematic representation;
  • FIG. 2a shows a bag comprising a connector in a first embodiment;
  • FIG. 2b shows a bag comprising a connector in a second embodiment;
  • FIG. 2c shows a bag comprising a connector in a third embodiment;
  • FIG. 3a shows a bag comprising a connector in another embodiment;
  • FIG. 3b shows a connector in another embodiment shown per se;
  • FIG. 4 shows another embodiment of the blood purification system according to aspects of the invention;
  • FIG. 5 shows a schematically represented bag including a folding mechanism;
  • FIG. 6 shows a bag in another embodiment; and
  • FIG. 7 shows a connector in another embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 illustrates an extracorporeal blood purification system 1. It includes a non-stationary system area 2 which incorporates, for example, a dialysis machine 4, preferably of the mobile type. Apart from that, the extracorporeal blood purification system 1 includes a stationary system section 3 incorporating, for example, the stationary lines of a sewage system such as a sewer line 7. The non-stationary system section 2 may also include—unlike the representation in FIG. 1—plural dialysis machines which then are connected to the sewer line 7 via plural connections.
  • As a substantial component of the invention, a bag 5 such as a single-use reject bag, a so-called disposable, is connected downstream of a dialyzer 8. In the bag 5 thus dialysate used by a dialysis is collected. A connector 6 is arranged as a bridge between the non-stationary system area 2 and the stationary system area 3 and enables the used dialysate to be transferred transmitted/forwarded from the bag 5 into the, sewer line 7. Thus, the bag 5 is emptied in due time and directly with the connector 6 and the sewer line 7 and need not be transmitted to an external sink but has to be discharged directly into the special refuse after completion of the dialysis. In this way, possible contamination in both directions—i.e. both by germs in the environment to the used dialysate and thus into the sewer system and by the used dialysate into the environment—is prevented.
  • The connector 6 is connected to the bag 5 via a bag connection 10. Individual embodiments of the bag connection 10 will be illustrated in detail in connection with FIGS. 2a, 2b, 2c . At the other end of the connector 6 a connection 9 facing away from the bag is arranged. Said connection ensures safe inexpensive and time-efficient connection of the connector 6 to the sewer line 7. As examples of the connection 9 facing away from the bag, a Luer lock 12 or a three-way cock or a Walther coupling are mentioned.
  • The basic functioning of an extracorporeal blood purification system 1 of the generic type, namely that blood from a patient is supplied via a first line 18 to the dialyzer 8, preferably being operated by the counter-flow principle, where it is purified and returned to the patient again via a second line 19, is known so that in this respect the state of the art is referred to. It is merely worth mentioning in this context that the extracorporeal blood purification system 1 includes a pump 20 which delivers the fresh dialysate to the dialyzer 8 and from there delivers the used dialysate further into the bag 5.
  • With reference to FIG. 2a , a first embodiment of the bag connection 10 is presented. An inserting pin 11 here makes the connection between the bag 5 and the connector 6. The inserting pin is divided into a tip 21 and a seat 22. While the tip 21 is prepared to pierce the bag 5, the seat 22 ensures a stop, i.e. safe contact of the inserting pin 11 with the bag 5. The inserting pin 11 is either formed integrally with the connector 6 or is attached to the latter as an additional part.
  • FIG. 2b shows another option of the bag connection 10. Here the bag connection 10 is realized as a Luer lock 12 (alternatively also a Walther coupling would be imaginable, as mentioned already). In this way, the bag 5 forms an inner cone 23 to which an outer cone 24 formed by the connector 6 is attached so as to realize a secure connection between the bag 5 and the connector 6. The outer cone 24 is either formed integrally with the connector 6 or is attached to the latter as an additional part.
  • A third option of the bag connection 10 is finally illustrated in FIG. 2c . In this case, the bag 5 integrally includes the bag connection 10. In this way, the connector 6 and the bag 5 are configured as one component part, thus entailing logistic advantages as the bag connection 10 no longer needs to be mounted later.
  • Another embodiment of the interaction of the bag 5 and the connector 6 is shown in FIG. 3a . In this case, the connector 6 is coupled to an auxiliary line 14 via an auxiliary connection 13 and thus realizes a water jet pump. The auxiliary line 14 primarily guides water along the direction of flow as shown with the upper arrow, Due to the tapering 25 of the auxiliary line 14, an increase in the flow rate of the water guided in the auxiliary line 14 is reached, thus entailing a pressure drop (Bernoulli). Said pressure drop results in “suction” of the used dialysate out of the bag 5 (see arrow in the bag 5), which results in quick and efficient emptying of the bag 5. With the embodiment comprising the auxiliary connection 13 and the auxiliary line 14, accordingly quick emptying of the bag 5 is achieved. The connector 6 further includes a line (see lower arrow) which conveys the mixture of used dialysate (from the bag 5) and water (from the auxiliary line 14) in the direction of the sewer line 7 (see FIG. 1). Said line can be configured either as an integral part of the connector 6 or as an additional component.
  • FIG. 3b illustrates a similar functional principle with an auxiliary line 14 and an auxiliary connection 13. Deviating from FIG. 3a , here a Venturi nozzle 26 is inserted. The active principle of the Venturi nozzle 26 can equally be traced back to Bernoulli and therefore is not explained in more detail in this context—because this has already been done in connection with FIG. 3 a.
  • FIG. 4 illustrates another embodiment of the invention in which the pump 20 is indicated as a peristaltic pump. The connector 6 is coupled to the sewer line 7 while interconnecting a bridge line 27 and a dialysate line 28. For this purpose, a three-way cock 29 is arranged. In a first state in which the dialysis is carried out, the three-way cock 29 is in such position that no fluid is delivered through the bridge line 27. The pump 20 rotates along the first delivery direction 29. When viewing the schematically represented configuration in FIG. 4, it is evident that an inlet connection is preferably arranged in the upper area of the bag 5.
  • As soon as the dialysis is completed, the three-way cock 29 is, turned so that the path between the bridge line 27 and the line in which the pump 20 is disposed is released. In this state, the pump is reversed, namely, along the second delivery direction 30. Thus, with the aid of the pump capacity of the pump 20 a delivery of the used dialysate out of the bag 5 toward the sewer line 7 is enabled.
  • In FIG. 5, a further mechanism for emptying the bag 5 is disclosed. In contrast to the afore-presented mechanisms generating a vacuum, in this case a folding mechanism 15 is used to reduce the bag volume by mechanical force from outside. In the merely schematically indicated folding mechanism 15 of FIG. 5, two pivot arrows 31, 32 are visible which crush the bag 5 in the manner of an aluminum can being compressed in the recycling operation so as to force the volume flow along the arrow 33. This guarantees quick emptying of the bag S.
  • FIG. 6 schematically represents a bag 5 which is surrounded by an outer packaging 16 realizing an additional sterile barrier. The outer packaging 16 includes an open constriction 34 at which an operator may release the outer packaging 16 by means of an opposite movement. This prevents contamination of the outer surface of the bag 5.
  • FIG. 7 shows an embodiment in which a housing 17 is arranged around the connector 6. The housing 17 may surround the connector 6 completely or else only partly. Along a sliding movement 35 the housing 17 is displaceable relative to the connector 6, for example against the bias of a spring. Thus, it is possible that the connector 6, for example in the embodiment in which it is configured as inserting pin 11 (see FIG. 2a ), contacts the ambient air to which germs are complexed as late as immediately before piercing/inserting, thus causing an additional sterile barrier which further increases the hygienic standards reached by the solution according to aspects of the invention to be realized by means of the housing 17.

Claims (11)

1.-7. (canceled)
8. A disposal container for used dialysate, the disposal container comprising:
a flexible bag;
an inlet connection formed or arranged in or at the flexible bag to connect the flexible bag to a mobile dialysis machine such that the disposal container is movable or displaceable along with the mobile dialysis machine; and
an outlet connection or connector separate from the inlet connection configured to connect the flexible bag to a sewer line at an end of the flexible bag facing away from the flexible bag such that the flexible bag is sealed against an environment of the outlet connection or connector, wherein the outlet connection or connector is formed integrally with the flexible bag.
9. The disposal container according to claim 8, wherein the outlet connection or connector includes an auxiliary connection via which the outlet connection or connector can be coupled to an auxiliary line that is prepared to ensure an increased emptying rate of dialysate from the flexible bag into the sewer line through pressurization.
10. The disposal container according to claim 8, further comprising:
a folding mechanism configured to transmit a compressing force to the flexible bag so as to reduce a volume of the flexible bag to ensure an increased emptying rate of dialysate from the flexible bag into the sewer line.
11. The disposal container according to claim 8, wherein the flexible bag is at least partly surrounded by an outer packaging that is configured to provide a sterile barrier between the environment and an outer surface of the flexible bag.
12. The disposal container according to claim 8, wherein the outlet connection or connector is at least partly surrounded by a movable housing that is displaced immediately before connection so that the movable housing creates a sterile barrier between the environment and the outlet connection or connector.
13. The disposal container according to claim 8, wherein the outlet connection or connector is a Luer lock, a three-way cock, or a Walther coupling.
14. An extracorporeal blood purification system comprising:
a stationary system area including a sewer line; and
a non-stationary system area including at least one blood purification machine prepared to pass a dialysate, after the dialysate has passed through a dialyzer, on to the flexible bag according to claim 8.
15. The extracorporeal blood purification system according to claim 14, wherein the flexible bag is a single-use reject bag.
16. The extracorporeal blood purification system according to claim 14, wherein the sewer line corresponds to at least one of a supply line or a disposal line of a stationary blood purification system.
17. The extracorporeal blood purification system according to claim 16, wherein the stationary blood purification system is a chronical dialysis treatment blood purification system.
US16/039,971 2017-07-20 2018-07-19 Disposal container for used dialysate and extracorporeal blood purification system comprising said disposal container Abandoned US20190021945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/369,127 US20210330551A1 (en) 2017-07-20 2021-07-07 Method for extracorporeal blood purification and dialysate disposal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017116394.8A DE102017116394A1 (en) 2017-07-20 2017-07-20 Disposal container for used dialysis fluid and extracorporeal blood purification system with such a disposal container
DE102017116394.8 2017-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/369,127 Continuation US20210330551A1 (en) 2017-07-20 2021-07-07 Method for extracorporeal blood purification and dialysate disposal

Publications (1)

Publication Number Publication Date
US20190021945A1 true US20190021945A1 (en) 2019-01-24

Family

ID=62985965

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/039,971 Abandoned US20190021945A1 (en) 2017-07-20 2018-07-19 Disposal container for used dialysate and extracorporeal blood purification system comprising said disposal container
US17/369,127 Pending US20210330551A1 (en) 2017-07-20 2021-07-07 Method for extracorporeal blood purification and dialysate disposal

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/369,127 Pending US20210330551A1 (en) 2017-07-20 2021-07-07 Method for extracorporeal blood purification and dialysate disposal

Country Status (5)

Country Link
US (2) US20190021945A1 (en)
EP (1) EP3431117B2 (en)
JP (1) JP6956692B2 (en)
CN (2) CN209900233U (en)
DE (1) DE102017116394A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116394A1 (en) * 2017-07-20 2019-01-24 B. Braun Avitum Ag Disposal container for used dialysis fluid and extracorporeal blood purification system with such a disposal container
CN113154260A (en) * 2021-03-03 2021-07-23 北京柯莱文科技咨询有限公司 Method for maintaining reagent delivery concentration

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515275A (en) 1968-03-13 1970-06-02 Donald B Bowman Hemodialysis method and equipment
US4316466A (en) * 1980-06-27 1982-02-23 Biomedics, Inc. Body fluid drainage device
US4326526A (en) * 1980-09-18 1982-04-27 Becton, Dickinson And Company Dialysate bag assembly for continuous ambulatory peritoneal dialysis
DE3211895A1 (en) 1982-03-31 1983-10-13 Hans E. Prof. Dr.med. 8500 Nürnberg Sachse Collection bag for body fluids
ATE89178T1 (en) * 1982-12-13 1993-05-15 Mclaughlin William F BLOOD FRACTIONATION SYSTEM.
FR2539034B1 (en) 1983-01-11 1986-05-09 Materiels Annexes Dialyse CONNECTION LINE FOR PERITONEAL DIALYSIS
DE3320416A1 (en) 1983-06-06 1984-12-06 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg Installation channel for a dialysis station
DE3409457A1 (en) 1984-03-15 1985-09-19 Vogel, Jürgen, 7050 Waiblingen Protective apparatus to prevent microbial contamination in liquids
DE8505923U1 (en) 1985-03-01 1985-05-30 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg INLET DEVICE ON THE DRAIN PIPE OF A DIALYSIS STATION
WO1988010124A1 (en) 1987-06-26 1988-12-29 Nova Medical Pty. Limited Suction operation collection bag
DE8904445U1 (en) 1989-04-08 1989-06-15 Dialyse-Technik Med. Geraete Handels-Gmbh, 7505 Ettlingen, De
JP2547636B2 (en) 1989-07-14 1996-10-23 テルモ株式会社 Liquid separation device
US4991743A (en) 1989-11-06 1991-02-12 Cobe Laboratories, Inc. Controlled flow accumulator
DE4129271C1 (en) 1991-09-03 1992-09-17 Fresenius Ag, 6380 Bad Homburg, De
SE9400347L (en) * 1994-02-03 1995-07-17 Gambro Ab Apparatus for peritoneal dialysis
DE4443714C2 (en) * 1994-12-09 1996-10-17 Fresenius Ag Device for controlling a fluid flow
DE19528160C2 (en) 1995-07-24 1999-02-04 Witt Medizin Technik Gmbh Pipe and hose installation on and in media columns for the treatment of body fluids, especially for a dialysis machine
DE19537271C2 (en) 1995-10-06 1998-03-12 Braun Melsungen Ag Reservoir for a closed blood collection system
FR2739780B1 (en) 1995-10-12 1997-11-14 Hospal Ag DEVICE FOR COLLECTING A SAMPLE OF USED DIALYSIS LIQUID
US6039060A (en) 1996-02-22 2000-03-21 Rower; Gary Venturi cleaning system
JPH09313597A (en) 1996-03-29 1997-12-09 Jms Co Ltd Communicating member
JPH09323597A (en) * 1996-06-04 1997-12-16 Nissan Motor Co Ltd Ceiling material for automobile
US6039718A (en) * 1998-01-20 2000-03-21 Bracco Research Usa Multiple use universal connector
FR2779964B1 (en) * 1998-06-17 2000-09-15 Internova International Innova DIALYSIS MACHINE, PARTICULARLY FOR HOME USE
AU2001237688A1 (en) 2000-02-28 2001-09-12 Valemont Participation Corp. Method and system for hemodialysis for use in a non-clinical environment
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
US6874522B2 (en) * 2002-06-18 2005-04-05 Baxter International Inc. Luer-actuated solution path connector with membrane and container using the connector and a method for establishing fluid communication with the container
US20050001110A1 (en) 2003-06-13 2005-01-06 Simon Carey Bertram Hirst Dialysis bag effluent drainage device
US7588722B2 (en) 2003-06-25 2009-09-15 Gambro Lundia Ab Extracorporeal treatment device with automatic emptying of waste bag
DE202004016882U1 (en) 2004-10-29 2005-01-27 Bürkle, Norman Wall elements, in particular, for construction of a dialysis station are laterally joinable to one another to form a wall, with each element incorporating a conduit system
US7614614B2 (en) * 2006-02-15 2009-11-10 Exica, Inc. Venturi apparatus
WO2007118235A2 (en) 2006-04-07 2007-10-18 Nxstage Medical Inc. Filtration system for preparation of fluids for medical applications.
US8226595B2 (en) * 2006-05-26 2012-07-24 Baxter International Inc. Automated dialysis system driven by gravity and vacuum
US8025173B2 (en) * 2006-09-07 2011-09-27 Allegiance Corporation Collapsible canister liner for medical fluid collection
GB0622565D0 (en) * 2006-11-13 2006-12-20 Airbus Uk Ltd Water scavenging system
CA2681734A1 (en) * 2007-03-23 2008-10-02 Allegiance Corporation Fluid collection and disposal system having interchangeable collection and other features and methods relating thereto
US20090204080A1 (en) * 2008-02-12 2009-08-13 Baxter International Inc. Two-way valve connector
CA2953011A1 (en) 2008-05-16 2009-11-19 Maurice Garcia Catheter drainage system
DE102009038571B4 (en) 2009-08-22 2011-07-14 Völker, Manfred, 63825 Supply device for dialysis machines
EP2353629A1 (en) * 2010-02-08 2011-08-10 Fresenius Kabi Deutschland GmbH Connector for containers containing medical agents
US9033948B2 (en) * 2011-04-19 2015-05-19 Fenwel, Inc. Single collection bag blood collection system, method and apparatus
FR2980712B1 (en) 2011-10-03 2013-10-04 Physidia DIALYSIS MACHINE COMPRISING MEANS FOR ULTRAFILTRATION AND RETROFILTRATION
EP2765971A4 (en) * 2011-10-11 2015-06-17 Soinial Ab Bag and method for intravenous or intracorporeal administration of medical solution to a patient
ITMI20112455A1 (en) 2011-12-30 2013-07-01 Gambro Lundia Ab EQUIPMENT FOR EXTRACORPROUS TREATMENT OF BLOOD
CN202699702U (en) 2012-07-18 2013-01-30 马志芳 Blood purifying enclosed dialysis waste liquor discharging device
DE102013106550A1 (en) * 2013-06-24 2014-12-24 B. Braun Avitum Ag Luer lock connector with grooves
DE102013018639A1 (en) 2013-11-06 2014-07-24 Fresenius Medical Care Deutschland Gmbh Connector for connecting bag and hose system for providing e.g. medical solution during extraporal blood treatment for patient, has cone only opening sealing element when projection of one part is inserted in retainer of other part
EP3017832B1 (en) 2014-11-10 2017-01-11 B. Braun Avitum AG Extracorporeal blood treatment device and collecting container thereof
DE202016000643U1 (en) * 2016-02-01 2016-03-10 Mecus GmbH Multi-way tap for medical fluids
DE102017116394A1 (en) * 2017-07-20 2019-01-24 B. Braun Avitum Ag Disposal container for used dialysis fluid and extracorporeal blood purification system with such a disposal container

Also Published As

Publication number Publication date
JP6956692B2 (en) 2021-11-02
EP3431117B1 (en) 2020-07-15
CN109276768A (en) 2019-01-29
US20210330551A1 (en) 2021-10-28
DE102017116394A1 (en) 2019-01-24
JP2019048039A (en) 2019-03-28
EP3431117A1 (en) 2019-01-23
CN209900233U (en) 2020-01-07
EP3431117B2 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
US20210330551A1 (en) Method for extracorporeal blood purification and dialysate disposal
CN102438676B (en) External functional device, blood treatment apparatus for accommodating such an external functional device, and methods
KR101148716B1 (en) Method and apparatus for priming an extracorporeal blood circuit
US8021319B2 (en) Extracorporeal blood set
US5207638A (en) Blood transfer apparatus
US5794669A (en) Container for collection of concentrate
EP2575920B1 (en) One time use breastpump assembly
US7481243B2 (en) Method and apparatus for the disposal of waste fluids
US5074839A (en) Blood transfer apparatus
US20160250398A1 (en) Negative pressure wound therapy pump and canister
JP6151279B2 (en) Liquid storage and delivery system
JPH08506977A (en) Apheresis system including alternative locations for anticoagulant injection
EP1642603B1 (en) Receptacle and medical suction device equipped therewith
JPH11506378A (en) Peritoneal dialysis tubing combined with double sterilization system
TW200916131A (en) Drainage pump unit
AU2015221918A1 (en) Aspirators
JP5495006B2 (en) connector
CN105288760B (en) Substitution fluid pump integrated in dialysis machine
CN109890430A (en) For or about Blood calldack and autotransfusion improvement
CN205339687U (en) Container is collected with it to external blood treatment facility
CN218833266U (en) Closed negative pressure drainage system
CN211584466U (en) Disposable multipurpose disinfection drainage bag
CN104168946B (en) There is the medical treatment device of socket unit for connecting the device providing medical fluid
WO2001078802A1 (en) Transfusion set for autologous blood transfusion
JP2006006835A (en) Dialyzer

Legal Events

Date Code Title Description
AS Assignment

Owner name: B. BRAUN AVITUM AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROHDE, ALEXANDER;REEL/FRAME:046414/0841

Effective date: 20180717

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION COUNTED, NOT YET MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION