US20190018937A1 - Systems and methods for inclusive captcha - Google Patents

Systems and methods for inclusive captcha Download PDF

Info

Publication number
US20190018937A1
US20190018937A1 US15/922,632 US201815922632A US2019018937A1 US 20190018937 A1 US20190018937 A1 US 20190018937A1 US 201815922632 A US201815922632 A US 201815922632A US 2019018937 A1 US2019018937 A1 US 2019018937A1
Authority
US
United States
Prior art keywords
captcha
media file
input
user
decision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/922,632
Other versions
US10915610B2 (en
Inventor
Charudatta JADHAV
Sumeet Agrawal
Madhu Priyatam Venkata PALADUGU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tata Consultancy Services Ltd
Original Assignee
Tata Consultancy Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Consultancy Services Ltd filed Critical Tata Consultancy Services Ltd
Assigned to TATA CONSULTANCY SERVICES LIMITED reassignment TATA CONSULTANCY SERVICES LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AGRAWAL, SUMEET, JADHAV, CHARUDATTA, PALADUGU, MADHU PRIYATAM VENKATA
Publication of US20190018937A1 publication Critical patent/US20190018937A1/en
Application granted granted Critical
Publication of US10915610B2 publication Critical patent/US10915610B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/36User authentication by graphic or iconic representation
    • G06F15/18
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/332Query formulation
    • G06F16/3329Natural language query formulation or dialogue systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/36Creation of semantic tools, e.g. ontology or thesauri
    • G06F16/374Thesaurus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B21/00Teaching, or communicating with, the blind, deaf or mute
    • G09B21/001Teaching or communicating with blind persons
    • G09B21/006Teaching or communicating with blind persons using audible presentation of the information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2103Challenge-response
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2133Verifying human interaction, e.g., Captcha

Definitions

  • the embodiments herein generally relate to data processing and information security, and more particularly to systems and methods for inclusive CAPTCHA that addresses users of all abilities and particularly optimizes tradeoff between security and accessibility.
  • CAPTCHA Completely Automated Public Turing Tests to Tell Computers and Humans Apart
  • the purpose of the CAPTCHA is to protect web applications like website registrations, online polls, etc. from malicious programs (bots), dictionary attacks and web crawlers. Users are given a challenge to solve which is understandable by humans. Based on the response given, the system determines whether the user is human or not.
  • CAPTCHAs are classified based on the type of content that is distorted. Some types of CAPTCHA are CAPTCHA based on text, CAPTCHA based on image, CAPTCHA based on audio and CAPTCHA based on puzzle.
  • the state of art CAPTCHA imperatively involves a tradeoff between goals of security and accessibility. It has been observed that in order to provide accessible CAPTCHA for users with disabilities, protected applications may need to be compromised on security aspects. Since CAPTCHA is primarily targeted at information security, it is a challenge to manage security while ensuring usability and accessibility for users of all abilities.
  • Embodiments of the present disclosure present technological improvements as solutions to one or more of the above-mentioned technical problems recognized by the inventors in conventional systems.
  • a processor implemented method for inclusive CAPTCHA comprising: in response to a user request for a webpage having CAPTCHA, creating a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios; randomly selecting a comprehension question based on the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and transmitting the webpage including the CAPTCHA.
  • the method intelligently detects either a human input or a machine input based on a self-learning CAPTCHA decision module.
  • a system comprising: one or more hardware processors and one or more data storage devices ( 102 ) operatively coupled to the one or more processors for storing instructions configured for execution by the one or more processors, the instructions being comprised in: a CAPTCHA generating module configured to, in response to a user request for a webpage having CAPTCHA, create a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios; randomly select a comprehension question based on the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and transmit the webpage including the CAPTCHA.
  • the instructions are further comprised in a self-learning CAPTCHA decision module configured to, in response to a user input to the comprehension question, intelligently detect either a human input or a machine input.
  • a computer program product comprising a non-transitory computer readable medium having a computer readable program embodied therein, wherein the computer readable program, when executed on a computing device, causes the computing device to: in response to a user request for a webpage having CAPTCHA, create a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios; randomly select a comprehension question based on the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and transmit the webpage including the CAPTCHA.
  • the computing device intelligently detects either a human input or a machine input based on a self-learning CAPTCHA decision module.
  • the created media file is at least one of an aural form or a visual form.
  • the created media file is a combination of two or more media files of the same form but varying type or a combination of two or more media files of different forms, each combination corresponding to the selected theme.
  • the varying types of the two or more media files are associated with an environment and contextual information thereof.
  • the CAPTCHA generating module is further configured to, in response to a user input to the comprehension question, select and transmit at least one alternative comprehension question for the selected theme.
  • each comprehension question is associated with a plurality of solutions corresponding to the created media file for the selected theme.
  • the CAPTCHA generating module is further configured to present the selected comprehension question in at least one of visual or aural form.
  • the self-learning CAPTCHA decision module is configured to intelligently detect either a human input or a machine input by: intelligently comparing the user input to previously stored user inputs from a decision repository of the self-learning CAPTCHA decision module, considering one or more of spelling errors, incomplete responses, contextual metonyms, synonyms and variants thereof; detecting either a human input or a machine input based on the comparing and associated decision thereof; and updating the decision repository with the user input and associated decision based on the detected input.
  • FIG. 1 illustrates an exemplary block diagram of a system for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure
  • FIG. 2 illustrates an exemplary architectural diagram of the system for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure
  • FIG. 3 is an exemplary flow diagram illustrating a computer implemented method for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure
  • FIG. 4 illustrates a working flow diagram of the method for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure
  • FIG. 5 illustrates a graphical representation of users with different abilities and number of successful and failed attempts using the inclusive CAPTCHA in accordance with an embodiment of the present disclosure
  • FIG. 6 illustrates a graphical representation of users with different abilities and number of attempts made to successfully complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure
  • FIG. 7 illustrates a graphical representation of users with different abilities and time taken to complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure
  • FIG. 8 illustrates a graphical representation of audio file wise analysis for main stream users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure
  • FIG. 9 illustrates a graphical representation of audio file wise analysis for screen reader users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure.
  • any block diagram herein represent conceptual views of illustrative systems embodying the principles of the present subject matter.
  • any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computing device or processor, whether or not such computing device or processor is explicitly shown.
  • CAPTCHA Completely Automated Public Turing Tests to Tell Computers and Humans Apart
  • the present disclosure addresses particularly the tradeoff between accessibility and security seen in state of the art CAPTCHA and accordingly, the methods and systems of the present disclosure aim to provide an inclusive CAPTCHA that meets the orthogonal requirements of usability, accessibility and security while addressing users of all needs and hence being inclusive.
  • FIGS. 1 through 9 where similar reference characters denote corresponding features consistently throughout the figures, there are shown preferred embodiments and these embodiments are described in the context of the following exemplary system and method.
  • FIG. 1 illustrates an exemplary block diagram of a system 100 for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure.
  • the system 100 includes one or more processors 104 , communication interface device(s) or input/output (I/O) interface(s) 106 , and one or more data storage devices or memory 102 operatively coupled to the one or more processors 104 .
  • the one or more processors 104 that are hardware processors can be implemented as one or more microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, state machines, graphics controllers, logic circuitries, and/or any devices that manipulate signals based on operational instructions.
  • the processor(s) are configured to fetch and execute computer-readable instructions stored in the memory.
  • the system 100 can be implemented in a variety of computing systems, such as laptop computers, notebooks, hand-held devices, workstations, mainframe computers, servers, a network cloud and the like.
  • the I/O interface device(s) 106 can include a variety of software and hardware interfaces, for example, a web interface, a graphical user interface, and the like and can facilitate multiple communications within a wide variety of networks N/W and protocol types, including wired networks, for example, LAN, cable, etc., and wireless networks, such as WLAN, cellular, or satellite.
  • the I/O interface device(s) can include one or more ports for connecting a number of devices to one another or to another server.
  • the memory 102 may include any computer-readable medium known in the art including, for example, volatile memory, such as static random access memory (SRAM) and dynamic random access memory (DRAM), and/or non-volatile memory, such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes.
  • volatile memory such as static random access memory (SRAM) and dynamic random access memory (DRAM)
  • non-volatile memory such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes.
  • ROM read only memory
  • erasable programmable ROM erasable programmable ROM
  • FIG. 2 illustrates an exemplary architectural diagram of the system for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure.
  • the inclusive CAPTCHA of the present disclosure considers the orthogonal requirements of usability, security and accessibility for users with disabilities (visual, hear, motor, disability) and also main stream users to make the CAPTCHA practically inclusive.
  • FIG. 3 is an exemplary flow diagram illustrating a computer implemented method 200 for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure.
  • the system 100 comprises one or more data storage devices or memory 102 operatively coupled to the one or more processors 104 and is configured to store instructions configured for execution of steps of the method 200 by the one or more processors 104 .
  • the system 100 may comprise exemplary modules such a CAPTCHA generation module (not particularly illustrated). and a self-learning CAPTCHA decision module (not particularly illustrated).
  • the CAPTCHA generating module is configured to create in real-time, a media file, at step 202 , in response to a user request for a webpage having CAPTCHA, wherein the created media file is characterized by distortion interference.
  • distortion interference involves overlap of media files.
  • the created file may have an aural form, a visual form or a combination of both, such as audio-visual form, wherein the visual form may include videos or animations.
  • the created media file is a combination of two or more media files that are of the same form or of different forms. Again, when the two or more media files are of the same form, they may be of varying type.
  • the created media file may be an audio file exemplifying conversation in a school, traffic, railway station, zoo, park, and the like.
  • the created media file corresponds to a selected theme from the plurality of themes.
  • Each of the mentioned themes such as school, railway station, zoo, and the like may be associated with a library of media files.
  • the varying types of the two or more media files are associated with an environment and associated contextual information.
  • each theme may be associated with a library of audio files wherein each library may comprise further sub-libraries of audio files pertaining to main dialogues, environmental noise, background noise and background speech in line with the theme of the environment which may be combined in real-time and presented to the user as a created media file.
  • each library may comprise further sub-libraries of audio files pertaining to main dialogues, environmental noise, background noise and background speech in line with the theme of the environment which may be combined in real-time and presented to the user as a created media file.
  • the CAPTCHA generating module is configured to select a comprehension question randomly, at step 204 , for the created media file as the CAPTCHA.
  • a question bank may comprise all possible comprehension questions related to each theme.
  • the selected comprehension question is based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; wherein geography associated with a user also pertains to the corresponding culture and language.
  • FIG. 4 illustrates a working flow diagram of the method for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure.
  • the CAPTCHA generating module first randomly selects a theme (a school in the illustration of FIG. 4 ). In the exemplary embodiment as illustrated in FIG.
  • the created media file is an audio file that is a combination in real-time of four types of audio files viz., main dialogues, background noise, environmental noise and background speech.
  • This technique of combining media files makes it difficult for an ASR engine to interpret the CAPTCHA question.
  • the dialogue in the created audio file may be in single language or multiple languages, grammatically correct/incorrect to make it tough for ASRs to break.
  • the created audio file presented to the user is a real-world scenario which a human experiences in day-to day life like the school in FIG. 4 , processing, extracting and interpreting information would require minimal mental effort.
  • the fact that the theme relates to a real-world scenario and the selected question is based on the context of the created media file facilitates accessibility for users of all abilities.
  • the created media (audio in the exemplary embodiment) file may also be customized considering the geography, culture and language of the user.
  • a comprehension question presented to the user is “What is the teacher teaching”.
  • the question asked in the CAPTCHA is purely based on the context of the school theme and the created audio file, thereby reducing cognitive load on the user.
  • the CAPTCHA generating module is configured to transmit the webpage including the CAPTCHA, at step 206 .
  • the selected comprehension question may be presented in a visual form, an aural form or a combination thereof such as audio-visual form.
  • the self-learning CAPTCHA decision module is configured to, at step 208 , in response to a user input to the comprehension question, intelligently detect either a human input or a machine input.
  • the CAPTCHA generating module may select and transmit at least one alternative comprehension question for the selected theme. For instance, if the self-learning CAPTCHA decision module is unable to make a decision based on the user input to the comprehension question, the CAPTCHA generating module may present an alternative comprehension question for the selected theme.
  • the self-learning CAPTCHA decision module determines its correctness and decides whether the access is made by a human or a machine.
  • the self-learning CAPTCHA decision module is configured to detect either a human input or a machine input by firstly intelligently comparing the user input to previously stored user inputs from a decision repository of the self-learning CAPTCHA decision module.
  • the CAPTCHA decision module may use information retrieval technology strategies to compare the user input by the user with stored user inputs by considering one or more of spelling errors, incomplete responses, contextual metonyms, synonyms and variants thereof.
  • a response to a comprehension question is “tea”
  • possible acceptable responses include “chai (Hindi language synonym), tea (actual answer), chaha (Marathi language synonym), tee (incorrect spelling), hot drink (metonym), cha (incomplete response)”.
  • chai Hindi language synonym
  • tea actual answer
  • chaha Marathi language synonym
  • tee incorrect spelling
  • hot drink metalonym
  • cha (incomplete response) ensures accessibility particularly to dyslexic users and users with learning disabilities.
  • the step of detecting either a human input or a machine input is based on the comparing and associated decision thereof.
  • each user input and associated decision based on the detected input by the self-learning CAPTCHA decision module is dynamically updated in the decision repository to build a knowledge base that may be continually updated for improved decision accuracy.
  • an acceptable user response for the question asked may be “math/mathematics/sum/plus/add/addition” which only a human can interpret and answer.
  • the question asked may remain same (“What is teacher teaching”) but if the main dialogue audio file selected by the CAPTCHA generating module was modified wherein the teacher was teaching English, the accepted answers may change to “english/angrezi/british/foreign”.
  • each comprehension question may be associated with a plurality of solutions corresponding to the created media file for the selected theme making it more complicated for ASR and machine learning engines to crack the CAPTCHA.
  • Background noise traffic sound, car honk 2 times, car driving sound
  • Background speech beggar sound
  • a person selling newspaper in the traffic Environment noise A person in a car which is moving traffic is having a conversation on the phone.
  • Main dialogues Hi Srikanth. What's the time there? It is 10 o'clock in the morning in India.
  • Comprehension questions and acceptable user inputs may be: To whom was the person asking time? Srikanth/male/Srikant What is the time in India as specified in the audio? 10 am/10 o'clock/dus How many times did the car in the background honk? 2 times/twice/do/2/two Which country is being referred in the audio? India/Bharat Which part of the day is 10 o'clock—Morning
  • usability with regards to the inclusive CAPTCHA may be further enhanced by enabling replay of the created media file.
  • User interface may be further enhanced by enabling the user to listen and type at the same time using screen reader and providing keyboard accessibility. As the user clicks on ‘play’, the focus may automatically set on a text input field to enable the user to type as soon as the audio is heard.
  • a shortcut key may be implemented to replay the audio for the user while the focus remains on the text field, thus reducing the number of interaction clicks needed by the user to complete the CAPTCHA.
  • a user study and security testing was conducted to evaluate the usability, accessibility and security of the inclusive CAPTCHA.
  • a total of 119 participants took part in the user study where 24 participants were screen reader users (partially blind or completely blind) and 95 were non-disabled (main stream) users recruited by crowd sourcing.
  • the users were given a brief introduction about CAPTCHA and were required to fill a web-form which had the inclusive CAPTCHA incorporated in it. Through the web-form, the users were asked information like name, age, electronic mail, whether visually impaired. From a set of 10 audios files, a single audio file was selected at random and presented to the user. To take the edge of usability issue, the user was asked to fill a feedback questionnaire consisting of three questions where the users were asked to rate the inclusive CAPTCHA of the present disclosure between 1 and 5 where 1 is the least and 5 is the highest rating.
  • CAPTCHA is a mechanism adopted by several portals to protect their web applications from malicious programs such as bots. Powerful robots backed by machine learning algorithms have the capability to break the existing audio CAPTCHAs.
  • the inclusive CAPTCHA of the present disclosure consists of a media file such as an audio file in the exemplary of FIG. 4 which is a combination of multiple orthogonal speech conversations and different sounds.
  • the inclusive CAPTCHA consisted of human spoken dialogues superimposed with background noise in form of human voices and environment noise relevant to the theme. These created audio CAPTCHA were not decodable by a tested state of the art general purpose Automatic Speech Recognition engine (Speech to text convertor). Table 1 below shows some of the transcripts obtained from the ASR.
  • Audio_6 for legal shelf the 4th floor? Sure. 4th Floor. Going up. Grocery Store Export gate by he how What's the price of Environment: audio_7 can it be quantify onions? Its 45 per kg. it first people How can it be 45, it please on my face was 30 on Monday Hotel Reception null Here's your key. Your Environment: audio_8 room number is 324. If you need anything, please dial 0 for the reception area.
  • the inclusive CAPTCHA audio of the present disclosure has an average play time of 11 seconds.
  • the usability and accessibility of the CAPTCHA was measured on the following metrics:
  • FIG. 5 illustrates a graphical representation of users with different abilities and number of successful and failed attempts using the inclusive CAPTCHA in accordance with an embodiment of the present disclosure.
  • 86% 103 out of 119
  • 84% (20 out of 24) of the users using screen reader and 88% of the non-disabled (main stream) users were able to complete the challenge in the first attempt; however all the users were able to complete the task (success rate is 100% as shown in FIG. 6 wherein a graphical representation of users with different abilities and number of attempts made to successfully complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure is illustrated.
  • the failed attempts in the FIG. 5 represent the number of users who failed to solve the CAPTCHA in the first attempt. However they were able to complete the CAPTCHA task after two or more attempts as shown in FIG. 6 . As observed, there was no user who required a third attempt in the mainstream category while only one user in screen reader category needed a third attempt.
  • Table 2 shows a statistical measure for average response time taken to solve the CAPTCHA in the user study by all, mainstream and screen reader users.
  • FIG. 7 illustrates a graphical representation, in the form of a box plot of users with different abilities and time taken to complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure. The plot clearly shows no significant difference in the completion time scores of the lower and upper quartile range for all and mainstream users however more number of screen reader users fall in the upper quartile range. Summarizing, screen reader users took more time to respond to the CAPTCHA ( FIG.
  • the average time to complete the inclusive CAPTCHA test is 30 seconds with minimum of 8 seconds for main stream users and 38 seconds with minimum of 14 seconds for the screen reader users which is less than 65.64 seconds, the average time to complete a ReCAPTCHA test as known in the art, thus making it more usable.
  • FIG. 8 illustrates a graphical representation of audio file wise analysis for main stream users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure. As observed, more than 85% of the mainstream users have played the audio for one time or two times. In the FIG. 8 , Audio 8 has the highest number of users listening to the audio file one time. This clearly is indicative of how clear the audio sounds were to a human.
  • FIG. 9 illustrates a graphical representation of audio file wise analysis for screen reader users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure. As observed, more than 83% of the screen reader users have played the audio for one time or two times. This clearly is indicative of how clear the audio sounds were to a screen reader user. Table 3 below present the results comparing the inclusive CAPTCHA with the standard image CAPTCHA.
  • systems and methods described herein above provide an inclusive CAPTCHA based on real-world scenarios that users could relate to in day to day life thereby decreasing the cognitive load.
  • Results of security test shows it was difficult to crack and decode by automated engines known in the art.
  • Accessibility and usability tests showed positive responses, easy to use and had a task success rate of 100% and 83% of the screen reader users participated were successful in the first attempt without any initial training of the inclusive CAPTCHA of the present disclosure.
  • Screen Reader users were able to complete the task with an average time of 38 seconds with minimum of 14 seconds which is less as compared to previous studies thus making the inclusive CAPTCHA truly secure, accessible and usable for users of all abilities.
  • the hardware device can be any kind of device which can be programmed including e.g. any kind of computer like a server or a personal computer, or the like, or any combination thereof.
  • the device may also include means which could be e.g. hardware means like e.g. an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination of hardware and software means, e.g.
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the means can include both hardware means and software means.
  • the method embodiments described herein could be implemented in hardware and software.
  • the device may also include software means.
  • the embodiments of the present disclosure may be implemented on different hardware devices, e.g. using a plurality of CPUs.
  • the embodiments herein can comprise hardware and software elements.
  • the embodiments that are implemented in software include but are not limited to, firmware, resident software, microcode, etc.
  • the functions performed by various modules comprising the system of the present disclosure and described herein may be implemented in other modules or combinations of other modules.
  • a computer-usable or computer readable medium can be any apparatus that can comprise, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • the various modules described herein may be implemented as software and/or hardware modules and may be stored in any type of non-transitory computer readable medium or other storage device.
  • Some non-limiting examples of non-transitory computer-readable media include CDs, DVDs, BLU-RAY, flash memory, and hard disk drives.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present disclosure aims to provide CAPTCHA that meets orthogonal requirements of accessibility, usability and security requirements for users of all abilities to make it practically inclusive. The present disclosure provides CAPTCHA questions based on media files associated with real-world scenario thereby ensuring usability and accessibility. Distortion interference is introduced in the media files to ensure security. The questions relate to a selected theme from a plurality of themes. Each theme is further associated with a plurality of media files based on environment and contextual information. Geographical considerations like language and culture are also taken into account to increase usability. The vast repository of media files, types and combinations add to the security aspect of the CAPTCHA. A self-learning CAPTCHA decision module considers one or more of spelling errors, incomplete responses, contextual metonyms, synonyms and variants thereof for intelligently making a decision to enhance the accessibility aspect.

Description

    PRIORITY CLAIM
  • This U.S. patent application claims priority under 35 U.S.C. § 119 to: Indian Patent Application No. 201721025362, filed on 17 Jul. 2017. The entire contents of the aforementioned application are incorporated herein by reference.
  • TECHNICAL FIELD
  • The embodiments herein generally relate to data processing and information security, and more particularly to systems and methods for inclusive CAPTCHA that addresses users of all abilities and particularly optimizes tradeoff between security and accessibility.
  • BACKGROUND
  • Completely Automated Public Turing Tests to Tell Computers and Humans Apart (CAPTCHA) is a computer program or system intended to distinguish human from machine input as a security measure. The purpose of the CAPTCHA is to protect web applications like website registrations, online polls, etc. from malicious programs (bots), dictionary attacks and web crawlers. Users are given a challenge to solve which is understandable by humans. Based on the response given, the system determines whether the user is human or not. CAPTCHAs are classified based on the type of content that is distorted. Some types of CAPTCHA are CAPTCHA based on text, CAPTCHA based on image, CAPTCHA based on audio and CAPTCHA based on puzzle. The state of art CAPTCHA imperatively involves a tradeoff between goals of security and accessibility. It has been observed that in order to provide accessible CAPTCHA for users with disabilities, protected applications may need to be compromised on security aspects. Since CAPTCHA is primarily targeted at information security, it is a challenge to manage security while ensuring usability and accessibility for users of all abilities.
  • SUMMARY
  • Embodiments of the present disclosure present technological improvements as solutions to one or more of the above-mentioned technical problems recognized by the inventors in conventional systems.
  • In an aspect, there is provided a processor implemented method for inclusive CAPTCHA comprising: in response to a user request for a webpage having CAPTCHA, creating a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios; randomly selecting a comprehension question based on the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and transmitting the webpage including the CAPTCHA. Again in response to a user input to the comprehension question, the method intelligently detects either a human input or a machine input based on a self-learning CAPTCHA decision module.
  • In another aspect, there is provided a system comprising: one or more hardware processors and one or more data storage devices (102) operatively coupled to the one or more processors for storing instructions configured for execution by the one or more processors, the instructions being comprised in: a CAPTCHA generating module configured to, in response to a user request for a webpage having CAPTCHA, create a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios; randomly select a comprehension question based on the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and transmit the webpage including the CAPTCHA. The instructions are further comprised in a self-learning CAPTCHA decision module configured to, in response to a user input to the comprehension question, intelligently detect either a human input or a machine input.
  • In yet another aspect, there is provided a computer program product comprising a non-transitory computer readable medium having a computer readable program embodied therein, wherein the computer readable program, when executed on a computing device, causes the computing device to: in response to a user request for a webpage having CAPTCHA, create a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios; randomly select a comprehension question based on the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and transmit the webpage including the CAPTCHA. Again in response to a user input to the comprehension question, the computing device intelligently detects either a human input or a machine input based on a self-learning CAPTCHA decision module.
  • In an embodiment of the present disclosure, the created media file is at least one of an aural form or a visual form.
  • In an embodiment of the present disclosure, the created media file is a combination of two or more media files of the same form but varying type or a combination of two or more media files of different forms, each combination corresponding to the selected theme.
  • In an embodiment of the present disclosure, the varying types of the two or more media files are associated with an environment and contextual information thereof.
  • In an embodiment of the present disclosure, the CAPTCHA generating module is further configured to, in response to a user input to the comprehension question, select and transmit at least one alternative comprehension question for the selected theme.
  • In an embodiment of the present disclosure, each comprehension question is associated with a plurality of solutions corresponding to the created media file for the selected theme.
  • In an embodiment of the present disclosure, the CAPTCHA generating module is further configured to present the selected comprehension question in at least one of visual or aural form.
  • In an embodiment of the present disclosure, the self-learning CAPTCHA decision module is configured to intelligently detect either a human input or a machine input by: intelligently comparing the user input to previously stored user inputs from a decision repository of the self-learning CAPTCHA decision module, considering one or more of spelling errors, incomplete responses, contextual metonyms, synonyms and variants thereof; detecting either a human input or a machine input based on the comparing and associated decision thereof; and updating the decision repository with the user input and associated decision based on the detected input.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the embodiments of the present disclosure, as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments herein will be better understood from the following detailed description with reference to the drawings, in which:
  • FIG. 1 illustrates an exemplary block diagram of a system for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure;
  • FIG. 2 illustrates an exemplary architectural diagram of the system for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure;
  • FIG. 3 is an exemplary flow diagram illustrating a computer implemented method for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure;
  • FIG. 4 illustrates a working flow diagram of the method for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure;
  • FIG. 5 illustrates a graphical representation of users with different abilities and number of successful and failed attempts using the inclusive CAPTCHA in accordance with an embodiment of the present disclosure;
  • FIG. 6 illustrates a graphical representation of users with different abilities and number of attempts made to successfully complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure;
  • FIG. 7 illustrates a graphical representation of users with different abilities and time taken to complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure;
  • FIG. 8 illustrates a graphical representation of audio file wise analysis for main stream users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure; and
  • FIG. 9 illustrates a graphical representation of audio file wise analysis for screen reader users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure.
  • It should be appreciated by those skilled in the art that any block diagram herein represent conceptual views of illustrative systems embodying the principles of the present subject matter. Similarly, it will be appreciated that any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computing device or processor, whether or not such computing device or processor is explicitly shown.
  • DETAILED DESCRIPTION
  • Exemplary embodiments are described with reference to the accompanying drawings. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. Wherever convenient, the same reference numbers are used throughout the drawings to refer to the same or like parts. While examples and features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible without departing from the spirit and scope of the disclosed embodiments. It is intended that the following detailed description be considered as exemplary only, with the true scope and spirit being indicated by the following claims.
  • Before setting forth the detailed explanation, it is noted that all of the discussion below, regardless of the particular implementation being described, is exemplary in nature, rather than limiting.
  • Completely Automated Public Turing Tests to Tell Computers and Humans Apart (CAPTCHA) is a challenge-response test which determines whether the user is a human or not. There are different types of CAPTCHA based on distortion introduced.
    • 1) CAPTCHA based on text: A textual challenge based on reading text or other visual/aural perception tasks are presented to users. For example,
      • Flower, resting, lawyer and campsite: the word starting with “c” is?
      • What is 1+six?
      • Which of sock, library, cake or red is a color?
      • The word in capitals from relieves, luxuriate or CAMPAIGN is?
      • CAPTCHA based on text which have mostly arithmetic, logical or general knowledge based questions can be easily solved by computing engines, creating a security issue. These CAPTCHA are also arduous for cognitively-disabled users to solve.
    • 2) CAPTCHA based on image: Image having combinations of distorted characters and obfuscation techniques or images of real-world objects like animals, people or landscapes are presented to users which they have to identify or read and retype. They are based on reading text or other visual-perception tasks. For example,
      • An image having 12 pets may be presented and user maybe asked to identify all images of cats.
      • User may be presented a picture divided into chunks and user has to combine or swap them to form a complete picture like a jigsaw puzzle.
      • CAPTCHA based on visual perception are inaccessible to visually impaired users as they are designed to be unreadable by machines; common assistive technology tools such as screen readers also cannot interpret them. Sometimes these CAPTCHA have distorted text and images in such a way that it gets difficult for main stream users and low vision users as well to read, thus hampering usability. Also image based CAPTCHA which are in the form of puzzles operations like drag and drop, flipping of images, pointing with mouse may be difficult to perform for keyboard only users. They may also be a challenge for cognitively-disabled users.
    • 3) CAPTCHA based on audio: Audio CAPTCHA was developed particularly for visually impaired users based on sound based systems. Users are generally required to listen to an audio and type into a textbox. They are based on aural-perception tasks. As per research literature, humans find audio CAPTCHA difficult to solve because of distortion interference present. Misinterpretation of letters like T and D, B and P which sound similar when distorted is common. Also, these audios may be easily decoded by current automated speech recognition (ASR) techniques raising a security concern. Audio CAPTCHA also face localization issues as the content in the audios may not be understandable to every user. Audio playback is linear. User relying on screen reader may have a challenge in understanding the difference between voice of the screen reader and the audio.
  • It may be noted from the state of art CAPTCHA that successful implementation of CAPTCHA that is accessible, secure and simultaneously usable is a challenge. Visually impaired, low vision users find image based CAPTCHA challenging as they are unable to visually perceive it thus making it inaccessible and un-usable. Security aspect of image based CAPTCHA may also be negotiated and broken with machine learning techniques unless accessibility is compromised. Audio CAPTCHA may cater to visually challenged users but may be difficult to solve and time consuming and have a low success rate as seen in research literature, thus further degrading usability and effecting accessibility. Also state of art audio CAPTCHA may be been broken by high-quality Automatic Speech Recognition (ASR) and noise removal systems. The present disclosure addresses particularly the tradeoff between accessibility and security seen in state of the art CAPTCHA and accordingly, the methods and systems of the present disclosure aim to provide an inclusive CAPTCHA that meets the orthogonal requirements of usability, accessibility and security while addressing users of all needs and hence being inclusive.
  • Referring now to the drawings, and more particularly to FIGS. 1 through 9, where similar reference characters denote corresponding features consistently throughout the figures, there are shown preferred embodiments and these embodiments are described in the context of the following exemplary system and method.
  • FIG. 1 illustrates an exemplary block diagram of a system 100 for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure. In an embodiment, the system 100 includes one or more processors 104, communication interface device(s) or input/output (I/O) interface(s) 106, and one or more data storage devices or memory 102 operatively coupled to the one or more processors 104. The one or more processors 104 that are hardware processors can be implemented as one or more microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, state machines, graphics controllers, logic circuitries, and/or any devices that manipulate signals based on operational instructions. Among other capabilities, the processor(s) are configured to fetch and execute computer-readable instructions stored in the memory. In an embodiment, the system 100 can be implemented in a variety of computing systems, such as laptop computers, notebooks, hand-held devices, workstations, mainframe computers, servers, a network cloud and the like.
  • The I/O interface device(s) 106 can include a variety of software and hardware interfaces, for example, a web interface, a graphical user interface, and the like and can facilitate multiple communications within a wide variety of networks N/W and protocol types, including wired networks, for example, LAN, cable, etc., and wireless networks, such as WLAN, cellular, or satellite. In an embodiment, the I/O interface device(s) can include one or more ports for connecting a number of devices to one another or to another server.
  • The memory 102 may include any computer-readable medium known in the art including, for example, volatile memory, such as static random access memory (SRAM) and dynamic random access memory (DRAM), and/or non-volatile memory, such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes. In an embodiment, one or more modules (not shown) of the system 100 can be stored in the memory 102.
  • FIG. 2 illustrates an exemplary architectural diagram of the system for providing inclusive CAPTCHA, in accordance with an embodiment of the present disclosure. The inclusive CAPTCHA of the present disclosure considers the orthogonal requirements of usability, security and accessibility for users with disabilities (visual, hear, motor, disability) and also main stream users to make the CAPTCHA practically inclusive. FIG. 3 is an exemplary flow diagram illustrating a computer implemented method 200 for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure. In an embodiment, the system 100 comprises one or more data storage devices or memory 102 operatively coupled to the one or more processors 104 and is configured to store instructions configured for execution of steps of the method 200 by the one or more processors 104.
  • The steps of the method 200 will now be explained in detail with reference to the components of the system 100 based on the architectural diagram of FIG. 2. In an embodiment, the system 100 may comprise exemplary modules such a CAPTCHA generation module (not particularly illustrated). and a self-learning CAPTCHA decision module (not particularly illustrated). In an embodiment, the CAPTCHA generating module is configured to create in real-time, a media file, at step 202, in response to a user request for a webpage having CAPTCHA, wherein the created media file is characterized by distortion interference. In the context of the present disclosure, distortion interference involves overlap of media files. In accordance with the present disclosure, the created file may have an aural form, a visual form or a combination of both, such as audio-visual form, wherein the visual form may include videos or animations. However, for ease of explanation, certain exemplary embodiments may be explained with reference to audio files that may not be construed as limiting the scope and/or the applicability of the appended claims. In another embodiment, the created media file is a combination of two or more media files that are of the same form or of different forms. Again, when the two or more media files are of the same form, they may be of varying type. In accordance with the present disclosure, there may be a plurality of themes associated with real-world scenarios. For instance, the created media file may be an audio file exemplifying conversation in a school, traffic, railway station, zoo, park, and the like. The created media file corresponds to a selected theme from the plurality of themes. Each of the mentioned themes such as school, railway station, zoo, and the like may be associated with a library of media files. Again, in an embodiment, the varying types of the two or more media files are associated with an environment and associated contextual information. For instance, in case of the created media file being an audio file, each theme may be associated with a library of audio files wherein each library may comprise further sub-libraries of audio files pertaining to main dialogues, environmental noise, background noise and background speech in line with the theme of the environment which may be combined in real-time and presented to the user as a created media file. The level of possible combinations for each theme and the possible variants along with the distortion interference or overlap of the media files, for instance the described four types of audio files to create the media file enables addressing the security aspect.
  • In an embodiment, the CAPTCHA generating module is configured to select a comprehension question randomly, at step 204, for the created media file as the CAPTCHA. In an embodiment, a question bank may comprise all possible comprehension questions related to each theme. In an embodiment, the selected comprehension question is based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; wherein geography associated with a user also pertains to the corresponding culture and language. FIG. 4 illustrates a working flow diagram of the method for inclusive CAPTCHA, in accordance with an embodiment of the present disclosure. The CAPTCHA generating module first randomly selects a theme (a school in the illustration of FIG. 4). In the exemplary embodiment as illustrated in FIG. 4, the created media file is an audio file that is a combination in real-time of four types of audio files viz., main dialogues, background noise, environmental noise and background speech. This technique of combining media files (for instance, audio files, by say a real-time audio mixer module) makes it difficult for an ASR engine to interpret the CAPTCHA question. The dialogue in the created audio file may be in single language or multiple languages, grammatically correct/incorrect to make it tough for ASRs to break. As the created audio file presented to the user is a real-world scenario which a human experiences in day-to day life like the school in FIG. 4, processing, extracting and interpreting information would require minimal mental effort. Also, the fact that the theme relates to a real-world scenario and the selected question is based on the context of the created media file facilitates accessibility for users of all abilities. Again, the created media (audio in the exemplary embodiment) file may also be customized considering the geography, culture and language of the user. As seen in FIG. 4, a comprehension question presented to the user is “What is the teacher teaching”. The question asked in the CAPTCHA is purely based on the context of the school theme and the created audio file, thereby reducing cognitive load on the user.
  • It may be noted that merging multiple media files makes it difficult for automated scripts to recognize audio or images and extract information accurately to respond to the CAPTCHA; whereas, being context related and associated with real-world scenarios, the CAPTCHA is easy for a human to comprehend.
  • In an embodiment, the CAPTCHA generating module is configured to transmit the webpage including the CAPTCHA, at step 206. In an embodiment, the selected comprehension question may be presented in a visual form, an aural form or a combination thereof such as audio-visual form.
  • In an embodiment, the self-learning CAPTCHA decision module is configured to, at step 208, in response to a user input to the comprehension question, intelligently detect either a human input or a machine input.
  • In an embodiment, in response to the user input to the comprehension question, the CAPTCHA generating module may select and transmit at least one alternative comprehension question for the selected theme. For instance, if the self-learning CAPTCHA decision module is unable to make a decision based on the user input to the comprehension question, the CAPTCHA generating module may present an alternative comprehension question for the selected theme.
  • Once the user answers the comprehensive question presented the self-learning CAPTCHA decision module determines its correctness and decides whether the access is made by a human or a machine. In an embodiment, the self-learning CAPTCHA decision module is configured to detect either a human input or a machine input by firstly intelligently comparing the user input to previously stored user inputs from a decision repository of the self-learning CAPTCHA decision module. The CAPTCHA decision module may use information retrieval technology strategies to compare the user input by the user with stored user inputs by considering one or more of spelling errors, incomplete responses, contextual metonyms, synonyms and variants thereof. For instance, if a response to a comprehension question is “tea”, possible acceptable responses include “chai (Hindi language synonym), tea (actual answer), chaha (Marathi language synonym), tee (incorrect spelling), hot drink (metonym), cha (incomplete response)”. This feature of the present disclosure ensures accessibility particularly to dyslexic users and users with learning disabilities. The step of detecting either a human input or a machine input is based on the comparing and associated decision thereof. In a self-learning manner, each user input and associated decision based on the detected input by the self-learning CAPTCHA decision module is dynamically updated in the decision repository to build a knowledge base that may be continually updated for improved decision accuracy.
  • In the exemplary example of FIG. 4, an acceptable user response for the question asked may be “math/mathematics/sum/plus/add/addition” which only a human can interpret and answer. In another instance, if the same theme (school) is selected, the question asked may remain same (“What is teacher teaching”) but if the main dialogue audio file selected by the CAPTCHA generating module was modified wherein the teacher was teaching English, the accepted answers may change to “english/angrezi/british/foreign”. Thus, in an embodiment, each comprehension question may be associated with a plurality of solutions corresponding to the created media file for the selected theme making it more complicated for ASR and machine learning engines to crack the CAPTCHA.
  • In another exemplary example, there may be four types of audio files:
  • Background noise: traffic sound, car honk 2 times, car driving sound
    Background speech: beggar sound, a person selling newspaper in the traffic
    Environment noise: A person in a car which is moving traffic is having a conversation on the phone.
    Main dialogues: Hi Srikanth. What's the time there? It is 10 o'clock in the morning in India.
    Comprehension questions and acceptable user inputs may be:
    To whom was the person asking time? Srikanth/male/Srikant
    What is the time in India as specified in the audio? 10 am/10 o'clock/dus
    How many times did the car in the background honk? 2 times/twice/do/2/two
    Which country is being referred in the audio? India/Bharat
    Which part of the day is 10 o'clock—Morning
  • In accordance with the present disclosure, usability with regards to the inclusive CAPTCHA may be further enhanced by enabling replay of the created media file. User interface (UI) may be further enhanced by enabling the user to listen and type at the same time using screen reader and providing keyboard accessibility. As the user clicks on ‘play’, the focus may automatically set on a text input field to enable the user to type as soon as the audio is heard. In an embodiment, a shortcut key may be implemented to replay the audio for the user while the focus remains on the text field, thus reducing the number of interaction clicks needed by the user to complete the CAPTCHA.
  • Evaluation study conducted on an exemplary embodiment of the present disclosure with audio files:
  • Procedure: A user study and security testing was conducted to evaluate the usability, accessibility and security of the inclusive CAPTCHA. A total of 119 participants took part in the user study where 24 participants were screen reader users (partially blind or completely blind) and 95 were non-disabled (main stream) users recruited by crowd sourcing. There was no restriction on the type of screen reader software used by the screen reader users and all the users were asked to use their own devices. The users were given a brief introduction about CAPTCHA and were required to fill a web-form which had the inclusive CAPTCHA incorporated in it. Through the web-form, the users were asked information like name, age, electronic mail, whether visually impaired. From a set of 10 audios files, a single audio file was selected at random and presented to the user. To take the edge of usability issue, the user was asked to fill a feedback questionnaire consisting of three questions where the users were asked to rate the inclusive CAPTCHA of the present disclosure between 1 and 5 where 1 is the least and 5 is the highest rating.
  • Security Analysis: CAPTCHA is a mechanism adopted by several portals to protect their web applications from malicious programs such as bots. Powerful robots backed by machine learning algorithms have the capability to break the existing audio CAPTCHAs. However, the inclusive CAPTCHA of the present disclosure consists of a media file such as an audio file in the exemplary of FIG. 4 which is a combination of multiple orthogonal speech conversations and different sounds. The inclusive CAPTCHA consisted of human spoken dialogues superimposed with background noise in form of human voices and environment noise relevant to the theme. These created audio CAPTCHA were not decodable by a tested state of the art general purpose Automatic Speech Recognition engine (Speech to text convertor). Table 1 below shows some of the transcripts obtained from the ASR.
  • TABLE 2
    Comparison of ASR engine and actual audio file transcripts
    Transcripts obtained Actual scripts of the
    Theme and audio file from ASR audio file
    Temple Environment: He couldn't refrain Where are you going,
    audio_1 greenness Kiran?
    I am going to the
    Temple, John.
    Phone Conversation in null Hi Tina, What's the
    Busy Street: audio_2 time there?
    It's 10'o clock
    morning in India
    School Environment: added on the line Add the numbers
    audio_3 Newton anything but and you will add like
    how do you live like 43 plus 72
    Florida yeah family
    jewels
    Train Station null 78861 from Delhi to
    Environment: audio_4 Raipur is arriving on
    platform number 6
    Zoo Environment: null Mummy, see the white
    audio_5 elephant
    Lift Environment: can you clarify 7th floor. Can u press
    Audio_6 for legal shelf the 4th floor? Sure.
    4th Floor. Going up.
    Grocery Store Export gate by he how What's the price of
    Environment: audio_7 can it be quantify onions? Its 45 per kg.
    it first people How can it be 45, it
    please on my face was 30 on Monday
    Hotel Reception null Here's your key. Your
    Environment: audio_8 room number is 324. If
    you need anything,
    please dial 0 for the
    reception area.
  • The results clearly indicate that the transcripts obtained from ASR were not at all close to the actual scripts of the audio, thereby proving the inclusive CAPTCHA of the present disclosure is strong and difficult for a machine to decode.
  • Quantitative analysis: The inclusive CAPTCHA audio of the present disclosure has an average play time of 11 seconds. The usability and accessibility of the CAPTCHA was measured on the following metrics:
      • Time to complete one entire challenge (completion time)
      • Thinking time of the user (the time duration between the audio completion and before the user types his response)
      • Number of times the user heard the audio to solve the CAPTCHA
  • User Performance Analysis: With the assumption that a user is able to solve the CAPTCHA in first attempt it is recorded as a successful attempt. FIG. 5 illustrates a graphical representation of users with different abilities and number of successful and failed attempts using the inclusive CAPTCHA in accordance with an embodiment of the present disclosure. Of 86% (103 out of 119) successful attempts by all users, 84% (20 out of 24) of the users using screen reader and 88% of the non-disabled (main stream) users were able to complete the challenge in the first attempt; however all the users were able to complete the task (success rate is 100% as shown in FIG. 6 wherein a graphical representation of users with different abilities and number of attempts made to successfully complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure is illustrated.
  • The failed attempts in the FIG. 5 represent the number of users who failed to solve the CAPTCHA in the first attempt. However they were able to complete the CAPTCHA task after two or more attempts as shown in FIG. 6. As observed, there was no user who required a third attempt in the mainstream category while only one user in screen reader category needed a third attempt.
  • Response time analysis: Table 2 below shows a statistical measure for average response time taken to solve the CAPTCHA in the user study by all, mainstream and screen reader users.
  • TABLE 2
    Time Response comparison for inclusive CAPTCHA
    Mainstream Screen reader
    All users users users
    Avg. response time 31 seconds 30 seconds 38 seconds
    Minimum time 8 seconds 8 seconds 14 seconds
    Maximum time 142 seconds 130 seconds 142 seconds

    To understand the overall distribution and variation for the response time of all the participants part of user study a box plot was included for measurement in addition to the average response time. FIG. 7 illustrates a graphical representation, in the form of a box plot of users with different abilities and time taken to complete the inclusive CAPTCHA in accordance with an embodiment of the present disclosure. The plot clearly shows no significant difference in the completion time scores of the lower and upper quartile range for all and mainstream users however more number of screen reader users fall in the upper quartile range. Summarizing, screen reader users took more time to respond to the CAPTCHA (FIG. 7) but 84% of the users got it right in the first attempt (with no background about the inclusive CAPTCHA) also the response time improves when used multiple times. The average time to complete the inclusive CAPTCHA test is 30 seconds with minimum of 8 seconds for main stream users and 38 seconds with minimum of 14 seconds for the screen reader users which is less than 65.64 seconds, the average time to complete a ReCAPTCHA test as known in the art, thus making it more usable.
  • Audio file-wise analysis: FIG. 8 illustrates a graphical representation of audio file wise analysis for main stream users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure. As observed, more than 85% of the mainstream users have played the audio for one time or two times. In the FIG. 8, Audio 8 has the highest number of users listening to the audio file one time. This clearly is indicative of how clear the audio sounds were to a human. FIG. 9 illustrates a graphical representation of audio file wise analysis for screen reader users of the inclusive CAPTCHA in accordance with an embodiment of the present disclosure. As observed, more than 83% of the screen reader users have played the audio for one time or two times. This clearly is indicative of how clear the audio sounds were to a screen reader user. Table 3 below present the results comparing the inclusive CAPTCHA with the standard image CAPTCHA.
  • TABLE 3
    Comparing inclusive CAPTCHA and image
    CAPTCHA between mainstream users.
    Inclusive CAPTCHA Image CAPTCHA
    Average time taken to 33 seconds 22 seconds
    complete the
    CAPTCHA challenge
    Minimum time 8 seconds 1.62 seconds
    Maximum time 130 seconds 39 seconds
    Average typing time 6 seconds 8 seconds
    Minimum 1.43 seconds 3 seconds
    Maximum 31 seconds 22 seconds

    The average time taken to complete the inclusive CAPTCHA of the present disclosure is on higher side however it was observed that average typing time taken for inclusive CAPTCHA is less than that of Image CAPTCHA because the user had read the questions, listened to the audio file and answered the question based on the audio file thus reducing the cognitive load of thinking of an answer to solve the CAPTCHA.
  • Qualitative Analysis: At the end, a feedback questionnaire of 3 questions was asked and the users were supposed to rate between 1 and 5 where 1 is the least and 5 is the highest rating. Table 4 below summarizes the average score of the each question given by the users depicting a positive feedback about the overall experience in solving the inclusive CAPTCHA.
  • TABLE 4
    Average score for the feedback questions asked.
    Inclusive CAPTCHA Image CAPTCHA
    How easy was it to use 4.31 4.62
    the inclusive
    CAPTCHA?
    How easy is it to 4.13 4.48
    understand the content
    in the audio file?
    How easy was it to 4.27 4.62
    solve the CAPTCHA
    challenge?
  • Thus in accordance with the present disclosure, systems and methods described herein above provide an inclusive CAPTCHA based on real-world scenarios that users could relate to in day to day life thereby decreasing the cognitive load. Results of security test shows it was difficult to crack and decode by automated engines known in the art. Accessibility and usability tests showed positive responses, easy to use and had a task success rate of 100% and 83% of the screen reader users participated were successful in the first attempt without any initial training of the inclusive CAPTCHA of the present disclosure. Screen Reader users were able to complete the task with an average time of 38 seconds with minimum of 14 seconds which is less as compared to previous studies thus making the inclusive CAPTCHA truly secure, accessible and usable for users of all abilities.
  • The written description describes the subject matter herein to enable any person skilled in the art to make and use the embodiments of the present disclosure. The scope of the subject matter embodiments defined here may include other modifications that occur to those skilled in the art. Such other modifications are intended to be within the scope if they have similar elements that do not differ from the literal language of the claims or if they include equivalent elements with insubstantial differences from the literal language.
  • The scope of the subject matter embodiments defined here may include other modifications that occur to those skilled in the art. Such other modifications are intended to be within the scope if they have similar elements that do not differ from the literal language of the claims or if they include equivalent elements with insubstantial differences from the literal language.
  • It is, however to be understood that the scope of the protection is extended to such a program and in addition to a computer-readable means having a message therein; such computer-readable storage means contain program-code means for implementation of one or more steps of the method, when the program runs on a server or mobile device or any suitable programmable device. The hardware device can be any kind of device which can be programmed including e.g. any kind of computer like a server or a personal computer, or the like, or any combination thereof. The device may also include means which could be e.g. hardware means like e.g. an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination of hardware and software means, e.g. an ASIC and an FPGA, or at least one microprocessor and at least one memory with software modules located therein. Thus, the means can include both hardware means and software means. The method embodiments described herein could be implemented in hardware and software. The device may also include software means. Alternatively, the embodiments of the present disclosure may be implemented on different hardware devices, e.g. using a plurality of CPUs.
  • The embodiments herein can comprise hardware and software elements. The embodiments that are implemented in software include but are not limited to, firmware, resident software, microcode, etc. The functions performed by various modules comprising the system of the present disclosure and described herein may be implemented in other modules or combinations of other modules. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can comprise, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The various modules described herein may be implemented as software and/or hardware modules and may be stored in any type of non-transitory computer readable medium or other storage device. Some non-limiting examples of non-transitory computer-readable media include CDs, DVDs, BLU-RAY, flash memory, and hard disk drives.
  • Further, although process steps, method steps, techniques or the like may be described in a sequential order, such processes, methods and techniques may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps be performed in that order. The steps of processes described herein may be performed in any order practical. Further, some steps may be performed simultaneously.
  • The illustrated steps are set out to explain the exemplary embodiments shown, and it should be anticipated that ongoing technological development will change the manner in which particular functions are performed. These examples are presented herein for purposes of illustration, and not limitation. Further, the boundaries of the functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternative boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed. Alternatives (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternatives fall within the scope and spirit of the disclosed embodiments. Also, the words “comprising,” “having,” “containing,” and “including,” and other similar forms are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It must also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
  • It is intended that the disclosure and examples be considered as exemplary only, with a true scope and spirit of disclosed embodiments being indicated by the following claims.

Claims (17)

What is claimed is:
1. A processor implemented method (200) for inclusive CAPTCHA, the method comprising:
in response to a user request for a webpage having CAPTCHA,
creating a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios (202);
randomly selecting a comprehension question for the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file (204); and
transmitting the webpage including the CAPTCHA (206); and
in response to a user input to the comprehension question,
intelligently detecting either a human input or a machine input based on a self-learning CAPTCHA decision module (208).
2. The processor implemented method of claim 1, wherein the created media file is at least one of an aural form or a visual form.
3. The processor implemented method of claim 2, wherein the created media file is a combination of two or more media files of the same form but varying type or a combination of two or more media files of different forms, each combination corresponding to the selected theme.
4. The processor implemented method of claim 3, wherein the varying types of the two or more media files are associated with an environment and contextual information thereof.
5. The processor implemented method of claim 1, wherein the step of in response to a user input to the comprehension question further comprises selecting and transmitting at least one alternative comprehension question for the selected theme.
6. The processor implemented method of claim 1, wherein each comprehension question is associated with a plurality of solutions corresponding to the created media file for the selected theme.
7. The processor implemented method of claim 1, wherein the step of transmitting the webpage including the CAPTCHA comprises presenting the selected comprehension question in at least one of visual or aural form.
8. The processor implemented method of claim 1, wherein the step of intelligently detecting either a human input or a machine input based on a self-learning CAPTCHA decision module comprises:
intelligently comparing the user input to previously stored user inputs from a decision repository of the self-learning CAPTCHA decision module, considering one or more of spelling errors, incomplete responses, contextual metonyms, synonyms and variants thereof;
detecting either a human input or a machine input based on the comparing and associated decision thereof; and
dynamically updating the decision repository with the user input and associated decision based on the detected input.
9. A system (100) for providing inclusive CAPTCHA comprising:
one or more hardware processors (104); and
one or more data storage devices (102) operatively coupled to the one or more processors (104) for storing instructions configured for execution by the one or more processors (104), the instructions being comprised in:
a CAPTCHA generating module configured to, in response to a user request for a webpage having CAPTCHA,
create a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios;
randomly select a comprehension question for the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and
transmit the webpage including the CAPTCHA; and
a self-learning CAPTCHA decision module configured to, in response to a user input to the comprehension question,
intelligently detect either a human input or a machine input.
10. The system of claim 9, wherein the created media file is at least one of an aural form or a visual form.
11. The system of claim 10, wherein the created media file is a combination of two or more media files of the same form but varying type or a combination of two or more media files of different forms, each combination corresponding to the selected theme.
12. The system of claim 11, wherein the varying types of the two or more media files are associated with an environment and contextual information thereof.
13. The system of claim 9, wherein the CAPTCHA generating module is further configured to, in response to a user input to the comprehension question, select and transmit at least one alternative comprehension question for the selected theme.
14. The system of claim 9, wherein each comprehension question is associated with a plurality of solutions corresponding to the created media file for the selected theme.
15. The system of claim 9, wherein the CAPTCHA generating module is further configured to present the selected comprehension question in at least one of visual or aural form.
16. The system of claim 9, wherein the self-learning CAPTCHA decision module is configured to intelligently detect either a human input or a machine input by:
intelligently comparing the user input to previously stored user inputs from a decision repository of the self-learning CAPTCHA decision module, considering one or more of spelling errors, incomplete responses, contextual metonyms, synonyms and variants thereof;
detecting either a human input or a machine input based on the comparing and associated decision thereof; and
updating the decision repository with the user input and associated decision based on the detected input.
17. A computer program product comprising a non-transitory computer readable medium having a computer readable program embodied therein, wherein the computer readable program, when executed on a computing device, causes the computing device to:
in response to a user request for a webpage having CAPTCHA,
create a media file in real-time, wherein the created media file is characterized by distortion interference and corresponds to a selected theme from a plurality of themes associated with real-world scenarios;
randomly select a comprehension question for the created media file as the CAPTCHA, the comprehension question being based on the selected theme, geography associated with a user requesting the webpage and context of the created media file; and
transmit the webpage including the CAPTCHA; and
in response to a user input to the comprehension question,
intelligently detect either a human input or a machine input.
US15/922,632 2017-07-17 2018-03-15 Systems and methods for inclusive captcha Active 2039-01-09 US10915610B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201721025362 2017-07-17
IN201721025362 2017-07-17

Publications (2)

Publication Number Publication Date
US20190018937A1 true US20190018937A1 (en) 2019-01-17
US10915610B2 US10915610B2 (en) 2021-02-09

Family

ID=61628146

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/922,632 Active 2039-01-09 US10915610B2 (en) 2017-07-17 2018-03-15 Systems and methods for inclusive captcha

Country Status (5)

Country Link
US (1) US10915610B2 (en)
EP (1) EP3432182B1 (en)
CN (1) CN110020059B (en)
AU (1) AU2018201883B2 (en)
CA (1) CA3011151C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200012627A1 (en) * 2019-08-27 2020-01-09 Lg Electronics Inc. Method for building database in which voice signals and texts are matched and a system therefor, and a computer-readable recording medium recording the same
US20200065466A1 (en) * 2018-08-23 2020-02-27 International Business Machines Corporation Captcha generation based on environment-specific vocabulary
US11386193B2 (en) * 2020-02-21 2022-07-12 Dell Products L.P. Framework to design completely automated reverse Turing tests
US11429725B1 (en) * 2018-04-26 2022-08-30 Citicorp Credit Services, Inc. (Usa) Automated security risk assessment systems and methods
US11568087B2 (en) 2019-05-22 2023-01-31 International Business Machines Corporation Contextual API captcha
US11663307B2 (en) * 2018-09-24 2023-05-30 Georgia Tech Research Corporation RtCaptcha: a real-time captcha based liveness detection system
US20230178065A1 (en) * 2021-12-02 2023-06-08 Jpmorgan Chase Bank, N.A. Evaluating screen content for accessibility

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432182B1 (en) * 2017-07-17 2020-04-15 Tata Consultancy Services Limited Systems and methods for secure, accessible and usable captcha
US11204987B2 (en) 2019-11-07 2021-12-21 Nxp B.V. Method for generating a test for distinguishing humans from computers
CN116738407B (en) * 2023-08-14 2023-10-27 北京安天网络安全技术有限公司 Method, device and medium for determining abiotic user

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114224A1 (en) * 2001-12-18 2003-06-19 Nokia Corporation Distributed game over a wireless telecommunications network
US20050208458A1 (en) * 2003-10-16 2005-09-22 Leapfrog Enterprises, Inc. Gaming apparatus including platform
US20070052169A1 (en) * 2005-08-23 2007-03-08 Heather Shanks Educational board game and method of playing
US20080104065A1 (en) * 2006-10-26 2008-05-01 Microsoft Corporation Automatic generator and updater of faqs
US20080127302A1 (en) * 2006-08-22 2008-05-29 Fuji Xerox Co., Ltd. Motion and interaction based captchas
US20090055193A1 (en) * 2007-02-22 2009-02-26 Pudding Holdings Israel Ltd. Method, apparatus and computer code for selectively providing access to a service in accordance with spoken content received from a user
US20090119234A1 (en) * 2007-11-02 2009-05-07 Hunch Inc. Interactive machine learning advice facility
US20090288150A1 (en) * 2008-05-16 2009-11-19 University Of Washington Access control by testing for shared knowledge
US7890857B1 (en) * 2006-07-25 2011-02-15 Hewlett-Packard Development Company, L.P. Method and system for utilizing sizing directives for media
US20110209076A1 (en) * 2010-02-24 2011-08-25 Infosys Technologies Limited System and method for monitoring human interaction
US8036902B1 (en) * 2006-06-21 2011-10-11 Tellme Networks, Inc. Audio human verification
US20110302117A1 (en) * 2007-11-02 2011-12-08 Thomas Pinckney Interestingness recommendations in a computing advice facility
EP2410450A1 (en) * 2010-07-19 2012-01-25 Dan-Mihai Negrea Method for providing a challenge based on a content
US20120084450A1 (en) * 2010-10-01 2012-04-05 Disney Enterprises, Inc. Audio challenge for providing human response verification
US20120090028A1 (en) * 2010-10-12 2012-04-12 David Lapsley Real-time network attack detection and mitigation infrastructure
US20130276125A1 (en) * 2008-04-01 2013-10-17 Leap Marketing Technologies Inc. Systems and methods for assessing security risk
US8590058B2 (en) * 2011-07-31 2013-11-19 International Business Machines Corporation Advanced audio CAPTCHA
US20130344468A1 (en) * 2012-06-26 2013-12-26 Robert Taaffe Lindsay Obtaining Structured Data From Freeform Textual Answers in a Research Poll
US20140059663A1 (en) * 2011-08-05 2014-02-27 EngageClick, Inc. System and method for creating and implementing scalable and effective multi-media objects with human interaction proof (hip) capabilities
US8667566B2 (en) * 2010-11-30 2014-03-04 Towson University Audio based human-interaction proof
US20140101739A1 (en) * 2012-10-09 2014-04-10 Microsoft Corporation Semantic challenge for audio human interactive proof
US20140307876A1 (en) * 2013-04-10 2014-10-16 Google Inc. Systems and Methods for Three-Dimensional Audio CAPTCHA
US20140379456A1 (en) * 2013-06-24 2014-12-25 United Video Properties, Inc. Methods and systems for determining impact of an advertisement
US20150271166A1 (en) * 2011-03-24 2015-09-24 AYaH, LLC Method for generating a human likeness score
US9166974B2 (en) * 2013-01-04 2015-10-20 Gary Shuster Captcha systems and methods
US9519766B1 (en) * 2015-09-07 2016-12-13 Voicebox Technologies Corporation System and method of providing and validating enhanced CAPTCHAs
US9558337B2 (en) * 2008-06-23 2017-01-31 John Nicholas and Kristin Gross Trust Methods of creating a corpus of spoken CAPTCHA challenges
US20170078319A1 (en) * 2015-05-08 2017-03-16 A10 Networks, Incorporated Captcha risk or score techniques
US20170161477A1 (en) * 2015-12-03 2017-06-08 Google Inc. Image Based CAPTCHA Challenges
US9767263B1 (en) * 2014-09-29 2017-09-19 Amazon Technologies, Inc. Turing test via failure
US20170300676A1 (en) * 2015-04-16 2017-10-19 Tencent Technology (Shenzhen) Company Limited Method and device for realizing verification code
US20180129978A1 (en) * 2016-11-09 2018-05-10 Gamalon, Inc. Machine learning data analysis system and method
EP3432182A1 (en) * 2017-07-17 2019-01-23 Tata Consultancy Services Limited Systems and methods for secure, accessible and usable captcha

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655939B2 (en) * 2007-01-05 2014-02-18 Digital Doors, Inc. Electromagnetic pulse (EMP) hardened information infrastructure with extractor, cloud dispersal, secure storage, content analysis and classification and method therefor
EP2109837B1 (en) * 2007-01-23 2012-11-21 Carnegie Mellon University Controlling access to computer systems and for annotating media files
CN101286093A (en) * 2007-04-09 2008-10-15 谷歌股份有限公司 Client input method
US8151343B1 (en) * 2007-07-30 2012-04-03 Intuit Inc. Method and system for providing authentication credentials
US8245277B2 (en) * 2008-10-15 2012-08-14 Towson University Universally usable human-interaction proof
US8959621B2 (en) * 2009-12-22 2015-02-17 Disney Enterprises, Inc. Human verification by contextually iconic visual public turing test
CN106487747B (en) * 2015-08-26 2019-10-08 阿里巴巴集团控股有限公司 User identification method, system, device and processing method, device
US9852768B1 (en) * 2016-06-03 2017-12-26 Maverick Co., Ltd. Video editing using mobile terminal and remote computer
US11138262B2 (en) * 2016-09-21 2021-10-05 Melodia, Inc. Context-aware music recommendation methods and systems

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114224A1 (en) * 2001-12-18 2003-06-19 Nokia Corporation Distributed game over a wireless telecommunications network
US20050208458A1 (en) * 2003-10-16 2005-09-22 Leapfrog Enterprises, Inc. Gaming apparatus including platform
US20070052169A1 (en) * 2005-08-23 2007-03-08 Heather Shanks Educational board game and method of playing
US8036902B1 (en) * 2006-06-21 2011-10-11 Tellme Networks, Inc. Audio human verification
US7890857B1 (en) * 2006-07-25 2011-02-15 Hewlett-Packard Development Company, L.P. Method and system for utilizing sizing directives for media
US20080127302A1 (en) * 2006-08-22 2008-05-29 Fuji Xerox Co., Ltd. Motion and interaction based captchas
US20080104065A1 (en) * 2006-10-26 2008-05-01 Microsoft Corporation Automatic generator and updater of faqs
US20090055193A1 (en) * 2007-02-22 2009-02-26 Pudding Holdings Israel Ltd. Method, apparatus and computer code for selectively providing access to a service in accordance with spoken content received from a user
US20090119234A1 (en) * 2007-11-02 2009-05-07 Hunch Inc. Interactive machine learning advice facility
US20110302117A1 (en) * 2007-11-02 2011-12-08 Thomas Pinckney Interestingness recommendations in a computing advice facility
US20130276125A1 (en) * 2008-04-01 2013-10-17 Leap Marketing Technologies Inc. Systems and methods for assessing security risk
US20090288150A1 (en) * 2008-05-16 2009-11-19 University Of Washington Access control by testing for shared knowledge
US9558337B2 (en) * 2008-06-23 2017-01-31 John Nicholas and Kristin Gross Trust Methods of creating a corpus of spoken CAPTCHA challenges
US20110209076A1 (en) * 2010-02-24 2011-08-25 Infosys Technologies Limited System and method for monitoring human interaction
EP2410450A1 (en) * 2010-07-19 2012-01-25 Dan-Mihai Negrea Method for providing a challenge based on a content
US20120084450A1 (en) * 2010-10-01 2012-04-05 Disney Enterprises, Inc. Audio challenge for providing human response verification
US20120090028A1 (en) * 2010-10-12 2012-04-12 David Lapsley Real-time network attack detection and mitigation infrastructure
US8667566B2 (en) * 2010-11-30 2014-03-04 Towson University Audio based human-interaction proof
US20150271166A1 (en) * 2011-03-24 2015-09-24 AYaH, LLC Method for generating a human likeness score
US8590058B2 (en) * 2011-07-31 2013-11-19 International Business Machines Corporation Advanced audio CAPTCHA
US20140059663A1 (en) * 2011-08-05 2014-02-27 EngageClick, Inc. System and method for creating and implementing scalable and effective multi-media objects with human interaction proof (hip) capabilities
US20130344468A1 (en) * 2012-06-26 2013-12-26 Robert Taaffe Lindsay Obtaining Structured Data From Freeform Textual Answers in a Research Poll
US20140101739A1 (en) * 2012-10-09 2014-04-10 Microsoft Corporation Semantic challenge for audio human interactive proof
WO2014058810A1 (en) * 2012-10-09 2014-04-17 Microsoft Corporation Semantic challenge for audio human interactive proof
US9166974B2 (en) * 2013-01-04 2015-10-20 Gary Shuster Captcha systems and methods
US20140307876A1 (en) * 2013-04-10 2014-10-16 Google Inc. Systems and Methods for Three-Dimensional Audio CAPTCHA
US20140379456A1 (en) * 2013-06-24 2014-12-25 United Video Properties, Inc. Methods and systems for determining impact of an advertisement
US9767263B1 (en) * 2014-09-29 2017-09-19 Amazon Technologies, Inc. Turing test via failure
US20170300676A1 (en) * 2015-04-16 2017-10-19 Tencent Technology (Shenzhen) Company Limited Method and device for realizing verification code
US20170078319A1 (en) * 2015-05-08 2017-03-16 A10 Networks, Incorporated Captcha risk or score techniques
US9519766B1 (en) * 2015-09-07 2016-12-13 Voicebox Technologies Corporation System and method of providing and validating enhanced CAPTCHAs
US20170161477A1 (en) * 2015-12-03 2017-06-08 Google Inc. Image Based CAPTCHA Challenges
US20180129978A1 (en) * 2016-11-09 2018-05-10 Gamalon, Inc. Machine learning data analysis system and method
EP3432182A1 (en) * 2017-07-17 2019-01-23 Tata Consultancy Services Limited Systems and methods for secure, accessible and usable captcha

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11429725B1 (en) * 2018-04-26 2022-08-30 Citicorp Credit Services, Inc. (Usa) Automated security risk assessment systems and methods
US20200065466A1 (en) * 2018-08-23 2020-02-27 International Business Machines Corporation Captcha generation based on environment-specific vocabulary
US10795982B2 (en) * 2018-08-23 2020-10-06 International Business Machines Corporation CAPTCHA generation based on environment-specific vocabulary
US10891365B2 (en) 2018-08-23 2021-01-12 International Business Machines Corporation CAPTCHA generation based on environment-specific vocabulary
US11663307B2 (en) * 2018-09-24 2023-05-30 Georgia Tech Research Corporation RtCaptcha: a real-time captcha based liveness detection system
US11568087B2 (en) 2019-05-22 2023-01-31 International Business Machines Corporation Contextual API captcha
US20200012627A1 (en) * 2019-08-27 2020-01-09 Lg Electronics Inc. Method for building database in which voice signals and texts are matched and a system therefor, and a computer-readable recording medium recording the same
US11714788B2 (en) * 2019-08-27 2023-08-01 Lg Electronics Inc. Method for building database in which voice signals and texts are matched and a system therefor, and a computer-readable recording medium recording the same
US11386193B2 (en) * 2020-02-21 2022-07-12 Dell Products L.P. Framework to design completely automated reverse Turing tests
US20230178065A1 (en) * 2021-12-02 2023-06-08 Jpmorgan Chase Bank, N.A. Evaluating screen content for accessibility
US12051399B2 (en) * 2021-12-02 2024-07-30 Jpmorgan Chase Bank, N.A. Evaluating screen content for accessibility

Also Published As

Publication number Publication date
CA3011151C (en) 2020-12-15
CN110020059B (en) 2023-04-07
AU2018201883A1 (en) 2019-01-31
EP3432182A1 (en) 2019-01-23
CA3011151A1 (en) 2018-09-12
AU2018201883B2 (en) 2020-03-26
US10915610B2 (en) 2021-02-09
CN110020059A (en) 2019-07-16
EP3432182B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US10915610B2 (en) Systems and methods for inclusive captcha
Hornsey et al. Ripple effects: Can information about the collective impact of individual actions boost perceived efficacy about climate change?
Kuznekoff et al. The impact of mobile phone usage on student learning
Wilson Discovery listening—improving perceptual processing
Piotrowski et al. Reading with hotspots: Young children's responses to touchscreen stories
Nettlefold et al. News media literacy challenges and opportunities for Australian school students and teachers in the age of platforms
Alnfiai A novel design of audio CAPTCHA for visually impaired users
Reyes-Cruz et al. Demonstrating interaction: The case of assistive technology
De Bruijn Citizen journalism at crossroads: Mediated political agency and duress in Central Africa
Murphy et al. Mobile learning trends among students in Vietnam
Lawrence “What’s the point if it isn’t marked?” Trainee teachers’ responses to concepts of authentic engagement with poetry text
Kolko et al. The value of non-instrumental computer use: Skills acquisition, self-confidence, and community-based technology training
Long Protocols of silence in educational discourse
Stremlau Transforming media and conflict research
Maria THE RELATIONSHIP BETWEEN LISTENING STRATEGIES AND STUDENT’ S ACHIEVEMENT AT 2nd SEMESTER STUDENTS OF ACCOUNTING PROGRAM POLITEKNIK SEKAYU
Oliveira et al. An Initial Assessment of a Chatbot for Rumination-Focused Cognitive Behavioral Therapy (RFCBT) in College Students
Willoughby Language practices in multilingual communities: insights from a suburban high school
KR20200041010A (en) Method of learning words and system thereof
Huss Middle Level Education Aims for Equity and Inclusion, but Do Our School Websites Meet ADA Compliance?
KR20200108572A (en) Apparatus for Evaluation Service by Oral Statement and Driving Method Thereof
Khan et al. Examining the data to identify essential questions-guilty before innocent
Harper Introducing the social-ecological model of cyberbullying and uncovering post-secondary students’ perceptions of cyberbullying through interviews with young adults
Lysbakken Digital feedback channels as platforms for solving accessibility problems
Nilsson Accessibility Evaluation of a Mobile Application Using WCAG 2.0: An Evaluation of the CREDENTIAL Project’s Mobile Application UI V2
Finch et al. Student perceptions of technology in assessment

Legal Events

Date Code Title Description
AS Assignment

Owner name: TATA CONSULTANCY SERVICES LIMITED, INDIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JADHAV, CHARUDATTA;AGRAWAL, SUMEET;PALADUGU, MADHU PRIYATAM VENKATA;REEL/FRAME:045242/0093

Effective date: 20170612

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4