US20180371915A1 - Devices and methods for balancing a high-pressure spool of a gas turbine engine - Google Patents

Devices and methods for balancing a high-pressure spool of a gas turbine engine Download PDF

Info

Publication number
US20180371915A1
US20180371915A1 US16/117,436 US201816117436A US2018371915A1 US 20180371915 A1 US20180371915 A1 US 20180371915A1 US 201816117436 A US201816117436 A US 201816117436A US 2018371915 A1 US2018371915 A1 US 2018371915A1
Authority
US
United States
Prior art keywords
trigger
pressure spool
gas turbine
turbine engine
revolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/117,436
Inventor
Bruce Calvert
Richard Brian WIRTH
Danny KRAUSE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pratt and Whitney Canada Corp
Original Assignee
Pratt and Whitney Canada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pratt and Whitney Canada Corp filed Critical Pratt and Whitney Canada Corp
Priority to US16/117,436 priority Critical patent/US20180371915A1/en
Assigned to PRATT & WHITNEY CANADA CORP. reassignment PRATT & WHITNEY CANADA CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRAUSE, DANNY, CALVERT, BRUCE, WIRTH, RICHARD
Publication of US20180371915A1 publication Critical patent/US20180371915A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/027Arrangements for balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/06Arrangement of sensing elements responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/15Load balancing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines

Definitions

  • the disclosure relates generally to balancing of rotors of gas turbine engines, and more particularly to balancing of high-pressure spools of gas turbine engines.
  • vibration magnitude and phase data are typically required.
  • the phase data of the high-pressure spool is not available during normal operation. Accordingly, the acquisition of vibration and phase data for the balancing of the high-pressure spool is typically conducted while the high-pressure spool is rotated at sub-idle speeds and also while the engine is partially disassembled in order to visually expose a portion of the high-pressure spool during balancing. Since the dynamic characteristics of the high-pressure spool can be quite different at normal operating speeds than they are at reduced, sub-idle speeds, the balancing solution acquired under such reduced speed conditions may not necessarily be ideal for typical operating conditions of such gas turbine engines.
  • the disclosure describes components, devices and methods useful for balancing of high-pressure spools of gas turbine engines.
  • the disclosure describes a device useful in determining a balancing solution for a high-pressure spool of a gas turbine engine.
  • the device may comprise:
  • an input shaft configured to be coupled to an output of an accessory gear box driven by the high-pressure spool of the gas turbine engine
  • a first trigger rotatably coupled to the input shaft at a first speed ratio, the first speed ratio permitting a rotational speed of the first trigger to be substantially the same as a rotational speed of the high-pressure spool;
  • a sensor configured to detect the trigger at each revolution of the trigger and, upon detection of the trigger, generate one or more signals representative of each associated revolution of the high-pressure spool of the gas turbine engine.
  • the disclosure describes a device useful in determining a balancing solution for a high-pressure spool of a gas turbine engine.
  • the device may comprise:
  • an interface configured to receive rotary input from an accessory gear box driven by the high-pressure spool of the gas turbine engine
  • an output configured to generate one or more signals representative of each revolution of the high-pressure spool of the gas turbine engine associated with the rotary input.
  • the disclosure describes a method useful in determining a balancing solution for a high-pressure spool of a gas turbine engine.
  • the method may comprise:
  • FIG. 1 is a schematic, axial cross-section view of an exemplary turbo-fan gas turbine engine
  • FIG. 2 is a partial axial cross-section view of an exemplary high-pressure spool of the gas turbine engine of FIG. 1 ;
  • FIG. 3 is an axonometric view of an exemplary phase device useful for balancing the high-pressure spool of FIG. 2 ;
  • FIG. 4 is an axonometric view of exemplary gear trains of the phase device of FIG. 3 ;
  • FIG. 5 is a schematic representation of an exemplary sensor configured to detect a rotatable trigger of the phase device of FIG. 3 ;
  • FIG. 6 is a schematic representation of an exemplary computing device configured to generate signals useful in determining a balancing solution for the high-pressure spool of FIG. 2 ;
  • FIG. 7 is a flowchart illustrating an exemplary method useful in balancing the high-pressure spool of FIG. 2 ;
  • FIGS. 8A and 8B respectively show exemplary vibration data and revolution data plotted against a common time scale
  • FIGS. 9A and 9B respectively show exemplary vibration data and phase data plotted against the rotational speed of the high-pressure spool of FIG. 2 ;
  • FIG. 10 is a schematic representation of an exemplary balancing rim of the high-pressure spool of FIG. 2 viewed along an axis of rotation of the high-pressure spool;
  • FIG. 11 is a schematic representation of the exemplary sensor and trigger of FIG. 5 showing an angular offset between an angular position of the trigger of the phase device and an angular position of a reference point on the high-pressure spool of FIG. 2 ;
  • FIG. 12 is another schematic representation of the balancing rim of FIG. 10 viewed along the axis of rotation of the high-pressure spool with correction weights mounted thereon.
  • FIG. 1 illustrates a gas turbine engine 10 of a type preferably provided for use in subsonic flight, generally comprising in serial flow communication, fan 12 through which ambient air is propelled, multistage compressor 14 for pressurizing the air, combustor 16 in which the compressed air is mixed with fuel and ignited for generating an annular stream of hot combustion gases, and turbine section 18 for extracting energy from the combustion gases.
  • gas turbine engine 10 of a type preferably provided for use in subsonic flight, generally comprising in serial flow communication, fan 12 through which ambient air is propelled, multistage compressor 14 for pressurizing the air, combustor 16 in which the compressed air is mixed with fuel and ignited for generating an annular stream of hot combustion gases, and turbine section 18 for extracting energy from the combustion gases.
  • Engine 10 may comprise a conventional or other type of gas turbine engine suitable for use in aircraft applications.
  • engine 10 may comprise a turbofan or a turboprop type of engine.
  • engine 10 may comprise a two-spool turbofan engine.
  • engine 10 may comprise high-pressure spool 20 and low-pressure spool 22 .
  • High-pressure spool 20 and low-pressure spool 22 may be mounted for rotation about axis CL of engine 10 .
  • High-pressure spool 20 and low-pressure spool 22 may be mounted coaxially and rotate in opposite directions during use.
  • High-pressure spool 20 may comprise one or more high-pressure turbine stages 24 and one or more high-pressure compressor stages 26 .
  • Low-pressure spool 22 may comprise one or more low-pressure turbine stages 28 and fan 12 .
  • Engine 10 may also comprise one or more accessory gear boxes 30 (referred hereinafter as “AGB 30 ”) that may be used to drive one or more accessories (e.g., electrical generator, fuel pump, etc.) associated with the operation of engine 10 or with the operation of an aircraft (not shown) to which engine 10 may be mounted.
  • AGB 30 may be driven by high-pressure spool 20 via tower shaft 32 .
  • FIG. 1 also shows phase device 34 , which is described in detail below, and which may be coupled to and driven via AGB 30 during acquisition of data useful in determining one or more balancing solutions for high-pressure spool 20 while high-pressure spool 20 may be operated at typical operating speeds.
  • Engine 10 may also comprise one or more vibration sensors 35 .
  • Vibration sensor(s) 35 may be disposed in different locations of engine 10 to detect vibrations in different portions of engine 10 .
  • vibration sensor(s) 35 may be secured to one or more casings of engine 10 .
  • a plurality of vibration sensors 35 may be disposed at spaced-apart locations along an axial direction of engine 10 .
  • Vibration sensor(s) 35 may, for example, comprise any suitable known or other type of transducer configured to generate one or more signals representative of displacement, velocity and/or acceleration.
  • vibration sensor(s) 35 may be used to obtain one or more velocity measurements as a function of time.
  • FIG. 2 is a partial axial cross-section view of high-pressure spool 20 .
  • FIG. 2 shows a portion of high-pressure spool 20 associated with high-pressure turbine stages 24 .
  • high-pressure turbine stages 24 may comprise first stage 24 A and second stage 24 B.
  • High-pressure spool 20 may comprise first (i.e., rear) cover plate 36 disposed on a downstream side of high-pressure turbine stage(s) 24 and may include first balancing rim 38 .
  • High-pressure spool 20 may also comprise second cover plate 40 disposed on an upstream side of high-pressure turbine stage(s) 24 and may include second balancing rim 42 .
  • balancing rims 38 and 42 may be configured to permit the attachment of correction weights thereon to counteract unbalances detected in high-pressure spool 20 .
  • High-pressure spool 20 may comprise one or more balancing rims or other balancing features not shown in FIG. 2 .
  • high-pressure spool 20 may, in some embodiments, comprise one or more additional balancing rims spaced along an axial direction of high-pressure spool 20 in order to permit balancing of different axial portions of high-pressure spool 20 , if necessary.
  • FIG. 3 is an axonometric view of an exemplary phase device 34 that may be used during the acquisition of vibration data associated with high-pressure spool 20 under typical operating conditions of engine 10 .
  • Phase device 34 may comprise an interface for coupling to AGB 30 .
  • such interface may comprise one or more input shafts 44 (referred hereinafter as “input shaft 44 ”) and one or more mounting surfaces 46 (referred hereinafter as “mounting surface 46 ”) for interfacing with a mounting pad (not shown) of AGB 30 .
  • input shaft 44 may be configured to receive rotary input from an output of AGB 30 driven by high-pressure spool 20 of engine 10 .
  • phase device 34 may be configured to generate one or more signals representative of each revolution of high-pressure spool 20 during the acquisition of vibration data based on the rotary input received from AGB 30 via input shaft 44 .
  • FIG. 4 is an axonometric view of exemplary gear trains 54 , 56 , 58 that may be part of phase device 34 .
  • Phase device 34 may be configured to be used on different types or families of engines 10 . Accordingly, phase device 34 may comprise a plurality of outputs coupled to input shaft 44 via different combinations of gears.
  • phase device 34 may comprise a plurality of output shafts 48 , 50 and 52 rotatably coupled to input shaft 44 .
  • First output shaft 48 may be rotatably coupled to input shaft 44 at a first speed (e.g., gear) ratio via first gear train 54 comprising gears 54 A, 54 B, 54 C and 54 D.
  • first speed e.g., gear
  • Second output shaft 50 may be rotatably coupled to input shaft 44 at a second speed (e.g., gear) ratio via second gear train 56 comprising gears 56 A and 56 B.
  • Third output shaft 52 may be rotatably coupled to input shaft 44 at a third speed (e.g., gear) ratio via third gear train 58 comprising gears 58 A, 58 B and 58 C.
  • the presence of multiple output shafts 48 , 50 , 52 and associated respective gear trains 54 , 56 , 58 may permit phase device 34 to be used on different types or families of gas turbine engines.
  • the first speed ratio obtained via gear train 54 between first output shaft 48 and input shaft 44 may be configured to permit a rotational speed of first output shaft 48 to be substantially identical to a rotational speed of high-pressure spool 20 .
  • gear train 54 may be configured to, based on the rotational speed of input shaft 44 , reproduce the rotational speed of high-pressure spool 20 at output shaft 48 .
  • gear train 54 may be configured for a specific configuration or type of AGB 30 and tower shaft 32 .
  • Second gear train 56 and third gear train 58 may be configured for use in conjunction with other configurations or types of AGBs or tower shafts so that the rotational speeds of high-pressure spools on other types or families of engines may be reproduced via second output shaft 56 and third output shaft 58 .
  • phase device 34 may permit phase device 34 to be used in conjunctions with different engines where the appropriate output shaft 48 , 50 , 52 would be used for the specific engine with which phase device 34 may be used.
  • Each output shaft 48 , 50 , 52 may comprise a respective trigger 60 , 62 , 64 .
  • Triggers 60 , 62 , 64 may be rotatable and detectable by one or more respective sensors 66 (see FIG. 5 ).
  • phase device 34 may comprise a single output shaft 48 and associated gear train 54 .
  • FIG. 5 is a schematic representation of an exemplary sensor 66 configured to detect one or more of triggers 60 , 62 , 64 on respective output shafts 48 , 50 , 52 .
  • An end view of an exemplary output shaft 48 , 50 , 52 is shown in FIG. 5 .
  • phase device 34 may comprise a respective sensor 66 associated with each output shaft 48 , 50 , 52 for detecting respective triggers 60 , 62 , 64 .
  • the types of triggers 60 , 62 and 64 and sensors 66 may be selected to cooperate together in generating one or more signals 68 when one of triggers 60 , 62 and 64 is detected by an associated sensor 66 .
  • Triggers 60 , 62 and 64 may comprise one or more markings, mechanical and/or magnetic features and/or other suitable type of feature(s) detectable by an associated sensor 66 .
  • sensor 66 may comprise one or more proximity, mechanical, optical and/or magnetic detectors and/or other suitable type of sensor for detecting one or more of triggers 60 , 62 , 64 .
  • each output shaft 48 , 50 , 52 may comprise a single respective trigger 60 , 62 , 64 that may be detectable by a respective sensor 66 .
  • output shaft 48 and trigger 60 will be referenced in conjunction with sensor 66 but it should be understood that, in some embodiments, the structure and functions of output shafts 50 , 52 and triggers 62 , 64 with other respective sensors 66 may be substantially identical or functionally equivalent.
  • Trigger 60 may be secured to, integral with or otherwise associated with output shaft 48 so that trigger 60 may rotate together and at the same rotational speed as output shaft 48 . Accordingly, trigger 60 may pass and be detected by sensor 66 once for every complete revolution of output shaft 48 .
  • revolution signal(s) 68 may comprise one or more once-per-revolution signals where consecutive once-per-revolution signals may indicate the completion of consecutive revolutions of high-pressure spool 20 .
  • FIG. 6 is a schematic representation of an exemplary computing device 70 configured to generate one or more signals 72 representative of at least part of a balancing solution for high-pressure spool 20 .
  • computing device 70 may comprise one or more data processors 74 (referred hereinafter as “processor 74 ”) and one or more memories 76 (referred hereinafter as “memory 76 ”).
  • processor 74 may include one or more microcontrollers, microprocessors or other suitably programmed or programmable logic circuits.
  • Memory 76 may comprise any storage means (e.g. devices) suitable for retrievably storing machine-readable instructions executable by processor 74 .
  • Memory 76 may comprise, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples, but nonetheless a non-exhaustive list, of memory 76 would include the following: a portable computer diskette (magnetic), a RAM (electronic), a read-only memory “ROM” (electronic), an erasable programmable read-only memory (EPROM or Flash memory) (electronic) and a portable compact disc read-only memory “CDROM” (optical).
  • Memory 76 may contain machine-readable instructions for execution by processor 74 . Such machine-readable instructions may cause processor 74 to carry out various methods or portion of methods disclosed herein.
  • signals 78 representative of vibration of high-pressure spool 20 may be generated by one or more vibration sensors 35 (referred hereinafter as “vibration sensor 35 ”) and provided directly or indirectly to computing device 70 .
  • revolution signal(s) 68 may be generated by sensor 66 and provided directly or indirectly to computing device 70 . It should be understood that, in some embodiments, suitable conditioning of signals 78 , 68 may be required prior to processing by processor 74 .
  • signals 72 may be representative of: vibration data including one or more vibration peaks.
  • vibration data may include time values associated with discrete vibration measurements (i.e., magnitudes) and the time values may be associated with a common time scale as time values associated with revolution signals 68 . Accordingly, such vibration data may be correlated to revolution signals 68 via a common time scale.
  • signals 72 may be useful in determining one or more correction weights and one or more corresponding times to or from once-per-revolution signal(s) from revolution signals 68 .
  • signals 72 may be representative of one or more correction weights and one or more corresponding angular positions of trigger 60 relative to sensor 66 and/or one or more corresponding angular positions on a balancing rim 38 , 42 of high-pressure spool 20 .
  • computing device 70 may, in accordance with computer-readable instructions provided in memory 76 , consider one or more correlations 80 between the angular position of trigger 60 and the angular position of high-pressure spool 20 so that signal(s) 72 may be indicative of one or more correction weights suitable to remedy one or more unbalance conditions of high-pressure spool 20 together with one or more angular positions on balancing rim 38 , 42 of high-pressure spool 20 .
  • such signal(s) 72 may provide some indication useful for the installation of one or more correction weights on high-pressure spool 20 .
  • vibration magnitude and phase data are typically required.
  • the phase data of the high-pressure spool is not available during normal operation. Accordingly, the acquisition of vibration and phase data for the balancing of the high-pressure spool is typically conducted while the high-pressure spool is rotated at sub-idle speeds and also while the engine is partially disassembled in order to expose a portion of the high-pressure spool. Since the dynamic characteristics of the high-pressure spool can be quite different at full operating speeds than they are at reduced, sub-idle speeds, the balancing solution acquired under such reduced speed conditions may not necessarily be ideal for typical operating conditions of such gas turbine engines.
  • phase device 34 and, optionally, computing device 70 may be used in the determination of a balancing solution for high-pressure spool 20 .
  • the acquisition of vibration signal(s) 78 may be conducted using vibration sensor 35 under typical operating conditions of engine 10 and at typical operating rotational speeds of high-pressure spool 20 while phase device 34 is coupled to AGB 30 .
  • Phase device 34 may be installed to an accessory pad of AGB 30 via mounting surface 46 and input shaft 44 may be coupled to an output of AGB 30 .
  • Phase device 34 may be mounted to a free accessory pad of AGB 30 or an existing accessory may be removed so that phase device 34 may be installed in its place.
  • the acquisition of vibration signal(s) 78 may be conducted at typical operating rotational speeds of high-pressure spool 20 so that the balancing solution(s) determined may take into account the dynamic characteristics of high-pressure spool 20 at typical operating speeds.
  • the acquisition of vibration signal(s) 78 may be conducted over a range of rotational speeds of high-pressure spool 20 so that the balancing solution(s) determined may take into account the dynamic characteristics of high-pressure spool 20 in different operating regimes.
  • the acquisition of vibration signal(s) 78 may, for example, be conducted while engine 10 is in a test cell or when engine 10 is on-wing (e.g., in the field).
  • the acquisition of vibration signal(s) 78 and or revolution signal(s) 68 may be acquired during operation of engine 10 and the balancing solution(s) may be determined subsequently.
  • vibration signal(s) 78 acquired via vibration sensor 35 may comprise components that represent vibrations from sources other than high-pressure spool 20 .
  • vibration signal(s) 78 may represent substantially all of the vibrations that may be sensed by vibration sensor 35 whether or not they originate from high-pressure spool 20 . Accordingly, some filtering or other processing of vibration signal(s) 78 may be required to isolate the component(s) that is/are representative of vibrations associated with high-pressure spool 20 . Filtering or other processing of vibration signal(s) 78 may be conducted according to known or other methods.
  • vibration signal(s) 78 may be filtered through the use of engine order analysis of the specific speed(s) of interest (e.g., the rotational speed N 2 of high-pressure spool 20 ). Accordingly, the frequency and phase information of vibrations stemming from other sources may be filtered out from vibration signal(s) 78 or otherwise ignored in the determination of a balancing solution for high-pressure spool 20 .
  • FIG. 7 is a flowchart illustrating an exemplary method 700 which may be useful determining one or more balancing solutions for high-pressure spool 20 .
  • method 700 may comprise: generating one or more vibration signals 78 representative of vibration of high-pressure spool 20 during operation of gas turbine engine 10 (see block 702 ); using an output of AGB 30 of gas turbine engine 10 during operation of gas turbine engine 10 , generating one or more revolution signals 68 representative of revolutions of high-pressure spool 20 associated with the output of AGB 30 (see block 704 ); and using the one or more vibration signals 78 and the one or more revolution signals 68 , generating one or more signals 72 useful in determining a balancing solution for high-pressure spool 72 .
  • method 700 or portions thereof may be performed using phase device 34 , vibration sensor(s) 35 and/or computing device(s) 70 . It should be understood that method 700 may comprise additional or fewer steps or blocks than those shown in FIG. 7 . There may be many variations to these blocks and/or operations without departing from the teachings of the present disclosure. For instance, the blocks may be performed in a differing order, or blocks may be added, deleted, or modified. As explained above signal(s) 72 may useful in determining one or more balancing solutions for high-pressure spool 20 and may be representative of a partial balancing solution helpful in selecting one or more correction weights and its/their associated position(s) on the high-pressure spool 20 .
  • the generating of revolution signal(s) 68 may comprise converting a rotational speed of the output of AGB 30 to a rotational speed substantially identical to the rotational speed of high-pressure spool 20 . As explained above, this may be conducted via output shaft 48 and associated gear train 54 of phase device 34 .
  • the generating of revolution signal(s) 68 may comprise detecting trigger 60 associated with output shaft 48 and having substantially the same rotational speed as that of high-pressure spool 20 .
  • Revolution signal(s) 68 may be based on the detection of a single trigger 60 having substantially the same rotational speed as that of high-pressure spool 20 . Accordingly, revolution signal(s) 68 may comprise one or more once-per-revolution signals where two consecutive once-per-revolution signals may indicate a complete revolution of high-pressure spool 20 .
  • phase device 34 may comprise a plurality of rotatable triggers 60 , 62 , 64 so that phase device 34 may be used in conjunction with other types or families of engines. Accordingly, method 700 may further comprise: driving first rotatable trigger 60 using the output of AGB 30 at a first speed ratio with the output of AGB 30 ; driving second rotatable trigger 62 using the output of AGB 30 at a second speed ratio with the output of AGB 30 ; and generating revolution signal(s) 68 based on the detection (e.g., via sensor(s) 66 ) of one of first rotatable trigger 60 and second rotatable trigger 62 .
  • the first speed ratio may be configured to permit a rotational speed of first trigger 60 to be substantially identical as a rotational speed of high-pressure spool 20 and the second speed ratio may be configured to permit a rotational speed of second trigger 62 to be substantially the same as a rotational speed of a high-pressure spool of another gas turbine engine when phase device 34 is used with the other gas turbine engine.
  • FIGS. 8A and 8B respectively show exemplary plots of vibration signal(s) 78 and revolution signal(s) 68 plotted against a common time scale.
  • Vibration signal(s) 78 may comprise one or more vibration magnitudes sensed using vibration sensor(s) 35 . Some or all of the vibration magnitudes may be associated with corresponding time values substantially representing the time at which individual vibration magnitudes were sensed.
  • vibration signal(s) 78 may be representative of velocities (e.g., in/sec, m/s) plotted against time. Vibration signal(s) 78 may stem from one vibration sensor 35 or may comprise a combination or aggregation of vibration signals obtained from different vibration sensors 35 .
  • Revolution signal(s) 68 may comprise one or more pulses 82 indicating the detection of trigger 60 by sensor 66 .
  • Revolution signal(s) 68 may be generated simultaneously with the generation of vibration signal(s) 78 .
  • Consecutive pulses 82 in revolution signal(s) 68 as shown in FIG. 8B may be indicative of complete revolutions of trigger 60 and consequently be indicative of complete revolutions of high-pressure spool 20 .
  • pulses 82 may be once-per-revolution signals. Pulses 82 may each be associated with a time value substantially representing the time at which trigger 60 was sensed by sensor 66 .
  • vibration signal(s) 78 may be correlated with revolution signal(s) 68 based on the common time scale (i.e., abscissa in FIGS. 8A and 8B ). Also since the time duration between two consecutive pulses 82 may represent a complete revolution (i.e., 360 degrees) of trigger 60 , vibration magnitudes of signal(s) 78 may be correlated (e.g., synchronized) to angular position(s) of trigger 60 relative to the position of sensor 66 .
  • FIGS. 9A and 9B respectively show exemplary vibration data and phase data plotted against the rotational speed of high-pressure spool 20 .
  • the acquisition of vibration signal(s) 78 may be conducted at different rotational speeds of high-pressure spool 20 in order to take into account the dynamic properties of high-pressure spool 20 at different rotational speeds. Accordingly, a vibration sweep may be conducted to acquire vibration signal(s) 78 over a range of rotational speeds of high-pressure spool 20 .
  • FIG. 9A shows a plot of the phase of trigger 60 (in degrees), at which peak vibration magnitudes (obtained from vibration signal(s) 78 ) occur over a range of rotational speeds (i.e., N 2 ) of high-pressure spool 20 .
  • FIG. 9B shows a plot of associated peak vibration magnitudes (in in/sec) plotted against the same range of rotational speeds (i.e., N 2 ) of high-pressure spool 20 .
  • FIG. 9B indicates that, for this particular example, the largest vibration magnitude over the particular range of rotational speeds is 0.42 in/sec and occurs at about 22,000 rpm.
  • FIG. 9A indicates that the corresponding phase of trigger 60 at which the largest vibration magnitude occurs is about 320°. This information may be used as a basis for determining a suitable correction weight to be installed on high-pressure spool 20 .
  • phase device 34 may be used when acquiring vibration data when engine 10 is in a test cell, during an engine overhaul and/or in the field with engine 10 mounted on-wing.
  • FIG. 10 is a schematic view of first balancing rim 38 of first cover plate 36 viewed along axis CL of FIG. 2 .
  • First balancing rim 38 may comprise a plurality of holes (e.g., numbered as numbers 1 - 40 in FIG. 10 ) which may be used to secure one or more correction weights to first balancing rim 38 .
  • the holes may be spaced about the circumference of first balancing rim 38 .
  • the angular position of each hole is also indicated in degrees in FIG. 10 .
  • First cover plate 36 may also comprise one or more reference markers sometimes called Phi marks (referred hereinafter as “Phi mark 84 ”).
  • Phi mark 84 may be used to angularly align high-pressure spool 20 to a reference position (e.g., another reference mark).
  • the reference angular position of high-pressure spool 20 in engine 10 may be a location where Phi mark 84 is substantially aligned with a top dead center (TDC) of engine 10 .
  • TDC top dead center
  • the angular positions of holes in FIG. 10 may be measured from Phi mark 84 .
  • an angular offset between trigger 60 and first balancing rim 38 may be determined.
  • Vibration signal(s) 78 may be acquired relative to trigger 60 and subsequently correlated to high-pressure spool 20 after the acquisition of vibration signal(s) 78 has been completed. Accordingly, the determination of one or more balancing solutions may also be carried out subsequently.
  • the determination of the offset between trigger 60 of phase device 34 and first balancing rim 38 may be performed by maintenance personnel when engine 10 is not operating. Some disassembly of engine 10 may be required in order to at least partially expose first balancing rim 38 to maintenance personnel.
  • FIG. 11 is a schematic representation of sensor 66 and trigger 60 showing an exemplary angular offset of 120° between an angular position of trigger 60 of phase device 34 relative to sensor 66 and TDC of high-pressure spool 20 .
  • high-pressure shaft 20 may be (e.g., manually) rotated until Phi mark 84 is substantially aligned with TDC. While, high-pressure spool 20 is at this position, the angular offset between trigger 60 and sensor 66 may be determined. The angular offset may be determined by slowly rotating (e.g., clockwise) first balancing rim 38 from TDC until trigger 60 of phase device 34 is sensed by sensor 66 .
  • an audio and/or visual indication or alert may provide a signal to maintenance personnel indicating the position at which to determine the offset.
  • the corresponding angular position of balancing rim 38 relative to TDC may be determined via markings and/or holes provided on first cover plate 36 or via other suitable means.
  • the angular offset may then be used to transfer the phase data of trigger 60 to high-pressure spool 20 in order to determine the angular position(s) on first balancing rim 38 at which one or more correction weights may be installed.
  • the determination of the balancing solution for high-pressure spool 20 may be based on a first correlation between vibration signal(s) 78 and revolution signal(s) 68 and on a second correlation between revolution signal(s) 68 and angular positioning on high-pressure spool 20 .
  • Suitable balancing solutions may be determined based on vibration signal(s) 68 .
  • Suitable balancing solutions may be determined using known or other methods.
  • a balancing solution e.g., correction weight and associated angular position
  • An numerical example is also provided below using the exemplary numerical values disclosed herein.
  • FIG. 12 is another schematic representation of first balancing rim 38 with three correction weights labeled as “H”. The correction weights have been installed on first balancing rim 38 via holes # 26 , # 28 and # 31 at 130°, 112° and 85° respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Devices and methods useful for balancing high-pressure spools of gas turbine engines are disclosed. An exemplary device may comprise: an input shaft configured to be coupled to an output of an accessory gear box driven by a high-pressure spool of a gas turbine engine; a first trigger rotatably coupled to the input shaft at a first speed ratio; and a sensor configured to detect the trigger at each revolution of the trigger. The first speed ratio may permit a rotational speed of the first trigger to be substantially the same as a rotational speed of the high-pressure spool. Upon detection of the trigger, the sensor may generate one or more signals representative of each associated revolution of the high-pressure spool of the gas turbine engine.

Description

    TECHNICAL FIELD
  • The disclosure relates generally to balancing of rotors of gas turbine engines, and more particularly to balancing of high-pressure spools of gas turbine engines.
  • BACKGROUND OF THE ART
  • When determining a balancing solution for a rotor, vibration magnitude and phase data are typically required. In most two-spool gas turbine engines, the phase data of the high-pressure spool is not available during normal operation. Accordingly, the acquisition of vibration and phase data for the balancing of the high-pressure spool is typically conducted while the high-pressure spool is rotated at sub-idle speeds and also while the engine is partially disassembled in order to visually expose a portion of the high-pressure spool during balancing. Since the dynamic characteristics of the high-pressure spool can be quite different at normal operating speeds than they are at reduced, sub-idle speeds, the balancing solution acquired under such reduced speed conditions may not necessarily be ideal for typical operating conditions of such gas turbine engines.
  • Improvement is therefore desirable.
  • SUMMARY
  • The disclosure describes components, devices and methods useful for balancing of high-pressure spools of gas turbine engines.
  • In one aspect, the disclosure describes a device useful in determining a balancing solution for a high-pressure spool of a gas turbine engine. The device may comprise:
  • an input shaft configured to be coupled to an output of an accessory gear box driven by the high-pressure spool of the gas turbine engine;
  • a first trigger rotatably coupled to the input shaft at a first speed ratio, the first speed ratio permitting a rotational speed of the first trigger to be substantially the same as a rotational speed of the high-pressure spool; and
  • a sensor configured to detect the trigger at each revolution of the trigger and, upon detection of the trigger, generate one or more signals representative of each associated revolution of the high-pressure spool of the gas turbine engine.
  • In another aspect, the disclosure describes a device useful in determining a balancing solution for a high-pressure spool of a gas turbine engine. The device may comprise:
  • an interface configured to receive rotary input from an accessory gear box driven by the high-pressure spool of the gas turbine engine; and
  • an output configured to generate one or more signals representative of each revolution of the high-pressure spool of the gas turbine engine associated with the rotary input.
  • In a further aspect, the disclosure describes a method useful in determining a balancing solution for a high-pressure spool of a gas turbine engine. The method may comprise:
  • generating one or more vibration signals representative of vibration of the high-pressure spool during operation of the gas turbine engine;
  • using an output of an accessory gear box of the gas turbine engine during operation of the gas turbine engine, generating one or more revolution signals representative of revolutions of the high-pressure spool associated with the output of the accessory gear box; and
  • using the one or more vibration signals and the one or more revolution signals, generating one or more signals useful in determining a balancing solution for the high-pressure spool.
  • Further details of these and other aspects of the subject matter of this application will be apparent from the detailed description and drawings included below.
  • DESCRIPTION OF THE DRAWINGS
  • Reference is now made to the accompanying drawings, in which:
  • FIG. 1 is a schematic, axial cross-section view of an exemplary turbo-fan gas turbine engine;
  • FIG. 2 is a partial axial cross-section view of an exemplary high-pressure spool of the gas turbine engine of FIG. 1;
  • FIG. 3 is an axonometric view of an exemplary phase device useful for balancing the high-pressure spool of FIG. 2;
  • FIG. 4 is an axonometric view of exemplary gear trains of the phase device of FIG. 3;
  • FIG. 5 is a schematic representation of an exemplary sensor configured to detect a rotatable trigger of the phase device of FIG. 3;
  • FIG. 6 is a schematic representation of an exemplary computing device configured to generate signals useful in determining a balancing solution for the high-pressure spool of FIG. 2;
  • FIG. 7 is a flowchart illustrating an exemplary method useful in balancing the high-pressure spool of FIG. 2;
  • FIGS. 8A and 8B respectively show exemplary vibration data and revolution data plotted against a common time scale;
  • FIGS. 9A and 9B respectively show exemplary vibration data and phase data plotted against the rotational speed of the high-pressure spool of FIG. 2;
  • FIG. 10 is a schematic representation of an exemplary balancing rim of the high-pressure spool of FIG. 2 viewed along an axis of rotation of the high-pressure spool;
  • FIG. 11 is a schematic representation of the exemplary sensor and trigger of FIG. 5 showing an angular offset between an angular position of the trigger of the phase device and an angular position of a reference point on the high-pressure spool of FIG. 2; and
  • FIG. 12 is another schematic representation of the balancing rim of FIG. 10 viewed along the axis of rotation of the high-pressure spool with correction weights mounted thereon.
  • DETAILED DESCRIPTION
  • Aspects of various embodiments are described through reference to the drawings.
  • FIG. 1 illustrates a gas turbine engine 10 of a type preferably provided for use in subsonic flight, generally comprising in serial flow communication, fan 12 through which ambient air is propelled, multistage compressor 14 for pressurizing the air, combustor 16 in which the compressed air is mixed with fuel and ignited for generating an annular stream of hot combustion gases, and turbine section 18 for extracting energy from the combustion gases.
  • Engine 10 may comprise a conventional or other type of gas turbine engine suitable for use in aircraft applications. For example, engine 10 may comprise a turbofan or a turboprop type of engine. In various embodiments, engine 10 may comprise a two-spool turbofan engine. For example, engine 10 may comprise high-pressure spool 20 and low-pressure spool 22. High-pressure spool 20 and low-pressure spool 22 may be mounted for rotation about axis CL of engine 10. High-pressure spool 20 and low-pressure spool 22 may be mounted coaxially and rotate in opposite directions during use. High-pressure spool 20 may comprise one or more high-pressure turbine stages 24 and one or more high-pressure compressor stages 26. Low-pressure spool 22 may comprise one or more low-pressure turbine stages 28 and fan 12.
  • Engine 10 may also comprise one or more accessory gear boxes 30 (referred hereinafter as “AGB 30”) that may be used to drive one or more accessories (e.g., electrical generator, fuel pump, etc.) associated with the operation of engine 10 or with the operation of an aircraft (not shown) to which engine 10 may be mounted. AGB 30 may be driven by high-pressure spool 20 via tower shaft 32. FIG. 1 also shows phase device 34, which is described in detail below, and which may be coupled to and driven via AGB 30 during acquisition of data useful in determining one or more balancing solutions for high-pressure spool 20 while high-pressure spool 20 may be operated at typical operating speeds. Engine 10 may also comprise one or more vibration sensors 35. Vibration sensor(s) 35 may be disposed in different locations of engine 10 to detect vibrations in different portions of engine 10. In various embodiments, vibration sensor(s) 35 may be secured to one or more casings of engine 10. For example, a plurality of vibration sensors 35 may be disposed at spaced-apart locations along an axial direction of engine 10. Vibration sensor(s) 35 may, for example, comprise any suitable known or other type of transducer configured to generate one or more signals representative of displacement, velocity and/or acceleration. In various embodiments, vibration sensor(s) 35 may be used to obtain one or more velocity measurements as a function of time.
  • FIG. 2 is a partial axial cross-section view of high-pressure spool 20. In particular, FIG. 2 shows a portion of high-pressure spool 20 associated with high-pressure turbine stages 24. As mentioned above, high-pressure turbine stages 24 may comprise first stage 24A and second stage 24B. High-pressure spool 20 may comprise first (i.e., rear) cover plate 36 disposed on a downstream side of high-pressure turbine stage(s) 24 and may include first balancing rim 38. High-pressure spool 20 may also comprise second cover plate 40 disposed on an upstream side of high-pressure turbine stage(s) 24 and may include second balancing rim 42. As explained further below, balancing rims 38 and 42 may be configured to permit the attachment of correction weights thereon to counteract unbalances detected in high-pressure spool 20. High-pressure spool 20 may comprise one or more balancing rims or other balancing features not shown in FIG. 2. For example, high-pressure spool 20 may, in some embodiments, comprise one or more additional balancing rims spaced along an axial direction of high-pressure spool 20 in order to permit balancing of different axial portions of high-pressure spool 20, if necessary.
  • FIG. 3 is an axonometric view of an exemplary phase device 34 that may be used during the acquisition of vibration data associated with high-pressure spool 20 under typical operating conditions of engine 10. Phase device 34 may comprise an interface for coupling to AGB 30. For example, such interface may comprise one or more input shafts 44 (referred hereinafter as “input shaft 44”) and one or more mounting surfaces 46 (referred hereinafter as “mounting surface 46”) for interfacing with a mounting pad (not shown) of AGB 30. Accordingly, input shaft 44 may be configured to receive rotary input from an output of AGB 30 driven by high-pressure spool 20 of engine 10. As explained below, phase device 34 may be configured to generate one or more signals representative of each revolution of high-pressure spool 20 during the acquisition of vibration data based on the rotary input received from AGB 30 via input shaft 44.
  • FIG. 4 is an axonometric view of exemplary gear trains 54, 56, 58 that may be part of phase device 34. Phase device 34 may be configured to be used on different types or families of engines 10. Accordingly, phase device 34 may comprise a plurality of outputs coupled to input shaft 44 via different combinations of gears. For example, phase device 34 may comprise a plurality of output shafts 48, 50 and 52 rotatably coupled to input shaft 44. First output shaft 48 may be rotatably coupled to input shaft 44 at a first speed (e.g., gear) ratio via first gear train 54 comprising gears 54A, 54B, 54C and 54D. Second output shaft 50 may be rotatably coupled to input shaft 44 at a second speed (e.g., gear) ratio via second gear train 56 comprising gears 56A and 56B. Third output shaft 52 may be rotatably coupled to input shaft 44 at a third speed (e.g., gear) ratio via third gear train 58 comprising gears 58A, 58B and 58C. The presence of multiple output shafts 48, 50, 52 and associated respective gear trains 54, 56, 58 may permit phase device 34 to be used on different types or families of gas turbine engines.
  • The first speed ratio obtained via gear train 54 between first output shaft 48 and input shaft 44 may be configured to permit a rotational speed of first output shaft 48 to be substantially identical to a rotational speed of high-pressure spool 20. In other words, gear train 54 may be configured to, based on the rotational speed of input shaft 44, reproduce the rotational speed of high-pressure spool 20 at output shaft 48. Accordingly, gear train 54 may be configured for a specific configuration or type of AGB 30 and tower shaft 32. Second gear train 56 and third gear train 58 may be configured for use in conjunction with other configurations or types of AGBs or tower shafts so that the rotational speeds of high-pressure spools on other types or families of engines may be reproduced via second output shaft 56 and third output shaft 58. Accordingly, the presence of multiple output shafts 48, 50, 52 may permit phase device 34 to be used in conjunctions with different engines where the appropriate output shaft 48, 50, 52 would be used for the specific engine with which phase device 34 may be used. Each output shaft 48, 50, 52 may comprise a respective trigger 60, 62, 64. Triggers 60, 62, 64 may be rotatable and detectable by one or more respective sensors 66 (see FIG. 5). It should be understood that additional or fewer output shafts and associated gear trains may be provided in phase device 34 depending on the number or types or families of engines with which phase device 34 is to be used. For example, in some embodiments, phase device 34 may comprise a single output shaft 48 and associated gear train 54.
  • FIG. 5 is a schematic representation of an exemplary sensor 66 configured to detect one or more of triggers 60, 62, 64 on respective output shafts 48, 50, 52. An end view of an exemplary output shaft 48, 50, 52 is shown in FIG. 5. In various embodiments, phase device 34 may comprise a respective sensor 66 associated with each output shaft 48, 50, 52 for detecting respective triggers 60, 62, 64. The types of triggers 60, 62 and 64 and sensors 66 may be selected to cooperate together in generating one or more signals 68 when one of triggers 60, 62 and 64 is detected by an associated sensor 66. Triggers 60, 62 and 64 may comprise one or more markings, mechanical and/or magnetic features and/or other suitable type of feature(s) detectable by an associated sensor 66. Similarly, sensor 66 may comprise one or more proximity, mechanical, optical and/or magnetic detectors and/or other suitable type of sensor for detecting one or more of triggers 60, 62, 64.
  • In various embodiments, each output shaft 48, 50, 52 may comprise a single respective trigger 60, 62, 64 that may be detectable by a respective sensor 66. For the purpose of the following description, output shaft 48 and trigger 60 will be referenced in conjunction with sensor 66 but it should be understood that, in some embodiments, the structure and functions of output shafts 50, 52 and triggers 62, 64 with other respective sensors 66 may be substantially identical or functionally equivalent. Trigger 60 may be secured to, integral with or otherwise associated with output shaft 48 so that trigger 60 may rotate together and at the same rotational speed as output shaft 48. Accordingly, trigger 60 may pass and be detected by sensor 66 once for every complete revolution of output shaft 48. Upon detection of the passing of rotating trigger 60, sensor 66 may output one or more revolution signals 68. Since the rotational speed of output shaft 48 may be substantially identical to the rotational speed of high-pressure spool 20 (i.e., sometimes referred as “N2”), each complete revolution of trigger 60 may correspond to an associated complete revolution of high-pressure spool 20. Accordingly, revolution signal(s) 68 generated by sensor 66 upon detection of trigger 60 may consequently be representative of an associated revolution of high-pressure spool 20. In various embodiments, revolution signal(s) 68 may comprise one or more once-per-revolution signals where consecutive once-per-revolution signals may indicate the completion of consecutive revolutions of high-pressure spool 20.
  • FIG. 6 is a schematic representation of an exemplary computing device 70 configured to generate one or more signals 72 representative of at least part of a balancing solution for high-pressure spool 20. In various embodiments, computing device 70 may comprise one or more data processors 74 (referred hereinafter as “processor 74”) and one or more memories 76 (referred hereinafter as “memory 76”). For example, computing device 70 may comprise one or more digital computer(s) or other data processors and related accessories. Data processor 74 may include one or more microcontrollers, microprocessors or other suitably programmed or programmable logic circuits. Memory 76 may comprise any storage means (e.g. devices) suitable for retrievably storing machine-readable instructions executable by processor 74. Memory 76 may comprise, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples, but nonetheless a non-exhaustive list, of memory 76 would include the following: a portable computer diskette (magnetic), a RAM (electronic), a read-only memory “ROM” (electronic), an erasable programmable read-only memory (EPROM or Flash memory) (electronic) and a portable compact disc read-only memory “CDROM” (optical).
  • Memory 76 may contain machine-readable instructions for execution by processor 74. Such machine-readable instructions may cause processor 74 to carry out various methods or portion of methods disclosed herein. In various embodiments, signals 78 representative of vibration of high-pressure spool 20 may be generated by one or more vibration sensors 35 (referred hereinafter as “vibration sensor 35”) and provided directly or indirectly to computing device 70. Similarly, revolution signal(s) 68 may be generated by sensor 66 and provided directly or indirectly to computing device 70. It should be understood that, in some embodiments, suitable conditioning of signals 78, 68 may be required prior to processing by processor 74. Using vibration signals 78 and revolution signals 68, data processor 74 may, in accordance with computer-readable instructions stored in memory 76, generate one or more signals 72 representative of at least part of the balancing solution. For example, signals 72 may be representative of: vibration data including one or more vibration peaks. Such vibration data may include time values associated with discrete vibration measurements (i.e., magnitudes) and the time values may be associated with a common time scale as time values associated with revolution signals 68. Accordingly, such vibration data may be correlated to revolution signals 68 via a common time scale. In various embodiments, signals 72 may be useful in determining one or more correction weights and one or more corresponding times to or from once-per-revolution signal(s) from revolution signals 68. Alternatively or in addition, signals 72 may be representative of one or more correction weights and one or more corresponding angular positions of trigger 60 relative to sensor 66 and/or one or more corresponding angular positions on a balancing rim 38, 42 of high-pressure spool 20. For example, computing device 70 may, in accordance with computer-readable instructions provided in memory 76, consider one or more correlations 80 between the angular position of trigger 60 and the angular position of high-pressure spool 20 so that signal(s) 72 may be indicative of one or more correction weights suitable to remedy one or more unbalance conditions of high-pressure spool 20 together with one or more angular positions on balancing rim 38, 42 of high-pressure spool 20. In various embodiments, such signal(s) 72 may provide some indication useful for the installation of one or more correction weights on high-pressure spool 20.
  • In order to determine a balancing solution for a rotor, vibration magnitude and phase data are typically required. In most two-spool gas turbine engines, the phase data of the high-pressure spool is not available during normal operation. Accordingly, the acquisition of vibration and phase data for the balancing of the high-pressure spool is typically conducted while the high-pressure spool is rotated at sub-idle speeds and also while the engine is partially disassembled in order to expose a portion of the high-pressure spool. Since the dynamic characteristics of the high-pressure spool can be quite different at full operating speeds than they are at reduced, sub-idle speeds, the balancing solution acquired under such reduced speed conditions may not necessarily be ideal for typical operating conditions of such gas turbine engines.
  • During operation, phase device 34 and, optionally, computing device 70 may be used in the determination of a balancing solution for high-pressure spool 20. In various embodiments, the acquisition of vibration signal(s) 78 may be conducted using vibration sensor 35 under typical operating conditions of engine 10 and at typical operating rotational speeds of high-pressure spool 20 while phase device 34 is coupled to AGB 30. Phase device 34 may be installed to an accessory pad of AGB 30 via mounting surface 46 and input shaft 44 may be coupled to an output of AGB 30. Phase device 34 may be mounted to a free accessory pad of AGB 30 or an existing accessory may be removed so that phase device 34 may be installed in its place. For example, the acquisition of vibration signal(s) 78 may be conducted at typical operating rotational speeds of high-pressure spool 20 so that the balancing solution(s) determined may take into account the dynamic characteristics of high-pressure spool 20 at typical operating speeds. Similarly, the acquisition of vibration signal(s) 78 may be conducted over a range of rotational speeds of high-pressure spool 20 so that the balancing solution(s) determined may take into account the dynamic characteristics of high-pressure spool 20 in different operating regimes. In various embodiments, the acquisition of vibration signal(s) 78 may, for example, be conducted while engine 10 is in a test cell or when engine 10 is on-wing (e.g., in the field). For example, the acquisition of vibration signal(s) 78 and or revolution signal(s) 68 may be acquired during operation of engine 10 and the balancing solution(s) may be determined subsequently.
  • In various embodiments, vibration signal(s) 78 acquired via vibration sensor 35 may comprise components that represent vibrations from sources other than high-pressure spool 20. For example, vibration signal(s) 78 may represent substantially all of the vibrations that may be sensed by vibration sensor 35 whether or not they originate from high-pressure spool 20. Accordingly, some filtering or other processing of vibration signal(s) 78 may be required to isolate the component(s) that is/are representative of vibrations associated with high-pressure spool 20. Filtering or other processing of vibration signal(s) 78 may be conducted according to known or other methods. For example, vibration signal(s) 78 may be filtered through the use of engine order analysis of the specific speed(s) of interest (e.g., the rotational speed N2 of high-pressure spool 20). Accordingly, the frequency and phase information of vibrations stemming from other sources may be filtered out from vibration signal(s) 78 or otherwise ignored in the determination of a balancing solution for high-pressure spool 20.
  • FIG. 7 is a flowchart illustrating an exemplary method 700 which may be useful determining one or more balancing solutions for high-pressure spool 20. In various embodiments, method 700 may comprise: generating one or more vibration signals 78 representative of vibration of high-pressure spool 20 during operation of gas turbine engine 10 (see block 702); using an output of AGB 30 of gas turbine engine 10 during operation of gas turbine engine 10, generating one or more revolution signals 68 representative of revolutions of high-pressure spool 20 associated with the output of AGB 30 (see block 704); and using the one or more vibration signals 78 and the one or more revolution signals 68, generating one or more signals 72 useful in determining a balancing solution for high-pressure spool 72. In various embodiments, method 700 or portions thereof may be performed using phase device 34, vibration sensor(s) 35 and/or computing device(s) 70. It should be understood that method 700 may comprise additional or fewer steps or blocks than those shown in FIG. 7. There may be many variations to these blocks and/or operations without departing from the teachings of the present disclosure. For instance, the blocks may be performed in a differing order, or blocks may be added, deleted, or modified. As explained above signal(s) 72 may useful in determining one or more balancing solutions for high-pressure spool 20 and may be representative of a partial balancing solution helpful in selecting one or more correction weights and its/their associated position(s) on the high-pressure spool 20.
  • In various embodiments, the generating of revolution signal(s) 68 may comprise converting a rotational speed of the output of AGB 30 to a rotational speed substantially identical to the rotational speed of high-pressure spool 20. As explained above, this may be conducted via output shaft 48 and associated gear train 54 of phase device 34. The generating of revolution signal(s) 68 may comprise detecting trigger 60 associated with output shaft 48 and having substantially the same rotational speed as that of high-pressure spool 20. Revolution signal(s) 68 may be based on the detection of a single trigger 60 having substantially the same rotational speed as that of high-pressure spool 20. Accordingly, revolution signal(s) 68 may comprise one or more once-per-revolution signals where two consecutive once-per-revolution signals may indicate a complete revolution of high-pressure spool 20.
  • As explained above, phase device 34 may comprise a plurality of rotatable triggers 60, 62, 64 so that phase device 34 may be used in conjunction with other types or families of engines. Accordingly, method 700 may further comprise: driving first rotatable trigger 60 using the output of AGB 30 at a first speed ratio with the output of AGB 30; driving second rotatable trigger 62 using the output of AGB 30 at a second speed ratio with the output of AGB 30; and generating revolution signal(s) 68 based on the detection (e.g., via sensor(s) 66) of one of first rotatable trigger 60 and second rotatable trigger 62. In some embodiments, the first speed ratio may be configured to permit a rotational speed of first trigger 60 to be substantially identical as a rotational speed of high-pressure spool 20 and the second speed ratio may be configured to permit a rotational speed of second trigger 62 to be substantially the same as a rotational speed of a high-pressure spool of another gas turbine engine when phase device 34 is used with the other gas turbine engine.
  • FIGS. 8A and 8B respectively show exemplary plots of vibration signal(s) 78 and revolution signal(s) 68 plotted against a common time scale. Vibration signal(s) 78 may comprise one or more vibration magnitudes sensed using vibration sensor(s) 35. Some or all of the vibration magnitudes may be associated with corresponding time values substantially representing the time at which individual vibration magnitudes were sensed. In various embodiments, vibration signal(s) 78 may be representative of velocities (e.g., in/sec, m/s) plotted against time. Vibration signal(s) 78 may stem from one vibration sensor 35 or may comprise a combination or aggregation of vibration signals obtained from different vibration sensors 35. Revolution signal(s) 68 may comprise one or more pulses 82 indicating the detection of trigger 60 by sensor 66. Revolution signal(s) 68 may be generated simultaneously with the generation of vibration signal(s) 78. Consecutive pulses 82 in revolution signal(s) 68 as shown in FIG. 8B may be indicative of complete revolutions of trigger 60 and consequently be indicative of complete revolutions of high-pressure spool 20. Accordingly, pulses 82 may be once-per-revolution signals. Pulses 82 may each be associated with a time value substantially representing the time at which trigger 60 was sensed by sensor 66. Accordingly, vibration signal(s) 78 may be correlated with revolution signal(s) 68 based on the common time scale (i.e., abscissa in FIGS. 8A and 8B). Also since the time duration between two consecutive pulses 82 may represent a complete revolution (i.e., 360 degrees) of trigger 60, vibration magnitudes of signal(s) 78 may be correlated (e.g., synchronized) to angular position(s) of trigger 60 relative to the position of sensor 66.
  • FIGS. 9A and 9B respectively show exemplary vibration data and phase data plotted against the rotational speed of high-pressure spool 20. As explained above, the acquisition of vibration signal(s) 78 may be conducted at different rotational speeds of high-pressure spool 20 in order to take into account the dynamic properties of high-pressure spool 20 at different rotational speeds. Accordingly, a vibration sweep may be conducted to acquire vibration signal(s) 78 over a range of rotational speeds of high-pressure spool 20. FIG. 9A shows a plot of the phase of trigger 60 (in degrees), at which peak vibration magnitudes (obtained from vibration signal(s) 78) occur over a range of rotational speeds (i.e., N2) of high-pressure spool 20. FIG. 9B shows a plot of associated peak vibration magnitudes (in in/sec) plotted against the same range of rotational speeds (i.e., N2) of high-pressure spool 20. FIG. 9B indicates that, for this particular example, the largest vibration magnitude over the particular range of rotational speeds is 0.42 in/sec and occurs at about 22,000 rpm. FIG. 9A indicates that the corresponding phase of trigger 60 at which the largest vibration magnitude occurs is about 320°. This information may be used as a basis for determining a suitable correction weight to be installed on high-pressure spool 20.
  • During installation of phase device 34 to AGB 30, it may not be necessary to establish the angular relationship between the output of AGB 30 and high-pressure spool 20 at least initially. This relative angular position may be assessed, following all data collection and after some disassembly of engine 10 (e.g., via the first cover plate 36 of high-pressure shaft 20). Once phase device 34 has been synchronized to high-pressure spool 20, the vibration data (i.e. magnitude and phase) from actual operating speeds can be used to balance high-pressure spool 20. Accordingly, phase device 34 may be used when acquiring vibration data when engine 10 is in a test cell, during an engine overhaul and/or in the field with engine 10 mounted on-wing.
  • FIG. 10 is a schematic view of first balancing rim 38 of first cover plate 36 viewed along axis CL of FIG. 2. First balancing rim 38 may comprise a plurality of holes (e.g., numbered as numbers 1-40 in FIG. 10) which may be used to secure one or more correction weights to first balancing rim 38. The holes may be spaced about the circumference of first balancing rim 38. The angular position of each hole is also indicated in degrees in FIG. 10. First cover plate 36 may also comprise one or more reference markers sometimes called Phi marks (referred hereinafter as “Phi mark 84”). Phi mark 84 may be used to angularly align high-pressure spool 20 to a reference position (e.g., another reference mark). In various embodiments, the reference angular position of high-pressure spool 20 in engine 10 may be a location where Phi mark 84 is substantially aligned with a top dead center (TDC) of engine 10. The angular positions of holes in FIG. 10 may be measured from Phi mark 84.
  • In order to correlate the phase data (shown in FIG. 9A and based on angular position of trigger 60) to one or more corresponding holes in first balancing rim 38, an angular offset between trigger 60 and first balancing rim 38 may be determined. Vibration signal(s) 78 may be acquired relative to trigger 60 and subsequently correlated to high-pressure spool 20 after the acquisition of vibration signal(s) 78 has been completed. Accordingly, the determination of one or more balancing solutions may also be carried out subsequently. In various embodiments, the determination of the offset between trigger 60 of phase device 34 and first balancing rim 38 may be performed by maintenance personnel when engine 10 is not operating. Some disassembly of engine 10 may be required in order to at least partially expose first balancing rim 38 to maintenance personnel.
  • FIG. 11 is a schematic representation of sensor 66 and trigger 60 showing an exemplary angular offset of 120° between an angular position of trigger 60 of phase device 34 relative to sensor 66 and TDC of high-pressure spool 20. For example, high-pressure shaft 20 may be (e.g., manually) rotated until Phi mark 84 is substantially aligned with TDC. While, high-pressure spool 20 is at this position, the angular offset between trigger 60 and sensor 66 may be determined. The angular offset may be determined by slowly rotating (e.g., clockwise) first balancing rim 38 from TDC until trigger 60 of phase device 34 is sensed by sensor 66. When sensor 66 detects trigger 60, an audio and/or visual indication or alert may provide a signal to maintenance personnel indicating the position at which to determine the offset. Once trigger 60 is sensed by sensor 66, the corresponding angular position of balancing rim 38 relative to TDC may be determined via markings and/or holes provided on first cover plate 36 or via other suitable means. The angular offset may then be used to transfer the phase data of trigger 60 to high-pressure spool 20 in order to determine the angular position(s) on first balancing rim 38 at which one or more correction weights may be installed. In other words, the determination of the balancing solution for high-pressure spool 20 may be based on a first correlation between vibration signal(s) 78 and revolution signal(s) 68 and on a second correlation between revolution signal(s) 68 and angular positioning on high-pressure spool 20.
  • Once the angular/phase offset between phase device 34 and high-pressure spool 20 has been determined, one or more suitable balancing solutions may be determined based on vibration signal(s) 68. Suitable balancing solutions may be determined using known or other methods. In various embodiments, a balancing solution (e.g., correction weight and associated angular position) may be determined according to the relationship shown below. An numerical example is also provided below using the exemplary numerical values disclosed herein.
  • Correction Weight = - Baseline Vibration Vector Balancing Influence Coefficient = 0.42 in / s ( 320 - 180 + 120 ° Phase box offset ) 0.14 in / s / gram 270 ° = 3.0 grams 110 °
  • FIG. 12 is another schematic representation of first balancing rim 38 with three correction weights labeled as “H”. The correction weights have been installed on first balancing rim 38 via holes # 26, #28 and #31 at 130°, 112° and 85° respectively.
  • The above description is meant to be exemplary only, and one skilled in the relevant arts will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For example, the blocks and/or operations in the flowcharts and drawings described herein are for purposes of example only. There may be many variations to these blocks and/or operations without departing from the teachings of the present disclosure. For instance, the blocks may be performed in a differing order, or blocks may be added, deleted, or modified. The present disclosure may be embodied in other specific forms without departing from the subject matter of the claims. Also, one skilled in the relevant arts will appreciate that while the systems, devices and assemblies disclosed and shown herein may comprise a specific number of elements/components, the systems, devices and assemblies could be modified to include additional or fewer of such elements/components. The present disclosure is also intended to cover and embrace all suitable changes in technology. Modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.

Claims (11)

1. A device useful in determining a balancing solution for a high-pressure spool of a gas turbine engine, the device comprising:
an input shaft configured to be coupled to an output of an accessory gear box driven by the high-pressure spool of the gas turbine engine;
a first trigger rotatably coupled to the input shaft at a first speed ratio, the first speed ratio permitting a rotational speed of the first trigger to be substantially the same as a rotational speed of the high-pressure spool; and
a sensor configured to detect the trigger at each revolution of the trigger and, upon detection of the trigger, generate one or more signals representative of each associated revolution of the high-pressure spool of the gas turbine engine.
2. The device as defined in claim 1, comprising a second trigger rotatably coupled to the input shaft at a second speed ratio, the second speed ratio permitting a rotational speed of the second trigger to be substantially identical to a rotational speed of a high-pressure spool of another gas turbine engine when the device is used with the other gas turbine engine.
3. A device useful in determining a balancing solution for a high-pressure spool of a gas turbine engine, the device comprising:
an interface configured to receive rotary input from an accessory gear box driven by the high-pressure spool of the gas turbine engine; and
an output configured to generate one or more signals representative of each revolution of the high-pressure spool of the gas turbine engine associated with the rotary input.
4. The device as defined in claim 3, wherein:
the interface comprises an input shaft; and
the device comprises a first detectable trigger coupled to the input shaft at a first speed ratio.
5. The device as defined in claim 4, wherein the first speed ratio is configured to permit a rotational speed of the first trigger to be substantially identical to a rotational speed of the high-pressure spool.
6. The device as defined in claim 5, comprising a sensor configured to detect the trigger at each revolution of the trigger and, upon detection of the trigger, generate one or more signals representative of each associated revolution of the high-pressure spool of the gas turbine engine.
7. The device as defined in claim 5, comprising a second detectable trigger coupled to the input shaft at a second speed ratio, the second speed ratio permitting a rotational speed of the second trigger to be substantially identical to a rotational speed of a high-pressure spool of another gas turbine engine when the device is used with the other gas turbine engine.
8. The device as defined in claim 3, comprising a first trigger coupled to the interface and configured to cause the generation of the one or more signals by the output.
9. The device as defined in claim 3, comprising a rotatable trigger coupled to the interface and configured to substantially reproduce a rotational speed of the high-pressure spool based on the rotary input from the accessory gear box.
10. The device as defined in claim 9, comprising a sensor configured detect the trigger at each revolution of the trigger and, upon detection of the trigger, generate one or more signals representative of each associated revolution of the high-pressure spool of the gas turbine engine.
11.-20. (canceled)
US16/117,436 2013-12-20 2018-08-30 Devices and methods for balancing a high-pressure spool of a gas turbine engine Abandoned US20180371915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/117,436 US20180371915A1 (en) 2013-12-20 2018-08-30 Devices and methods for balancing a high-pressure spool of a gas turbine engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/135,685 US10087761B2 (en) 2013-12-20 2013-12-20 Devices and methods for balancing a high-pressure spool of a gas turbine engine
US16/117,436 US20180371915A1 (en) 2013-12-20 2018-08-30 Devices and methods for balancing a high-pressure spool of a gas turbine engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/135,685 Division US10087761B2 (en) 2013-12-20 2013-12-20 Devices and methods for balancing a high-pressure spool of a gas turbine engine

Publications (1)

Publication Number Publication Date
US20180371915A1 true US20180371915A1 (en) 2018-12-27

Family

ID=53399686

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/135,685 Active 2037-02-14 US10087761B2 (en) 2013-12-20 2013-12-20 Devices and methods for balancing a high-pressure spool of a gas turbine engine
US16/117,436 Abandoned US20180371915A1 (en) 2013-12-20 2018-08-30 Devices and methods for balancing a high-pressure spool of a gas turbine engine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/135,685 Active 2037-02-14 US10087761B2 (en) 2013-12-20 2013-12-20 Devices and methods for balancing a high-pressure spool of a gas turbine engine

Country Status (2)

Country Link
US (2) US10087761B2 (en)
CA (1) CA2872119C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087761B2 (en) * 2013-12-20 2018-10-02 Pratt & Whitney Canada Corp. Devices and methods for balancing a high-pressure spool of a gas turbine engine
US10400603B2 (en) * 2016-06-23 2019-09-03 United Technologies Corporation Mini-disk for gas turbine engine
US10465611B2 (en) 2016-09-15 2019-11-05 Pratt & Whitney Canada Corp. Reverse flow multi-spool gas turbine engine with aft-end accessory gearbox drivingly connected to both high pressure spool and low pressure spool
CN108519235B (en) * 2018-03-17 2020-02-21 北京化工大学 Pneumatic turbine driving type double-rotor test bed
US10954863B2 (en) * 2019-04-09 2021-03-23 General Electric Company Phasing gearbox
US11753178B2 (en) 2019-11-12 2023-09-12 General Electric Company Systems and methods for removing heat from aircraft components
CN113404595A (en) 2020-03-16 2021-09-17 通用电气公司 Gas turbine engine and method of operating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090060717A1 (en) * 2007-06-27 2009-03-05 Honeywell International, Inc. Synchronous signal generator for trim balancing of jet engine

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608650A (en) * 1983-08-09 1986-08-26 Becton Dickinson And Company Imbalance measuring system and method
US4737076A (en) * 1986-10-20 1988-04-12 United Technologies Corporation Means for maintaining concentricity of rotating components
US5140856A (en) * 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
US5219454A (en) * 1992-04-22 1993-06-15 Denis Class Method and apparatus for balancing wind turbine rotors
EP0577159A1 (en) 1992-06-29 1994-01-05 The Boeing Company Onboard aircraft engine balancing data gathering and analysis system
US5544073A (en) 1994-06-02 1996-08-06 Computational Systems, Inc. Rotor balancing calculator
FR2761412B1 (en) * 1997-03-27 1999-04-30 Snecma DOUBLE-BODY TURBOPROPULSOR GROUP WITH ISODROME REGULATION
US6129768A (en) * 1998-11-06 2000-10-10 Maytag Corporation Method and apparatus for operating an automatic balancing system
US7155973B2 (en) 2003-07-08 2007-01-02 Stephen William Dyer Method and apparatus for balancing
TW579424B (en) * 2001-07-09 2004-03-11 Shell Int Research Vibration analysis for predictive maintenance in machinery
GB0308467D0 (en) * 2003-04-11 2003-05-21 Rolls Royce Plc Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components
US6923058B2 (en) * 2003-05-15 2005-08-02 Torque-Traction Technologies, Inc System and method for balancing a driveline system
US7321809B2 (en) 2003-12-30 2008-01-22 The Boeing Company Methods and systems for analyzing engine unbalance conditions
WO2006017201A1 (en) * 2004-07-12 2006-02-16 Lord Corporation Rotating machine active balancer and method of dynamically balancing a rotating machine shaft with torsional vibrations
DE102005053786A1 (en) * 2005-11-09 2007-05-10 Schenck Rotec Gmbh Method and device for dynamically measuring the imbalance of a rotor
EP2072975A1 (en) * 2007-12-19 2009-06-24 Siemens Aktiengesellschaft Method and apparatus for vibration-based automatic condition monitoring of a wind turbine
US8308435B2 (en) 2007-12-27 2012-11-13 General Electric Company Methods and system for balancing turbine rotor assemblies
US8567060B2 (en) * 2007-12-27 2013-10-29 Pratt & Whitney Canada Corp. Gas turbine rotor assembly method
EP2107356A1 (en) * 2008-03-31 2009-10-07 Carnehammar, Lars Bertil Method, apparatus and system for analyzing a vehicle wheel
US7866213B2 (en) * 2008-06-18 2011-01-11 Siemens Energy, Inc. Method of analyzing non-synchronous vibrations using a dispersed array multi-probe machine
FR2932850B1 (en) 2008-06-23 2010-08-13 Snecma METHOD AND SYSTEM FOR DETERMINING THE ANGULAR POSITION OF A TURBOJET ROTOR
US8291764B2 (en) * 2009-08-14 2012-10-23 Lenz Michael A W Method and apparatus for in situ unbalance and corrective balance determination for a non-vertical axis rotating assembly
GB201009216D0 (en) * 2010-06-02 2010-07-21 Rolls Royce Plc Rotationally balancing a rotating part
US9995174B2 (en) * 2010-10-12 2018-06-12 United Technologies Corporation Planetary gear system arrangement with auxiliary oil system
US8943796B2 (en) * 2011-06-28 2015-02-03 United Technologies Corporation Variable cycle turbine engine
US10087761B2 (en) * 2013-12-20 2018-10-02 Pratt & Whitney Canada Corp. Devices and methods for balancing a high-pressure spool of a gas turbine engine
GB201402419D0 (en) * 2014-02-12 2014-03-26 Rolls Royce Plc Time reference derivation from time of arrival measurements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090060717A1 (en) * 2007-06-27 2009-03-05 Honeywell International, Inc. Synchronous signal generator for trim balancing of jet engine

Also Published As

Publication number Publication date
CA2872119A1 (en) 2015-06-20
CA2872119C (en) 2022-05-31
US10087761B2 (en) 2018-10-02
US20150177091A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
US20180371915A1 (en) Devices and methods for balancing a high-pressure spool of a gas turbine engine
US7775107B2 (en) Measuring rotor imbalance via blade clearance sensors
EP2870346B1 (en) Advanced tip-timing measurement blade mode identification
JP5073533B2 (en) How to detect damage to engine bearings
US7698942B2 (en) Turbine engine stall warning system
JPH08503042A (en) Method and apparatus for monitoring the excitation of an axial compressor
US20120312099A1 (en) Rotating blade analysis
US11970949B2 (en) Method and system for detecting a functional failure in a power gearbox and a gas turbo engine
US20170299469A1 (en) Systems and methods for detecting engine vibration
EP3686606B1 (en) Shaft monitoring system
US20200232883A1 (en) Detecting an object impact event
JP2572530B2 (en) Vibration spectrum monitoring device, and health monitoring method and device
US20090060717A1 (en) Synchronous signal generator for trim balancing of jet engine
US11513035B2 (en) Detection of transient events
US11788931B2 (en) Method for monitoring the torsion of a rotary shaft on a turbomachine of an aircraft
US10184952B2 (en) System and method for speed sensor position detection in a multiple channel control system
US11905892B2 (en) Flow machine performance modelling
US20230314281A1 (en) Methods and systems of monitoring a condition of a component of a gas turbine engine
RU114527U1 (en) DEVICE FOR FORECASTING THE TECHNICAL CONDITION OF THE INTER-ROTOR BEARING OF THE AVIATION GAS-TURBINE ENGINE IN OPERATION

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRATT & WHITNEY CANADA CORP., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CALVERT, BRUCE;WIRTH, RICHARD;KRAUSE, DANNY;SIGNING DATES FROM 20131212 TO 20131213;REEL/FRAME:046755/0020

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION