US20180371143A1 - A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature - Google Patents

A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature Download PDF

Info

Publication number
US20180371143A1
US20180371143A1 US15/742,407 US201715742407A US2018371143A1 US 20180371143 A1 US20180371143 A1 US 20180371143A1 US 201715742407 A US201715742407 A US 201715742407A US 2018371143 A1 US2018371143 A1 US 2018371143A1
Authority
US
United States
Prior art keywords
molecular weight
ultra
high molecular
room temperature
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/742,407
Inventor
Wenyan Huang
Bibiao Jiang
Xiaoqiang Xue
Hongjun Yang
Qimin JIANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611258871.9A external-priority patent/CN106674390B/en
Priority claimed from CN201611258844.1A external-priority patent/CN106674393A/en
Priority claimed from CN201611263551.2A external-priority patent/CN106632773A/en
Application filed by Changzhou University filed Critical Changzhou University
Assigned to Changzhou University reassignment Changzhou University ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, Wenyan, JIANG, Bibiao, JIANG, Qimin, XUE, Xiaoqiang, YANG, HONGJUN
Publication of US20180371143A1 publication Critical patent/US20180371143A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F120/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • C08F18/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/02Stable Free Radical Polymerisation [SFRP]; Nitroxide Mediated Polymerisation [NMP] for, e.g. using 2,2,6,6-tetramethylpiperidine-1-oxyl [TEMPO]

Definitions

  • This invention is about a process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature, belonging to the fields of polymer synthesis and preparation of functional polymers.
  • polystyrene, polymethyl methacrylate (PMMA) and polyvinyl acetate are the common thermoplastic polymers. But their applications have been greatly limited because of their low impact-resistance strength, low heat resistance and so on. In recent years, some properties of polymers are improved by increasing their molecular weight, among them, the research of the polymers with ultra-high molecular weight is one of the hot directions. Ultra-high molecular weight polymers retain the excellent optical properties, processable properties, also improve the mechanical strength and heat resistance properties. Therefore, it is significant to develop and enrich the synthesis methods of polymers with ultra-high molecular weight.
  • the preparation of ultra-high molecular weight polystyrene is mainly used the compound of multi substituted bibenzyl (C—C bond compound) as initiator to initiate styrene in bulk polymerization; used the rare earth catalyst or complex catalyst formed by calixarene neodymium, Mg(n-Bu)2 and HMPA polymerizes via coordination polymerization under high pressure; used azo compounds as initiator and organic tellurium as a chain transfer agent via soap free emulsion polymerization.
  • PMMA with ultra-high molecular weight is prepared generally by suspension polymerization, low temperature plasma polymerization and coordination polymerization. The initiating system is complex, the initiating efficiency was low and more impurities were introduced into the product.
  • Suspension polymerization requires a large amount of water as a continuous phase, and the production efficiency is low. There is the dispersants, stabilizers and other impurities residual in the prepared polymer products.
  • Low temperature plasma polymerization method requires high-level equipment and the polymer solubility and the properties of toughness and impact resistance of these polymers were decreased owing to the wide molecular weight distribution and the cross-linking reaction occurred.
  • the coordination polymerization system is complex and required the harsh conditions, which is difficult to be operated. These polymerization systems are complex. High-level technology and equipment are required in the processing. The cost of polymerization is high. High conversion rate of monomer achieved is required a long time for polymerization. The molecular weight of the polymer is affected by various factors.
  • Polyvinyl acetate generally is only obtained by free radical polymerization. It cannot be polymerized by anionic polymerization because of the electron withdrawing group on vinyl acetate monomer, it is also because free radical activity of vinyl acetate is too high, the chain transfer constant is too large, which make it difficult to obtain polyvinyl acetate with high molecular weight by bulk and solution polymerization.
  • poly vinyl acetate was prepared via conventional free radical emulsion polymerization, using non-ionic emulsifiers, polyvinyl alcohol (PVA) as the dispersing agent at 60-90° C., the polymerization has high energy consumption, and it is easy to cause active chain transfer, which result in low molecular weight polymer prepared.
  • PVA polyvinyl alcohol
  • redox initiator the polymer with relative high molecular weight can be prepared at relatively low temperature, but the reaction system is complex.
  • the reaction system and polymer properties is limited by ratio of reducing agent and oxidant, which these problems also limits the development for large scale applications of polyvinyl acetate.
  • the above polymerizations described hinder the development of the theoretical research and scaled applications of ultra-high molecular weight polymers.
  • This invention is to provide a method for preparation of polymer with ultra-high molecular weight via free radical emulsion polymerization at room temperature.
  • the process of ultra-high molecular weight polymers is used potassium persulfate and ammonium persulfate as initiator via emulsion polymerization at room temperature.
  • the polymerization system is simple and stable, easy to be operated, short reaction time and high monomer conversion, high molecular weight for the polymer and narrow molecular weight distribution.
  • the molecular weight of the polymer could be controlled and adjusted according to polymerization condition.
  • a process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature is used persulfate as initiator, water as the medium, anionic surfactant as emulsifier, sodium bicarbonate as pH regulator, styrene, vinyl acetate or (meth) acrylate as monomer to polymerize by free radical emulsion.
  • the key novelty of this invention is the use of a commercial potassium persulfate and ammonium persulfate, which can be used to initiate the styrene, vinyl acetate or (meth) acrylate at room temperature under conditional free radical emulsion polymerization without addition of other high active assist initiators or increasing the reaction temperature.
  • the ultra-high molecular weight polymers were successfully obtained, which the weight average molecular weight of the polymers were larger than 100 ⁇ 104 g/mol. This synthesizing process to prepare ultra-high molecular weight polymers is simple and practical, and can be achieved at low production cost.
  • the initiator is potassium persulfate or ammonium persulfate
  • the molar ratio of initiator and monomer is 1 ⁇ 5:100.
  • the mass ratio of water and monomer is 2 ⁇ 5:1.
  • the polymerization temperature is room temperature and the polymerization reaction time is controlled in a range of 1 ⁇ 6 hours.
  • the polymerization method is emulsion polymerization
  • the polymerization mechanism is free radical polymerization
  • the surfactant is an anionic surfactant, sodium dodecyl benzene sulfonate or sodium dodecyl sulfate.
  • the mass ratio of the surfactant and monomer is 4-6 wt %.
  • the mass ratio of the pH modifier sodium bicarbonate and monomer is 2 ⁇ 4 wt %.
  • the pH value is adjusted to 7 ⁇ 8, which ensure the polymerization system stable.
  • the persulfate was used as initiator, which can initiate styrene, vinyl acetate, or (meth) acrylate to be polymerized via emulsion polymerization at room temperature.
  • the polymers with ultra-high molecular weight was obtained.
  • only water was used as the reaction medium, which is safe and reliable for the environment, meanwhile the production of ultra-high molecular weight polymers not only saves the cost, but also have no effect on the environment.
  • persulfate can be decomposed at room temperature and normal pressure, then can initiate styrene, vinyl acetate or (meth) acrylate to be polymerized.
  • the use of the commercialized initiator greatly reduces the polymerization cost; the reaction system is simple and stable, be operated under mild reaction conditions, without temperature control, less impact on the environment, low energy consumption, which is suitable for large-scale industrialized production.
  • reaction time is short and monomer conversion rate is high
  • the molecular weight of the polymer is ultra-high and the distribution of molecular weight is narrow and the molecular weight and molecular weight distribution can be adjusted in a wide range, which is conducive to the precise control of the preparation of polymer with ultra-high molecular weight for meeting different requirements. It is significant for the theoretical study of the synthesis process of polymers with ultra-high molecular weight.
  • FIG. 1 is the differential molecular weight distribution curve of polystyrene with ultra-high molecular weight obtained from embodiment 1.
  • FIG. 2 is the differential molecular weight distribution curve of PMMA with ultra-high molecular weight obtained from embodiment 7.
  • FIG. 3 is the differential molecular weight distribution curve of PVAc with ultra-high molecular weight obtained from embodiment 13.
  • FIG. 1 is the differential molecular weight distribution curve of polystyrene with ultra-high molecular weight obtained from embodiment 1.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • methyl methacrylate (5.0002 g, 0.0500 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2501 g, 5 wt % MMA), sodium bicarbonate (0.1500 g, 3 wt % MMA), potassium persulfate (0.4591 g, 0.0017 mol) and water (20.0042 g, 400 wt % MMA), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 4 hours.
  • the MMA conversion rate was found to be 95.00%.
  • FIG. 2 is the differential molecular weight distribution curve of PMMA with ultra-high molecular weight obtained from embodiment 7.
  • MMA 5.0001 g, 0.0500 mol
  • sodium dodecyl sulfate (0.2502 g, 5 wt % MMA), sodium bicarbonate (0.1500 g, 3 wt % MMA), potassium persulfate (0.4592 g, 0.0017 mol) and water (20.0001 g, 400 wt % MMA), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours.
  • the MMA conversion rate was found to be 95.05%.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • MMA 5.0001 g, 0.0500 mol
  • sodium dodecyl sulfate (0.2502 g, 5 wt % MMA), sodium bicarbonate (0.1500 g, 3 wt % MMA), potassium persulfate (0.3375 g, 0.0013 mol) and water (20.0053 g, 400 wt % MMA), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours.
  • the MMA conversion rate was found to be 98.21%.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • n-butyl methacrylate (5.0000 g, 0.0352 mol) to the reaction flask of the solution of sodium dodecyl benzene sulfonate (0.3000 g, 6 wt % n-BMA), sodium bicarbonate (0.1500 g, 3 wt % n-BMA), potassium persulfate (0.3171 g, 0.0012 mol) and water (20.0003 g, 400 wt % n-BMA), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 4 hours.
  • the n-BMA conversion rate was found to be 94 . 06 %.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • VAc vinyl acetate
  • FIG. 3 is the differential molecular weight distribution curve of PVAc with ultra-high molecular weight obtained from embodiment 13.
  • VAc (5.0000 g, 0.0581 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.3003 g, 6 wt % VAc), sodium bicarbonate (0.2001 g, 4 wt % VAc), ammonium persulfate (0.6612 g, 0.0029 mol) and water (25.0009 g, 500 wt % VAc), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 1 hours.
  • the VAc conversion rate was found to be 90.71%.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • VAc (5.0003 g, 0.0582 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2003 g, 4 wt % VAc), sodium bicarbonate (0.2002 g, 4 wt % VAc), potassium persulfate (0.1566 g, 0.0006 mol) and water (10.0026 g, 200 wt % VAc), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours.
  • the VAc conversion rate was found to be 90.45%.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • VAc (5.0001 g, 0.0581 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2502 g, 5 wt % VAc), sodium bicarbonate (0.1500 g, 3 wt % VAc), potassium persulfate (0.5224 g, 0.0019 mol) and water (20.0018 g, 400 wt % VAc), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours.
  • the VAc conversion rate was found to be 85.06%.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • VAc (5.0001 g, 0.0581 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2500 g, 5 wt % VAc), sodium bicarbonate (0.1500 g, 3 wt % VAc), potassium persulfate (0.3923 g, 0.0015 mol) and water (20.0012 g, 400 wt % VAc), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours.
  • the VAc conversion rate was found to be 93.15%.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.
  • VAc (5.0002 g, 0.0582 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.3002 g, 6 wt % VAc), sodium bicarbonate (0.1503 g, 3 wt % VAc), potassium persulfate (0.5235 g, 0.0019 mol) and water (20.0006 g, 400 wt % VAc), stirring uniformly.
  • the flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours.
  • the VAc conversion rate was found to be 87.75%.
  • the emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The invention discloses a process for preparing an ultra-high molecular weight polymer via emulsion polymerization at the room temperature, belonging to the fields of polymer synthesis. Persulfate as initiator, water as medium, anionic surfactant as emulsifier, sodium bicarbonate as pH regulator, styrene, (meth) acrylate or vinyl acetate as monomer, is subjected to a free radical polymerization at room temperature and the normal pressure. The ultra-high molecular weight polymers were successfully obtained, which the weight average molecular weight of the polymers were larger than 100×104 g/mol. The monomer conversion can be above 85% after the reaction was proceeded about 1˜6 hours. The process for preparing an ultra-high molecular weight polymer is carried out under the conditions of conventional free radical emulsion polymerization at the room temperature and normal pressure without the addition of other assist initiators. There is no need to control temperature and pressure of the reaction, low energy consumption, short reaction time and high monomer conversion, ultra-high molecular weight and narrow molecular weight distribution of the polymers achieved, and the molecular weight and molecular weight distribution can be adjusted and controlled in a wider range. The polymerization is simple and stable, the commercial materials can be directly used in the reaction, which greatly reduce the cost, easy operation, mild conditions and the environmental friendly process. This process is highly suitable for synthesizing ultra-high molecular weight polymers from various monomers. These advantages of this process is of great significance for the research and application of ultra-high molecular weight polymers.

Description

    FIELD OF THE DISCLOSURE
  • This invention is about a process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature, belonging to the fields of polymer synthesis and preparation of functional polymers.
  • BACKGROUND OF RELATED ART
  • Commercially, polystyrene, polymethyl methacrylate (PMMA) and polyvinyl acetate are the common thermoplastic polymers. But their applications have been greatly limited because of their low impact-resistance strength, low heat resistance and so on. In recent years, some properties of polymers are improved by increasing their molecular weight, among them, the research of the polymers with ultra-high molecular weight is one of the hot directions. Ultra-high molecular weight polymers retain the excellent optical properties, processable properties, also improve the mechanical strength and heat resistance properties. Therefore, it is significant to develop and enrich the synthesis methods of polymers with ultra-high molecular weight.
  • At present, the preparation of ultra-high molecular weight polystyrene is mainly used the compound of multi substituted bibenzyl (C—C bond compound) as initiator to initiate styrene in bulk polymerization; used the rare earth catalyst or complex catalyst formed by calixarene neodymium, Mg(n-Bu)2 and HMPA polymerizes via coordination polymerization under high pressure; used azo compounds as initiator and organic tellurium as a chain transfer agent via soap free emulsion polymerization. PMMA with ultra-high molecular weight is prepared generally by suspension polymerization, low temperature plasma polymerization and coordination polymerization. The initiating system is complex, the initiating efficiency was low and more impurities were introduced into the product. Suspension polymerization requires a large amount of water as a continuous phase, and the production efficiency is low. There is the dispersants, stabilizers and other impurities residual in the prepared polymer products. Low temperature plasma polymerization method requires high-level equipment and the polymer solubility and the properties of toughness and impact resistance of these polymers were decreased owing to the wide molecular weight distribution and the cross-linking reaction occurred. The coordination polymerization system is complex and required the harsh conditions, which is difficult to be operated. These polymerization systems are complex. High-level technology and equipment are required in the processing. The cost of polymerization is high. High conversion rate of monomer achieved is required a long time for polymerization. The molecular weight of the polymer is affected by various factors. These deficiencies described as above limit the development of scale applications for polymers with ultra-high molecular weight. Polyvinyl acetate generally is only obtained by free radical polymerization. It cannot be polymerized by anionic polymerization because of the electron withdrawing group on vinyl acetate monomer, it is also because free radical activity of vinyl acetate is too high, the chain transfer constant is too large, which make it difficult to obtain polyvinyl acetate with high molecular weight by bulk and solution polymerization. At present, poly vinyl acetate was prepared via conventional free radical emulsion polymerization, using non-ionic emulsifiers, polyvinyl alcohol (PVA) as the dispersing agent at 60-90° C., the polymerization has high energy consumption, and it is easy to cause active chain transfer, which result in low molecular weight polymer prepared. Using redox initiator, the polymer with relative high molecular weight can be prepared at relatively low temperature, but the reaction system is complex. The reaction system and polymer properties is limited by ratio of reducing agent and oxidant, which these problems also limits the development for large scale applications of polyvinyl acetate. The above polymerizations described hinder the development of the theoretical research and scaled applications of ultra-high molecular weight polymers.
  • SUMMARY
  • This invention is to provide a method for preparation of polymer with ultra-high molecular weight via free radical emulsion polymerization at room temperature. The process of ultra-high molecular weight polymers is used potassium persulfate and ammonium persulfate as initiator via emulsion polymerization at room temperature. The polymerization system is simple and stable, easy to be operated, short reaction time and high monomer conversion, high molecular weight for the polymer and narrow molecular weight distribution. The molecular weight of the polymer could be controlled and adjusted according to polymerization condition.
  • A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature is used persulfate as initiator, water as the medium, anionic surfactant as emulsifier, sodium bicarbonate as pH regulator, styrene, vinyl acetate or (meth) acrylate as monomer to polymerize by free radical emulsion. The key novelty of this invention is the use of a commercial potassium persulfate and ammonium persulfate, which can be used to initiate the styrene, vinyl acetate or (meth) acrylate at room temperature under conditional free radical emulsion polymerization without addition of other high active assist initiators or increasing the reaction temperature. The ultra-high molecular weight polymers were successfully obtained, which the weight average molecular weight of the polymers were larger than 100×104 g/mol. This synthesizing process to prepare ultra-high molecular weight polymers is simple and practical, and can be achieved at low production cost.
  • In the preferred technical process, the initiator is potassium persulfate or ammonium persulfate;
  • In the preferred technical process, the molar ratio of initiator and monomer is 1˜5:100.
  • In the preferred technological process, the mass ratio of water and monomer is 2˜5:1.
  • In the preferred technological process, the polymerization temperature is room temperature and the polymerization reaction time is controlled in a range of 1˜6 hours.
  • In the preferred technological process, the polymerization method is emulsion polymerization, and the polymerization mechanism is free radical polymerization.
  • In the preferred technological process, the surfactant is an anionic surfactant, sodium dodecyl benzene sulfonate or sodium dodecyl sulfate.
  • In the preferred technical process, the mass ratio of the surfactant and monomer is 4-6 wt %.
  • In the preferred technical process, the mass ratio of the pH modifier sodium bicarbonate and monomer is 2˜4 wt %. The pH value is adjusted to 7˜8, which ensure the polymerization system stable.
  • In this invention, the persulfate was used as initiator, which can initiate styrene, vinyl acetate, or (meth) acrylate to be polymerized via emulsion polymerization at room temperature. The polymers with ultra-high molecular weight was obtained. In the emulsion polymerization, only water was used as the reaction medium, which is safe and reliable for the environment, meanwhile the production of ultra-high molecular weight polymers not only saves the cost, but also have no effect on the environment. Selecting the appropriate emulsion polymerization conditions, persulfate can be decomposed at room temperature and normal pressure, then can initiate styrene, vinyl acetate or (meth) acrylate to be polymerized. In this polymerization, high polymerization rate, short reaction time and high monomer conversion, ultra-high molecular weight and narrow molecular weight distribution are the outstanding characters. Furthermore the molecular weight and molecular weight distribution of the polymers can be adjusted according to the polymerization conditions. The reaction system is simple and stable under the mild conditions, which is also easy to be operated, suitable for large-scale application.
  • Compared with the present technology, the creativity and novelty of this invention described as the following:
  • Firstly, in this invention, the use of the commercialized initiator greatly reduces the polymerization cost; the reaction system is simple and stable, be operated under mild reaction conditions, without temperature control, less impact on the environment, low energy consumption, which is suitable for large-scale industrialized production.
  • Secondly, in this invention, reaction time is short and monomer conversion rate is high, the molecular weight of the polymer is ultra-high and the distribution of molecular weight is narrow and the molecular weight and molecular weight distribution can be adjusted in a wide range, which is conducive to the precise control of the preparation of polymer with ultra-high molecular weight for meeting different requirements. It is significant for the theoretical study of the synthesis process of polymers with ultra-high molecular weight.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is the differential molecular weight distribution curve of polystyrene with ultra-high molecular weight obtained from embodiment 1.
  • FIG. 2 is the differential molecular weight distribution curve of PMMA with ultra-high molecular weight obtained from embodiment 7.
  • FIG. 3 is the differential molecular weight distribution curve of PVAc with ultra-high molecular weight obtained from embodiment 13.
  • DETAILED DESCRIPTION Embodiment 1
  • Add styrene (5.0002 g, 0.0480 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2500 g, 5 wt % styrene), sodium bicarbonate (0.1500 g, 3 wt % styrene), potassium persulfate (0.4321 g, 0.0016 mol) and water (20.0053 g, 400 wt % styrene), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 4 hours. The styrene conversion rate was found to be 90.27%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=2693000 g/mol, molecular weight distribution PDI=3.60. FIG. 1 is the differential molecular weight distribution curve of polystyrene with ultra-high molecular weight obtained from embodiment 1.
  • Embodiment 2
  • Add styrene (5.0002 g, 0.0480 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.3003 g, 6 wt % styrene), sodium bicarbonate (0.2001 g, 4 wt % styrene), ammonium persulfate (0.5472 g, 0.0024 mol) and water (25.0005 g, 500 wt % styrene), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 1 hours. The styrene conversion rate was found to be 89.77%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=3730000 g/mol, molecular weight distribution PDI=2.07.
  • Embodiment 3
  • Add styrene (5.0002 g, 0.0480 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2003 g, 4 wt % styrene), sodium bicarbonate (0.1002 g, 2 wt % styrene), potassium persulfate (0.1309 g, 0.0005 mol) and water (10.0006 g, 200 wt % styrene), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours. The styrene conversion rate was found to be 88.65%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=5847000 g/mol, molecular weight distribution PDI=2.06.
  • Embodiment 4
  • Add styrene (5.0001 g, 0.0480 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2502 g, 5 wt % styrene), sodium bicarbonate (0.1500 g, 3 wt % styrene), potassium persulfate (0.4322 g, 0.0016 mol) and water (20.0007 g, 400 wt % styrene), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours. The styrene conversion rate was found to be 88.97%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=5502000 g/mol, molecular weight distribution PDI=2.25.
  • Embodiment 5
  • Add styrene (5.0001 g, 0.0480 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2500 g, 5 wt % styrene), sodium bicarbonate (0.1500 g, 3 wt % styrene), potassium persulfate (0.3242 g, 0.0012 mol) and water (20.0053 g, 400 wt % styrene), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours. The styrene conversion rate was found to be 92.74%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=3558000 g/mol, molecular weight distribution PDI=4.20.
  • Embodiment 6
  • Add styrene (5.0002 g, 0.0480 mol) to the reaction flask of the solution of sodium dodecyl benzene sulfonate (0.3000 g, 6 wt % styrene), sodium bicarbonate (0.1500 g, 3 wt % styrene), potassium persulfate (0.4321 g, 0.0016 mol) and water (20.0053 g, 400 wt % styrene), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours. The styrene conversion rate was found to be 91.54%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=4331000 g/mol, molecular weight distribution PDI=2.40.
  • Embodiment 7
  • Add methyl methacrylate (MMA) (5.0002 g, 0.0500 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2501 g, 5 wt % MMA), sodium bicarbonate (0.1500 g, 3 wt % MMA), potassium persulfate (0.4591 g, 0.0017 mol) and water (20.0042 g, 400 wt % MMA), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 4 hours. The MMA conversion rate was found to be 95.00%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=3315000 g/mol, molecular weight distribution PDI=2.39. FIG. 2 is the differential molecular weight distribution curve of PMMA with ultra-high molecular weight obtained from embodiment 7.
  • Embodiment 8
  • Add MMA (5.0002 g, 0.0500 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.3001 g, 6 wt % MMA), sodium bicarbonate (0.2000 g, 4 wt % MMA), ammonium persulfate (0.5712 g, 0.0025 mol) and water (25.0005 g, 500 wt % MMA), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 4 hours. The MMA conversion rate was found to be 90.97%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=3023000 g/mol, molecular weight distribution PDI=3.13.
  • Embodiment 9
  • Add MMA (5.0002 g, 0.0500 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2003 g, 4 wt % MMA), sodium bicarbonate (0.1002 g, 2 wt % MMA), potassium persulfate (0.1308 g, 0.0005 mol) and water (10.0006 g, 200 wt % MMA), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours. The MMA conversion rate was found to be 93.65%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=6082300 g/mol, molecular weight distribution PDI=2.46.
  • Embodiment 10
  • Add MMA (5.0001 g, 0.0500 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2502 g, 5 wt % MMA), sodium bicarbonate (0.1500 g, 3 wt % MMA), potassium persulfate (0.4592 g, 0.0017 mol) and water (20.0001 g, 400 wt % MMA), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours. The MMA conversion rate was found to be 95.05%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=5987000 g/mol, molecular weight distribution PDI=2.76.
  • Embodiment 11
  • Add MMA (5.0001 g, 0.0500 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2502 g, 5 wt % MMA), sodium bicarbonate (0.1500 g, 3 wt % MMA), potassium persulfate (0.3375 g, 0.0013 mol) and water (20.0053 g, 400 wt % MMA), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours. The MMA conversion rate was found to be 98.21%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight MwMALLS=6380000 g/mol, molecular weight distribution PDI=2.97.
  • Embodiment 12
  • Add n-butyl methacrylate (n-BMA) (5.0000 g, 0.0352 mol) to the reaction flask of the solution of sodium dodecyl benzene sulfonate (0.3000 g, 6 wt % n-BMA), sodium bicarbonate (0.1500 g, 3 wt % n-BMA), potassium persulfate (0.3171 g, 0.0012 mol) and water (20.0003 g, 400 wt % n-BMA), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 4 hours. The n-BMA conversion rate was found to be 94.06%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=3291000 g/mol, molecular weight distribution PDI=2.76.
  • Embodiment 13
  • Add vinyl acetate (VAc) (5.0002 g, 0.0582 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2502 g, 5 wt % VAc), sodium bicarbonate (0.1501 g, 3 wt % VAc), potassium persulfate (0.6211 g, 0.0023 mol) and water (20.0008 g, 400 wt % VAc), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 4 hours. The VAc conversion rate was found to be 87.88%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=1022300 g/mol, molecular weight distribution PDI=3.96. FIG. 3 is the differential molecular weight distribution curve of PVAc with ultra-high molecular weight obtained from embodiment 13.
  • Embodiment 14
  • Add VAc (5.0000 g, 0.0581 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.3003 g, 6 wt % VAc), sodium bicarbonate (0.2001 g, 4 wt % VAc), ammonium persulfate (0.6612 g, 0.0029 mol) and water (25.0009 g, 500 wt % VAc), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 1 hours. The VAc conversion rate was found to be 90.71%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=1001300 g/mol, molecular weight distribution PDI=2.87.
  • Embodiment 15
  • Add VAc (5.0003 g, 0.0582 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2003 g, 4 wt % VAc), sodium bicarbonate (0.2002 g, 4 wt % VAc), potassium persulfate (0.1566 g, 0.0006 mol) and water (10.0026 g, 200 wt % VAc), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours. The VAc conversion rate was found to be 90.45%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=2744000 g/mol, molecular weight distribution PDI=3.16.
  • Embodiment 16
  • Add VAc (5.0001 g, 0.0581 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2502 g, 5 wt % VAc), sodium bicarbonate (0.1500 g, 3 wt % VAc), potassium persulfate (0.5224 g, 0.0019 mol) and water (20.0018 g, 400 wt % VAc), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours. The VAc conversion rate was found to be 85.06%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=1313000 g/mol, molecular weight distribution PDI=3.34.
  • Embodiment 17
  • Add VAc (5.0001 g, 0.0581 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.2500 g, 5 wt % VAc), sodium bicarbonate (0.1500 g, 3 wt % VAc), potassium persulfate (0.3923 g, 0.0015 mol) and water (20.0012 g, 400 wt % VAc), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 35° C. to react for 6 hours. The VAc conversion rate was found to be 93.15%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=1776000 g/mol, molecular weight distribution PDI=3.13.
  • Embodiment 18
  • Add VAc (5.0002 g, 0.0582 mol) to the reaction flask of the solution of sodium dodecyl sulfate (0.3002 g, 6 wt % VAc), sodium bicarbonate (0.1503 g, 3 wt % VAc), potassium persulfate (0.5235 g, 0.0019 mol) and water (20.0006 g, 400 wt % VAc), stirring uniformly. The flask was vacuumized and exhausted oxygen, then put into water bath at 25° C. to react for 4 hours. The VAc conversion rate was found to be 87.75%. The emulsion is demulsified by ethanol and the precipitate was dried after three times of washing, then dried after three times purification to obtain polymer. The changes of molecular weight and its distribution of the polymers were analyzed using triple detection size exclusion chromatography. The results are obtained: light scattering weight-average molecular weight Mw.MALLS=2352000 g/mol, molecular weight distribution PDI=2.97.

Claims (8)

1. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature comprising a persulfate as an initiator, water as a medium, an anionic surfactant as an emulsifier, sodium bicarbonate as a pH regulator, styrene, vinyl acetate or (meth) acrylate as a monomer to polymerize by free radical emulsion to obtain the ultra-high molecular weight polymer wherein the weight average molecular weight of the ultra-high molecular weight polymer is larger than 100×104 g/mol.
2. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature as described in claim 1, wherein the initiator is potassium persulfate or ammonium persulfate.
3. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature as described in claim 1, wherein the molar ratio of initiator and monomer is 1˜5:100.
4. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature as described in claim 1, wherein the mass ratio of water and monomer is 2˜5:1.
5. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature as described in claim 1, wherein the polymerization temperature is room temperature and the polymerization reaction time is controlled in a range of 1˜6 hours.
6. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature as described in claim 1, wherein the surfactant is an anionic surfactant, sodium dodecyl benzene sulfonate, or sodium dodecyl sulfate.
7. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature as described in claim 1, wherein the mass ratio of the surfactant and monomer is 4-6 wt %.
8. A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature as described in claim 1, wherein the mass ratio of the pH modifier sodium bicarbonate and monomer is 2˜4 wt % and the pH value is adjusted to 7˜8.
US15/742,407 2016-12-30 2017-04-20 A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature Abandoned US20180371143A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201611258871.9A CN106674390B (en) 2016-12-30 2016-12-30 The method that emulsion polymerization room temperature prepares polystyrene with super-high molecular weight
CN201611263551.2 2016-12-30
CN201611258844.1A CN106674393A (en) 2016-12-30 2016-12-30 Method for preparing ultrahigh-molecular-weight polyvinyl acetate by room-temperature emulsion polymerization
CN201611258871.9 2016-12-30
CN201611263551.2A CN106632773A (en) 2016-12-30 2016-12-30 Method for preparing ultra-high molecular weight poly(meth)acrylate polymer through emulsion polymerization at room temperature
CN201611258844.1 2016-12-30
PCT/CN2017/081177 WO2018120526A1 (en) 2016-12-30 2017-04-20 Method for preparing ultra-high molecular weight polymer at room temperature through emulsion polymerization

Publications (1)

Publication Number Publication Date
US20180371143A1 true US20180371143A1 (en) 2018-12-27

Family

ID=62706739

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/742,407 Abandoned US20180371143A1 (en) 2016-12-30 2017-04-20 A process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature
US17/188,760 Active US11866539B2 (en) 2016-12-30 2021-03-01 Process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/188,760 Active US11866539B2 (en) 2016-12-30 2021-03-01 Process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature

Country Status (2)

Country Link
US (2) US20180371143A1 (en)
WO (1) WO2018120526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940160A (en) * 2021-03-03 2021-06-11 威海金合思化工有限公司 Method for synthesizing ultra-high molecular weight polymethyl methacrylate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260348B (en) * 2022-09-30 2023-08-15 上海八亿时空先进材料有限公司 PHS resin with high molecular weight and narrow distribution, and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444140A (en) * 1994-06-22 1995-08-22 Xerox Corporation Starve fed emulsion polymerization process
CN101891858B (en) * 2010-03-04 2014-02-05 江苏工业学院 Method for preparing branched polymer by conventional free radical polymerization
CN102786613B (en) * 2012-07-19 2015-01-28 大连理工大学 Emulsion polymerized syndiotactic polystyrene and its preparation method
CN102911310B (en) * 2012-10-30 2015-04-22 常州大学 Method of preparing branched polyacrylate (methacrylate) polymer through emulsion polymerization
CN102924640B (en) * 2012-10-30 2014-12-03 常州大学 Method for preparing branched polystyrene by emulsion polymerization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940160A (en) * 2021-03-03 2021-06-11 威海金合思化工有限公司 Method for synthesizing ultra-high molecular weight polymethyl methacrylate

Also Published As

Publication number Publication date
US20210189047A1 (en) 2021-06-24
US11866539B2 (en) 2024-01-09
WO2018120526A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US11866539B2 (en) Process for preparing an ultra-high molecular weight polymer via emulsion polymerization at room temperature
Cunningham Living/controlled radical polymerizations in dispersed phase systems
CN102504126B (en) Slump loss resistant type gather carboxylate water-reducing agent and preparation method thereof
US3336270A (en) Preparation of acrylamide-type water-soluble polymers
CN104371073A (en) Normal-temperature preparation method of slow-release polycarboxylic acid water reducing agent
CN103058902B (en) Photoactive reversible addition-breakage chain transfer reagent and preparation and application thereof
CN103897116A (en) Mud-resistant polycarboxylic acid water reducer and preparation method thereof
US9181374B2 (en) Process for preparing branched polymer
CN108794700A (en) A kind of carboxylic acid group polymer and preparation method thereof and sustained-release polycarboxylic water reducer
CN103980432A (en) Polycarboxylate water reducer containing modified water-soluble acrylate and preparation method thereof
CN105837768A (en) Preparation method for polyphosphate water-reducing agent
Grishin et al. Radical-initiated controlled synthesis of homo-and copolymers based on acrylonitrile
CN103172798A (en) Preparation method of high-performance polycarboxylate superplasticizer
US10611860B2 (en) Process for preparing branched polymer via emulsion polymerization at room temperature
CN103071426A (en) Hyperdispersant and preparation method thereof
CN106674390B (en) The method that emulsion polymerization room temperature prepares polystyrene with super-high molecular weight
CN102060950A (en) Method for preparing homopolymer and copolymer of dimethyl diallyl ammonium chloride
US9975978B2 (en) Method for polymerising ethylenically unsaturated monomers
CN102167754B (en) Active free radical polymerization method taking bithiaxanthene diol and derivatives thereof as initiator
US3925327A (en) Method for producing vinyl acetate-ethylene-dicarboxylic acid diallyl ester copolymer
US3557061A (en) Stabilized suspension polymerization
CN114773507A (en) Method for preparing ultra-high molecular weight polyvinyl acetate at room temperature by emulsion polymerization
CN105218715A (en) A kind of by the assorted thioketones of aromatic ring-shaped sulphur (oxygen) and derivative thereof and radical initiator and active free radical polymerization method
JPS60192718A (en) Production of aqueous resin dispersion
US3030319A (en) Process for polymerization of a vinylidene monomer in the presence of a cobaltic salt and an organic reducing agent

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHANGZHOU UNIVERSITY, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, WENYAN;JIANG, BIBIAO;XUE, XIAOQIANG;AND OTHERS;REEL/FRAME:045011/0797

Effective date: 20171220

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION