US20180356047A1 - LED Module, Luminaire Comprising Same And Method For Influencing A Light Spectrum - Google Patents

LED Module, Luminaire Comprising Same And Method For Influencing A Light Spectrum Download PDF

Info

Publication number
US20180356047A1
US20180356047A1 US16/107,062 US201816107062A US2018356047A1 US 20180356047 A1 US20180356047 A1 US 20180356047A1 US 201816107062 A US201816107062 A US 201816107062A US 2018356047 A1 US2018356047 A1 US 2018356047A1
Authority
US
United States
Prior art keywords
leds
module
led
sub
substantially similar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/107,062
Other versions
US10851948B2 (en
Inventor
Jens Burmeister
Lisa Morr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Protection Systems IP GmbH and Co KG
Original Assignee
Eaton Protection Systems IP GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Protection Systems IP GmbH and Co KG filed Critical Eaton Protection Systems IP GmbH and Co KG
Priority to US16/107,062 priority Critical patent/US10851948B2/en
Publication of US20180356047A1 publication Critical patent/US20180356047A1/en
Assigned to EATON PROTECTION SYSTEMS IP GMBH & CO. KG reassignment EATON PROTECTION SYSTEMS IP GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURMEISTER, JENS
Assigned to EATON PROTECTION SYSTEMS IP GMBH & CO. KG reassignment EATON PROTECTION SYSTEMS IP GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORR, Lisa
Application granted granted Critical
Publication of US10851948B2 publication Critical patent/US10851948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/04Fastening of light sources or lamp holders with provision for changing light source, e.g. turret
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED module, a luminaire comprising such an LED module, and a method for influencing a light spectrum.
  • a light spectrum is a part of the electromagnetic spectrum that can be perceived by the human eye without any technical aids.
  • Such a light spectrum is composed of emitted or reflected spectral colors of one respective light source or of light sources.
  • a light source emits light with a specific frequency spectrum or corresponding spectral distribution. The corresponding frequencies of the light determine the color thereof.
  • Corresponding artificial light sources differ in color, brightness etc.
  • a visible portion of the light spectrum has a wavelength in the range of approximately 380 to 780 nm, respectively frequencies in the range of approximately 3.8 ⁇ 10′′ to 7.9 ⁇ 10′′ Hz.
  • Corresponding color components of the light spectrum are not distinguishable without optical aids.
  • many light sources emit a light spectrum that is a combination of different individual colors which, in the eye of a viewer, result in an overall color impression, respectively in a mixed color.
  • Such a light color corresponds to a color impression of the light which directly stems from a corresponding luminous light source.
  • the light color depends, in this case, on the spectral composition of this radiation.
  • This index is a photometric quantity by means of which the quality of the color rendering of light sources of the same correlated color temperature can be described. For instance, up to a color temperature of 5000 K, the light emitted by a black body of a corresponding color temperature serves as a reference for the evaluation of the rendering quality.
  • the color rendering index is “100” if a corresponding artificial light source perfectly reproduces the spectrum of a black body with the same color temperature in the range of the visible wavelengths.
  • LED light sources which consume little energy and, at the same time, have a long lifespan.
  • Corresponding LEDs normally generate a substantially monochromatic radiation. The shade of the corresponding LED light is dominated by the dominant wavelength of the corresponding radiation. LEDs are available in different colors, such as red, orange, yellow, green or blue. Also, white LEDs are known, which usually make use of a conversion layer in order to convert the LED-generated, actually blue light into white light. Such conversion layers are also known from fluorescent lamps.
  • a corresponding emission spectrum of an LED is relatively narrow-band, wherein—see the above statements—a corresponding dominant wavelength, and thus the color of the light depend on the materials used for the manufacture of a corresponding semiconductor crystal of the LED.
  • LED light does not contain UV or IR radiation.
  • LEDs are preferably manufactured as LED modules. These modules are very flat and have a plurality of LEDs on one carrier. Such a carrier may also be flexible.
  • the carrier may be a printed circuit board on which a corresponding wiring and/or electronic components are mounted for operating the LEDs.
  • a luminaire where the generated light is influenced with respect to spectral sensitivities of different species.
  • the light source of such a luminaire is, for instance, an LED module, or a plurality thereof, as described above.
  • a filter device is used, which filters out one or more specific spectral ranges of the emitted light at least in part.
  • spectral ranges are filtered out, or at least reduced, in which specific species, and in particular animals, have a greater sensitivity, and in which spectral ranges these species may be exposed to a negative influence. It is, of course, also conceivable that the spectral range of the light to be emitted is chosen to have a positive influence on one or more species.
  • the corresponding luminaire may be used, for instance, as streetlight or for the illumination of sidewalks or parks, or the like.
  • a corresponding filter device is arranged in the luminaire housing or in the region of a light emergence opening of the luminaire housing. This means that influencing the corresponding light spectrum or color spectrum of the light source is achieved by an additional device.
  • the drawback of such a device is that a portion of the light is retained, so that the effectiveness of the overall illumination system is reduced. In other words, filtering leads to a reduction of the radiation capacity or radiant intensity as compared to a luminaire without filtering with the same power supply.
  • the invention is based on the object to allow influencing the light spectrum or color spectrum in an easy manner without reducing the radiation capacity or radiation intensity, without having to perform large-scale physical alterations or provide for additional installations in a corresponding luminaire.
  • the LED module is characterized in that the number and color of the LEDs are selectable to emit a total light emission spectrum being composed of the individual light emission spectra of each LED. This means that, for instance, two red LEDs, three green LEDs, four blue LEDs and two yellow LEDs are operated together so as to form one total light emission spectrum with the desired pattern from the corresponding individual light emission spectra.
  • the corresponding luminaire comprises at least one LED module, wherein also several of those modules are usable.
  • a luminaire comprises at least one luminaire housing, a light emergence opening formed in the luminaire housing, and a glare-limiting device. This glare-limiting device limits the emergence of light from the light emergence opening of the luminaire to a specific range, for instance, for reducing a glare of the luminaire.
  • the corresponding light color of the light emitted by the luminaire is influenced in such a manner that a plurality of LEDs are arranged on a corresponding LED module at least in one row and/or column.
  • Each of the LEDs emits light according to an individual light emission spectrum, wherein the individual spectra of all LEDs are superimposed to one total light emission spectrum, resulting in the light spectrum of the light source of the corresponding luminaire.
  • each LED is configured to emit a substantially monochromatic light radiation.
  • the corresponding individual light emission spectrum of each LED is known per se, or can at least be determined in advance. LEDs having a different monochromatic light radiation are then arranged together on the corresponding LED carrier, and by the superposition of the individual light emission spectra to one total light emission spectrum the correspondingly desired light spectrum of the light source is obtained.
  • LEDs having the same monochromatic light radiation are respectively arranged on a sub-module of the LED module.
  • LEDs having the same monochromatic light radiation are each arranged together, and sub-modules with those LEDs are combined depending on the required number of the corresponding LEDs.
  • the LEDs are arranged relatively closely to one another, so that already a small distance is enough, and with the aid of corresponding reflection devices, if necessary, that point light sources are no longer discernible, but only the superposition of all individual light emission spectra to the total light emission spectrum can still be recognized by a viewer.
  • sub-modules By using sub-modules it is possible in a simple way to combine LEDs with a corresponding light color according to need, and choose a respective number. If, for instance, more yellow LEDs are required, more sub-modules with those yellow LEDs are added. This applies analogously to LEDs with different colors.
  • LEDs having a different monochromatic light radiation are arranged on a sub-module of the LED module. This means that a desired light color is already provided on a sub-module by combining differently colored LEDs on this sub-module. A number of such sub-modules can then be used together as an LED module, and these then bring about the desired total light emission spectrum.
  • the LED arrangement is such that the LEDs are arranged on the corresponding LED carrier along at least one row and/or column.
  • a carrier may be a corresponding printed circuit board for supplying the LEDs, for the corresponding wiring for necessary connections, and also for the arrangement of other electronic or electrical devices.
  • the LEDs can all be triggered together, i.e. are supplied with a same voltage, respectively current intensity.
  • the controlling as a whole is simplified, and with the identical supply of all LEDs the correspondingly emitted individual light emission spectrum is well reproducible and the total light emission spectrum is reliably producible by adding up all individual light emission spectra.
  • the color rendering index of the corresponding light source white LEDs may be assigned to the monochromatic LEDs.
  • the number of the white LEDs can be determined, for instance, in that the color rendering index is to reach a value of 100 or at least close to 100.
  • modules and/or sub-modules are arranged in the luminaire to be exchangeable. This may analogously be applied to the corresponding LED carrier.
  • the sub-modules can be triggered individually. This means that, for instance, a sub-module with only yellow LEDs is switched on only if the total light emission spectrum is to be changed correspondingly by switching on these yellow LEDs. This applies analogously to different-colored LEDs, white LEDs and the like.
  • the light spectrum is not only changed by switching on corresponding LEDs, but also by the selective deactivation of specific LEDs having a known individual light emission spectrum. Such a deactivation of LEDs, too, results in a change of the total light emission spectrum which may have the desired effect.
  • FIG. 1 shows a perspective bottom view of a luminaire having LED modules
  • FIG. 2 shows an enlarged representation of an exemplary embodiment of an LED module
  • FIG. 3 shows an enlarged representation of another exemplary embodiment of an LED module
  • FIG. 4 shows individual light emission spectra for different-colored LEDs
  • FIG. 5 shows a total light emission spectrum formed of the individual light emission spectra represented in FIG. 4 ;
  • FIG. 6 shows another example analogously to FIG. 4 .
  • FIG. 7 shows a total light emission spectrum formed of individual light emission spectra of FIG. 6 .
  • FIG. 1 shows a perspective diagonal bottom view of a luminaire 2 comprising an LED module 1 according to the invention.
  • corresponding LED modules 1 are arranged as light source 13 on both sides of a light emergence opening 11 in a luminaire housing 10 .
  • the LED modules 1 can both be triggered at the same time and supplied with the same voltage, respectively current intensity.
  • the luminaire 2 as illustrated is only an example and shown in a simplified manner, and may be used, for instance, for the illumination of paths, roads and the like.
  • a glare-limiting device 12 may be assigned to the light emergence opening 11 , which reduces, for instance, the light emergence opening 11 in the direction of the surface to be irradiated and, if necessary, limits light additionally emitted by the light source only to a certain area for the illumination thereof.
  • FIGS. 2 and 3 Two embodiments are shown in FIGS. 2 and 3 .
  • corresponding LEDs 4 are arranged along a row 8 .
  • the LEDs 4 are all arranged on an LED carrier 3 which is configured, for instance, as a printed circuit board.
  • the LED carrier 3 with the LEDs 4 of FIG. 2 , or also of FIG. 3 forms a corresponding LED module 1 .
  • the arrangement and number of the LEDs 4 on the corresponding LED carrier 3 are only exemplary, and are shown with a small number of LEDs 4 . It is also possible to use more LED carriers 3 , respectively LED modules 1 in the luminaire 2 according to FIG. 1 .
  • the different LEDs 4 on the carrier 3 are different-colored LEDs and have, depending on the color, another individual light emission spectrum. See also FIGS. 4 and 6 .
  • LEDs are substantially monochromatic light sources, i.e. they emit light only in a narrow-band, respectively limited spectral range. By deliberately choosing the corresponding semiconductor materials and the doping thereof it is possible to vary the properties of the light generated by LEDs.
  • LEDs having red, orange, yellow, green, blue and violet colors are available. Radiation by LEDs can also be produced beyond this visible range of the light spectrum. See, for instance, the near-infrared range up to a wavelength of 1000 nm or also the ultraviolet range.
  • a blue or UV LED is used, with additional photoluminescent material. Similar to fluorescent tubes this material converts the short-wave and higher energetic light into longer-wave light.
  • a corresponding number of individual LEDs 4 of different colors are arranged on the LED module 1 , respectively LED carrier 3 . See, for instance, green LEDs 14 , yellow LEDs 15 , orange LEDs 16 , red LEDs 17 or white LEDs 18 .
  • FIG. 3 This applies analogously to FIG. 3 , in which the corresponding LEDs 4 are arranged both in rows and columns. In the embodiment shown five rows and ten columns of LEDs are provided on the corresponding LED carrier 3 , respectively LED module 1 .
  • different-colored LEDs can be arranged both along a row and a column.
  • a corresponding LED module 1 is composed of sub-modules 7 .
  • These may have, for instance, a respectively predefined number of different-colored LEDs, or also be provided with only monochromatic LEDs. This applies analogously to the embodiment of FIG. 3 .
  • all LEDs 4 on the corresponding carrier, respectively corresponding module are triggered in the same manner and at the same time, i.e. are supplied with the same voltage, respectively same current.
  • the light emission of each LED is predetermined with respect to its individual light emission spectrum, and well known, without great effort, so that the different individual light emission spectra can be superimposed to one total light emission spectrum. See the statements set forth below.
  • each sub-module is occupied, for instance, by LEDs of only one color.
  • a corresponding individual light emission spectrum for the light color “yellow” would be missing in the total light emission spectrum.
  • it is possible to provide several sub-modules each with same-colored LEDs so that, for instance, one sub-module with yellow LEDs, two of those sub-modules, or also more of them can be switched on/off. This applies analogously to different-colored LEDs.
  • FIG. 4 illustrates an embodiment for an LED module 1 having a number of individual light emission spectra 5 .
  • FIG. 4 firstly shows from left to right an individual light emission spectrum for the color green, for the color yellow, for the color orange, and for the color red. The intensities of the corresponding spectra are indicated in nm, depending on the wavelength. For instance, one green, one red, one orange and three yellow LEDs produce the corresponding individual light emission spectra 5 . If one is positioned sufficiently apart from the corresponding light source 13 , respectively luminaire 2 , the individual light emission spectra are superimposed to one total light emission spectrum 6 . See FIG. 5 in which no LEDs 4 , see FIGS. 2 , respectively 3 , are discernible any longer as individual light sources. That is, FIG.
  • a corresponding total light emission spectrum 6 can already be composed of the individual light emission spectra known per se relatively well prior to setting up the lamp by a corresponding computer simulation or the like. That is, it is possible to realize a corresponding total light emission spectrum for predetermined illumination purposes in a corresponding luminaire in a targeted manner.
  • FIGS. 6 and 7 show another exemplary embodiment. Again, corresponding individual light emission spectra 5 for green, yellow, orange and red LEDs are shown from left to right in FIG. 6 . In this case, three red, two green, eight orange and seven yellow LEDs are used, whose individual light emission spectra 5 being superimposed result in the total light emission spectrum according to FIG. 7 where, for instance, the relative portion of “green” is considerably reduced in comparison with FIG. 5 .
  • a light source having a total light emission spectrum 6 according to FIG. 7 would be advantageous.
  • a light source having a total light emission spectrum 6 according to FIG. 5 could be used if value is placed on an increased portion in the green range.
  • a white LED 18 was emphasized which may be provided in addition to the colored LEDs, for instance, in order to increase the color rendering index. Of course, it is also possible in this connection to use more of those white LEDs.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The invention relates to an LED module (1) for a luminaire (2) comprising at least one LED carrier (3) and a plurality of LEDs (4) (light-emitting diodes) arranged on this LED carrier. In particular, the number and the color of the LEDs (4) are selected to emit a total light emission spectrum (6) being composed of individual light emission spectra (5) of each LED. The invention further relates to a luminaire (2) comprising a luminaire housing (10), at least one LED module (1) arranged as light source (13) in the luminaire housing (10), a light emergence opening (11) formed in the luminaire housing (10), and a glare-limiting device (12) assigned in particular to the light emergence opening (11), as well as to a method for influencing a light spectrum of a light source (13).

Description

    PRIORITY CLAIM
  • The present application is a continuation application of and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/782,283, titled “LED Module, Luminaire Comprising Same and Method For Influencing a Light Spectrum” and filed on Oct. 2, 2015, which is a national phase of and claims priority to International Application No. PCT/EP2014/000882 with an International filing date of Apr. 2, 2014 and which claims priority to German patent application no. 10 2013 005 932.1 filed Apr. 5, 2013. The foregoing applications are hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • The invention relates to an LED module, a luminaire comprising such an LED module, and a method for influencing a light spectrum.
  • BACKGROUND
  • A light spectrum, or also a color spectrum, is a part of the electromagnetic spectrum that can be perceived by the human eye without any technical aids. Such a light spectrum is composed of emitted or reflected spectral colors of one respective light source or of light sources. As a rule, such a light source emits light with a specific frequency spectrum or corresponding spectral distribution. The corresponding frequencies of the light determine the color thereof. Corresponding artificial light sources differ in color, brightness etc. A visible portion of the light spectrum has a wavelength in the range of approximately 380 to 780 nm, respectively frequencies in the range of approximately 3.8×10″ to 7.9×10″ Hz. Corresponding color components of the light spectrum are not distinguishable without optical aids. As a rule, many light sources emit a light spectrum that is a combination of different individual colors which, in the eye of a viewer, result in an overall color impression, respectively in a mixed color. Such a light color corresponds to a color impression of the light which directly stems from a corresponding luminous light source. The light color depends, in this case, on the spectral composition of this radiation.
  • With regard to the light color even a light being “white” per se can be subdivided, e.g. into warm white, neutral white, daylight white etc. Each of these corresponding shades of white has different effects on human beings. Corresponding psychological effects on the viewer are also discussed in connection with other light colors. In connection with other species it should furthermore be kept in mind that these normally have different sensitivities for specific spectral ranges as compared with human beings.
  • In connection with the light color yet another parameter should be considered, which is designated as the color rendering index.
  • This index is a photometric quantity by means of which the quality of the color rendering of light sources of the same correlated color temperature can be described. For instance, up to a color temperature of 5000 K, the light emitted by a black body of a corresponding color temperature serves as a reference for the evaluation of the rendering quality. The color rendering index is “100” if a corresponding artificial light source perfectly reproduces the spectrum of a black body with the same color temperature in the range of the visible wavelengths.
  • One example for light sources frequently used in the recent past are LED light sources which consume little energy and, at the same time, have a long lifespan. Corresponding LEDs normally generate a substantially monochromatic radiation. The shade of the corresponding LED light is dominated by the dominant wavelength of the corresponding radiation. LEDs are available in different colors, such as red, orange, yellow, green or blue. Also, white LEDs are known, which usually make use of a conversion layer in order to convert the LED-generated, actually blue light into white light. Such conversion layers are also known from fluorescent lamps.
  • A corresponding emission spectrum of an LED is relatively narrow-band, wherein—see the above statements—a corresponding dominant wavelength, and thus the color of the light depend on the materials used for the manufacture of a corresponding semiconductor crystal of the LED. Usually, LED light does not contain UV or IR radiation.
  • LEDs are preferably manufactured as LED modules. These modules are very flat and have a plurality of LEDs on one carrier. Such a carrier may also be flexible. The carrier may be a printed circuit board on which a corresponding wiring and/or electronic components are mounted for operating the LEDs.
  • In the DE 10 2010 033 141 document a luminaire is described, where the generated light is influenced with respect to spectral sensitivities of different species. The light source of such a luminaire is, for instance, an LED module, or a plurality thereof, as described above. In order to influence the corresponding light a filter device is used, which filters out one or more specific spectral ranges of the emitted light at least in part.
  • Thus, spectral ranges are filtered out, or at least reduced, in which specific species, and in particular animals, have a greater sensitivity, and in which spectral ranges these species may be exposed to a negative influence. It is, of course, also conceivable that the spectral range of the light to be emitted is chosen to have a positive influence on one or more species. The corresponding luminaire may be used, for instance, as streetlight or for the illumination of sidewalks or parks, or the like.
  • Of course, it is also possible to realize a corresponding light filtering in rooms in which specific spectral ranges of the emitted light could trigger reactions or the like. See, for instance, biological, chemical or also physical applications.
  • According to the DE 10 2010 033 141 document a corresponding filter device is arranged in the luminaire housing or in the region of a light emergence opening of the luminaire housing. This means that influencing the corresponding light spectrum or color spectrum of the light source is achieved by an additional device. The drawback of such a device is that a portion of the light is retained, so that the effectiveness of the overall illumination system is reduced. In other words, filtering leads to a reduction of the radiation capacity or radiant intensity as compared to a luminaire without filtering with the same power supply.
  • SUMMARY
  • Therefore, the invention is based on the object to allow influencing the light spectrum or color spectrum in an easy manner without reducing the radiation capacity or radiation intensity, without having to perform large-scale physical alterations or provide for additional installations in a corresponding luminaire.
  • According to the invention the object is achieved by the features of patent claim 1. This applies analogously to the features of the method claim, and to a corresponding luminaire having such an LED module.
  • According to the invention the LED module is characterized in that the number and color of the LEDs are selectable to emit a total light emission spectrum being composed of the individual light emission spectra of each LED. This means that, for instance, two red LEDs, three green LEDs, four blue LEDs and two yellow LEDs are operated together so as to form one total light emission spectrum with the desired pattern from the corresponding individual light emission spectra.
  • The corresponding luminaire comprises at least one LED module, wherein also several of those modules are usable. Moreover, such a luminaire comprises at least one luminaire housing, a light emergence opening formed in the luminaire housing, and a glare-limiting device. This glare-limiting device limits the emergence of light from the light emergence opening of the luminaire to a specific range, for instance, for reducing a glare of the luminaire.
  • According to the method the corresponding light color of the light emitted by the luminaire is influenced in such a manner that a plurality of LEDs are arranged on a corresponding LED module at least in one row and/or column. Each of the LEDs emits light according to an individual light emission spectrum, wherein the individual spectra of all LEDs are superimposed to one total light emission spectrum, resulting in the light spectrum of the light source of the corresponding luminaire.
  • It is possible that each LED is configured to emit a substantially monochromatic light radiation. The corresponding individual light emission spectrum of each LED is known per se, or can at least be determined in advance. LEDs having a different monochromatic light radiation are then arranged together on the corresponding LED carrier, and by the superposition of the individual light emission spectra to one total light emission spectrum the correspondingly desired light spectrum of the light source is obtained.
  • It is possible that LEDs having the same monochromatic light radiation are respectively arranged on a sub-module of the LED module. This means that LEDs having the same monochromatic light radiation are each arranged together, and sub-modules with those LEDs are combined depending on the required number of the corresponding LEDs. In this case, the LEDs are arranged relatively closely to one another, so that already a small distance is enough, and with the aid of corresponding reflection devices, if necessary, that point light sources are no longer discernible, but only the superposition of all individual light emission spectra to the total light emission spectrum can still be recognized by a viewer.
  • By using sub-modules it is possible in a simple way to combine LEDs with a corresponding light color according to need, and choose a respective number. If, for instance, more yellow LEDs are required, more sub-modules with those yellow LEDs are added. This applies analogously to LEDs with different colors.
  • It is also possible, however, that LEDs having a different monochromatic light radiation are arranged on a sub-module of the LED module. This means that a desired light color is already provided on a sub-module by combining differently colored LEDs on this sub-module. A number of such sub-modules can then be used together as an LED module, and these then bring about the desired total light emission spectrum.
  • The LED arrangement is such that the LEDs are arranged on the corresponding LED carrier along at least one row and/or column. As was already stated above, such a carrier may be a corresponding printed circuit board for supplying the LEDs, for the corresponding wiring for necessary connections, and also for the arrangement of other electronic or electrical devices.
  • With a row and/or column arrangement of this type it is possible that, for instance, only same-colored LEDs are arranged along one row or, correspondingly, that those LEDs are arranged along one column. Also, it is conceivable that different-colored LEDs are provided in each row and/or column.
  • According to the invention it is particularly advantageous in this connection if the LEDs can all be triggered together, i.e. are supplied with a same voltage, respectively current intensity. Thus, the controlling as a whole is simplified, and with the identical supply of all LEDs the correspondingly emitted individual light emission spectrum is well reproducible and the total light emission spectrum is reliably producible by adding up all individual light emission spectra.
  • In order to increase, if necessary, the color rendering index of the corresponding light source white LEDs may be assigned to the monochromatic LEDs. The number of the white LEDs can be determined, for instance, in that the color rendering index is to reach a value of 100 or at least close to 100.
  • In order to be able to change the total light emission spectrum in an easy manner, if necessary, it is conceivable that modules and/or sub-modules are arranged in the luminaire to be exchangeable. This may analogously be applied to the corresponding LED carrier.
  • In order to change the light color of the light source for a short time, if necessary, it may furthermore prove to be advantageous if the sub-modules can be triggered individually. This means that, for instance, a sub-module with only yellow LEDs is switched on only if the total light emission spectrum is to be changed correspondingly by switching on these yellow LEDs. This applies analogously to different-colored LEDs, white LEDs and the like.
  • As was already stated above, such an adjustment of the total light emission spectrum can be made particularly with respect to specific species that have a greater sensitivity in a spectral range. Also, it is conceivable that the adjustment of the total light emission spectrum is made with respect to more than one species, if these have the same sensitivity in a specific spectral range or at least in closely adjacent spectral ranges. According to the invention it is also possible to intensify a specific spectral range with respect to light emission by switching on LEDs, if the LEDs to be switched on irradiate, for instance, in this spectral range. Thus, certain advantageous effects in the specific spectral range may be enhanced.
  • It is likewise possible that the light spectrum is not only changed by switching on corresponding LEDs, but also by the selective deactivation of specific LEDs having a known individual light emission spectrum. Such a deactivation of LEDs, too, results in a change of the total light emission spectrum which may have the desired effect.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Advantageous embodiments will be described in more detail below by means of the figures depicted in the drawing. In the drawing:
  • FIG. 1 shows a perspective bottom view of a luminaire having LED modules;
  • FIG. 2 shows an enlarged representation of an exemplary embodiment of an LED module;
  • FIG. 3 shows an enlarged representation of another exemplary embodiment of an LED module;
  • FIG. 4 shows individual light emission spectra for different-colored LEDs;
  • FIG. 5 shows a total light emission spectrum formed of the individual light emission spectra represented in FIG. 4;
  • FIG. 6 shows another example analogously to FIG. 4, and
  • FIG. 7 shows a total light emission spectrum formed of individual light emission spectra of FIG. 6.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • FIG. 1 shows a perspective diagonal bottom view of a luminaire 2 comprising an LED module 1 according to the invention. In the illustrated embodiment corresponding LED modules 1 are arranged as light source 13 on both sides of a light emergence opening 11 in a luminaire housing 10. The LED modules 1 can both be triggered at the same time and supplied with the same voltage, respectively current intensity. The luminaire 2 as illustrated is only an example and shown in a simplified manner, and may be used, for instance, for the illumination of paths, roads and the like. In order to prevent, or at least reduce a possibly existing glare of the corresponding lamp inside the luminaire 2 a glare-limiting device 12 may be assigned to the light emergence opening 11, which reduces, for instance, the light emergence opening 11 in the direction of the surface to be irradiated and, if necessary, limits light additionally emitted by the light source only to a certain area for the illumination thereof.
  • Different embodiments for a corresponding LED module 1 are conceivable. Two embodiments are shown in FIGS. 2 and 3.
  • In the embodiment according to FIG. 2 corresponding LEDs 4 are arranged along a row 8. The LEDs 4 are all arranged on an LED carrier 3 which is configured, for instance, as a printed circuit board. The LED carrier 3 with the LEDs 4 of FIG. 2, or also of FIG. 3, forms a corresponding LED module 1. It is once more pointed out that, for instance, the arrangement and number of the LEDs 4 on the corresponding LED carrier 3 are only exemplary, and are shown with a small number of LEDs 4. It is also possible to use more LED carriers 3, respectively LED modules 1 in the luminaire 2 according to FIG. 1.
  • The different LEDs 4 on the carrier 3 are different-colored LEDs and have, depending on the color, another individual light emission spectrum. See also FIGS. 4 and 6. LEDs are substantially monochromatic light sources, i.e. they emit light only in a narrow-band, respectively limited spectral range. By deliberately choosing the corresponding semiconductor materials and the doping thereof it is possible to vary the properties of the light generated by LEDs. Nowadays, LEDs having red, orange, yellow, green, blue and violet colors are available. Radiation by LEDs can also be produced beyond this visible range of the light spectrum. See, for instance, the near-infrared range up to a wavelength of 1000 nm or also the ultraviolet range.
  • For generating white light by a light-emitting diode, for instance, a blue or UV LED is used, with additional photoluminescent material. Similar to fluorescent tubes this material converts the short-wave and higher energetic light into longer-wave light.
  • A corresponding number of individual LEDs 4 of different colors are arranged on the LED module 1, respectively LED carrier 3. See, for instance, green LEDs 14, yellow LEDs 15, orange LEDs 16, red LEDs 17 or white LEDs 18.
  • It is noted once more that the arrangement and number of the LEDs are only exemplary.
  • This applies analogously to FIG. 3, in which the corresponding LEDs 4 are arranged both in rows and columns. In the embodiment shown five rows and ten columns of LEDs are provided on the corresponding LED carrier 3, respectively LED module 1.
  • In this module according to FIG. 3, too, different-colored LEDs can be arranged both along a row and a column.
  • Also, it is possible that a corresponding LED module 1, respectively LED carrier 3, is composed of sub-modules 7. These may have, for instance, a respectively predefined number of different-colored LEDs, or also be provided with only monochromatic LEDs. This applies analogously to the embodiment of FIG. 3.
  • According to the invention it has proved to be advantageous that all LEDs 4 on the corresponding carrier, respectively corresponding module, are triggered in the same manner and at the same time, i.e. are supplied with the same voltage, respectively same current. By this, the light emission of each LED is predetermined with respect to its individual light emission spectrum, and well known, without great effort, so that the different individual light emission spectra can be superimposed to one total light emission spectrum. See the statements set forth below.
  • It is also possible, however, that at least the sub-modules are triggered separately. This is particularly favorable if each sub-module is occupied, for instance, by LEDs of only one color. This means that, for instance, all yellow LEDs arranged on a specific sub-module 7 could be switched off or switched on. Thus, a corresponding individual light emission spectrum for the light color “yellow” would be missing in the total light emission spectrum. Moreover, it is possible to provide several sub-modules each with same-colored LEDs so that, for instance, one sub-module with yellow LEDs, two of those sub-modules, or also more of them can be switched on/off. This applies analogously to different-colored LEDs.
  • The above statements also apply if different-colored LEDs are provided on each sub-module, so that, depending on the case of need, fewer or more of such sub-modules are arranged together in a luminaire, or are triggered in a luminaire, to obtain the corresponding illumination.
  • FIG. 4 illustrates an embodiment for an LED module 1 having a number of individual light emission spectra 5. FIG. 4 firstly shows from left to right an individual light emission spectrum for the color green, for the color yellow, for the color orange, and for the color red. The intensities of the corresponding spectra are indicated in nm, depending on the wavelength. For instance, one green, one red, one orange and three yellow LEDs produce the corresponding individual light emission spectra 5. If one is positioned sufficiently apart from the corresponding light source 13, respectively luminaire 2, the individual light emission spectra are superimposed to one total light emission spectrum 6. See FIG. 5 in which no LEDs 4, see FIGS. 2, respectively 3, are discernible any longer as individual light sources. That is, FIG. 5 shows a mixture of four different LED types with different light colors which, moreover, are provided in different numbers. A corresponding total light emission spectrum 6 can already be composed of the individual light emission spectra known per se relatively well prior to setting up the lamp by a corresponding computer simulation or the like. That is, it is possible to realize a corresponding total light emission spectrum for predetermined illumination purposes in a corresponding luminaire in a targeted manner.
  • FIGS. 6 and 7 show another exemplary embodiment. Again, corresponding individual light emission spectra 5 for green, yellow, orange and red LEDs are shown from left to right in FIG. 6. In this case, three red, two green, eight orange and seven yellow LEDs are used, whose individual light emission spectra 5 being superimposed result in the total light emission spectrum according to FIG. 7 where, for instance, the relative portion of “green” is considerably reduced in comparison with FIG. 5.
  • This means, for a species reacting sensitively, for instance, in the green range a light source having a total light emission spectrum 6 according to FIG. 7 would be advantageous. Vice versa, a light source having a total light emission spectrum 6 according to FIG. 5 could be used if value is placed on an increased portion in the green range.
  • The other portions of the total light emission spectrum according to FIGS. 5 and 7 are nearly unchanged.
  • By correspondingly selecting the number and the color of the different LEDs of a sub-module 7, respectively the entire LED module 1, it is possible to realize yet other total light emission spectra 6, as desired and needed.
  • In connection with FIG. 2 a white LED 18 was emphasized which may be provided in addition to the colored LEDs, for instance, in order to increase the color rendering index. Of course, it is also possible in this connection to use more of those white LEDs.

Claims (15)

What is claimed is:
1. A light-emitting diode (“LED”) luminaire (2) comprising a plurality of LED modules, wherein each LED module comprises at least one LED carrier (3) and a plurality of LEDs (4) arranged on the at least one LED carrier, wherein a first LED module of the plurality of LED modules has disposed thereon a first plurality of LEDs that emit a first range of substantially similar monochromatic radiations of a first non-white color and at least one first white LED, wherein a second LED module of the plurality of LED modules has disposed thereon a second plurality of LEDs that emit a second range of substantially similar monochromatic radiations of a second non-white color, wherein the first plurality of LEDs, the second plurality of LEDs, and the at least one first white LED emit a first total light emission spectrum (6) comprising a first substantially similar monochromatic radiation within the first range of substantially similar monochromatic radiations and a light emission of the at least one first white LED from the first LED module and a second substantially similar monochromatic radiation within the second range of substantially similar monochromatic radiations from the second LED module, wherein all of the first plurality of LEDs of the first LED module are controlled together, wherein all of the second plurality of LEDs of the second LED module are controlled together and independently of the first plurality of LEDs, and wherein the at least one first white LED increases a color rendering index.
2. The luminaire according to claim 1, wherein the first LED module (1) is configured to allow a quantity of the first plurality of LEDs to be changed.
3. The luminaire according to claim 1, wherein the first plurality of LEDs can be arranged on the LED carrier (3) along at least one of a row (8) and a column (9).
4. The luminaire according to claim 1, wherein the second LED module is replaced by a third LED module, wherein the third LED module comprises a third plurality of LEDs that emit a third range of substantially similar monochromatic radiation.
5. The luminaire according to claim 1, wherein the first plurality of LEDs, the second plurality of LEDs, and the at least one first white LED emit a second total light emission when the first plurality of LEDs of the first LED module emits a third substantially similar monochromatic radiation within the first range of substantially similar monochromatic radiations while the second plurality of LEDs of the second LED module continues to emit the second substantially similar monochromatic radiation within the second range of substantially similar monochromatic radiations.
6. The luminaire according to claim 1, wherein the first plurality of LEDs, the second plurality of LEDs, and the at least one first white LED emit a second total light emission when the second plurality of LEDs of the second LED module emits a third substantially similar monochromatic radiation within the second range of substantially similar monochromatic radiations while the first plurality of LEDs of the first LED module continues to emit the first substantially similar monochromatic radiation within the first range of substantially similar monochromatic radiations.
7. A luminaire comprising a light-emitting diode (LED) module (1), wherein the LED module comprises a plurality of sub-modules disposed on at least one LED carrier, wherein the plurality of sub-modules comprises a first sub-module and a second sub-module, wherein the first sub-module comprises a first plurality of LEDs and at least one white LED, wherein the second sub-module comprises a second plurality of LEDs, wherein the first plurality of LEDs emits a first range of substantially similar monochromatic radiations of a first non-white color, wherein the second plurality of LEDs emits a second range of substantially similar monochromatic radiations of a second non-white color, wherein the plurality of sub-modules emit a first total light emission spectrum comprising a first substantially similar monochromatic radiation within the first range of substantially similar monochromatic radiations and a light emission of the at least one first white LED for the first sub-module and a second substantially similar monochromatic radiation within the second range of substantially similar monochromatic radiations for the second sub-module, wherein the first plurality of LEDs of the first sub-module are controlled together, wherein the second plurality of LEDs of the second sub-module are controlled together and independently of the first plurality of LEDs, wherein the first sub-module and the second sub-module are controlled independently of each other, wherein at least one white LED is used to increase a color rendering index.
8. The luminaire according to claim 7, wherein the total light emission spectrum of the luminaire is tunable by controlling at least one of the first sub-module and the second sub-module so that one or more spectral ranges is filtered out of the total light emission spectrum of the luminaire, wherein filtering out the one or more spectral ranges influences a behavior of an animal species.
9. The luminaire according to claim 7, wherein the luminaire (2) is applied as a path luminaire or a road luminaire.
10. A method for influencing a light spectrum of a light source (13), wherein the method comprises:
controlling a first sub-module to emit a first substantially similar monochromatic radiation of a first non-white color and a second sub-module to emit a second substantially similar monochromatic radiation of a second non-white color so that the light source emits a first total light emission spectrum, wherein the first sub-module and the second sub-module are arranged on at least one LED carrier of an LED module (1), wherein the first sub-module comprises a first plurality of LEDs configured to emit a first range of a first substantially monochromatic radiation of a first non-white color and at least one white LED to increase a color rendering index, wherein the second sub-module comprises a second plurality of LEDs configured to emit a second range of second substantially monochromatic radiation of a second non-white color, wherein the first sub-module is controlled independently of the second sub-module, wherein controlling the first sub-module comprises controlling the first plurality of LEDs together, wherein controlling the second sub-module comprises controlling the second plurality of LEDs together and independently of the first plurality of LEDs, wherein the first substantially similar monochromatic radiation is within the first range, and wherein the second substantially similar monochromatic radiation is within the second range.
11. The method according to claim 10, further comprising:
controlling the first plurality of LEDs on the first sub-module to emit a third substantially similar monochromatic radiation of the first non-white color so that the light source emits a second total light emission spectrum, wherein the third substantially similar monochromatic radiation is within the first range.
12. The method according to claim 11, further comprising:
controlling the second plurality of LEDs on the second sub-module to emit a fourth substantially similar monochromatic radiation of the second non-white color so that the light source emits a third total light emission spectrum, wherein the fourth substantially similar monochromatic radiation is within the second range.
13. The method according to claim 11, further comprising:
controlling the at least one white LED on the first sub-module independent of the first plurality of LEDs.
14. The method according to claim 10, wherein the first plurality of LEDs is arranged on the first sub-module along at least one of a row and a column.
15. The method according to claim 10, wherein controlling the first sub-module comprises changing a quantity of the first plurality of LEDs so that the first substantially similar monochromatic radiation of the first non-white color changes to another substantially similar monochromatic radiation of the first non-white color within the first range.
US16/107,062 2013-04-05 2018-08-21 LED module, luminaire comprising same and method for influencing a light spectrum Active US10851948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/107,062 US10851948B2 (en) 2013-04-05 2018-08-21 LED module, luminaire comprising same and method for influencing a light spectrum

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102013005932.1 2013-04-05
DE102013005932.1A DE102013005932A1 (en) 2013-04-05 2013-04-05 LED module, luminaire with such and method for influencing a light spectrum
DE102013005932 2013-04-05
PCT/EP2014/000882 WO2014161664A1 (en) 2013-04-05 2014-04-02 Led module, luminaire comprising same and method for influencing a light spectrum
US201514782283A 2015-10-02 2015-10-02
US16/107,062 US10851948B2 (en) 2013-04-05 2018-08-21 LED module, luminaire comprising same and method for influencing a light spectrum

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2014/000882 Continuation WO2014161664A1 (en) 2013-04-05 2014-04-02 Led module, luminaire comprising same and method for influencing a light spectrum
US14/782,283 Continuation US20160025279A1 (en) 2013-04-05 2014-04-02 LED Module, Luminaire Comprising Same And Method For Influencing A Light Spectrum

Publications (2)

Publication Number Publication Date
US20180356047A1 true US20180356047A1 (en) 2018-12-13
US10851948B2 US10851948B2 (en) 2020-12-01

Family

ID=50513203

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/782,283 Abandoned US20160025279A1 (en) 2013-04-05 2014-04-02 LED Module, Luminaire Comprising Same And Method For Influencing A Light Spectrum
US16/107,062 Active US10851948B2 (en) 2013-04-05 2018-08-21 LED module, luminaire comprising same and method for influencing a light spectrum

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/782,283 Abandoned US20160025279A1 (en) 2013-04-05 2014-04-02 LED Module, Luminaire Comprising Same And Method For Influencing A Light Spectrum

Country Status (7)

Country Link
US (2) US20160025279A1 (en)
EP (1) EP2981760B1 (en)
CN (2) CN110017432A (en)
DE (1) DE102013005932A1 (en)
NO (1) NO3087246T3 (en)
TW (2) TW201641875A (en)
WO (1) WO2014161664A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD774686S1 (en) * 2015-02-27 2016-12-20 Star Headlight & Lantern Co., Inc. Optical lens for projecting light from LED light emitters
DE102015014766A1 (en) * 2015-11-13 2017-05-18 Eaton Protection Systems Ip Gmbh & Co. Kg LED luminaire and method for influencing the spectral distribution of the LED luminaire
CN109027711A (en) * 2018-09-12 2018-12-18 华域视觉科技(上海)有限公司 Light emitting module, automobile lamp and automobile

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255457B2 (en) * 1999-11-18 2007-08-14 Color Kinetics Incorporated Methods and apparatus for generating and modulating illumination conditions
US20070247414A1 (en) * 2006-04-21 2007-10-25 Cree, Inc. Solid state luminaires for general illumination
US20080092800A1 (en) * 2006-10-20 2008-04-24 Robert B. Smith LED Light Bulb System
US20090121641A1 (en) * 2007-11-13 2009-05-14 Cheng-Chung Shih Illumination system and illumination control method
US20090224693A1 (en) * 2004-12-10 2009-09-10 Kenji Mukai Illumination source, illumination system, and dimming control method for the production of different colour temperatures
US20090290339A1 (en) * 2008-05-21 2009-11-26 Au Optronics Corporation Illuminant System Using High Color Temperature Light Emitting Diode and Manufacture Method Thereof
US20090323321A1 (en) * 2008-06-26 2009-12-31 Telelumen, LLC Authoring, recording, and replication of lighting
US20120162979A1 (en) * 2010-12-23 2012-06-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light source with tunable cri
US20130194792A1 (en) * 2005-12-21 2013-08-01 Cree, Inc. Lighting device and lighting method
US20130265752A1 (en) * 2012-03-16 2013-10-10 Rohm Co., Ltd. Led lamp and lens unit therefor
US8616728B2 (en) * 2010-08-19 2013-12-31 Micron Technology, Inc. Array solid state lighting device package
US8716953B2 (en) * 2009-12-07 2014-05-06 At&T Intellectual Property I, L.P. Mechanisms for light management
US20140191686A1 (en) * 2011-12-05 2014-07-10 Biological Illumination, Llc Adaptable Biologically-Adjusted Indirect Lighting Device and Associated Methods
US20140218917A1 (en) * 2011-10-10 2014-08-07 Hella Kgaa Hueck & Co. LED Approach Light
US20140268734A1 (en) * 2013-03-12 2014-09-18 Chen-Hao Chang Light-emitting diode module lamp with adjustable chromaticity
US20140346954A1 (en) * 2012-01-10 2014-11-27 Sichuan Sunfor Light Co., Ltd. White led light emitting device driven directly by constant alternating current

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006005A1 (en) * 2003-12-22 2005-07-21 Zumtobel Ag LED radiation source for emergency lighting with several monochrome LEDs of first colour, several multicolour LEDs, or monochrome LEDs or second colour with specified number of LEDs of respective colour type
US7093956B2 (en) * 2004-01-23 2006-08-22 Beeman Holdings, Inc. Method of lighting for protecting sea turtles
DE102005061204A1 (en) * 2005-12-21 2007-07-05 Perkinelmer Elcos Gmbh Lighting device, lighting control device and lighting system
DE102007003345B4 (en) * 2007-01-17 2010-07-29 Erco Gmbh Light Control System
DE102007026867A1 (en) * 2007-03-28 2008-10-02 Glp German Light Products Gmbh Lamp for stage, discotheque or buildings for light installation, has switching power supply with alternating voltage input and direct-current voltage output
KR100966374B1 (en) * 2007-08-27 2010-07-01 삼성엘이디 주식회사 Plane light source using white LED and LCD backlight unit comprising the same
CN101255956A (en) * 2008-03-31 2008-09-03 鹤山丽得电子实业有限公司 LED lamp
US8240875B2 (en) * 2008-06-25 2012-08-14 Cree, Inc. Solid state linear array modules for general illumination
US8297782B2 (en) * 2008-07-24 2012-10-30 Bafetti Vincent H Lighting system for growing plants
TW201019501A (en) 2008-11-12 2010-05-16 qiu-zhong Yang Manufacturing method of white LED light module with anti-glare and adjustable color temperature
CN101806430A (en) * 2009-02-17 2010-08-18 福建省苍乐电子企业有限公司 High-color rendering white-light LED
US20100296279A1 (en) * 2009-05-25 2010-11-25 Hun-Yuan Ko Table lamp with an adjustable projecting area
DE102010033141A1 (en) 2010-08-03 2012-02-09 Cooper Crouse-Hinds Gmbh lamp
CN202110308U (en) 2011-06-16 2012-01-11 周玉龙 Light guide module and light fixture using the same
TWI557372B (en) * 2011-12-28 2016-11-11 鴻海精密工業股份有限公司 A color temperature adjustment method of a solid state light-emitting device and an illumination device using the method thereof
RS56441B1 (en) * 2012-04-27 2018-01-31 Schreder Improvements in or relating to multi-coloured light sources
US20140328052A1 (en) * 2012-06-01 2014-11-06 Revolution Display Light-emitting assembly and light-emitting floor system containing the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255457B2 (en) * 1999-11-18 2007-08-14 Color Kinetics Incorporated Methods and apparatus for generating and modulating illumination conditions
US20090224693A1 (en) * 2004-12-10 2009-09-10 Kenji Mukai Illumination source, illumination system, and dimming control method for the production of different colour temperatures
US20130194792A1 (en) * 2005-12-21 2013-08-01 Cree, Inc. Lighting device and lighting method
US20070247414A1 (en) * 2006-04-21 2007-10-25 Cree, Inc. Solid state luminaires for general illumination
US20080092800A1 (en) * 2006-10-20 2008-04-24 Robert B. Smith LED Light Bulb System
US20090121641A1 (en) * 2007-11-13 2009-05-14 Cheng-Chung Shih Illumination system and illumination control method
US20090290339A1 (en) * 2008-05-21 2009-11-26 Au Optronics Corporation Illuminant System Using High Color Temperature Light Emitting Diode and Manufacture Method Thereof
US20090323321A1 (en) * 2008-06-26 2009-12-31 Telelumen, LLC Authoring, recording, and replication of lighting
US8716953B2 (en) * 2009-12-07 2014-05-06 At&T Intellectual Property I, L.P. Mechanisms for light management
US8616728B2 (en) * 2010-08-19 2013-12-31 Micron Technology, Inc. Array solid state lighting device package
US20120162979A1 (en) * 2010-12-23 2012-06-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light source with tunable cri
US20140218917A1 (en) * 2011-10-10 2014-08-07 Hella Kgaa Hueck & Co. LED Approach Light
US20140191686A1 (en) * 2011-12-05 2014-07-10 Biological Illumination, Llc Adaptable Biologically-Adjusted Indirect Lighting Device and Associated Methods
US20140346954A1 (en) * 2012-01-10 2014-11-27 Sichuan Sunfor Light Co., Ltd. White led light emitting device driven directly by constant alternating current
US20130265752A1 (en) * 2012-03-16 2013-10-10 Rohm Co., Ltd. Led lamp and lens unit therefor
US20140268734A1 (en) * 2013-03-12 2014-09-18 Chen-Hao Chang Light-emitting diode module lamp with adjustable chromaticity

Also Published As

Publication number Publication date
CN105339730A (en) 2016-02-17
DE102013005932A1 (en) 2014-10-23
WO2014161664A1 (en) 2014-10-09
EP2981760B1 (en) 2017-11-22
US10851948B2 (en) 2020-12-01
TW201641875A (en) 2016-12-01
EP2981760A1 (en) 2016-02-10
TW201441523A (en) 2014-11-01
NO3087246T3 (en) 2018-06-09
CN110017432A (en) 2019-07-16
US20160025279A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
US10149364B2 (en) System and method for generating light representative of a target natural light
CN104137650B (en) LED lighting unit with color and dimming control
EP2087772B1 (en) Light source comprising light-emitting clusters
US10851948B2 (en) LED module, luminaire comprising same and method for influencing a light spectrum
US10231300B2 (en) Systems and methods for controlling solid state lighting during dimming and lighting apparatus incorporating such systems and/or methods
KR101892996B1 (en) Visible Lighting Lamp with a Built In LED Package Light
US10264638B2 (en) Circuits and methods for controlling solid state lighting
JP2005101296A (en) Device, module, and lighting apparatus of variable color light emitting diode
WO2019140309A1 (en) Switchable systems for white light with high color rendering and biological effects
CN105830537A (en) Methods and apparatus for controlling illumination of a multiple light source lighting unit
US20160040859A1 (en) LED Module, Luminaire Comprising Same And Method For Influencing A Light Spectrum
WO2018073219A1 (en) Lighting device comprising a plurality of different light sources with similar off-state appearance
JP2009260390A (en) Variable color light-emitting diode element
US20180359831A1 (en) Led light, and method for influencing the spectral distribution of the led light
CN103503560A (en) Lighting device and control device for controlling a plurality of light-emitting diodes in an open-loop or closed-loop manner
JP2012003908A (en) Led lighting fixture
KR20160117036A (en) LED device capable of adjusting color temperture
JP6074292B2 (en) Lighting device
EP2796010B1 (en) Apparatus and methods for control of a light emitting device using power line communication
JP2021163596A (en) Light-emitting module and lighting device
WO2022071832A1 (en) Modular uniform lighting system and device
TWI536868B (en) Light source device
JP2024017070A (en) Light source module and lighting equipment
WO2014165450A1 (en) Circuits and methods for controlling solid state lighting

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: EATON PROTECTION SYSTEMS IP GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURMEISTER, JENS;REEL/FRAME:050677/0548

Effective date: 20151016

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: EATON PROTECTION SYSTEMS IP GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORR, LISA;REEL/FRAME:053508/0225

Effective date: 20151109

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4