US20180320370A1 - Polyisocyanurate coverboards with improved fire resistance - Google Patents

Polyisocyanurate coverboards with improved fire resistance Download PDF

Info

Publication number
US20180320370A1
US20180320370A1 US15/972,691 US201815972691A US2018320370A1 US 20180320370 A1 US20180320370 A1 US 20180320370A1 US 201815972691 A US201815972691 A US 201815972691A US 2018320370 A1 US2018320370 A1 US 2018320370A1
Authority
US
United States
Prior art keywords
coating
foam body
facer
foam
proximate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/972,691
Inventor
John B. Letts
Chunhua Yao
Michael J. Hubbard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Firestone Building Products Co LLC
Original Assignee
Firestone Building Products Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firestone Building Products Co LLC filed Critical Firestone Building Products Co LLC
Priority to US15/972,691 priority Critical patent/US20180320370A1/en
Publication of US20180320370A1 publication Critical patent/US20180320370A1/en
Assigned to FIRESTONE BUILDING PRODUCTS COMPANY, LLC reassignment FIRESTONE BUILDING PRODUCTS COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LETTS, JOHN B., HUBBARD, MICHAEL J., YAO, CHUNHUA
Priority to US17/131,160 priority patent/US11242681B2/en
Priority to US17/592,178 priority patent/US11913222B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/942Building elements specially adapted therefor slab-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B11/00Layered products comprising a layer of bituminous or tarry substances
    • B32B11/04Layered products comprising a layer of bituminous or tarry substances comprising such bituminous or tarry substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B11/042Layered products comprising a layer of bituminous or tarry substances comprising such bituminous or tarry substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/14Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • B32B17/064
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/02Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board the layer being formed of fibres, chips, or particles, e.g. MDF, HDF, OSB, chipboard, particle board, hardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/045Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/10Next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/465Coatings containing composite materials
    • C03C25/47Coatings containing composite materials containing particles, fibres or flakes, e.g. in a continuous phase
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/20Roofs consisting of self-supporting slabs, e.g. able to be loaded
    • E04B7/22Roofs consisting of self-supporting slabs, e.g. able to be loaded the slabs having insulating properties, e.g. laminated with layers of insulating material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • E04C2/205Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics of foamed plastics, or of plastics and foamed plastics, optionally reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/35Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
    • E04D3/351Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
    • E04D3/352Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material at least one insulating layer being located between non-insulating layers, e.g. double skin slabs or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/20Particles characterised by shape
    • B32B2264/203Expanded, porous or hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • B32B2266/049Water-setting material, e.g. concrete, plaster or asbestos cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function

Definitions

  • Embodiments of the present invention are directed toward composite high density polyisocyanurate cover boards that have improved fire properties due, at least in part, to the absence of a hydrocarbon blowing agent and the presence of a glass facer that includes an external coating including inert filler and an interfacial coating including intumescent material.
  • Coverboards and recovery boards are often used in commercial roofing systems to provide roofs with fire barrier properties, protection from foot traffic, and protection from environmental forces such as hail.
  • a commonly used coverboard is a fiberglass faced gypsum board, which is sold under the tradename DENSDECK.
  • DENSDECK a fiberglass faced gypsum board
  • these boards have found wide acceptance because they are noncombustible, per ASTM E136, have been certified by UL for fire resistance under the 790 and 1256 classifications, meet FM class 1 approvals for metal decks, and meet ASTM E84 standards for flame and smoke. While fire resistant and dimensionally stable, these construction boards have appreciable weight and structure, which impacts transportation, movement on a job site, and overall ease of installation. There is a desire, therefore, for construction boards with similar fire resistance and dimensional stability that are lighter and more manageable (e.g., easier to cut).
  • Polyisocyanurate coverboards are known.
  • U.S. Publication No. 2006/0179749 teaches high density polyisocyanurate construction boards for use as a coverboard or recover board. These boards may be characterized by having a density above 2.5 lbs/ft 3 and an index of at least 175.
  • These boards can include a hydrocarbon, such as a pentane isomer, as an insulating agent, which compounds also serve as blowing agents during the manufacture of the foam.
  • These construction boards also carry facer materials such as cellulosic, glass, or foil facers.
  • a fire retardant such as tri(monochloropropyl) phosphate is included within the foam forming materials, especially in the presence of flammable blowing agents such as pentane isomers.
  • U.S. Publication No. 2010/0031603 is likewise directed toward high density polyisocyanurate construction boards that meet the requirements imposed by UL 790 for flame spread. These boards have a density of greater than 2.5 lbs/ft 3 , an iso index of at least 270, and a cellular body that includes at least 5.0 wt. % flame retardant.
  • One or more embodiments of the present invention provide a construction board comprising a foam body having first and second planar surfaces, said foam body including a polyisocyanurate foam matrix defining a plurality of closed cells, said closed cells being at least substantially devoid of hydrocarbon blowing agents, and said foam body being characterized by a density, pursuant to ASTM C303, of at least 2.5 lbs/ft 3 ; and a facer disposed on a planar surface of said foam body, said facer including a glass substrate having an internal planar surface proximate to said foam body and an external planar surface opposite said foam body, a first coating disposed on said external surface, and a second coating disposed on or proximate to said internal surface, where said first coating disposed on said external surface includes an inert filler, and where said second coating disposed on or proximate to said internal surface includes intumescent material.
  • FIG. 1 is a cross-sectional view of a coverboard according to aspects of the present invention.
  • FIG. 2 is a cross-sectional view of a coverboard according to aspects of the present invention.
  • FIG. 3 is a perspective view of a roofing system according to aspects of the present invention.
  • Embodiments of the invention are based, at least in part, on the discovery of high density polyisocyanurate coverboards that demonstrate improved flame resistance.
  • the polyisocyanurate boards are substantially devoid of hydrocarbon blowing agents and carry a glass facer that includes an external coating including inert filler and an interfacial coating that includes intumescent filler.
  • the facer also includes an intermediary layer including inert filler.
  • the coverboards of the present invention have zero flame spread and zero smoke development when tested in accordance with ASTM E84.
  • the coverboards of the present invention can be used to prepare roof systems over both combustible and non-combustible decks that meet the requirements of UL 790 without the use of gypsum-based construction boards. It is also contemplated that the coverboards of the present invention can achieve FM class 1 approvals for steel deck insulated roofs without the use of gypsum-based coverboards.
  • FIG. 1 shows construction board 10 , which may also be referred to as coverboard 10 , recoverboard 10 , roof board 10 , fire-barrier board 10 , or simply board 10 .
  • board 10 which is generally planar in configuration, includes foam body 12 , which may also be referred to as foam core 12 , and at least one facer 14 .
  • board 10 also includes an opposed facer 14 ′.
  • Facer 14 includes glass substrate 18 , 18 ′, external coating 16 , 16 ′, and interfacial coating 20 , 20 ′.
  • External coating 16 , 16 ′ includes inert filler.
  • Interfacial coating 20 , 20 ′ includes intumescent material 22 , 22 ′.
  • interfacial coating 20 , 20 ′ is disposed between foam body 12 and glass substrate 18 .
  • External coating layers 16 , 16 ′ are disposed on the external surface 17 , 17 ′ of glass substrate 18 , which is opposite foam core 12 and internal surface 19 of glass substrate 18 onto which intermediary coating 20 is disposed.
  • coverboard 10 ′ likewise includes foam body 12 , facer 14 , and optional facer 14 ′.
  • Facer 14 , 14 ′ include external coating 16 , 16 ′, and interfacial coating 20 , 20 ′.
  • facer 14 , 14 ′ includes an additional coating layer 30 , 30 ′ disposed between glass substrate 18 , 18 ′ and interfacial coating 20 , 20 ′.
  • additional coating layer 30 , 30 ′ which may be referred to as internal coating layer 30 , 30 ′, is compositionally the same or similar to external coating 16 , 16 ′.
  • interfacial coating layer 30 , 30 ′ is not disposed on internal surface 19 of substrate 18 but is instead proximate thereto since it is disposed on coating 30 .
  • foam layer 12 includes a rigid closed-cell foam structure.
  • foam layer 12 may include a polyurethane or polyisocyanurate foam.
  • the closed-cell foam includes a plurality of cells and an interconnected network of solid struts or plates that form the edges and faces of the cells.
  • the solid portion i.e., the interconnected network
  • the solid portion of foam layer 12 i.e., the matrix
  • additional frame or fire-resistant materials can be dispersed within the solid portion of foam layer 12 .
  • the expandable graphite can be dispersed within the solid portion of foam layer 12 in combination with a non-halogenated flame retardant.
  • foam layer 12 may be characterized by density that is greater than 2.5 pounds per cubic foot (12.2 kg/m 2 ), as determined according to ASTM C303, in other embodiments the density is greater than 2.8 pounds per cubic foot (13.7 kg/m 2 ), in other embodiments greater than 3.0 pounds per cubic foot (14.6 kg/m 2 ), and still in other embodiments greater than 3.5 pounds per cubic foot (17.1 kg/m 2 ).
  • the density of foam layer 12 of the recovery boards may be less than 20 pounds per cubic foot (97.6 kg/m 2 ), in other embodiments less than 10 pounds per cubic foot (48.8 kg/m 2 ), in other embodiments less than 6 pounds per cubic foot (29.3 kg/m 2 ), in other embodiments less than 5.9 pounds per cubic foot (28.8 kg/m 2 ), in other embodiments less than 5.8 pounds per cubic foot (28.3 kg/m 2 ), in other embodiments less than 5.7 pounds per cubic foot (27.8 kg/m 2 ), in other embodiments less than 5.6 pounds per cubic foot (27.3 kg/m 2 ), and still in other embodiments less than 5.5 pounds per cubic foot (26.9 kg/m 2 ).
  • Foam construction boards having a foam layer of similar nature are described in U.S. Publ. Nos. 2006/0179749 and 2010/0031603, which are incorporated herein by reference.
  • foam layer 12 may be advantageous for foam layer 12 to be characterized by an ISO Index, as determined by PIR/PUR ratio as determined by IR spectroscopy using standard foams of known index (note that ratio of 3 PIR/PUR provides an ISO Index of 300) of at least 180, in other embodiments at least 200, in other embodiments at least 220, in other embodiments at least 270, in other embodiments at least 285, in other embodiments at least 300, in other embodiments at least 315, and in other embodiments at least 325.
  • the ISO Index may be less than 360, in other embodiments less than 350, in other embodiments less than 340, and in other embodiments less than 335.
  • the thickness of foam layer 12 may be greater than 0.5 cm, in other embodiments greater than 1, and in other embodiments greater than 2 cms. In these or more embodiments, the thickness of foam layer 12 may be less than 15 cm, in other embodiments less than 12, and in other embodiments less than 8 cms. In one or more embodiments, the thickness of foam layer 12 may be from about 0.5 to about 15 cms, in other embodiments from about 1 to about 12 cms, and in other embodiments from about 2 to about 8 cms.
  • foam body 12 which includes cellular matrix 24 that forms closed cells 26 is substantially devoid of hydrocarbon blowing agents.
  • substantially devoid refers to that amount or less that does not have an appreciable impact on the construction boards of the present invention, particularly as the impact relates to the flammability of the construction boards.
  • closed cells 26 include carbon dioxide, air, or a vacuum or partial vacuum. As those skilled in the art appreciate, the presence of carbon dioxide can result from the use of water as a blowing agent during the manufacture of the foam.
  • foam body 12 and more particularly closed cells 26 , include less than 2, in other embodiments less than 0.5, and in other embodiments less than 0.1 percent by volume hydrocarbon blowing agents.
  • closed cells 26 are devoid of halogenated organic compounds.
  • substrate 18 , 18 ′ is an inorganic substrate.
  • the substrate is a non-woven glass mat, and therefore reference may be made to glass mat 18 , 18 ′.
  • the non-woven fiberglass mats include glass fibers and a binder that binds the glass fibers together and maintains the fibers in a mat form. Any type of glass fiber mat can be used in the composite board.
  • a non-woven glass fiber mat can be made with glass fibers, the fibers can be bonded with an aqueous thermosetting resin such as, for example, urea formaldehyde or phenolic resole resins.
  • binder resins are conventional in the art of non-woven glass mats, and the skilled person will understand that the coating (e.g., coating 16 , 16 ′), as taught herein, is distinct, in both composition and structure, from this binder.
  • the dimensional and weight characteristics of glass substrate 18 , 18 ′ are not particularly limited, and can depend on the specific application and desired properties of the coverboard.
  • the basis weight of glass substrate 22 (or 32 ) can be from about 50 grams per square meter to about 150 grams per square meter.
  • the thickness of glass substrate 22 (or 32 ) can be, for example, from about 0.015 inch to about 0.05 inch (about 0.038 to about 0.13 cm).
  • the basis weight and thickness characteristics can be adjusted depending upon the desired rigidity, strength and weight of the composite board.
  • the thickness of glass substrate 22 (or 32 ) may be from about 0.01 to about 1.00 inch (about 0.03 to about 2.54 cm) or in other embodiments from about 0.015 to about 0.05 inches thick (about 0.038 to about 0.13 cm).
  • the dimensional and weight characteristics of the glass fiber mat are not particularly limited, and can depend on the specific application and desired properties of the composite board.
  • the basis weight of the glass fiber mat can be from about 50 grams per square meter to about 150 grams per square meter.
  • the thickness of the glass fiber mat can be, for example, from about 0.015 inch to about 0.05 inch. The basis weight and thickness characteristics can be adjusted depending upon the desired rigidity, strength and weight of the composite board.
  • the thickness of the facer material may vary; for example, it may be from about 0.01 to about 1.00 or in other embodiments from about 0.015 to about 0.050 inches thick.
  • facers 14 , 14 ′ include one or more coating layers (e.g., coating layers 16 and 20 ), and optionally coating material disposed within the interstices of the mat, which coating material is referred to as penetrated coating material.
  • coating material is referred to as penetrated coating material.
  • the penetrated coating is to be distinguished from any binder used to form the glass mat itself, such as those binders used to hold the nonwoven fibers of the glass mat together.
  • external coating 16 , 16 ′ includes an inert filler dispersed within a binder or matrix. In one or more embodiments, the external coating includes an inorganic filler or mineral filler dispersed throughout a binder. In one or more embodiments, the external coating is devoid or substantially devoid of intumescent material.
  • external coating 16 , 16 ′ may have a thickness of at least 0.005 mm, in other embodiments at least 0.01 mm, in other embodiments 0.05 mm, and in other embodiments at least 0.09 mm. In these or other embodiments, coating 16 , 16 ′ may have a thickness of less than 1.5 mm, in other embodiments less than 1.0 mm, in other embodiments less than 0.7 mm, in other embodiments less than 0.3 mm, and in other embodiments less than 0.1 mm.
  • the concentration of filler within external coating 16 , 16 ′ may be expressed as the weight of filler relative to the entire weight of the layer.
  • the amount of filler within the external coating 16 , 16 ′ may be more than 0.5 wt. %, in other embodiments more than 1.0 wt. %, and in other embodiments more than 3.0 wt. %.
  • the amount of filler within the external coating 16 , 16 ′ may be less than 50 wt. %, in other embodiments less than 40 wt. %, and in other embodiments less than 30 wt. %.
  • the amount of filler within the external coating 16 , 16 ′ may be from about 0.5 to about 50 wt. %, in other embodiments from about 1.0 to about 40 wt. %, and in other embodiments from about 3.0 to about 30 wt. %.
  • the thickness of coating 16 , 16 ′ may be greater than 0.5 mm, in other embodiments greater than 1 mm, and in other embodiments greater than 1.5 mm. In these or more embodiments, the thickness of coating 16 , 16 ′ (as well as coating 34 ) may be less than 7 mm, in other embodiments less than 5 mm, and in other embodiments less than 3 mm. In one or more embodiments, the thickness of coating 16 , 16 ′ may be from about 0.5 to about 7 mm, in other embodiments from about 1 to about 5 mm, and in other embodiments from about 1.5 to about 3 mm.
  • the binder may include natural or synthetic materials.
  • natural materials may include natural rubber, waxes and starches.
  • Synthetic materials may include polyolefins, styrene-butadiene copolymers, polyvinyl chlorides, acrylic polymers, and methacrylic polymers, silicones, and copolymers thereof including functional copolymers thereof.
  • the binders may include styrene-butadiene polymers bearing one or more hydrophobic moieties (e.g., fluorine-containing groups) for repelling water.
  • Still other examples include, but not limited to, polyurethane coating compositions, polymeric resin coating compositions, and siloxane coating compositions, as well as polymer-modified asphalt or bitumen coating compositions. These polymers may derive from latex compositions that carry one or more of the polymers.
  • external layer 16 , 16 ′ can include from about 1 wt % to about 15 wt %, or in other embodiments from about 2 to about 10 wt %, binder based on the weight of the respective layers.
  • Examples of a suitable inert filler include calcium carbonate, clay, talc, mica, perlite, hollow ceramic spheres or a combination thereof.
  • the inert filler is calcium carbonate.
  • external layer 16 , 16 ′ can include from about 80 wt % to about wt 98%, or in other embodiments from 85 to about 95 wt % inert filler based on the weight of each respective layer.
  • interfacial layer 20 , 20 ′ includes intumescent material dispersed within a binder.
  • the intumescent material is expandable graphite.
  • interfacial layer 20 , 20 ′ which may also be referred to as interfacial coating 20 , 20 ′, includes a complementary filler such as inert filler or inorganic filler.
  • interfacial layer 20 , 20 ′ is devoid or substantially devoid of filler other than intumescent material.
  • the thickness of interfacial layer 20 , 20 ′ may be greater than 1 ⁇ m, in other embodiments greater than 20 ⁇ m, and in other embodiments greater than 50 ⁇ m. In these or other embodiments, the thickness or interfacial layer 20 , 20 ′ may be less than 5 mm, in other embodiments less than 1 mm, and in other embodiments less than 0.5 mm. In one or more embodiments, the thickness of interfacial layer 20 , 20 ′ may be from about 1 ⁇ m to about 5 mm, in other embodiments from about 20 ⁇ m to about 1 mm, and in other embodiments from about 50 ⁇ m to about 0.5 mm.
  • the concentration of intumescent material (e.g., expandable graphite) within interfacial layer 20 , 20 ′ may be expressed as the weight of intumescent material relative to the entire weight of the layer.
  • the amount of intumescent material within the interfacial layers may be more than 0.5 wt. %, in other embodiments more than 1.0 wt. %, and in other embodiments more than 3.0 wt. %.
  • the amount of intumescent material within the interfacial layers may be less than 50 wt. %, in other embodiments less than 40 wt. %, and in other embodiments less than 30 wt. %.
  • the amount of intumescent material within the interfacial layers may be from about 0.5 to about 50 wt. %, in other embodiments from about 1.0 to about 40 wt. %, and in other embodiments from about 3.0 to about 30 wt. %.
  • the binder may include natural or synthetic materials.
  • natural materials may include natural rubber, waxes and starches.
  • Synthetic materials may include polyolefins, styrene-butadiene copolymers, polyvinyl chlorides, acrylic polymers, and methacrylic polymers, silicones, and copolymers thereof including functional copolymers thereof.
  • the binders may include styrene-butadiene polymers bearing one or more hydrophobic moieties (e.g., fluorine-containing groups) for repelling water.
  • Still other examples include, but not limited to, polyurethane coating compositions, polymeric resin coating compositions, and siloxane coating compositions, as well as polymer-modified asphalt or bitumen coating compositions.
  • complementary fillers include, but are not limited to,
  • the fire-resistant materials may include inorganic mineral fillers such as clays, silicates, titanium dioxide, talc (magnesium silicate), mica (mixtures of sodium and potassium aluminum silicate), alumina trihydrate, antimony trioxide, calcium carbonate, titanium dioxide, silica, magnesium hydroxide, calcium borate ore, colemanite, and mixtures thereof.
  • intumescent materials include expandable graphite, which may also be referred to as expandable flake graphite, intumescent flake graphite, or expandable flake, includes intercalated graphite in which an intercallant material is included between the graphite layers of graphite crystal or particle.
  • intercallant materials include halogens, alkali metals, sulfates, nitrates, various organic acids, aluminum chlorides, ferric chlorides, other metal halides, arsenic sulfides, and thallium sulfides.
  • the expandable graphite includes non-halogenated intercallant materials.
  • the expandable graphite includes sulfate intercallants, also referred to as graphite bisulfate.
  • sulfate intercallants also referred to as graphite bisulfate.
  • bisulfate intercalation is achieved by treating highly crystalline natural flake graphite with a mixture of sulfuric acid and other oxidizing agents which act to catalyze the sulfate intercalation.
  • expandable graphite examples include HPMS Expandable Graphite (HP Materials Solutions, Inc., Woodland Hills, Calif.) and Expandable Graphite Grades 1721 (Asbury Carbons, Asbury, N.J.).
  • HPMS Expandable Graphite HP Materials Solutions, Inc., Woodland Hills, Calif.
  • Expandable Graphite Grades 1721 Align Carbons, Asbury, N.J.
  • Other commercial grades contemplated as useful in the present invention include 1722, 3393, 3577, 3626, and 1722HT (Asbury Carbons, Asbury, N.J.).
  • the expandable graphite may be characterized as having a mean or average size in the range from about 30 ⁇ m to about 1.5 mm, in other embodiments from about 50 ⁇ m to about 1.0 mm, and in other embodiments from about 180 to about 850 ⁇ m. In certain embodiments, the expandable graphite may be characterized as having a mean or average size of at least 30 ⁇ m, in other embodiments at least 44 ⁇ m, in other embodiments at least 180 ⁇ m, and in other embodiments at least 300 ⁇ m.
  • expandable graphite may be characterized as having a mean or average size of at most 1.5 mm, in other embodiments at most 1.0 mm, in other embodiments at most 850 ⁇ m, in other embodiments at most 600 ⁇ m, in yet other embodiments at most 500 ⁇ m, and in still other embodiments at most 400 ⁇ m.
  • Useful expandable graphite includes Graphite Grade #1721 (Asbury Carbons), which has a nominal size of greater than 300 ⁇ m.
  • the expandable graphite may be characterized as having a nominal particle size of 20 ⁇ 50 (US sieve). US sieve 20 has an opening equivalent to 0.841 mm and US sieve 50 has an opening equivalent to 0.297 mm. Therefore, a nominal particle size of 20 ⁇ 50 indicates the graphite particles are at least 0.297 mm and at most 0.841 mm.
  • the expandable graphite may be characterized as having a carbon content in the range from about 75% to about 99%. In certain embodiments, the expandable graphite may be characterized as having a carbon content of at least 80%, in other embodiments at least 85%, in other embodiments at least 90%, in yet other embodiments at least 95%, in other embodiments at least 98%, and in still other embodiments at least 99% carbon.
  • the expandable graphite may be characterized as having a sulfur content in the range from about 0% to about 8%, in other embodiments from about 2.6% to about 5.0%, and in other embodiments from about 3.0% to about 3.5%. In certain embodiments, the expandable graphite may be characterized as having a sulfur content of at least 0%, in other embodiments at least 2.6%, in other embodiments at least 2.9%, in other embodiments at least 3.2%, and in other embodiments 3.5%. In certain embodiments, the expandable graphite may be characterized as having a sulfur content of at most 8%, in other embodiments at most 5%, in other embodiments at most 3.5%.
  • the expandable graphite may be characterized as having an expansion ratio (cc/g) in the range from about 10:1 to about 500:1, in other embodiments at least 20:1 to about 450:1, in other embodiments at least 30:1 to about 400:1, in other embodiments from about 50:1 to about 350:1.
  • cc/g expansion ratio
  • the expandable graphite may be characterized as having an expansion ratio (cc/g) of at least 10:1, in other embodiments at least 20:1, in other embodiments at least 30:1, in other embodiments at least 40:1, in other embodiments at least 50:1, in other embodiments at least 60:1, in other embodiments at least 90:1, in other embodiments at least 160:1, in other embodiments at least 210:1, in other embodiments at least 220:1, in other embodiments at least 230:1, in other embodiments at least 270:1, in other embodiments at least 290:1, and in yet other embodiments at least 300:1.
  • the expandable graphite may be characterized as having an expansion ratio (cc/g) of at most 350:1, and in yet other embodiments at most 300:1.
  • the expandable graphite may be characterized as having a pH in the range from about 1 to about 12; in other embodiments from about 1 to about 6; and in yet other embodiments from about 5 to about 10. In certain embodiments, the expandable graphite may be characterized as having a pH in the range from about 4 to about 7. In one or more embodiments, the expandable graphite may be characterized as having a pH of at least 1, in other embodiments at least 4, and in other embodiments at least 5. In certain embodiments, the expandable graphite may be characterized as having a pH of at most 10, in other embodiments at most 7, and in other embodiments at most 6.
  • the expandable graphite may be characterized by an onset temperature ranging from about 100° C. to about 250° C.; in other embodiments from about 160° C. to about 225° C.; and in other embodiments from about 180° C. to about 200° C.
  • the expandable graphite may be characterized by an onset temperature of at least 100° C., in other embodiments at least 130° C., in other embodiments at least 160° C., and in other embodiments at least 180° C.
  • the expandable graphite may be characterized by an onset temperature of at most 250° C., in other embodiments at most 225° C., and in other embodiments at most 200° C.
  • Onset temperature may also be interchangeably referred to as expansion temperature; and may also be referred to as the temperature at which expansion of the graphite starts.
  • the construction boards of the present invention can be prepared by using known techniques that are adapted in view of the teachings of this invention.
  • processes for the manufacture of polyurethane or polyisocyanurate insulation boards are known in the art as described in U.S. Pat. Nos. 6,117,375, 6,044,604, 5,891,563, 5,573,092, U.S. Publication Nos. 2004/0109983, 2003/0082365, 2003/0153656, 2003/0032351, and 2002/0013379, as well as U.S. Ser. Nos. 10/640,895, 10/925,654, and 10/632,343, which are incorporated herein by reference.
  • foam may be produced by developing or forming polyurethane and/or polyisocyanurate foam in the presence of a blowing agent.
  • the foam may be prepared by contacting an A-side stream of reagents with a B-side stream of reagents and depositing the mixture or developing foam onto a laminator carrying a facer, which may include one or more of the coating and/or fire-resistant layers described herein.
  • the A-side stream may include an isocyanate compound and the B-side may include an isocyanate-reactive compound.
  • the A-side stream includes an isocyanate.
  • Suitable isocyanate-containing compounds useful for the manufacture of polyisocyanurate construction board are generally known in the art and embodiments of this invention are not limited by the selection of any particular isocyanate-containing compound.
  • Useful isocyanate-containing compounds include polyisocyanates.
  • Useful polyisocyanates include aromatic polyisocyanates such as diphenyl methane diisocyanate in the form of its 2,4′-, 2,2′-, and 4,4′-isomers and mixtures thereof.
  • the mixtures of diphenyl methane diisocyanates (MDI) and oligomers thereof may be referred to as “crude” or polymeric MDI, and these polyisocyanates may have an isocyanate functionality of greater than 2.
  • Other examples include toluene diisocyanate in the form of its 2 , 4 ′ and 2 , 6 ′-isomers and mixtures thereof, 1 , 5 -naphthalene diisocyanate, and 1,4′ diisocyanatobenzene.
  • Exemplary polyisocyanate compounds include polymeric Rubinate 1850 (Huntsmen Polyurethanes), polymeric Lupranate M70R (BASF), and polymeric Mondur 489N (Bayer).
  • the B-side stream includes an isocyanate-reactive compound, and may also include flame retardants, catalysts, emulsifiers/solubilizers, surfactants, blowing agents, fillers, fungicides, anti-static substances, water and other ingredients that are conventional in the art.
  • An exemplary isocyanate-reactive component is a polyol.
  • polyol, or polyol compound includes diols, polyols, and glycols, which may contain water as generally known in the art.
  • Primary and secondary amines are suitable, as are polyether polyols and polyester polyols.
  • Useful polyester polyols include phthalic anhydride based PS-2352 (Stepen), phthalic anhydride based polyol PS-2412 (Stepen), teraphthalic based polyol 3522 (Invista), and a blended polyol TR 564 (Huntsman).
  • Useful polyether polyols include those based on sucrose, glycerin, and toluene diamine.
  • glycols include diethylene glycol, dipropylene glycol, and ethylene glycol.
  • Suitable primary and secondary amines include, without limitation, ethylene diamine, and diethanolamine.
  • a polyester polyol is employed.
  • the present invention may be practiced in the appreciable absence of any polyether polyol.
  • the ingredients are devoid of polyether polyols.
  • Catalysts are believed to initiate the polymerization reaction between the isocyanate and the polyol, as well as a trimerization reaction between free isocyanate groups when polyisocyanurate foam is desired. While some catalysts expedite both reactions, two or more catalysts may be employed to achieve both reactions.
  • Useful catalysts include salts of alkali metals and carboxylic acids or phenols, such as, for example potassium octoate; mononuclear or polynuclear Mannich bases of condensable phenols, oxo-compounds, and secondary amines, which are optionally substituted with alkyl groups, aryl groups, or aralkyl groups; tertiary amines, such as pentamethyldiethylene triamine (PMDETA), 2,4,6-tris [(dimethylamino)methyl]phenol, triethyl amine, tributyl amine, N-methyl morpholine, and N-ethyl morpholine; basic nitrogen compounds, such as tetra alkyl ammonium hydroxides, alkali metal hydroxides, alkali metal phenolates, and alkali metal acholates; and organic metal compounds, such as tin(II)-salts of carboxylic acids, tin(IV)
  • Surfactants, emulsifiers, and/or solubilizers may also be employed in the production of polyurethane and polyisocyanurate foams in order to increase the compatibility of the blowing agents with the isocyanate and polyol components.
  • Surfactants may serve two purposes. First, they may help to emulsify/solubilize all the components so that they react completely. Second, they may promote cell nucleation and cell stabilization. Exemplary surfactants include silicone co-polymers or organic polymers bonded to a silicone polymer. Although surfactants can serve both functions, a more cost effective method to ensure emulsification/solubilization may be to use enough emulsifiers/solubilizers to maintain emulsification/solubilization and a minimal amount of the surfactant to obtain good cell nucleation and cell stabilization. Examples of surfactants include Pelron surfactant 9920, Goldschmidt surfactant B8522, and GE 6912. U.S. Pat. Nos. 5,686,499 and 5,837,742 are incorporated herein by reference to show various useful surfactants.
  • Suitable emulsifiers/solubilizers include DABCO Ketene 20AS (Air Products), and Tergitol NP-9 (nonylphenol+9 moles ethylene oxide).
  • Useful blowing agents include isopentane, n-pentane, cyclopentane, alkanes, (cyclo) alkanes, hydrofluorocarbons, hydrochlorofluorocarbons, fluorocarbons, fluorinated ethers, alkenes, alkynes, carbon dioxide, hydrofluoroolefins (HFOs) and noble gases.
  • Flame Retardants may be used in the production of polyurethane and polyisocyanurate foams, especially when the foams contain flammable blowing agents such as pentane isomers.
  • Useful flame retardants include tri(monochloropropyl) phosphate (a.k.a. tris (cloro-propyl) phosphate), tri-2-chloroethyl phosphate (a.k.a tris(chloro-ethyl) phosphate), phosphonic acid, methyl ester, dimethyl ester, and diethyl ester.
  • U.S. Pat. No. 5,182,309 is incorporated herein by reference to show useful blowing agents.
  • Exemplary non-halogenated solid flame retardants include magnesium hydroxide, aluminum trihydrate, zinc borate, ammonium polyphosphate, melamine polyphosphate, and antimony oxide (Sb 2 O 3 ).
  • Magnesium hydroxide (Mg(OH) 2 ) is commercially available under the tradename VertexTM 60
  • ammonium polyphosphate is commercially available under the tradename ExoliteTM AP 760 (Clarian)
  • melamine polyphosphate is available under the tradename BuditTM 3141 (Budenheim)
  • antimony oxide (Sb 2 O 3 ) is commercially available under the tradename FireshieldTM.
  • Exemplary non-halogenated liquid flame retardants include triethylphosphate, such as that available under the tradename TEP (Lanxess).
  • Exemplary reactive flame retardants include liquid reactive phosphates such as those available under the tradenames E06-16 (ICL) FYROL (ICL).
  • the respective streams can be mixed within, for example, a mixhead to produce a reaction mixture.
  • the mixture can then be deposited onto a facer that is positioned within and carried by a laminator.
  • the mixture can be deposited onto a facer having opposed coating layers as described above (e.g., the external coating layer and the interfacial coating layer).
  • the foam mixture is deposited directly onto the planar surface of the facer carrying the interfacial coating layer.
  • the reaction mixture rises and can be married to a second facer to form a composite, which may also be referred to as a laminate, wherein the foam is sandwiched between upper and lower facers.
  • the second facer may carry a pair of opposed coating layers.
  • the facer is mated with the rising foam so that the interfacial coating layer of the second facer contacts the rising foam.
  • the coating layers carried by the facer are applied to a glass mat substrate by applying a liquid coating composition by employing conventional coating techniques.
  • a liquid coating composition by employing conventional coating techniques.
  • one or both coatings may be applied by gravure coating, reverse roll coating, slot die coating, immersion (dip) coating, knife coating, electrohydrodynamic spraying, and the like.
  • these liquid coating compositions i.e., those forming 20 , 20 ′
  • these liquid coating compositions include at most 40 wt. %, in other embodiments at most 30 wt. %, in other embodiments at most 25 wt. %, in other embodiments at most 20 wt. %, and in other embodiments at most 15 wt. % filler, based on the entire weight of the liquid composition. In one or more embodiments, these liquid coating compositions include from about 0.5 to about 40, in other embodiments from about 1 to about 25, and in other embodiments from about 2 to about 20 wt. % filler, based upon the entire weight of the liquid composition.
  • the interfacial coating which forms the interfacial layers, is applied to respective substrates in the form of a liquid coating composition that includes expandable graphite.
  • this coating including the expandable graphite, is applied to a planar surface of the substrate that is opposite the planar surface where the external coating may be applied.
  • the coating composition forming interfacial layers may be applied by gravure coating, reverse roll coating, slot die coating, immersion (dip) coating, knife coating, electrohydrodynamic spraying, and the like.
  • these liquid coating compositions may include at least 0.5 wt. %, in other embodiments at least 1.0 wt. %, in other embodiments at least 3 wt.
  • these coating compositions include at most 40 wt. %, in other embodiments at most 30 wt. %, in other embodiments at most 25 wt. %, in other embodiments at most 20 wt. %, and in other embodiments at most 15 wt. % fire-resistant material (e.g., expandable graphite), based on the entire weight of the liquid composition.
  • these compositions include from about 0.5 to about 40, in other embodiments from about 1 to about 25, and in other embodiments from about 2 to about 20 wt. % expandable graphite, based upon the entire weight of the liquid composition.
  • the coating layers, as well as the penetrated coating material allow for a relatively high degree of air permeability of the facer.
  • the coating layers are discontinuous or irregular (e.g., have an irregular thickness), and the penetrated coating may not fill all of the interstices of the mat, either of which may contribute to the relatively high degree of air permeability of the facer.
  • a double-coated glass mat which is a glass mat that includes a coating material, including inert filler, applied to both planar surfaces of the glass mat.
  • Any method suitable for applying a binding composition or coating to a glass fiber mat or impregnating a glass fiber mat with a binding composition or coating may be used to apply the first binding composition to the upper surface of the at least one glass fiber mat and the second binding composition to the lower surface of the at least one glass fiber mat.
  • the first and second binding composition can be applied by air spraying, dip coating, knife coating, roll coating, or film application such as lamination/heat pressing.
  • the ability to produce coated facers is known as described in U.S. Pat. Nos. 5,102,728, 5,112,678, and 7,138,346, which are incorporated herein by reference.
  • the double-coated facer is characterized by an air permeability, which may also be referred to as porosity, as determined by ARC-WT-006 (which correlates to TAPPI T460om-96), of less than 300, in other embodiments less than 250, in other embodiments less than 200, in other embodiments less than 150, in other embodiments less than 100, in other embodiments less than 70, in other embodiments less than 50, in other embodiments less than 40, and in other embodiments less than 30 Gurley seconds/300 cubic centimeters.
  • air permeability which may also be referred to as porosity, as determined by ARC-WT-006 (which correlates to TAPPI T460om-96)
  • porosity as determined by ARC-WT-006 (which correlates to TAPPI T460om-96)
  • the double-coated facer is characterized by a coating weight of greater than 500, in other embodiments greater than 600, in other embodiments greater than 700, in other embodiments greater than 800, in other embodiments greater than 810, in other embodiments greater than 820, in other embodiments greater than 830, in other embodiments greater than 840, in other embodiments greater then 850, in other embodiments greater then 860, in other embodiments greater 870, in other embodiments greater 880, in other embodiments greater than 890, and in other embodiments greater than 900 grams per square meter.
  • the coating weight is less than 1000, in other embodiments less than 950, and in other embodiments less than 920 grams per square meter.
  • the term “coating weight” means the weight of the coating per area of the at least one glass fiber mat, which includes both coating layers as well as the penetrated coating material.
  • laminator may include an oven or hot air source that heats the slats and side plates of the laminator and there through transfers heat to the laminate (i.e., to the reaction mixture).
  • the foam composite can undergo conventional finishing within a finishing station, which may include, but is not limited to, trimming and cutting.
  • the construction boards of this invention may be employed in roofing or wall applications.
  • the construction boards are used in flat or low-slope roofing system.
  • roofing system 30 includes a roof deck 32 having insulation board 34 , which may be fabricated according to practice of this invention, disposed thereon.
  • An optional high density board 36 which may also be fabricated according to practice of this invention, positioned above, relative to the roof deck, insulation board 34 .
  • a water-protective layer or membrane 38 is disposed on top or above high density board 36 .
  • optional high density board 36 may be below insulation board 34 relative to the roof deck.
  • roofing systems of this invention can include a variety of roof decks.
  • Exemplary roof decks include concrete pads, steel decks, wood beams, and foamed concrete decks.
  • any water-protective layer or membrane As is known in the art, several membranes can be employed to protect the roofing system from environmental exposure, particularly environmental moisture in the form of rain or snow.
  • Useful protective membranes include polymeric membranes.
  • Useful polymeric membranes include both thermoplastic and thermoset materials. For example, and as is known in the art, membrane prepared from poly(ethylene-co-propylene-co-diene) terpolymer rubber or poly(ethylene-co-propylene) copolymer rubber can be used.
  • roofing membranes made from these materials are well known in the art as described in U.S. Pat. Nos.
  • thermoplastic olefin i.e., TPO
  • thermoplastic vulcanizate i.e., TPV
  • PVC polyvinylchloride
  • the membranes include those defined by ASTM D4637-03 and/or ASTM D6878-03.
  • the protective membrane can include bituminous or asphalt membranes.
  • these asphalt membranes derive from asphalt sheeting that is applied to the roof.
  • These asphalt roofing membranes are known in the art as described in U.S. Pat. Nos. 6,579,921, 6,110,846, and 6,764,733, which are incorporated herein by reference.
  • the protective membrane can derive from the application of hot asphalt to the roof.
  • ballast material is applied over the protective membrane. In many instances, this ballast material simply includes aggregate in the form of rock, stone, or gravel; U.S. Pat. No. 6,487,830, is incorporated herein in this regard.
  • the construction boards of this invention can be secured to a building structure by using various known techniques.
  • the construction boards can be mechanically fastened to the building structure (e.g., the roof deck).
  • the construction boards can be adhesively secured to the building structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Building Environments (AREA)

Abstract

A construction board comprising a foam body having first and second planar surfaces, said foam body including a polyisocyanurate foam matrix defining a plurality of closed cells, said closed cells being at least substantially devoid of hydrocarbon blowing agents, and said foam body being characterized by a density, pursuant to ASTM C303, of at least 2.5 lbs/ft3; and a facer disposed on a planar surface of said foam body, said facer including a glass substrate having an internal planar surface proximate to said foam body and an external planar surface opposite said foam body, a first coating disposed on said external surface, and a second coating disposed on or proximate to said internal surface, where said first coating disposed on said external surface includes an inert filler, and where said second coating disposed on or proximate to said internal surface includes intumescent material.

Description

  • This application claims the benefit of U.S. Provisional Application Ser. No. 62/501,802 filed on May 5, 2017, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • Embodiments of the present invention are directed toward composite high density polyisocyanurate cover boards that have improved fire properties due, at least in part, to the absence of a hydrocarbon blowing agent and the presence of a glass facer that includes an external coating including inert filler and an interfacial coating including intumescent material.
  • BACKGROUND OF THE INVENTION
  • Coverboards and recovery boards are often used in commercial roofing systems to provide roofs with fire barrier properties, protection from foot traffic, and protection from environmental forces such as hail. A commonly used coverboard is a fiberglass faced gypsum board, which is sold under the tradename DENSDECK. Notably, these boards have found wide acceptance because they are noncombustible, per ASTM E136, have been certified by UL for fire resistance under the 790 and 1256 classifications, meet FM class 1 approvals for metal decks, and meet ASTM E84 standards for flame and smoke. While fire resistant and dimensionally stable, these construction boards have appreciable weight and structure, which impacts transportation, movement on a job site, and overall ease of installation. There is a desire, therefore, for construction boards with similar fire resistance and dimensional stability that are lighter and more manageable (e.g., easier to cut).
  • Polyisocyanurate coverboards are known. For example, U.S. Publication No. 2006/0179749 teaches high density polyisocyanurate construction boards for use as a coverboard or recover board. These boards may be characterized by having a density above 2.5 lbs/ft3 and an index of at least 175. These boards can include a hydrocarbon, such as a pentane isomer, as an insulating agent, which compounds also serve as blowing agents during the manufacture of the foam. These construction boards also carry facer materials such as cellulosic, glass, or foil facers. In order to provide these boards with fire resistance, a fire retardant, such as tri(monochloropropyl) phosphate is included within the foam forming materials, especially in the presence of flammable blowing agents such as pentane isomers.
  • U.S. Publication No. 2010/0031603 is likewise directed toward high density polyisocyanurate construction boards that meet the requirements imposed by UL 790 for flame spread. These boards have a density of greater than 2.5 lbs/ft3, an iso index of at least 270, and a cellular body that includes at least 5.0 wt. % flame retardant.
  • While polyisocyanurate coverboards and recover boards are widely used in the industry, they do not meet all of the standards, especially those related to flame resistance, that have been achieved by fiberglass faced gypsum board.
  • SUMMARY OF THE INVENTION
  • One or more embodiments of the present invention provide a construction board comprising a foam body having first and second planar surfaces, said foam body including a polyisocyanurate foam matrix defining a plurality of closed cells, said closed cells being at least substantially devoid of hydrocarbon blowing agents, and said foam body being characterized by a density, pursuant to ASTM C303, of at least 2.5 lbs/ft3; and a facer disposed on a planar surface of said foam body, said facer including a glass substrate having an internal planar surface proximate to said foam body and an external planar surface opposite said foam body, a first coating disposed on said external surface, and a second coating disposed on or proximate to said internal surface, where said first coating disposed on said external surface includes an inert filler, and where said second coating disposed on or proximate to said internal surface includes intumescent material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view of a coverboard according to aspects of the present invention.
  • FIG. 2 is a cross-sectional view of a coverboard according to aspects of the present invention.
  • FIG. 3 is a perspective view of a roofing system according to aspects of the present invention.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • Embodiments of the invention are based, at least in part, on the discovery of high density polyisocyanurate coverboards that demonstrate improved flame resistance. In one or more embodiments, the polyisocyanurate boards are substantially devoid of hydrocarbon blowing agents and carry a glass facer that includes an external coating including inert filler and an interfacial coating that includes intumescent filler. In particular embodiments, the facer also includes an intermediary layer including inert filler. Advantageously, the coverboards of the present invention have zero flame spread and zero smoke development when tested in accordance with ASTM E84. While the high density polyisocyanurate boards contemplated in the prior art have increased flame resistance, owing in part to the high levels of flame retardant used within the boards, the prior art high density boards do not meet the requirements of a class 1 roof according to ASTM E84. Additionally, it is contemplated that the coverboards of the present invention can be used to prepare roof systems over both combustible and non-combustible decks that meet the requirements of UL 790 without the use of gypsum-based construction boards. It is also contemplated that the coverboards of the present invention can achieve FM class 1 approvals for steel deck insulated roofs without the use of gypsum-based coverboards.
  • Coverboard Construction
  • Construction boards according to embodiments of the present invention can be described with reference to FIG. 1, which shows construction board 10, which may also be referred to as coverboard 10, recoverboard 10, roof board 10, fire-barrier board 10, or simply board 10. As shown, board 10, which is generally planar in configuration, includes foam body 12, which may also be referred to as foam core 12, and at least one facer 14. In one or more embodiments, board 10 also includes an opposed facer 14′.
  • Facer 14, as well as optional facer 14′, includes glass substrate 18, 18′, external coating 16, 16′, and interfacial coating 20, 20′. External coating 16, 16′ includes inert filler. Interfacial coating 20, 20′ includes intumescent material 22, 22′.
  • It should be appreciated that interfacial coating 20, 20′ is disposed between foam body 12 and glass substrate 18. External coating layers 16, 16′, on the other hand, are disposed on the external surface 17, 17′ of glass substrate 18, which is opposite foam core 12 and internal surface 19 of glass substrate 18 onto which intermediary coating 20 is disposed.
  • An alternate embodiment is shown in FIG. 2, where coverboard 10′ likewise includes foam body 12, facer 14, and optional facer 14′. Facer 14, 14′ include external coating 16, 16′, and interfacial coating 20, 20′. Additionally, facer 14, 14′ includes an additional coating layer 30, 30′ disposed between glass substrate 18, 18′ and interfacial coating 20, 20′. In one or more embodiments, additional coating layer 30, 30′, which may be referred to as internal coating layer 30, 30′, is compositionally the same or similar to external coating 16, 16′. As should be evident from FIG. 2, interfacial coating layer 30, 30′ is not disposed on internal surface 19 of substrate 18 but is instead proximate thereto since it is disposed on coating 30.
  • Foam Core
  • In one or more embodiments, foam layer 12 includes a rigid closed-cell foam structure. In one or more embodiments, foam layer 12 may include a polyurethane or polyisocyanurate foam. As the skilled person appreciates, the closed-cell foam includes a plurality of cells and an interconnected network of solid struts or plates that form the edges and faces of the cells. The solid portion (i.e., the interconnected network) is formed from the foam-forming material (e.g., the polyurethane or polyisocyanurate). The solid portion of foam layer 12 (i.e., the matrix) may include other constituents as is generally known in the art. As will be discussed in greater detail below, additional frame or fire-resistant materials can be dispersed within the solid portion of foam layer 12. Additionally, in one or more embodiments, the expandable graphite can be dispersed within the solid portion of foam layer 12 in combination with a non-halogenated flame retardant.
  • In one or more embodiments, foam layer 12 may be characterized by density that is greater than 2.5 pounds per cubic foot (12.2 kg/m2), as determined according to ASTM C303, in other embodiments the density is greater than 2.8 pounds per cubic foot (13.7 kg/m2), in other embodiments greater than 3.0 pounds per cubic foot (14.6 kg/m2), and still in other embodiments greater than 3.5 pounds per cubic foot (17.1 kg/m2). In one or more embodiments, the density of foam layer 12 of the recovery boards may be less than 20 pounds per cubic foot (97.6 kg/m2), in other embodiments less than 10 pounds per cubic foot (48.8 kg/m2), in other embodiments less than 6 pounds per cubic foot (29.3 kg/m2), in other embodiments less than 5.9 pounds per cubic foot (28.8 kg/m2), in other embodiments less than 5.8 pounds per cubic foot (28.3 kg/m2), in other embodiments less than 5.7 pounds per cubic foot (27.8 kg/m2), in other embodiments less than 5.6 pounds per cubic foot (27.3 kg/m2), and still in other embodiments less than 5.5 pounds per cubic foot (26.9 kg/m2). Foam construction boards having a foam layer of similar nature are described in U.S. Publ. Nos. 2006/0179749 and 2010/0031603, which are incorporated herein by reference.
  • Where the density of foam layer 12 is greater than 2.5 pounds per cubic foot, it may be advantageous for foam layer 12 to be characterized by an ISO Index, as determined by PIR/PUR ratio as determined by IR spectroscopy using standard foams of known index (note that ratio of 3 PIR/PUR provides an ISO Index of 300) of at least 180, in other embodiments at least 200, in other embodiments at least 220, in other embodiments at least 270, in other embodiments at least 285, in other embodiments at least 300, in other embodiments at least 315, and in other embodiments at least 325. In these or other embodiments, the ISO Index may be less than 360, in other embodiments less than 350, in other embodiments less than 340, and in other embodiments less than 335.
  • In one or more embodiments, the thickness of foam layer 12 may be greater than 0.5 cm, in other embodiments greater than 1, and in other embodiments greater than 2 cms. In these or more embodiments, the thickness of foam layer 12 may be less than 15 cm, in other embodiments less than 12, and in other embodiments less than 8 cms. In one or more embodiments, the thickness of foam layer 12 may be from about 0.5 to about 15 cms, in other embodiments from about 1 to about 12 cms, and in other embodiments from about 2 to about 8 cms.
  • According to aspects of the present invention, foam body 12, which includes cellular matrix 24 that forms closed cells 26 is substantially devoid of hydrocarbon blowing agents. Substantially devoid refers to that amount or less that does not have an appreciable impact on the construction boards of the present invention, particularly as the impact relates to the flammability of the construction boards. In one or more embodiments, closed cells 26 include carbon dioxide, air, or a vacuum or partial vacuum. As those skilled in the art appreciate, the presence of carbon dioxide can result from the use of water as a blowing agent during the manufacture of the foam. These techniques will be described in greater detail below. In one or more embodiments, foam body 12, and more particularly closed cells 26, include less than 2, in other embodiments less than 0.5, and in other embodiments less than 0.1 percent by volume hydrocarbon blowing agents. In particular embodiments, closed cells 26 are devoid of halogenated organic compounds.
  • Glass Substrate
  • In one or more embodiments, substrate 18, 18′ is an inorganic substrate. In particular embodiments, the substrate is a non-woven glass mat, and therefore reference may be made to glass mat 18, 18′. In one or more embodiments, the non-woven fiberglass mats include glass fibers and a binder that binds the glass fibers together and maintains the fibers in a mat form. Any type of glass fiber mat can be used in the composite board. For example, a non-woven glass fiber mat can be made with glass fibers, the fibers can be bonded with an aqueous thermosetting resin such as, for example, urea formaldehyde or phenolic resole resins. As the skilled person will appreciate, these binder resins are conventional in the art of non-woven glass mats, and the skilled person will understand that the coating (e.g., coating 16, 16′), as taught herein, is distinct, in both composition and structure, from this binder.
  • In one or more embodiments, the dimensional and weight characteristics of glass substrate 18, 18′ are not particularly limited, and can depend on the specific application and desired properties of the coverboard. For example, the basis weight of glass substrate 22 (or 32) can be from about 50 grams per square meter to about 150 grams per square meter. The thickness of glass substrate 22 (or 32) can be, for example, from about 0.015 inch to about 0.05 inch (about 0.038 to about 0.13 cm). The basis weight and thickness characteristics can be adjusted depending upon the desired rigidity, strength and weight of the composite board.
  • In one or more embodiments, the thickness of glass substrate 22 (or 32) (absent the coating layer described herein) may be from about 0.01 to about 1.00 inch (about 0.03 to about 2.54 cm) or in other embodiments from about 0.015 to about 0.05 inches thick (about 0.038 to about 0.13 cm).
  • The dimensional and weight characteristics of the glass fiber mat are not particularly limited, and can depend on the specific application and desired properties of the composite board. For example, the basis weight of the glass fiber mat can be from about 50 grams per square meter to about 150 grams per square meter. The thickness of the glass fiber mat can be, for example, from about 0.015 inch to about 0.05 inch. The basis weight and thickness characteristics can be adjusted depending upon the desired rigidity, strength and weight of the composite board.
  • The thickness of the facer material may vary; for example, it may be from about 0.01 to about 1.00 or in other embodiments from about 0.015 to about 0.050 inches thick.
  • External Coating
  • In one or more embodiments, facers 14, 14′ include one or more coating layers (e.g., coating layers 16 and 20), and optionally coating material disposed within the interstices of the mat, which coating material is referred to as penetrated coating material. As explained above, the penetrated coating is to be distinguished from any binder used to form the glass mat itself, such as those binders used to hold the nonwoven fibers of the glass mat together.
  • In one or more embodiments, external coating 16, 16′ includes an inert filler dispersed within a binder or matrix. In one or more embodiments, the external coating includes an inorganic filler or mineral filler dispersed throughout a binder. In one or more embodiments, the external coating is devoid or substantially devoid of intumescent material.
  • In one or more embodiments, external coating 16, 16′ may have a thickness of at least 0.005 mm, in other embodiments at least 0.01 mm, in other embodiments 0.05 mm, and in other embodiments at least 0.09 mm. In these or other embodiments, coating 16, 16′ may have a thickness of less than 1.5 mm, in other embodiments less than 1.0 mm, in other embodiments less than 0.7 mm, in other embodiments less than 0.3 mm, and in other embodiments less than 0.1 mm.
  • In one or more embodiments, the concentration of filler within external coating 16, 16′ may be expressed as the weight of filler relative to the entire weight of the layer. In one or more embodiments, the amount of filler within the external coating 16, 16′ may be more than 0.5 wt. %, in other embodiments more than 1.0 wt. %, and in other embodiments more than 3.0 wt. %. In these or more embodiments, the amount of filler within the external coating 16, 16′ may be less than 50 wt. %, in other embodiments less than 40 wt. %, and in other embodiments less than 30 wt. %. In one or more embodiments, the amount of filler within the external coating 16, 16′ may be from about 0.5 to about 50 wt. %, in other embodiments from about 1.0 to about 40 wt. %, and in other embodiments from about 3.0 to about 30 wt. %.
  • In one or more embodiments, the thickness of coating 16, 16′ may be greater than 0.5 mm, in other embodiments greater than 1 mm, and in other embodiments greater than 1.5 mm. In these or more embodiments, the thickness of coating 16, 16′ (as well as coating 34) may be less than 7 mm, in other embodiments less than 5 mm, and in other embodiments less than 3 mm. In one or more embodiments, the thickness of coating 16, 16′ may be from about 0.5 to about 7 mm, in other embodiments from about 1 to about 5 mm, and in other embodiments from about 1.5 to about 3 mm.
  • In one or more embodiments, the binder may include natural or synthetic materials. For example, natural materials may include natural rubber, waxes and starches. Synthetic materials may include polyolefins, styrene-butadiene copolymers, polyvinyl chlorides, acrylic polymers, and methacrylic polymers, silicones, and copolymers thereof including functional copolymers thereof. For example, the binders may include styrene-butadiene polymers bearing one or more hydrophobic moieties (e.g., fluorine-containing groups) for repelling water. Still other examples include, but not limited to, polyurethane coating compositions, polymeric resin coating compositions, and siloxane coating compositions, as well as polymer-modified asphalt or bitumen coating compositions. These polymers may derive from latex compositions that carry one or more of the polymers.
  • In one or more embodiments, external layer 16, 16′ can include from about 1 wt % to about 15 wt %, or in other embodiments from about 2 to about 10 wt %, binder based on the weight of the respective layers.
  • Examples of a suitable inert filler include calcium carbonate, clay, talc, mica, perlite, hollow ceramic spheres or a combination thereof. In an exemplary embodiment, the inert filler is calcium carbonate.
  • In one or more embodiments, external layer 16, 16′ can include from about 80 wt % to about wt 98%, or in other embodiments from 85 to about 95 wt % inert filler based on the weight of each respective layer.
  • Interfacial Layer-Intumescent Material
  • As suggested above, interfacial layer 20, 20′ includes intumescent material dispersed within a binder. In particular embodiments, the intumescent material is expandable graphite. In one or more embodiments, interfacial layer 20, 20′, which may also be referred to as interfacial coating 20, 20′, includes a complementary filler such as inert filler or inorganic filler. In other embodiments, interfacial layer 20, 20′ is devoid or substantially devoid of filler other than intumescent material.
  • In one or more embodiments, the thickness of interfacial layer 20, 20′ may be greater than 1 μm, in other embodiments greater than 20 μm, and in other embodiments greater than 50 μm. In these or other embodiments, the thickness or interfacial layer 20, 20′ may be less than 5 mm, in other embodiments less than 1 mm, and in other embodiments less than 0.5 mm. In one or more embodiments, the thickness of interfacial layer 20, 20′ may be from about 1 μm to about 5 mm, in other embodiments from about 20 μm to about 1 mm, and in other embodiments from about 50 μm to about 0.5 mm.
  • In one or more embodiments, the concentration of intumescent material (e.g., expandable graphite) within interfacial layer 20, 20′ may be expressed as the weight of intumescent material relative to the entire weight of the layer. In one or more embodiments, the amount of intumescent material within the interfacial layers may be more than 0.5 wt. %, in other embodiments more than 1.0 wt. %, and in other embodiments more than 3.0 wt. %. In these or more embodiments, the amount of intumescent material within the interfacial layers may be less than 50 wt. %, in other embodiments less than 40 wt. %, and in other embodiments less than 30 wt. %. In one or more embodiments, the amount of intumescent material within the interfacial layers may be from about 0.5 to about 50 wt. %, in other embodiments from about 1.0 to about 40 wt. %, and in other embodiments from about 3.0 to about 30 wt. %.
  • In one or more embodiments, the binder may include natural or synthetic materials. For example, natural materials may include natural rubber, waxes and starches. Synthetic materials may include polyolefins, styrene-butadiene copolymers, polyvinyl chlorides, acrylic polymers, and methacrylic polymers, silicones, and copolymers thereof including functional copolymers thereof. For example, the binders may include styrene-butadiene polymers bearing one or more hydrophobic moieties (e.g., fluorine-containing groups) for repelling water. Still other examples include, but not limited to, polyurethane coating compositions, polymeric resin coating compositions, and siloxane coating compositions, as well as polymer-modified asphalt or bitumen coating compositions.
  • In one or more embodiments, complementary fillers include, but are not limited to, In one or more embodiments, the fire-resistant materials may include inorganic mineral fillers such as clays, silicates, titanium dioxide, talc (magnesium silicate), mica (mixtures of sodium and potassium aluminum silicate), alumina trihydrate, antimony trioxide, calcium carbonate, titanium dioxide, silica, magnesium hydroxide, calcium borate ore, colemanite, and mixtures thereof.
  • Intumescent Materials
  • In one or more embodiments, intumescent materials include expandable graphite, which may also be referred to as expandable flake graphite, intumescent flake graphite, or expandable flake, includes intercalated graphite in which an intercallant material is included between the graphite layers of graphite crystal or particle. Examples of intercallant materials include halogens, alkali metals, sulfates, nitrates, various organic acids, aluminum chlorides, ferric chlorides, other metal halides, arsenic sulfides, and thallium sulfides. In certain embodiments of the present invention, the expandable graphite includes non-halogenated intercallant materials. In certain embodiments, the expandable graphite includes sulfate intercallants, also referred to as graphite bisulfate. As is known in the art, bisulfate intercalation is achieved by treating highly crystalline natural flake graphite with a mixture of sulfuric acid and other oxidizing agents which act to catalyze the sulfate intercalation.
  • Commercially available examples of expandable graphite include HPMS Expandable Graphite (HP Materials Solutions, Inc., Woodland Hills, Calif.) and Expandable Graphite Grades 1721 (Asbury Carbons, Asbury, N.J.). Other commercial grades contemplated as useful in the present invention include 1722, 3393, 3577, 3626, and 1722HT (Asbury Carbons, Asbury, N.J.).
  • In one or more embodiments, the expandable graphite may be characterized as having a mean or average size in the range from about 30 μm to about 1.5 mm, in other embodiments from about 50 μm to about 1.0 mm, and in other embodiments from about 180 to about 850 μm. In certain embodiments, the expandable graphite may be characterized as having a mean or average size of at least 30 μm, in other embodiments at least 44 μm, in other embodiments at least 180 μm, and in other embodiments at least 300 μm. In one or more embodiments, expandable graphite may be characterized as having a mean or average size of at most 1.5 mm, in other embodiments at most 1.0 mm, in other embodiments at most 850 μm, in other embodiments at most 600 μm, in yet other embodiments at most 500 μm, and in still other embodiments at most 400 μm. Useful expandable graphite includes Graphite Grade #1721 (Asbury Carbons), which has a nominal size of greater than 300 μm.
  • In one or more embodiments, the expandable graphite may be characterized as having a nominal particle size of 20×50 (US sieve). US sieve 20 has an opening equivalent to 0.841 mm and US sieve 50 has an opening equivalent to 0.297 mm. Therefore, a nominal particle size of 20×50 indicates the graphite particles are at least 0.297 mm and at most 0.841 mm.
  • In one or more embodiments, the expandable graphite may be characterized as having a carbon content in the range from about 75% to about 99%. In certain embodiments, the expandable graphite may be characterized as having a carbon content of at least 80%, in other embodiments at least 85%, in other embodiments at least 90%, in yet other embodiments at least 95%, in other embodiments at least 98%, and in still other embodiments at least 99% carbon.
  • In one or more embodiments, the expandable graphite may be characterized as having a sulfur content in the range from about 0% to about 8%, in other embodiments from about 2.6% to about 5.0%, and in other embodiments from about 3.0% to about 3.5%. In certain embodiments, the expandable graphite may be characterized as having a sulfur content of at least 0%, in other embodiments at least 2.6%, in other embodiments at least 2.9%, in other embodiments at least 3.2%, and in other embodiments 3.5%. In certain embodiments, the expandable graphite may be characterized as having a sulfur content of at most 8%, in other embodiments at most 5%, in other embodiments at most 3.5%.
  • In one or more embodiments, the expandable graphite may be characterized as having an expansion ratio (cc/g) in the range from about 10:1 to about 500:1, in other embodiments at least 20:1 to about 450:1, in other embodiments at least 30:1 to about 400:1, in other embodiments from about 50:1 to about 350:1. In certain embodiments, the expandable graphite may be characterized as having an expansion ratio (cc/g) of at least 10:1, in other embodiments at least 20:1, in other embodiments at least 30:1, in other embodiments at least 40:1, in other embodiments at least 50:1, in other embodiments at least 60:1, in other embodiments at least 90:1, in other embodiments at least 160:1, in other embodiments at least 210:1, in other embodiments at least 220:1, in other embodiments at least 230:1, in other embodiments at least 270:1, in other embodiments at least 290:1, and in yet other embodiments at least 300:1. In certain embodiments, the expandable graphite may be characterized as having an expansion ratio (cc/g) of at most 350:1, and in yet other embodiments at most 300:1.
  • In one or more embodiments, the expandable graphite may be characterized as having a pH in the range from about 1 to about 12; in other embodiments from about 1 to about 6; and in yet other embodiments from about 5 to about 10. In certain embodiments, the expandable graphite may be characterized as having a pH in the range from about 4 to about 7. In one or more embodiments, the expandable graphite may be characterized as having a pH of at least 1, in other embodiments at least 4, and in other embodiments at least 5. In certain embodiments, the expandable graphite may be characterized as having a pH of at most 10, in other embodiments at most 7, and in other embodiments at most 6.
  • In one or more embodiments, the expandable graphite may be characterized by an onset temperature ranging from about 100° C. to about 250° C.; in other embodiments from about 160° C. to about 225° C.; and in other embodiments from about 180° C. to about 200° C. In one or more embodiments, the expandable graphite may be characterized by an onset temperature of at least 100° C., in other embodiments at least 130° C., in other embodiments at least 160° C., and in other embodiments at least 180° C. In one or more embodiments, the expandable graphite may be characterized by an onset temperature of at most 250° C., in other embodiments at most 225° C., and in other embodiments at most 200° C. Onset temperature may also be interchangeably referred to as expansion temperature; and may also be referred to as the temperature at which expansion of the graphite starts.
  • Preparation of Construction Boards
  • Generally speaking, the construction boards of the present invention can be prepared by using known techniques that are adapted in view of the teachings of this invention. In general, processes for the manufacture of polyurethane or polyisocyanurate insulation boards are known in the art as described in U.S. Pat. Nos. 6,117,375, 6,044,604, 5,891,563, 5,573,092, U.S. Publication Nos. 2004/0109983, 2003/0082365, 2003/0153656, 2003/0032351, and 2002/0013379, as well as U.S. Ser. Nos. 10/640,895, 10/925,654, and 10/632,343, which are incorporated herein by reference.
  • As the skilled person appreciates, foam may be produced by developing or forming polyurethane and/or polyisocyanurate foam in the presence of a blowing agent. The foam may be prepared by contacting an A-side stream of reagents with a B-side stream of reagents and depositing the mixture or developing foam onto a laminator carrying a facer, which may include one or more of the coating and/or fire-resistant layers described herein. The A-side stream may include an isocyanate compound and the B-side may include an isocyanate-reactive compound.
  • A-Side Stream
  • As suggested above, the A-side stream includes an isocyanate. Suitable isocyanate-containing compounds useful for the manufacture of polyisocyanurate construction board are generally known in the art and embodiments of this invention are not limited by the selection of any particular isocyanate-containing compound. Useful isocyanate-containing compounds include polyisocyanates. Useful polyisocyanates include aromatic polyisocyanates such as diphenyl methane diisocyanate in the form of its 2,4′-, 2,2′-, and 4,4′-isomers and mixtures thereof. The mixtures of diphenyl methane diisocyanates (MDI) and oligomers thereof may be referred to as “crude” or polymeric MDI, and these polyisocyanates may have an isocyanate functionality of greater than 2. Other examples include toluene diisocyanate in the form of its 2,4′ and 2,6′-isomers and mixtures thereof, 1,5-naphthalene diisocyanate, and 1,4′ diisocyanatobenzene. Exemplary polyisocyanate compounds include polymeric Rubinate 1850 (Huntsmen Polyurethanes), polymeric Lupranate M70R (BASF), and polymeric Mondur 489N (Bayer).
  • B-Side Stream
  • As suggested above, the B-side stream includes an isocyanate-reactive compound, and may also include flame retardants, catalysts, emulsifiers/solubilizers, surfactants, blowing agents, fillers, fungicides, anti-static substances, water and other ingredients that are conventional in the art.
  • An exemplary isocyanate-reactive component is a polyol. The term polyol, or polyol compound, includes diols, polyols, and glycols, which may contain water as generally known in the art. Primary and secondary amines are suitable, as are polyether polyols and polyester polyols. Useful polyester polyols include phthalic anhydride based PS-2352 (Stepen), phthalic anhydride based polyol PS-2412 (Stepen), teraphthalic based polyol 3522 (Invista), and a blended polyol TR 564 (Huntsman). Useful polyether polyols include those based on sucrose, glycerin, and toluene diamine. Examples of glycols include diethylene glycol, dipropylene glycol, and ethylene glycol. Suitable primary and secondary amines include, without limitation, ethylene diamine, and diethanolamine. In one or more embodiments, a polyester polyol is employed. In one or more embodiments, the present invention may be practiced in the appreciable absence of any polyether polyol. In certain embodiments, the ingredients are devoid of polyether polyols.
  • Catalysts are believed to initiate the polymerization reaction between the isocyanate and the polyol, as well as a trimerization reaction between free isocyanate groups when polyisocyanurate foam is desired. While some catalysts expedite both reactions, two or more catalysts may be employed to achieve both reactions. Useful catalysts include salts of alkali metals and carboxylic acids or phenols, such as, for example potassium octoate; mononuclear or polynuclear Mannich bases of condensable phenols, oxo-compounds, and secondary amines, which are optionally substituted with alkyl groups, aryl groups, or aralkyl groups; tertiary amines, such as pentamethyldiethylene triamine (PMDETA), 2,4,6-tris [(dimethylamino)methyl]phenol, triethyl amine, tributyl amine, N-methyl morpholine, and N-ethyl morpholine; basic nitrogen compounds, such as tetra alkyl ammonium hydroxides, alkali metal hydroxides, alkali metal phenolates, and alkali metal acholates; and organic metal compounds, such as tin(II)-salts of carboxylic acids, tin(IV)-compounds, and organo lead compounds, such as lead naphthenate and lead octoate.
  • Surfactants, emulsifiers, and/or solubilizers may also be employed in the production of polyurethane and polyisocyanurate foams in order to increase the compatibility of the blowing agents with the isocyanate and polyol components.
  • Surfactants may serve two purposes. First, they may help to emulsify/solubilize all the components so that they react completely. Second, they may promote cell nucleation and cell stabilization. Exemplary surfactants include silicone co-polymers or organic polymers bonded to a silicone polymer. Although surfactants can serve both functions, a more cost effective method to ensure emulsification/solubilization may be to use enough emulsifiers/solubilizers to maintain emulsification/solubilization and a minimal amount of the surfactant to obtain good cell nucleation and cell stabilization. Examples of surfactants include Pelron surfactant 9920, Goldschmidt surfactant B8522, and GE 6912. U.S. Pat. Nos. 5,686,499 and 5,837,742 are incorporated herein by reference to show various useful surfactants.
  • Suitable emulsifiers/solubilizers include DABCO Ketene 20AS (Air Products), and Tergitol NP-9 (nonylphenol+9 moles ethylene oxide).
  • Useful blowing agents include isopentane, n-pentane, cyclopentane, alkanes, (cyclo) alkanes, hydrofluorocarbons, hydrochlorofluorocarbons, fluorocarbons, fluorinated ethers, alkenes, alkynes, carbon dioxide, hydrofluoroolefins (HFOs) and noble gases.
  • Flame Retardants may be used in the production of polyurethane and polyisocyanurate foams, especially when the foams contain flammable blowing agents such as pentane isomers. Useful flame retardants include tri(monochloropropyl) phosphate (a.k.a. tris (cloro-propyl) phosphate), tri-2-chloroethyl phosphate (a.k.a tris(chloro-ethyl) phosphate), phosphonic acid, methyl ester, dimethyl ester, and diethyl ester. U.S. Pat. No. 5,182,309 is incorporated herein by reference to show useful blowing agents.
  • Exemplary non-halogenated solid flame retardants include magnesium hydroxide, aluminum trihydrate, zinc borate, ammonium polyphosphate, melamine polyphosphate, and antimony oxide (Sb2O3). Magnesium hydroxide (Mg(OH)2) is commercially available under the tradename Vertex™ 60, ammonium polyphosphate is commercially available under the tradename Exolite™ AP 760 (Clarian), melamine polyphosphate is available under the tradename Budit™ 3141 (Budenheim), and antimony oxide (Sb2O3) is commercially available under the tradename Fireshield™. Exemplary non-halogenated liquid flame retardants include triethylphosphate, such as that available under the tradename TEP (Lanxess). Exemplary reactive flame retardants include liquid reactive phosphates such as those available under the tradenames E06-16 (ICL) FYROL (ICL).
  • The respective streams can be mixed within, for example, a mixhead to produce a reaction mixture. The mixture can then be deposited onto a facer that is positioned within and carried by a laminator. In accordance with the present invention, the mixture can be deposited onto a facer having opposed coating layers as described above (e.g., the external coating layer and the interfacial coating layer). Specifically, the foam mixture is deposited directly onto the planar surface of the facer carrying the interfacial coating layer.
  • While in the laminator, the reaction mixture rises and can be married to a second facer to form a composite, which may also be referred to as a laminate, wherein the foam is sandwiched between upper and lower facers. Likewise, in accordance with this invention, the second facer may carry a pair of opposed coating layers. In one or more embodiments, the facer is mated with the rising foam so that the interfacial coating layer of the second facer contacts the rising foam.
  • In one or more embodiments, the coating layers carried by the facer are applied to a glass mat substrate by applying a liquid coating composition by employing conventional coating techniques. For example, one or both coatings may be applied by gravure coating, reverse roll coating, slot die coating, immersion (dip) coating, knife coating, electrohydrodynamic spraying, and the like. In one or more embodiments, these liquid coating compositions (i.e., those forming 20, 20′) may include at least 0.5 wt. %, in other embodiments at least 1.0 wt. %, in other embodiments at least 3 wt. %, in other embodiments at least 5 wt. %, and in other embodiments at least 7 wt. % filler, based on the entire weight of the liquid composition. In these or other embodiments, these liquid coating compositions include at most 40 wt. %, in other embodiments at most 30 wt. %, in other embodiments at most 25 wt. %, in other embodiments at most 20 wt. %, and in other embodiments at most 15 wt. % filler, based on the entire weight of the liquid composition. In one or more embodiments, these liquid coating compositions include from about 0.5 to about 40, in other embodiments from about 1 to about 25, and in other embodiments from about 2 to about 20 wt. % filler, based upon the entire weight of the liquid composition.
  • Similarly, the interfacial coating, which forms the interfacial layers, is applied to respective substrates in the form of a liquid coating composition that includes expandable graphite. As the skilled person will appreciate, this coating, including the expandable graphite, is applied to a planar surface of the substrate that is opposite the planar surface where the external coating may be applied. The coating composition forming interfacial layers may be applied by gravure coating, reverse roll coating, slot die coating, immersion (dip) coating, knife coating, electrohydrodynamic spraying, and the like. In one or more embodiments, these liquid coating compositions may include at least 0.5 wt. %, in other embodiments at least 1.0 wt. %, in other embodiments at least 3 wt. %, in other embodiments at least 5 wt. %, and in other embodiments at least 7 wt. % expandable graphite, based on the entire weight of the liquid composition. In these or other embodiments, these coating compositions include at most 40 wt. %, in other embodiments at most 30 wt. %, in other embodiments at most 25 wt. %, in other embodiments at most 20 wt. %, and in other embodiments at most 15 wt. % fire-resistant material (e.g., expandable graphite), based on the entire weight of the liquid composition. In one or more embodiments, these compositions include from about 0.5 to about 40, in other embodiments from about 1 to about 25, and in other embodiments from about 2 to about 20 wt. % expandable graphite, based upon the entire weight of the liquid composition.
  • In one or more embodiments, the coating layers, as well as the penetrated coating material, allow for a relatively high degree of air permeability of the facer. In one or more embodiments, the coating layers are discontinuous or irregular (e.g., have an irregular thickness), and the penetrated coating may not fill all of the interstices of the mat, either of which may contribute to the relatively high degree of air permeability of the facer.
  • In one or more embodiments, where the facer includes external and internal coating layers (e.g., layers 16 and 30), as well as interfacial coating layer (e.g., 20), derives from employing a double-coated glass mat, which is a glass mat that includes a coating material, including inert filler, applied to both planar surfaces of the glass mat. Any method suitable for applying a binding composition or coating to a glass fiber mat or impregnating a glass fiber mat with a binding composition or coating may be used to apply the first binding composition to the upper surface of the at least one glass fiber mat and the second binding composition to the lower surface of the at least one glass fiber mat. For example, the first and second binding composition can be applied by air spraying, dip coating, knife coating, roll coating, or film application such as lamination/heat pressing. The ability to produce coated facers is known as described in U.S. Pat. Nos. 5,102,728, 5,112,678, and 7,138,346, which are incorporated herein by reference.
  • In one or more embodiments, the double-coated facer is characterized by an air permeability, which may also be referred to as porosity, as determined by ARC-WT-006 (which correlates to TAPPI T460om-96), of less than 300, in other embodiments less than 250, in other embodiments less than 200, in other embodiments less than 150, in other embodiments less than 100, in other embodiments less than 70, in other embodiments less than 50, in other embodiments less than 40, and in other embodiments less than 30 Gurley seconds/300 cubic centimeters.
  • In one or more embodiments, the double-coated facer is characterized by a coating weight of greater than 500, in other embodiments greater than 600, in other embodiments greater than 700, in other embodiments greater than 800, in other embodiments greater than 810, in other embodiments greater than 820, in other embodiments greater than 830, in other embodiments greater than 840, in other embodiments greater then 850, in other embodiments greater then 860, in other embodiments greater 870, in other embodiments greater 880, in other embodiments greater than 890, and in other embodiments greater than 900 grams per square meter. In one or more embodiments, the coating weight is less than 1000, in other embodiments less than 950, and in other embodiments less than 920 grams per square meter. As used herein, the term “coating weight” means the weight of the coating per area of the at least one glass fiber mat, which includes both coating layers as well as the penetrated coating material.
  • The composite, while in laminator, or after removal from laminator, is exposed to heat that may be supplied by, for example, oven. For example, laminator may include an oven or hot air source that heats the slats and side plates of the laminator and there through transfers heat to the laminate (i.e., to the reaction mixture). Once subjected to this heat, the foam composite can undergo conventional finishing within a finishing station, which may include, but is not limited to, trimming and cutting.
  • INDUSTRIAL APPLICABILITY
  • In one or more embodiments, the construction boards of this invention may be employed in roofing or wall applications. In particular embodiments, the construction boards are used in flat or low-slope roofing system.
  • As shown in FIG. 3, roofing system 30 includes a roof deck 32 having insulation board 34, which may be fabricated according to practice of this invention, disposed thereon. An optional high density board 36, which may also be fabricated according to practice of this invention, positioned above, relative to the roof deck, insulation board 34. A water-protective layer or membrane 38 is disposed on top or above high density board 36. In alternate embodiments, not shown, optional high density board 36 may be below insulation board 34 relative to the roof deck.
  • Practice of this invention is not limited by the selection of any particular roof deck. Accordingly, the roofing systems of this invention can include a variety of roof decks. Exemplary roof decks include concrete pads, steel decks, wood beams, and foamed concrete decks.
  • Practice of this invention is likewise not limited by the selection of any water-protective layer or membrane. As is known in the art, several membranes can be employed to protect the roofing system from environmental exposure, particularly environmental moisture in the form of rain or snow. Useful protective membranes include polymeric membranes. Useful polymeric membranes include both thermoplastic and thermoset materials. For example, and as is known in the art, membrane prepared from poly(ethylene-co-propylene-co-diene) terpolymer rubber or poly(ethylene-co-propylene) copolymer rubber can be used. Roofing membranes made from these materials are well known in the art as described in U.S. Pat. Nos. 6,632,509, 6,615,892, 5,700,538, 5703,154, 5,804,661, 5,854,327, 5,093,206, and 5,468,550, which are incorporated herein by reference. Other useful polymeric membranes include those made from various thermoplastic polymers or polymer composites. For example, thermoplastic olefin (i.e., TPO), thermoplastic vulcanizate (i.e., TPV), or polyvinylchloride (PVC) materials can be used. The use of these materials for roofing membranes is known in the art as described in U.S. Pat. Nos. 6,502,360, 6,743,864, 6,543,199, 5,725,711, 5,516,829, 5,512,118, and 5,486,249, which are incorporated herein by reference. In one or more embodiments, the membranes include those defined by ASTM D4637-03 and/or ASTM D6878-03.
  • Still in other embodiments, the protective membrane can include bituminous or asphalt membranes. In one embodiment, these asphalt membranes derive from asphalt sheeting that is applied to the roof. These asphalt roofing membranes are known in the art as described in U.S. Pat. Nos. 6,579,921, 6,110,846, and 6,764,733, which are incorporated herein by reference. In other embodiments, the protective membrane can derive from the application of hot asphalt to the roof.
  • Other layers or elements of the roofing systems are not excluded by the practice of this invention. For example, and as is known in the art, another layer of material can be applied on top of the protective membrane. Often these materials are applied to protect the protective membranes from exposure to electromagnetic radiation, particularly that radiation in the form of UV light. In certain instances, ballast material is applied over the protective membrane. In many instances, this ballast material simply includes aggregate in the form of rock, stone, or gravel; U.S. Pat. No. 6,487,830, is incorporated herein in this regard.
  • The construction boards of this invention can be secured to a building structure by using various known techniques. For example, in one or more embodiments, the construction boards can be mechanically fastened to the building structure (e.g., the roof deck). In other embodiments, the construction boards can be adhesively secured to the building structure.
  • Various modifications and alterations that do not depart from the scope and spirit of this invention will become apparent to those skilled in the art. This invention is not to be duly limited to the illustrative embodiments set forth herein.

Claims (8)

What is claimed is:
1. A construction board comprising:
a foam body having first and second planar surfaces, said foam body including a polyisocyanurate foam matrix defining a plurality of closed cells, said closed cells being at least substantially devoid of hydrocarbon blowing agents, and said foam body being characterized by a density, pursuant to ASTM C303, of at least 2.5 lbs/ft3; and
a facer disposed on a planar surface of said foam body, said facer including a glass substrate having an internal planar surface proximate to said foam body and an external planar surface opposite said foam body, a first coating disposed on said external surface, and a second coating disposed on or proximate to said internal surface, where said first coating disposed on said external surface includes an inert filler, and where said second coating disposed on or proximate to said internal surface includes intumescent material.
2. The construction board of claim 1, where said inert filler includes calcium carbonate.
3. The construction board of claim 1, where said intumescent material includes expandable graphite.
4. The construction board of claim 1, where said first coating includes a polymeric binder in which said inert filler is dispersed.
5. The construction board of claim 1, where said second coating includes a polymeric binder in which said intumescent material is dispersed.
6. The construction board of claim 1, where said closed cells include carbon dioxide, air, or a partial vacuum.
7. The construction board of claim 1, where said closed cells include less than 2 percent by volume hydrocarbon blowing agent.
8. The construction board of claim 1, where said facer is a first facer, and where said construction board includes a second facer disposed on a planar surface of said foam body opposite said first facer, said second facer including a glass substrate having an internal planar surface proximate to said foam body and an external planar surface opposite said foam body, a first coating disposed on said external surface, and a second coating disposed on or proximate to said internal surface, where said first coating disposed on said external surface includes an inert filler, and where said second coating disposed on or proximate to said internal surface includes intumescent material.
US15/972,691 2017-05-05 2018-05-07 Polyisocyanurate coverboards with improved fire resistance Abandoned US20180320370A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/972,691 US20180320370A1 (en) 2017-05-05 2018-05-07 Polyisocyanurate coverboards with improved fire resistance
US17/131,160 US11242681B2 (en) 2017-05-05 2020-12-22 Polyisocyanurate coverboards with improved fire resistance
US17/592,178 US11913222B2 (en) 2017-05-05 2022-02-03 Polyisocyanurate coverboards with improved fire resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762501802P 2017-05-05 2017-05-05
US15/972,691 US20180320370A1 (en) 2017-05-05 2018-05-07 Polyisocyanurate coverboards with improved fire resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/131,160 Continuation US11242681B2 (en) 2017-05-05 2020-12-22 Polyisocyanurate coverboards with improved fire resistance

Publications (1)

Publication Number Publication Date
US20180320370A1 true US20180320370A1 (en) 2018-11-08

Family

ID=64013611

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/972,691 Abandoned US20180320370A1 (en) 2017-05-05 2018-05-07 Polyisocyanurate coverboards with improved fire resistance
US17/131,160 Active US11242681B2 (en) 2017-05-05 2020-12-22 Polyisocyanurate coverboards with improved fire resistance
US17/592,178 Active 2038-05-11 US11913222B2 (en) 2017-05-05 2022-02-03 Polyisocyanurate coverboards with improved fire resistance

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/131,160 Active US11242681B2 (en) 2017-05-05 2020-12-22 Polyisocyanurate coverboards with improved fire resistance
US17/592,178 Active 2038-05-11 US11913222B2 (en) 2017-05-05 2022-02-03 Polyisocyanurate coverboards with improved fire resistance

Country Status (1)

Country Link
US (3) US20180320370A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200353716A1 (en) * 2017-11-28 2020-11-12 Dow Global Technologies Llc Polyurethane-based insulation board
US10870981B1 (en) * 2017-10-04 2020-12-22 Soprema Thermally insulated roofing device
WO2021142337A1 (en) * 2020-01-10 2021-07-15 Owens Corning Intellectual Capital, Llc Dual-reinforced construction board
EP3868554A1 (en) 2020-02-18 2021-08-25 Sika Technology AG Fire proof insulation boards based on expanded polystyrene
WO2022076731A1 (en) * 2020-10-07 2022-04-14 Owens Corning Intellectual Capital, Llc Coated nonwoven mat with coating layer
US11441316B2 (en) * 2020-10-30 2022-09-13 Bmic Llc Self-adhered roofing systems and methods
WO2023014771A1 (en) * 2021-08-06 2023-02-09 Owens Corning Intellectual Capital, Llc Coated reinforced composite facer and insulation assembly including the same
EP4335637A1 (en) * 2022-09-12 2024-03-13 Silcart S.p.A. Backing layer for insulating construction panels and method of manufacturing the backing layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180320370A1 (en) * 2017-05-05 2018-11-08 Firestone Building Products Co., LLC Polyisocyanurate coverboards with improved fire resistance
US11673366B2 (en) * 2021-07-08 2023-06-13 The Boeing Company Reinforced sandwich panels using expandable foam materials and methods of making the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082365A1 (en) * 2001-10-30 2003-05-01 Geary John R. Tough and durable insulation boards produced in-part with scrap rubber materials and related methods
US20080095971A1 (en) * 2004-11-24 2008-04-24 Mcgee Robert L Laminated Polyisocyanurate Foam Structure with Improved Astm E-84 Flame Spread Index and Smoke Developed Index
US20100031603A1 (en) * 2007-01-30 2010-02-11 John Letts High density polyurethane and polyisocyanurate construction boards and composite boards
US20130164524A1 (en) * 2010-04-14 2013-06-27 John B. Letts Construction boards with coated facers
US20150078821A1 (en) * 2013-09-19 2015-03-19 Firestone Building Products Co, Llc Polyisocyanurate foam composites for use in geofoam applications
US20170022704A1 (en) * 2014-04-18 2017-01-26 Dow Global Technologies Llc Panel with fire barrier
US9605433B2 (en) * 2012-11-09 2017-03-28 Johns Manville Fire resistant composite boards and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972688B2 (en) 2005-02-01 2011-07-05 Letts John B High density polyurethane and polyisocyanurate construction boards and composite boards
US9097011B1 (en) * 2009-06-05 2015-08-04 American Thermal Holdings Company Heat and fire resistant plastic foam
US20180320370A1 (en) * 2017-05-05 2018-11-08 Firestone Building Products Co., LLC Polyisocyanurate coverboards with improved fire resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030082365A1 (en) * 2001-10-30 2003-05-01 Geary John R. Tough and durable insulation boards produced in-part with scrap rubber materials and related methods
US20080095971A1 (en) * 2004-11-24 2008-04-24 Mcgee Robert L Laminated Polyisocyanurate Foam Structure with Improved Astm E-84 Flame Spread Index and Smoke Developed Index
US20100031603A1 (en) * 2007-01-30 2010-02-11 John Letts High density polyurethane and polyisocyanurate construction boards and composite boards
US20130164524A1 (en) * 2010-04-14 2013-06-27 John B. Letts Construction boards with coated facers
US9605433B2 (en) * 2012-11-09 2017-03-28 Johns Manville Fire resistant composite boards and methods
US20150078821A1 (en) * 2013-09-19 2015-03-19 Firestone Building Products Co, Llc Polyisocyanurate foam composites for use in geofoam applications
US20170022704A1 (en) * 2014-04-18 2017-01-26 Dow Global Technologies Llc Panel with fire barrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10870981B1 (en) * 2017-10-04 2020-12-22 Soprema Thermally insulated roofing device
US20200353716A1 (en) * 2017-11-28 2020-11-12 Dow Global Technologies Llc Polyurethane-based insulation board
US11745465B2 (en) * 2017-11-28 2023-09-05 Dow Global Technologies Llc Polyurethane-based insulation board
WO2021142337A1 (en) * 2020-01-10 2021-07-15 Owens Corning Intellectual Capital, Llc Dual-reinforced construction board
EP3868554A1 (en) 2020-02-18 2021-08-25 Sika Technology AG Fire proof insulation boards based on expanded polystyrene
WO2022076731A1 (en) * 2020-10-07 2022-04-14 Owens Corning Intellectual Capital, Llc Coated nonwoven mat with coating layer
US11441316B2 (en) * 2020-10-30 2022-09-13 Bmic Llc Self-adhered roofing systems and methods
WO2023014771A1 (en) * 2021-08-06 2023-02-09 Owens Corning Intellectual Capital, Llc Coated reinforced composite facer and insulation assembly including the same
EP4335637A1 (en) * 2022-09-12 2024-03-13 Silcart S.p.A. Backing layer for insulating construction panels and method of manufacturing the backing layer

Also Published As

Publication number Publication date
US11242681B2 (en) 2022-02-08
US11913222B2 (en) 2024-02-27
US20220154453A1 (en) 2022-05-19
US20210108408A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US11913222B2 (en) Polyisocyanurate coverboards with improved fire resistance
US20200299968A1 (en) High density polyurethane and polyisocyanurate construction boards and composite boards
US20240149551A1 (en) Foam construction boards with enhanced fire performance
CA2676130C (en) High density polyurethane and polyisocyanurate construction boards and composite boards
US10450741B2 (en) Construction boards with coated inorganic facer
US20230234323A1 (en) Encapsulated fragile insulation materials
US20190061313A1 (en) Foam construction boards with expandable graphite
US20150078821A1 (en) Polyisocyanurate foam composites for use in geofoam applications
EP3911514A1 (en) Construction boards with foil-containing facers

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: FIRESTONE BUILDING PRODUCTS COMPANY, LLC, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LETTS, JOHN B.;YAO, CHUNHUA;HUBBARD, MICHAEL J.;SIGNING DATES FROM 20200612 TO 20201206;REEL/FRAME:054558/0653

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION