US20180318798A1 - Methane Oxidation Catalyst and Method of Using Same - Google Patents

Methane Oxidation Catalyst and Method of Using Same Download PDF

Info

Publication number
US20180318798A1
US20180318798A1 US15/775,159 US201615775159A US2018318798A1 US 20180318798 A1 US20180318798 A1 US 20180318798A1 US 201615775159 A US201615775159 A US 201615775159A US 2018318798 A1 US2018318798 A1 US 2018318798A1
Authority
US
United States
Prior art keywords
oxidation catalyst
methane
methane oxidation
palladium
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/775,159
Inventor
Gianni Caravaggio
Lioudmila Nossova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canada Minister of Natural Resources
Minister of National Defence of Canada
Original Assignee
Canada Minister of Natural Resources
Minister of National Defence of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canada Minister of Natural Resources, Minister of National Defence of Canada filed Critical Canada Minister of Natural Resources
Priority to US15/775,159 priority Critical patent/US20180318798A1/en
Assigned to HER MAJESTY THE QUEEN IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF NATURAL RESOURCES CANADA S reassignment HER MAJESTY THE QUEEN IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTER OF NATURAL RESOURCES CANADA S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARAVAGGIO, Gianni, NOSSOVA, Lioudmila
Publication of US20180318798A1 publication Critical patent/US20180318798A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1019100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1023500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1028Surface area more than 1000 m2/g
    • B01J35/615
    • B01J35/617
    • B01J35/618
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/018Natural gas engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Definitions

  • a methane oxidation catalyst for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle and a method for using same.
  • Natural gas has received increased interest as a fuel for the transportation sector since it is abundant and inexpensive.
  • Lean burn natural gas engines are similar in performance to diesel engines and can be used in a wide variety of transportation applications such as light and medium duty vehicles, vocational and long haul trucks and ships.
  • Natural gas engines offer a cleaner alternative than diesel and gasoline engines in that they produce approximately 20 to 25% less greenhouse gases (GHG) on a life-cycle basis due to the lower carbon content of methane.
  • GHG greenhouse gases
  • natural gas engines suffer from high levels of unburned methane in the exhaust. Because methane is a potent GHG (21 times GHG impact compared to CO 2 ), unburned methane in natural gas vehicle exhaust can negate its GHG benefit. While under certain conditions it is possible to calibrate the engine combustion to meet a methane emissions target, this can come at the expense of adversely impacting engine efficiency and other regulated emissions (e.g. NO R ).
  • catalysts to eliminate unburned methane is a possible solution, although this approach has been tried in the past and a commercial satisfactory solution is not yet available.
  • a disadvantage of current catalysts is that they can be deactivated in the presence of sulfur and/or water, both of which are components of natural gas engine exhaust. Furthermore, catalysts are often not resistant to thermal and/or hydrothermal aging.
  • the present disclosure relates to a methane oxidation catalyst, use of the catalyst and methods of using same.
  • a method for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle (NGV), the gas stream comprising sulfur comprising passing the gas stream through a methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, thereby producing an exhaust stream from the natural gas vehicle having reduced levels of methane relative to the gas stream resulting from methane combustion, wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
  • NVM natural gas vehicle
  • a methane oxidation catalyst for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle (NGV), the gas stream comprising at least sulfur, the methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
  • NVM natural gas vehicle
  • the gas stream resulting from the methane combustion may have a temperature of between 350° C. and 600° C.
  • the gas stream resulting from methane combustion comprises between 10 and 20,000 ppm of methane.
  • the gas stream resulting from methane combustion comprises oxygen.
  • the gas stream of any one of the foregoing embodiments resulting from methane combustion comprises water.
  • a methane oxidation catalyst for use in a catalytic converter that is mountable on a natural gas vehicle (NGV), the methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, and are present at an amount effective for producing an exhaust stream from the vehicle having reduced levels of methane in the presence of sulfur relative to a gas stream resulting from combustion, wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
  • NVM natural gas vehicle
  • the catalyst may contain platinum at an amount between 0.5 and 10 wt % and/or the palladium at an amount between 0.5 and 10 wt %.
  • the platinum is present in the amounts between 3 and 5 wt % and the palladium is present at an amount between 1 and 3 wt %.
  • the palladium may be present in the catalyst at greater than 2 wt %.
  • the catalyst may have a T 50 of below 460° C. after aging in a simulated natural gas vehicle (NGV) exhaust for 500 h at 500° C. in the presence of 10 vol % water and 10 ppm sulfur dioxide.
  • NVM natural gas vehicle
  • the methane oxidation catalyst is prepared by incipient wetness impregnation in which the platinum and palladium are added sequentially, or the methane oxidation catalyst is prepared by wet impregnation in which the platinum and palladium are added simultaneously.
  • the alumina is gamma alumina.
  • the specific surface area (BET) of the lanthanum doped support is at least 120 m 2 /g.
  • Embodiments disclosed herein are directed to a methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases.
  • Such catalyst may be used to reduce the amount of methane in a gas stream resulting from methane combustion in the engine of a natural gas vehicle (NGV). Unburned methane remaining after combustion is converted to carbon dioxide and water. As a result, the exhaust stream from the vehicle will have reduced levels of methane, which is a potent greenhouse gas.
  • Certain exemplary embodiments may provide a methane oxidation catalyst for use in a natural gas vehicle with enhanced resistance to deactivation in the presence of gaseous water and sulfur and/or that display enhanced thermal stability.
  • vehicle any machine or device used as a transportation means over land, sea or space.
  • the vehicle may be a compressed natural gas (CNG) or liquid natural gas (LNG) vehicle.
  • CNG compressed natural gas
  • LNG liquid natural gas
  • the vehicle may be powered by a lean burn engine. In such an engine, excess air is introduced to the combustion chamber.
  • the methane oxidation catalyst contains lanthanum (La) in alumina matrix.
  • lanthanum may also be present at least on the surface of the alumina, or a combination thereof.
  • the support doped with lanthanum is a metal oxide such as alumina.
  • Alumina also known as aluminium oxide, is a chemical compound of aluminium and oxygen with the chemical formula Al 2 O 3 .
  • An example of an alumina support doped with lanthanum that may be used to prepare the catalyst is Puralox® Scfa 140L3.
  • the catalyst may also comprise a mixture of different support materials.
  • the alumina may be gamma alumina.
  • the specific surface area (BET) of the support is at least 120 m 2 /g, at least 130 m 2 /g or at least 140 m 2 /g.
  • the platinum and palladium are each present in the catalyst at an amount effective for producing an exhaust stream from the natural gas vehicle having reduced levels of methane in the presence of sulfur relative to a gas stream resulting from combustion.
  • concentration of the metals may be effective to reduce the methane content in the gas stream resulting from methane combustion by at least 65%, or by at least 75%, at 500° C. after 500 hours on stream. Examples of ranges of effective amounts of each active metal are set forth below.
  • the precise amounts of platinum and palladium for obtaining enhanced methane conversion can be determined by the methodology set forth in the examples.
  • the platinum is present at a higher concentration in the catalyst than palladium.
  • the platinum and palladium may be present in the catalyst at a weight ratio of greater than 1 by weight.
  • the weight ratio of Pt:Pd is at least 0.75:1.0, 1.0:1.0, 1.25:1.0, 1.5:1.0, 1.75:1.0 or 2.0:1.0.
  • Certain embodiments also include a range of Pt:Pd weight ratios. The upper limit of the range may be Pt:Pd of 5.0:1.0 (wt:wt) and can be combined with any of the above-mentioned lower limits. In other embodiments, the range of weight ratios of Pt:Pd can be 0.75:1 to 4.0:1, 0.85:1 to 4.0:1 or 0.9:1 to 3.0:1.0.
  • the platinum is present in the catalyst at a concentration of between 0.5 wt % and 10 wt %, or between 1 wt % and 8 wt %, or between 1.5 wt % and 6 wt %, or between 2.0 wt % and 5.5 wt %, or between 2.5 wt % and 5 wt % or between 3.0 wt % and 4.5 wt %.
  • the palladium is present in the catalyst at a concentration of between 0.5 wt % and 10 wt %, or between 0.5 wt % and 6 wt %, or between 0.5 wt % and 4 wt %, or between 0.5 and 3 wt %, or between 0.75 wt % and 3.5 wt % or between 1 wt % and 3 wt %.
  • palladium is present in the methane oxidation catalyst at a concentration of between 2 wt % and 10 wt %, or between 2 wt % and 6 wt %, or between 2 wt % and 4 wt %.
  • the methane oxidation catalyst has a T 50 of below 460° C. after aging in a simulated natural gas vehicle exhaust.
  • T 50 is the temperature at which half the methane in a gas stream is combusted to carbon dioxide and water.
  • the T 50 is measured as described in Example 1. Methane conversion was determined using a bench scale reactor. The temperature at 50% methane conversion was determined after aging at 500° C. for 500 h in the presence of 1,000 ppm CH 4 , 10% O 2 , 6% CO 2 , 10% H 2 O vapour and 10 ppm SO 2 .
  • the reactant gas hourly space velocity (GHSV) was ⁇ 55,000 h ⁇ 1 .
  • the catalyst may be prepared by any method known to those of skill in the art.
  • a non-limiting example of a suitable method is incipient wetness impregnation (IWI).
  • IWI incipient wetness impregnation
  • the active metal precursor is dissolved in an aqueous or organic solution.
  • the metal-containing solution is added to a catalyst support and capillary action draws the solution into the pores.
  • the catalyst can subsequently be dried and calcined to drive off the volatile components within the solution, depositing the metal on the catalyst surface.
  • concentration profile of the impregnated compound depends on the mass transfer conditions within the pores during impregnation and drying.
  • Catalysts may also be prepared by the wet impregnation (WI) method.
  • WI wet impregnation
  • the support powder is suspended in an excess of a solution containing one or more precursors and stirred for some time in order to fill the pores with the precursor solution.
  • the pH of the impregnating solution can be adjusted to a basic pH, for example using a concentrated solution of ammonia, to provide electrostatic interaction between cationic metal species and negatively charged surface hydroxyls of the support.
  • the catalyst is subsequently dried followed by calcination in air.
  • the catalyst can be prepared by any suitable method.
  • the method of preparing the catalyst can impact the properties of the catalyst and can lead to improvements in the T 50 value.
  • the method for preparation can be selected to achieve a desired T 50 value.
  • the catalyst is prepared by IWI and the metals are added sequentially. In such embodiment, the catalyst is dried and calcined between additions of metal.
  • the catalyst is prepared by the IWI method and the platinum is added before palladium.
  • the catalyst is prepared by WI and the metals are added simultaneously. Simultaneous addition includes dissolving the metals together and subsequently adding them to the support, followed by drying and calcination. Employing either of these methods can result in a catalyst exhibiting a T 50 value that is below about 460° C. (see Table 6 below).
  • the methane oxidation catalyst may be used in the manufacture of a catalytic converter that is mounted on the exhaust system of a natural gas vehicle.
  • the catalytic converter may be produced by known methods. Without being limiting, the catalytic converter may be a two-way catalytic converter.
  • a gas stream resulting from natural gas combustion in a combustion chamber in a vehicle passes through the methane oxidation catalyst of the catalytic converter, thereby reducing its methane content.
  • reduced concentrations of methane are emitted to the atmosphere from the exhaust, such as the tail pipe of a natural gas powered car or truck.
  • the gas stream resulting from methane combustion in the natural gas engine will typically comprise at least sulfur and water.
  • Other components that may be present in the gas stream may include oxygen and carbon dioxide.
  • the methane content in the gas stream resulting from methane combustion may contain between 10 and 20,000 ppm or methane, between 100 and 10,000 ppm of methane, or between 200 and 5,000 ppm of methane.
  • the sulfur content in the gas stream resulting from methane combustion may be between 1 ppm and 30 ppm sulfur, or between 3 ppm and 30 ppm sulfur or between 5 ppm and 30 ppm sulfur or between 6 ppm and 30 ppm sulfur.
  • the gas stream resulting from methane combustion may have a temperature of between 350° C. and 600° C. or between 400° C. and 600° C.
  • Table 1 summarizes the composition of the methane oxidation catalysts used in the experiments and the notation used to refer to each catalyst composition throughout the example section.
  • the notations employed herein include a designation assigned to each catalyst preparation representing the metals present in the catalyst (“PdPt” or “Pd”), followed by the nominal loading of the metal or metals represented by a fraction (wt:wt) of the two metals.
  • PdPt the metals present in the catalyst
  • wt:wt the balance of the catalyst in each case contains a lanthanum doped alumina support that is commercially available under the trade-name, Puralox® Scfa140L3.
  • Example 1 Catalysts with Pd and Pt on a Lanthanum Doped Alumina Exhibit Enhanced Methane Conversion after Aging in the Presence of Sulfur and Water
  • Two catalysts comprising platinum (Pt) and palladium (Pd) were prepared by incipient wetness impregnation (IWI). The first was prepared using 4 wt % Pt and 2 wt % Pd and the second with 2 wt % Pt and 4 wt % Pd on a lanthanum doped alumina support (Puralox® Scfa 140L3). For both catalysts, the palladium was added last in the impregnation sequence. Methane conversion was determined using a bench scale reactor. The temperatures at 50% methane conversion (T 50 ) were determined for fresh and aged catalysts by running the sample in a temperature range from 150 to 600° C.
  • Example 2 A Catalyst with a Lanthanum Doped Alumina Support Exhibits Higher Activity in the Presence of Excess Water Vapour than a Catalyst with an Alumina Support not Doped with Lanthanum
  • Example 3 Sulfur Resistance and Hydrothermal Stability of Catalysts Having an Alumina Support Doped with Lanthanum at Different Weight Ratios of Platinum and Palladium
  • the sulfur resistance and hydrothermal stability of the catalyst was significantly increased by using the combination of Pt and Pd on the Puralox® support and more specifically by using 2 wt % of Pd and 4 wt % of Pt, which corresponds to a weight ratio of Pt:Pd of 2:1.
  • the T 50 of PdPt(2:4) (after 40 h of aging) is 32° C. lower and 59° C. lower than the T 50 obtained by PdPt(1:2) and PdPt(2:2), respectively, demonstrating the increased sulfur and water tolerance of PdPt(2:4).
  • Table 5 shows the T 50 obtained after catalyst aging for 40 hours as a function of catalyst calcination temperature.
  • the aging was performed at 500° C. using a gas stream having the following components: 10% O 2 , 10% H 2 O, 6% CO 2 , 1000 ppm CH 4 , 10 ppm SO 2 , with the balance being N 2 .
  • the T 50 was determined using the same simulated exhaust gas composition as the experiments conducted in Example 1. After 40 hours of aging the T 50 of the catalyst calcined at 500° C. is similar to that of the catalyst calcined at 550° C. The results indicate that the catalyst activity is comparable when using both calcination temperatures. Based on these findings, a calcination temperature of 500° C. can be used for catalyst preparation to lower energy consumption and catalyst costs. In light of these results, all further catalysts were prepared using a calcination temperature of 500° C.
  • the methane oxidation catalysts shown in Table 6 below were prepared using one of two methods: incipient wetness impregnation (IWI) or wet impregnation (WI).
  • IWI incipient wetness impregnation
  • WI wet impregnation
  • the precursors were added either sequentially or simultaneously to the support. When added simultaneously, the precursors were dissolved together and then added to the support followed by drying and calcination. If the sequential addition method was used, then the catalyst was dried and calcined between the additions of the metals. All sequential impregnations had the platinum precursor added first, followed by the addition of palladium precursor. All catalysts used a commercial lanthanum-doped ⁇ -alumina, Puralox® SCFa-140 L3 (Puralox), as the support. Pd(NO 3 ) 2 .xH 2 O and Pt(NH 3 ) 4 (NO 3 ) 2 were used for the palladium and platinum precursors, respectively.
  • IWI
  • T 50 of catalysts prepared by different preparation methods T 50 (° C.) Catalyst name Preparation method Aged (40 h) PdPt (2:4) IWI Sequential 446 IWI Simultaneous 466 WI Sequential 517 WI Simultaneous 449
  • the result demonstrates that the IWI sequential addition can provide a better performing catalyst than that prepared by simultaneous IWI impregnation.
  • the catalyst prepared by WI shows the opposite effect.
  • the catalyst prepared using the sequential addition (T 50 of 517° C.) is less active than the catalyst prepared by adding the precursors simultaneously (T 50 of 449° C.).

Abstract

Provided herein is a methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases. The platinum and palladium are present in the catalyst at an amount effective for producing an exhaust stream from a natural gas vehicle having reduced levels of methane. The catalyst disclosed herein may exhibit improvements in sulfur and water resistance.

Description

    TECHNICAL FIELD
  • Provided herein is a methane oxidation catalyst for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle and a method for using same.
  • BACKGROUND
  • Natural gas has received increased interest as a fuel for the transportation sector since it is abundant and inexpensive. Lean burn natural gas engines are similar in performance to diesel engines and can be used in a wide variety of transportation applications such as light and medium duty vehicles, vocational and long haul trucks and ships. Natural gas engines offer a cleaner alternative than diesel and gasoline engines in that they produce approximately 20 to 25% less greenhouse gases (GHG) on a life-cycle basis due to the lower carbon content of methane. However, natural gas engines suffer from high levels of unburned methane in the exhaust. Because methane is a potent GHG (21 times GHG impact compared to CO2), unburned methane in natural gas vehicle exhaust can negate its GHG benefit. While under certain conditions it is possible to calibrate the engine combustion to meet a methane emissions target, this can come at the expense of adversely impacting engine efficiency and other regulated emissions (e.g. NOR).
  • The use of catalysts to eliminate unburned methane is a possible solution, although this approach has been tried in the past and a commercial satisfactory solution is not yet available. A disadvantage of current catalysts is that they can be deactivated in the presence of sulfur and/or water, both of which are components of natural gas engine exhaust. Furthermore, catalysts are often not resistant to thermal and/or hydrothermal aging.
  • SUMMARY
  • The present disclosure relates to a methane oxidation catalyst, use of the catalyst and methods of using same.
  • According to one exemplary embodiment, there is provided a method for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle (NGV), the gas stream comprising sulfur, the method comprising passing the gas stream through a methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, thereby producing an exhaust stream from the natural gas vehicle having reduced levels of methane relative to the gas stream resulting from methane combustion, wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
  • According to a further exemplary embodiment, there is provided use of a methane oxidation catalyst for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle (NGV), the gas stream comprising at least sulfur, the methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
  • According to any one of the foregoing embodiments, the gas stream resulting from the methane combustion may have a temperature of between 350° C. and 600° C.
  • According to any one of the foregoing embodiments, the gas stream resulting from methane combustion comprises between 10 and 20,000 ppm of methane. In another embodiment, the gas stream resulting from methane combustion comprises oxygen. Yet further, the gas stream of any one of the foregoing embodiments resulting from methane combustion comprises water.
  • According to another exemplary embodiment, there is provided a methane oxidation catalyst for use in a catalytic converter that is mountable on a natural gas vehicle (NGV), the methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, and are present at an amount effective for producing an exhaust stream from the vehicle having reduced levels of methane in the presence of sulfur relative to a gas stream resulting from combustion, wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
  • According to any one of the foregoing embodiments, the catalyst may contain platinum at an amount between 0.5 and 10 wt % and/or the palladium at an amount between 0.5 and 10 wt %. In another embodiment, the platinum is present in the amounts between 3 and 5 wt % and the palladium is present at an amount between 1 and 3 wt %. Yet further, the palladium may be present in the catalyst at greater than 2 wt %.
  • According to any one of the foregoing embodiments, the catalyst may have a T50 of below 460° C. after aging in a simulated natural gas vehicle (NGV) exhaust for 500 h at 500° C. in the presence of 10 vol % water and 10 ppm sulfur dioxide.
  • According to any one of the foregoing embodiments, the methane oxidation catalyst is prepared by incipient wetness impregnation in which the platinum and palladium are added sequentially, or the methane oxidation catalyst is prepared by wet impregnation in which the platinum and palladium are added simultaneously.
  • According to any one of the foregoing embodiments, the alumina is gamma alumina. In yet a further embodiment, the specific surface area (BET) of the lanthanum doped support is at least 120 m2/g.
  • DETAILED DESCRIPTION
  • Embodiments disclosed herein are directed to a methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases. Such catalyst may be used to reduce the amount of methane in a gas stream resulting from methane combustion in the engine of a natural gas vehicle (NGV). Unburned methane remaining after combustion is converted to carbon dioxide and water. As a result, the exhaust stream from the vehicle will have reduced levels of methane, which is a potent greenhouse gas. Certain exemplary embodiments may provide a methane oxidation catalyst for use in a natural gas vehicle with enhanced resistance to deactivation in the presence of gaseous water and sulfur and/or that display enhanced thermal stability.
  • By the term “vehicle” as used herein, it is meant any machine or device used as a transportation means over land, sea or space. The vehicle may be a compressed natural gas (CNG) or liquid natural gas (LNG) vehicle. The vehicle may be powered by a lean burn engine. In such an engine, excess air is introduced to the combustion chamber.
  • By the term “doped” with reference to the presence of lanthanum in the alumina support, it is meant that the methane oxidation catalyst contains lanthanum (La) in alumina matrix. Without being limiting, lanthanum may also be present at least on the surface of the alumina, or a combination thereof.
  • In one embodiment, the support doped with lanthanum is a metal oxide such as alumina. Alumina, also known as aluminium oxide, is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. An example of an alumina support doped with lanthanum that may be used to prepare the catalyst is Puralox® Scfa 140L3. The catalyst may also comprise a mixture of different support materials. The alumina may be gamma alumina. In another embodiment, the specific surface area (BET) of the support is at least 120 m2/g, at least 130 m2/g or at least 140 m2/g.
  • The platinum and palladium are each present in the catalyst at an amount effective for producing an exhaust stream from the natural gas vehicle having reduced levels of methane in the presence of sulfur relative to a gas stream resulting from combustion. The concentration of the metals may be effective to reduce the methane content in the gas stream resulting from methane combustion by at least 65%, or by at least 75%, at 500° C. after 500 hours on stream. Examples of ranges of effective amounts of each active metal are set forth below. The precise amounts of platinum and palladium for obtaining enhanced methane conversion can be determined by the methodology set forth in the examples.
  • In one embodiment, the platinum is present at a higher concentration in the catalyst than palladium. For example, the platinum and palladium may be present in the catalyst at a weight ratio of greater than 1 by weight. In one embodiment, the weight ratio of Pt:Pd is at least 0.75:1.0, 1.0:1.0, 1.25:1.0, 1.5:1.0, 1.75:1.0 or 2.0:1.0. Certain embodiments also include a range of Pt:Pd weight ratios. The upper limit of the range may be Pt:Pd of 5.0:1.0 (wt:wt) and can be combined with any of the above-mentioned lower limits. In other embodiments, the range of weight ratios of Pt:Pd can be 0.75:1 to 4.0:1, 0.85:1 to 4.0:1 or 0.9:1 to 3.0:1.0.
  • In one embodiment, the platinum is present in the catalyst at a concentration of between 0.5 wt % and 10 wt %, or between 1 wt % and 8 wt %, or between 1.5 wt % and 6 wt %, or between 2.0 wt % and 5.5 wt %, or between 2.5 wt % and 5 wt % or between 3.0 wt % and 4.5 wt %.
  • In a further embodiment, the palladium is present in the catalyst at a concentration of between 0.5 wt % and 10 wt %, or between 0.5 wt % and 6 wt %, or between 0.5 wt % and 4 wt %, or between 0.5 and 3 wt %, or between 0.75 wt % and 3.5 wt % or between 1 wt % and 3 wt %.
  • In a further embodiment, palladium is present in the methane oxidation catalyst at a concentration of between 2 wt % and 10 wt %, or between 2 wt % and 6 wt %, or between 2 wt % and 4 wt %.
  • In one embodiment, the methane oxidation catalyst has a T50 of below 460° C. after aging in a simulated natural gas vehicle exhaust. As would be known to those of skill in the art, T50 is the temperature at which half the methane in a gas stream is combusted to carbon dioxide and water. The T50 is measured as described in Example 1. Methane conversion was determined using a bench scale reactor. The temperature at 50% methane conversion was determined after aging at 500° C. for 500 h in the presence of 1,000 ppm CH4, 10% O2, 6% CO2, 10% H2O vapour and 10 ppm SO2. The reactant gas hourly space velocity (GHSV) was ˜55,000 h−1.
  • The catalyst may be prepared by any method known to those of skill in the art. A non-limiting example of a suitable method is incipient wetness impregnation (IWI). According to this method, the active metal precursor is dissolved in an aqueous or organic solution. Then the metal-containing solution is added to a catalyst support and capillary action draws the solution into the pores. The catalyst can subsequently be dried and calcined to drive off the volatile components within the solution, depositing the metal on the catalyst surface. The concentration profile of the impregnated compound depends on the mass transfer conditions within the pores during impregnation and drying.
  • Catalysts may also be prepared by the wet impregnation (WI) method. According to this method, the support powder is suspended in an excess of a solution containing one or more precursors and stirred for some time in order to fill the pores with the precursor solution. The pH of the impregnating solution can be adjusted to a basic pH, for example using a concentrated solution of ammonia, to provide electrostatic interaction between cationic metal species and negatively charged surface hydroxyls of the support. The catalyst is subsequently dried followed by calcination in air.
  • As noted, the catalyst can be prepared by any suitable method. However, the method of preparing the catalyst can impact the properties of the catalyst and can lead to improvements in the T50 value. Thus, the method for preparation can be selected to achieve a desired T50 value. In one non-limiting example, the catalyst is prepared by IWI and the metals are added sequentially. In such embodiment, the catalyst is dried and calcined between additions of metal. In yet a further embodiment, the catalyst is prepared by the IWI method and the platinum is added before palladium. In another embodiment, the catalyst is prepared by WI and the metals are added simultaneously. Simultaneous addition includes dissolving the metals together and subsequently adding them to the support, followed by drying and calcination. Employing either of these methods can result in a catalyst exhibiting a T50 value that is below about 460° C. (see Table 6 below).
  • The methane oxidation catalyst may be used in the manufacture of a catalytic converter that is mounted on the exhaust system of a natural gas vehicle. The catalytic converter may be produced by known methods. Without being limiting, the catalytic converter may be a two-way catalytic converter.
  • When the methane oxidation catalyst is in use, a gas stream resulting from natural gas combustion in a combustion chamber in a vehicle passes through the methane oxidation catalyst of the catalytic converter, thereby reducing its methane content. As a result, reduced concentrations of methane are emitted to the atmosphere from the exhaust, such as the tail pipe of a natural gas powered car or truck. The gas stream resulting from methane combustion in the natural gas engine will typically comprise at least sulfur and water. Other components that may be present in the gas stream may include oxygen and carbon dioxide.
  • The methane content in the gas stream resulting from methane combustion may contain between 10 and 20,000 ppm or methane, between 100 and 10,000 ppm of methane, or between 200 and 5,000 ppm of methane.
  • The sulfur content in the gas stream resulting from methane combustion may be between 1 ppm and 30 ppm sulfur, or between 3 ppm and 30 ppm sulfur or between 5 ppm and 30 ppm sulfur or between 6 ppm and 30 ppm sulfur.
  • The gas stream resulting from methane combustion may have a temperature of between 350° C. and 600° C. or between 400° C. and 600° C.
  • EXAMPLES
  • Table 1 below summarizes the composition of the methane oxidation catalysts used in the experiments and the notation used to refer to each catalyst composition throughout the example section. The notations employed herein include a designation assigned to each catalyst preparation representing the metals present in the catalyst (“PdPt” or “Pd”), followed by the nominal loading of the metal or metals represented by a fraction (wt:wt) of the two metals. As indicated in Table 1, the balance of the catalyst in each case contains a lanthanum doped alumina support that is commercially available under the trade-name, Puralox® Scfa140L3.
  • TABLE 1
    Composition of catalysts and their notation used herein
    Catalyst designation/nominal loading
    (wt %)
    Component PdPt (1:2) PdPt (2:2) PdPt (2:4) PdPt (4:2) Pd (0.5)
    Pd (wt %) 1 2 2 4 0.5
    Pt (wt %) 2 2 4 2 0
    Puralox ® Balance Balance Balance Balance Balance
    Scfa140L3
  • Example 1: Catalysts with Pd and Pt on a Lanthanum Doped Alumina Exhibit Enhanced Methane Conversion after Aging in the Presence of Sulfur and Water
  • Two catalysts comprising platinum (Pt) and palladium (Pd) were prepared by incipient wetness impregnation (IWI). The first was prepared using 4 wt % Pt and 2 wt % Pd and the second with 2 wt % Pt and 4 wt % Pd on a lanthanum doped alumina support (Puralox® Scfa 140L3). For both catalysts, the palladium was added last in the impregnation sequence. Methane conversion was determined using a bench scale reactor. The temperatures at 50% methane conversion (T50) were determined for fresh and aged catalysts by running the sample in a temperature range from 150 to 600° C. (3°/min) in the presence of 1,000 ppm CH4, 10% O2, 6% CO2, 10% H2O vapour and 10 ppm SO2 and at a reactant gas hourly space velocity (GHSV) of ˜55,000 h−1. Aging was performed at 500° C. in the presence of 1,000 ppm CH4, 10% O2, 6% CO2, 10% H2O vapour and 10 ppm SO2 with a reactant gas hourly space velocity (GHSV) of ˜55,000 h−1. The time periods for aging were 40, 100, 200, 300 and 500 hours.
  • The results are shown in Table 2 below.
  • TABLE 2
    T50 values of PdPt(2:4) and PdPt(4:2) catalysts after aging at 500° C.
    Aging time (h)/T50 (° C.)
    Catalyst 0 40 100 200 300 500
    PdPt(2:4) 362 449 456 460 450 454
    PdPt(4:2) 356 452 458 461 463 466
  • The presence of both metals in a catalyst comprising a lanthanum doped alumina support enhanced the methane oxidation performance of the catalyst. The results in Table 2 show a T50 of near 450° C. for PdPt(2:4) after aging at 300 and 500 hours at 500° C. in the presence of both sulfur and water vapour (T50 of 450 and 454 at 300 and 500 hours, respectively). The PdPt(4:2) catalyst exhibits a T50 of near 460° C. after the same aging duration (T50 values of 463° C. and 466° C. at 300 and 500 hours, respectively). These results thus show that both catalysts displayed excellent chemical and hydrothermal stability in the presence of sulfur and water. Nevertheless the PdPt(2:4) catalyst displayed better performance (T50 of 454° C.) than the PdPt(4:2) catalyst (T50 of 466° C.) after the longest aging time (500 hours). This indicates that a higher Pt to Pd ratio achieves increased long-term hydrothermal stability and sulfur resistance.
  • Example 2: A Catalyst with a Lanthanum Doped Alumina Support Exhibits Higher Activity in the Presence of Excess Water Vapour than a Catalyst with an Alumina Support not Doped with Lanthanum
  • The activity in the presence of excess water for catalysts prepared when using a lanthanum doped alumina support and an alumina support not doped with lanthanum was also examined. Pd-based catalysts were prepared by using either γ-alumina (0.5% Pd/Al2O3), a support that was not doped with lanthanum, or Puralox® Scfa 140L3 (0.5% Pd/Puralox®) that was doped with lanthanum. Each catalyst was tested using a gas composition of 1% CH4, 10% O2, 6% CO2 and 10% H2O vapor (wt %) and the reactant gas hourly space velocity (GHSV) in the range of 44000-55,000 h−1. The results are shown in Table 3 below.
  • TABLE 3
    T50 of 0.5% Pd/Al2O3 and 0.5% Pd/Puralox ® Scfa 140L3 in the
    presence of excess water vapour (10 vol %)
    Catalyst T50 (° C.)
    0.5 wt % Pd/Al2O3 - no lanthanum 440
    Pd(0.5) - with lanthanum 392
  • The results in Table 3 show that the T50 of Pd(0.5) is significantly lower (indicating higher activity) than that of a reference catalyst (0.5 wt % Pd/Al2O3), which contains no lanthanum. Thus, an activity improvement using an alumina support doped with lanthanum was realized.
  • Example 3: Sulfur Resistance and Hydrothermal Stability of Catalysts Having an Alumina Support Doped with Lanthanum at Different Weight Ratios of Platinum and Palladium
  • The sulfur resistance of methane oxidation catalysts having an alumina support doped with lanthanum at different weight percents of platinum and palladium was examined. Catalysts PdPt(1:2), PdPt(2:2) and PdPt(2:4) were prepared by using Puralox® Scfa 140L3, which is doped with lanthanum. Each catalyst was then aged for 40 hrs at 500° C. in the presence of sulfur and water. Specifically, the gas composition was 1000 ppm CH4, 10% O2, 6% CO2, 10% H2O vapour and 10 ppm SO2 and the reactant gas hourly space velocity (GHSV) was ˜55,000 h−1. The results are shown in Table 4 below.
  • TABLE 4
    T50 of catalysts prepared with various amounts of Pt and Pd on
    Puralox ® Scfa140L3 in the presence of water and sulfur.
    T50 (° C.)
    Catalyst Aged (40 h)
    PdPt (1:2) 481
    PdPt (2:2) 508
    PdPt (2:4) 449
  • The sulfur resistance and hydrothermal stability of the catalyst was significantly increased by using the combination of Pt and Pd on the Puralox® support and more specifically by using 2 wt % of Pd and 4 wt % of Pt, which corresponds to a weight ratio of Pt:Pd of 2:1. The T50 of PdPt(2:4) (after 40 h of aging) is 32° C. lower and 59° C. lower than the T50 obtained by PdPt(1:2) and PdPt(2:2), respectively, demonstrating the increased sulfur and water tolerance of PdPt(2:4).
  • Example 4: Effect of Calcination Temperature on Catalyst Activity
  • Table 5 shows the T50 obtained after catalyst aging for 40 hours as a function of catalyst calcination temperature. The aging was performed at 500° C. using a gas stream having the following components: 10% O2, 10% H2O, 6% CO2, 1000 ppm CH4, 10 ppm SO2, with the balance being N2. The T50 was determined using the same simulated exhaust gas composition as the experiments conducted in Example 1. After 40 hours of aging the T50 of the catalyst calcined at 500° C. is similar to that of the catalyst calcined at 550° C. The results indicate that the catalyst activity is comparable when using both calcination temperatures. Based on these findings, a calcination temperature of 500° C. can be used for catalyst preparation to lower energy consumption and catalyst costs. In light of these results, all further catalysts were prepared using a calcination temperature of 500° C.
  • TABLE 5
    T50 of catalysts prepared using different calcination temperatures
    Calcination temperature T50 (° C.)
    Catalyst name (° C.) Aged (40 h)
    PdPt (2:4) 550 450
    500 446
  • Example 5: Effect of Method Preparation on Catalyst Activity
  • The methane oxidation catalysts shown in Table 6 below were prepared using one of two methods: incipient wetness impregnation (IWI) or wet impregnation (WI). For both methods, the precursors were added either sequentially or simultaneously to the support. When added simultaneously, the precursors were dissolved together and then added to the support followed by drying and calcination. If the sequential addition method was used, then the catalyst was dried and calcined between the additions of the metals. All sequential impregnations had the platinum precursor added first, followed by the addition of palladium precursor. All catalysts used a commercial lanthanum-doped γ-alumina, Puralox® SCFa-140 L3 (Puralox), as the support. Pd(NO3)2.xH2O and Pt(NH3)4(NO3)2 were used for the palladium and platinum precursors, respectively.
  • TABLE 6
    T50 of catalysts prepared by different preparation methods.
    T50 (° C.)
    Catalyst name Preparation method Aged (40 h)
    PdPt (2:4) IWI Sequential 446
    IWI Simultaneous 466
    WI Sequential 517
    WI Simultaneous 449
  • The results show that the method of preparation and the order of adding the precursor can have an impact on catalyst activity. The catalyst prepared using the IWI preparation method and adding the precursors sequentially (Pt followed by Pd) shows a lower T50 than the catalyst prepared with the same method with the precursors added simultaneously (446° C. and 466° C., respectively). The result demonstrates that the IWI sequential addition can provide a better performing catalyst than that prepared by simultaneous IWI impregnation.
  • On the other hand the catalyst prepared by WI shows the opposite effect. The catalyst prepared using the sequential addition (T50 of 517° C.) is less active than the catalyst prepared by adding the precursors simultaneously (T50 of 449° C.).
  • The present invention has been described with regard to one or more embodiments and examples. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

Claims (39)

1. A method for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle (NGV), said gas stream comprising sulfur, said method comprising passing the gas stream through a methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, thereby producing an exhaust stream from said natural gas vehicle having reduced levels of methane relative to the gas stream resulting from methane combustion,
wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
2. The method of claim 1, wherein the gas stream resulting from the methane combustion has a temperature of between 350° C. and 600° C.
3. The method of claim 1, wherein the gas stream resulting from methane combustion comprises between 10 and 20,000 ppm of methane.
4. The method of claim 1, wherein the gas stream resulting from methane combustion comprises oxygen.
5. The method of claim 1, wherein the gas stream resulting from methane combustion comprises water.
6. The method of claim 1, wherein the platinum is present in the methane oxidation catalyst at between 0.5 and 10 wt %.
7. The method of claim 1, wherein the palladium is present in the methane oxidation catalyst at between 0.5 and 10 wt %.
8. The method of claim 1, wherein the platinum and palladium are present in the methane oxidation catalyst at a concentration effective to reduce the methane content in the gas stream resulting from methane combustion by at least 75% at 500° C. after 500 hours on stream.
9. The method of claim 1, wherein the methane oxidation catalyst has a T50 of below 460° C. after aging in a simulated natural gas vehicle exhaust for 500 h at 500° C. in the presence of 10 vol % water and 10 ppm sulfur dioxide.
10. The method of claim 1, wherein the platinum is present in the methane oxidation catalyst at between 3 wt % and 10 wt % and the palladium is present in the methane oxidation catalyst at between 1 wt % and 10 wt %.
11. The method of claim 1, wherein platinum and palladium are present in the methane oxidation catalyst at a weight ratio of greater than 1.
12. The method of claim 1, wherein the palladium is present in the methane oxidation catalyst at greater than 2 wt %.
13. The method of claim 1, wherein the methane oxidation catalyst is prepared by incipient wetness impregnation in which the platinum and palladium are added sequentially, or wherein the methane oxidation catalyst is prepared by wet impregnation in which the platinum and palladium are added simultaneously.
14. The method of claim 1, wherein the alumina is gamma alumina.
15. The method of claim 1, wherein the specific surface area (BET) of the support is at least 120 m2/g.
16. Use of a methane oxidation catalyst for reducing unburned methane in a gas stream resulting from methane combustion in a natural gas vehicle (NGV), said gas stream comprising at least sulfur, said methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases,
wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
17. Use of the methane oxidation catalyst of claim 16, wherein the exhaust gas stream has a temperature of between 350° C. and 600° C.
18. Use of the methane oxidation catalyst of claim 16, wherein the gas stream resulting from methane combustion comprises between 10 and 20,000 ppm of methane.
19. Use of the methane oxidation catalyst of claim 16, wherein the gas stream resulting from methane combustion comprises oxygen.
20. Use of the methane oxidation catalyst of claim 16, wherein the gas stream resulting from methane combustion comprises water.
21. Use of the methane oxidation catalyst of claim 16, wherein the platinum is present in the methane oxidation catalyst at between 0.5 and 10 wt %.
22. Use of the methane oxidation catalyst of claim 16, wherein the palladium is present in the methane oxidation catalyst at between 0.5 and 10 wt %.
23. Use of the methane oxidation catalyst of claim 16, wherein the platinum and palladium are present in the methane oxidation catalyst at a concentration effective to reduce the methane content in the gas stream resulting from methane combustion by at least 75% at 500° C. after 500 hours on stream.
24. Use of the methane oxidation catalyst of claim 16, wherein the platinum is present in the methane oxidation catalyst at between 3 and 5 wt % and the palladium is present in the methane oxidation catalyst at between 1 and 3 wt %.
25. Use of the methane oxidation catalyst of claim 16, wherein the methane oxidation catalyst has a T50 of below 460° C. after aging in a simulated natural gas vehicle exhaust for 500 h at 500° C. in the presence of 10 vol % water and 10 ppm sulfur dioxide.
26. Use of the methane oxidation catalyst of claim 16, wherein platinum and palladium are present in the methane oxidation catalyst at a weight ratio of greater than 1.
27. Use of the methane oxidation catalyst of claim 16, wherein the palladium is present in the methane oxidation catalyst at greater than 2 wt %.
28. Use of the methane oxidation catalyst of claim 16, wherein the methane oxidation catalyst is prepared by incipient wetness impregnation in which the platinum and palladium are added sequentially, or wherein the methane oxidation catalyst is prepared by wet impregnation in which the platinum and palladium are added simultaneously.
29. Use of the methane oxidation catalyst of claim 16, wherein the alumina is gamma alumina.
30. Use of the methane oxidation catalyst of claim 16, wherein the specific surface area (BET) of the support is at least 120 m2/g.
31. A methane oxidation catalyst for use in a catalytic converter that is mountable on a natural gas vehicle (NGV), said methane oxidation catalyst having a support comprising alumina doped with lanthanum and comprising platinum and palladium as active phases, and are present at an amount effective for producing an exhaust stream from said vehicle having reduced levels of methane relative to a gas stream resulting from combustion in the presence of sulfur, wherein the platinum and palladium are present in the methane oxidation catalyst at a weight ratio of Pt:Pd that is greater than 0.75:1.0.
32. The methane oxidation catalyst of claim 31, wherein the platinum is present in the methane oxidation catalyst at between 0.5 and 10 wt %.
33. The methane oxidation catalyst of claim 31, wherein the palladium is present in the methane oxidation catalyst at between 0.5 and 10 wt %.
34. The methane oxidation catalyst of claim 31, wherein the platinum is present in the methane oxidation catalyst at between 3 and 5 wt % and the palladium is present in the methane oxidation catalyst at between 1 and 3 wt %.
35. The methane oxidation catalyst of claim 31, wherein the catalyst has a T50 of below 460° C. after aging in a simulated natural gas vehicle (NGV) exhaust for 500 h at 500° C. in the presence of 10 vol % water and 10 ppm sulfur dioxide.
36. The methane oxidation catalyst of claim 31, wherein the palladium is present in the methane oxidation catalyst at greater than 2 wt %.
37. The methane oxidation catalyst of claim 31, wherein the methane oxidation catalyst is prepared by incipient wetness impregnation in which the platinum and palladium are added sequentially, or wherein the methane oxidation catalyst is prepared by wet impregnation in which the platinum and palladium are added simultaneously.
38. The methane oxidation catalyst of claim 31, wherein the alumina is gamma alumina.
39. The methane oxidation catalyst of claim 31, wherein the specific surface area (BET) of the support is at least 120 m2/g.
US15/775,159 2015-11-12 2016-10-19 Methane Oxidation Catalyst and Method of Using Same Abandoned US20180318798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/775,159 US20180318798A1 (en) 2015-11-12 2016-10-19 Methane Oxidation Catalyst and Method of Using Same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562254241P 2015-11-12 2015-11-12
PCT/CA2016/051209 WO2017079826A1 (en) 2015-11-12 2016-10-19 Methane oxidation catalyst and method of using same
US15/775,159 US20180318798A1 (en) 2015-11-12 2016-10-19 Methane Oxidation Catalyst and Method of Using Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2016/051209 A-371-Of-International WO2017079826A1 (en) 2015-11-12 2016-10-19 Methane oxidation catalyst and method of using same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/665,998 Division US20220152590A1 (en) 2015-11-12 2022-02-07 Methane Oxidation Catalyst and Method of Using Same

Publications (1)

Publication Number Publication Date
US20180318798A1 true US20180318798A1 (en) 2018-11-08

Family

ID=58694598

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/775,159 Abandoned US20180318798A1 (en) 2015-11-12 2016-10-19 Methane Oxidation Catalyst and Method of Using Same
US17/665,998 Pending US20220152590A1 (en) 2015-11-12 2022-02-07 Methane Oxidation Catalyst and Method of Using Same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/665,998 Pending US20220152590A1 (en) 2015-11-12 2022-02-07 Methane Oxidation Catalyst and Method of Using Same

Country Status (5)

Country Link
US (2) US20180318798A1 (en)
CA (1) CA3003920C (en)
DE (1) DE112016005182T5 (en)
SE (1) SE542138C2 (en)
WO (1) WO2017079826A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110935443A (en) * 2019-12-18 2020-03-31 福建师范大学泉港石化研究院 Palladium-based alumina catalyst with Br phi nsted acid site and strong palladium anchoring effect and preparation method thereof
CN114950422A (en) * 2022-06-29 2022-08-30 潍柴动力股份有限公司 Methane oxidation catalyst and preparation method and application thereof
CN116713029A (en) * 2023-05-09 2023-09-08 太原理工大学 High-stability methane combustion catalyst and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450346B2 (en) * 2019-06-20 2024-03-15 株式会社キャタラー Catalyst material for methane purification
WO2021062542A1 (en) * 2019-10-03 2021-04-08 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada Methane oxidation catalyst and method of using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034286B2 (en) * 2012-11-21 2015-05-19 Johnson Matthey Public Limited Company Oxidation catalyst for treating the exhaust gas of a compression ignition engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3482094D1 (en) * 1983-07-01 1990-06-07 Hitachi Ltd AT HIGH TEMPERATURE STABLE CATALYST, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR CARRYING OUT CHEMICAL REACTIONS USING THE SAME.
IT1280969B1 (en) * 1995-10-13 1998-02-11 Coral Spa DEVICE FOR THE PURIFICATION OF EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
NL2002711C2 (en) * 2009-04-03 2010-10-05 Theodoor Petrus Knook METHOD FOR PURIFYING SMOKE GASES FROM A GAS ENGINE
CN103131488A (en) * 2011-11-30 2013-06-05 中国科学院大连化学物理研究所 Low-concentration methane catalytic combustion catalyst and preparation method of the same
KR101524054B1 (en) * 2013-12-24 2015-05-29 희성촉매 주식회사 A catalyst for purifying exhaust gas from combustions sytems using CNG as fuel
CN104368327B (en) * 2014-10-23 2016-09-07 江西宝安新材料科技有限公司 A kind of catalyst for Catalytic methane oxidation and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034286B2 (en) * 2012-11-21 2015-05-19 Johnson Matthey Public Limited Company Oxidation catalyst for treating the exhaust gas of a compression ignition engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110935443A (en) * 2019-12-18 2020-03-31 福建师范大学泉港石化研究院 Palladium-based alumina catalyst with Br phi nsted acid site and strong palladium anchoring effect and preparation method thereof
CN114950422A (en) * 2022-06-29 2022-08-30 潍柴动力股份有限公司 Methane oxidation catalyst and preparation method and application thereof
CN116713029A (en) * 2023-05-09 2023-09-08 太原理工大学 High-stability methane combustion catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
US20220152590A1 (en) 2022-05-19
DE112016005182T5 (en) 2018-08-16
SE542138C2 (en) 2020-03-03
CA3003920A1 (en) 2017-05-18
SE1850600A1 (en) 2018-05-22
WO2017079826A1 (en) 2017-05-18
CA3003920C (en) 2022-08-23

Similar Documents

Publication Publication Date Title
US20220152590A1 (en) Methane Oxidation Catalyst and Method of Using Same
US20150352531A1 (en) Rhodium-Iron Catalysts
US5354720A (en) Reduction in the quantity of NOx in lean exhaust gas of motor vehicle engines
US6770251B2 (en) Exhaust gas purifying catalyst
US9468912B2 (en) Zero PGM catalyst including Cu—Co—Mn ternary spinel for TWC applications
US7459135B2 (en) Method for the removal of NOx and catalyst therefor
CN107081156B (en) Perovskite-based oxygen storage material
JP2010521301A (en) Double layer three way catalyst
BR122012013545A2 (en) CATALYST, CATALYST ARTICLE, EXHAUST GAS TREATMENT SYSTEM, NOX GAS TREATMENT PROCESS, CATALYTIC COMBINATION, AND METHOD FOR TREATING EXHAUST GAS CURRENT
DK2780102T3 (en) SUPPORTED GAS METAL CATALYST FOR EXHAUST GAS TREATMENT
US20220395777A1 (en) Methane Oxidation Catalyst and Method of Using Same
US20100178224A1 (en) LEAN NOx TRAP/CONVERSION CATALYST
US20180036715A1 (en) Exhaust gas purifying catalyst and method for producing the same
US10751701B2 (en) Oxidation catalyst for compressed natural gas combustion system exhaust gas
US11872543B2 (en) Hydrothermally stable methane oxidation catalyst
JPWO2014175349A1 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
CN114904520A (en) Low NH 3 Formation amount three-way catalyst and preparation method thereof
AlMohamadi et al. The Impact of CeO₂ Loading on the Activity and Stability of PdO/γ-AlOOH/γ-Al₂O₃ Monolith Catalysts for CH₄ Oxidation
US20180280935A1 (en) Exhaust gas purification catalyst
WO2018070381A1 (en) Iron-based composite oxide catalyst for exhaust gas purification and method for producing same
Boll et al. Durable Catalyst Formulations for Four-Stroke Small Engines

Legal Events

Date Code Title Description
AS Assignment

Owner name: HER MAJESTY THE QUEEN IN RIGHT OF CANADA AS REPRES

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARAVAGGIO, GIANNI;NOSSOVA, LIOUDMILA;REEL/FRAME:046947/0189

Effective date: 20151118

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION