US20180312872A1 - Recombinant virus production using mammalian cells in suspension - Google Patents
Recombinant virus production using mammalian cells in suspension Download PDFInfo
- Publication number
- US20180312872A1 US20180312872A1 US15/697,655 US201715697655A US2018312872A1 US 20180312872 A1 US20180312872 A1 US 20180312872A1 US 201715697655 A US201715697655 A US 201715697655A US 2018312872 A1 US2018312872 A1 US 2018312872A1
- Authority
- US
- United States
- Prior art keywords
- gene
- aav
- cell
- recombinant
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 118
- 210000004962 mammalian cell Anatomy 0.000 title claims description 60
- 241000700605 Viruses Species 0.000 title claims description 57
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 200
- 238000000034 method Methods 0.000 claims abstract description 78
- 239000002245 particle Substances 0.000 claims abstract description 68
- 230000003612 virological effect Effects 0.000 claims abstract description 59
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 47
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 28
- 210000004027 cell Anatomy 0.000 claims description 303
- 241001529453 unidentified herpesvirus Species 0.000 claims description 63
- 208000015181 infectious disease Diseases 0.000 claims description 53
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 28
- 230000010076 replication Effects 0.000 claims description 26
- 102100033849 CCHC-type zinc finger nucleic acid binding protein Human genes 0.000 claims description 24
- 150000007523 nucleic acids Chemical class 0.000 claims description 24
- 210000000964 retinal cone photoreceptor cell Anatomy 0.000 claims description 24
- 101150044789 Cap gene Proteins 0.000 claims description 20
- 208000003322 Coinfection Diseases 0.000 claims description 19
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 claims description 17
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 claims description 17
- 241000701022 Cytomegalovirus Species 0.000 claims description 17
- 241000701044 Human gammaherpesvirus 4 Species 0.000 claims description 17
- 102100024295 Maltase-glucoamylase Human genes 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 17
- 108010028144 alpha-Glucosidases Proteins 0.000 claims description 17
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 claims description 17
- 208000009429 hemophilia B Diseases 0.000 claims description 17
- 102100024081 Aryl-hydrocarbon-interacting protein-like 1 Human genes 0.000 claims description 16
- 208000033810 Choroidal dystrophy Diseases 0.000 claims description 16
- 102100031060 Clarin-1 Human genes 0.000 claims description 16
- 101710093463 Clarin-1 Proteins 0.000 claims description 16
- 102100026735 Coagulation factor VIII Human genes 0.000 claims description 16
- 101710136259 E3 ubiquitin-protein ligase XIAP Proteins 0.000 claims description 16
- 102000034353 G alpha subunit Human genes 0.000 claims description 16
- 108091006099 G alpha subunit Proteins 0.000 claims description 16
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 claims description 16
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 claims description 16
- 101000833576 Homo sapiens Aryl-hydrocarbon-interacting protein-like 1 Proteins 0.000 claims description 16
- 101000710837 Homo sapiens CCHC-type zinc finger nucleic acid binding protein Proteins 0.000 claims description 16
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 claims description 16
- 101001104102 Homo sapiens X-linked retinitis pigmentosa GTPase regulator Proteins 0.000 claims description 16
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 claims description 16
- 101710088575 Rab escort protein 1 Proteins 0.000 claims description 16
- 101710108890 Rab proteins geranylgeranyltransferase component A 1 Proteins 0.000 claims description 16
- 102100022881 Rab proteins geranylgeranyltransferase component A 1 Human genes 0.000 claims description 16
- 102100040092 X-linked retinitis pigmentosa GTPase regulator Human genes 0.000 claims description 16
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 claims description 16
- 208000003571 choroideremia Diseases 0.000 claims description 16
- 230000002950 deficient Effects 0.000 claims description 16
- 201000007714 retinoschisis Diseases 0.000 claims description 16
- 102100026882 Alpha-synuclein Human genes 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 14
- 108020004707 nucleic acids Proteins 0.000 claims description 14
- 108010076282 Factor IX Proteins 0.000 claims description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 12
- 229940024142 alpha 1-antitrypsin Drugs 0.000 claims description 11
- 208000009292 Hemophilia A Diseases 0.000 claims description 10
- 101710111169 Retinoschisin Proteins 0.000 claims description 9
- 102100039507 Retinoschisin Human genes 0.000 claims description 9
- 230000001464 adherent effect Effects 0.000 claims description 9
- 230000001772 anti-angiogenic effect Effects 0.000 claims description 9
- 101710116319 CCHC-type zinc finger nucleic acid binding protein Proteins 0.000 claims description 8
- 201000003542 Factor VIII deficiency Diseases 0.000 claims description 8
- 208000007514 Herpes zoster Diseases 0.000 claims description 8
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 claims description 8
- 101000823435 Homo sapiens Coagulation factor IX Proteins 0.000 claims description 8
- 101000604411 Homo sapiens NADH-ubiquinone oxidoreductase chain 1 Proteins 0.000 claims description 8
- 101001109052 Homo sapiens NADH-ubiquinone oxidoreductase chain 4 Proteins 0.000 claims description 8
- 101001109060 Homo sapiens NADH-ubiquinone oxidoreductase chain 4L Proteins 0.000 claims description 8
- 101000632623 Homo sapiens NADH-ubiquinone oxidoreductase chain 6 Proteins 0.000 claims description 8
- 108010003381 Iduronidase Proteins 0.000 claims description 8
- 102000004627 Iduronidase Human genes 0.000 claims description 8
- 102100038625 NADH-ubiquinone oxidoreductase chain 1 Human genes 0.000 claims description 8
- 102100021506 NADH-ubiquinone oxidoreductase chain 4 Human genes 0.000 claims description 8
- 102100021452 NADH-ubiquinone oxidoreductase chain 4L Human genes 0.000 claims description 8
- 102100028386 NADH-ubiquinone oxidoreductase chain 6 Human genes 0.000 claims description 8
- 101000718529 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) Alpha-galactosidase Proteins 0.000 claims description 8
- 201000001408 X-linked juvenile retinoschisis 1 Diseases 0.000 claims description 8
- 208000017441 X-linked retinoschisis Diseases 0.000 claims description 8
- NNISLDGFPWIBDF-MPRBLYSKSA-N alpha-D-Gal-(1->3)-beta-D-Gal-(1->4)-D-GlcNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@@H](CO)O1 NNISLDGFPWIBDF-MPRBLYSKSA-N 0.000 claims description 8
- 108010030291 alpha-Galactosidase Proteins 0.000 claims description 8
- 102000005840 alpha-Galactosidase Human genes 0.000 claims description 8
- 108090000185 alpha-Synuclein Proteins 0.000 claims description 8
- 229940105774 coagulation factor ix Drugs 0.000 claims description 8
- 201000001119 neuropathy Diseases 0.000 claims description 8
- 230000007823 neuropathy Effects 0.000 claims description 8
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 8
- 210000003583 retinal pigment epithelium Anatomy 0.000 claims description 8
- 208000009889 Herpes Simplex Diseases 0.000 claims description 7
- 108700008625 Reporter Genes Proteins 0.000 claims description 3
- 102000018658 Myotonin-Protein Kinase Human genes 0.000 claims 4
- 102000050257 X-Linked Inhibitor of Apoptosis Human genes 0.000 claims 4
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 claims 2
- 102000003802 alpha-Synuclein Human genes 0.000 claims 2
- 239000003112 inhibitor Substances 0.000 claims 1
- 238000001415 gene therapy Methods 0.000 abstract description 25
- 239000013598 vector Substances 0.000 description 56
- 239000005090 green fluorescent protein Substances 0.000 description 22
- 238000003556 assay Methods 0.000 description 19
- 241000700584 Simplexvirus Species 0.000 description 17
- 210000000234 capsid Anatomy 0.000 description 17
- 239000013612 plasmid Substances 0.000 description 17
- 230000006870 function Effects 0.000 description 16
- 239000013608 rAAV vector Substances 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 241000702421 Dependoparvovirus Species 0.000 description 15
- 230000000692 anti-sense effect Effects 0.000 description 15
- 241000701161 unidentified adenovirus Species 0.000 description 15
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 14
- 230000012010 growth Effects 0.000 description 14
- -1 p16 Proteins 0.000 description 14
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 13
- 238000004806 packaging method and process Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000001890 transfection Methods 0.000 description 13
- 108091006146 Channels Proteins 0.000 description 12
- 102100037024 E3 ubiquitin-protein ligase XIAP Human genes 0.000 description 12
- 102100022437 Myotonin-protein kinase Human genes 0.000 description 12
- 230000010261 cell growth Effects 0.000 description 12
- 241000580270 Adeno-associated virus - 4 Species 0.000 description 11
- 239000012091 fetal bovine serum Substances 0.000 description 11
- 230000002458 infectious effect Effects 0.000 description 11
- 108700019146 Transgenes Proteins 0.000 description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 10
- 230000010412 perfusion Effects 0.000 description 10
- 102100022712 Alpha-1-antitrypsin Human genes 0.000 description 9
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 238000010899 nucleation Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000010361 transduction Methods 0.000 description 8
- 230000026683 transduction Effects 0.000 description 8
- 230000001566 pro-viral effect Effects 0.000 description 7
- 238000004114 suspension culture Methods 0.000 description 7
- 239000013607 AAV vector Substances 0.000 description 6
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 6
- 230000009089 cytolysis Effects 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 6
- 108090000565 Capsid Proteins Proteins 0.000 description 5
- 102100023321 Ceruloplasmin Human genes 0.000 description 5
- 101710081079 Minor spike protein H Proteins 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 238000013341 scale-up Methods 0.000 description 5
- 210000002027 skeletal muscle Anatomy 0.000 description 5
- 230000008093 supporting effect Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 108091093088 Amplicon Proteins 0.000 description 4
- 101150077194 CAP1 gene Proteins 0.000 description 4
- 241000450599 DNA viruses Species 0.000 description 4
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 238000011031 large-scale manufacturing process Methods 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000700586 Herpesviridae Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241000701041 Human betaherpesvirus 7 Species 0.000 description 3
- 102000014150 Interferons Human genes 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 101100438378 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fac-1 gene Proteins 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000033115 angiogenesis Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 229940009976 deoxycholate Drugs 0.000 description 3
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 229960004222 factor ix Drugs 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229940079322 interferon Drugs 0.000 description 3
- 210000003292 kidney cell Anatomy 0.000 description 3
- 101710130522 mRNA export factor Proteins 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 102000016914 ras Proteins Human genes 0.000 description 3
- 108010014186 ras Proteins Proteins 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 210000002845 virion Anatomy 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 241001655883 Adeno-associated virus - 1 Species 0.000 description 2
- 208000010370 Adenoviridae Infections Diseases 0.000 description 2
- 206010060931 Adenovirus infection Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 108700020462 BRCA2 Proteins 0.000 description 2
- 102000052609 BRCA2 Human genes 0.000 description 2
- 101150008921 Brca2 gene Proteins 0.000 description 2
- 102000004414 Calcitonin Gene-Related Peptide Human genes 0.000 description 2
- 108090000932 Calcitonin Gene-Related Peptide Proteins 0.000 description 2
- 108090000489 Carboxy-Lyases Proteins 0.000 description 2
- 102000004031 Carboxy-Lyases Human genes 0.000 description 2
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 2
- 102000012437 Copper-Transporting ATPases Human genes 0.000 description 2
- 108010022637 Copper-Transporting ATPases Proteins 0.000 description 2
- 102000000311 Cytosine Deaminase Human genes 0.000 description 2
- 108010080611 Cytosine Deaminase Proteins 0.000 description 2
- 102000016559 DNA Primase Human genes 0.000 description 2
- 108010092681 DNA Primase Proteins 0.000 description 2
- 208000031220 Hemophilia Diseases 0.000 description 2
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 2
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 102000004317 Lyases Human genes 0.000 description 2
- 108090000856 Lyases Proteins 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108060004795 Methyltransferase Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 2
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 2
- 102000043299 Parathyroid hormone-related Human genes 0.000 description 2
- 101710123753 Parathyroid hormone-related protein Proteins 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 description 2
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 description 2
- 108010073135 Phosphorylases Proteins 0.000 description 2
- 102000009097 Phosphorylases Human genes 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 2
- 241000125945 Protoparvovirus Species 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 101710172711 Structural protein Proteins 0.000 description 2
- 208000011589 adenoviridae infectious disease Diseases 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 210000001552 airway epithelial cell Anatomy 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000013322 recombinant adeno-associated virus production system Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 101150066583 rep gene Proteins 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 230000010415 tropism Effects 0.000 description 2
- 210000003501 vero cell Anatomy 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- RJEUERNNQHNSKG-CCKFTAQKSA-N (2s)-2-amino-n-[(2r)-1-[[2-[[(2s)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]-3-(4-hydroxyphenyl)propanamide Chemical compound C([C@H](N)C(=O)N[C@H](C)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)C1=CC=C(O)C=C1 RJEUERNNQHNSKG-CCKFTAQKSA-N 0.000 description 1
- HEAUFJZALFKPBA-JPQUDPSNSA-N (3s)-3-[[(2s,3r)-2-[[(2s)-6-amino-2-[[(2s)-2-amino-3-(1h-imidazol-5-yl)propanoyl]amino]hexanoyl]amino]-3-hydroxybutanoyl]amino]-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[2-[[(2s)-1-[[(2s)-1-amino-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)C(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 HEAUFJZALFKPBA-JPQUDPSNSA-N 0.000 description 1
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- 102100031599 2-(3-amino-3-carboxypropyl)histidine synthase subunit 1 Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 1
- WFPZSXYXPSUOPY-UHFFFAOYSA-N ADP-mannose Natural products C1=NC=2C(N)=NC=NC=2N1C(C(C1O)O)OC1COP(O)(=O)OP(O)(=O)OC1OC(CO)C(O)C(O)C1O WFPZSXYXPSUOPY-UHFFFAOYSA-N 0.000 description 1
- 102100028780 AP-1 complex subunit sigma-2 Human genes 0.000 description 1
- 108091006112 ATPases Proteins 0.000 description 1
- 241001634120 Adeno-associated virus - 5 Species 0.000 description 1
- 241000972680 Adeno-associated virus - 6 Species 0.000 description 1
- 101100524324 Adeno-associated virus 2 (isolate Srivastava/1982) Rep78 gene Proteins 0.000 description 1
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 102400000344 Angiotensin-1 Human genes 0.000 description 1
- 101800000734 Angiotensin-1 Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 102000013918 Apolipoproteins E Human genes 0.000 description 1
- 108010025628 Apolipoproteins E Proteins 0.000 description 1
- 102100021986 Apoptosis-stimulating of p53 protein 2 Human genes 0.000 description 1
- 101710091620 Apoptosis-stimulating of p53 protein 2 Proteins 0.000 description 1
- 101100281515 Arabidopsis thaliana FOX1 gene Proteins 0.000 description 1
- 102000004452 Arginase Human genes 0.000 description 1
- 108700024123 Arginases Proteins 0.000 description 1
- OXDZADMCOWPSOC-UHFFFAOYSA-N Argiprestocin Chemical compound N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 OXDZADMCOWPSOC-UHFFFAOYSA-N 0.000 description 1
- 108090000121 Aromatic-L-amino-acid decarboxylases Proteins 0.000 description 1
- 102000003823 Aromatic-L-amino-acid decarboxylases Human genes 0.000 description 1
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 1
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 1
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 102000036365 BRCA1 Human genes 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 102100037674 Bis(5'-adenosyl)-triphosphatase Human genes 0.000 description 1
- 101100064718 Borrelia bavariensis (strain ATCC BAA-2496 / DSM 23469 / PBi) fusA1 gene Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- YNXLOPYTAAFMTN-SBUIBGKBSA-N C([C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)C1=CC=C(O)C=C1 Chemical compound C([C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)C1=CC=C(O)C=C1 YNXLOPYTAAFMTN-SBUIBGKBSA-N 0.000 description 1
- 108010062802 CD66 antigens Proteins 0.000 description 1
- 101150029409 CFTR gene Proteins 0.000 description 1
- 101150110592 CTS1 gene Proteins 0.000 description 1
- 101100326791 Caenorhabditis elegans cap-2 gene Proteins 0.000 description 1
- 101100209555 Caenorhabditis elegans vha-17 gene Proteins 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 101800001982 Cholecystokinin Proteins 0.000 description 1
- 102100025841 Cholecystokinin Human genes 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 102100021809 Chorionic somatomammotropin hormone 1 Human genes 0.000 description 1
- 108010005939 Ciliary Neurotrophic Factor Proteins 0.000 description 1
- 102100031614 Ciliary neurotrophic factor Human genes 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 102000015775 Core Binding Factor Alpha 1 Subunit Human genes 0.000 description 1
- 108010024682 Core Binding Factor Alpha 1 Subunit Proteins 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- 108010022152 Corticotropin-Releasing Hormone Proteins 0.000 description 1
- 102000012289 Corticotropin-Releasing Hormone Human genes 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 101150026402 DBP gene Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710116602 DNA-Binding protein G5P Proteins 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 1
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 101001003194 Eleusine coracana Alpha-amylase/trypsin inhibitor Proteins 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 101710196289 Eukaryotic translation initiation factor 2-alpha kinase 1 Proteins 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 1
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 1
- 102100029115 Fumarylacetoacetase Human genes 0.000 description 1
- 108700012941 GNRH1 Proteins 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 102100037948 GTP-binding protein Di-Ras3 Human genes 0.000 description 1
- 102100029974 GTPase HRas Human genes 0.000 description 1
- 102100039788 GTPase NRas Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 102400001370 Galanin Human genes 0.000 description 1
- 101800002068 Galanin Proteins 0.000 description 1
- 108090000495 Glia Maturation Factor Proteins 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 108010086800 Glucose-6-Phosphatase Proteins 0.000 description 1
- 102000003638 Glucose-6-Phosphatase Human genes 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 108010015451 Glutaryl-CoA Dehydrogenase Proteins 0.000 description 1
- 102100028603 Glutaryl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 108090000826 Glycine dehydrogenase (decarboxylating) Proteins 0.000 description 1
- 102000004327 Glycine dehydrogenase (decarboxylating) Human genes 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 1
- 101150064935 HELI gene Proteins 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 101000866191 Homo sapiens 2-(3-amino-3-carboxypropyl)histidine synthase subunit 1 Proteins 0.000 description 1
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 description 1
- 101000768016 Homo sapiens AP-1 complex subunit sigma-2 Proteins 0.000 description 1
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 1
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 1
- 101000951235 Homo sapiens GTP-binding protein Di-Ras3 Proteins 0.000 description 1
- 101000584633 Homo sapiens GTPase HRas Proteins 0.000 description 1
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 1
- 101000882390 Homo sapiens Histone acetyltransferase p300 Proteins 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101001064870 Homo sapiens Lon protease homolog, mitochondrial Proteins 0.000 description 1
- 101001012669 Homo sapiens Melanoma inhibitory activity protein 2 Proteins 0.000 description 1
- 101000876829 Homo sapiens Protein C-ets-1 Proteins 0.000 description 1
- 101000898093 Homo sapiens Protein C-ets-2 Proteins 0.000 description 1
- 101000585703 Homo sapiens Protein L-Myc Proteins 0.000 description 1
- 101000595531 Homo sapiens Serine/threonine-protein kinase pim-1 Proteins 0.000 description 1
- 101000800488 Homo sapiens T-cell leukemia homeobox protein 1 Proteins 0.000 description 1
- 101000813738 Homo sapiens Transcription factor ETV6 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 101000912503 Homo sapiens Tyrosine-protein kinase Fgr Proteins 0.000 description 1
- 101001022129 Homo sapiens Tyrosine-protein kinase Fyn Proteins 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241001455657 Human betaherpesvirus 6A Species 0.000 description 1
- 241001455656 Human betaherpesvirus 6B Species 0.000 description 1
- 241000701027 Human herpesvirus 6 Species 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 108010056651 Hydroxymethylbilane synthase Proteins 0.000 description 1
- 206010020584 Hypercalcaemia of malignancy Diseases 0.000 description 1
- 102100031612 Hypermethylated in cancer 1 protein Human genes 0.000 description 1
- 101710133850 Hypermethylated in cancer 1 protein Proteins 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108090000191 Inhibitor of growth protein 1 Proteins 0.000 description 1
- 102000003781 Inhibitor of growth protein 1 Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 102000004289 Interferon regulatory factor 1 Human genes 0.000 description 1
- 108090000890 Interferon regulatory factor 1 Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108010013792 Isovaleryl-CoA Dehydrogenase Proteins 0.000 description 1
- 102100025392 Isovaleryl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- XNSAINXGIQZQOO-UHFFFAOYSA-N L-pyroglutamyl-L-histidyl-L-proline amide Natural products NC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-UHFFFAOYSA-N 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 102100031955 Lon protease homolog, mitochondrial Human genes 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 108700012912 MYCN Proteins 0.000 description 1
- 101150022024 MYCN gene Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 1
- 101800001751 Melanocyte-stimulating hormone alpha Proteins 0.000 description 1
- 102100029778 Melanoma inhibitory activity protein 2 Human genes 0.000 description 1
- 101710151321 Melanostatin Proteins 0.000 description 1
- 208000008948 Menkes Kinky Hair Syndrome Diseases 0.000 description 1
- 208000012583 Menkes disease Diseases 0.000 description 1
- 108010085747 Methylmalonyl-CoA Decarboxylase Proteins 0.000 description 1
- 102000019010 Methylmalonyl-CoA Mutase Human genes 0.000 description 1
- 108010051862 Methylmalonyl-CoA mutase Proteins 0.000 description 1
- 101710169105 Minor spike protein Proteins 0.000 description 1
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 1
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 1
- 102100025751 Mothers against decapentaplegic homolog 2 Human genes 0.000 description 1
- 102100025725 Mothers against decapentaplegic homolog 4 Human genes 0.000 description 1
- 206010073148 Multiple endocrine neoplasia type 2A Diseases 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101000978776 Mus musculus Neurogenic locus notch homolog protein 1 Proteins 0.000 description 1
- 102100030626 Myosin-binding protein H Human genes 0.000 description 1
- 101710139548 Myosin-binding protein H Proteins 0.000 description 1
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102400000097 Neurokinin A Human genes 0.000 description 1
- 101800000399 Neurokinin A Proteins 0.000 description 1
- 102400000064 Neuropeptide Y Human genes 0.000 description 1
- 102000002710 Neurophysins Human genes 0.000 description 1
- 108010018674 Neurophysins Proteins 0.000 description 1
- 108090000742 Neurotrophin 3 Proteins 0.000 description 1
- 102000007981 Ornithine carbamoyltransferase Human genes 0.000 description 1
- 101710198224 Ornithine carbamoyltransferase, mitochondrial Proteins 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 102400000203 Pancreastatin Human genes 0.000 description 1
- 101800005322 Pancreastatin Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108010088847 Peptide YY Proteins 0.000 description 1
- 102100029909 Peptide YY Human genes 0.000 description 1
- 102100039087 Peptidyl-alpha-hydroxyglycine alpha-amidating lyase Human genes 0.000 description 1
- 101710189920 Peptidyl-alpha-hydroxyglycine alpha-amidating lyase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 102000014750 Phosphorylase Kinase Human genes 0.000 description 1
- 108010064071 Phosphorylase Kinase Proteins 0.000 description 1
- 108010003044 Placental Lactogen Proteins 0.000 description 1
- 239000000381 Placental Lactogen Substances 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102100034391 Porphobilinogen deaminase Human genes 0.000 description 1
- 108010035004 Prephenate Dehydrogenase Proteins 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 1
- 108050003243 Prostaglandin G/H synthase 1 Proteins 0.000 description 1
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 1
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 1
- 102100035251 Protein C-ets-1 Human genes 0.000 description 1
- 102100021890 Protein C-ets-2 Human genes 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102100030128 Protein L-Myc Human genes 0.000 description 1
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 1
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 101710162453 Replication factor A Proteins 0.000 description 1
- 101710176758 Replication protein A 70 kDa DNA-binding subunit Proteins 0.000 description 1
- 101150019443 SMAD4 gene Proteins 0.000 description 1
- 101710176276 SSB protein Proteins 0.000 description 1
- 101100379247 Salmo trutta apoa1 gene Proteins 0.000 description 1
- 108010086019 Secretin Proteins 0.000 description 1
- 102100037505 Secretin Human genes 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 108010034546 Serratia marcescens nuclease Proteins 0.000 description 1
- 108010045517 Serum Amyloid P-Component Proteins 0.000 description 1
- 101710126859 Single-stranded DNA-binding protein Proteins 0.000 description 1
- 108700032504 Smad2 Proteins 0.000 description 1
- 101150102611 Smad2 gene Proteins 0.000 description 1
- 108700031298 Smad4 Proteins 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 102100022831 Somatoliberin Human genes 0.000 description 1
- 101710142969 Somatoliberin Proteins 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 108010061312 Sphingomyelin Phosphodiesterase Proteins 0.000 description 1
- 102000011971 Sphingomyelin Phosphodiesterase Human genes 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102100033111 T-cell leukemia homeobox protein 1 Human genes 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 239000000627 Thyrotropin-Releasing Hormone Substances 0.000 description 1
- 102400000336 Thyrotropin-releasing hormone Human genes 0.000 description 1
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 description 1
- 102100030951 Tissue factor pathway inhibitor Human genes 0.000 description 1
- 101710183280 Topoisomerase Proteins 0.000 description 1
- 102100039580 Transcription factor ETV6 Human genes 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108010091356 Tumor Protein p73 Proteins 0.000 description 1
- 102000018252 Tumor Protein p73 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 1
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 1
- 102100026150 Tyrosine-protein kinase Fgr Human genes 0.000 description 1
- 101150008036 UL29 gene Proteins 0.000 description 1
- 101150099617 UL5 gene Proteins 0.000 description 1
- 101150011902 UL52 gene Proteins 0.000 description 1
- 101150033561 UL8 gene Proteins 0.000 description 1
- 108010058532 UTP-hexose-1-phosphate uridylyltransferase Proteins 0.000 description 1
- 102000006321 UTP-hexose-1-phosphate uridylyltransferase Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 1
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 101800003024 Vasotocin Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108700020467 WT1 Proteins 0.000 description 1
- 101150084041 WT1 gene Proteins 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 208000037919 acquired disease Diseases 0.000 description 1
- 108010036419 acyl-(acyl-carrier-protein)desaturase Proteins 0.000 description 1
- 210000005058 airway cell Anatomy 0.000 description 1
- 230000002219 ammoniagenic effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- ORWYRWWVDCYOMK-HBZPZAIKSA-N angiotensin I Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 ORWYRWWVDCYOMK-HBZPZAIKSA-N 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 108010005713 bis(5'-adenosyl)triphosphatase Proteins 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 1
- 238000010370 cell cloning Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000005101 cell tropism Effects 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229940107137 cholecystokinin Drugs 0.000 description 1
- 229940015047 chorionic gonadotropin Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- RAURUSFBVQLAPW-DNIKMYEQSA-N clocinnamox Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)NC(=O)\C=C\C=2C=CC(Cl)=CC=2)CC1)O)CC1CC1 RAURUSFBVQLAPW-DNIKMYEQSA-N 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229940041967 corticotropin-releasing hormone Drugs 0.000 description 1
- KLVRDXBAMSPYKH-RKYZNNDCSA-N corticotropin-releasing hormone (human) Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(N)=O)[C@@H](C)CC)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CO)[C@@H](C)CC)C(C)C)C(C)C)C1=CNC=N1 KLVRDXBAMSPYKH-RKYZNNDCSA-N 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- DKMKCBPTITUZRL-UHFFFAOYSA-L cyclohexane-1,2-diamine;platinum(2+);propanedioate Chemical compound [Pt+2].[O-]C(=O)CC([O-])=O.NC1CCCCC1N DKMKCBPTITUZRL-UHFFFAOYSA-L 0.000 description 1
- ILRYLPWNYFXEMH-UHFFFAOYSA-N cystathionine Chemical compound OC(=O)C(N)CCSCC(N)C(O)=O ILRYLPWNYFXEMH-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- ZUBDGKVDJUIMQQ-ZTNLKOGPSA-N endothelin i Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]2CSSC[C@@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-ZTNLKOGPSA-N 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 229940028334 follicle stimulating hormone Drugs 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 108010022687 fumarylacetoacetase Proteins 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000004524 haematopoietic cell Anatomy 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 208000008750 humoral hypercalcemia of malignancy Diseases 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 108090000237 interleukin-24 Proteins 0.000 description 1
- 102000003898 interleukin-24 Human genes 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 102000008371 intracellularly ATP-gated chloride channel activity proteins Human genes 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 108010013555 lipoprotein-associated coagulation inhibitor Proteins 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- SLZIZIJTGAYEKK-CIJSCKBQSA-N molport-023-220-247 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CNC=N1 SLZIZIJTGAYEKK-CIJSCKBQSA-N 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- URPYMXQQVHTUDU-OFGSCBOVSA-N nucleopeptide y Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 URPYMXQQVHTUDU-OFGSCBOVSA-N 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- RYZUEKXRBSXBRH-CTXORKPYSA-N pancreastatin Chemical compound C([C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)CNC(=O)[C@H](CCCCN)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]1CCCN1C(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)CNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)CNC(=O)[C@H](C)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(N)=O)C1=CN=CN1 RYZUEKXRBSXBRH-CTXORKPYSA-N 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 108020004410 pectinesterase Proteins 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000013646 rAAV2 vector Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 229960002101 secretin Drugs 0.000 description 1
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000002948 striated muscle cell Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000004281 subthalamic nucleus Anatomy 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940034199 thyrotropin-releasing hormone Drugs 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 230000005100 tissue tropism Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 229960004854 viral vaccine Drugs 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- WHNFPRLDDSXQCL-UAZQEYIDSA-N α-msh Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(N)=O)NC(=O)[C@H](CO)NC(C)=O)C1=CC=C(O)C=C1 WHNFPRLDDSXQCL-UAZQEYIDSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/864—Parvoviral vectors, e.g. parvovirus, densovirus
- C12N15/8645—Adeno-associated virus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16641—Use of virus, viral particle or viral elements as a vector
- C12N2710/16643—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16661—Methods of inactivation or attenuation
- C12N2710/16662—Methods of inactivation or attenuation by genetic engineering
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/50—Vectors for producing vectors
Definitions
- the present invention relates to the field of viral based gene therapy, in particular to recombinant adeno-associated virus (rAAV) based gene therapy.
- the invention relates to methods for producing recombinant AAV viral particles using cells grown in suspension.
- the invention provides recombinant AAV particles for use in methods for delivering genes encoding therapeutic proteins, and methods for using the recombinant AAV particles in in vivo or in ex vivo gene therapy.
- the present invention seeks to overcome some of the deficiencies in the prior art by addressing problems that limit production of rAAV vectors in sufficient quantities for efficient gene therapy procedures. It is apparent from the foregoing that there is a clear need for improved large-scale methods for production of high titer infectious rAAV and improved production methods can include different techniques to make production more efficient.
- infectious rAAV can be obtained in mammalian cell lines grown in suspension including those that have not been genetically altered by recombinant genetic engineering for improved rAAV production.
- the present invention seeks to overcome some of the deficiencies in the prior art by addressing problems that limit production of rAAV in sufficient quantities for clinical and commercial application. Because the quantity of virus that is required for clinical application, an efficient and scalable method of virus production is required. This invention provides an efficient and scalable method for producing recombinant AAV viral particles by utilizing cells grown in suspension.
- mammalian cells are simultaneously or sequentially co-infected within several hours with at least two recombinant herpes simplex viruses (rHSV).
- the two rHSV are vectors designed to provide the cells, upon infection, with all of the components necessary to produce rAAV.
- the method does not require the use of mammalian cells specialized for expression of particular gene products. This is advantageous because the invention can be practiced using any mammalian cell generally suitable for this purpose.
- suitable genetically unmodified mammalian cells include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- the invention features a method for producing recombinant AAV viral particles in a mammalian cell comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus (rHSV) comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second rHSV comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell; thereby producing recombinant AAV viral particles in a mammalian cell.
- rHSV herpesvirus
- the gene of interest is a therapeutic gene.
- the therapeutic gene is selected from the group consisting of: an angiogenesis inhibiting gene (AI), alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, and RPE65.
- AI angiogenesis inhibiting gene
- alpha-1 antitrypsin alpha-1 antitrypsin
- retinoschisin acid alpha glucosidase
- RPE65 angiogenesis inhibiting gene
- the angiogenesis inhibiting gene is sFlt01.
- the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, and AAV-8, AAV-9, and rh-AAV-10.
- the invention features a method for producing recombinant AAV viral particles in a mammalian cell comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep2 and an AAV cap1 or cap 2 gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus Comprising a therapeutic gene like an alpha 1 antitrypsin gene, and a promoter operably linked to said gene; and allowing the virus to infect the mammalian cell, thereby producing recombinant AAV viral particles in a mammalian cell.
- the mammalian cell is selected from the group consisting of: BHK, HEK-293 (293), Vero, RD, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- the invention features a method for producing recombinant AAV viral particles in a BHK cell comprising co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the BHK cell; thereby producing recombinant AAV viral particles in a BHK cell.
- the invention features a method for producing recombinant viral particles in a BHK cell comprising co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep2 and an AAV cap1, -2, -5, or -8 gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising an AI gene or an alpha 1 antitrypsin gene, and a promoter operably linked to said gene of interest; and allowing the virus to infect the BHK cell; thereby producing recombinant viral particles in a BHK cell.
- the herpesvirus is a virus selected from the group herpesviridae consisting of cytomegalovirus (CMV), herpes simplex (HSV), varicella zoster (VZV), and epstein barr virus (EBV), Kaposi sarcoma-associated virus (KSHV), human herpesvirus 6a and 6b (HHV6a and HHV6b), and human herpesvirus 7 (HHV7).
- CMV cytomegalovirus
- HSV herpes simplex
- VZV varicella zoster
- EBV epstein barr virus
- KSHV Kaposi sarcoma-associated virus
- HHV6a and HHV6b human herpesvirus 6a and 6b
- HHV7 human herpesvirus 7
- the herpesvirus is replication defective.
- the gene of interest is a therapeutic gene.
- the therapeutic gene is selected from the group consisting of an anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid ⁇ -glucosidase
- RPE65
- the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- the method further comprises the step of determining multiplicity of infection (MOI).
- MOI multiplicity of infection
- the total MOI is between 3 and 14.
- the co-infection is simultaneous.
- the invention features a method for producing recombinant viral particles in a BHK cell comprising simultaneously co-infecting a BHK cell capable of growing in suspension with a first recombinant Herpes Family virus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant Herpes Family virus comprising a gene of interest, and a promoter operably linked to said gene of interest, allowing the virus to infect the BHK cell; and purifying the viral particles, thereby producing recombinant viral particles in a BHK cell.
- the invention features a method for producing recombinant viral particles in a BHK cell comprising simultaneously co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising an AI gene or an alpha 1 antitrypsin gene, and a promoter operably linked to said gene of interest, allowing the virus to infect the BHK cell; and purifying the viral particles; thereby producing recombinant viral particles in a BHK cell.
- the herpesvirus is a virus selected from the group consisting of HSV-1, HSV-2, HHV-3, HHV-4, HHV-5, HHV-6, HHV-7, HHV-8.
- the herpesvirus is a human herpesvirus selected from the group consisting of: human herpesviruses types 1, 2, 3, 4, 5, 6A, 6B, 7, and 8.
- the recombinant herpesvirus is replication defective.
- the gene of interest is a therapeutic gene.
- the therapeutic gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid ⁇ -glucosidase (RPGR), Acid
- the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- the invention features a method for producing recombinant viral particles in a mammalian cell according to any one of the aspects as described above, whereby the number of viral particles produced is equal to or greater than the number of viral particles grown in an equal number of cells under adherent conditions.
- the invention features a recombinant AAV viral particle produced in a mammalian cell by the method comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell; thereby producing recombinant AAV viral particles in a mammalian cell.
- the herpesvirus is a virus selected from the group consisting of: cytomegalovirus (CMV), herpes simplex (HSV) and varicella zoster (VZV) and epstein barr virus (EBV).
- CMV cytomegalovirus
- HSV herpes simplex
- VZV varicella zoster
- EBV epstein barr virus
- the recombinant herpesvirus is replication defective.
- the gene of interest is a therapeutic gene.
- the therapeutic gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid ⁇ -glucosidase
- RPE65
- the gene of interest is a reporter gene.
- the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- the invention features a recombinant AAV viral particle produced in a BHK cell comprising co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the BHK cell; thereby producing recombinant AAV viral particles in a BHK cell.
- the invention features a method for delivering a nucleic acid sequence encoding a therapeutic protein to a target cell, the method comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second herpesvirus comprising a gene of interest, wherein the gene of interest comprises a therapeutic gene, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell and express the nucleic acid sequence encoding a therapeutic protein; thereby delivering a nucleic acid sequence encoding a therapeutic protein to the target cell.
- the herpesvirus is a virus selected from the group consisting of: cytomegalovirus (CMV), herpes simplex (HSV) and varicella zoster (VZV) and epstein barr virus (EBV).
- CMV cytomegalovirus
- HSV herpes simplex
- VZV varicella zoster
- EBV epstein barr virus
- the recombinant Herpes Family virus is replication defective.
- the gene of interest is a therapeutic gene.
- the therapeutic gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR),
- RPGR Retinitis pigmentosa G
- GAA Acid ⁇ -glucosidase
- CHM Choroideremia
- REP1 Rab escort protein-1
- SNCA Alpha-synuclein
- Coagulation factor VIII procoagulant component
- IX Coagulation factor IX
- SERP1 X-linked Inhibitor of Apoptosis Protein
- CLRN1 clarin-1
- MT-ND1, MT-ND4, MT-ND4L, and MT-ND6 alpha-galactosidase A ( ⁇ -Gal A) or Alpha-L-iduronidase.
- the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- the invention features a kit for making a recombinant viral particle in a mammalian cell that is capable of growing in suspension, and instructions for use.
- the invention features a kit for delivering a nucleic acid sequence encoding a therapeutic protein to a target cell according to claim 33 , and instructions for use.
- FIG. 1 is a graph that shows a comparison of rAAV production by two different isolates of suspension BHK cells.
- Suspension BHK isolates C13-2P (4.5 ⁇ 10 5 cells/mL) and AC9 (4.7 ⁇ 10 5 cells/mL) were co-infected with rHS V-rep2cap2 and rHSV-GFP at a multiplicity of infection (MOI) of 12 and 2, respectively.
- MOI multiplicity of infection
- FIG. 2 is a graph that shows rAAV production over time.
- Cells were co-infected at 1.0 ⁇ 10 6 cells/mL with rHSV-rep2cap2 and rHSV-GFP at an MOI of 12 and 2, respectively. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS. Samples of the production over time were assayed for the level of rAAV2-GFP production by the green-cell infectivity assay. Error bars represent the standard deviation over 3 flasks.
- FIG. 3 is a graph that shows cell density at infection.
- sBHK cells at the range of cell densities indicated in a total volume of 25 mL were co-infected with rHSV-rep2cap2 and rHSV-GFP at an MOI of 12 and 2, respectively.
- Two hours post-infection cells were pelleted and resuspended in DMEM without FBS.
- Samples were harvested by in situ lysis at 22 hpi and were assayed for the level of rAAV2-GFP production (ip/cell—bars; total ip in the 25 mL culture—open circles) by the green-cell infectivity assay. Error bars represent the intra-assay variation.
- FIG. 4 (A and B) is two graphs that show rAAV production over of range of MOI for rHSV-rep2cap2.
- FIG. 4A shows cumulative data for experiments examining rAAV production with rHSV-rep2cap2 used in co-infections over the indicated range of MOIs. All co-infections were performed with rHSV-GFP used at an MOI of 2 and cells were infected at densities ranging from 8.13 ⁇ 10 5 to 3.76 ⁇ 10 6 cells/mL. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS.
- FIG. 5 is a graph that shows rAAV production over of range of MOI for rHSV-rep2cap1. Cumulative data for experiments examining rAAV production with rHSV-rep2cap1 used in co-infections over the indicated range of MOIs is presented. All co-infections were performed with rHSV-AAT used at an MOI of 2 and cells were infected at densities ranging from 1.45 ⁇ 10 6 to 2.40 ⁇ 10 6 cells/mL. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS.
- Samples were harvested by in situ lysis between 23 and 48 hpi and were assayed for the level of rAAV1-AAT production by the DNAse-resistant particle—quantitative real-time PCR.
- the numbers inside the bars represent the number of flasks assayed at the indicated MOI. Error bars represent inter-assay variation.
- FIG. 6A is a graph that shows production levels of rAAV of different capsid serotypes (1, 2, 5, 8, and 9) with different transgenes (AI, AAT, and GFP). All co-infections were performed with rHSV-rep2capX at an MOI of 4 and rHSV-GOI at an MOI of 2 and cells were infected at densities ranging from 1.2 ⁇ 10 6 to 2.0 ⁇ 10 6 cells/mL. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS.
- Samples were harvested by in situ lysis between 24 and 30 hpi and were assayed for the level of rAAVX-GOI production by the DNAse-resistant particle—quantitative real-time PCR. Error bars represent inter-assay variation. Representative samples from the experiments in FIG. 6A were assayed for infectivity using the TCID 50 end-point dilution assay. The DRP/infectivity ratios (DRP:ip) are depicted in FIG. 6B . The differences in infectivity between the three serotypes indicated (rAAV types 1, 2, and 5), reflect the differences in these cell types in their ability to infect the HeLa-derived cells used in the infectivity assay.
- FIG. 7 is a graph that shows rAAV2-GFP production in a Celligen Plus CSTR.
- the DRP:ip was 10:1 and the capsid:DRP was 4.4:1 (cell-associated vector).
- the average doubling time was 9.6 h.
- FIG. 8 is a graph that shows the results of an experiment that is a repeat of rAAV2-GFP production in a Celligen Plus CSTR as shown in FIG. 7 .
- the DRP:ip was 11:1 and the capsid:DRP was 6.6:1 (cell-associated vector).
- FIG. 9 is a graph that shows pre-infection sBHK growth in Wave bioreactors as a function of time for fed-batch and perfusion runs.
- FIG. 11 is a graph that shows metabolite concentrations during a 1 L fed-batch sBHK rAAV1-AAT production run, pre- and post-infection.
- FIG. 12 is a graph that shows typical metabolite concentrations during a 1 L perfusion sBHK rAAV1-AAT production run, pre- and post-infection.
- FIG. 13 is a graph that shows typical cell growth and viability for a 5 L culture volume Wave bioreactor batch run.
- FIG. 14 is a graph that shows typical cell growth, viability, and ammonium concentrations for a 10 L culture volume Wave bioreactor batch run.
- the invention generally provides methods for producing recombinant AAV viral particles, using cells grown in suspension, and their use in methods of gene therapy.
- the term “gene” or “coding sequence” refers to a DNA region (the transcribed region) which encodes a protein.
- a coding sequence is transcribed (DNA) and translated (RNA) into a polypeptide when placed under the control of an appropriate regulatory region, such as a promoter.
- a gene may comprise several operably linked fragments, such as a promoter, a 5′leader sequence, a coding sequence and a 3′nontranslated sequence, comprising a polyadenylation site.
- expression of a gene refers to the process wherein a gene is transcribed into an RNA and/or translated into an active protein.
- GOI gene of interest
- herpesvirus or “herpesviridae family” is meant to refer to the general family of enveloped, double-stranded DNA viruses with relatively large genomes. The family replicates in the nucleus of a wide range of vertebrate and invertebrate hosts, in preferred embodiments, mammalian hosts, for example in humans, horses, cattle, mice, and pigs.
- exemplary members of the herpesviridae family include cytomegalovirus (CMV), herpes simplex virus types 1 and 2 (HSV1 and HSV2) and varicella zoster (VZV) and epstein barr virus (EBV).
- CMV cytomegalovirus
- HSV1 and HSV2 herpes simplex virus types 1 and 2
- VZV varicella zoster
- EBV epstein barr virus
- infection is meant to refer to delivery of heterologous DNA into a cell by a virus.
- co-infection means “simultaneous infection,” “double infection,” “multiple infection,” or “serial infection” with two or more viruses. Infection of a producer cell with two (or more) viruses will be referred to as “co-infection.”
- transfection refers to a process of delivering heterologous DNA to a cell by physical or chemical methods, such as plasmid DNA, which is transferred into the cell by means of electroporation, calcium phosphate precipitation, or other methods well known in the art.
- rHSV herpes simplex virus type 1
- rHSV-rep2cap2 or “rHSV-rep2cap1” is meant an rHSV in which the AAV rep and cap genes from either AAV serotype 1 or 2 have been incorporated into the rHSV genome.
- a DNA sequence encoding a therapeutic gene of interest has been incorporated into the viral genome.
- AAV virion refers to a complete virus particle, such as for example a wild type AAV virion particle, which comprises single stranded genome DNA packaged into AAV capsid proteins.
- the single stranded nucleic acid molecule is either sense strand or antisense strand, as both strands are equally infectious.
- rAAV viral particle refers to a recombinant AAV virus particle, i.e. a particle that is infectious but replication defective.
- a rAAV viral particle comprises single stranded genome DNA packaged into AAV capsid proteins.
- therapeutic protein refers to a protein, which has a therapeutic effect on a disease or disorder to be treated.
- the therapeutic protein when expressed in an effective amount (or dosage) is sufficient to prevent, correct and/or normalize an abnormal physiological response.
- a therapeutic protein may be sufficient to reduce by at least about 30 percent, more preferably by at least 50 percent, most preferably by at least 90 percent, a clinically significant feature of disease or disorder.
- transgene refers to a heterologous gene(s), or recombinant genes (“gene cassette”) in a vector, which is transduced into a cell.
- Use of the term “transgene” encompasses both introduction of the gene or gene cassette for purposes of correcting a gene defect in the cell, or altering the functions of the transduced and/or surrounding cells, and introduction of the gene or gene cassette into a producer cell for purposes of enabling the cell to produce rAAV.
- introducing the gene or gene cassette for the purposes of correcting a gene defect in the cell or altering the functions of the transduced and/or surrounding cells can be carried out by gene therapy.
- vector is meant a recombinant plasmid or viral construct used as a vehicle for introduction of transgenes into cells.
- AAV Adeno-Associated Virus
- Adeno-Associated Virus is a non-pathogenic single-stranded DNA parvovirus.
- AAV has a capsid diameter of about 20 nm.
- Each end of the single-stranded DNA genome contains an inverted terminal repeat (ITR), which is the only cis-acting element required for genome replication and packaging.
- ITR inverted terminal repeat
- the AAV genome carries two viral genes: rep and cap.
- the virus utilizes two promoters and alternative splicing to generate four proteins necessary for replication (Rep78, Rep 68, Rep 52 and Rep 40).
- a third promoter generates the transcript for three structural viral capsid proteins, 1, 2 and 3 (VP1, VP2 and VP3), through a combination of alternate splicing and alternate translation start codons (Berns K I, Linden R M. The cryptic life style of adeno-associated virus. Bioessays. 1995; 17:237-45).
- the three capsid proteins share the same C-terminal 533 amino acids, while VP2 and VP1 contain additional N-terminal sequences of 65 and 202 amino acids, respectively.
- AAV requires Adenovirus (Ad), Herpes Simplex Virus (HSV) or other viruses as a helper virus to complete its lytic life-cycle (Atchison R W, Casto B C, Hammon W M. Adenovirus-Associated Defective Virus Particles. Science.
- AAV serotypes There are a number of different AAV serotypes, including AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, and AAV-8, AAV-9, and rh-AAV-10.
- AAV-1 and AAV-6 are two serotypes that are efficient for the transduction of skeletal muscle (Gao G P, Alvira M R, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA.
- AAV-3 has been shown to be superior for the transduction of megakaryocytes (Handa A, Muramatsu S, Qiu J, Mizukami H, Brown K E.
- Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol. 2000; 81:2077-2084). AAV-5 and AAV-6 infect apical airway cells efficiently (Zabner J, Seiler M, Walters R, et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol. 2000; 74:3852-3858; Halbert C L, Allen J M, Miller A D.
- Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol. 2001; 75:6615-6624.).
- AAV-2, AAV-4, and AAV-5 transduce different types of cells in the central nervous system (Davidson B L, Stein C S, Heth J A, et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA. 2000; 97:3428-3432).
- AAV-8 and AAV-5 can transduce liver cells better than AAV-2 (Gao G P, Alvira M R, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002; 99:11854-11859; Mingozzi F, Schuttrumpf J, Arruda V R, et al. Improved hepatic gene transfer by using an adeno-associated virus serotype 5 vector. J Virol. 2002; 76:10497-10502).
- WO99/61601 shows that AAV5 based vectors transduced certain cell types (cultured airway epithelial cells, cultured striated muscle cells and cultured human umbilical vein endothelial cells) at a higher efficiency than AAV2, while both AAV2 and AAV5 showed poor transduction efficiencies for NIH 3T3, skbr3 and t-47D cell lines.
- AAV-4 was found to transduce rat retina most efficiently, followed by AAV-5 and AAV-1 (Rabinowitz J E, Rolling F, Li C, et al.
- AAV adeno-associated virus
- Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity.
- Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther. 2003; 7:774-781).
- the invention includes a method for producing rAAV particles with capsid proteins expressed by multiple serotypes of AAV. This is achieved by co-infection of producer cells with a rHSV expression virus and with a rHSV-rep2capX helper virus in which the cap gene products are derived from serotypes of AAV other than, or in addition to, AAV2.
- Recombinant AAV vectors have generally been based on AAV-2 capsids. It has recently been demonstrated that rAAV vectors based on capsids from AAV-1, AAV-3, AAV-4, AAV-5, AAV-8 or AAV-9 serotypes differ from AAV-2 in their tropism.
- Capsids from other AAV serotypes offer advantages in certain in vivo applications over rAAV vectors based on the AAV-2 capsid.
- the appropriate use of rAAV vectors with particular serotypes may increase the efficiency of gene delivery in vivo to certain target cells that are poorly infected, or not infected at all, by AAV-2 based vectors.
- recombinant HSV vectors similar to rHSV but encoding the cap genes from other AAV serotypes is achievable using the methods described herein to produce rHSV.
- recombinant AAV vectors constructed using cap genes from different AAV are preferred.
- the significant advantages of construction of these additional rHSV vectors are ease and savings of time, compared with alternative methods used for the large-scale production of rAAV. In particular, the difficult process of constructing new rep and cap inducible cell lines for each different capsid serotypes is avoided.
- Gene therapy refers to treatment of inherited or acquired diseases by replacing, altering, or supplementing a gene responsible for the disease. It is achieved by introduction of a corrective gene or genes into a host cell, generally by means of a vehicle or vector. Gene therapy using rAAV holds great promise for the treatment of many diseases.
- the invention provides a novel method of producing recombinant adeno-associated virus (rAAV), and in particular producing large quantities of recombinant AAV, to support clinical applications.
- rAAV recombinant AAV
- rAAV has been used successfully as a gene therapy vehicle to enable expression of erythropoietin in skeletal muscle of mice (Kessler et al., 1996), tyrosine hydroxylase and aromatic amino acid decarboxylase in the CNS in monkey models of Parkinson disease (Kaplitt et al., 1994) and Factor IX in skeletal muscle and liver in animal models of hemophilia.
- the rAAV vector has been used in human clinical trials to deliver the CFTR gene to cystic fibrosis patients and the Factor IX gene to hemophilia patients (Flotte, et al., 1998, Wagner et al, 1998).
- AAV is a helper-dependent DNA parvovirus, which is not associated with disease in humans or mammals (Berns and Bohensky, 1987, Advances in Virus Research, Academic Press Inc, 32:243-307). Accordingly, one of the most important attributes of AAV vectors is their safety profile in phase I clinical trials.
- AAV gene therapy has been carried out in a number of different pathological settings and to treat a various diseases and disorders.
- administration of an AAV2-FIX vector into the skeletal muscle of eight hemophilia B subjects proved safe and achieved local gene transfer and Factor IX expression for at least 10 months after vector injection (Jiang et al, Mol Ther. 2006 September; 14 (3):452-5. Epub 2006 Jul. 5)
- rAAV2-CB-hAAT recombinant adeno-associated virus alpha 1-antitrypsin
- a second cell-based approach to improving yields of rAAV from cells involves the use of genetically engineered “packaging” cell lines that harbor in their genomes either the AAV rep and cap genes, or both the rep-cap and the ITR-gene of interest (Qiao et al., 2002b).
- a packaging cell line is either infected or transfected with helper functions, and with the AAV ITR-GOI elements.
- the latter approach entails infection or transfection of the cells with only the helper functions.
- rAAV production using a packaging cell line is initiated by infecting the cells with wild-type adenovirus, or recombinant adenovirus. Because the packaging cells comprise the rep and cap genes, it is not necessary to supply these elements exogenously.
- packaging cell lines typically suffer from recombination events, such as recombination of E1a-deleted adenovirus vector with host 293 cell DNA. Infection with recombinant adenovirus therefore initiates both rAAV production and generation of replication-competent adenovirus. Furthermore, only limited success has been achieved in creating packaging cell lines with stable genetic inserts.
- Amplicon systems are inherently replication-deficient; however the use of a “gutted” vector, replication-competent (rcHSV), or replication-deficient rHSV still introduces immunogenic HSV components into rAAV production systems. Therefore, appropriate assays for these components and corresponding purification protocols for their removal must be implemented. Additionally, amplicon stocks are difficult to generate in high titer, and often contain substantial parental virus contamination.
- the current invention provides methods for producing clinically relevant recombinant AAV viral particles using mammalian cells capable of growing in suspension.
- Various embodiments of the present invention involve methods for producing recombinant AAV viral particles in a mammalian cell.
- the methods as described comprise in certain embodiments co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid sequence encoding an AAV rep and an AAV cap gene each operably linked to a promoter, and a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest, flanked by AAV inverted terminal repeats to facilitate packaging of the gene of interest, and allowing the virus to infect the mammalian cell, thereby producing recombinant AAV viral particles in a mammalian cell.
- any type of mammalian cell that is capable of supporting replication of herpesvirus is suitable for use according to the methods of the invention as described herein. Accordingly, the mammalian cell can be considered a host cell for the replication of herpesvirus as described in the methods herein. Any cell type for use as a host cell is contemplated by the present invention, as long as the cell is capable of supporting replication of herpesvirus.
- suitable genetically unmodified mammalian cells include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- One of skill in the art would be familiar with the wide range of host cells that are available for use in methods for producing an rAAV, in particular examples a rAAV as described in the embodiments herein.
- the host cells used in the various embodiments of the present invention may be derived, for example, from mammalian cells such as human embryonic kidney cells or primate cells.
- mammalian cells such as human embryonic kidney cells or primate cells.
- Other cell types might include, but are not limited to BHK cells, Vero cells, CHO cells or any eukaryotic cells for which tissue culture techniques are established as long as the cells are herpesvirus permissive.
- the term “herpesvirus permissive” means that the herpesvirus or herpesvirus vector is able to complete the entire intracellular virus life cycle within the cellular environment.
- methods as described occur in the mammalian cell line BHK, growing in suspension.
- the host cell may be derived from an existing cell line, e.g., from a BHK cell line, or developed de novo.
- a second method that has been used is a gradual adaptation of 293 A cells into suspension growth (Cold Spring Harbor Laboratories, 293S cells).
- Gamier et al. (1994) reported the use of 293 S cells for production of recombinant proteins from adenoviral vectors. The authors found that 293S cells were much less clumpy in calcium-free media and a fresh medium exchange at the time of virus infection could significantly increase the protein production. It was found that glucose was the limiting factor in culture without medium exchange.
- the methods of the invention include also a recombinant AAV viral particle produced in a mammalian cell by the method comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell, and thereby producing recombinant AAV viral particles in a mammalian cell.
- the herpesvirus is a virus selected from the group consisting of: cytomegalovirus (CMV), herpes simplex (HSV) and varicella zoster (VZV) and epstein barr virus (EBV).
- CMV cytomegalovirus
- HSV herpes simplex
- VZV varicella zoster
- EBV epstein barr virus
- the recombinant herpesvirus is replication defective.
- the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- the recombinant viral particle described herein, wherein the gene of interest is a therapeutic gene, that can be, but is in
- a gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid ⁇ -glucosidase (RPGR), Acid
- the method for producing recombinant AAV viral particles in a mammalian cell comprises co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus and a second recombinant herpesvirus comprising a gene of interest
- the invention contemplates use of any gene that has therapeutic or potential therapeutic value in the treatment of a disease or genetic disorder.
- One of skill in the art would be familiar with the wide range of such genes that have been identified.
- the therapeutic genes involved may be those that encode proteins, structural or enzymatic RNAs, inhibitory products such as antisense RNA or DNA, or any other gene product. Expression is the generation of such a gene product or the resultant effects of the generation of such a gene product. Thus, enhanced expression includes the greater production of any therapeutic gene or the augmentation of that product's role in determining the condition of the cell, tissue, organ, or organism.
- the therapeutic gene may encode one or more anti-angiogenic proteins.
- the therapeutic gene can be, but is not limited to an antisense gene, for example antisense ras, antisense myc, antisense raf, antisense erb, antisense src, antisense fms, antisense jun, antisense trk, antisense ret, antisense gsp, antisense hst, antisense bcl, antisense abl, Rb, CFTR, p16, p21, p27, p57, p73, C-CAM, APC, CTS-1, zacl, scFV ras, DCC, NF-1, NF-2, WT-1, MEN-I, MEN-II, BRCA1, VHL, MMAC1, FCC, MCC, BRCA2, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10,
- the recombinant gene is a gene encoding an ACP desaturase, an ACP hydroxylase, an ADP-glucose pyrophorylase, an ATPase, an alcohol dehydrogenase, an alpha 1 antitrypsin gene, an amylase, an amyloglucosidase, a catalase, a cellulase, a cyclooxygenase, a decarboxylase, a dextrinase, an esterase, a DNA polymerase, an RNA polymerase, FLt01, a hyaluron synthase, a galactosidase, a glucanase, a glucose oxidase, a GTPase, a helicase, a hemicellulase, a hyaluronidase, an integrase, an invertase, an isome
- the recombinant gene is a gene encoding carbamoyl synthetase I, ornithine transcarbamylase, arginosuccinate synthetase, arginosuccinate lyase, arginase, fumarylacetoacetate hydrolase, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, low-density-lipoprotein receptor, porphobilinogen deaminase, factor VIII, factor IX, cystathione .beta.-synthase, branched chain ketoacid decarboxylase, albumin, isovaleryl-CoA dehydrogenase, propionyl CoA carboxylase, methyl malonyl CoA mutase, glutaryl CoA dehydrogenase, insulin, beta.-glucosidase, pyruvate carboxylase, hepatic phospho
- the recombinant gene may encode growth hormone, prolactin, placental lactogen, luteinizing hormone, follicle-stimulating hormone, chorionic gonadotropin, thyroid-stimulating hormone, leptin, adrenocorticotropin, angiotensin I, angiotensin II, beta.-endorphin, .beta.-melanocyte stimulating hormone, cholecystokinin, endothelin I, galanin, gastric inhibitory peptide, glucagon, insulin, lipotropins, neurophysins, somatostatin, calcitonin, calcitonin gene related peptide, beta-calcitonin gene related peptide, hypercalcemia of malignancy factor, parathyroid hormone-related protein, parathyroid hormone-related protein, glucagon-like peptide, pancreastatin, pancreatic peptide, peptide YY, PHM, secretin, vasoactive
- the therapeutic gene of the invention is anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid ⁇ -glucosidase (GAA), Choroid
- the therapeutic gene of interest is an angiogenesis inhibition gene (AI) or an alpha 1 antitrypsin gene (AAT).
- AI angiogenesis inhibition gene
- AAT alpha 1 antitrypsin gene
- the first gene cassette is constructed with the gene of interest flanked by inverted terminal repeats (ITRs) from AAV. ITRs function to direct integration of the gene of interest into the host cell genome and are essential for encapsidation of the recombinant genome. (Hermonat and Muzyczka, 1984, Samulski, et al., 1983).
- the second gene cassette contains rep and cap, AAV genes encoding proteins needed for replication and packaging of rAAV.
- the rep gene encodes four proteins (Rep 78, 68, 52 and 40) required for DNA replication.
- the cap genes encode three structural proteins (VP1, VP2, and VP3) that make up the virus capsid (Muzyczka and Berns, 2001.)
- helper functions are protein products from helper DNA viruses that create a cellular environment conducive to efficient replication and packaging of rAAV.
- Ad adenovirus
- herpesviruses can also provide these functions as discussed below.
- rAAV vectors for gene therapy is carried out in vitro, using suitable producer cell lines such as BHK cells grown in suspension.
- suitable producer cell lines such as BHK cells grown in suspension.
- Other cell lines suitable for use in the invention include HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- Any cell type can be used as a host cell, as long as the cell is capable of supporting replication of a herpesvirus.
- One of skill in the art would be familiar with the wide range of host cells that can be used in the production of herpesvirus from host cells.
- suitable genetically unmodified mammalian host cells may include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- a host cell is adapted for growth in suspension culture.
- the host cells are Baby Hamster Kidney (BHK) cells.
- BHK cell line grown in suspension is derived from an adaptation of the adherent BHK cell line. Both cell lines are available commercially.
- a well known strategy for delivering all of the required elements for rAAV production utilizes two plasmids and a helper virus.
- This method relies on transfection of the producer cells with plasmids containing gene cassettes encoding the necessary gene products, as well as infection of the cells with Ad to provide the helper functions.
- This system employs plasmids with two different gene cassettes. The first is a proviral plasmid encoding the recombinant DNA to be packaged as rAAV. The second is a plasmid encoding the rep and cap genes. To introduce these various elements into the cells, the cells are infected with Ad as well as transfected with the two plasmids.
- Ad The gene products provided by Ad are encoded by the genes E1 a, E1b, E2a, E4orf6, and Va (Samulski et al., 1998; Hauswirth et al., 2000; Muzyczka and Burns, 2001).
- the Ad infection step can be replaced by transfection with an adenovirus “helper plasmid” containing the VA, E2A and E4 genes (Xiao, et al., 1998, Matsushita, et al., 1998).
- HSV-1 herpes simplex virus type 1
- the minimal set of HSV-1 genes required for AAV2 replication and packaging has been identified, and includes the early genes UL5, UL8, UL52 and UL29 (Muzyczka and Bums, 2001). These genes encode components of the HSV-1 core replication machinery, i.e., the helicase, primase, primase accessory proteins, and the single-stranded DNA binding protein (Knipe, 1989; Weller, 1991).
- This rAAV helper property of HSV-1 has been utilized in the design and construction of a recombinant herpes virus vector capable of providing helper virus gene products needed for rAAV production (Conway et al., 1999).
- rAAV vectors for gene therapy is carried out in vitro, using suitable producer cell lines such as BHK cells grown in suspension.
- suitable producer cell lines such as BHK cells grown in suspension.
- Other cell lines suitable for use in the invention include HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- Any cell type can be used as a host cell, as long as the cell is capable of supporting replication of a herpesvirus.
- One of skill in the art would be familiar with the wide range of host cells that can be used in the production of herpesvirus from host cells.
- suitable genetically unmodified mammalian host cells may include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- a host cell is adapted for growth in suspension culture.
- the host cells are Baby Hamster Kidney (BHK) cells.
- BHK cell line grown in suspension is derived from an adaptation of the adherent BHK cell line. Both cell lines are available commercially.
- the instant invention provides production of recombinant AAV viral particles in cells growing in suspension.
- Suspension or non-anchorage dependent cultures from continuous established cell lines are the most widely used means of large scale production of cells and cell products.
- Large scale suspension culture based on fermentation technology has clear advantages for the manufacturing of mammalian cell products.
- the processes are relatively simple to operate and straightforward to scale up. Homogeneous conditions can be provided in the bioreactor which allows for precise monitoring and control of temperature, dissolved oxygen, and pH, and ensure that representative samples of the culture can be taken.
- the rHSV vectors used are readily propagated to high titer on permissive cell lines both in tissue culture flasks and bioreactors, and provided a production protocol amenable to scale-up for virus production levels necessary for clinical and market production.
- stirred tank bioreactors provide very high volume-specific culture surface area and has been used for the production of viral vaccines (Griffiths, 1986). Furthermore, stirred tank bioreactors have industrially been proven to be scalable. One example is the multiplate CELL CUBE cell culture system. The ability to produce infectious viral vectors is increasingly important to the pharmaceutical industry, especially in the context of gene therapy.
- a “bioreactor” refers to any apparatus that can be used for the purpose of culturing cells. Growing cells according to the present invention in a bioreactor allows for large scale production of fully biologically-active cells capable of being infected by the Herpes vectors of the present invention.
- Bioreactors have been widely used for the production of biological products from both suspension and anchorage dependent animal cell cultures. Most large-scale suspension cultures are operated as batch or fed-batch processes because they are the most straightforward to operate and scale up. However, continuous processes based on chemostat or perfusion principles are available.
- the bioreactor system can, in certain embodiments, be set up to include a system to allow for media exchange.
- filters may be incorporated into the bioreactor system to allow for separation of cells from spent media to facilitate media exchange.
- media exchange and perfusion is conducted beginning on a certain day of cell growth. For example, media exchange and perfusion can begin on day 3 of cell growth.
- the filter may be external to the bioreactor, or internal to the bioreactor.
- the rHSV co-infection method for recombinant adeno-associated virus (rAAV) production employs two ICP27-deficient recombinant herpes simplex virus type 1 (rHSV-1) vectors, one bearing the AAV rep and cap genes (rHSV-rep2capX, with “capX” referring to any of the AAV serotypes), and the second bearing the gene of interest (GOI) cassette flanked by AAV inverted terminal repeats (ITRs).
- the system was developed with AAV serotype 2 rep, cap, and ITRs, as well as the humanized green fluorescent protein gene (GFP) as the transgene, the system can be employed with different transgenes and serotype/pseudotype elements.
- GFP humanized green fluorescent protein gene
- Mammalian cells are infected with the rHSV vectors, providing all cis and trans-acting rAAV components as well as the requisite helper functions for productive rAAV infection.
- Cells are infected with a mixture of rHSV-rep2capX and rHSV-GOI.
- Cells are harvested and lysed to liberate rAAV-GOI, and the resulting vector stock is titered by the various methods described below.
- An alternative method for harvesting rAAV is by in situ lysis. At the time of harvest, MgCl 2 is added to a final concentration of 1 mM, 10% (v/v) Triton X-100 added to a final concentration of 1% (v/v), and Benzonase is added to a final concentration of 50 units/mL. This mixture is either shaken or stirred at 37° C. for 2 hours.
- the DNAse-resistant particle (DRP) assay employs sequence-specific oligonucleotide primers and a dual-labeled hybridizing probe for detection and quantification of the amplified DNA sequence using real-time quantitative polymerase chain reaction (qPCR) technology.
- the target sequence is amplified in the presence of a fluorogenic probe which hybridizes to the DNA and emits a copy-dependent fluorescence.
- the DRP titer (DRP/mL) is calculated by direct comparison of relative fluorescence units (RFUs) of the test article to the fluorescent signal generated from known plasmid dilutions bearing the same DNA sequence.
- the data generated from this assay reflect the quantity of packaged viral DNA sequences, and are not indicative of sequence integrity or particle infectivity.
- Infectious particle (ip) titering is performed on stocks of rAA V-GFP using a green cell assay.
- C12 cells a HeLa derived line that expressed AAV2 Rep and Cap genes—see references below
- C12 cells are infected with serial dilutions of rAA V-GFP plus saturating concentrations of adenovirus (to provide helper functions for AAV replication).
- the number of fluorescing green cells are counted and used to calculate the ip/mL titer of the virus sample.
- Clark K R et al. described recombinant adenoviral production in Hum. Gene Ther. 1995. 6:1329-1341 and Gene Ther. 1996. 3:1124-1132, both of which are incorporated by reference in their entireties herein.
- rAAV-GOI tissue culture infectious dose at 50% (TCID 50 ) assay. Eight replicates of rAAV were serially diluted in the presence of human adenovirus type 5 and used to infect HeLaRC32 cells (a HeLa-derived cell line that expresses AAV2 rep and cap, purchased from ATCC) in a 96-well plate.
- lysis buffer final concentrations of 1 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.25% (w/v) deoxycholate, 0.45% (v/v) Tween-20, 0.1% (w/v) sodium dodecyl sulfate, 0.3 mg/mL Proteinase K
- lysis buffer final concentrations of 1 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.25% (w/v) deoxycholate, 0.45% (v/v) Tween-20, 0.1% (w/v) sodium dodecyl sulfate, 0.3 mg/mL Proteinase K
- rAAV vectors for gene therapy is carried out in vitro, using suitable producer cell lines such as BHK cells grown in suspension.
- suitable producer cell lines such as BHK cells grown in suspension.
- Other cell lines suitable for use in the invention include HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- DMEM Dulbecco's modified Eagle's medium
- FBS fetal bovine serum
- Host cell suspension stocks such as BHK suspension cell stock, may be used to seed spinner flasks, shaker flasks, bioreactors or other cultures at various seeding densities. Satisfactory cell growth may be achieved with a wide range of cell seeding densities.
- the cell seeding density is recommended to be at least about, at most about, about, or higher than 2 ⁇ 10 5 cells/mL and includes, but is not limited to cell densities of at least about, at most about, or about 5 ⁇ 10 5 cells/mL, including all values or ranges there between.
- Cells can be cultured at temperatures that include, but are not limited to at least about, at most about, or about 32.degree. C., 33.degree. C., 34.degree. C., 35.degree. C., 36.degree. C., 37.degree. C., 38.degree. C., 39.degree. C. or 40.degree. C., including all values therebetween.
- the incubation temperature for growth of BHK suspension cells will be 37 degree C.
- Cells may be cultured in spinner flasks inside incubators or in bioreactors having an atmosphere of at least about, at most about, or about 0, 5, 10, 15, or 20% CO 2 . In certain preferred embodiments, cell growth was achieved at CO 2 percentages of 5% CO 2 . Typically, the growth of suspension cells requires CO 2 in the culture environment and should be maintained between 4 and 6 percent or any value or range there between.
- a spinner flask may be used and seeded with suspension cells at an appropriate cell seeding density as described herein.
- a bioreactor may be used such as a Wave disposable bioreactor or a continuous stirred-tank bioreactor) and seeded with suspension cells at an appropriate cell seeding density. Cells are grown inside the spinner flask or bioreactor.
- cells When cells reach a density between 9 ⁇ 10 5 and 2.5 ⁇ 10 6 cells/mL, nutrients can be replenished and waste byproducts removed by media exchange, dilution, or perfusion (continuous media input and removal). Alternatively, the cells can be kept at the higher density to grow cells to the density desired for rAAV production, in either a spinner flask or bioreactor, Accordingly, a high cell concentration is expected, in certain preferred embodiments, to improve the volumetric productivity of recombinant AAV production.
- the bioreactor can hold any volume of media, for example a 10 L Wave bioreactor can hold up to 5 L working volume).
- the bioreactor can be adjusted to rock at a particular speed and angle.
- the bioreactor may include a device for monitoring dissolved oxygen tension, such as a disposable dissolved oxygen tension (DOT) probe.
- the bioreactor may also include a device for monitoring temperature in the media.
- Other embodiments include a device for measuring and adjusting culture pH, such as a gas mixer which can adjust CO.sub.2 gas percentage delivered to the media.
- the bioreactor may or may not be a disposable bioreactor.
- Cells can be infected with recombinant herpesviruses at a combined MOI of between 3 and 14 plaque forming units per cell (pfu/cell). A relatively consistent virus yield is observed with a combined MOI at or above 6 pfu/cell. Data suggest that combined MOIs between 6 and 14 pfu/cell appear to be the optimal range for rAAV production in BHK suspension culture.
- the invention requires co-infection of cells with a replication-deficient rHSV vector that provides helper functions for rAAV production.
- the invention provides a simplified rHSV-based system for rAAV production that uses two or more replication-deficient rHSV vectors including one for the delivery of the rAAV rep and cap functionalities and one for delivery of the therapeutic gene (the gene of interest).
- the availability of separate replication-defective rHSV vectors of the invention as described makes it possible to modulate the rep and cap functionalities relative to the gene of interest, by varying the co-infection MOI.
- the optimal ratio is 2:1, but rAAV production can occur with ratios of 1:2 to 6:1 of rHSV-rep2capX and rHSV-GOI, respectively.
- Cells can be grown to various concentrations including, but not limited to at least about, at most about, or about 1 ⁇ 10 6 to 4 ⁇ 10 6 cells/mL. The cells can then be infected with recombinant herpesvirus at a predetermined MOI.
- the conditions of infection comprise media exchange on or about, but not limited to 2 hours post-infection.
- Fresh media is preferably, but not limited to, Dulbecco's modified Eagle's medium (DMEM, Hyclone) lacking FBS.
- rHSV-rep2cap2 (originally denoted d27.1-rc) was constructed as previously described, Briefly, rHSV-rep2cap2 was constructed by homologous recombination of an AAV2 rep and cap gene cassette into the tk locus of the rHSV-1, ICP27-deleted d27.1 vector in which the AAV2 rep and cap genes are under control of their native promoters (p5, p19 and p40). The rHSV-rep2cap1 vector was constructed by as described above using cap1. In this method, any combination of rep and cap can be used.
- rHSV-AAV2/GFP vector (referred to as rHSV-GFP) was constructed by homologous recombination of a CMV promoter-driven hGFP-neomycin resistance gene cassette, flanked by the AAV2 ITRs, into the tk locus of the d27.1 vector as described above.
- selection systems that preclude growth of undesirable cells. This may be accomplished by virtue of permanently transforming a cell line with a selectable marker or by transducing or infecting a cell line with a viral vector that encodes a selectable marker. In either situation, culture of the transformed/transduced cell with an appropriate drug or selective compound will result in the enhancement, in the cell population, of those cells carrying the marker.
- V27 is an ICP27-expressing Vero cell line derivative which harbors approximately one copy of the ICP27 gene per haploid genome equivalent. Infection steps were done in the absence of serum. Vector stocks were propagated either by seeding T225 flasks with 3 ⁇ 10 V27 cells, or 10-stack cell factories with 1.5 ⁇ 10 V27 cells, followed by infecting 24 h post-seeding with either rHSV-rep2capX or rHSV-GOI at a MOI of 0.15.
- rHSV vectors were harvested at 72 hours post-infection (h.p.i.) by separating the infected cells from the media centrifugation (10 min, 4° C., 1100 g). The supernatant is set aside while the cell pellet is treated with 0.6 M NaCl in IX Phosphate-buffered saline, pH 6.5, for 30 minutes at 37° C. The cells are then re-pelleted by centrifugation as above. This second supernatant is recombined with the first supernatant (with the cell pellet discarded), formulated with 5% (v/v) sterile glycerol and was stored at ⁇ 80° C. rHSV-1 vector stocks were used for rAAV production without further manipulation.
- Numerous cell lines are capable of producing high specific yields of recombinant adeno-associated virus (rAAV) vectors using the rHSV co-infection method, as described in U.S. application Ser. No. 11/503,775, which is a continuation-in-part of U.S. application Ser. No. 10/252,182, now U.S. Pat. No. 7,091,029, issued Aug. 15, 2006, both of which are incorporated by reference herein.
- Baby hamster kidney cells clone 13 (BHK-21) and human embryonic kidney cells (HEK 293) produce the highest levels of rAAV particularly in comparison to traditional methods of rAAV production (as described in U.S. application Ser. No. 11/503,775, above).
- Clone C13-2P (referred to from this point on as “sBHK”) was selected for additional experiments due to the higher level of rAAV production. The growth of these cells was further characterized. The cells are maintained between 2 ⁇ 10 5 and 1.3 ⁇ 10 6 cells/mL in DMEM supplemented with 10% FBS. Numerous vials of sBHK cells have been thawed. Specifically, 33 vials representing 6 banks of cells have been thawed and propagated with a mean doubling time of 11.9+/ ⁇ 1.9 hours (a variance of 16.3%). In comparison, adherent 293 cells have a doubling time of ⁇ 22-24 hours. Therefore, the faster doubling of the sBHK cells provides the advantage of faster amplification for scale-up.
- the optimal harvest time of rAAV production in adherent 293 cells is 48-72 hpi. Due to the faster growth rate of the sBHK cells, we wanted to re-examine the optimal time range for rAAV production in the suspension platform.
- the experiment shown in FIG. 2 demonstrated that rAAV production levels are similar when harvested between 24 and 69 hours post-infection (hpi).
- the ability to achieve similar rAAV yields at 24 hpi as at later times offers the advantages of shorter manufacturing times and flexibility in manufacturing schedules.
- Example 4 Example 4. Cell Density at Infection
- the rHSV co-infection method produces optimal levels of recombinant rAAV on adherent cells when rHSV-rep2capX and rHSV-GOI are used at MOIs of 12 and 2, respectively.
- the productions levels drop precipitously as the MOI of rHSV-rep2capX drops.
- Using an MOI of 12 for the rHSV-rep2capX translates into very large quantities of recombinant virus required when considering large scale manufacturing of rAAV.
- This example addressed whether the MOI of rHS V-rep2capX in co-infections on sBHK cells, unlike 293 cells, could be lowered without significant loss of specific yield.
- the results in FIG. 4 are the cumulative data of several experiments examining rAAV production levels when rHSV-rep2cap2 is used at an MOI of 4 to 12 (with rHSV-GOI MOI held constant at 2).
- results in FIG. 5 are the cumulative data of several experiments examining rAAV production levels when rHSV-rep2cap1 is used at an MOI of 1 to 12.
- rAAV1-AAT production in sBHK cells was also insensitive to rHSV-rep2/cap1 vector MOI inputs of 12, 8, and 4; however, rAAV1-AAT yields dropped according with further reductions in rHSV-AAT MOI to 2 and 1.
- a second recombinant herpesvirus comprises a gene of interest, and a promoter operably linked to said gene of interest.
- the gene of interest can be a therapeutic gene that is useful for gene therapy applications.
- FIG. 6A shows the yields of different serotypes and transgenes used in the sBHK system.
- FIG. 6B shows the DRP to infectivity ratios of representative samples from FIG. 6A . The differences between the serotypes reflect their in vitro infectivity variation on the cell-type used for the infectivity assay.
- sBHK rAAV2-GFP production was scaled to Celligen Plus continuous stirred tank reactors (CSTR) in DMEM supplemented with 5% FBS.
- the pH set point was 7.2
- the dissolved oxygen (D.O.) set point was 50% of air saturation
- the agitation set point, using marine impellers was 100 rpm, in a 3.5 L working volume, 5.0 L total volume jacketed glass vessel equipped with spin filters for cell retention.
- FIG. 7 shows the results.
- rAAV production was also scaled to 1 L/2 L (working volume/total volume) Wave disposable bioreactors.
- the pH set point was 7.2
- the agitation rate was 20 rocks/min
- the rocking angle was 7°
- total gas flow varied between 0.1 and 0.3 L/min.
- Bioreactors were seeded with an initial volume of 1.0 L at a density of 1.0-2.5 ⁇ 10 5 cells/mL. Cells were grown in fed-batch (run 1, 2, 3) or perfusion (run 4, 5) to prevent nutrient depletion, and pre-infection cell growth as a function of time in 1 L/2 L Wave disposable bioreactors is shown in FIG. 9 . The average doubling time was 13.5 h.
- FIG. 11 shows typical metabolite concentrations for 1 L Wave fed-batch runs.
- FIG. 12 shows metabolite concentrations for a typical 1 L perfusion run.
- sBHK rAAV batch production was also scaled to 5 and 10 L culture volumes in 10 L/20 L (working volume/total volume) Wave bioreactors using a rHSV-rep2cap1 at an MOI of 4 and a rHSV-AAT at an MOI of 2.
- Cells were grown as in 1 L Wave bioreactor cultures, with (10 L) or without (5 L and 10 L) media exchange. Media exchanged cultures grew to higher terminal cell densities since nutrients were replenished.
- FIG. 13 shows a typical 5 L Wave disposable bioreactor culture without media exchange that resulted in a pre-infection cell density of 2.3 ⁇ 10 6 cells/mL.
- FIG. 14 is a graph that shows typical sBHK cell growth at the 10 L culture volume scale in Wave bioreactor runs resulting in average doubling times of 13.1 h.
- FIG. 14 demonstrates that spinner flask and 1 L Wave bioreactor cell growth rates were successfully scaled to 10 L Wave bioreactor production volumes while maintaining similar growth rates without inhibition from ammonium accumulation (Christie, A., and Butler, M.; 1999, The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotechnol Bioeng 64, 298-309).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 13/683,577, filed on Nov. 21, 2012, which is a continuation of U.S. patent application Ser. No. 12/812,671, filed on Jul. 13, 2010, now abandoned, which is a continuation of International Application No. PCT/US2009/000577, filed Jan. 29, 2009, which claims the benefit of U.S. Provisional Application No. 61/062,819, filed Jan. 29, 2008. The entire contents of each of the above documents is herein incorporated by reference in their entirety.
- The present invention relates to the field of viral based gene therapy, in particular to recombinant adeno-associated virus (rAAV) based gene therapy. The invention relates to methods for producing recombinant AAV viral particles using cells grown in suspension. The invention provides recombinant AAV particles for use in methods for delivering genes encoding therapeutic proteins, and methods for using the recombinant AAV particles in in vivo or in ex vivo gene therapy.
- The present invention seeks to overcome some of the deficiencies in the prior art by addressing problems that limit production of rAAV vectors in sufficient quantities for efficient gene therapy procedures. It is apparent from the foregoing that there is a clear need for improved large-scale methods for production of high titer infectious rAAV and improved production methods can include different techniques to make production more efficient.
- Using methods and materials disclosed herein, infectious rAAV can be obtained in mammalian cell lines grown in suspension including those that have not been genetically altered by recombinant genetic engineering for improved rAAV production.
- The present invention seeks to overcome some of the deficiencies in the prior art by addressing problems that limit production of rAAV in sufficient quantities for clinical and commercial application. Because the quantity of virus that is required for clinical application, an efficient and scalable method of virus production is required. This invention provides an efficient and scalable method for producing recombinant AAV viral particles by utilizing cells grown in suspension.
- The invention is based, in part, on a novel method for producing high titer rAAV as described in U.S. application Ser. No. 11/503,775, entitled Recombinant AAV Production in Mammalian Cells, filed Aug. 14, 2007, which is a continuation-in-part of U.S. application Ser. No. 10/252,182, entitled High Titer Recombinant AAV Production, filed Sep. 23, 2002, now U.S. Pat. No. 7,091,029, issued Aug. 15, 2006. The contents of all the aforementioned applications are hereby incorporated by reference in their entirety.
- In the method described herein, mammalian cells are simultaneously or sequentially co-infected within several hours with at least two recombinant herpes simplex viruses (rHSV). The two rHSV are vectors designed to provide the cells, upon infection, with all of the components necessary to produce rAAV. The method does not require the use of mammalian cells specialized for expression of particular gene products. This is advantageous because the invention can be practiced using any mammalian cell generally suitable for this purpose.
- Examples of suitable genetically unmodified mammalian cells include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- In a first aspect, the invention features a method for producing recombinant AAV viral particles in a mammalian cell comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus (rHSV) comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second rHSV comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell; thereby producing recombinant AAV viral particles in a mammalian cell.
- In one embodiment, the gene of interest is a therapeutic gene.
- In another embodiment, the therapeutic gene is selected from the group consisting of: an angiogenesis inhibiting gene (AI), alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, and RPE65. In certain embodiments, the angiogenesis inhibiting gene is sFlt01.
- In a further embodiment, the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, and AAV-8, AAV-9, and rh-AAV-10.
- In another aspect, the invention features a method for producing recombinant AAV viral particles in a mammalian cell comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep2 and an AAV cap1 or
cap 2 gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus Comprising a therapeutic gene like analpha 1 antitrypsin gene, and a promoter operably linked to said gene; and allowing the virus to infect the mammalian cell, thereby producing recombinant AAV viral particles in a mammalian cell. - In one embodiment of the aspects described above, the mammalian cell is selected from the group consisting of: BHK, HEK-293 (293), Vero, RD, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- In another aspect, the invention features a method for producing recombinant AAV viral particles in a BHK cell comprising co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the BHK cell; thereby producing recombinant AAV viral particles in a BHK cell.
- In yet another aspect the invention features a method for producing recombinant viral particles in a BHK cell comprising co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep2 and an AAV cap1, -2, -5, or -8 gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising an AI gene or an
alpha 1 antitrypsin gene, and a promoter operably linked to said gene of interest; and allowing the virus to infect the BHK cell; thereby producing recombinant viral particles in a BHK cell. - In an embodiment of the method of any one of the above-mentioned claims, the herpesvirus is a virus selected from the group herpesviridae consisting of cytomegalovirus (CMV), herpes simplex (HSV), varicella zoster (VZV), and epstein barr virus (EBV), Kaposi sarcoma-associated virus (KSHV), human herpesvirus 6a and 6b (HHV6a and HHV6b), and human herpesvirus 7 (HHV7).
- In another embodiment, the herpesvirus is replication defective.
- In another embodiment, the gene of interest is a therapeutic gene.
- In a further embodiment, the therapeutic gene is selected from the group consisting of an anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid α-glucosidase (GAA), Choroideremia (CHM), Rab escort protein-1 (REP1), Alpha-synuclein (SNCA), Coagulation factor VIII, procoagulant component (hemophilia A or F8), Coagulation factor IX (plasma thromboplastic component, Christmas disease, hemophilia B or F9), Aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), X-linked Inhibitor of Apoptosis Protein (XIAP), clarin-1 (CLRN1), Leber's hereditary neuropathy genes (MT-ND1, MT-ND4, MT-ND4L, and MT-ND6), alpha-galactosidase A (α-Gal A) or Alpha-L-iduronidase.
- In still another embodiment, the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- In another embodiment of any one of the above-mentioned aspects, the method further comprises the step of determining multiplicity of infection (MOI). In a related embodiment, the total MOI is between 3 and 14.
- In one embodiment of any one of the above-mentioned aspects, the co-infection is simultaneous.
- In another aspect, the invention features a method for producing recombinant viral particles in a BHK cell comprising simultaneously co-infecting a BHK cell capable of growing in suspension with a first recombinant Herpes Family virus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant Herpes Family virus comprising a gene of interest, and a promoter operably linked to said gene of interest, allowing the virus to infect the BHK cell; and purifying the viral particles, thereby producing recombinant viral particles in a BHK cell.
- In a further aspect, the invention features a method for producing recombinant viral particles in a BHK cell comprising simultaneously co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising an AI gene or an
alpha 1 antitrypsin gene, and a promoter operably linked to said gene of interest, allowing the virus to infect the BHK cell; and purifying the viral particles; thereby producing recombinant viral particles in a BHK cell. - In one embodiment of the above aspects, the herpesvirus is a virus selected from the group consisting of HSV-1, HSV-2, HHV-3, HHV-4, HHV-5, HHV-6, HHV-7, HHV-8. In a further embodiment, the herpesvirus is a human herpesvirus selected from the group consisting of:
human herpesviruses types - In another embodiment, the recombinant herpesvirus is replication defective.
- In a further embodiment, the gene of interest is a therapeutic gene.
- In another further embodiment, the therapeutic gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid α-glucosidase (GAA), Choroideremia (CHM), Rab escort protein-1 (REP1), Alpha-synuclein (SNCA), Coagulation factor VIII, procoagulant component (hemophilia A or F8), Coagulation factor IX (plasma thromboplastic component, Christmas disease, hemophilia B or F9), Aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), X-linked Inhibitor of Apoptosis Protein (XIAP), clarin-1 (CLRN1), Leber's hereditary neuropathy genes (MT-ND1, MT-ND4, MT-ND4L, and MT-ND6), alpha-galactosidase A (α-Gal A) or Alpha-L-iduronidase.
- In still another embodiment, the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- In another embodiment, the invention features a method for producing recombinant viral particles in a mammalian cell according to any one of the aspects as described above, whereby the number of viral particles produced is equal to or greater than the number of viral particles grown in an equal number of cells under adherent conditions.
- In another aspect, the invention features a recombinant AAV viral particle produced in a mammalian cell by the method comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell; thereby producing recombinant AAV viral particles in a mammalian cell.
- In one embodiment, the herpesvirus is a virus selected from the group consisting of: cytomegalovirus (CMV), herpes simplex (HSV) and varicella zoster (VZV) and epstein barr virus (EBV).
- In another embodiment, the recombinant herpesvirus is replication defective.
- In still another embodiment, the gene of interest is a therapeutic gene.
- In yet another further embodiment, the therapeutic gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid α-glucosidase (GAA), Choroideremia (CHM), Rab escort protein-1 (REP1), Alpha-synuclein (SNCA), Coagulation factor VIII, procoagulant component (hemophilia A or F8), Coagulation factor IX (plasma thromboplastic component, Christmas disease, hemophilia B or F9), Aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), X-linked Inhibitor of Apoptosis Protein (XIAP), clarin-1 (CLRN1), Leber's hereditary neuropathy genes (MT-ND1, MT-ND4, MT-ND4L, and MT-ND6), alpha-galactosidase A (α-Gal A) or Alpha-L-iduronidase.
- In another embodiment, the gene of interest is a reporter gene.
- In a further embodiment, the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- In another aspect, the invention features a recombinant AAV viral particle produced in a BHK cell comprising co-infecting a BHK cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the BHK cell; thereby producing recombinant AAV viral particles in a BHK cell.
- In another aspect, the invention features a method for delivering a nucleic acid sequence encoding a therapeutic protein to a target cell, the method comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second herpesvirus comprising a gene of interest, wherein the gene of interest comprises a therapeutic gene, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell and express the nucleic acid sequence encoding a therapeutic protein; thereby delivering a nucleic acid sequence encoding a therapeutic protein to the target cell.
- In one embodiment, the herpesvirus is a virus selected from the group consisting of: cytomegalovirus (CMV), herpes simplex (HSV) and varicella zoster (VZV) and epstein barr virus (EBV).
- In another embodiment, the recombinant Herpes Family virus is replication defective.
- In a further embodiment, the gene of interest is a therapeutic gene.
- In still another embodiment, the therapeutic gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR),
- Acid α-glucosidase (GAA), Choroideremia (CHM), Rab escort protein-1 (REP1), Alpha-synuclein (SNCA), Coagulation factor VIII, procoagulant component (hemophilia A or F8), Coagulation factor IX (plasma thromboplastic component, Christmas disease, hemophilia B or F9), Aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), X-linked Inhibitor of Apoptosis Protein (XIAP), clarin-1 (CLRN1), Leber's hereditary neuropathy genes (MT-ND1, MT-ND4, MT-ND4L, and MT-ND6), alpha-galactosidase A (α-Gal A) or Alpha-L-iduronidase.
- In a further embodiment, the AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- In another aspect, the invention features a kit for making a recombinant viral particle in a mammalian cell that is capable of growing in suspension, and instructions for use.
- In yet another aspect, the invention features a kit for delivering a nucleic acid sequence encoding a therapeutic protein to a target cell according to
claim 33, and instructions for use. -
FIG. 1 is a graph that shows a comparison of rAAV production by two different isolates of suspension BHK cells. Suspension BHK isolates C13-2P (4.5×105 cells/mL) and AC9 (4.7×105 cells/mL) were co-infected with rHS V-rep2cap2 and rHSV-GFP at a multiplicity of infection (MOI) of 12 and 2, respectively. Samples of the production over time were assayed for the level of rAAV2-GFP production by the green-cell infectivity assay. -
FIG. 2 is a graph that shows rAAV production over time. Cells were co-infected at 1.0×106 cells/mL with rHSV-rep2cap2 and rHSV-GFP at an MOI of 12 and 2, respectively. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS. Samples of the production over time were assayed for the level of rAAV2-GFP production by the green-cell infectivity assay. Error bars represent the standard deviation over 3 flasks. -
FIG. 3 is a graph that shows cell density at infection. sBHK cells at the range of cell densities indicated in a total volume of 25 mL were co-infected with rHSV-rep2cap2 and rHSV-GFP at an MOI of 12 and 2, respectively. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS. Samples were harvested by in situ lysis at 22 hpi and were assayed for the level of rAAV2-GFP production (ip/cell—bars; total ip in the 25 mL culture—open circles) by the green-cell infectivity assay. Error bars represent the intra-assay variation. -
FIG. 4 (A and B) is two graphs that show rAAV production over of range of MOI for rHSV-rep2cap2.FIG. 4A shows cumulative data for experiments examining rAAV production with rHSV-rep2cap2 used in co-infections over the indicated range of MOIs. All co-infections were performed with rHSV-GFP used at an MOI of 2 and cells were infected at densities ranging from 8.13×105 to 3.76×106 cells/mL. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS. Samples were harvested by in situ lysis between 18 and 48 hpi and were assayed for the level of rAAV2-GFP production by the green-cell infectivity assay. The numbers inside the bars represent the number of flasks assayed at the indicated MOI. Error bars represent inter-assay variation.FIG. 4B shows DNAse-resistant particle (DRP) and ip production by sBHK cells with rHSV-rep2cap2 used at varying MOIs. Representative samples (n=2) from graph A were also assayed for the level of DRP produced (line). The mean ip/cell of those samples is presented as well (bars). The mean DRP to ip ratio is 13.8 (+/−3.2) to 1. -
FIG. 5 is a graph that shows rAAV production over of range of MOI for rHSV-rep2cap1. Cumulative data for experiments examining rAAV production with rHSV-rep2cap1 used in co-infections over the indicated range of MOIs is presented. All co-infections were performed with rHSV-AAT used at an MOI of 2 and cells were infected at densities ranging from 1.45×106 to 2.40×106 cells/mL. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS. Samples were harvested by in situ lysis between 23 and 48 hpi and were assayed for the level of rAAV1-AAT production by the DNAse-resistant particle—quantitative real-time PCR. The numbers inside the bars represent the number of flasks assayed at the indicated MOI. Error bars represent inter-assay variation. -
FIG. 6A is a graph that shows production levels of rAAV of different capsid serotypes (1, 2, 5, 8, and 9) with different transgenes (AI, AAT, and GFP). All co-infections were performed with rHSV-rep2capX at an MOI of 4 and rHSV-GOI at an MOI of 2 and cells were infected at densities ranging from 1.2×106 to 2.0×106 cells/mL. Two hours post-infection, cells were pelleted and resuspended in DMEM without FBS. Samples were harvested by in situ lysis between 24 and 30 hpi and were assayed for the level of rAAVX-GOI production by the DNAse-resistant particle—quantitative real-time PCR. Error bars represent inter-assay variation. Representative samples from the experiments inFIG. 6A were assayed for infectivity using the TCID50 end-point dilution assay. The DRP/infectivity ratios (DRP:ip) are depicted inFIG. 6B . The differences in infectivity between the three serotypes indicated (rAAV types -
FIG. 7 is a graph that shows rAAV2-GFP production in a Celligen Plus CSTR. At 24 hpi, the DRP:ip was 10:1 and the capsid:DRP was 4.4:1 (cell-associated vector). During cell growth, the average doubling time was 9.6 h. -
FIG. 8 is a graph that shows the results of an experiment that is a repeat of rAAV2-GFP production in a Celligen Plus CSTR as shown inFIG. 7 . The DRP:ip was 11:1 and the capsid:DRP was 6.6:1 (cell-associated vector). -
FIG. 9 is a graph that shows pre-infection sBHK growth in Wave bioreactors as a function of time for fed-batch and perfusion runs. -
FIG. 10 is a graph that shows typical rAAV1-AAT specific yields (DRP/cell) for Wave disposable bioreactor vector production at ½ L (49 hpi. n=3. rHSV-rep2cap1 MOI of 12 and rHSV-A AT MOI of 2), 5/10 L (24 hpi, n=4. rHSV-rep2cap1 MOI of 4 and rHSV-A AT MOI of 2), and 10/20 L (24 hpi, n=6, rHSV-rep2cap1 MOI of 4 and rHSV-AAT MOI of 2) culture scales. -
FIG. 11 is a graph that shows metabolite concentrations during a 1 L fed-batch sBHK rAAV1-AAT production run, pre- and post-infection. -
FIG. 12 is a graph that shows typical metabolite concentrations during a 1 L perfusion sBHK rAAV1-AAT production run, pre- and post-infection. -
FIG. 13 is a graph that shows typical cell growth and viability for a 5 L culture volume Wave bioreactor batch run. -
FIG. 14 is a graph that shows typical cell growth, viability, and ammonium concentrations for a 10 L culture volume Wave bioreactor batch run. - The invention generally provides methods for producing recombinant AAV viral particles, using cells grown in suspension, and their use in methods of gene therapy.
- Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed, 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.
- As used herein, the term “gene” or “coding sequence” refers to a DNA region (the transcribed region) which encodes a protein. A coding sequence is transcribed (DNA) and translated (RNA) into a polypeptide when placed under the control of an appropriate regulatory region, such as a promoter. A gene may comprise several operably linked fragments, such as a promoter, a 5′leader sequence, a coding sequence and a 3′nontranslated sequence, comprising a polyadenylation site. The phrase “expression of a gene” refers to the process wherein a gene is transcribed into an RNA and/or translated into an active protein.
- The term “gene of interest” (GOI) is meant to refer to a heterologous sequence introduced into an AAV expression vector, and typically refers to a nucleic acid sequence encoding a protein of therapeutic use in humans or animals.
- The term “herpesvirus” or “herpesviridae family” is meant to refer to the general family of enveloped, double-stranded DNA viruses with relatively large genomes. The family replicates in the nucleus of a wide range of vertebrate and invertebrate hosts, in preferred embodiments, mammalian hosts, for example in humans, horses, cattle, mice, and pigs. Exemplary members of the herpesviridae family include cytomegalovirus (CMV), herpes
simplex virus types 1 and 2 (HSV1 and HSV2) and varicella zoster (VZV) and epstein barr virus (EBV). - The term “infection” is meant to refer to delivery of heterologous DNA into a cell by a virus. The term “co-infection” as used herein means “simultaneous infection,” “double infection,” “multiple infection,” or “serial infection” with two or more viruses. Infection of a producer cell with two (or more) viruses will be referred to as “co-infection.” The term “transfection” refers to a process of delivering heterologous DNA to a cell by physical or chemical methods, such as plasmid DNA, which is transferred into the cell by means of electroporation, calcium phosphate precipitation, or other methods well known in the art.
- The terms “recombinant HSV,” “rHSV,” and “rHSV vector” refer to isolated, genetically modified forms of herpes simplex virus type 1 (HSV) containing heterologous genes incorporated into the viral genome. By the term “rHSV-rep2cap2” or “rHSV-rep2cap1” is meant an rHSV in which the AAV rep and cap genes from either
AAV serotype - The term “AAV virion” refers to a complete virus particle, such as for example a wild type AAV virion particle, which comprises single stranded genome DNA packaged into AAV capsid proteins. The single stranded nucleic acid molecule is either sense strand or antisense strand, as both strands are equally infectious. The term “rAAV viral particle” refers to a recombinant AAV virus particle, i.e. a particle that is infectious but replication defective. A rAAV viral particle comprises single stranded genome DNA packaged into AAV capsid proteins.
- The term “therapeutic protein” as used herein refers to a protein, which has a therapeutic effect on a disease or disorder to be treated. The therapeutic protein, when expressed in an effective amount (or dosage) is sufficient to prevent, correct and/or normalize an abnormal physiological response. For example, a therapeutic protein may be sufficient to reduce by at least about 30 percent, more preferably by at least 50 percent, most preferably by at least 90 percent, a clinically significant feature of disease or disorder.
- As used herein, the term “transgene” refers to a heterologous gene(s), or recombinant genes (“gene cassette”) in a vector, which is transduced into a cell. Use of the term “transgene” encompasses both introduction of the gene or gene cassette for purposes of correcting a gene defect in the cell, or altering the functions of the transduced and/or surrounding cells, and introduction of the gene or gene cassette into a producer cell for purposes of enabling the cell to produce rAAV. In certain embodiments, introducing the gene or gene cassette for the purposes of correcting a gene defect in the cell or altering the functions of the transduced and/or surrounding cells can be carried out by gene therapy. By the term “vector” is meant a recombinant plasmid or viral construct used as a vehicle for introduction of transgenes into cells.
- Adeno-Associated Virus (AAV) is a non-pathogenic single-stranded DNA parvovirus. AAV has a capsid diameter of about 20 nm. Each end of the single-stranded DNA genome contains an inverted terminal repeat (ITR), which is the only cis-acting element required for genome replication and packaging. The AAV genome carries two viral genes: rep and cap. The virus utilizes two promoters and alternative splicing to generate four proteins necessary for replication (Rep78, Rep 68, Rep 52 and Rep 40). A third promoter generates the transcript for three structural viral capsid proteins, 1, 2 and 3 (VP1, VP2 and VP3), through a combination of alternate splicing and alternate translation start codons (Berns K I, Linden R M. The cryptic life style of adeno-associated virus. Bioessays. 1995; 17:237-45). The three capsid proteins share the same C-terminal 533 amino acids, while VP2 and VP1 contain additional N-terminal sequences of 65 and 202 amino acids, respectively. The AAV virion contains a total of 60 copies of VP1, VP2, and VP3 at a 1:1:20 ratio, arranged in a T=1 icosahedral symmetry (Rose J A, Maizel J V Jr, Inman J K, Shatkin A J. Structural proteins of adenovirus-associated viruses. J Virol. 1971; 8:766-70). AAV requires Adenovirus (Ad), Herpes Simplex Virus (HSV) or other viruses as a helper virus to complete its lytic life-cycle (Atchison R W, Casto B C, Hammon W M. Adenovirus-Associated Defective Virus Particles. Science. 1965; 149:754-6; Hoggan M D, Blacklow N R, Rowe W P. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci USA. 1966; 55:1467-74). In the absence of the helper virus, wt AAV establishes latency by integration with the assistance of Rep proteins through the interaction of the ITR with the chromosome (Berns et al., 1995).
- AAV Serotypes
- There are a number of different AAV serotypes, including AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, and AAV-8, AAV-9, and rh-AAV-10. In vivo studies have shown that the various AAV serotypes display different tissue or cell tropisms. For example, AAV-1 and AAV-6 are two serotypes that are efficient for the transduction of skeletal muscle (Gao G P, Alvira M R, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002; 99:11854-11859; Xiao W, Chirmule N, Berta S C, et al. Gene therapy vectors based on adeno-associated
virus type 1. J Virol. 1999; 73:3994-4003; Chao H, Liu Y, Rabinowitz J, et al. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther. 2000; 2:619-623). AAV-3 has been shown to be superior for the transduction of megakaryocytes (Handa A, Muramatsu S, Qiu J, Mizukami H, Brown K E. Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol. 2000; 81:2077-2084). AAV-5 and AAV-6 infect apical airway cells efficiently (Zabner J, Seiler M, Walters R, et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol. 2000; 74:3852-3858; Halbert C L, Allen J M, Miller A D. Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol. 2001; 75:6615-6624.). AAV-2, AAV-4, and AAV-5 transduce different types of cells in the central nervous system (Davidson B L, Stein C S, Heth J A, et al. Recombinant adeno-associatedvirus type virus serotype 5 vector. J Virol. 2002; 76:10497-10502). WO99/61601, incorporated by reference in its entirety herein, shows that AAV5 based vectors transduced certain cell types (cultured airway epithelial cells, cultured striated muscle cells and cultured human umbilical vein endothelial cells) at a higher efficiency than AAV2, while both AAV2 and AAV5 showed poor transduction efficiencies for NIH 3T3, skbr3 and t-47D cell lines. AAV-4 was found to transduce rat retina most efficiently, followed by AAV-5 and AAV-1 (Rabinowitz J E, Rolling F, Li C, et al. Cross-packaging of a single adeno-associated virus (AAV)type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol. 2002; 76:791-801; Weber M, Rabinowitz J, Provost N, et al. Recombinant adeno-associatedvirus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther. 2003; 7:774-781). - Since the development of naturally occurring AAV serotypes into gene therapy vectors, much effort has been focused towards understanding the tropism of each serotype so that further modification to the virus could be performed to enhance the efficiency of gene transfer. One approach is to swap domains from one serotype capsid to another, and thus create hybrid vectors with desirable qualities from each parent. As the viral capsid is responsible for cellular receptor binding, the understanding of viral capsid domain(s) critical for binding is important. Mutation studies on the viral capsid (mainly on AAV2) performed before the availability of the crystal structure were mostly based on capsid surface functionalization by adsorption of exogenous moieties, insertion of peptide at a random position, or comprehensive mutagenesis at the amino acid level. Choi et al. (Curr Gene Ther. 2005 June; 5(3): 299-310), incorporated by reference in its entirety herein, describe different approaches and considerations for hybrid serotypes.
- The invention includes a method for producing rAAV particles with capsid proteins expressed by multiple serotypes of AAV. This is achieved by co-infection of producer cells with a rHSV expression virus and with a rHSV-rep2capX helper virus in which the cap gene products are derived from serotypes of AAV other than, or in addition to, AAV2. Recombinant AAV vectors have generally been based on AAV-2 capsids. It has recently been demonstrated that rAAV vectors based on capsids from AAV-1, AAV-3, AAV-4, AAV-5, AAV-8 or AAV-9 serotypes differ from AAV-2 in their tropism.
- Capsids from other AAV serotypes offer advantages in certain in vivo applications over rAAV vectors based on the AAV-2 capsid. First, the appropriate use of rAAV vectors with particular serotypes may increase the efficiency of gene delivery in vivo to certain target cells that are poorly infected, or not infected at all, by AAV-2 based vectors. Secondly, it may be advantageous to use rAAV vectors based on other AAV serotypes if re-administration of rAAV vector becomes clinically necessary. It has been demonstrated that re-administration of the same rAAV vector with the same capsid can be ineffective, possibly due to the generation of neutralizing antibodies generated to the vector (Xiao, et al., 1999, Halbert, et al., 1997). This problem may be avoided by administration of a rAAV particle whose capsid is composed of proteins from a different AAV serotype, not affected by the presence of a neutralizing antibody to the first rAAV vector (Xiao, et al., 1999). For the above reasons, recombinant AAV vectors constructed using cap genes from serotypes including and in addition to AAV-2 are desirable. It will be recognized that the construction of recombinant HSV vectors similar to rHSV but encoding the cap genes from other AAV serotypes (e.g. AAV-1, AAV-2, AAV-3, AAV-5 to AAV-9) is achievable using the methods described herein to produce rHSV. In certain preferred embodiments of the invention as described herein, recombinant AAV vectors constructed using cap genes from different AAV are preferred. The significant advantages of construction of these additional rHSV vectors are ease and savings of time, compared with alternative methods used for the large-scale production of rAAV. In particular, the difficult process of constructing new rep and cap inducible cell lines for each different capsid serotypes is avoided.
- Gene therapy refers to treatment of inherited or acquired diseases by replacing, altering, or supplementing a gene responsible for the disease. It is achieved by introduction of a corrective gene or genes into a host cell, generally by means of a vehicle or vector. Gene therapy using rAAV holds great promise for the treatment of many diseases. The invention provides a novel method of producing recombinant adeno-associated virus (rAAV), and in particular producing large quantities of recombinant AAV, to support clinical applications.
- To date more than 500 gene therapy clinical trials have been conducted worldwide. Efforts to use rAAV as a vehicle for gene therapy hold promise for its applicability as a treatment for human diseases. Already, some success has been achieved pre-clinically, using recombinant AAV (rAAV) for the delivery and long-term expression of introduced genes into cells in animals, including clinically important non-dividing cells of the brain, liver, skeletal muscle and lung. In some tissues, AAV vectors have been shown to integrate into the genome of the target cell (Hirata et al. 2000, J. of Virology 74:4612-4620).
- An additional advantage of rAAV is its ability to perform this function in non-dividing cell types including hepatocytes, neurons and skeletal myocytes. rAAV has been used successfully as a gene therapy vehicle to enable expression of erythropoietin in skeletal muscle of mice (Kessler et al., 1996), tyrosine hydroxylase and aromatic amino acid decarboxylase in the CNS in monkey models of Parkinson disease (Kaplitt et al., 1994) and Factor IX in skeletal muscle and liver in animal models of hemophilia. At the clinical level, the rAAV vector has been used in human clinical trials to deliver the CFTR gene to cystic fibrosis patients and the Factor IX gene to hemophilia patients (Flotte, et al., 1998, Wagner et al, 1998). Further, AAV is a helper-dependent DNA parvovirus, which is not associated with disease in humans or mammals (Berns and Bohensky, 1987, Advances in Virus Research, Academic Press Inc, 32:243-307). Accordingly, one of the most important attributes of AAV vectors is their safety profile in phase I clinical trials.
- AAV gene therapy has been carried out in a number of different pathological settings and to treat a various diseases and disorders. For example, in a phase I study, administration of an AAV2-FIX vector into the skeletal muscle of eight hemophilia B subjects proved safe and achieved local gene transfer and Factor IX expression for at least 10 months after vector injection (Jiang et al, Mol Ther. 2006 September; 14 (3):452-5. Epub 2006 Jul. 5), a phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults has been described previously (Flotte et al., Hum Gene Ther. 2004 January; 15(1):93-128), and in another clinical trial AAV-GAD gene therapy of the subthalamic nucleus has been shown to be safe and well tolerated by patients with advanced Parkinson's disease (Kaplitt et al. Lancet. 2007 Jun. 23; 369(9579):2097-105).
- Conventional AAV production methodologies make use of procedures known to limit the number of rAAV that a single producer cell can make. The first of these is transfection using plasmids for delivery of DNA to the cells. It is well known that plasmid transfection is an inherently inefficient process requiring high genome copies and therefore large amounts of DNA (Hauswirth et al., 2000).
- Advances toward achieving the desired goal of scalable production systems that can yield large quantities of clinical grade rAAV vectors have largely been made in production systems that utilize transfection as a means of delivering the genetic elements needed for rAAV production in a cell. For example, removal of contaminating adenovirus helper has been circumvented by replacing adenovirus infection with plasmid transfection in a three-plasmid transfection system in which a third plasmid comprises nucleic acid sequences encoding adenovirus helper proteins (Xiao et al. 1998). Improvements in two-plasmid transfection systems have also simplified the production process and increased rAAV vector production efficiency (Grimm et al., 1998). Despite these advances, it is generally recognized that transfection systems are limited in their efficiency by the uptake of exogenous DNA, and in their commercial utility due to scaling difficulties.
- Several strategies for improving yields of rAAV from cultured mammalian cells are based on the development of specialized producer cells created by genetic engineering. In one approach, production of rAAV on a large scale has been accomplished by using genetically engineered “proviral” cell lines in which an inserted AAV genome can be “rescued” by infecting the cell with helper adenovirus or HSV. Proviral cell lines can be rescued by simple adenovirus infection, offering increased efficiency relative to transfection protocols. However, as with the earlier transfection methods, adenovirus is introduced into the system that must later be removed. Additionally, the rAAV yield is generally low in proviral cell lines (Qiao et al. 2002a).
- There are several further disadvantages that limit approaches using proviral cell lines. The cell cloning and selection process itself can be laborious; additionally, this process must be carried out to generate a unique cell line for each therapeutic gene of interest (GOI). Furthermore, cell clones having inserts of unpredictable stability can be generated from proviral cell lines.
- A second cell-based approach to improving yields of rAAV from cells involves the use of genetically engineered “packaging” cell lines that harbor in their genomes either the AAV rep and cap genes, or both the rep-cap and the ITR-gene of interest (Qiao et al., 2002b). In the former approach, in order to produce rAAV, a packaging cell line is either infected or transfected with helper functions, and with the AAV ITR-GOI elements. The latter approach entails infection or transfection of the cells with only the helper functions. Typically, rAAV production using a packaging cell line is initiated by infecting the cells with wild-type adenovirus, or recombinant adenovirus. Because the packaging cells comprise the rep and cap genes, it is not necessary to supply these elements exogenously.
- While rAAV yields from packaging cell lines have been shown to be higher than those obtained by proviral cell line rescue or transfection protocols, packaging cell lines typically suffer from recombination events, such as recombination of E1a-deleted adenovirus vector with host 293 cell DNA. Infection with recombinant adenovirus therefore initiates both rAAV production and generation of replication-competent adenovirus. Furthermore, only limited success has been achieved in creating packaging cell lines with stable genetic inserts.
- Recent progress in improving yields of rAAV has also been made using approaches based on delivery of helper functions from herpes simplex virus (HSV) using recombinant HSV amplicon systems. Although modest levels of rAAV vector yield, of the order of 150-500 viral genomes (vg) per cell, were initially reported (Conway et al., 1997), more recent improvements in rHSV amplicon-based systems have provided substantially higher yields of rAAV v.g. and infectious particles (ip) per cell (Feudner et al., 2002). Amplicon systems are inherently replication-deficient; however the use of a “gutted” vector, replication-competent (rcHSV), or replication-deficient rHSV still introduces immunogenic HSV components into rAAV production systems. Therefore, appropriate assays for these components and corresponding purification protocols for their removal must be implemented. Additionally, amplicon stocks are difficult to generate in high titer, and often contain substantial parental virus contamination.
- It is apparent from the foregoing that there is a clear need for improved large-scale methods for production of high titer, rAAV to overcome the major barrier to the routine use of rAAV for gene therapy. The current invention provides methods for producing clinically relevant recombinant AAV viral particles using mammalian cells capable of growing in suspension.
- Various embodiments of the present invention involve methods for producing recombinant AAV viral particles in a mammalian cell. The methods as described comprise in certain embodiments co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid sequence encoding an AAV rep and an AAV cap gene each operably linked to a promoter, and a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest, flanked by AAV inverted terminal repeats to facilitate packaging of the gene of interest, and allowing the virus to infect the mammalian cell, thereby producing recombinant AAV viral particles in a mammalian cell.
- Any type of mammalian cell that is capable of supporting replication of herpesvirus is suitable for use according to the methods of the invention as described herein. Accordingly, the mammalian cell can be considered a host cell for the replication of herpesvirus as described in the methods herein. Any cell type for use as a host cell is contemplated by the present invention, as long as the cell is capable of supporting replication of herpesvirus. Examples of suitable genetically unmodified mammalian cells include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5. One of skill in the art would be familiar with the wide range of host cells that are available for use in methods for producing an rAAV, in particular examples a rAAV as described in the embodiments herein.
- The host cells used in the various embodiments of the present invention may be derived, for example, from mammalian cells such as human embryonic kidney cells or primate cells. Other cell types might include, but are not limited to BHK cells, Vero cells, CHO cells or any eukaryotic cells for which tissue culture techniques are established as long as the cells are herpesvirus permissive. The term “herpesvirus permissive” means that the herpesvirus or herpesvirus vector is able to complete the entire intracellular virus life cycle within the cellular environment. In certain embodiments, methods as described occur in the mammalian cell line BHK, growing in suspension.
- The host cell may be derived from an existing cell line, e.g., from a BHK cell line, or developed de novo.
- US Application No. 20070172846, incorporated by reference in its entirety herein, describes methodologies that have been used to adapt 293 cells into suspension cultures. Graham adapted 293A cells into suspension culture (293N3S cells) by 3 serial passages in nude mice (Graham, J. Gen. Virol., 68(Pt 3):937-940, 1987). The suspension 293N3S cells were found to be capable of supporting the replication of E1-deleted adenoviral vectors. However, Gamier et al. (Gamier et al., Cytotechnology, 15(1-3):145-155, 1994) observed that the 293N35 cells had a relatively long initial lag phase in suspension, a low growth rate, and a strong tendency to clump.
- A second method that has been used is a gradual adaptation of 293 A cells into suspension growth (Cold Spring Harbor Laboratories, 293S cells). Gamier et al. (1994) reported the use of 293 S cells for production of recombinant proteins from adenoviral vectors. The authors found that 293S cells were much less clumpy in calcium-free media and a fresh medium exchange at the time of virus infection could significantly increase the protein production. It was found that glucose was the limiting factor in culture without medium exchange.
- The methods of the invention include also a recombinant AAV viral particle produced in a mammalian cell by the method comprising co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus comprising a nucleic acid encoding an AAV rep and an AAV cap gene each operably linked to a promoter; and (ii) a second recombinant herpesvirus comprising a gene of interest, and a promoter operably linked to said gene of interest; and allowing the virus to infect the mammalian cell, and thereby producing recombinant AAV viral particles in a mammalian cell. As described herein, the herpesvirus is a virus selected from the group consisting of: cytomegalovirus (CMV), herpes simplex (HSV) and varicella zoster (VZV) and epstein barr virus (EBV). The recombinant herpesvirus is replication defective. The AAV cap gene has a serotype selected from the group consisting of AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, and rhAAV-10.
- As described in greater detail in other parts of the application, the recombinant viral particle described herein, wherein the gene of interest is a therapeutic gene, that can be, but is in
- no way limited to, a gene is selected from the group consisting of: anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid α-glucosidase (GAA), Choroideremia (CHM), Rab escort protein-1 (REP1), Alpha-synuclein (SNCA), Coagulation factor VIII, procoagulant component (hemophilia A or F8), Coagulation factor IX (plasma thromboplastic component, Christmas disease, hemophilia B or F9), Aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), X-linked Inhibitor of Apoptosis Protein (XIAP), clarin-1 (CLRN1), Leber's hereditary neuropathy genes (MT-ND1, MT-ND4, MT-ND4L, and MT-ND6), alpha-galactosidase A (α-Gal A) or Alpha-L-iduronidase.
- In embodiments of the instant invention where the method for producing recombinant AAV viral particles in a mammalian cell comprises co-infecting a mammalian cell capable of growing in suspension with a first recombinant herpesvirus and a second recombinant herpesvirus comprising a gene of interest, the invention contemplates use of any gene that has therapeutic or potential therapeutic value in the treatment of a disease or genetic disorder. One of skill in the art would be familiar with the wide range of such genes that have been identified.
- In certain embodiments, the therapeutic genes involved may be those that encode proteins, structural or enzymatic RNAs, inhibitory products such as antisense RNA or DNA, or any other gene product. Expression is the generation of such a gene product or the resultant effects of the generation of such a gene product. Thus, enhanced expression includes the greater production of any therapeutic gene or the augmentation of that product's role in determining the condition of the cell, tissue, organ, or organism.
- In certain embodiments, the therapeutic gene may encode one or more anti-angiogenic proteins.
- For example, the therapeutic gene can be, but is not limited to an antisense gene, for example antisense ras, antisense myc, antisense raf, antisense erb, antisense src, antisense fms, antisense jun, antisense trk, antisense ret, antisense gsp, antisense hst, antisense bcl, antisense abl, Rb, CFTR, p16, p21, p27, p57, p73, C-CAM, APC, CTS-1, zacl, scFV ras, DCC, NF-1, NF-2, WT-1, MEN-I, MEN-II, BRCA1, VHL, MMAC1, FCC, MCC, BRCA2, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11 IL-12, GM-CSF, G-CSF, thymidine kinase, mda7, fus-1, interferon .alpha., interferon .beta., interferon .gamma., ADP, p53, ABLI, BLC1, BLC6, CBFA1, CBL, CSFIR, ERB A, ERBB, EBRB2, ETS1, ETS2, ETV6, FGR, FOX, FYN, HCR, HRAS, JUN, KRAS, LCK, LYN, MDM2, MLL, MYB, MYC, MYCL1, MYCN, NRAS, PIM1, PML, RET, SRC, TALI, TCL3, YES, MADH4, RBI, TP53, WT1, TNF, BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, ApoAI, ApoAIV, ApoE, Rap1A, cytosine deaminase, Fab, ScFv, BRCA2, zacl, ATM, HIC-1, DPC-4, FHIT, PTEN, ING1, NOEY1, NOEY2, OVCA1, MADR2, 53BP2, IRF-1, Rb, zacl, DBCCR-1, rks-3, COX-1, TFPI, PGS, Dp, E2F, ras, myc, neu, raf, erb, fms, trk, ret, gsp, hst, abl, E1 A, p300, VEGF, FGF, thrombospondin, BAI-1, GDAIF, or MCC. In further embodiments of the present invention, the recombinant gene is a gene encoding an ACP desaturase, an ACP hydroxylase, an ADP-glucose pyrophorylase, an ATPase, an alcohol dehydrogenase, an
alpha 1 antitrypsin gene, an amylase, an amyloglucosidase, a catalase, a cellulase, a cyclooxygenase, a decarboxylase, a dextrinase, an esterase, a DNA polymerase, an RNA polymerase, FLt01, a hyaluron synthase, a galactosidase, a glucanase, a glucose oxidase, a GTPase, a helicase, a hemicellulase, a hyaluronidase, an integrase, an invertase, an isomerase, a kinase, a lactase, a lipase, a lipoxygenase, a lyase, a lysozyme, a pectinesterase, a peroxidase, a phosphatase, a phospholipase, a phosphorylase, a polygalacturonase, a proteinase, a peptidease, a pullanase, a recombinase, a reverse transcriptase, a topoisomerase, a xylanase, a reporter gene, an interleukin, or a cytokine. In other embodiments of the present invention, the recombinant gene is a gene encoding carbamoyl synthetase I, ornithine transcarbamylase, arginosuccinate synthetase, arginosuccinate lyase, arginase, fumarylacetoacetate hydrolase, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, low-density-lipoprotein receptor, porphobilinogen deaminase, factor VIII, factor IX, cystathione .beta.-synthase, branched chain ketoacid decarboxylase, albumin, isovaleryl-CoA dehydrogenase, propionyl CoA carboxylase, methyl malonyl CoA mutase, glutaryl CoA dehydrogenase, insulin, beta.-glucosidase, pyruvate carboxylase, hepatic phosphorylase, phosphorylase kinase, glycine decarboxylase, H-protein, T-protein, Menkes disease copper-transporting ATPase, Wilson's disease copper-transporting ATPase, cytosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, galactose-1-phosphate uridyltransferase, phenylalanine hydroxylase, glucocerbrosidase, sphingomyelinase, .alpha.-L-iduronidase, glucose-6-phosphate dehydrogenase, HSV thymidine kinase, or human thymidine kinase. Alternatively, the recombinant gene may encode growth hormone, prolactin, placental lactogen, luteinizing hormone, follicle-stimulating hormone, chorionic gonadotropin, thyroid-stimulating hormone, leptin, adrenocorticotropin, angiotensin I, angiotensin II, beta.-endorphin, .beta.-melanocyte stimulating hormone, cholecystokinin, endothelin I, galanin, gastric inhibitory peptide, glucagon, insulin, lipotropins, neurophysins, somatostatin, calcitonin, calcitonin gene related peptide, beta-calcitonin gene related peptide, hypercalcemia of malignancy factor, parathyroid hormone-related protein, parathyroid hormone-related protein, glucagon-like peptide, pancreastatin, pancreatic peptide, peptide YY, PHM, secretin, vasoactive intestinal peptide, oxytocin, vasopressin, vasotocin, enkephalinamide, metorphinamide, alpha melanocyte stimulating hormone, atrial natriuretic factor, amylin, amyloid P component, corticotropin releasing hormone, growth hormone releasing factor, luteinizing hormone-releasing hormone, neuropeptide Y, substance K, substance P, or thyrotropin releasing hormone. - In other embodiments, the therapeutic gene of the invention is anti-angiogenic genes, alpha-1 antitrypsin, retinoschisin, acid alpha glucosidase, RPE65, beta-subunit of the cone photoreceptor cGMP-gated channel (CNGB-3), alpha-subunit of the cone photoreceptor cGMP-gated channel (CNGA-3), cone photoreceptor G-protein alpha-subunit (GNAT2), Retinal pigment epithelium-specific 65 kDa (RPE65), X-linked juvenile retinoschisis (RSI), Brain-derived neurotrophic factor (BDNF), Glial cell-derived neurotrophic factor (GDNF), Myotonic dystrophy protein kinase (DMPK), CCHC-type zinc finger, nucleic acid binding protein (known as CNBP or ZNF9), Retinitis pigmentosa GTPase regulator (RPGR), Acid α-glucosidase (GAA), Choroideremia (CHM), Rab escort protein-1 (REP1), Alpha-synuclein (SNCA), Coagulation factor VIII, procoagulant component (hemophilia A or F8), Coagulation factor IX (plasma thromboplastic component, Christmas disease, hemophilia B or F9), Aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), X-linked Inhibitor of Apoptosis Protein (XIAP), clarin-1 (CLRN1), Leber's hereditary neuropathy genes (MT-ND1, MT-ND4, MT-ND4L, and MT-ND6), alpha-galactosidase A (α-Gal A) or Alpha-L-iduronidase.
- In certain preferred embodiments of the invention, the therapeutic gene of interest is an angiogenesis inhibition gene (AI) or an
alpha 1 antitrypsin gene (AAT). - Production Technologies for rAAV
- U.S. application Ser. No. 11/503,775, incorporated by reference in its entirety herein, describes required elements of rAAV Production Systems. Recombinant AAV is produced in vitro by introduction of gene constructs into cells known as producer cells. Known systems for production of rAAV employ three fundamental elements: 1) a gene cassette containing the gene of interest, 2) a gene cassette containing AAV rep and cap genes and 3) a source of “helper” virus proteins.
- The first gene cassette is constructed with the gene of interest flanked by inverted terminal repeats (ITRs) from AAV. ITRs function to direct integration of the gene of interest into the host cell genome and are essential for encapsidation of the recombinant genome. (Hermonat and Muzyczka, 1984, Samulski, et al., 1983). The second gene cassette contains rep and cap, AAV genes encoding proteins needed for replication and packaging of rAAV. The rep gene encodes four proteins (Rep 78, 68, 52 and 40) required for DNA replication. The cap genes encode three structural proteins (VP1, VP2, and VP3) that make up the virus capsid (Muzyczka and Berns, 2001.)
- The third element is required because AAV does not replicate on its own. Helper functions are protein products from helper DNA viruses that create a cellular environment conducive to efficient replication and packaging of rAAV. Traditionally, adenovirus (Ad) has been used to provide helper functions for rAAV, but herpesviruses can also provide these functions as discussed below.
- Production of rAAV vectors for gene therapy is carried out in vitro, using suitable producer cell lines such as BHK cells grown in suspension. Other cell lines suitable for use in the invention include HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- Any cell type can be used as a host cell, as long as the cell is capable of supporting replication of a herpesvirus. One of skill in the art would be familiar with the wide range of host cells that can be used in the production of herpesvirus from host cells. Examples of suitable genetically unmodified mammalian host cells, for example, may include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- In particular embodiments, a host cell is adapted for growth in suspension culture. In certain embodiments of the present invention, the host cells are Baby Hamster Kidney (BHK) cells. BHK cell line grown in suspension is derived from an adaptation of the adherent BHK cell line. Both cell lines are available commercially.
- A well known strategy for delivering all of the required elements for rAAV production utilizes two plasmids and a helper virus. This method relies on transfection of the producer cells with plasmids containing gene cassettes encoding the necessary gene products, as well as infection of the cells with Ad to provide the helper functions. This system employs plasmids with two different gene cassettes. The first is a proviral plasmid encoding the recombinant DNA to be packaged as rAAV. The second is a plasmid encoding the rep and cap genes. To introduce these various elements into the cells, the cells are infected with Ad as well as transfected with the two plasmids. The gene products provided by Ad are encoded by the genes E1 a, E1b, E2a, E4orf6, and Va (Samulski et al., 1998; Hauswirth et al., 2000; Muzyczka and Burns, 2001). Alternatively, in more recent protocols, the Ad infection step can be replaced by transfection with an adenovirus “helper plasmid” containing the VA, E2A and E4 genes (Xiao, et al., 1998, Matsushita, et al., 1998).
- While Ad has been used conventionally as the helper virus for rAAV production, it is known that other DNA viruses, such as herpes simplex virus type 1 (HSV-1) can be used as well. The minimal set of HSV-1 genes required for AAV2 replication and packaging has been identified, and includes the early genes UL5, UL8, UL52 and UL29 (Muzyczka and Bums, 2001). These genes encode components of the HSV-1 core replication machinery, i.e., the helicase, primase, primase accessory proteins, and the single-stranded DNA binding protein (Knipe, 1989; Weller, 1991). This rAAV helper property of HSV-1 has been utilized in the design and construction of a recombinant herpes virus vector capable of providing helper virus gene products needed for rAAV production (Conway et al., 1999).
- Production of rAAV vectors for gene therapy is carried out in vitro, using suitable producer cell lines such as BHK cells grown in suspension. Other cell lines suitable for use in the invention include HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- Any cell type can be used as a host cell, as long as the cell is capable of supporting replication of a herpesvirus. One of skill in the art would be familiar with the wide range of host cells that can be used in the production of herpesvirus from host cells. Examples of suitable genetically unmodified mammalian host cells, for example, may include but are not limited to cell lines such as HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- In particular embodiments, a host cell is adapted for growth in suspension culture. In certain embodiments of the present invention, the host cells are Baby Hamster Kidney (BHK) cells. BHK cell line grown in suspension is derived from an adaptation of the adherent BHK cell line. Both cell lines are available commercially.
- rHSV-Based rAAV Manufacturing Process
- The instant invention provides production of recombinant AAV viral particles in cells growing in suspension. Suspension or non-anchorage dependent cultures from continuous established cell lines are the most widely used means of large scale production of cells and cell products. Large scale suspension culture based on fermentation technology has clear advantages for the manufacturing of mammalian cell products. The processes are relatively simple to operate and straightforward to scale up. Homogeneous conditions can be provided in the bioreactor which allows for precise monitoring and control of temperature, dissolved oxygen, and pH, and ensure that representative samples of the culture can be taken. The rHSV vectors used are readily propagated to high titer on permissive cell lines both in tissue culture flasks and bioreactors, and provided a production protocol amenable to scale-up for virus production levels necessary for clinical and market production.
- Cell culture in stirred tank bioreactors provides very high volume-specific culture surface area and has been used for the production of viral vaccines (Griffiths, 1986). Furthermore, stirred tank bioreactors have industrially been proven to be scalable. One example is the multiplate CELL CUBE cell culture system. The ability to produce infectious viral vectors is increasingly important to the pharmaceutical industry, especially in the context of gene therapy.
- As used herein, a “bioreactor” refers to any apparatus that can be used for the purpose of culturing cells. Growing cells according to the present invention in a bioreactor allows for large scale production of fully biologically-active cells capable of being infected by the Herpes vectors of the present invention.
- Bioreactors have been widely used for the production of biological products from both suspension and anchorage dependent animal cell cultures. Most large-scale suspension cultures are operated as batch or fed-batch processes because they are the most straightforward to operate and scale up. However, continuous processes based on chemostat or perfusion principles are available.
- The bioreactor system can, in certain embodiments, be set up to include a system to allow for media exchange. For example, filters may be incorporated into the bioreactor system to allow for separation of cells from spent media to facilitate media exchange. In some embodiments of the present methods for producing Herpes virus, media exchange and perfusion is conducted beginning on a certain day of cell growth. For example, media exchange and perfusion can begin on
day 3 of cell growth. The filter may be external to the bioreactor, or internal to the bioreactor. - It should be appreciated that the invention should not be construed to be limited to the examples that are now described; rather, the invention should be construed to include any and all applications provided herein and all equivalent variations within the skill of the ordinary artisan.
- The invention was performed using the following methods. The methods as described herein are described in PCT Application No. PCT/US2007/017645, filed on Aug. 8, 2007, entitled Recombinant AAV Production in Mammalian Cells, which claims the benefit of U.S. application Ser. No. 11/503,775, entitled Recombinant AAV Production in Mammalian Cells, filed Aug. 14, 2007, which is a continuation-in-part of U.S. application Ser. No. 10/252,182, entitled High Titer Recombinant AAV Production, filed Sep. 23, 2002, now U.S. Pat. No. 7,091,029, issued Aug. 15, 2006. The contents of all the aforementioned applications are hereby incorporated by reference in their entirety.
- rHSV Co-Infection Method
- The rHSV co-infection method for recombinant adeno-associated virus (rAAV) production employs two ICP27-deficient recombinant herpes simplex virus type 1 (rHSV-1) vectors, one bearing the AAV rep and cap genes (rHSV-rep2capX, with “capX” referring to any of the AAV serotypes), and the second bearing the gene of interest (GOI) cassette flanked by AAV inverted terminal repeats (ITRs). Although the system was developed with
AAV serotype 2 rep, cap, and ITRs, as well as the humanized green fluorescent protein gene (GFP) as the transgene, the system can be employed with different transgenes and serotype/pseudotype elements. - Mammalian cells are infected with the rHSV vectors, providing all cis and trans-acting rAAV components as well as the requisite helper functions for productive rAAV infection. Cells are infected with a mixture of rHSV-rep2capX and rHSV-GOI. Cells are harvested and lysed to liberate rAAV-GOI, and the resulting vector stock is titered by the various methods described below.
- DOC-Lysis
- At harvest, cells and media are separated by centrifugation. The media is set aside while the cell pellet is extracted with lysis buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl) containing 0.5% (w/v) deoxycholate (DOC) using 2 to 3 freeze-thaw cycles, which extracts cell-associated rAAV. In some instances, the media and cell-associated rAAV lysate is recombined.
- In Situ Lysis
- An alternative method for harvesting rAAV is by in situ lysis. At the time of harvest, MgCl2 is added to a final concentration of 1 mM, 10% (v/v) Triton X-100 added to a final concentration of 1% (v/v), and Benzonase is added to a final concentration of 50 units/mL. This mixture is either shaken or stirred at 37° C. for 2 hours.
- Quantitative Real-Time PCR to Determine DRP Yield
- The DNAse-resistant particle (DRP) assay employs sequence-specific oligonucleotide primers and a dual-labeled hybridizing probe for detection and quantification of the amplified DNA sequence using real-time quantitative polymerase chain reaction (qPCR) technology. The target sequence is amplified in the presence of a fluorogenic probe which hybridizes to the DNA and emits a copy-dependent fluorescence. The DRP titer (DRP/mL) is calculated by direct comparison of relative fluorescence units (RFUs) of the test article to the fluorescent signal generated from known plasmid dilutions bearing the same DNA sequence. The data generated from this assay reflect the quantity of packaged viral DNA sequences, and are not indicative of sequence integrity or particle infectivity.
- Green-Cell Infectivity Assay to Determine Infectious Particle Yield (rAA V-GFP Only)
- Infectious particle (ip) titering is performed on stocks of rAA V-GFP using a green cell assay. C12 cells (a HeLa derived line that expressed AAV2 Rep and Cap genes—see references below) are infected with serial dilutions of rAA V-GFP plus saturating concentrations of adenovirus (to provide helper functions for AAV replication). After two to three days incubation, the number of fluorescing green cells (each cell representing one infectious event) are counted and used to calculate the ip/mL titer of the virus sample.
- Clark K R et al. described recombinant adenoviral production in Hum. Gene Ther. 1995. 6:1329-1341 and Gene Ther. 1996. 3:1124-1132, both of which are incorporated by reference in their entireties herein.
- TCID50 to Determine rAA V Infectivity
- Infectivity of rAAV particles harboring a gene of interest (rAAV-GOI) was determined using a tissue culture infectious dose at 50% (TCID50) assay. Eight replicates of rAAV were serially diluted in the presence of
human adenovirus type 5 and used to infect HeLaRC32 cells (a HeLa-derived cell line that expresses AAV2 rep and cap, purchased from ATCC) in a 96-well plate. At three days post-infection, lysis buffer (final concentrations of 1 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.25% (w/v) deoxycholate, 0.45% (v/v) Tween-20, 0.1% (w/v) sodium dodecyl sulfate, 0.3 mg/mL Proteinase K) was added to each well then incubated at 37° C. for 1 h, 55° C. for 2 h, and 95° C. for 30 min. The lysate from each well (2.5 μL aliquot) was assayed in the DRP qPCR assay described above. Wells with Ct values lower than the value of the lowest quantity of plasmid of the standard curve were scored as positive. TCID50 infectivity per mL (TCID50/mL) was calculated based on the Karber equation using the ratios of positive wells at 10-fold serial dilutions. - Cell Lines and Viruses
- Production of rAAV vectors for gene therapy is carried out in vitro, using suitable producer cell lines such as BHK cells grown in suspension. Other cell lines suitable for use in the invention include HEK-293 (293), Vero, RD, BHK-21, HT-1080, A549, Cos-7, ARPE-19, and MRC-5.
- Mammalian cell lines were maintained in Dulbecco's modified Eagle's medium (DMEM, Hyclone) containing 2-10% (v/v) fetal bovine serum (FBS, Hyclone) unless otherwise noted. Cell culture and virus propagation were performed at 37° C., 5% CO2 for the indicated intervals.
- Cell Seeding Density
- Host cell suspension stocks, such as BHK suspension cell stock, may be used to seed spinner flasks, shaker flasks, bioreactors or other cultures at various seeding densities. Satisfactory cell growth may be achieved with a wide range of cell seeding densities. For optimal cell growth the cell seeding density is recommended to be at least about, at most about, about, or higher than 2×105 cells/mL and includes, but is not limited to cell densities of at least about, at most about, or about 5×105 cells/mL, including all values or ranges there between.
- Culture Temperature
- Cells can be cultured at temperatures that include, but are not limited to at least about, at most about, or about 32.degree. C., 33.degree. C., 34.degree. C., 35.degree. C., 36.degree. C., 37.degree. C., 38.degree. C., 39.degree. C. or 40.degree. C., including all values therebetween. In certain aspects of the invention the incubation temperature for growth of BHK suspension cells will be 37 degree C.
- CO2 Percentage
- Cells may be cultured in spinner flasks inside incubators or in bioreactors having an atmosphere of at least about, at most about, or about 0, 5, 10, 15, or 20% CO2. In certain preferred embodiments, cell growth was achieved at CO2 percentages of 5% CO2. Typically, the growth of suspension cells requires CO2 in the culture environment and should be maintained between 4 and 6 percent or any value or range there between.
- Cell Growth in Spinner Flask or Bioreactor
- In certain embodiments, a spinner flask may be used and seeded with suspension cells at an appropriate cell seeding density as described herein. In other certain embodiments, a bioreactor may be used such as a Wave disposable bioreactor or a continuous stirred-tank bioreactor) and seeded with suspension cells at an appropriate cell seeding density. Cells are grown inside the spinner flask or bioreactor.
- When cells reach a density between 9×105 and 2.5×106 cells/mL, nutrients can be replenished and waste byproducts removed by media exchange, dilution, or perfusion (continuous media input and removal). Alternatively, the cells can be kept at the higher density to grow cells to the density desired for rAAV production, in either a spinner flask or bioreactor, Accordingly, a high cell concentration is expected, in certain preferred embodiments, to improve the volumetric productivity of recombinant AAV production.
- The bioreactor can hold any volume of media, for example a 10 L Wave bioreactor can hold up to 5 L working volume). In certain embodiments, the bioreactor can be adjusted to rock at a particular speed and angle. In certain other embodiments, the bioreactor may include a device for monitoring dissolved oxygen tension, such as a disposable dissolved oxygen tension (DOT) probe. The bioreactor may also include a device for monitoring temperature in the media. Other embodiments include a device for measuring and adjusting culture pH, such as a gas mixer which can adjust CO.sub.2 gas percentage delivered to the media. The bioreactor may or may not be a disposable bioreactor.
- Multiplicity of Infection (MOI)
- Cells can be infected with recombinant herpesviruses at a combined MOI of between 3 and 14 plaque forming units per cell (pfu/cell). A relatively consistent virus yield is observed with a combined MOI at or above 6 pfu/cell. Data suggest that combined MOIs between 6 and 14 pfu/cell appear to be the optimal range for rAAV production in BHK suspension culture.
- In preferred embodiments, the invention requires co-infection of cells with a replication-deficient rHSV vector that provides helper functions for rAAV production. The invention provides a simplified rHSV-based system for rAAV production that uses two or more replication-deficient rHSV vectors including one for the delivery of the rAAV rep and cap functionalities and one for delivery of the therapeutic gene (the gene of interest).
- Advantageously, the availability of separate replication-defective rHSV vectors of the invention as described makes it possible to modulate the rep and cap functionalities relative to the gene of interest, by varying the co-infection MOI. The optimal ratio is 2:1, but rAAV production can occur with ratios of 1:2 to 6:1 of rHSV-rep2capX and rHSV-GOI, respectively.
- Infection Cell Density
- Cells can be grown to various concentrations including, but not limited to at least about, at most about, or about 1×106 to 4×106 cells/mL. The cells can then be infected with recombinant herpesvirus at a predetermined MOI.
- Media Nutrient Level
- In certain embodiments of the invention, the conditions of infection comprise media exchange on or about, but not limited to 2 hours post-infection. Fresh media is preferably, but not limited to, Dulbecco's modified Eagle's medium (DMEM, Hyclone) lacking FBS.
- rHSV-1 Vector Construction and Production
- A rHSV-rep2cap2 (originally denoted d27.1-rc) was constructed as previously described, Briefly, rHSV-rep2cap2 was constructed by homologous recombination of an AAV2 rep and cap gene cassette into the tk locus of the rHSV-1, ICP27-deleted d27.1 vector in which the AAV2 rep and cap genes are under control of their native promoters (p5, p19 and p40). The rHSV-rep2cap1 vector was constructed by as described above using cap1. In this method, any combination of rep and cap can be used.
- The rHSV-AAV2/GFP vector (referred to as rHSV-GFP) was constructed by homologous recombination of a CMV promoter-driven hGFP-neomycin resistance gene cassette, flanked by the AAV2 ITRs, into the tk locus of the d27.1 vector as described above.
- In certain embodiments, it may be useful to employ selection systems that preclude growth of undesirable cells. This may be accomplished by virtue of permanently transforming a cell line with a selectable marker or by transducing or infecting a cell line with a viral vector that encodes a selectable marker. In either situation, culture of the transformed/transduced cell with an appropriate drug or selective compound will result in the enhancement, in the cell population, of those cells carrying the marker.
- The rHSV-rep2capX and rHSV-GOI vectors were propagated on the ICP27-complementing cell line V27. V27 is an ICP27-expressing Vero cell line derivative which harbors approximately one copy of the ICP27 gene per haploid genome equivalent. Infection steps were done in the absence of serum. Vector stocks were propagated either by seeding T225 flasks with 3×10 V27 cells, or 10-stack cell factories with 1.5×10 V27 cells, followed by infecting 24 h post-seeding with either rHSV-rep2capX or rHSV-GOI at a MOI of 0.15. rHSV vectors were harvested at 72 hours post-infection (h.p.i.) by separating the infected cells from the media centrifugation (10 min, 4° C., 1100 g). The supernatant is set aside while the cell pellet is treated with 0.6 M NaCl in IX Phosphate-buffered saline, pH 6.5, for 30 minutes at 37° C. The cells are then re-pelleted by centrifugation as above. This second supernatant is recombined with the first supernatant (with the cell pellet discarded), formulated with 5% (v/v) sterile glycerol and was stored at −80° C. rHSV-1 vector stocks were used for rAAV production without further manipulation.
- rAAV Production in Two Clones of s BHK
- Numerous cell lines are capable of producing high specific yields of recombinant adeno-associated virus (rAAV) vectors using the rHSV co-infection method, as described in U.S. application Ser. No. 11/503,775, which is a continuation-in-part of U.S. application Ser. No. 10/252,182, now U.S. Pat. No. 7,091,029, issued Aug. 15, 2006, both of which are incorporated by reference herein. Baby hamster kidney cells clone 13 (BHK-21) and human embryonic kidney cells (HEK 293) produce the highest levels of rAAV particularly in comparison to traditional methods of rAAV production (as described in U.S. application Ser. No. 11/503,775, above). Large quantities of recombinant AAV vector are required for clinical application, however, the adherent nature of these cells is an impediment to large scale production. Therefore, cells that grow in suspension offer an economic and process advantage for rAAV production. In this example, two independent isolates of BHK-21 cells selected to grow in suspension were analyzed for rAAV production using the rHSV co-infection method. Cells were cultured in spinner flasks according to recommended guidelines (maintenance between 2×105 and 1.3×106 cells/mL) and were co-infected with rHSV-rep2cap2 and rHSV-GFP at a multiplicity of infection (MOI) of 12 and 2. Starting 24 hours post infection (hpi), samples of the infected cultures were taken at 24 hour intervals. Cells were processed using the DOC-lysis method (see Methods). Specific yields of infectious particles (ip) per cell (ip/cell) were determined by the green-cell infectivity assay. The combined yield of cell-associated and released (media) rAAV2-GFP for each suspension BHK (sBHK) isolate at each time point is presented in
FIG. 1 . The C13-2P and AC9 isolates produced rAAV levels similar to previously examined adherent cell lines with 3800 and 1200 ip/cell by 48 hpi, respectively, described in U.S. application Ser. No. 11/503,775, entitled Recombinant AAV Production in Mammalian Cells, filed Aug. 14, 2007, which is a continuation-in-part of U.S. application Ser. No. 10/252,182, entitled High Titer Recombinant AAV Production, filed Sep. 23, 2002, now U.S. Pat. No. 7,091,029, issued Aug. 15, 2006, both of which are incorporated by reference in their entireties herein. - Growth of Suspension BHK Cells
- Clone C13-2P (referred to from this point on as “sBHK”) was selected for additional experiments due to the higher level of rAAV production. The growth of these cells was further characterized. The cells are maintained between 2×105 and 1.3×106 cells/mL in DMEM supplemented with 10% FBS. Numerous vials of sBHK cells have been thawed. Specifically, 33 vials representing 6 banks of cells have been thawed and propagated with a mean doubling time of 11.9+/−1.9 hours (a variance of 16.3%). In comparison, adherent 293 cells have a doubling time of ˜22-24 hours. Therefore, the faster doubling of the sBHK cells provides the advantage of faster amplification for scale-up.
- The optimal harvest time of rAAV production in adherent 293 cells is 48-72 hpi. Due to the faster growth rate of the sBHK cells, we wanted to re-examine the optimal time range for rAAV production in the suspension platform. The experiment shown in
FIG. 2 demonstrated that rAAV production levels are similar when harvested between 24 and 69 hours post-infection (hpi). The ability to achieve similar rAAV yields at 24 hpi as at later times offers the advantages of shorter manufacturing times and flexibility in manufacturing schedules. - Early experiments with sBHK examining rAAV production levels were performed with the cells infected at densities between 4.5×105 and 1×106 cells/mL—densities that fall within the range used for routine maintenance of the cells. However, we found that higher densities could easily be reached. This example addressed whether specific yields of rAAV could be maintained upon rHSV co-infection when the cells are at a higher density. Cell densities between 1.6×106 and 3.8×106 cells/mL, at a scale of 25 mL, were examined for rAAV production. The results in
FIG. 3 demonstrated that increasing the sBHK cell density at the time of infection does not impair the specific yields (per cell yields) of rAAV. The volumetric productivity (DRP/L) is directly proportional to the sBHK cell density at constant specific yield, therefore total DRP/batch can be increased by increasing the cell density while minimizing the final volume required to achieve clinically relevant quantities of therapeutic vector. - The rHSV co-infection method produces optimal levels of recombinant rAAV on adherent cells when rHSV-rep2capX and rHSV-GOI are used at MOIs of 12 and 2, respectively. The productions levels drop precipitously as the MOI of rHSV-rep2capX drops. Using an MOI of 12 for the rHSV-rep2capX translates into very large quantities of recombinant virus required when considering large scale manufacturing of rAAV. This example addressed whether the MOI of rHS V-rep2capX in co-infections on sBHK cells, unlike 293 cells, could be lowered without significant loss of specific yield. The results in
FIG. 4 are the cumulative data of several experiments examining rAAV production levels when rHSV-rep2cap2 is used at an MOI of 4 to 12 (with rHSV-GOI MOI held constant at 2). - The results in
FIG. 5 are the cumulative data of several experiments examining rAAV production levels when rHSV-rep2cap1 is used at an MOI of 1 to 12. rAAV1-AAT production in sBHK cells was also insensitive to rHSV-rep2/cap1 vector MOI inputs of 12, 8, and 4; however, rAAV1-AAT yields dropped according with further reductions in rHSV-AAT MOI to 2 and 1. - Taken together, these results demonstrate that comparable rAAV production can be achieved across a broad range of MOIs for rHSV-rep2capX.
- In certain embodiments of the invention a second recombinant herpesvirus comprises a gene of interest, and a promoter operably linked to said gene of interest. The gene of interest can be a therapeutic gene that is useful for gene therapy applications. This example demonstrates that the sBHK system for producing rAAV vectors can be used for a variety of AAV serotypes as well as different transgenes and production scales.
FIG. 6A shows the yields of different serotypes and transgenes used in the sBHK system.FIG. 6B shows the DRP to infectivity ratios of representative samples fromFIG. 6A . The differences between the serotypes reflect their in vitro infectivity variation on the cell-type used for the infectivity assay. - Initially, sBHK rAAV2-GFP production was scaled to Celligen Plus continuous stirred tank reactors (CSTR) in DMEM supplemented with 5% FBS. The pH set point was 7.2, the dissolved oxygen (D.O.) set point was 50% of air saturation, and the agitation set point, using marine impellers, was 100 rpm, in a 3.5 L working volume, 5.0 L total volume jacketed glass vessel equipped with spin filters for cell retention. Reactors were seeded between 1.3-2.5×105 cells/mL and grown to 1.2-1.4×106 cells/mL and co-infected with rHSV-rep2cap2 (MOI of 12) and rHSV-GFP (MOI of 2) to produce rAAV2-GFP.
FIG. 7 shows the results. Media was exchanged at 2 hpi for DMEM lacking FBS, via tangential flow filtration using a hollow fiber filter device for cell retention. The run was repeated (as described above), andFIG. 8 shows similar results. rAAV production was also scaled to 1 L/2 L (working volume/total volume) Wave disposable bioreactors. The pH set point was 7.2, the agitation rate was 20 rocks/min, the rocking angle was 7°, and total gas flow varied between 0.1 and 0.3 L/min. Bioreactors were seeded with an initial volume of 1.0 L at a density of 1.0-2.5×105 cells/mL. Cells were grown in fed-batch (run FIG. 9 . The average doubling time was 13.5 h. Fed-batch runs had a bolus of 5×DMEM added at 25-52 hps, and perfusion run feeding with DMEM initiated 29-42 hps, to prevent nutrient depletion as needed.Runs - The results are shown in
FIG. 10 (1 L scale data point, n=3).Run 5 was co-infected with the same vectors, but at a MOI of 4 and 2, respectively, based on flask data which showed rAAV1-AAT production to be insensitive to rHSV-rep2cap1 MOI between 4 and 12 and resulted in 19,252 DRP/cell by 24 hpi. Maximum cell densities for fed-batch runs were between 1.6×106 and 2.3×106 cells/mL while perfusion runs achieved a maximum density 1.2×107 cells/mL at non-constant volume, prior to infection, as shown inFIG. 9 . Media exchange prior to infection was accomplished by centrifugation for fed-batch runs.FIG. 11 shows typical metabolite concentrations for 1 L Wave fed-batch runs.FIG. 12 shows metabolite concentrations for a typical 1 L perfusion run. sBHK rAAV batch production was also scaled to 5 and 10 L culture volumes in 10 L/20 L (working volume/total volume) Wave bioreactors using a rHSV-rep2cap1 at an MOI of 4 and a rHSV-AAT at an MOI of 2. Cells were grown as in 1 L Wave bioreactor cultures, with (10 L) or without (5 L and 10 L) media exchange. Media exchanged cultures grew to higher terminal cell densities since nutrients were replenished. Terminal cell densities with media exchange during growth achieved 3.1×106 cells/mL prior to infection, while 2.3×106 cells/mL was achieved without media exchange during growth.FIG. 13 shows a typical 5 L Wave disposable bioreactor culture without media exchange that resulted in a pre-infection cell density of 2.3×106 cells/mL.FIG. 10 shows rAAV1-AAT production for 5 L (data point 2, n=4) and 10 L (data point 3, n=6) culture volume Wave bioreactor runs, and demonstrates that specific productivity (DRP/cell) was maintained during scale up from 1 L to 10 L of rAAV production in suspension-adapted cells.FIG. 14 is a graph that shows typical sBHK cell growth at the 10 L culture volume scale in Wave bioreactor runs resulting in average doubling times of 13.1 h.FIG. 14 demonstrates that spinner flask and 1 L Wave bioreactor cell growth rates were successfully scaled to 10 L Wave bioreactor production volumes while maintaining similar growth rates without inhibition from ammonium accumulation (Christie, A., and Butler, M.; 1999, The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotechnol Bioeng 64, 298-309). - Taken together, the results presented herein described a scalable method for producing recombinant AAV viral particles in a mammalian cell capable of growing in suspension.
- From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.
- All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference,
Claims (40)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/697,655 US20180312872A1 (en) | 2008-01-29 | 2017-09-07 | Recombinant virus production using mammalian cells in suspension |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6281908P | 2008-01-29 | 2008-01-29 | |
PCT/US2009/000577 WO2009097129A1 (en) | 2008-01-29 | 2009-01-29 | Recombinant virus production using mammalian cells in suspension |
US12/812,671 US20110229971A1 (en) | 2008-01-29 | 2010-07-13 | Recombinant virus production using mammalian cells in suspension |
US13/683,577 US9783826B2 (en) | 2008-01-29 | 2012-11-21 | Recombinant virus production using mammalian cells in suspension |
US15/697,655 US20180312872A1 (en) | 2008-01-29 | 2017-09-07 | Recombinant virus production using mammalian cells in suspension |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/683,577 Continuation US9783826B2 (en) | 2008-01-29 | 2012-11-21 | Recombinant virus production using mammalian cells in suspension |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180312872A1 true US20180312872A1 (en) | 2018-11-01 |
Family
ID=40913147
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/812,671 Abandoned US20110229971A1 (en) | 2008-01-29 | 2010-07-13 | Recombinant virus production using mammalian cells in suspension |
US13/683,577 Active US9783826B2 (en) | 2008-01-29 | 2012-11-21 | Recombinant virus production using mammalian cells in suspension |
US15/697,655 Abandoned US20180312872A1 (en) | 2008-01-29 | 2017-09-07 | Recombinant virus production using mammalian cells in suspension |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/812,671 Abandoned US20110229971A1 (en) | 2008-01-29 | 2010-07-13 | Recombinant virus production using mammalian cells in suspension |
US13/683,577 Active US9783826B2 (en) | 2008-01-29 | 2012-11-21 | Recombinant virus production using mammalian cells in suspension |
Country Status (7)
Country | Link |
---|---|
US (3) | US20110229971A1 (en) |
EP (1) | EP2242840B1 (en) |
AU (1) | AU2009209408B2 (en) |
CA (1) | CA2713338C (en) |
DK (1) | DK2242840T3 (en) |
ES (1) | ES2751999T3 (en) |
WO (1) | WO2009097129A1 (en) |
Families Citing this family (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2012204266C1 (en) | 2011-01-07 | 2017-12-21 | Applied Genetic Technologies Corporation | Promoters, expression cassettes, vectors, kits, and methods for the treatment of achromatopsia and other diseases |
GB201103062D0 (en) | 2011-02-22 | 2011-04-06 | Isis Innovation | Method |
US10196636B2 (en) | 2011-04-21 | 2019-02-05 | Nationwide Children's Hospital, Inc. | Recombinant virus products and methods for inhibition of expression of myotilin |
ES2702496T3 (en) * | 2011-04-21 | 2019-03-01 | Nationwide Childrens Hospital Inc | Recombinant virus products and procedures for the inhibition of miotilin expression |
WO2015081101A1 (en) | 2013-11-26 | 2015-06-04 | The United States Of America, As Represented By The Secretary Department Of Health And Human Services | Adeno-associated virus vectors for treatment of glycogen storage disease |
DK3132051T3 (en) | 2014-04-15 | 2019-06-11 | Applied Genetic Tech Corporation | CODON OPTIMIZED NUCLEIN ACID CODING FOR A RETINITIS PIGMENTOSA GTPASE REGULATOR (RPGR) |
WO2015191508A1 (en) | 2014-06-09 | 2015-12-17 | Voyager Therapeutics, Inc. | Chimeric capsids |
GB201417042D0 (en) * | 2014-09-29 | 2014-11-12 | Fkd Therapies Oy | Method |
BR112017009497A2 (en) | 2014-11-05 | 2018-02-06 | Voyager Therapeutics, Inc. | aadc polynucleotides for the treatment of parkinson's disease |
WO2016073900A1 (en) * | 2014-11-06 | 2016-05-12 | Case Western Reserve University | Compositions and methods of treating usher syndrome iii |
ES2878451T3 (en) | 2014-11-14 | 2021-11-18 | Voyager Therapeutics Inc | Modulating polynucleotides |
US10597660B2 (en) | 2014-11-14 | 2020-03-24 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
US20180057839A1 (en) * | 2014-11-26 | 2018-03-01 | The Regents Of The University Of California | Therapeutic compositions comprising transcription factors and methods of making and using the same |
EP3230441A4 (en) | 2014-12-12 | 2018-10-03 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scaav |
ES2824829T3 (en) | 2014-12-23 | 2021-05-13 | Us Health | Adeno-Associated Virus Vectors Encoding Modified G6PC and Uses of These |
IL286316B2 (en) | 2015-01-16 | 2023-03-01 | Univ Washington | Novel micro-dystrophins and related methods of use |
US10646588B2 (en) | 2015-03-11 | 2020-05-12 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | RP2 and RPGR vectors for treating X-linked retinitis pigmentosa |
EP3626274A3 (en) | 2015-04-16 | 2020-06-17 | Emory University | Recombinant promoters and vectors for protein expression in liver and use thereof |
EP3285813B1 (en) | 2015-04-23 | 2020-12-23 | Washington State University | Smad7 gene delivery as a therapeutic |
GB201508025D0 (en) | 2015-05-11 | 2015-06-24 | Ucl Business Plc | Fabry disease gene therapy |
HUE054802T2 (en) | 2015-10-21 | 2021-09-28 | Us Health | Codon-optimized reduced-size atp7a cdna and uses for treatment of copper transport disorders |
US20180230489A1 (en) | 2015-10-28 | 2018-08-16 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
HRP20231451T1 (en) | 2016-02-05 | 2024-03-01 | Emory University | Injection of single-stranded or self-complementary adeno-associated virus 9 into the cerebrospinal fluid |
WO2017189964A2 (en) | 2016-04-29 | 2017-11-02 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11326182B2 (en) | 2016-04-29 | 2022-05-10 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
KR20240056729A (en) | 2016-05-18 | 2024-04-30 | 보이저 테라퓨틱스, 인크. | Modulatory polynucleotides |
CA3035522A1 (en) | 2016-08-30 | 2018-03-08 | The Regents Of The University Of California | Methods for biomedical targeting and delivery and devices and systems for practicing the same |
EP3574104A1 (en) | 2017-01-30 | 2019-12-04 | The U.S.A. As Represented By The Secretary, Department Of Health And Human Services | Recombinant virus vectors for the treatment of glycogen storage disease |
CA3061652A1 (en) | 2017-05-05 | 2018-11-08 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (als) |
CN111108198A (en) | 2017-05-05 | 2020-05-05 | 沃雅戈治疗公司 | Compositions and methods for treating huntington's disease |
JP2020519272A (en) | 2017-05-09 | 2020-07-02 | エモリー ユニバーシティー | Coagulation factor variants and uses thereof |
JOP20190269A1 (en) | 2017-06-15 | 2019-11-20 | Voyager Therapeutics Inc | Aadc polynucleotides for the treatment of parkinson's disease |
AU2018302016A1 (en) | 2017-07-17 | 2020-02-06 | The Regents Of The University Of California | Trajectory array guide system |
AU2018335752A1 (en) | 2017-09-22 | 2020-03-12 | Christian HINDERER | Gene therapy for treating Mucopolysaccharidosis type ii |
US20200237799A1 (en) | 2017-10-16 | 2020-07-30 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (als) |
TWI804518B (en) | 2017-10-16 | 2023-06-11 | 美商航海家醫療公司 | Treatment of amyotrophic lateral sclerosis (als) |
JP7356994B2 (en) | 2018-03-02 | 2023-10-05 | ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ | Use of IL-34 to treat retinal inflammation and neurodegeneration |
EP3787771A1 (en) | 2018-04-29 | 2021-03-10 | REGENXBIO Inc. | Scalable clarification process for recombinant aav production |
WO2019212922A1 (en) | 2018-04-29 | 2019-11-07 | Regenxbio Inc. | Systems and methods of spectrophotometry for the determination of genome content, capsid content and full/empty ratios of adeno-associated virus particles |
EP3807405A2 (en) | 2018-06-14 | 2021-04-21 | REGENXBIO Inc. | Anion exchange chromatography for recombinant aav production |
AU2019299861A1 (en) | 2018-07-02 | 2021-01-14 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis and disorders associated with the spinal cord |
CN110699367B (en) * | 2018-07-09 | 2021-06-11 | 武汉纽福斯生物科技有限公司 | Nucleic acid for coding human NADH dehydrogenase subunit 4 protein and application thereof |
JP2021530548A (en) | 2018-07-24 | 2021-11-11 | ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics, Inc. | Systems and methods for producing gene therapy products |
KR20210043580A (en) | 2018-08-10 | 2021-04-21 | 리젠엑스바이오 인크. | A scalable method for production of recombinant AAV |
WO2020072849A1 (en) | 2018-10-04 | 2020-04-09 | Voyager Therapeutics, Inc. | Methods for measuring the titer and potency of viral vector particles |
CN112912518A (en) | 2018-10-15 | 2021-06-04 | 再生生物股份有限公司 | Methods for measuring infectivity of replication-defective viral vectors and viruses |
US20220017922A1 (en) | 2018-12-18 | 2022-01-20 | Ultragenyx Pharmaceutical Inc. | Methods and compositions for treating glycogen storage diseases |
JP7531495B2 (en) | 2019-01-04 | 2024-08-09 | ウルトラジェニックス ファーマシューティカル インコーポレイテッド | Gene therapy constructs for treating Wilson's disease |
US20220064671A1 (en) | 2019-01-18 | 2022-03-03 | Voyager Therapeutics, Inc. | Methods and systems for producing aav particles |
US20220098614A1 (en) | 2019-02-28 | 2022-03-31 | Benitec IP Holdings Inc. | Compositions and Methods for Treating Oculopharyngeal Muscular Dystrophy (OPMD) |
ES2965341T3 (en) | 2019-04-11 | 2024-04-12 | Regenxbio Inc | Size exclusion chromatography methods for the characterization of recombinant adeno-associated virus compositions |
AR118734A1 (en) | 2019-04-19 | 2021-10-27 | Regenxbio Inc | FORMULATIONS AND METHODS OF ADENO-ASSOCIATED VIRUS VECTORS |
EP3962536A1 (en) | 2019-04-29 | 2022-03-09 | Voyager Therapeutics, Inc. | Systems and methods for producing baculoviral infected insect cells (biics) in bioreactors |
US20220290182A1 (en) | 2019-08-09 | 2022-09-15 | Voyager Therapeutics, Inc. | Cell culture medium for use in producing gene therapy products in bioreactors |
EP4022070A1 (en) | 2019-08-26 | 2022-07-06 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
WO2021062012A1 (en) | 2019-09-25 | 2021-04-01 | Emory University | Use of klk10 and engineered derivatizations thereof |
US20210189427A1 (en) * | 2019-12-20 | 2021-06-24 | Krystal Biotech, Inc. | Compositions and methods for gene delivery to the airways and/or lungs |
CA3165922A1 (en) | 2020-01-17 | 2021-07-22 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Gene therapy for treatment of crx-autosomal dominant retinopathies |
EP4103724A1 (en) | 2020-02-14 | 2022-12-21 | Ultragenyx Pharmaceutical Inc. | Gene therapy for treating cdkl5 deficiency disorder |
WO2022032153A1 (en) | 2020-08-06 | 2022-02-10 | Voyager Therapeutics, Inc. | Cell culture medium for use in producing gene therapy products in bioreactors |
CN112107696A (en) * | 2020-09-14 | 2020-12-22 | 台州和和生物科技有限公司 | Innovative gene therapy medicine for special route administration and medicine box thereof |
US20230383278A1 (en) | 2020-09-18 | 2023-11-30 | The United States Of America,As Represented By The Secretary,Department Of Health And Human Services | Novel adeno-associated viral (aav) vectors to treat hereditary methylmalonic acidemia (mma) caused by methylmalonyl-coa mutase (mmut) deficiency |
AU2021403076A1 (en) | 2020-12-16 | 2023-06-29 | Regenxbio Inc. | Method of producing a recombinant adeno-associated virus particle |
EP4281568A1 (en) | 2021-01-21 | 2023-11-29 | RegenxBio Inc. | Improved production of recombinant polypeptides and viruses |
WO2022187548A1 (en) | 2021-03-03 | 2022-09-09 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
US20240141377A1 (en) | 2021-03-03 | 2024-05-02 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
EP4322975A2 (en) * | 2021-04-14 | 2024-02-21 | Capsida, Inc. | Plasmids and methods of production of adeno-associated viruses |
KR20240095165A (en) | 2021-08-11 | 2024-06-25 | 솔리드 바이오사이언시즈 인크. | Treatment of Muscular Dystrophy |
CN118202060A (en) | 2021-10-05 | 2024-06-14 | 再生生物股份有限公司 | Compositions and methods for recombinant AAV production |
WO2023060113A1 (en) | 2021-10-05 | 2023-04-13 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
WO2023114816A1 (en) | 2021-12-14 | 2023-06-22 | Neurogene, Inc. | Recombinant optimized galc constructs and methods for treating galc-associated disorders |
GB202201242D0 (en) | 2022-01-31 | 2022-03-16 | Univ Edinburgh | Recombinant optimized mecp2 cassettes and methods for treating rett syndrome and related disorders |
WO2023183623A1 (en) | 2022-03-25 | 2023-09-28 | Regenxbio Inc. | Dominant-negative tumor necrosis factor alpha adeno-associated virus gene therapy |
WO2023196898A1 (en) | 2022-04-07 | 2023-10-12 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Beta globin mimetic peptides and their use |
GB202206336D0 (en) | 2022-04-29 | 2022-06-15 | Univ Edinburgh | Recombinant therapeutic FMR1 constructs and methods of treating fragile X syndrome and related disorders |
WO2023239627A2 (en) | 2022-06-08 | 2023-12-14 | Regenxbio Inc. | Methods for recombinant aav production |
WO2024054983A1 (en) | 2022-09-08 | 2024-03-14 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
WO2024168358A1 (en) | 2023-02-10 | 2024-08-15 | Expression Therapeutics, Llc | Lentiviral system |
WO2024178113A1 (en) | 2023-02-22 | 2024-08-29 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Recombinant adeno-associated virus vectors lacking an immunodominant t cell epitope and use thereof |
WO2024196814A1 (en) | 2023-03-17 | 2024-09-26 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods for treatment of age-related macular degeneration |
WO2024211780A1 (en) | 2023-04-07 | 2024-10-10 | Regenxbio Inc. | Compositions and methods for recombinant aav production |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6686200B1 (en) * | 1993-08-31 | 2004-02-03 | Uab Research Foundation | Methods and compositions for the large scale production of recombinant adeno-associated virus |
DE4438833A1 (en) * | 1994-10-31 | 1996-05-02 | Bayer Ag | Method for the analytical separation of viruses |
DE19830141A1 (en) * | 1998-07-06 | 2000-01-13 | Regine Heilbronn | Recombinant herpes viruses for the generation of recombinant adeno-associated viruses |
US6793926B1 (en) * | 1999-05-27 | 2004-09-21 | Genovo, Inc. | Methods for production of a recombinant adeno-associated virus |
GB2375479B (en) * | 2002-02-23 | 2003-03-26 | Beldore Ltd | Waste water outlet unit |
US20070202587A1 (en) | 2002-09-23 | 2007-08-30 | Applied Genetic Technologies Corporation | Recombinant AAV production in mammalian cells |
US7091029B2 (en) | 2002-09-23 | 2006-08-15 | Applied Genetics Technologies Corporation | High titer recombinant AAV production |
WO2007059473A2 (en) | 2005-11-12 | 2007-05-24 | Introgen Therapeutics, Inc. | Methods for the production and purification of adenoviral vectors |
US20110014232A1 (en) * | 2009-07-16 | 2011-01-20 | Agricultural Research Council | Chimeric foot and mouth disease viruses |
-
2009
- 2009-01-29 AU AU2009209408A patent/AU2009209408B2/en not_active Ceased
- 2009-01-29 DK DK09706778.9T patent/DK2242840T3/en active
- 2009-01-29 ES ES09706778T patent/ES2751999T3/en active Active
- 2009-01-29 CA CA2713338A patent/CA2713338C/en active Active
- 2009-01-29 WO PCT/US2009/000577 patent/WO2009097129A1/en active Application Filing
- 2009-01-29 EP EP09706778.9A patent/EP2242840B1/en active Active
-
2010
- 2010-07-13 US US12/812,671 patent/US20110229971A1/en not_active Abandoned
-
2012
- 2012-11-21 US US13/683,577 patent/US9783826B2/en active Active
-
2017
- 2017-09-07 US US15/697,655 patent/US20180312872A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
Kallal et al, Evaluation of various serum and animal protein free media for the production of a veterinary rabies vaccine in BHK-21 cells, Journal of Biotechnology 95 (2002) 195–204 * |
Also Published As
Publication number | Publication date |
---|---|
CA2713338A1 (en) | 2009-08-06 |
WO2009097129A1 (en) | 2009-08-06 |
EP2242840A1 (en) | 2010-10-27 |
US20130244331A1 (en) | 2013-09-19 |
US9783826B2 (en) | 2017-10-10 |
ES2751999T3 (en) | 2020-04-02 |
EP2242840B1 (en) | 2019-07-24 |
EP2242840A4 (en) | 2012-12-19 |
DK2242840T3 (en) | 2019-10-21 |
CA2713338C (en) | 2021-10-26 |
AU2009209408A1 (en) | 2009-08-06 |
AU2009209408B2 (en) | 2015-06-11 |
US20110229971A1 (en) | 2011-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180312872A1 (en) | Recombinant virus production using mammalian cells in suspension | |
US20190017033A1 (en) | Recombinant aav production in mammalian cells | |
Weindler et al. | A subset of herpes simplex virus replication genes provides helper functions for productive adeno-associated virus replication | |
Thomas et al. | Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells | |
Clément et al. | Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies | |
US7943379B2 (en) | Production of rAAV in vero cells using particular adenovirus helpers | |
JP2022549380A (en) | Adeno-associated virus (AAV) system for the treatment of hereditary deafness | |
US6153436A (en) | Method of gene delivery using wildtype adeno associated viral (AAV) vectors with insertions | |
Labow et al. | The adeno-associated virus rep gene inhibits replication of an adeno-associated virus/simian virus 40 hybrid genome in cos-7 cells | |
US7091029B2 (en) | High titer recombinant AAV production | |
WO2024067153A1 (en) | Nucleic acid for producing raav in insect cell, vp1 capsid protein mutant, and use | |
Carter et al. | Adeno-associated virus and AAV vectors for gene delivery | |
AU2017221791B2 (en) | Recombinant virus production using mammalian cells in suspension | |
JP2003511037A (en) | Production of recombinant AAV using adenovirus containing AAV rep / cap gene | |
WO2005035743A1 (en) | Method for large-scale production, isolation, purification and the uses of multi-type recombinant adeno-associated virus vectors | |
US20240191251A1 (en) | Recombinant herpesvirales vector | |
US20210340503A1 (en) | Recombinant aav production in mammalian cells | |
Chirico et al. | Optimization of packaging of adeno-associated virus gene therapy vectors using plasmid transfections | |
Berns | The Gordon Wilson Lecture. From basic virology to human gene therapy. | |
Ling et al. | Adeno-Associated Virus and Vector | |
WO2024044340A1 (en) | Methods and compositions for the production of recombinant adeno-associated virus (raav) vectors | |
Owens | Latent infection of the host cell by AAV and its disruption by helper viruses | |
Conway | Herpes simplex virus type I based systems for the large scale production of recombinant adeno-associated virus type 2 vectors | |
Fraefel et al. | Herpes simplex virus type 1/adeno-associated virus hybrid vectors | |
Fraefel et al. | Herpes Simplex Virus Type 1/Adeno-Associated Virus Hybrids as Site-Specific Integrating Vectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED GENETIC TECHNOLOGIES CORPORATION, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNOP, DAVID R.;THOMAS, DARBY;VERES, GABOR;SIGNING DATES FROM 20080324 TO 20080325;REEL/FRAME:044933/0734 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: ALLIANCE HOLDCO LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:APPLIED GENETIC TECHNOLOGIES CORPORATION;REEL/FRAME:064594/0297 Effective date: 20230803 |
|
AS | Assignment |
Owner name: BEACON THERAPEUTICS LIMITED, UNITED KINGDOM Free format text: CHANGE OF NAME;ASSIGNOR:ALLIANCE HOLDCO LIMITED;REEL/FRAME:064661/0504 Effective date: 20230601 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |