US20180304239A1 - Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace - Google Patents

Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace Download PDF

Info

Publication number
US20180304239A1
US20180304239A1 US15/769,283 US201615769283A US2018304239A1 US 20180304239 A1 US20180304239 A1 US 20180304239A1 US 201615769283 A US201615769283 A US 201615769283A US 2018304239 A1 US2018304239 A1 US 2018304239A1
Authority
US
United States
Prior art keywords
catalyst
polymer film
film production
production furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/769,283
Inventor
Toshiya Nashida
Naoki TONE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Universal Co Ltd
Original Assignee
Nikki Universal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Universal Co Ltd filed Critical Nikki Universal Co Ltd
Assigned to NIKKI-UNIVERSAL CO., LTD. reassignment NIKKI-UNIVERSAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NASHIDA, Toshiya, TONE, Naoki
Publication of US20180304239A1 publication Critical patent/US20180304239A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/0006Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/101410-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1019100-500 m2/g
    • B01J35/19
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/65Catalysts not containing noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/13Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/17Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/70Constitutive chemical elements of heterogeneous catalysts of Group VII (VIIB) of the Periodic Table
    • B01J2523/72Manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • This invention relates to a catalyst for removing volatile organic compounds (VOCs) or sublimable organic substances generated in a polymer film production furnace; and a method for purifying a gas inside a polymer film production furnace with the use of the catalyst.
  • VOCs volatile organic compounds
  • VOCs volatile organic compounds
  • sublimable organic compounds, etc. derived from a starting polymer
  • Patent Literature 1 discloses the technology of passing hot air within a tenter furnace in PET film production through an oxidation catalyst layer composed of a platinum group metal (ruthenium, rhodium, palladium, osmium, iridium, or platinum).
  • a platinum group metal ruthenium, rhodium, palladium, osmium, iridium, or platinum.
  • Patent Literature 2 discloses a technology which, during production of a PET film with hot air being circulated within a tenter furnace, comprises burning and removing an oligomer generated within the tenter furnace with the use of an oxidation catalyst, and blowing the hot air after removal of the oligomer against the surface of the film.
  • Patent Literature 3 discloses a technology in a process for production of a biaxially oriented polyester film, the technology comprising arranging a platinum catalyst in a hot air circulation path, thereby subjecting low molecular weight substances, which have volatilized from the film and mixed into circulated hot air, to efficient combustion treatment with the platinum catalyst.
  • Patent Literature 4 discloses a technology using a filter incorporating a platinum catalyst block for removal of an oligomer.
  • Patent Literature 5 discloses the technology of providing a tenter with a catalyst for decomposition and removal of a sublimate which has resulted from a thermoplastic resin.
  • an oxidation catalyst is used to treat a gas inside a drafting oven in a PET stretching device; that a platinum group metal (ruthenium, rhodium, palladium, osmium, iridium, or platinum) is used as an active ingredient of the oxidation catalyst; and that the treated gas is circulated and used again.
  • a platinum group metal ruthenium, rhodium, palladium, osmium, iridium, or platinum
  • Patent Literature 6 discloses a purification catalyst for a gas inside a PET drafting oven, the purification catalyst containing at least one inorganic oxide, namely alumina or zirconium oxide, and platinum.
  • the literature also discloses that the purification catalyst may contain zeolite.
  • Patent Literature 6 describes that the following effects can be obtained by possessing the above-mentioned features: (1) A sublimable polymer contained in the gas inside the PET drafting oven, such as a PET oligomer, is oxidatively decomposed at a high conversion rate to be converted into CO 2 and H 2 O. The purification catalyst has activity minimally decreased, and is excellent in durability. (2) Aldehydes generated during PET film stretching are oxidatively decomposed at the same time. (3) Long-term purification of the gas inside the PET drafting oven, which has been difficult to achieve using so far known catalysts, can be achieved. Thus, staining of the drafting oven can be prevented, and a burden on the maintenance and administration of the drafting oven can be lessened.
  • Patent Literatures 1 to 5 do not report the details of the catalysts.
  • Silicon-containing compounds or organic sulfur compounds derived from additives incorporated in a polymer film may be included within a polymer film production furnace. Since they cause a decline in catalytic activity, the durability of the catalyst is also important. Moreover, aldehydes such as acetaldehyde are generated, so that a catalyst simultaneously decomposing and removing them is desired.
  • Patent Literature 6 shows that its purification catalyst exhibits excellent performance in removing the PET oligomer generated inside the PET furnace. However, this literature is silent on the removal of volatile organic compounds generated inside production furnaces for other polymer films.
  • VOCs volatile organic compounds
  • the present inventors developed a novel catalyst for decomposing volatile organic compounds (VOCs) or sublimable organic substances, generated inside a polymer film production furnace, at a high conversion rate. They have found that this catalyst is excellent in durability, and have accomplished the present invention.
  • the gist of the present invention is as follows:
  • a purification catalyst for a gas inside a polymer film production furnace the purification catalyst containing a mixed oxide composed of a manganese-based oxide, which contains manganese and potassium and has a cryptomelane structure, and copper oxide.
  • a method for purifying a gas inside a polymer film production furnace comprising: a step 1 of bringing hot air containing volatile and/or sublimable organic substances, generated during production of a polymer film by the polymer film production furnace, into contact with the catalyst according to any one of [1] to [8], which is provided inside or outside the furnace, at a temperature in the range of 180 to 350° C. to decompose the organic substances oxidatively; and a step 2 of refluxing all of or a part of a resultant decomposition gas to the polymer film production furnace.
  • the catalyst of the present invention has effects as shown below.
  • FIG. 1 is an X-ray diffraction pattern showing the crystal structure of a manganese-based oxide having a cryptomelane structure according to the present invention.
  • FIG. 2 shows a reactor for evaluation of caprolactam decomposing properties.
  • FIG. 3 is a graph showing the course of a CO 2 formation rate due to caprolactam decomposition.
  • FIG. 4 is a graph showing the removal rate of caprolactam.
  • FIG. 5 shows a reactor for evaluation of PET oligomer decomposing properties.
  • FIG. 6 is a graph showing the course of a CO 2 formation rate due to PET oligomer decomposition.
  • FIG. 7 is a graph showing the removal rate of a PET oligomer.
  • FIG. 8 is a graph showing the BET specific surface areas of mixed oxides or composite oxides used in Examples and Comparative Examples.
  • An object to which the catalyst of the present invention is applied is a gas inside a polymer film production furnace, the gas containing volatile organic compounds (VOCs) and sublimable organic substances generated within the polymer film production furnace.
  • the polymer, film production furnace refers, for example, to a furnace for stretching a thin plate of a melt-extrudate of starting polymer chips, while heating the thin plate, thereby processing it into a film form.
  • the type of the polymer is not limited, and includes polymers in general which are formed into films by the above method.
  • Their examples include PET, polyamide (nylon), polyethylene, PVA, polypropylene, polyvinyl chloride, and polystyrene.
  • the average particle diameter refers to the average particle diameter of secondary particles measured by the laser method.
  • the specific surface area is a value measured by the BET method.
  • the catalyst of the present invention contains a mixed oxide composed of a manganese-based oxide, which contains manganese and potassium and has a cryptomelane structure, and copper oxide.
  • the cryptomelane structure is considered to be represented by a chemical formula KMn 8 O 16 .
  • this structure is as follows: Manganese oxide (MnO 6 ) having an octahedral structure containing Mn at the center forms a tunnel-shaped structure. A cross-section of the tunnel-shaped structure is in a nearly quadrilateral shape having two Mn's arranged in one side. That is, an eight-membered ring comprising Mn is provided. A side surface of the tunnel-shaped structure is shared with another adjacent tunnel-shaped structure. Within the tunnel-shaped structure, potassium is arranged so as to fulfill the above-mentioned chemical formula.
  • MnO 6 Manganese oxide having an octahedral structure containing Mn at the center forms a tunnel-shaped structure. A cross-section of the tunnel-shaped structure is in a nearly quadrilateral shape having two Mn's arranged in one side. That is, an eight-membered ring comprising Mn is provided. A side surface of the tunnel
  • Whether the cryptomelane structure is taken or not can be determined by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the mixed oxide of the present invention is a physical mixture of the Mn-based oxide having the cryptomelane structure, and copper oxide.
  • the content of the copper oxide is preferably 10 to 30% by weight, more preferably 15 to 25% by weight, as CuO based on the mixed oxide. If the content is in the range of 10 to 30% by weight, the purification performance and the durability are enhanced.
  • the content of Cu can be found by XRF (fluorescent X-ray analysis).
  • the content of Mn is preferably 65 to 85% by weight, more preferably 70 to 80% by weight, as MnO 2 based on the mixed oxide. If the content is in the range of 65 to 85% by weight, the purification performance and the durability are enhanced.
  • the content of Mn can be found by XRF (fluorescent X-ray analysis).
  • the content of potassium is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the mixed oxide. If the content is in the range of 0.1 to 10% by weight, the purification performance and the durability are enhanced.
  • the content of K can be found by XRF (fluorescent X-ray analysis).
  • the average particle diameter of the mixed oxide is preferably 0.1 to 500 ⁇ m, more preferably 0.5 to 200 ⁇ m.
  • the average particle diameter a value measured by laser diffraction scattering is used.
  • the mixed oxide used has a specific surface area (BET specific surface area, before heat treatment) of preferably 200 m 2 /g or larger, more preferably 220 m 2 /g or larger. Further, the specific surface area after heating for 1 hour at 500° C. is preferably 85 m 2 /g or larger, more preferably 90 m 2 /g or larger. That is, the mixed oxide undergoing a smaller structural change when heated at a high temperature is preferred. If the specific surface area (before heat treatment) is less than 200 m 2 /g, the initial purification performance is not sufficient. If the specific surface area after heating for 1 hour at 500° C. is less than 85 m 2 /g, the durability is poor.
  • BET specific surface area, before heat treatment preferably 200 m 2 /g or larger, more preferably 220 m 2 /g or larger.
  • the specific surface area after heating for 1 hour at 500° C. is preferably 85 m 2 /g or larger, more preferably 90 m 2 /g or larger. That
  • the catalyst of the present invention can be supported on a support medium as will be described later.
  • a binder can be used.
  • the binder is not particularly limited, and a publicly known binder can be used. Examples of the binder usable are colloidal silica, alumina sol, titania sol, silica sol, boehmite, and zirconia sol.
  • the catalyst of the present invention does not exclude the incorporation of other components, if they do not impede the intended operational advantages.
  • the other components include noble metals such as Pt, Pd and Rh.
  • this catalyst can be used in a form in which it is supported on a support medium (carrier for supporting the catalyst).
  • the preferred support medium is of a form having heat resistance, a high contact efficiency, and a small pressure loss. It is concretely exemplified by a honeycomb, a sheet, a mesh, a pipe, a filter, a perforated metal, and a foam metal.
  • the material for the support medium is not particularly limited, but is preferably the one having heat resistance and corrosion resistance. Its examples include cordierite, alumina, silica, silica alumina, carbon fibers, metal fibers, glass fibers, ceramic fibers, stainless steel, and titanium.
  • the amount of the catalyst supported on the support medium if the support medium is a honeycomb, for example, is preferably 100 to 250 g/L, more preferably 140 to 200 g/L, per liter of the honeycomb. If the amount supported is less than 100 g/L, the performance is poor in terms of durability. A larger amount supported results in better durability, but from the viewpoint of productivity, the preferred amount supported is 250 g/L or less.
  • a first step is a step of preparing a slurry containing the mixed oxide and a binder component.
  • a subsequent second step is a step of coating a honeycomb with a predetermined amount of the slurry, and then drying the coated honeycomb at 100 to 200° C. to form a catalyst precursor containing the mixed oxide and the binder component.
  • a succeeding third step is a step of calcining the catalyst precursor in air at a temperature in the range of 200 to 500° C.
  • the catalyst of the present invention is disposed within a polymer film production furnace or a hot air circulation system, where it is brought into contact with hot air.
  • the hot air circulation system is a flow path on which hot air generated within the polymer film production furnace is once delivered out of the production furnace, and then returned again into the production furnace.
  • volatile and/or sublimable organic substances included within the production furnace or within the hot air circulation system are decomposed by the catalyst and converted into CO 2 and H 2 O.
  • the gas inside the furnace is purified.
  • a temperature range of 180 to 350° C., preferably 200 to 350° C., more preferably 210 to 350° C. is preferred.
  • the decomposition reaction of the volatile and/or sublimable organic substances does not proceed sufficiently, with the result that the undecomposed volatile and/or sublimable organic substances remain, or carbon monoxide (CO) tends to form.
  • CO carbon monoxide
  • the reaction proceeds sufficiently.
  • cooling is required until the temperature lowers to a temperature suitable for heat treatment of the resulting polymer film (i.e., normally 200 to 230° C.), thereby wasting energy.
  • SV space velocity
  • the usual SV is preferably 1,000 to 200,000 hr ⁇ 1 , more preferably 2,000 to 100,000 hr ⁇ 1 , depending on the concentration of the volatile and/or sublimable organic substances in question.
  • the gas treated with the catalyst (treated gas) is refluxed to the polymer film production furnace, if required. On this occasion, the total amount of the treated gas may be refluxed, or after a part of the treated gas is discharged and fresh air is introduced into the remaining gas, the resulting mixture may be refluxed.
  • a catalytic decomposition reaction gasification reaction for converting organic fine particles, which are a polymeric material, into a low molecular weight hydrocarbon
  • an oxidation reaction of the resulting low molecular weight hydrocarbon and
  • a combustion reaction of coke forming on the catalyst in association with the catalytic decomposition reaction are presumed to occur synergistically: (i) A catalytic decomposition reaction (gasification reaction) for converting organic fine particles, which are a polymeric material, into a low molecular weight hydrocarbon, (ii) an oxidation reaction of the resulting low molecular weight hydrocarbon, and (iii) a combustion reaction of coke forming on the catalyst in association with the catalytic decomposition reaction.
  • the polymer film production furnace targeted by the present invention refers to a furnace for stretching a thin plate, which is a melt-extrudate of starting polymer chips, while heating the thin plate, thereby processing it into a film form.
  • the type of the polymer is not limited, and includes polymers in general which are formed into films by the above method. Examples of the polymer include PET, polyamide (nylon), polyethylene, PVA, polypropylene, polyvinyl chloride, and polystyrene.
  • KCG-4P manufactured by Clariant: a mixed oxide containing a manganese-based oxide, which contains manganese and potassium and has a cryptomelane structure, and copper oxide, according to the present invention; its composition contains 73.0 to 79.0% by weight as MnO 2 , 20.0 to 24.0% by weight as CuO, and 1.0 to 3.0% by weight as K, based on the mixed oxide) (111.2 g), 117.0 g of SNOWTEX-C(Nissan Chemical Industries, Ltd.), and 71.8 g of deionized water were mixed to prepare a slurry.
  • This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Catalyst 1 of a honeycomb type supporting a catalyst layer of the mixed oxide. The weight of the catalyst layer per liter of the honeycomb was 157 g.
  • Catalyst 3 of a honeycomb type supporting a catalyst layer of the mixed oxide according to the present invention was obtained by the same method as for Catalyst 1, except that a cordierite honeycomb (manufactured by NGK INSULATORS, LTD., 200 cells/square inch) was used as a base material.
  • the weight of the catalyst layer per liter of the honeycomb was 148 g.
  • ⁇ -alumina powder manufactured by Nikki-Universal Co., Ltd., average particle diameter 5 ⁇ m
  • alumina sol as a binder in solid form
  • deionized water 600 g
  • This slurry was coated on a cordierite honeycomb (produced by NGK INSULATORS, LTD., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer, and then calcined for 1 hour at 500° C.
  • the weight of the ⁇ -alumina layer per liter of the honeycomb was 40 g.
  • Comparative Catalyst 1 of a honeycomb type having 1.8 g/L of Pt supported on alumina was obtained.
  • Comparative Catalyst 1 is a catalyst which has been widely used in catalytic applications to purification of the interior of furnaces.
  • Mn-based oxide Activated manganese dioxide (manufactured by Japan Metals & Chemicals Co., Ltd., BET specific surface area 150 m 2 /g) was used as a Mn-based oxide.
  • This Mn-based oxide does not have a cryptomelane structure, and is substantially free from potassium (even if potassium is contained, it is in a trace amount corresponding to an impurity level).
  • the Mn-based oxide contain copper oxide.
  • 99.6 g of the Mn-based oxide, 117.0 g of SNOWTEX-C(manufactured by Nissan Chemical Industries, Ltd.), and 83.4 g of deionized water were mixed to prepare a slurry.
  • This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Comparative Catalyst 2 of a honeycomb type supporting a catalyst layer of the Mn-based oxide. The weight of the catalyst layer per liter of the honeycomb was 134 g.
  • Comparative Catalyst 3 of a honeycomb type supporting a catalyst layer of the Mn-based oxide The weight of the catalyst layer per liter of the honeycomb was 179 g.
  • N-840 (manufactured by Clariant) was used as a mixed oxide containing copper oxide and a Mn-based oxide in which the Mn-based oxide contained potassium, but had no cryptomelane structure. 76.4 g of the mixed oxide, 84.0 g of SNOWTEX-C (manufactured by Nissan Chemical Industries, Ltd.), and 120.0 g of deionized water were mixed to prepare a slurry. This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer.
  • Comparative Catalyst 4 of a honeycomb type supporting a catalyst layer of the Mn-based oxide The weight of the catalyst layer per liter of the honeycomb was 157 g.
  • DAIPYROXIDE #7710 (manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd.) was used as a composite oxide containing copper oxide and a Mn-based oxide in which potassium other than impurities was not contained and the Mn-based oxide had no cryptomelane structure. 80.2 g of the composite oxide, 88.2 g of SNOWTEX-C (manufactured by Nissan Chemical Industries, Ltd.), and 126.0 g of deionized water were mixed to prepare a slurry.
  • This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Comparative Catalyst 5 of a honeycomb type supporting a catalyst layer of the Mn-based oxide. The weight of the catalyst layer per liter of the honeycomb was 141 g.
  • ⁇ -caprolactam decomposition tests of Catalysts 1 and 2 and Comparative Catalysts 1 to 5 were conducted.
  • ⁇ -caprolactam is a typical substance which is deposited and accumulated within a polyamide film production furnace, and the removal of this substance is desired.
  • a sample container 12 for holding a powder of ⁇ -caprolactam (indicated by S in the drawing) is disposed.
  • a catalyst 13 (cylindrical honeycomb catalyst; diameter 21 mm, length 50 mm) is installed in a reaction tube 11 .
  • a gas treated with the catalyst i.e., an exhaust gas
  • a gas collection container 17 connected to the reaction tube 11 via connection piping 16 , and is cooled there to 0 to 5° C. from outside.
  • the undecomposed ⁇ -caprolactam is recovered in a solid form into a sampling container 18 installed within the container 17 , and is weighed.
  • an exhaust pipe 19 connected to the gas collection container 17 continuously measures the concentration of CO 2 in the exhaust gas.
  • the CO 2 concentration was measured with Model 410 i manufactured by Thermo Fisher Scientific.
  • the reaction tube 11 With a mixed gas composed of an N 2 gas and an O 2 gas (volume ratio 80:20) being flowed through a gas introduction pipe 15 of the reactor, the reaction tube 11 is heated from outside so that the catalyst 13 reaches 210° C.
  • the mixed gas has a flow rate set so that its space velocity becomes 70,000 h ⁇ 1 .
  • the sample evaporation container 10 is heated and held at 170° C.
  • a sample inlet attached to the sample evaporation container is opened, the sample container 12 holding 0.4 g of ⁇ -caprolactam (manufactured by Wako Pure Chemical Industries, Ltd.) is placed within the sample evaporation container 10 , and then the sample inlet is closed promptly.
  • the ⁇ -caprolactam is melted and volatilized.
  • the volatilized ⁇ -caprolactam is transported to the catalyst 13 , which has been heated at 210° C., by the mixed gas introduced through the gas introduction pipe 15 , and is treated with the catalyst 13 .
  • One test lasts for 60 minutes from the charging of the s-caprolactam. During the 60-minute test, the CO 2 concentration in the exhaust gas is continuously measured. After a lapse of 60 minutes, the sample container 12 is taken out of the sample evaporation container 10 , and the amount of ⁇ -caprolactam after the test is weighed. From the weighed amount, the amount of the volatilized ⁇ -caprolactam is calculated.
  • the amount of CO 2 discharged during one test (i.e., V2(L)) is determined. From the amount of the volatilized ⁇ -caprolactam, moreover, the amount of CO 2 provided that all the volatilized ⁇ -caprolactam has been converted into CO 2 (i.e., V1(L)) is calculated. Based on these amounts, the CO 2 formation rate is calculated from the equation indicated below. The fact that this value is high means that a proportion in which ⁇ -caprolactam has been completely oxidized is high, that is, that the catalyst performance is high.
  • the sampling container 18 is weighed, and the amount of the undecomposed ⁇ -caprolactam is calculated. Then, the ⁇ -caprolactam removal rate is calculated from the equation shown below. A high value of this rate means that the concentration of ⁇ -caprolactam on the outlet side of the catalyst is low, thus demonstrating that the catalyst performance is high.
  • Catalysts 1 and 2 of the present invention were high in the CO 2 formation rate, and decreases in the CO 2 formation rate were minimal even after repeated measurements, as compared with Comparative Catalysts 1 to 5.
  • Catalysts 1 and 2 of the present invention were superior to Comparative Catalysts 1 to 5, as shown in Table 2 and FIG. 4 .
  • PET oligomer decomposition tests of Catalysts 1 and 3 and Comparative Catalyst 1 were conducted.
  • a sample container 22 for holding PET chips (indicated by S in the drawing) is disposed.
  • a catalyst 23 (cylindrical honeycomb catalyst; diameter 21 mm, length 50 mm) is installed in a reaction tube 21 .
  • an organosilicon bubbling device (not shown) is connected to an upstream side of an organosilicon gas introduction pipe 24 .
  • a downstream side of the organosilicon gas introduction pipe 24 is connected to a downstream side of a gas introduction pipe 25 , providing a structure in which an organosilicon gas generated by bubbling can be supplied into the reaction tube 21 .
  • the supplied organosilicon gas works as a substance poisonous to the catalyst.
  • KF-96L-1CS manufactured by Shin-Etsu Chemical Co., Ltd. is used as organosilicon, and volatilized by bubbling.
  • the gas treated with the catalyst i.e., an exhaust gas
  • the undecomposed PET oligomer is recovered in a solid form into a sampling container 28 installed within the container 27 , and is weighed.
  • an exhaust pipe 29 connected to the gas collection container 27 continuously measures the concentration of CO 2 in the exhaust gas.
  • the CO 2 concentration was measured with Model 410 i manufactured by Thermo Fisher Scientific.
  • the reaction tube 21 With a mixed gas composed of an N 2 gas and an O 2 gas (volume ratio 80:20) being flowed through the gas introduction pipe 25 of the reactor, the reaction tube 21 is heated from outside so that the catalyst 23 reaches 230° C.
  • the mixed gas has a flow rate set so that its space velocity becomes 35,000 h ⁇ 1 .
  • the sample evaporation container 20 is heated and held at 400° C.
  • a sample inlet attached to the sample evaporation container is opened, the sample container 22 holding 1.65 g of PET chips is placed in the sample evaporation container 20 , and then the sample inlet is closed promptly. As a result, the PET chips are melted to generate a PET oligomer.
  • the generated PET oligomer is transported to the catalyst 23 , which has been heated at 230° C., by the mixed gas introduced through the gas introduction pipe 25 , and is treated with the catalyst 23 .
  • the organosilicon gas is supplied into the reaction tube 21 via the organosilicon gas introduction pipe 24 . Consequently, the decomposition of the PET oligomer is performed under a poisonous environment due to the organosilicon gas.
  • One test lasts for 30 minutes from the charging of the PET chips. During the 30-minute test, the CO 2 concentration in the exhaust gas is continuously measured. After a lapse of 30 minutes, the sample container 22 is taken out of the sample evaporation container 20 , and the amount of the PET chips after the test is weighed. From the weighed amount, the amount of the volatilized PET chips is calculated.
  • the amount of CO 2 discharged during one test i.e., V2(L)
  • the amount of CO 2 provided that all the volatilized PET chips are converted into CO 2 i.e., V1(L)
  • the CO 2 formation rate is calculated from the equation indicated below. A high value of this rate means that a proportion in which the volatilized PET oligomer has been completely oxidized is high, namely, that the catalyst performance is high.
  • the sampling container 28 is weighed, and the amount of the undecomposed PET oligomer is calculated. Then, the PET oligomer removal rate is calculated from the equation shown below. A high value of this rate means that the concentration of the PET oligomer on the outlet side of the catalyst is low, thus demonstrating that the catalyst performance is high.
  • Comparative Catalyst 1 showed a high CO 2 formation rate at the initial stage, but this formation rate declined rapidly. This finding shows that Comparative Catalyst 1 is easily poisoned with organosilicon.
  • Catalysts 1 and 3 of the present invention were lower than the comparative catalyst in the initial CO 2 formation rate, but their decreases in the CO 2 formation rate were slower. That is, Catalysts 1 and 3 of the present invention were more resistant to poisoning by organosilicon, and were longer in catalyst life.
  • Catalysts 1 and 3 of the present invention were comparable to Comparative Catalyst 1, as shown in Table 4 and FIG. 7 .
  • the measurements made in the present 12 tests correspond to about 1 year of use in a general real furnace (depending on the type of a polymer film manufactured in a production furnace, the manufacturing conditions, and so on, however, the duration of use may be longer or shorter than 1 year).
  • the various mixed oxides and composite oxides used above were measured for the BET specific surface areas before heat treatment and after heat treatment performed for 1 hour at 500° C.
  • the BET specific surface areas were measured with TriStar II 3020 manufactured by Micromeritics. The results of the measurements are shown in FIG. 8 .
  • KCG-4P used in the Example had a specific surface area of more than 85 m 2 /g even after heat treatment performed for 1 hour at 500° C.
  • N-840 and DAIPYROXIDE #7710 had specific surface areas of more than 200 m 2 /g before heat treatment, but showed specific surface areas of less than 85 m 2 /g after heat treatment performed for 1 hour at 500° C. That is, KCG-4P proves to be smaller in structural change due to heat treatment than N-840 and DAIPYROXIDE #7710.

Abstract

A high durability catalyst for decomposing volatile organic compounds (VOCs) or sublimable organic substances, generated inside a polymer film production furnace, at a high conversion rate is provided. A method for purifying a gas inside a polymer film production furnace with the use of the catalyst is also provided.
Provided are a purification catalyst for a gas inside a polymer film production furnace, which contains a mixed oxide composed of a manganese-based oxide containing manganese and potassium and having a cryptomelane structure, and copper oxide; and a method for purifying a gas inside a polymer film production furnace, comprising a step 1 of bringing hot air containing volatile and/or sublimable organic substances, generated during production of a polymer film by the polymer film production furnace, into contact with the catalyst provided inside or outside the furnace, at a temperature in the range of 200 to 350° C. to decompose the organic substances oxidatively, and a step 2 of refluxing all or a part of a resultant decomposition gas to the polymer film production furnace.

Description

    TECHNICAL FIELD
  • This invention relates to a catalyst for removing volatile organic compounds (VOCs) or sublimable organic substances generated in a polymer film production furnace; and a method for purifying a gas inside a polymer film production furnace with the use of the catalyst.
  • BACKGROUND ART
  • Inside a polymer film production furnace, organic fine particles of volatile organic compounds (VOCs), sublimable organic compounds, etc., derived from a starting polymer, are present in a mixed form. If these organic fine particles deposit on the resulting film during a production process, they may deteriorate the quality of the film.
  • PRIOR ART
  • Patent Literature 1 discloses the technology of passing hot air within a tenter furnace in PET film production through an oxidation catalyst layer composed of a platinum group metal (ruthenium, rhodium, palladium, osmium, iridium, or platinum).
  • Patent Literature 2 discloses a technology which, during production of a PET film with hot air being circulated within a tenter furnace, comprises burning and removing an oligomer generated within the tenter furnace with the use of an oxidation catalyst, and blowing the hot air after removal of the oligomer against the surface of the film.
  • Patent Literature 3 discloses a technology in a process for production of a biaxially oriented polyester film, the technology comprising arranging a platinum catalyst in a hot air circulation path, thereby subjecting low molecular weight substances, which have volatilized from the film and mixed into circulated hot air, to efficient combustion treatment with the platinum catalyst.
  • Patent Literature 4 discloses a technology using a filter incorporating a platinum catalyst block for removal of an oligomer.
  • Patent Literature 5 discloses the technology of providing a tenter with a catalyst for decomposition and removal of a sublimate which has resulted from a thermoplastic resin.
  • As described above, the literatures cited above present the facts that an oxidation catalyst is used to treat a gas inside a drafting oven in a PET stretching device; that a platinum group metal (ruthenium, rhodium, palladium, osmium, iridium, or platinum) is used as an active ingredient of the oxidation catalyst; and that the treated gas is circulated and used again.
  • Patent Literature 6 discloses a purification catalyst for a gas inside a PET drafting oven, the purification catalyst containing at least one inorganic oxide, namely alumina or zirconium oxide, and platinum. The literature also discloses that the purification catalyst may contain zeolite.
  • Patent Literature 6 describes that the following effects can be obtained by possessing the above-mentioned features: (1) A sublimable polymer contained in the gas inside the PET drafting oven, such as a PET oligomer, is oxidatively decomposed at a high conversion rate to be converted into CO2 and H2O. The purification catalyst has activity minimally decreased, and is excellent in durability. (2) Aldehydes generated during PET film stretching are oxidatively decomposed at the same time. (3) Long-term purification of the gas inside the PET drafting oven, which has been difficult to achieve using so far known catalysts, can be achieved. Thus, staining of the drafting oven can be prevented, and a burden on the maintenance and administration of the drafting oven can be lessened.
  • Problems with Prior Art
  • The aforementioned Patent Literatures 1 to 5 do not report the details of the catalysts.
  • Silicon-containing compounds or organic sulfur compounds derived from additives incorporated in a polymer film may be included within a polymer film production furnace. Since they cause a decline in catalytic activity, the durability of the catalyst is also important. Moreover, aldehydes such as acetaldehyde are generated, so that a catalyst simultaneously decomposing and removing them is desired.
  • Patent Literature 6 shows that its purification catalyst exhibits excellent performance in removing the PET oligomer generated inside the PET furnace. However, this literature is silent on the removal of volatile organic compounds generated inside production furnaces for other polymer films.
  • CITATION LIST Patent Literatures
  • PTL 1: JP-A-Sho-59-98821
  • PTL 2: JP-B-Sho-60-45577
  • PTL 3: JP-A-Hei-11-342535
  • PTL 4: JP-A-Hei-11-77823
  • PTL 5: JP-A-2002-144420
  • PTL 6: WO2009/125829
  • SUMMARY OF INVENTION Technical Problem
  • It is an object of the present invention, therefore, to provide a catalyst for decomposing organic fine particles of volatile organic compounds (VOCs) or sublimable organic substances, generated inside a polymer film production furnace, at a high conversion rate; provide a high durable catalyst; and provide a method for purifying a gas inside a polymer film production furnace with the use of the catalyst.
  • Solution to Problem
  • The present inventors developed a novel catalyst for decomposing volatile organic compounds (VOCs) or sublimable organic substances, generated inside a polymer film production furnace, at a high conversion rate. They have found that this catalyst is excellent in durability, and have accomplished the present invention. The gist of the present invention is as follows:
  • [1] A purification catalyst for a gas inside a polymer film production furnace, the purification catalyst containing a mixed oxide composed of a manganese-based oxide, which contains manganese and potassium and has a cryptomelane structure, and copper oxide.
    [2] The purification catalyst according to [1], wherein the content of the copper oxide is 10 to 30% by weight as CuO based on the mixed oxide.
    [3] The purification catalyst according to [1] or [2], wherein the content of the manganese is 65 to 85% by weight as MnO2 based on the mixed oxide.
    [4] The purification catalyst according to any one of [1] to [3], wherein the content of the potassium is 0.1 to 10% by weight based on the mixed oxide.
    [5] The purification catalyst according to any one of [1] to [4], wherein the specific surface area (BET specific surface area) of the mixed oxide is 200 m2/g or more.
    [6] The purification catalyst according to any one of [1] to [5], wherein the specific surface area (BET specific surface area) of the mixed oxide after being heated for 1 hour at 500° C. is 85 m2/g or more.
    [7] The purification catalyst according to any one of [1] to [6], wherein the gas inside the polymer film production furnace contains volatile and/or sublimable organic substances generated during production of a polymer film.
    [8] The purification catalyst according to any one of [1] to [7] supported on a catalyst support medium.
    [9] A method for purifying a gas inside a polymer film production furnace, comprising: a step 1 of bringing hot air containing volatile and/or sublimable organic substances, generated during production of a polymer film by the polymer film production furnace, into contact with the catalyst according to any one of [1] to [8], which is provided inside or outside the furnace, at a temperature in the range of 180 to 350° C. to decompose the organic substances oxidatively; and a step 2 of refluxing all of or a part of a resultant decomposition gas to the polymer film production furnace.
  • Advantageous Effects of Invention
  • The catalyst of the present invention has effects as shown below.
  • (i) Deterioration in the performance is reduced even during long-term use, and the catalyst life is long, as compared with conventional purification catalysts for gases inside polymer film production furnaces.
  • (ii) Even in an environment where a poisonous substance is coexistent, deterioration in the performance is minimal and catalyst life is long, compared with conventional catalysts. That is, the poisoning resistance is excellent
  • (iii) Effects, such as producibility at a low cost, are exhibited, because an expensive noble metal is not used.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is an X-ray diffraction pattern showing the crystal structure of a manganese-based oxide having a cryptomelane structure according to the present invention.
  • FIG. 2 shows a reactor for evaluation of caprolactam decomposing properties.
  • FIG. 3 is a graph showing the course of a CO2 formation rate due to caprolactam decomposition.
  • FIG. 4 is a graph showing the removal rate of caprolactam.
  • FIG. 5 shows a reactor for evaluation of PET oligomer decomposing properties.
  • FIG. 6 is a graph showing the course of a CO2 formation rate due to PET oligomer decomposition.
  • FIG. 7 is a graph showing the removal rate of a PET oligomer.
  • FIG. 8 is a graph showing the BET specific surface areas of mixed oxides or composite oxides used in Examples and Comparative Examples.
  • DESCRIPTION OF EMBODIMENTS
  • Embodiments of the present invention will now be described below.
  • FIELD OF APPLICATION
  • An object to which the catalyst of the present invention is applied is a gas inside a polymer film production furnace, the gas containing volatile organic compounds (VOCs) and sublimable organic substances generated within the polymer film production furnace. The polymer, film production furnace refers, for example, to a furnace for stretching a thin plate of a melt-extrudate of starting polymer chips, while heating the thin plate, thereby processing it into a film form.
  • The type of the polymer is not limited, and includes polymers in general which are formed into films by the above method. Their examples include PET, polyamide (nylon), polyethylene, PVA, polypropylene, polyvinyl chloride, and polystyrene.
  • Concrete Description of Present Invention
  • Unless otherwise specified herein, the average particle diameter refers to the average particle diameter of secondary particles measured by the laser method. The specific surface area is a value measured by the BET method.
  • <Composition of Catalyst, Etc.>
  • The catalyst of the present invention contains a mixed oxide composed of a manganese-based oxide, which contains manganese and potassium and has a cryptomelane structure, and copper oxide.
  • The cryptomelane structure is considered to be represented by a chemical formula KMn8O16. Concretely, this structure is as follows: Manganese oxide (MnO6) having an octahedral structure containing Mn at the center forms a tunnel-shaped structure. A cross-section of the tunnel-shaped structure is in a nearly quadrilateral shape having two Mn's arranged in one side. That is, an eight-membered ring comprising Mn is provided. A side surface of the tunnel-shaped structure is shared with another adjacent tunnel-shaped structure. Within the tunnel-shaped structure, potassium is arranged so as to fulfill the above-mentioned chemical formula.
  • Whether the cryptomelane structure is taken or not can be determined by X-ray diffraction (XRD). The results of XRD of the Mn-based composite oxide used in the present invention are as shown in FIG. 1, which reveals that this oxide has the cryptomelane structure.
  • The mixed oxide of the present invention is a physical mixture of the Mn-based oxide having the cryptomelane structure, and copper oxide.
  • The content of the copper oxide is preferably 10 to 30% by weight, more preferably 15 to 25% by weight, as CuO based on the mixed oxide. If the content is in the range of 10 to 30% by weight, the purification performance and the durability are enhanced. The content of Cu can be found by XRF (fluorescent X-ray analysis).
  • The content of Mn is preferably 65 to 85% by weight, more preferably 70 to 80% by weight, as MnO2 based on the mixed oxide. If the content is in the range of 65 to 85% by weight, the purification performance and the durability are enhanced. The content of Mn can be found by XRF (fluorescent X-ray analysis).
  • The content of potassium is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the mixed oxide. If the content is in the range of 0.1 to 10% by weight, the purification performance and the durability are enhanced. The content of K can be found by XRF (fluorescent X-ray analysis).
  • In order to ensure the adsorption of the components to be treated and improve the contact efficiency by an increase in the area of gas contact, the average particle diameter of the mixed oxide is preferably 0.1 to 500 μm, more preferably 0.5 to 200 μm. As the average particle diameter, a value measured by laser diffraction scattering is used.
  • For the purposes of ensuring the adsorption of the components to be treated, and improving the contact efficiency by increasing the gas contact area, the mixed oxide used has a specific surface area (BET specific surface area, before heat treatment) of preferably 200 m2/g or larger, more preferably 220 m2/g or larger. Further, the specific surface area after heating for 1 hour at 500° C. is preferably 85 m2/g or larger, more preferably 90 m2/g or larger. That is, the mixed oxide undergoing a smaller structural change when heated at a high temperature is preferred. If the specific surface area (before heat treatment) is less than 200 m2/g, the initial purification performance is not sufficient. If the specific surface area after heating for 1 hour at 500° C. is less than 85 m2/g, the durability is poor.
  • The catalyst of the present invention can be supported on a support medium as will be described later. To enhance adhesion between the catalyst of the present invention and the support medium, a binder can be used. The binder is not particularly limited, and a publicly known binder can be used. Examples of the binder usable are colloidal silica, alumina sol, titania sol, silica sol, boehmite, and zirconia sol.
  • The catalyst of the present invention does not exclude the incorporation of other components, if they do not impede the intended operational advantages. Examples of the other components include noble metals such as Pt, Pd and Rh.
  • <Method of Preparing Catalyst>
  • In applying the catalyst of the present invention to the purification of a gas inside a polymer film production furnace, this catalyst can be used in a form in which it is supported on a support medium (carrier for supporting the catalyst). The preferred support medium is of a form having heat resistance, a high contact efficiency, and a small pressure loss. It is concretely exemplified by a honeycomb, a sheet, a mesh, a pipe, a filter, a perforated metal, and a foam metal. The material for the support medium is not particularly limited, but is preferably the one having heat resistance and corrosion resistance. Its examples include cordierite, alumina, silica, silica alumina, carbon fibers, metal fibers, glass fibers, ceramic fibers, stainless steel, and titanium.
  • The amount of the catalyst supported on the support medium, if the support medium is a honeycomb, for example, is preferably 100 to 250 g/L, more preferably 140 to 200 g/L, per liter of the honeycomb. If the amount supported is less than 100 g/L, the performance is poor in terms of durability. A larger amount supported results in better durability, but from the viewpoint of productivity, the preferred amount supported is 250 g/L or less.
  • An example of the concrete method for preparation is as follows: A first step is a step of preparing a slurry containing the mixed oxide and a binder component. A subsequent second step is a step of coating a honeycomb with a predetermined amount of the slurry, and then drying the coated honeycomb at 100 to 200° C. to form a catalyst precursor containing the mixed oxide and the binder component. A succeeding third step is a step of calcining the catalyst precursor in air at a temperature in the range of 200 to 500° C.
  • <Method for Purification of Polymer Film Production Furnace>
  • The catalyst of the present invention is disposed within a polymer film production furnace or a hot air circulation system, where it is brought into contact with hot air. The hot air circulation system is a flow path on which hot air generated within the polymer film production furnace is once delivered out of the production furnace, and then returned again into the production furnace. By this procedure, volatile and/or sublimable organic substances included within the production furnace or within the hot air circulation system are decomposed by the catalyst and converted into CO2 and H2O. As a result, the gas inside the furnace is purified. To exhibit the decomposition activity of the catalyst of the present invention, a temperature range of 180 to 350° C., preferably 200 to 350° C., more preferably 210 to 350° C., is preferred. At a temperature of lower than 180° C., the decomposition reaction of the volatile and/or sublimable organic substances does not proceed sufficiently, with the result that the undecomposed volatile and/or sublimable organic substances remain, or carbon monoxide (CO) tends to form. At a temperature exceeding 350° C., on the other hand, the reaction proceeds sufficiently. During the circulation of the treated gas for reuse, however, cooling is required until the temperature lowers to a temperature suitable for heat treatment of the resulting polymer film (i.e., normally 200 to 230° C.), thereby wasting energy. There is no limitation on the space velocity (SV) of the gas. To burn the volatile and/or sublimable organic substances in hot air completely, however, the usual SV is preferably 1,000 to 200,000 hr−1, more preferably 2,000 to 100,000 hr−1, depending on the concentration of the volatile and/or sublimable organic substances in question. The gas treated with the catalyst (treated gas) is refluxed to the polymer film production furnace, if required. On this occasion, the total amount of the treated gas may be refluxed, or after a part of the treated gas is discharged and fresh air is introduced into the remaining gas, the resulting mixture may be refluxed.
  • <Actions>
  • Actions by which the catalyst of the present invention exhibits the effects of decomposing organic fine particles of volatile organic compounds (VOCs) and sublimable organic substances generated within a polymer film production furnace and sustaining its activity have not yet been elucidated, but a synergistic effect attributed to all or some of reactions indicated below is presumed to be obtained. It is to be noted that other reaction mechanisms are not denied. That is, the following reactions are presumed to occur synergistically: (i) A catalytic decomposition reaction (gasification reaction) for converting organic fine particles, which are a polymeric material, into a low molecular weight hydrocarbon, (ii) an oxidation reaction of the resulting low molecular weight hydrocarbon, and (iii) a combustion reaction of coke forming on the catalyst in association with the catalytic decomposition reaction.
  • <Polymer Film Production Furnace Targeted>
  • The polymer film production furnace targeted by the present invention refers to a furnace for stretching a thin plate, which is a melt-extrudate of starting polymer chips, while heating the thin plate, thereby processing it into a film form. The type of the polymer is not limited, and includes polymers in general which are formed into films by the above method. Examples of the polymer include PET, polyamide (nylon), polyethylene, PVA, polypropylene, polyvinyl chloride, and polystyrene.
  • The present invention will be described in further detail based on the following Examples, but is in no way limited thereto.
  • EXAMPLES
  • <Preparation of Catalyst>
  • (Catalyst 1)
  • KCG-4P (manufactured by Clariant: a mixed oxide containing a manganese-based oxide, which contains manganese and potassium and has a cryptomelane structure, and copper oxide, according to the present invention; its composition contains 73.0 to 79.0% by weight as MnO2, 20.0 to 24.0% by weight as CuO, and 1.0 to 3.0% by weight as K, based on the mixed oxide) (111.2 g), 117.0 g of SNOWTEX-C(Nissan Chemical Industries, Ltd.), and 71.8 g of deionized water were mixed to prepare a slurry. This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Catalyst 1 of a honeycomb type supporting a catalyst layer of the mixed oxide. The weight of the catalyst layer per liter of the honeycomb was 157 g.
  • (Catalyst 2)
  • 114.0 g of KCG-4P (manufactured by Clariant), 120.0 g of SNOWTEX-C (manufactured by Nissan Chemical Industries, Ltd.), and 66.0 g of deionized water were mixed to prepare a slurry. This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Catalyst 2 of a honeycomb type supporting a catalyst layer of the mixed oxide. The weight of the catalyst layer per liter of the honeycomb was 216 g.
  • (Catalyst 3)
  • Catalyst 3 of a honeycomb type supporting a catalyst layer of the mixed oxide according to the present invention was obtained by the same method as for Catalyst 1, except that a cordierite honeycomb (manufactured by NGK INSULATORS, LTD., 200 cells/square inch) was used as a base material. The weight of the catalyst layer per liter of the honeycomb was 148 g.
  • (Comparative Catalyst 1) (Pt1.8/Al2O3)
  • 120 g of γ-alumina powder (manufactured by Nikki-Universal Co., Ltd., average particle diameter 5 μm) as solids and 78.0 g of alumina sol as a binder in solid form were mixed with 600 g of deionized water to prepare a slurry. This slurry was coated on a cordierite honeycomb (produced by NGK INSULATORS, LTD., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer, and then calcined for 1 hour at 500° C. The weight of the γ-alumina layer per liter of the honeycomb was 40 g. Then, the calcined honeycomb was impregnated with an aqueous solution of dinitrodiamine platinum (manufactured by Tanaka Kikinzoku Kogyo) so that the total Pt content would be 1.8 g/L (per liter of the catalyst support medium). Then, the impregnated honeycomb was dried for 3 hours at 150° C., and then reduced for 1 hour in a hydrogen atmosphere at 500° C. As a result, Comparative Catalyst 1 of a honeycomb type having 1.8 g/L of Pt supported on alumina was obtained. Comparative Catalyst 1 is a catalyst which has been widely used in catalytic applications to purification of the interior of furnaces.
  • (Comparative Catalyst 2)
  • Activated manganese dioxide (manufactured by Japan Metals & Chemicals Co., Ltd., BET specific surface area 150 m2/g) was used as a Mn-based oxide. This Mn-based oxide does not have a cryptomelane structure, and is substantially free from potassium (even if potassium is contained, it is in a trace amount corresponding to an impurity level). Nor does the Mn-based oxide contain copper oxide. 99.6 g of the Mn-based oxide, 117.0 g of SNOWTEX-C(manufactured by Nissan Chemical Industries, Ltd.), and 83.4 g of deionized water were mixed to prepare a slurry. This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Comparative Catalyst 2 of a honeycomb type supporting a catalyst layer of the Mn-based oxide. The weight of the catalyst layer per liter of the honeycomb was 134 g.
  • (Comparative Catalyst 3)
  • NJ-300 (manufactured by Japan Metals & Chemicals Co., Ltd.) was used as Mn oxide having a cryptomelane structure, but containing no CuO. 82.0 g of this Mn oxide, 90.0 g of SNOWTEX-C(manufactured by Nissan Chemical Industries, Ltd.), and 128.0 g of deionized water were mixed to prepare a slurry. This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Comparative Catalyst 3 of a honeycomb type supporting a catalyst layer of the Mn-based oxide. The weight of the catalyst layer per liter of the honeycomb was 179 g.
  • (Comparative Catalyst 4)
  • N-840 (manufactured by Clariant) was used as a mixed oxide containing copper oxide and a Mn-based oxide in which the Mn-based oxide contained potassium, but had no cryptomelane structure. 76.4 g of the mixed oxide, 84.0 g of SNOWTEX-C (manufactured by Nissan Chemical Industries, Ltd.), and 120.0 g of deionized water were mixed to prepare a slurry. This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Comparative Catalyst 4 of a honeycomb type supporting a catalyst layer of the Mn-based oxide. The weight of the catalyst layer per liter of the honeycomb was 157 g.
  • (Comparative Catalyst 5)
  • DAIPYROXIDE #7710 (manufactured by Dainichiseika Color & Chemicals Mfg. Co., Ltd.) was used as a composite oxide containing copper oxide and a Mn-based oxide in which potassium other than impurities was not contained and the Mn-based oxide had no cryptomelane structure. 80.2 g of the composite oxide, 88.2 g of SNOWTEX-C (manufactured by Nissan Chemical Industries, Ltd.), and 126.0 g of deionized water were mixed to prepare a slurry. This slurry was coated on a ceramic corrugated honeycomb (manufactured by Seibu Giken Co., Ltd., 200 cells/square inch) by washcoating, and the excess slurry was blown off by compressed air. Then, the coated honeycomb was dried for 3 hours at 150° C. in a dryer. Then, the dried honeycomb was calcined for 1 hour at 250° C. in air to obtain Comparative Catalyst 5 of a honeycomb type supporting a catalyst layer of the Mn-based oxide. The weight of the catalyst layer per liter of the honeycomb was 141 g.
  • <Evaluation of Catalyst Performance>
  • (i) Evaluation of Caprolactam Decomposition Performance
  • Reactor
  • Using a flow reactor shown in FIG. 2, ε-caprolactam decomposition tests of Catalysts 1 and 2 and Comparative Catalysts 1 to 5 were conducted. ε-caprolactam is a typical substance which is deposited and accumulated within a polyamide film production furnace, and the removal of this substance is desired. Within a sample evaporation container 10 of the reactor, a sample container 12 for holding a powder of ε-caprolactam (indicated by S in the drawing) is disposed. A catalyst 13 (cylindrical honeycomb catalyst; diameter 21 mm, length 50 mm) is installed in a reaction tube 11. A gas treated with the catalyst (i.e., an exhaust gas) is accommodated in a gas collection container 17 connected to the reaction tube 11 via connection piping 16, and is cooled there to 0 to 5° C. from outside. The undecomposed ε-caprolactam is recovered in a solid form into a sampling container 18 installed within the container 17, and is weighed. At the same time, an exhaust pipe 19 connected to the gas collection container 17 continuously measures the concentration of CO2 in the exhaust gas. The CO2 concentration was measured with Model 410 i manufactured by Thermo Fisher Scientific.
  • Operation
  • With a mixed gas composed of an N2 gas and an O2 gas (volume ratio 80:20) being flowed through a gas introduction pipe 15 of the reactor, the reaction tube 11 is heated from outside so that the catalyst 13 reaches 210° C. The mixed gas has a flow rate set so that its space velocity becomes 70,000 h−1. The sample evaporation container 10 is heated and held at 170° C. At the start of the test, a sample inlet attached to the sample evaporation container is opened, the sample container 12 holding 0.4 g of ε-caprolactam (manufactured by Wako Pure Chemical Industries, Ltd.) is placed within the sample evaporation container 10, and then the sample inlet is closed promptly. As a result, the ε-caprolactam is melted and volatilized. The volatilized ε-caprolactam is transported to the catalyst 13, which has been heated at 210° C., by the mixed gas introduced through the gas introduction pipe 15, and is treated with the catalyst 13. One test lasts for 60 minutes from the charging of the s-caprolactam. During the 60-minute test, the CO2 concentration in the exhaust gas is continuously measured. After a lapse of 60 minutes, the sample container 12 is taken out of the sample evaporation container 10, and the amount of ε-caprolactam after the test is weighed. From the weighed amount, the amount of the volatilized ε-caprolactam is calculated.
  • CO2 Formation Rate
  • Based on the CO2 concentration continuously measured, the amount of CO2 discharged during one test (i.e., V2(L)) is determined. From the amount of the volatilized ε-caprolactam, moreover, the amount of CO2 provided that all the volatilized ε-caprolactam has been converted into CO2 (i.e., V1(L)) is calculated. Based on these amounts, the CO2 formation rate is calculated from the equation indicated below. The fact that this value is high means that a proportion in which ε-caprolactam has been completely oxidized is high, that is, that the catalyst performance is high.

  • CO2 formation rate (%)=V2/V1×100
  • ε-Caprolactam Removal Rate
  • After the above-described test is conducted 3 times, the sampling container 18 is weighed, and the amount of the undecomposed ε-caprolactam is calculated. Then, the ε-caprolactam removal rate is calculated from the equation shown below. A high value of this rate means that the concentration of ε-caprolactam on the outlet side of the catalyst is low, thus demonstrating that the catalyst performance is high.

  • Removal rate (%)=(C1−C2)/C1×100
  • C1: Sum of amounts (g) of ε-caprolactam volatilized in three tests
  • C2: Amount (g) of undecomposed ε-caprolactam captured in sampling container 18
  • Results
  • As shown in Table 1 and FIG. 3, Catalysts 1 and 2 of the present invention were high in the CO2 formation rate, and decreases in the CO2 formation rate were minimal even after repeated measurements, as compared with Comparative Catalysts 1 to 5. In connection with the caprolactam removal rate as well, Catalysts 1 and 2 of the present invention were superior to Comparative Catalysts 1 to 5, as shown in Table 2 and FIG. 4. These findings demonstrate that Catalysts 1 and 2 of the present invention have better caprolactam decomposition performance than the comparative catalysts.
  • TABLE 1
    CO2 formation rate
    1st test 2nd test 3rd test 4th test 5th test 6th test
    Sample (%) (%) (%) (%) (%) (%)
    Catalyst 1 65.2 70.0 72.8 72.8 74.7 73.6
    Catalyst 2 80.5 76.6 81.1 77.0 78.5 76.0
    Comparative 40.5 17.8 7.8 4.6 0.3 0.0
    Catalyst 1
    Comparative 69.5 76.6 66.1 59.4 55.1 54.8
    Catalyst 2
    Comparative 67.9 71.3 48.5 50.2 47.7 40.6
    Catalyst 3
    Comparative 68.0 68.3 58.1 55.4 44.1 42.2
    Catalyst 4
    Comparative 39.5 39.9 35.1 34.2 26.8 28.4
    Catalyst 5
  • TABLE 2
    Removal rate
    Sample 1st to 3rd tests (%) 4th to 6th tests (%)
    Catalyst 1 95.6 94.2
    Catalyst 2 91.7 90.7
    Comparative 29.1 3.3
    Catalyst 1
    Comparative 94.4 88.0
    Catalyst 2
    Comparative 84.8 83.5
    Catalyst 3
    Comparative 87.5 85.8
    Catalyst 4
    Comparative 85.2 81.0
    Catalyst 5
  • (ii) Evaluation of PET Oligomer Decomposition Performance
  • Reactor
  • Using a flow reactor shown in FIG. 5, PET oligomer decomposition tests of Catalysts 1 and 3 and Comparative Catalyst 1 were conducted. Within a sample evaporation container 20 of the reactor, a sample container 22 for holding PET chips (indicated by S in the drawing) is disposed. A catalyst 23 (cylindrical honeycomb catalyst; diameter 21 mm, length 50 mm) is installed in a reaction tube 21. To an upstream side of an organosilicon gas introduction pipe 24, an organosilicon bubbling device (not shown) is connected. A downstream side of the organosilicon gas introduction pipe 24 is connected to a downstream side of a gas introduction pipe 25, providing a structure in which an organosilicon gas generated by bubbling can be supplied into the reaction tube 21. The supplied organosilicon gas works as a substance poisonous to the catalyst. KF-96L-1CS manufactured by Shin-Etsu Chemical Co., Ltd. is used as organosilicon, and volatilized by bubbling. The gas treated with the catalyst (i.e., an exhaust gas) is accommodated in a gas collection container 27 connected to the reaction tube 21 via connection piping 26, and is cooled there to 0 to 5° C. from outside. The undecomposed PET oligomer is recovered in a solid form into a sampling container 28 installed within the container 27, and is weighed. At the same time, an exhaust pipe 29 connected to the gas collection container 27 continuously measures the concentration of CO2 in the exhaust gas. The CO2 concentration was measured with Model 410 i manufactured by Thermo Fisher Scientific.
  • Operation
  • With a mixed gas composed of an N2 gas and an O2 gas (volume ratio 80:20) being flowed through the gas introduction pipe 25 of the reactor, the reaction tube 21 is heated from outside so that the catalyst 23 reaches 230° C. The mixed gas has a flow rate set so that its space velocity becomes 35,000 h−1. The sample evaporation container 20 is heated and held at 400° C. At the start of the test, a sample inlet attached to the sample evaporation container is opened, the sample container 22 holding 1.65 g of PET chips is placed in the sample evaporation container 20, and then the sample inlet is closed promptly. As a result, the PET chips are melted to generate a PET oligomer. The generated PET oligomer is transported to the catalyst 23, which has been heated at 230° C., by the mixed gas introduced through the gas introduction pipe 25, and is treated with the catalyst 23. Simultaneously with the transportation of the PET oligomer into the catalyst 23, the organosilicon gas is supplied into the reaction tube 21 via the organosilicon gas introduction pipe 24. Consequently, the decomposition of the PET oligomer is performed under a poisonous environment due to the organosilicon gas. One test lasts for 30 minutes from the charging of the PET chips. During the 30-minute test, the CO2 concentration in the exhaust gas is continuously measured. After a lapse of 30 minutes, the sample container 22 is taken out of the sample evaporation container 20, and the amount of the PET chips after the test is weighed. From the weighed amount, the amount of the volatilized PET chips is calculated.
  • CO2 Formation Rate
  • Based on the CO2 concentration continuously measured, the amount of CO2 discharged during one test (i.e., V2(L)) is determined. From the amount of the volatilized PET chips, moreover, the amount of CO2 provided that all the volatilized PET chips are converted into CO2 (i.e., V1(L)) is calculated. Based on these amounts, the CO2 formation rate is calculated from the equation indicated below. A high value of this rate means that a proportion in which the volatilized PET oligomer has been completely oxidized is high, namely, that the catalyst performance is high.

  • CO2 formation rate (%)=V2/V1×100
  • PET Oligomer Removal Rate
  • After the above-described test is conducted 6 times, the sampling container 28 is weighed, and the amount of the undecomposed PET oligomer is calculated. Then, the PET oligomer removal rate is calculated from the equation shown below. A high value of this rate means that the concentration of the PET oligomer on the outlet side of the catalyst is low, thus demonstrating that the catalyst performance is high.

  • Removal rate (%)=(C1−C2)/C1×100
  • C1: Sum of amounts (g) of PET chips volatilized in six tests
  • C2: Amount (g) of undecomposed PET oligomer captured in sampling container 28
  • Results
  • As shown in Table 3 and FIG. 6, Comparative Catalyst 1 showed a high CO2 formation rate at the initial stage, but this formation rate declined rapidly. This finding shows that Comparative Catalyst 1 is easily poisoned with organosilicon. Catalysts 1 and 3 of the present invention, on the other hand, were lower than the comparative catalyst in the initial CO2 formation rate, but their decreases in the CO2 formation rate were slower. That is, Catalysts 1 and 3 of the present invention were more resistant to poisoning by organosilicon, and were longer in catalyst life. In connection with the PET oligomer removal rate, Catalysts 1 and 3 of the present invention were comparable to Comparative Catalyst 1, as shown in Table 4 and FIG. 7. These findings demonstrate that Catalysts 1 and 3 of the present invention are superior in PET oligomer removal performance to Comparative Catalyst 1.
  • The measurements made in the present 12 tests correspond to about 1 year of use in a general real furnace (depending on the type of a polymer film manufactured in a production furnace, the manufacturing conditions, and so on, however, the duration of use may be longer or shorter than 1 year).
  • TABLE 3
    CO2 formation rate (%)
    1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
    test test test test test test test test test test test test
    Catalyst No. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
    Catalyst 1 27.7 46.0 39.8 42.9 41.9 39.8 36.3 40.0 39.1 40.9 35.4 37.0
    Catalyst 3 53.3 48.1 30.8 37.5 42.6 41.0 30.3 39.2 32.2 38.1 38.4 37.0
    Comparative 72.5 59.9 58.1 49.3 56.5 42.4 35.1 36.2 28.1 17.6 16.5 13.8
    Catalyst 1
  • TABLE 4
    Decomposition rate
    Test No.
    1st to 6th tests 7th to 12th tests
    Catalyst
    1 91.0 88.6
    Catalyst 3 93.3 91.5
    Comparative Catalyst 1 95.5 75.1
  • (iii) Measurement of Specific Surface Area
  • The various mixed oxides and composite oxides used above were measured for the BET specific surface areas before heat treatment and after heat treatment performed for 1 hour at 500° C. The BET specific surface areas were measured with TriStar II 3020 manufactured by Micromeritics. The results of the measurements are shown in FIG. 8.
  • As shown in FIG. 8, KCG-4P used in the Example had a specific surface area of more than 85 m2/g even after heat treatment performed for 1 hour at 500° C. N-840 and DAIPYROXIDE #7710, on the other hand, had specific surface areas of more than 200 m2/g before heat treatment, but showed specific surface areas of less than 85 m2/g after heat treatment performed for 1 hour at 500° C. That is, KCG-4P proves to be smaller in structural change due to heat treatment than N-840 and DAIPYROXIDE #7710.
  • REFERENCE SIGNS LIST
    • 1 10, 20 Sample evaporation container
    • 11, 21 Reaction tube
    • 12, 22 Sample container
    • 13, 23 Catalyst
    • 24 Organosilicon gas introduction pipe
    • 15, 25 Gas introduction pipe
    • 16, 26 Connection piping
    • 17, 27 Gas collection container
    • 18, 28 Sampling container
    • 19, 29 Exhaust pipe

Claims (9)

1. A purification catalyst for a gas inside a polymer film production furnace,
the purification catalyst containing a mixed oxide composed of
a manganese-based oxide containing manganese and potassium and having a cryptomelane structure, and
copper oxide.
2. The purification catalyst according to claim 1, wherein a content of the copper oxide is 10 to 30% by weight as CuO based on the mixed oxide.
3. The purification catalyst according to claim 1 or 2, wherein a content of the manganese is 65 to 85% by weight as MnO2 based on the mixed oxide.
4. The purification catalyst according to claim 1, wherein a content of the potassium is 0.1 to 10% by weight based on the mixed oxide.
5. The purification catalyst according to claim 1, wherein a specific surface area (BET specific surface area) of the mixed oxide is 200 m2/g or more.
6. The purification catalyst according to claim 1, wherein a specific surface area (BET specific surface area) of the mixed oxide after being heated for 1 hour at 500° C. is 85 m2/g or more.
7. The purification catalyst according to claim 1, wherein the gas inside the polymer film production furnace contains volatile and/or sublimable organic substances generated during production of a polymer film.
8. The purification catalyst according to claim 1 supported on a catalyst support medium.
9. A method for purifying a gas inside a polymer film production furnace, comprising:
a step 1 of bringing hot air containing volatile and/or sublimable organic substances, generated during production of a polymer film by the polymer film production furnace, into contact with the catalyst according to claim 1, which is provided inside or outside the furnace, at a temperature in a range of 180 to 350° C. to decompose the organic substances oxidatively; and
a step 2 of refluxing all of or a part of a resultant decomposition gas to the polymer film production furnace.
US15/769,283 2015-11-05 2016-11-01 Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace Abandoned US20180304239A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015217273 2015-11-05
JP2015-217273 2015-11-05
PCT/JP2016/082371 WO2017077990A1 (en) 2015-11-05 2016-11-01 Catalyst for use in cleansing of inside of polymer film production furnace, and method for cleansing inside of polymer film production furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082371 A-371-Of-International WO2017077990A1 (en) 2015-11-05 2016-11-01 Catalyst for use in cleansing of inside of polymer film production furnace, and method for cleansing inside of polymer film production furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/938,539 Division US11642660B2 (en) 2015-11-05 2020-07-24 Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace

Publications (1)

Publication Number Publication Date
US20180304239A1 true US20180304239A1 (en) 2018-10-25

Family

ID=58662055

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/769,283 Abandoned US20180304239A1 (en) 2015-11-05 2016-11-01 Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace
US16/938,539 Active 2037-06-16 US11642660B2 (en) 2015-11-05 2020-07-24 Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/938,539 Active 2037-06-16 US11642660B2 (en) 2015-11-05 2020-07-24 Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace

Country Status (8)

Country Link
US (2) US20180304239A1 (en)
EP (1) EP3372310B1 (en)
JP (1) JP6531271B2 (en)
KR (1) KR102580976B1 (en)
CN (1) CN108348903B (en)
DK (1) DK3372310T3 (en)
TW (1) TWI761318B (en)
WO (1) WO2017077990A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348903B (en) * 2015-11-05 2021-02-26 日挥通用株式会社 Catalyst for purification in polymer film production furnace and method for purification in polymer film production furnace
JP7128391B2 (en) * 2018-11-05 2022-08-31 日揮ユニバーサル株式会社 Catalyst for purifying gas in reflow furnace, method for producing the same, and method for purifying gas in reflow furnace
WO2021145139A1 (en) * 2020-01-15 2021-07-22 東洋製罐株式会社 Drying system, vent system, and manufacturing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018742A1 (en) * 1995-01-20 2002-02-14 Engelhard Corporation Method and apparatus for treating the atmosphere
US20150336090A1 (en) * 2014-05-21 2015-11-26 Council Of Scientific & Industrial Research Novel oxidation catalyst, the process for the preparation thereof and green process for selective aerobic oxidation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045577B2 (en) 1981-09-14 1985-10-11 東レ株式会社 Manufacturing method of polyester film
JPS5998821A (en) 1982-11-29 1984-06-07 Toray Ind Inc Manufacture of polyester film
HU191535B (en) 1983-06-29 1987-03-30 Richter Gedeon Vegyeszet Process for producing 2-azabicyclo/2.2.2/octane derivatives
JPH01177823A (en) 1987-12-29 1989-07-14 Shikoku Electric Power Co Inc Protection of solar cell circuit
JPH06106125A (en) * 1992-09-30 1994-04-19 Mitsui Toatsu Chem Inc Method and apparatus for producing flexible metal foil laminated sheet
WO1996022148A2 (en) 1995-01-20 1996-07-25 Engelhard Corporation Pollutant treating device located in vehicle engine compartment for cleaning ambient air
US6517899B1 (en) * 1995-01-20 2003-02-11 Engelhard Corporation Catalyst and adsorption compositions having adhesion characteristics
KR100470857B1 (en) * 1995-09-29 2005-03-16 엥겔하드 코포레이션 Cleaning Ambient Air by the Movement of a Vehicle Having a Pollutant Treating Surface
JP3304291B2 (en) 1997-09-12 2002-07-22 株式会社日本製鋼所 Platinum catalyst case
JP4190047B2 (en) * 1998-03-27 2008-12-03 大阪瓦斯株式会社 Method for oxidizing organic compounds and catalyst for aldehyde oxidation
JPH11342535A (en) 1998-06-01 1999-12-14 Toray Ind Inc Production of biaxially oriented polyester film
DE60015672T2 (en) * 1999-08-27 2005-12-01 Rohm And Haas Co. Process for stripping polymer dispersions or polymer solutions
KR100348142B1 (en) * 2000-05-24 2002-08-09 주식회사 매그린 A Method for Removing Stink by Ammonia And/Or Amine Using A Manganese Ore
IT1319198B1 (en) * 2000-10-11 2003-09-26 Sued Chemie Mt Srl OXIDATION CATALYSTS.
JP2002144420A (en) 2000-11-14 2002-05-21 Fuji Photo Film Co Ltd Tenter
GB0111733D0 (en) * 2001-05-15 2001-07-04 Johnson Matthey Plc Compositions for reducing atmospheric oxidising pollutants
KR20030023344A (en) * 2001-09-13 2003-03-19 주식회사 매그린 Method for Removing Ozone Using Natural Manganese Ore as a Catalyst
DE60314443T2 (en) * 2002-11-22 2008-02-14 Basell Polyolefine Gmbh SECURE REMOVAL OF VOLATILE, OXIDIZABLE COMPOUNDS FROM PARTICLES, ESPECIALLY FROM POLYMER PARTICLES
TW200934574A (en) * 2008-01-11 2009-08-16 Nikki Universal Co Ltd Catalyst for purifying discharge gas from heat-treatment furnace, method of purifying discharge gas from heat-treatment furnace with the catalyst, and method of preventing contamination of heat-treatment furnace
JP5419865B2 (en) * 2008-04-10 2014-02-19 日揮ユニバーサル株式会社 Catalyst for purifying gas in PET stretching furnace, method for purifying gas in PET stretching furnace using the same catalyst, and method for preventing contamination of PET stretching furnace
CN102247846A (en) * 2010-05-18 2011-11-23 上海牛翼新能源科技有限公司 Nano-catalyst for efficiently removing carbon monoxide
JP2012196653A (en) * 2011-03-23 2012-10-18 Toyota Central R&D Labs Inc Catalyst carrier, catalyst for purifying exhaust gas using the same, and method of purifying exhaust gas using the catalyst
US8987160B2 (en) * 2011-03-26 2015-03-24 Honda Motor Co., Ltd. Fischer-tropsch catalysts containing iron or cobalt selective towards higher hydrocarbons
US20140255284A1 (en) * 2013-03-08 2014-09-11 Basf Corporation Base Metal Catalyst And Method Of Using Same
DE112014001315T5 (en) * 2013-03-14 2015-12-24 Johnson Matthey Public Ltd., Co. Aluminosilicate or silicoaluminum phosphate molecular sieve / octahedral manganese molecular sieve as catalysts for the treatment of exhaust gas
EP3062925B1 (en) * 2013-10-30 2022-07-13 BASF Corporation Catalyst coatings for pollution control
CN105017078B (en) * 2014-04-23 2017-02-15 中国科学院大连化学物理研究所 Method for preparing imino ether by virtue of catalytic conversion of aromatic aldehyde
US9827539B2 (en) * 2015-07-31 2017-11-28 Phillip Phung-I Ho Dynamic mixer head
CN108348903B (en) * 2015-11-05 2021-02-26 日挥通用株式会社 Catalyst for purification in polymer film production furnace and method for purification in polymer film production furnace
US9694344B2 (en) * 2016-05-02 2017-07-04 LiSo Plastics, L.L.C. Multilayer polymeric membrane and process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020018742A1 (en) * 1995-01-20 2002-02-14 Engelhard Corporation Method and apparatus for treating the atmosphere
US20150336090A1 (en) * 2014-05-21 2015-11-26 Council Of Scientific & Industrial Research Novel oxidation catalyst, the process for the preparation thereof and green process for selective aerobic oxidation

Also Published As

Publication number Publication date
CN108348903A (en) 2018-07-31
TWI761318B (en) 2022-04-21
EP3372310A1 (en) 2018-09-12
JP6531271B2 (en) 2019-06-19
KR20180081090A (en) 2018-07-13
US11642660B2 (en) 2023-05-09
US20200353451A1 (en) 2020-11-12
EP3372310B1 (en) 2020-09-23
JPWO2017077990A1 (en) 2018-09-13
WO2017077990A1 (en) 2017-05-11
KR102580976B1 (en) 2023-09-20
TW201728367A (en) 2017-08-16
EP3372310A4 (en) 2019-05-15
DK3372310T3 (en) 2020-11-30
CN108348903B (en) 2021-02-26

Similar Documents

Publication Publication Date Title
US11642660B2 (en) Purification catalyst for interior of polymer film production furnace and purification method for interior of polymer film production furnace
US20200147592A1 (en) Base Metal Catalyst and Method of Using Same
RU2456074C2 (en) Catalyst, preparation method thereof and use thereof for decomposing n2o
US7727923B2 (en) Catalyst for exhaust gas purification and method for exhaust gas purification
CN106540754A (en) A kind of catalyst for catalytic combustion and its preparation method and application
JP6299049B2 (en) Exhaust gas purification catalyst with excellent silicon poisoning resistance
US20150352530A1 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
WO2009157434A1 (en) Method for purifying carbon dioxide off-gas, combustion catalyst for purification of carbon dioxide off-gas, and process for producing natural gas
US7981829B2 (en) Exhaust gas purifying catalyst
US8114369B2 (en) Catalyst containing platinum and palladium for the selective reduction of NOx with hydrogen (H2-SCR)
KR101891233B1 (en) Catalyst for removing nitrogen oxide comprising catalyst layer formed on the body surface, a preparation method and use thereof
US8227373B1 (en) Exhaust gas purification catalysts and methods of making the same
US20190314791A1 (en) Diesel oxidizing catalytic converter
US20060178263A1 (en) Carbon material and flue gas treatment apparatus
JPWO2008004390A1 (en) Exhaust gas purification catalyst and method for producing the same
EP2177257A1 (en) Catalyst containing platinum on a support consisting of nano-crystal magnesium oxide and cerium dioxide towards H2-SCR
US20090263300A1 (en) Stabilized Iridium and Ruthenium Catalysts
JP6667309B2 (en) Wastewater treatment catalyst and wastewater treatment method using the same
JP5419865B2 (en) Catalyst for purifying gas in PET stretching furnace, method for purifying gas in PET stretching furnace using the same catalyst, and method for preventing contamination of PET stretching furnace
KR20230079392A (en) Induction Heating NOx Adsorber
JPH0259020A (en) Pretreatment of waste gas
CN114423522A (en) Multifunctional catalyst for hydrocarbon oxidation and NOx selective catalytic reduction
JP2015196141A (en) Exhaust gas purification catalyst, and exhaust gas purification filter and process using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIKKI-UNIVERSAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASHIDA, TOSHIYA;TONE, NAOKI;REEL/FRAME:045588/0581

Effective date: 20180315

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION