US20180291223A1 - Nanocellulose-based anti-fogging composition - Google Patents

Nanocellulose-based anti-fogging composition Download PDF

Info

Publication number
US20180291223A1
US20180291223A1 US15/767,719 US201615767719A US2018291223A1 US 20180291223 A1 US20180291223 A1 US 20180291223A1 US 201615767719 A US201615767719 A US 201615767719A US 2018291223 A1 US2018291223 A1 US 2018291223A1
Authority
US
United States
Prior art keywords
weight percent
composition
water
fogging
nanocellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/767,719
Inventor
Yinyong Li
Kenneth Raymond Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Massachusetts UMass
Original Assignee
University of Massachusetts UMass
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Massachusetts UMass filed Critical University of Massachusetts UMass
Priority to US15/767,719 priority Critical patent/US20180291223A1/en
Assigned to THE UNIVERSITY OF MASSACHUSETTS reassignment THE UNIVERSITY OF MASSACHUSETTS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARTER, KENNETH RAYMOND, LI, YINYONG
Assigned to NATIONAL SCIENCE FOUNDATION reassignment NATIONAL SCIENCE FOUNDATION CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF MASSACHUSETTS, AMHERST
Publication of US20180291223A1 publication Critical patent/US20180291223A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00

Definitions

  • Optically clear articles would be greatly enhanced if they were resistant to the formation of fog or condensation on a surface of the article.
  • fog and condensation formation occurs under conditions of high humidity and high temperature or at interfacial boundaries where there is a large temperature and humidity difference. Coatings that reduce the tendency for surfaces to “fog up” have been reported. These so-called anti-fog coatings improve the wettability of a surface by allowing a thin layer of water film to form on the surface instead of discrete droplets.
  • Known anti-fog coatings include, for example, coatings using ammonium soap, such as mixtures of an alkyl ammonium carboxylates with a surface active agent, for example, a sulfated or sulfonated fatty material; salts of sulfated alkyl aryloxypolyalkoxy alcohol; or alkylbenzene sulfonates.
  • ammonium soap such as mixtures of an alkyl ammonium carboxylates with a surface active agent, for example, a sulfated or sulfonated fatty material; salts of sulfated alkyl aryloxypolyalkoxy alcohol; or alkylbenzene sulfonates.
  • Other common anti-fog compositions require chemical crosslinking to form a cohesive film. Although less solvent is used, the chemical crosslinking can significantly affect film properties.
  • a highly crosslinked coating can cause the coated film to be brittle whereas low crosslinking can result in
  • Prior anti-fogging formulations generally have low moisture absorptivity, long moisture release time, and/or poor water and solvent resistance.
  • water-soluble silicone resins synthesized from hydrophilic functional group-bearing silane compounds generally have poor water resistance, inadequate film hardness and poor weathering resistance.
  • Some of these formulations also have inefficient fabrication processes, e.g. a long coat curing time.
  • the anti-fog coating should possess high clarity and a long shelf life prior to coating, exhibit impact resistance properties suitable for the intended application, be able to absorb and release moisture simultaneously, and be able to resist water and conventional organic solvents, such as alcohols, alkylbenzenes (e.g., toluene), glycol ethers (e.g., propylene glycol monomethyl ether), and alkyl ketones (e.g., methyl ethyl ketone). Furthermore, it would be highly desirable to provide an anti-fogging composition that is environmentally friendly.
  • alkylbenzenes e.g., toluene
  • glycol ethers e.g., propylene glycol monomethyl ether
  • alkyl ketones e.g., methyl ethyl ketone
  • One embodiment is an anti-fogging composition
  • a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof; and water.
  • Another embodiment is an article comprising a coating formed from the anti-fogging composition.
  • Another embodiment is a method of preparing an anti-fogging coating, the method comprising, applying the anti-fogging composition to at least a portion of a surface of a substrate to form a coating.
  • FIG. 1 is a digital photograph showing a bathroom mirror that has been exposed to a high humidity environment.
  • the left side, labeled “1” is uncoated.
  • the right side, labeled “2” was coated with the anti-fogging composition according to the present disclosure.
  • the present inventors have developed an anti-fogging composition comprising nanocellulose and water.
  • the anti-fogging compositions described herein are environmentally friendly, as the components are generally derived from natural products, which are biocompatible and non-toxic. Coatings prepared from the anti-fogging compositions are also durable, water proof, and offer a cost-effective alternative to other anti-fogging coatings.
  • the composition comprises a nanocellulose and water.
  • the nanocellulose comprises cellulose nanofibrils, cellulose nanocrystals, or a combination thereof.
  • the nanocellulose comprises surface-oxidized cellulose nanofibrils (“oxidized cellulose nanofibrils”), surface-oxidized cellulose nanocrystals (“oxidized cellulose nanocrystals”), or a combination thereof.
  • the surface-oxidized nanocellulose includes carboxyl groups, aldehyde groups, ketone groups, sulfonate groups, or a combination thereof present on the surface of the nanocellulose.
  • the degree of oxidation can vary from, for example, 25 to 100%, for example from 80 to 100%.
  • the composition comprises cellulose nanocrystals, preferably surface-oxidized nanocrystals, that are not significantly aggregated.
  • the cellulose nanocrystals generally have an average diameter of 1 to 100 nanometers (nm), for example 5 to 50 nm, for example 5 to 30 nm, for example 10 to 20 nm.
  • the cellulose nanocrystals further have an average length of 50 to 750 nm, for example 75 to 500 nm, for example 90 to 300 nm, for example 100 to 200 nm.
  • the composition comprises cellulose nanofibrils, preferably surface-oxidized nanofibrils, that are not significantly aggregated.
  • the cellulose nanofibrils generally have an average diameter of 1 to 100 nm, for example 5 to 50 nm, for example 5 to 30 nm, for example 10 to 20 nm.
  • the cellulose nanofibrils further have an average length of 500 to 2500 nm, for example 750 to 2500 nm, for example 800 to 2250 nm, for example 1000 to 2000 nm.
  • the nanocellulose can be prepared by any method that is generally known.
  • the nanocellulose can be produced through acid hydrolysis, using sulfuric acid, hydrochloric acid, phosphoric acid, or hydrobromic acid. See, e.g., Chemical Reviews, 2010, 110, 3479-3500; U.S. Patent Publication No. 2010/0272819A1; and U.S. Pat. No. 5,629,055.
  • Cellulose nanofibrils have been generally prepared by intensive mechanical treatment or a combination of enzyme or chemical pre-treatment with mechanical treatment. See, e.g., U.S. Pat. Nos. 8,871,056; 8,778,134; and 8,287,692.
  • the oxidized nanocellulose can be prepared by an acid-free method comprising contacting a cellulosic material (e.g., cellulose pulp) with an oxidizing agent (e.g., a hypohalite such as sodium hypochlorite), an alkali metal bromide (e.g., sodium bromide), and optionally a nitroxyl radical compound having the formula
  • R 1 and R 2 are independently at each occurrence a C 1-6 alkyl group, preferably methyl.
  • the solution can have a pH of 8 to 12, or 9 to 12, or 10 to 12.
  • the contacting provides an oxidized cellulosic material comprising oxidized cellulose nanocrystals and oxidized cellulose nanofibrils. An example of this method is further described in the working examples below.
  • the nanocellulose can be present in the anti-fogging composition in an amount of 0.1 to 10 weight percent, for example 0.1 to 8 weight percent, for example 0.1 to 5 weight percent, for example 0.1 to 1.5 weight percent based on the total weight of the anti-fogging composition.
  • the nanocellulose comprises cellulose nanofibrils, and is present in an amount of 0.1 to 1.5 weight percent based on the total weight of the anti-fogging composition.
  • the nanocellulose comprises cellulose nanocrystals, and is present in an amount of 0.1 to 8 weight percent based on the total weight of the anti-fogging composition.
  • the anti-fogging composition of the present disclosure further comprises water.
  • the water can be present in an amount effective to provide a substantially transparent solution comprising the nanocellulose.
  • the water can be distilled water, deionized water, or reverse osmosis water.
  • the water can be present in an amount of 97 to 99.9 weight percent, based on the total weight of the anti-fogging composition.
  • the water can be present in an amount of at least 98 weight percent, or at least 99 weight percent.
  • the water can be present in an amount of 99.55 weight percent or less, or 99.79 weight percent or less.
  • the anti-fogging composition optionally further comprises a solvent different from water.
  • the solvent is at least partially miscible with water.
  • the anti-fogging composition can further include a solvent selected from C 1-6 alcohol (e.g., methanol, ethanol, isopropanol, and combinations thereof), acetone, ethylene glycol butyl ether, dipropylene glycol methyl ether, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, and combinations thereof.
  • the solvent can be included in the composition in a weight ratio relative to water of 0.01:1 to 1:1.
  • the anti-fogging composition further includes a surfactant.
  • the surfactant can be anionic, cationic, or nonionic. Mixtures of the foregoing can also be used.
  • the surfactant comprises a polyoxyalkylene, an organosiloxane, a C 3-20 perfluoroalkyl group, a quaternary ammonium surfactant, a C 4-24 fatty acid or an alkali metal salt thereof, or a combination thereof.
  • the surfactant comprises a C 4-24 fatty acid or an alkali metal salt thereof.
  • the surfactant comprises an alkali metal salt of coconut oil or corn oil. A particularly useful example of a surfactant comprising an alkali metal salt of coconut oil is potassium cocoate.
  • the surfactant can be included in the anti-fogging composition in an amount of 0.01 to 1 weight percent, for example 0.25 to 1 weight percent, for example 0.4 to 0.7 weight percent, based on the total weight of the anti-fogging composition.
  • the anti-fogging composition can further optionally include a water-soluble polymer.
  • the water-soluble polymer can include synthetic polymers, natural polymers, and combinations thereof.
  • the water-soluble polymer can include but is not limited to synthetic polymers such as polyvinylpyrrolidone, polyvinyl alcohol, and poly(meth)acrylic acid, and natural polymers such as methyl cellulose, hydroxypropyl methylcellulose, xanthan gum, pectin, guar gum, carrageenan, chitosan, gum arabic, gelatin, chondroitin sulfate, hyaluronic acid, and sodium hyaluronic acid. Combinations of any of the foregoing synthetic and natural polymers are also contemplated.
  • the water-soluble polymer is selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, poly(meth)acrylic acid, methyl cellulose, hydroxypropyl methylcellulose, xanthan gum, pectin, guar gum, carrageenan, chitosan, gelatin, and combinations thereof.
  • the water-soluble polymer is a natural polymer comprising a polysaccharide.
  • the water-soluble polymer comprises xanthan gum.
  • the water-soluble polymer can be included in the anti-fogging composition in an amount of 0.01 to 1 weight percent, for example 0.01 to 0.5 weight percent, for example 0.015 to 0.2 weight percent, based on the total weight of the anti-fogging composition.
  • the anti-fogging composition can optionally further include a plurality of nanoparticles.
  • the nanoparticles comprise silica nanoparticles, zinc oxide nanoparticles, titanium dioxide nanoparticles, or a combination thereof.
  • the nanoparticles are silica nanoparticles.
  • the composition can further exhibit anti-scratch properties.
  • the nanoparticles can be included in the anti-fogging composition in an amount of 10 to 75 weight percent, for example 20 to 50 weight percent, based on the total weight of the anti-fogging composition.
  • the composition can optionally further comprise one or more additives that are generally known to be useful, with the proviso that the additive(s) are also selected so as to not significantly adversely affect a desired property of the anti-fogging composition.
  • the composition can further include one or more of hydrophilic film plasticizers, fungicidal, bactericidal and anti-microbial agents, cleaning solvents, light stabilizers, defoamers, and corrosion inhibitors.
  • the anti-fogging composition excludes a silicone polymer or oligomer.
  • the composition described herein can include less than 0.1 weight percent, for example less than 0.01 weight percent of a silicone polymer or oligomer, preferably wherein the composition is devoid of a silicone polymer or oligomer.
  • the anti-fogging composition comprises 0.1 to 1 weight percent of an nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof, and 99 to 99.9 weight percent water.
  • the anti-fogging composition comprises 0.1 to 1 weight percent of a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof, 0.01 to 1 weight percent of a surfactant, 0.01 to 1 weight percent of the water-soluble polymer, and 97 to 99.79 weight percent water.
  • the anti-fogging composition comprises 0.1 to 0.5 weight percent of a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof, 0.01 to 1 weight percent of a surfactant, 0.01 to 0.5 weight percent of the water-soluble polymer, and 98 to 99.55 weight percent water.
  • the anti-fogging composition comprises 0.1 to 0.5 weight percent of a nanocellulose comprising cellulose nanofibrils, 0.1 to 1 weight percent of a surfactant comprising an alkali metal salt of coconut oil, 0.01 to 0.5 weight percent of a water-soluble polymer comprising xanthan gum, and 98 to 99.55 weight percent water.
  • the anti-fogging composition can be prepared by any method that is generally known, for example by mixing the nanocellulose, the water, and, optionally, the surfactant, the water-soluble polymer, and the nanoparticles to provide the composition.
  • the order of addition of the components is not critical.
  • the components can be added to a portion of the water and mixed thoroughly. Subsequently, the remaining portion of the water, if any, can be added. When present, the additives can generally be added at any stage of the mixing.
  • Another aspect of the present disclosure is an article comprising a coating formed from the above-described anti-fogging composition.
  • the coating can be formed on at least a portion of a surface of the article.
  • the coating is preferably uncrosslinked.
  • the coating is disposed directly on at least a portion of a surface of the article.
  • the coating formed from the anti-fogging composition can have a thickness of 1 nanometer to several micrometers, for examples 100 nanometers to several micrometers, for example 100 nanometers to 2 micrometers, for example 100 nanometers to 1 micrometer.
  • the article can be a transparent article.
  • the article is a mirror, a window (e.g., a car window, a building window, an airplane window, and the like), eyeglasses, sunglasses, goggles, safety glasses, a helmet, a visor, a windshield, a lens (e.g., a camera lens, a telescope lens, a microscope lens, an endoscopic lens, a laparoscopic lens, and the like), a display screen, a freezer door, a greenhouse roof, a label, a coating, a cladding, a container, a jar, a bottle, a film, an electronic device, a sensor, a sign, a reflector, a photograph, a poster, or a painted surface, a light emitting device (e.g., a LED or an organic light emitting device (OLED)).
  • a light emitting device e.g., a LED or an organic light emitting device (OLED)
  • Another aspect of the present disclosure is a method of preparing an anti-fogging coating.
  • the method comprises applying the above-described anti-fogging composition to at least a portion of a surface of a substrate to form a coating.
  • the applying can be by any means that is generally known, for example solution coating, spray coating, wiping using a saturated sponge or cloth, or a combination of any of the foregoing.
  • Applying the composition by solution coating can include methods such as solvent casting, spin coating, drop casting, roller coating, wire-bar coating, dip or immersion coating, ink jetting, doctor blading, flow coating, and the like.
  • the process of applying the coating can optionally be repeated until the desired coating thickness and/or desired surface coverage is obtained.
  • the coating can be dried to remove at least a portion of the water and optionally, any solvent that may be present.
  • the water is evaporated at room temperature by air drying. More rapid evaporation can be achieved, if desired, by placing the coated substrate in an oven at a temperature of from 50° to 100° C.
  • excess composition can be removed from the coating.
  • the coating can be rinsed with a solvent, for example, water, to remove excess material.
  • the surface of the substrate is a glass surface, a ceramic surface, a metal surface, or a polymeric surface (e.g., polyester, polycarbonate, poly(meth)acrylate, and the like).
  • the surface of the substrate is a glass surface, preferably a clean glass surface.
  • the coating can be formed following removal of at least a portion of the water (e.g., by drying, evaporating, and the like).
  • An anti-fogging composition was prepared using the materials described in Table 1.
  • a solution of mechanically treated cellulose pulp (37.5 grams, 2.67% solid content) was dispersed in water (62.5 milliliters) containing sodium bromide (0.1 grams) and, optionally, 2,2,6,6-tetramethyl-1-piperidine-N-oxy (TEMPO, 0.016 grams).
  • a solution of sodium hypochlorite (2.1 grams, active chlorine 10-15%) was added to the suspension.
  • Sodium hydroxide (5.5 grams, 0.5 M in water) was introduced to the mixture to adjust pH to higher than 10. The reaction mixture was stirred for 20 hours at room temperature, then centrifuged at 4000 rpm for 15 minutes. The precipitate isolated following the initial centrifugation was further washed with deionized water and centrifuged the remove residual salts and TEMPO.
  • An anti-fogging composition was prepared by mixing the desired components in the amounts shown in Table 2. The amount of each component is shown in weight percent based on the total weight of the composition.
  • the anti-fogging composition of Example 2 was coated on a bathroom mirror. As shown in FIG. 1 , half of a bathroom mirror was left uncoated (side “1”) and half was coated with the composition described above (side “2”). FIG. 1 is a digital photograph of the mirror after exposure to a high humidity environment for 30 minutes, where it can be seen that side 1 of the mirror (uncoated) fogged, and side 2 of the mirror (coated) did not fog. Therefore, the composition provided an anti-fogging effect in a high humidity bathroom environment. The coating was further observed to last for several weeks (for example, 2 to 3 weeks).
  • the invention includes at least the following embodiments.
  • An anti-fogging composition comprising a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof; and water.
  • anti-fogging composition of any of embodiments 1 to 3, further comprising a plurality of nanoparticles.
  • the water-soluble polymer comprises polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid, methyl cellulose, hydroxypropyl methylcellulose, xanthan gum, pectin, guar gum, carrageenan, chitosan, gelatin, gum arabic, or a combination thereof.
  • nanoparticles comprise silica nanoparticles, zinc oxide nanoparticles, titanium dioxide nanoparticles, or a combination thereof.
  • anti-fogging composition of any of embodiments 1 to 11, comprising 0.1 to 1.5 weight percent nanocellulose comprising cellulose nanofibrils.
  • the anti-fogging composition of any of embodiments 1 to 13, comprising 0.1 to 1.5 weight percent nanocellulose; and 98.5 to 99.9 weight percent water.
  • the anti-fogging composition of any of embodiments 2 to 13, comprising 0.1 to 1.5 weight percent of the nanocellulose; 0.01 to 1 weight percent of the surfactant; 0.01 to 1 weight percent of the water-soluble polymer; and 96.5 to 99.88 weight percent water; wherein weight percent is based on the total weight of the composition.
  • the anti-fogging composition of any of embodiments 2 to 15, comprising 0.1 to 0.5 weight percent nanocellulose; 0.25 to 1 weight percent of the surfactant; 0.01 to 0.5 weight percent of the water-soluble polymer; and 98 to 99.55 weight percent water; wherein weight percent is based on the total weight of the composition.
  • An article comprising a coating formed from the anti-fogging composition of any of embodiments 1 to 17.
  • a method of preparing an anti-fogging coating comprising applying the anti-fogging composition of any of embodiments 1 to 17 to at least a portion of a surface of a substrate to form a coating.
  • applying the composition comprises solution coating, spray coating, wiping using a saturated sponge or cloth, or a combination thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An anti-fogging composition is described herein. The composition includes a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof, and water. A method of preparing an anti-fogging coating includes applying the anti-fogging composition to at least a portion of a surface of a substrate to form a coating. An article including a coating formed from the anti-fogging composition is also disclosed. Coatings prepared from the anti-fogging compositions are water proof, and offer a cost-effective alternative to other anti-fogging coatings.

Description

    STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH & DEVELOPMENT
  • This invention was made with government support under the Materials Research Science and Engineering Center on Polymers (DMR-0820506) awarded by the National Science Foundation, and under CMMI-1025020 awarded by the University of Massachusetts Center for Hierarchical Manufacturing (CHM). The government has certain rights in the invention.
  • BACKGROUND
  • Optically clear articles would be greatly enhanced if they were resistant to the formation of fog or condensation on a surface of the article. In general, fog and condensation formation occurs under conditions of high humidity and high temperature or at interfacial boundaries where there is a large temperature and humidity difference. Coatings that reduce the tendency for surfaces to “fog up” have been reported. These so-called anti-fog coatings improve the wettability of a surface by allowing a thin layer of water film to form on the surface instead of discrete droplets. Known anti-fog coatings include, for example, coatings using ammonium soap, such as mixtures of an alkyl ammonium carboxylates with a surface active agent, for example, a sulfated or sulfonated fatty material; salts of sulfated alkyl aryloxypolyalkoxy alcohol; or alkylbenzene sulfonates. Other common anti-fog compositions require chemical crosslinking to form a cohesive film. Although less solvent is used, the chemical crosslinking can significantly affect film properties. A highly crosslinked coating can cause the coated film to be brittle whereas low crosslinking can result in chalking, i.e., a powdery film that degrades or disperses upon contact with an aqueous solution.
  • Prior anti-fogging formulations generally have low moisture absorptivity, long moisture release time, and/or poor water and solvent resistance. For example, water-soluble silicone resins synthesized from hydrophilic functional group-bearing silane compounds generally have poor water resistance, inadequate film hardness and poor weathering resistance. Some of these formulations also have inefficient fabrication processes, e.g. a long coat curing time. To be useful in most commercial applications, the anti-fog coating should possess high clarity and a long shelf life prior to coating, exhibit impact resistance properties suitable for the intended application, be able to absorb and release moisture simultaneously, and be able to resist water and conventional organic solvents, such as alcohols, alkylbenzenes (e.g., toluene), glycol ethers (e.g., propylene glycol monomethyl ether), and alkyl ketones (e.g., methyl ethyl ketone). Furthermore, it would be highly desirable to provide an anti-fogging composition that is environmentally friendly.
  • Accordingly, there remains a continuing need in the art for an anti-fogging composition that can overcome the above-described technical limitations.
  • BRIEF SUMMARY
  • One embodiment is an anti-fogging composition comprising a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof; and water.
  • Another embodiment is an article comprising a coating formed from the anti-fogging composition.
  • Another embodiment is a method of preparing an anti-fogging coating, the method comprising, applying the anti-fogging composition to at least a portion of a surface of a substrate to form a coating.
  • These and other embodiments are described in detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following figures are of exemplary embodiments:
  • FIG. 1 is a digital photograph showing a bathroom mirror that has been exposed to a high humidity environment. The left side, labeled “1” is uncoated. The right side, labeled “2” was coated with the anti-fogging composition according to the present disclosure.
  • DETAILED DESCRIPTION
  • The present inventors have developed an anti-fogging composition comprising nanocellulose and water. As such, the anti-fogging compositions described herein are environmentally friendly, as the components are generally derived from natural products, which are biocompatible and non-toxic. Coatings prepared from the anti-fogging compositions are also durable, water proof, and offer a cost-effective alternative to other anti-fogging coatings.
  • One aspect of the present disclosure is an anti-fogging composition. The composition comprises a nanocellulose and water. The nanocellulose comprises cellulose nanofibrils, cellulose nanocrystals, or a combination thereof. In some embodiments, the nanocellulose comprises surface-oxidized cellulose nanofibrils (“oxidized cellulose nanofibrils”), surface-oxidized cellulose nanocrystals (“oxidized cellulose nanocrystals”), or a combination thereof. The surface-oxidized nanocellulose includes carboxyl groups, aldehyde groups, ketone groups, sulfonate groups, or a combination thereof present on the surface of the nanocellulose. The degree of oxidation can vary from, for example, 25 to 100%, for example from 80 to 100%. In some embodiments, the composition comprises cellulose nanocrystals, preferably surface-oxidized nanocrystals, that are not significantly aggregated. The cellulose nanocrystals generally have an average diameter of 1 to 100 nanometers (nm), for example 5 to 50 nm, for example 5 to 30 nm, for example 10 to 20 nm. The cellulose nanocrystals further have an average length of 50 to 750 nm, for example 75 to 500 nm, for example 90 to 300 nm, for example 100 to 200 nm. In some embodiments, the composition comprises cellulose nanofibrils, preferably surface-oxidized nanofibrils, that are not significantly aggregated. The cellulose nanofibrils generally have an average diameter of 1 to 100 nm, for example 5 to 50 nm, for example 5 to 30 nm, for example 10 to 20 nm. The cellulose nanofibrils further have an average length of 500 to 2500 nm, for example 750 to 2500 nm, for example 800 to 2250 nm, for example 1000 to 2000 nm.
  • The nanocellulose can be prepared by any method that is generally known. For example, the nanocellulose can be produced through acid hydrolysis, using sulfuric acid, hydrochloric acid, phosphoric acid, or hydrobromic acid. See, e.g., Chemical Reviews, 2010, 110, 3479-3500; U.S. Patent Publication No. 2010/0272819A1; and U.S. Pat. No. 5,629,055. Cellulose nanofibrils have been generally prepared by intensive mechanical treatment or a combination of enzyme or chemical pre-treatment with mechanical treatment. See, e.g., U.S. Pat. Nos. 8,871,056; 8,778,134; and 8,287,692. In some embodiments, the oxidized nanocellulose can be prepared by an acid-free method comprising contacting a cellulosic material (e.g., cellulose pulp) with an oxidizing agent (e.g., a hypohalite such as sodium hypochlorite), an alkali metal bromide (e.g., sodium bromide), and optionally a nitroxyl radical compound having the formula
  • Figure US20180291223A1-20181011-C00001
  • in an aqueous solution. R1 and R2 are independently at each occurrence a C1-6 alkyl group, preferably methyl. The solution can have a pH of 8 to 12, or 9 to 12, or 10 to 12. The contacting provides an oxidized cellulosic material comprising oxidized cellulose nanocrystals and oxidized cellulose nanofibrils. An example of this method is further described in the working examples below.
  • The nanocellulose can be present in the anti-fogging composition in an amount of 0.1 to 10 weight percent, for example 0.1 to 8 weight percent, for example 0.1 to 5 weight percent, for example 0.1 to 1.5 weight percent based on the total weight of the anti-fogging composition. In some embodiments, the nanocellulose comprises cellulose nanofibrils, and is present in an amount of 0.1 to 1.5 weight percent based on the total weight of the anti-fogging composition. In some embodiments, the nanocellulose comprises cellulose nanocrystals, and is present in an amount of 0.1 to 8 weight percent based on the total weight of the anti-fogging composition.
  • The anti-fogging composition of the present disclosure further comprises water. The water can be present in an amount effective to provide a substantially transparent solution comprising the nanocellulose. In some embodiments, the water can be distilled water, deionized water, or reverse osmosis water. For example, the water can be present in an amount of 97 to 99.9 weight percent, based on the total weight of the anti-fogging composition. Within this range, the water can be present in an amount of at least 98 weight percent, or at least 99 weight percent. Also within this range, the water can be present in an amount of 99.55 weight percent or less, or 99.79 weight percent or less.
  • In some embodiments, the anti-fogging composition optionally further comprises a solvent different from water. In some embodiments, the solvent is at least partially miscible with water. In some embodiments, the anti-fogging composition can further include a solvent selected from C1-6 alcohol (e.g., methanol, ethanol, isopropanol, and combinations thereof), acetone, ethylene glycol butyl ether, dipropylene glycol methyl ether, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, and combinations thereof. When present, the solvent can be included in the composition in a weight ratio relative to water of 0.01:1 to 1:1.
  • In some embodiments, the anti-fogging composition further includes a surfactant. The surfactant can be anionic, cationic, or nonionic. Mixtures of the foregoing can also be used. In some embodiments, the surfactant comprises a polyoxyalkylene, an organosiloxane, a C3-20 perfluoroalkyl group, a quaternary ammonium surfactant, a C4-24 fatty acid or an alkali metal salt thereof, or a combination thereof. In some embodiments, the surfactant comprises a C4-24 fatty acid or an alkali metal salt thereof. In some embodiments, the surfactant comprises an alkali metal salt of coconut oil or corn oil. A particularly useful example of a surfactant comprising an alkali metal salt of coconut oil is potassium cocoate.
  • When present, the surfactant can be included in the anti-fogging composition in an amount of 0.01 to 1 weight percent, for example 0.25 to 1 weight percent, for example 0.4 to 0.7 weight percent, based on the total weight of the anti-fogging composition.
  • The anti-fogging composition can further optionally include a water-soluble polymer. The water-soluble polymer can include synthetic polymers, natural polymers, and combinations thereof. The water-soluble polymer can include but is not limited to synthetic polymers such as polyvinylpyrrolidone, polyvinyl alcohol, and poly(meth)acrylic acid, and natural polymers such as methyl cellulose, hydroxypropyl methylcellulose, xanthan gum, pectin, guar gum, carrageenan, chitosan, gum arabic, gelatin, chondroitin sulfate, hyaluronic acid, and sodium hyaluronic acid. Combinations of any of the foregoing synthetic and natural polymers are also contemplated. In some embodiments, the water-soluble polymer is selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, poly(meth)acrylic acid, methyl cellulose, hydroxypropyl methylcellulose, xanthan gum, pectin, guar gum, carrageenan, chitosan, gelatin, and combinations thereof. In some embodiments, the water-soluble polymer is a natural polymer comprising a polysaccharide. In an embodiment, the water-soluble polymer comprises xanthan gum.
  • When present, the water-soluble polymer can be included in the anti-fogging composition in an amount of 0.01 to 1 weight percent, for example 0.01 to 0.5 weight percent, for example 0.015 to 0.2 weight percent, based on the total weight of the anti-fogging composition.
  • In addition to the nanocellulose, water, surfactant, and water-soluble polymer, the anti-fogging composition can optionally further include a plurality of nanoparticles. In some embodiments, the nanoparticles comprise silica nanoparticles, zinc oxide nanoparticles, titanium dioxide nanoparticles, or a combination thereof. In some embodiments, the nanoparticles are silica nanoparticles. When the nanoparticles are included in the composition, the composition can further exhibit anti-scratch properties.
  • When present, the nanoparticles can be included in the anti-fogging composition in an amount of 10 to 75 weight percent, for example 20 to 50 weight percent, based on the total weight of the anti-fogging composition.
  • In some embodiments, the composition can optionally further comprise one or more additives that are generally known to be useful, with the proviso that the additive(s) are also selected so as to not significantly adversely affect a desired property of the anti-fogging composition. For example, the composition can further include one or more of hydrophilic film plasticizers, fungicidal, bactericidal and anti-microbial agents, cleaning solvents, light stabilizers, defoamers, and corrosion inhibitors.
  • In some embodiments, the anti-fogging composition excludes a silicone polymer or oligomer. For example, the composition described herein can include less than 0.1 weight percent, for example less than 0.01 weight percent of a silicone polymer or oligomer, preferably wherein the composition is devoid of a silicone polymer or oligomer.
  • In a specific embodiment, the anti-fogging composition comprises 0.1 to 1 weight percent of an nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof, and 99 to 99.9 weight percent water.
  • In another specific embodiment, the anti-fogging composition comprises 0.1 to 1 weight percent of a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof, 0.01 to 1 weight percent of a surfactant, 0.01 to 1 weight percent of the water-soluble polymer, and 97 to 99.79 weight percent water. In another specific embodiment, the anti-fogging composition comprises 0.1 to 0.5 weight percent of a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof, 0.01 to 1 weight percent of a surfactant, 0.01 to 0.5 weight percent of the water-soluble polymer, and 98 to 99.55 weight percent water. In another specific embodiment, the anti-fogging composition comprises 0.1 to 0.5 weight percent of a nanocellulose comprising cellulose nanofibrils, 0.1 to 1 weight percent of a surfactant comprising an alkali metal salt of coconut oil, 0.01 to 0.5 weight percent of a water-soluble polymer comprising xanthan gum, and 98 to 99.55 weight percent water.
  • The anti-fogging composition can be prepared by any method that is generally known, for example by mixing the nanocellulose, the water, and, optionally, the surfactant, the water-soluble polymer, and the nanoparticles to provide the composition. In some embodiments, the order of addition of the components is not critical. In some embodiments, the components can be added to a portion of the water and mixed thoroughly. Subsequently, the remaining portion of the water, if any, can be added. When present, the additives can generally be added at any stage of the mixing.
  • Another aspect of the present disclosure is an article comprising a coating formed from the above-described anti-fogging composition. The coating can be formed on at least a portion of a surface of the article. In some embodiments, the coating is preferably uncrosslinked. In some embodiments, the coating is disposed directly on at least a portion of a surface of the article. In some embodiments, the coating formed from the anti-fogging composition can have a thickness of 1 nanometer to several micrometers, for examples 100 nanometers to several micrometers, for example 100 nanometers to 2 micrometers, for example 100 nanometers to 1 micrometer. In some embodiments, the article can be a transparent article. In some embodiments, the article is a mirror, a window (e.g., a car window, a building window, an airplane window, and the like), eyeglasses, sunglasses, goggles, safety glasses, a helmet, a visor, a windshield, a lens (e.g., a camera lens, a telescope lens, a microscope lens, an endoscopic lens, a laparoscopic lens, and the like), a display screen, a freezer door, a greenhouse roof, a label, a coating, a cladding, a container, a jar, a bottle, a film, an electronic device, a sensor, a sign, a reflector, a photograph, a poster, or a painted surface, a light emitting device (e.g., a LED or an organic light emitting device (OLED)).
  • Another aspect of the present disclosure is a method of preparing an anti-fogging coating. The method comprises applying the above-described anti-fogging composition to at least a portion of a surface of a substrate to form a coating. The applying can be by any means that is generally known, for example solution coating, spray coating, wiping using a saturated sponge or cloth, or a combination of any of the foregoing. Applying the composition by solution coating can include methods such as solvent casting, spin coating, drop casting, roller coating, wire-bar coating, dip or immersion coating, ink jetting, doctor blading, flow coating, and the like. The process of applying the coating can optionally be repeated until the desired coating thickness and/or desired surface coverage is obtained. After each application, the coating can be dried to remove at least a portion of the water and optionally, any solvent that may be present. For example, after the composition has been applied to the substrate, the water is evaporated at room temperature by air drying. More rapid evaporation can be achieved, if desired, by placing the coated substrate in an oven at a temperature of from 50° to 100° C. In some embodiments, excess composition can be removed from the coating. For example, the coating can be rinsed with a solvent, for example, water, to remove excess material. In some embodiments, the surface of the substrate is a glass surface, a ceramic surface, a metal surface, or a polymeric surface (e.g., polyester, polycarbonate, poly(meth)acrylate, and the like). In some embodiments, the surface of the substrate is a glass surface, preferably a clean glass surface. In some embodiments, the coating can be formed following removal of at least a portion of the water (e.g., by drying, evaporating, and the like).
  • The invention is further illustrated by the following non-limiting examples.
  • EXAMPLES
  • An anti-fogging composition was prepared using the materials described in Table 1.
  • TABLE 1
    Component Description
    Cellulose nanofibrils Cellulose nanofibrils were prepared from cellulose
    pulp according to the procedure described below.
    Xanthan gum CAS Reg. No. 11138-66-2; obtained from
    TIC Gums
    Potassium Cocoate CAS Reg. No. 61789-30-8; obtained from Lubrizol
    Gelatin CAS Reg. No. 9000-70-8; obtained from
    Sigma-Aldrich
    Capstone FS-31 Nonionic Fluorosurfactant; obtained from Dupont
  • Preparation of Cellulose Nanofibrils (CNF) and Nanocrystals (CNC)
  • A solution of mechanically treated cellulose pulp (37.5 grams, 2.67% solid content) was dispersed in water (62.5 milliliters) containing sodium bromide (0.1 grams) and, optionally, 2,2,6,6-tetramethyl-1-piperidine-N-oxy (TEMPO, 0.016 grams). A solution of sodium hypochlorite (2.1 grams, active chlorine 10-15%) was added to the suspension. Sodium hydroxide (5.5 grams, 0.5 M in water) was introduced to the mixture to adjust pH to higher than 10. The reaction mixture was stirred for 20 hours at room temperature, then centrifuged at 4000 rpm for 15 minutes. The precipitate isolated following the initial centrifugation was further washed with deionized water and centrifuged the remove residual salts and TEMPO. This washing process was repeated three times. The precipitate was then dispersed in 80 milliliters of water, and sonicated for 50 minutes to disintegrate the nanocellulose into single nanofibrils. A translucent aqueous mixture was obtained following sonication. The mixture was centrifuged at 4000 rpm for 15 minutes, and the cellulose nanofibrils in water were collected as the transparent supernatant.
  • Preparation of Anti-Fogging Composition
  • An anti-fogging composition was prepared by mixing the desired components in the amounts shown in Table 2. The amount of each component is shown in weight percent based on the total weight of the composition.
  • TABLE 2
    Exam- Exam- Exam- Exam- Exam- Exam-
    Components ple 1 ple 2 ple 3 ple 4 ple 5 ple 6
    CNC 2 0 0 0 0.6 0
    CNF 0 0.4 1 0.4 0 0.8
    Capstone 0.3 0 0 0 0 0
    FS-31
    Potassium 0 0.4 0 0.4 0 0
    cocoate
    Xanthan Gum 0.2 0.1 0 0 0 0
    Gelatin 0 0 0 0 0.4 0
    Silica 0 0 0 0 0 0.4
    Nanoparticles
    Water 97.5 99.1 99 99.2 99 98.8
  • The anti-fogging composition of Example 2 was coated on a bathroom mirror. As shown in FIG. 1, half of a bathroom mirror was left uncoated (side “1”) and half was coated with the composition described above (side “2”). FIG. 1 is a digital photograph of the mirror after exposure to a high humidity environment for 30 minutes, where it can be seen that side 1 of the mirror (uncoated) fogged, and side 2 of the mirror (coated) did not fog. Therefore, the composition provided an anti-fogging effect in a high humidity bathroom environment. The coating was further observed to last for several weeks (for example, 2 to 3 weeks).
  • The invention includes at least the following embodiments.
  • Embodiment 1
  • An anti-fogging composition, comprising a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof; and water.
  • Embodiment 2
  • The anti-fogging composition of embodiment 1, further comprising a surfactant.
  • Embodiment 3
  • The anti-fogging composition of embodiment 1 or 2, further comprising a water-soluble polymer.
  • Embodiment 4
  • The anti-fogging composition of any of embodiments 1 to 3, further comprising a plurality of nanoparticles.
  • Embodiment 5
  • The anti-fogging composition of any of embodiments 1 to 4, further comprising a surfactant, a water-soluble polymer, and optionally, a plurality of nanoparticles.
  • Embodiment 6
  • The anti-fogging composition of any of embodiments 2 to 5, wherein the surfactant comprises a polyoxyalkylene, an organosiloxane, a C3-20 perfluoroalkyl group, a C4-24 fatty acid or an alkali metal salt thereof, or a combination thereof.
  • Embodiment 7
  • The anti-fogging composition of any of embodiments 2 to 6, wherein the surfactant is an alkali metal salt of coconut oil.
  • Embodiment 8
  • The anti-fogging composition of any of embodiments 3 to 7, wherein the water-soluble polymer comprises polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid, methyl cellulose, hydroxypropyl methylcellulose, xanthan gum, pectin, guar gum, carrageenan, chitosan, gelatin, gum arabic, or a combination thereof.
  • Embodiment 9
  • The anti-fogging composition of any of embodiments 3 to 8, wherein the water-soluble polymer comprises xanthan gum.
  • Embodiment 10
  • The anti-fogging composition of any of embodiments 4 to 9, wherein the nanoparticles comprise silica nanoparticles, zinc oxide nanoparticles, titanium dioxide nanoparticles, or a combination thereof.
  • Embodiment 11
  • The anti-fogging composition of any of embodiments 1 to 10, comprising 0.1 to 10 weight percent nanocellulose.
  • Embodiment 12
  • The anti-fogging composition of any of embodiments 1 to 11, comprising 0.1 to 1.5 weight percent nanocellulose comprising cellulose nanofibrils.
  • Embodiment 13
  • The anti-fogging composition of any of embodiments 1 to 11, comprising 0.1 to 8 weight percent nanocellulose comprising cellulose nanocrystals.
  • Embodiment 14
  • The anti-fogging composition of any of embodiments 1 to 13, comprising 0.1 to 1.5 weight percent nanocellulose; and 98.5 to 99.9 weight percent water.
  • Embodiment 15
  • The anti-fogging composition of any of embodiments 2 to 13, comprising 0.1 to 1.5 weight percent of the nanocellulose; 0.01 to 1 weight percent of the surfactant; 0.01 to 1 weight percent of the water-soluble polymer; and 96.5 to 99.88 weight percent water; wherein weight percent is based on the total weight of the composition.
  • Embodiment 16
  • The anti-fogging composition of any of embodiments 2 to 15, comprising 0.1 to 0.5 weight percent nanocellulose; 0.25 to 1 weight percent of the surfactant; 0.01 to 0.5 weight percent of the water-soluble polymer; and 98 to 99.55 weight percent water; wherein weight percent is based on the total weight of the composition.
  • Embodiment 17
  • The antifogging compositions of embodiment 16, wherein the nanocellulose comprises cellulose nanofibrils; the surfactant is an alkali metal salt of coconut oil; and the water-soluble polymer is xanthan gum.
  • Embodiment 18
  • An article comprising a coating formed from the anti-fogging composition of any of embodiments 1 to 17.
  • Embodiment 19
  • The article of embodiment 18, wherein the article is at least partially transparent.
  • Embodiment 20
  • The article of embodiment 18 or 19, wherein the article is a mirror, a window, eyeglasses, sunglasses, goggles, safety glasses, a helmet, a visor, a windshield, a lens, a display screen, a freezer door, a greenhouse roof, a label, a coating, a cladding, a container, a jar, a bottle, a film, an electronic device, a sensor, a sign, a reflector, a photograph, a poster, or a painted surface.
  • Embodiment 21
  • A method of preparing an anti-fogging coating, the method comprising applying the anti-fogging composition of any of embodiments 1 to 17 to at least a portion of a surface of a substrate to form a coating.
  • Embodiment 22
  • The method of embodiment 21, wherein applying the composition comprises solution coating, spray coating, wiping using a saturated sponge or cloth, or a combination thereof.
  • Embodiment 23
  • The method of embodiment 21 or 22, wherein the surface is a glass surface, a ceramic surface, a metal surface, or a polymeric surface.
  • This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
  • All cited patents, patent applications, and other references are incorporated herein by reference in their entirety, including priority U.S. Patent Application No. 62/240,037, filed Oct. 12, 2015. However, if a term in the present application contradicts or conflicts with a term in the incorporated reference, the term from the present application takes precedence over the conflicting term from the incorporated reference.
  • All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. Each range disclosed herein constitutes a disclosure of any point or sub-range lying within the disclosed range.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).

Claims (20)

1. An anti-fogging composition, comprising
a nanocellulose comprising cellulose nanofibrils, cellulose nanocrystals, or a combination thereof; and
water.
2. The anti-fogging composition of claim 1, further comprising a surfactant, a water-soluble polymer, a plurality of nanoparticles, or a combination thereof.
3. The anti-fogging composition of claim 2, wherein the surfactant comprises a polyoxyalkylene, an organosiloxane, a C3-20 perfluoroalkyl group, a C4-24 fatty acid or an alkali metal salt thereof, or a combination thereof.
4. The anti-fogging composition of claim 2, wherein the surfactant is an alkali metal salt of coconut oil.
5. The anti-fogging composition of claim 2, wherein the water-soluble polymer comprises polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid, methyl cellulose, hydroxypropyl methylcellulose, xanthan gum, pectin, guar gum, carrageenan, chitosan, gelatin, gum arabic, or a combination thereof.
6. The anti-fogging composition of claim 2, wherein the water-soluble polymer comprises xanthan gum.
7. The anti-fogging composition of claim 2, wherein the nanoparticles comprise silica nanoparticles, zinc oxide nanoparticles, titanium dioxide nanoparticles, or a combination thereof.
8. The anti-fogging composition of claim 1, comprising 0.1 to 10 weight percent nanocellulose.
9. The anti-fogging composition of claim 1, comprising 0.1 to 1.5 weight percent nanocellulose comprising cellulose nanofibrils.
10. The anti-fogging composition of claim 1, comprising 0.1 to 8 weight percent nanocellulose comprising cellulose nanocrystals.
11. The anti-fogging composition of claim 1, comprising
0.1 to 1.5 weight percent nanocellulose; and
98.5 to 99.9 weight percent water.
12. The anti-fogging composition of claim 2, comprising
0.1 to 1.5 weight percent of the nanocellulose;
0.01 to 1 weight percent of the surfactant;
0.01 to 1 weight percent of the water-soluble polymer; and
96.5 to 99.88 weight percent water;
wherein weight percent is based on the total weight of the composition.
13. The anti-fogging composition of claim 2, comprising
0.1 to 0.5 weight percent nanocellulose;
0.25 to 1 weight percent of the surfactant;
0.01 to 0.5 weight percent of the water-soluble polymer; and
98 to 99.55 weight percent water;
wherein weight percent is based on the total weight of the composition.
14. The antifogging composition of claim 13, wherein
the nanocellulose comprises cellulose nanofibrils;
the surfactant is an alkali metal salt of coconut oil; and
the water-soluble polymer is xanthan gum.
15. An article comprising a coating formed from the anti-fogging composition of claim 1.
16. The article of claim 15, wherein the article is at least partially transparent.
17. The article of claim 15, wherein the article is a mirror, a window, eyeglasses, sunglasses, goggles, safety glasses, a helmet, a visor, a windshield, a lens, a display screen, a freezer door, or a greenhouse roof.
18. A method of preparing an anti-fogging coating, the method comprising
applying the anti-fogging composition of claim 1 to at least a portion of a surface of a substrate to form a coating.
19. The method of claim 18, wherein applying the composition comprises solution coating, spray coating, wiping using a saturated sponge or cloth, or a combination thereof.
20. The method of claim 19, wherein the surface is a glass surface, a ceramic surface, a metal surface, or a polymeric surface.
US15/767,719 2015-10-12 2016-10-10 Nanocellulose-based anti-fogging composition Abandoned US20180291223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/767,719 US20180291223A1 (en) 2015-10-12 2016-10-10 Nanocellulose-based anti-fogging composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562240037P 2015-10-12 2015-10-12
PCT/US2016/056249 WO2017066119A1 (en) 2015-10-12 2016-10-10 Nanocellulose-based anti-fogging composition
US15/767,719 US20180291223A1 (en) 2015-10-12 2016-10-10 Nanocellulose-based anti-fogging composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/056249 A-371-Of-International WO2017066119A1 (en) 2015-10-12 2016-10-10 Nanocellulose-based anti-fogging composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/793,021 Continuation US10894899B2 (en) 2015-10-12 2020-02-18 Nanocellulose-based anti-fogging composition

Publications (1)

Publication Number Publication Date
US20180291223A1 true US20180291223A1 (en) 2018-10-11

Family

ID=58517871

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/767,719 Abandoned US20180291223A1 (en) 2015-10-12 2016-10-10 Nanocellulose-based anti-fogging composition
US16/793,021 Active US10894899B2 (en) 2015-10-12 2020-02-18 Nanocellulose-based anti-fogging composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/793,021 Active US10894899B2 (en) 2015-10-12 2020-02-18 Nanocellulose-based anti-fogging composition

Country Status (2)

Country Link
US (2) US20180291223A1 (en)
WO (1) WO2017066119A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184816A (en) * 2019-04-26 2019-08-30 浙江跃维新材料科技有限公司 A kind of anti-fogging liquid, anti-fog cloth and preparation method thereof
US10894899B2 (en) 2015-10-12 2021-01-19 The University Of Massachusetts Nanocellulose-based anti-fogging composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150614A1 (en) * 2018-02-01 2019-08-08 北越コーポレーション株式会社 Water-and-oil repellent, production method therefor, water-and-oil-repellent product, and production method therefor
CN109054584B (en) * 2018-07-24 2020-12-08 清远粤绿新材料技术有限公司 Nano-scale cellulose functional doped modified coating and preparation method thereof
CN109750553B (en) * 2019-01-24 2022-01-28 北京京东方技术开发有限公司 Container for food preservation and preparation method thereof
CN110194597A (en) * 2019-06-24 2019-09-03 浙江跃维新材料科技有限公司 A kind of hydrophily antirain agent and preparation method thereof and antirain agent coating production
DE102020119457A1 (en) 2020-07-23 2022-01-27 Zipps Skiwachse Gmbh Lubricant for use on sliding surfaces of winter sports equipment with improved gliding properties
CN111978793B (en) * 2020-08-18 2021-07-27 江南大学 Preparation method of biological composite coating and intelligent colorimetric film material
CN113214712A (en) * 2021-04-14 2021-08-06 赵秀丽 Indoor latex paint with strong stain resistance and scrubbing capacity and preparation method thereof
CN113933917B (en) * 2021-11-22 2023-02-28 广西五行材料科技有限公司 Nano material for dewatering and anti-fogging of glasses

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873931A (en) * 1992-10-06 1999-02-23 Minnesota Mining And Manufacturing Company Coating composition having anti-reflective and anti-fogging properties
US5629055A (en) 1994-02-14 1997-05-13 Pulp And Paper Research Institute Of Canada Solidified liquid crystals of cellulose with optically variable properties
JPH10101816A (en) * 1996-10-03 1998-04-21 Asahi Chem Ind Co Ltd Resin film for packaging
US7008979B2 (en) * 2002-04-30 2006-03-07 Hydromer, Inc. Coating composition for multiple hydrophilic applications
US7056874B2 (en) 2002-09-23 2006-06-06 Ecolab Inc. Cleaning solutions for carbon removal
US7152377B2 (en) * 2002-12-06 2006-12-26 Chase Industries, Inc. Door and method of manufacturing
DE102006057904A1 (en) 2006-12-08 2008-06-12 Dow Wolff Cellulosics Gmbh Production of cellulose nanoparticles
US20080217284A1 (en) 2007-03-09 2008-09-11 Donna Roth System for use with at least one of a foodstuff and/or a consumable beverage and method of manufacturing same
US20080248089A1 (en) * 2007-04-09 2008-10-09 Cadbury Adams Usa Llc Edible products for the treatment of nasal passages
AU2008344471B2 (en) 2007-12-28 2012-12-20 Nippon Paper Industries Co., Ltd. Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose
EP2805986B1 (en) 2009-03-30 2017-11-08 FiberLean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US20120058355A1 (en) * 2009-06-02 2012-03-08 Hyomin Lee Coatings
SE533510C2 (en) 2009-07-07 2010-10-12 Stora Enso Oyj Method for producing microfibrillar cellulose
US10400128B2 (en) * 2013-03-14 2019-09-03 Oregon State University Nano-cellulose edible coatings and uses thereof
JP6189659B2 (en) * 2013-06-24 2017-08-30 日本製紙株式会社 Antifogging agent and antifogging film
US20180291223A1 (en) 2015-10-12 2018-10-11 The University Of Massachusetts Nanocellulose-based anti-fogging composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10894899B2 (en) 2015-10-12 2021-01-19 The University Of Massachusetts Nanocellulose-based anti-fogging composition
CN110184816A (en) * 2019-04-26 2019-08-30 浙江跃维新材料科技有限公司 A kind of anti-fogging liquid, anti-fog cloth and preparation method thereof

Also Published As

Publication number Publication date
US20200181439A1 (en) 2020-06-11
US10894899B2 (en) 2021-01-19
WO2017066119A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US10894899B2 (en) Nanocellulose-based anti-fogging composition
US8986848B2 (en) Coatings
JP5624036B2 (en) Acicular silica coating to increase hydrophilicity / permeability
Manabe et al. Antifibrinogen, antireflective, antifogging surfaces with biocompatible nano-ordered hierarchical texture fabricated by layer-by-layer self-assembly
TWI723964B (en) Water and oil repellent coating composition and transparent film
US10377904B2 (en) Inorganic hydrophilic coating solution, hydrophilic coating film obtained therefrom, and member using same
WO2010062893A1 (en) Antifogging coating composition, antifogging film and article
BRPI0707817A2 (en) coating system
CN109071935B (en) Composition comprising a metal oxide and a metal oxide
JP2010502817A5 (en)
CN108410270B (en) Water-resistant high-strength anti-fog and anti-frost coating and preparation method thereof
WO2016056489A1 (en) Antifouling layer-equipped laminate, protective material for surveillance camera, and surveillance camera
TW201930486A (en) Aqueous coating material and method for manufacturing the same
JP2000154374A (en) Antifogging agent and antifogging-treated base material
JP5792600B2 (en) Antifogging resin composition
JP7177634B2 (en) Coating composition, coating film and article
CN109280202B (en) Long-term antifogging film and preparation method thereof
CN103728675A (en) Super-hydrophobic self-cleaning resin lens and manufacturing method thereof
JP2007001959A (en) Silane compound, method for producing the same and surface treating agent
JP2004143443A (en) Hydrophilic coating composition, and dewing inhibitor and dewing inhibition method using it
JP5809541B2 (en) Antifogging resin composition
CN114561137B (en) Antifogging agent, preparation method and application thereof, and antifogging product
CN103849508A (en) Glass cleaning agent and preparation method thereof
KR102561788B1 (en) Perfluoropolyether-benzophenone compound, anti-reflective coating additive and coating composition comprising the same
Liu et al. Transparent Double-layered antifogging hydrogel coating with high Mechanical-resistance and effective Anti-oil-fouling ability

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE UNIVERSITY OF MASSACHUSETTS, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, YINYONG;CARTER, KENNETH RAYMOND;REEL/FRAME:045518/0848

Effective date: 20151015

AS Assignment

Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MASSACHUSETTS, AMHERST;REEL/FRAME:045634/0886

Effective date: 20180418

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION