US20180277620A1 - Densely stacked metal-insulator-metal capacitor and method of forming the same - Google Patents

Densely stacked metal-insulator-metal capacitor and method of forming the same Download PDF

Info

Publication number
US20180277620A1
US20180277620A1 US15/470,554 US201715470554A US2018277620A1 US 20180277620 A1 US20180277620 A1 US 20180277620A1 US 201715470554 A US201715470554 A US 201715470554A US 2018277620 A1 US2018277620 A1 US 2018277620A1
Authority
US
United States
Prior art keywords
metal
dielectric layer
contact
insulator
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/470,554
Other versions
US10103218B1 (en
Inventor
Effendi Leobandung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US15/470,554 priority Critical patent/US10103218B1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEOBANDUNG, EFFENDI
Publication of US20180277620A1 publication Critical patent/US20180277620A1/en
Application granted granted Critical
Publication of US10103218B1 publication Critical patent/US10103218B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76804Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics by forming tapered via holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A metal-insulator-metal capacitor (MIM cap) includes a dielectric layer disposed over a substrate three contacts. A stacked structure of first and second metal layers separated by high-k dielectrics is disposed over the substrate and contacts. Three vias are formed through the structure to expose each of the three contacts. Selective etching is used to create gaps between the various metal layers at the location of the vias and these gaps are filled with an insulator. The vias are then filled with metal and the MIM cap is constructed such that the metal of the first via is electrically connected to the second metal layers and the metal of the second via is electrically connected to the first metal layers.

Description

    BACKGROUND
  • The present invention relates to metal-insulator-metal (MIM) capacitors and, more specifically, to densely stacked MIM capacitors (caps) and methods of forming the same.
  • Recently, advances have been made in combining metal circuit elements to semiconductor integrated circuits (ICs). These metal circuit elements may provide superior characteristics to circuit elements formed entirely by semiconductors. The use of MIM caps in advanced chips may significantly reduce noise.
  • As ICs do not offer a lot of surface area upon which metal circuit elements may be formed, it may be desirable to stack multiple MIM layers. However, fabrication of such devices may require many processing steps, such as repeated patterning and etching steps, thereby increasing the complexity and cost associated with the fabrication.
  • SUMMARY
  • A metal-insulator-metal capacitor includes a first contact, a second contact, and a third contact, each disposed within a substrate. A first dielectric layer is disposed over the substrate and the first, second, and third contacts. A stacked structure is disposed over the first dielectric layer. The stacked structure includes a repeating pattern of a second metal layer, a first metal layer, and a high-k dielectric disposed between the second metal layer and the first metal layer. A second dielectric layer is disposed over the stacked structure. A first via exposes the first contact through the first dielectric layer, the stacked structure, and the second dielectric layer. The first via is filled with metal. A second via exposes the second contact through the first dielectric layer, the stacked structure, and the second dielectric layer. The second via is filled with metal. A third via exposes the third contact through the first dielectric layer, the stacked structure, and the second dielectric layer. The third via is filled with metal. The second metal layer of each repeating pattern of the stacked structure is connected to the metal filling the first via, insulated from the metal filling the second via, and insulated from the metal filling the third via. The first metal layer of each repeating pattern of the stacked structure is insulated from the metal filling the first via, connected to the metal filling the second via, and insulated from the metal filling the third via.
  • A method for forming a metal-insulator-metal capacitor includes disposing a first dielectric layer on a substrate having a first contact, a second contact, and a third contact disposed therein. A stacked structure is disposed over the first dielectric layer. The stacked structure includes a repeating pattern of a second metal layer, a first metal layer, and a high-k dielectric disposed between the second metal layer and the first metal layer. A second dielectric layer is disposed over the stacked structure. A first via is created through the second dielectric layer, the stacked structure, and the first dielectric layer to expose the first contact. A second via is created through the second dielectric layer, the stacked structure, and the first dielectric layer to expose the second contact. A third via is created through the second dielectric layer, the stacked structure, and the first dielectric layer to expose the third contact. The first metal layers of the stacked structure are selectively etched through the first via and the third via to create ring-shaped voids. The ring-shaped voids of the first via and the third via are filled with an insulator. The second metal layers of the stacked structure are selectively etched through the second via and the third via to create ring-shaped voids. The ring-shaped voids of the second via and the third via are filled with an insulator. The first via, the second via, and the third via are filled with a metal.
  • A method for forming a metal-insulator-metal capacitor includes disposing a first dielectric layer on a substrate having a first contact, a second contact, and a third contact disposed therein. A first second-metal layer is disposed over the first dielectric layer. A first high-k dielectric layer is disposed over the first second-metal layer. A first first-metal layer is disposed over the first high-k dielectric layer. A second high-k dielectric layer is disposed over the first first-metal layer. A second second-metal layer is disposed over the second high-k dielectric layer. A third high-k dielectric layer is disposed over the second second-metal layer. A second first-metal layer is disposed over the third high-k dielectric layer. A second dielectric layer is disposed over the second first-metal layer. A first via is created through the first dialectic, the first second-metal layer, the first high-k dielectric layer, the first first-metal layer, the second high-k dielectric layer, the second second-metal layer, the third high-k dielectric layer, the second first-metal layer, and the second dielectric layer exposing the first contact. A second via is created through the first dialectic, the first second-metal layer, the first high-k dielectric layer, the first first-metal layer, the second high-k dielectric layer, the second second-metal layer, the third high-k dielectric layer, the second first-metal layer, and the second dielectric layer exposing the second contact. A third via is created through the first dialectic, the first second-metal layer, the first high-k dielectric layer, the first first-metal layer, the second high-k dielectric layer, the second second-metal layer, the third high-k dielectric layer, the second first-metal layer, and the second dielectric layer exposing the third contact. The first and second first-metal layers are selectively etched through the first via and the third via to remove a portion of the first and second first-metal layers through the first via and the third via. The removed portion of the first and second first-metal layers are filled with an insulator though the first via and the third via. The first and second second-metal layers are selectively etched through the second via and the third via to remove a portion of the first and second second-metal layers through the second via and the third via. The removed portion of the first and second second-metal layers are filled with an insulator though the second via and the third via. The first via, the second via, and the third via are filled with a metal.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • A more complete appreciation of the present invention and many of the attendant aspects thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
  • FIG. 1 is a diagram illustrating an existing MIM cap structure;
  • FIG. 2 is a flow chart illustrating a method for fabricating a densely stacked MIM cap structure in accordance with exemplary embodiments of the present invention; and
  • FIGS. 3A-3I are diagrams illustrating various processing steps for fabricating a densely stacked MIM cap structure in accordance with exemplary embodiments of the present invention.
  • DETAILED DESCRIPTION
  • In describing exemplary embodiments of the present invention illustrated in the drawings, specific terminology is employed for sake of clarity. However, the present invention is not intended to be limited to the illustrations or any specific terminology, and it is to be understood that each element includes all equivalents.
  • Exemplary embodiments of the present invention pertain to a novel structure of a densely stacked metal-insulator-metal (MIM) capacitor (cap) and various methods for fabricating the MIM cap.
  • Existing MIM cap structures, such as that illustrated in FIG. 1 may have two metal contacts 11 and 12 that are formed on or within a semiconductor wafer 10. Electrodes may be formed, for example, including two top electrodes 13 and 17, as well as a middle electrode 15. Dielectric layers 14 and 16 may be formed between the electrodes and together, the electrodes and dielectric layers may form the MIM cap structure.
  • To fabricate such a structure, generally, the first top electrode 17 and the first dielectric layer 16 may be deposited, patterned, and etched. Then the middle electrode 15 and the second dielectric 14 may be deposited, patterned, and etched. Finally, the second top electrode 13 may be deposited, patterned, and etched. Accordingly, many patterning and etching steps are performed, particularly where there are more electrode and dielectric layers than are shown in this figure.
  • Exemplary embodiments of the present invention may provide a densely stacked structure, where there are few patterning and etching steps, for example, only two masks might be needed, regardless of the number of electrode and dielectric layers within the structure. FIG. 2 is a flow chart illustrating a method for fabricating a densely stacked MIM cap in accordance with exemplary embodiments of the present invention, and FIGS. 3A though 3I are schematic diagrams showing the structure in various processing stages in accordance with exemplary embodiments of the present invention.
  • Referring to FIG. 2 and FIG. 3A, the process may begin with a back end of line (BEOL) structure (Step S20) which may include a wafer or substrate 31 and various contacts such as a driving voltage (Vdd) contact 32, a ground (Gnd) contact 33, and an input/output (I/O) contact 34. The BEOL structure may be a far back end structure, which may be a higher-level structure where layers tend to be thicker.
  • Next, as may be seen in FIG. 3B, the desired layers may be deposited upon the BEOL structure (Step S21). The deposited layers may include a first dielectric layer 35 a and a second dielectric layer 35 b, with a repeating set of layers sandwiched between the dielectric layers 35 a. The repeating set of layers may include a first metal 38, a second metal 36, and a high-k dielectric layer 37 disposed therebetween.
  • While four repetitions of the set of layers are shown, it is to be understood that any desired number of repetitions may be used, for example, there may be only a single set of the first metal 38, second metal 36, and the high-k dielectric 37 disposed therebetween. However, there may alternatively be a plurality of repetitions, such as 2 repetitions, 3 repetitions, 4 repetitions (as shown), or more than 4 repetitions.
  • Additional repetitions may enlarge the structure and add to fabrication costs, however, additional repetitions may lead to lager capacitors. Thus, the demands of the integrated circuit design may determine how many repetitions to fabricate.
  • As mentioned above, each repetition may include a first metal 38, a second metal 36, and a high-k dielectric 37 disposed therebetween. As used herein, the term “high-k dielectric” is intended to mean a material with a greater dielectric constant than that of silicon dioxide. Examples of suitable high-k dielectric materials include, but are not limited to: hafnium silicate, zirconium silicate, hafnium dioxide and zirconium dioxide. The high-k dielectric layers 37 may be deposited using atomic layer deposition. The thickness of each high-k dielectric layer 37 may be within the range of 1-10 mm.
  • The first metal layers 38 and the second metal layers 36 may each be formed of copper, a copper alloy, or any other suitable electrically conductive metal. Each of these layers may have a thickness of 10-50 nm. The MIM cap is formed by each set of first and second metal layers with the high-k dielectric disposed therebetween.
  • In the exemplary structure shown, a first second-metal layer 36 a is disposed over the first dielectric layer 35 a. A first high-k dielectric layer 37 a is disposed over the first second-metal layer 36 a. A first first-metal layer 38 a is disposed over the first high-k dielectric layer 37 a. A second high-k dielectric layer 37 b is disposed over the first first-metal layer 38 a. A second second-metal layer 36 b is disposed over the second high-k dielectric layer 37 b. A third high-k dielectric layer 37 c is disposed over the second second-metal layer 36 b. A second first-metal layer 38 b is disposed over the third high-k dielectric layer 37 c. A fourth high-k dielectric layer 37 d is disposed over the second first-metal layer 38 b. A third second-metal layer 36 c is disposed over the fourth high-k dielectric layer 37 d. A fifth high-k dielectric layer 37 e is disposed over the third second-metal layer 36 c. A third first-metal layer 38 c is disposed over the fifth high-k dielectric layer 37 e. A sixth high-k dielectric layer 37 f is disposed over the third first-metal layer 38 c. A fourth second-metal layer 36 d is disposed over the sixth high-k dielectric layer 37 f. A seventh high-k dielectric layer 37 g is disposed over the fourth second-metal layer 36 d. A fourth first-metal layer 38 d is disposed over the seventh high-k dielectric layer 37 g. A second dielectric layer 35 b is disposed over the fourth first-metal layer 38 d.
  • It is to be understood that the first and second dielectric layers 35 a and 35 b may be formed of a substance, such as silicon dioxide, which is different than the high-k dielectric layers 37, however, any dielectric may do.
  • Next, as can be seen in FIG. 3C, vias may be formed within the stacked structure to expose each of the contacts, including the Vdd contact 32, the Gnd contact 33, and the I/O contact 34 (Step S22). These vias may be formed, for example, by etching.
  • Next, as can be seen in FIG. 3D, the vias of the Vdd contact 32 and the I/O contact 34 may be patterned and further etched, for example, using an isotropic etching technique, to selectively etch into the first metal layers 38 (Step S23) creating a ring-shaped void at each first metal layer 38.
  • As can be seen from FIG. 3E, an insulator may then be deposited within each of the vias of the Vdd contact 32, the Gnd contact 33, and the I/O contact 34 (Step S24). This insulator may serve to fill the ring-shaped voids made by etching the first metal layers 38 within the vias of the Vdd contact 32 and the I/O contact 34. The via of the Gnd contact 33 may receive a coating of the deposited insulator.
  • Next, as can be seen from FIG. 3F, the deposited insulator may then be anisotopically etched so as to remove the insulator from each of the vias but to leave the insulator within the ring-shaped voids (Step S25).
  • As can be seen from FIG. 3G, steps similar to steps S23, S24, and S25 may be performed for the second metal layers 36 (rather than for the first metal layers 38) and for the Gnd contact 33 via and the I/O contact 34 via (rather than for the Vdd contact 32 via and the I/O contact 34 via). In this way, the second metal layers 36 may be selectively etched isotopically so as to create ring-shaped voids at each of the second metal layers about the vias for the Gnd contact 33 and the I/O contact 34 (Step S26). Then, as can be seen in FIG. 3H, insulator may be deposited in each via so as to fill the ring-shaped voids in the second metal layers 36 for the vias of the Gnd contact 33 and the I/O contact 34 and then anisotopic etching may be performed to remove the insulator, but leaving the insulator in the ring-shaped voids (Step S27).
  • As can be seen from FIG. 3I, each of the vias may be filled with a metal such as copper (Step S28). This may be performed in three steps: the first step being to deposit a liner to line each via, the second step being to fill the lined vias with a metal such as copper, and the third step being to planarize the top surface of the structure. Thereafter, the remainder of the BEOL processing may be completed so that an integrated circuit (IC) may be formed to make use of the MIM cap so created (Step S29), for example, on a back end thereof.
  • As shown in FIG. 3I, the final structure has all second metal layers 36 connected with the metal-filled via of the Vdd contact 32, and all first metal layers 38 insulated from the metal-filled via of the Vdd contact 32 by insulating rings. Concurrently, all first metal layers 38 are connected with the metal-filled via of the Gnd contact 33, and all second metal layers 36 are insulated from the metal-filled via of the Gnd contact 33 by insulating rings. Concurrently, all first and second metal layers 38 and 36 are insulated from the metal-filled via of the I/O contact 34 by insulating rings.
  • Exemplary embodiments described herein are illustrative, and many variations can be introduced without departing from the spirit of the invention or from the scope of the appended claims. For example, elements and/or features of different exemplary embodiments may be combined with each other and/or substituted for each other within the scope of this invention and appended claims.

Claims (20)

What is claimed is:
1. A metal-insulator-metal capacitor, comprising:
a first contact, a second contact, and a third contact, each disposed within a substrate;
a first dielectric layer disposed over the substrate and the first, second, and third contacts;
a stacked structure disposed over the first dielectric layer, the stacked structure including repeating pattern of a second metal layer, a first metal layer, and a high-k dielectric disposed between the second metal layer and the first metal layer;
a second dielectric layer disposed over the stacked structure;
a first via exposing the first contact through the first dielectric layer, the stacked structure, and the second dielectric layer, the first via being filled with metal;
a second via exposing the second contact through the first dielectric layer, the stacked structure, and the second dielectric layer, the second via being filled with metal; and
a third via exposing the third contact through the first dielectric layer, the stacked structure, and the second dielectric layer, the third via being filled with metal,
wherein the second metal layer of each repeating pattern of the stacked structure is connected to the metal filling the first via, insulated from the metal filling the second via, and insulated from the metal filling the third via, and
wherein the first metal layer of each repeating pattern of the stacked structure is insulated from the metal filling the first via, connected to the metal filling the second via, and insulated from the metal filling the third via.
2. The metal-insulator-metal capacitor of claim 1, wherein the high-k dielectric layer of each repeating pattern of the stacked structure makes contact with the metal filling the first via, makes contact with the metal filling the second via, and makes contact with the metal filling the third via.
3. The metal-insulator-metal capacitor of claim 1, wherein the first contact is a driving voltage contact, the second contact is a ground voltage contact, and the third contact is an input/output contact.
4. The metal-insulator-metal capacitor of claim 1, wherein the first and second dielectric layers include silicon oxide and the high-k dielectric layer of each repeating pattern of the stacked structure is a dielectric having a dielectric constant greater than that of silicon oxide.
5. The metal-insulator-metal capacitor of claim 1, wherein the repeating pattern of the stacked structure is repeated at least two times.
6. The metal-insulator-metal capacitor of claim 1, wherein the repeating pattern of the stacked structure is repeated at least four times.
7. The metal-insulator-metal capacitor of claim 1, wherein both the first metal layer and the second metal layer of the repeating pattern of the stacked structure include copper.
8. The metal-insulator-metal capacitor of claim 1, wherein the first metal layer of the repeating pattern of the stacked structure have different etching susceptibilities than the second metal layer of the repeating pattern of the stacked structure.
9. A method for forming a metal-insulator-metal capacitor, comprising:
disposing a first dielectric layer on a substrate having a first contact, a second contact, and a third contact disposed therein;
disposing a stacked structure over the first dielectric layer, the stacked structure including repeating pattern of a second metal layer, a first metal layer, and a high-k dielectric disposed between the second metal layer and the first metal layer;
disposing a second dielectric layer over the stacked structure;
creating a first via through the second dielectric layer, the stacked structure, and the first dielectric layer to expose the first contact;
creating a second via through the second dielectric layer, the stacked structure, and the first dielectric layer to expose the second contact;
creating a third via through the second dielectric layer, the stacked structure, and the first dielectric layer to expose the third contact;
selectively etching the first metal layers of the stacked structure through the first via and the third via to create ring-shaped voids;
filling the ring-shaped voids of the first via and the third via with an insulator;
selectively etching the second metal layers of the stacked structure through the second via and the third via to create ring-shaped voids;
filling the ring-shaped voids of the second via and the third via with an insulator; and
filling the first via, the second via, and the third via with a metal.
10. The method for forming a metal-insulator-metal capacitor of claim 9, wherein the first contact is a driving voltage contact, the second contact is a ground voltage contact, and the third contact is an input/output contact.
11. The method for forming a metal-insulator-metal capacitor of claim 9, wherein the first and second dielectric layers include silicon oxide and the high-k dielectric layer of each repeating pattern of the stacked structure is a dielectric having a dielectric constant greater than that of silicon oxide.
12. The method for forming a metal-insulator-metal capacitor of claim 9, wherein the repeating pattern of the stacked structure is repeated at least two times.
13. The method for forming a metal-insulator-metal capacitor of claim 9, wherein the repeating pattern of the stacked structure is repeated at least four times.
14. The method for forming a metal-insulator-metal capacitor of claim 9, wherein the selective etching of the first metal layers of the stacked structure through the first via and the third via is isotropic etching and the selective etching of the second metal layers of the stacked structure through the second via and the third via is isotropic etching.
15. The method for forming a metal-insulator-metal capacitor of claim 9, wherein the filling of the ring-shaped voids of each via includes:
depositing the insulator in the corresponding via; and
performing anisotropic etching on the insulator in the corresponding via to remove the insulator from everywhere in the corresponding via except for in the ring-shaped voids.
16. The method for forming a metal-insulator-metal capacitor of claim 9, wherein the filling of the first via, second via, and third via with the metal includes:
depositing a liner in each via;
filling each lined via with the metal; and
planarizing the metal from the top of each via.
17. A method for thrilling a metal-insulator-metal capacitor, comprising:
disposing a first dielectric layer on a substrate having a first contact, a second contact, and a third contact disposed therein;
disposing a first second-metal layer over the first dielectric layer;
disposing a first high-k dielectric layer over the first second-metal layer;
disposing a first first-metal layer over the first high-k dielectric layer;
disposing a second high-k dielectric layer over the first first-metal layer;
disposing a second second-metal layer over the second high-k dielectric layer;
disposing a third high-k dielectric layer over the second second-metal layer;
disposing a second first-metal layer over the third high-k dielectric layer;
disposing a second dielectric layer over the second first-metal layer;
creating a first via through the first dialectic, the first second-metal layer, the first high-k dielectric layer, the first first-metal layer, the second high-k dielectric layer, the second second-metal layer, the third high-k dielectric layer, the second first-metal layer, and the second dielectric layer exposing the first contact;
creating a second via through the first dialectic, the first second-metal layer, the first high-k dielectric layer, the first first-metal layer, the second high-k dielectric layer, the second second-metal layer, the third high-k dielectric layer, the second first-metal layer, and the second dielectric layer exposing the second contact;
creating a third via through the first dialectic, the first second-metal layer, the first high-k dielectric layer, the first first-metal layer, the second high-k dielectric layer, the second second-metal layer, the third high-k dielectric layer, the second first-metal layer, and the second dielectric layer exposing the third contact;
selectively etching the first and second first-metal layers through the first via and the third via to remove a portion of the first and second first-metal layers through the first via and the third via;
filling the removed portion of the first and second first-metal layers with an insulator though the first via and the third via;
selectively etching the first and second second-metal layers through the second via and the third via to remove a portion of the first and second second-metal layers through the second via and the third via;
filling the removed portion of the first and second second-metal layers with an insulator though the second via and the third via; and
filling the first via, the second via, and the third via with a metal.
18. The method for forming a metal-insulator-metal capacitor of claim 17, wherein the first contact is a driving voltage contact, the second contact is a ground voltage contact, and the third contact is an input/output contact.
19. The method for forming a metal-insulator-metal capacitor of claim 17, wherein the selective etching of the first and second second-metal layers through the first via and the third via is isotropic etching and the selective etching of the first and second first-metal layers through the second via and the third via is isotropic etching.
20. The method for forming a metal-insulator-metal capacitor of claim 17, wherein the filling the removed portion of the first and second second/first-metal layers with an insulator though the first/second via and the third via, include:
depositing the insulator in the corresponding via; and
performing anisotropic etching on the insulator in the corresponding via to remove the insulator from everywhere in the corresponding via except for in the removed portions.
US15/470,554 2017-03-27 2017-03-27 Densely stacked metal-insulator-metal capacitor and method of forming the same Active US10103218B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/470,554 US10103218B1 (en) 2017-03-27 2017-03-27 Densely stacked metal-insulator-metal capacitor and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/470,554 US10103218B1 (en) 2017-03-27 2017-03-27 Densely stacked metal-insulator-metal capacitor and method of forming the same

Publications (2)

Publication Number Publication Date
US20180277620A1 true US20180277620A1 (en) 2018-09-27
US10103218B1 US10103218B1 (en) 2018-10-16

Family

ID=63582902

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/470,554 Active US10103218B1 (en) 2017-03-27 2017-03-27 Densely stacked metal-insulator-metal capacitor and method of forming the same

Country Status (1)

Country Link
US (1) US10103218B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848352B2 (en) 2021-02-22 2023-12-19 Taiwan Semiconductor Manufacturing Company Limited Metal-insulator-metal capacitors and methods of forming the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130038981A1 (en) * 2010-04-16 2013-02-14 Fujitsu Limited Capacitor and method of manufacturing capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130038981A1 (en) * 2010-04-16 2013-02-14 Fujitsu Limited Capacitor and method of manufacturing capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848352B2 (en) 2021-02-22 2023-12-19 Taiwan Semiconductor Manufacturing Company Limited Metal-insulator-metal capacitors and methods of forming the same
TWI832134B (en) * 2021-02-22 2024-02-11 台灣積體電路製造股份有限公司 Integrated circuit device and fabricating method thereof, fabricating method of metal-insulator-metal capacitor

Also Published As

Publication number Publication date
US10103218B1 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
CN107180813B (en) Metal-insulator-metal capacitor structure
KR100902581B1 (en) Stack capacitor in semiconductor device and the Method for forming the same
US8810002B2 (en) Vertical metal insulator metal capacitor
DE102010037339A1 (en) Through substrate features in semiconductor substrates
WO2018198330A1 (en) Capacitor device and manufacturing method therefor
EP3174094B1 (en) Integrated circuit comprising a metal-insulator-metal capacitor and fabrication method thereof
CN111029327B (en) Semiconductor structure and manufacturing method
US6492226B1 (en) Method for forming a metal capacitor in a damascene process
CN105489590A (en) Embedded metal-insulator-metal capacitor
US7109090B1 (en) Pyramid-shaped capacitor structure
US6825080B1 (en) Method for forming a MIM capacitor
DE102019130124A1 (en) FUNCTIONAL COMPONENT WITHIN A CONNECTING STRUCTURE OF A SEMICONDUCTOR DEVICE AND METHOD FOR MAKING SAME
US10475878B2 (en) BEOL capacitor through airgap metallization
US10103218B1 (en) Densely stacked metal-insulator-metal capacitor and method of forming the same
US9343237B2 (en) Vertical metal insulator metal capacitor
EP2738827A1 (en) Mimcap structure in a semiconductor device package
US20200119134A1 (en) Embedded stack capacitor with high performance logic
US6794702B2 (en) Semiconductor device and fabrication method thereof
CN106847787A (en) Structure of metal-insulation layer-metal capacitor and manufacturing method thereof
CN108122894B (en) Method for improving arc discharge defect of MIM capacitor
KR20100041220A (en) Stacted structure of mim capacitor for high density and manufacturing method thereof
US20070145599A1 (en) Metal-insulator-metal (MIM) capacitor and methods of manufacturing the same
KR20040043888A (en) Method for forming MIM capacitor having multi-layer parallel inverse structure
US20230335488A1 (en) Semiconductor structure with resistor and capacitor
TWI670860B (en) Capacitor structures and methods for fabricating the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEOBANDUNG, EFFENDI;REEL/FRAME:041755/0722

Effective date: 20170323

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4