US20180259227A1 - Vortex tube - Google Patents

Vortex tube Download PDF

Info

Publication number
US20180259227A1
US20180259227A1 US15/975,951 US201815975951A US2018259227A1 US 20180259227 A1 US20180259227 A1 US 20180259227A1 US 201815975951 A US201815975951 A US 201815975951A US 2018259227 A1 US2018259227 A1 US 2018259227A1
Authority
US
United States
Prior art keywords
vortex tube
heat exchanger
tube
diaphragm
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/975,951
Inventor
Lev Tunkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Vortex Inc
Original Assignee
Universal Vortex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/559,334 external-priority patent/US20160158900A1/en
Application filed by Universal Vortex Inc filed Critical Universal Vortex Inc
Priority to US15/975,951 priority Critical patent/US20180259227A1/en
Publication of US20180259227A1 publication Critical patent/US20180259227A1/en
Priority to US16/696,486 priority patent/US20200096237A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Definitions

  • This invention is directed to the field of vortex tubes. More particularly, the present invention relates to a manufacture using a method of a vortex tube design, which provides a vortex tube having a high efficiency by eliminating freeze up in operations with natural gas.
  • a vortex tube comprises a slender tube with a diaphragm with a discharge hole in the center of the diaphragm, closing one end of the tube, one or more tangential inlet nozzles piercing the tube just inside of the diaphragm and, depending on the vortex tube's desirable performance, a controlled discharge opening (throttle valve) or plug (U.S. Pat. No. 5,911,740) on the other end of the slender tube.
  • a controlled discharge opening throttle valve
  • plug U.S. Pat. No. 5,911,740
  • the inlet high-pressure gas passes through the tangential nozzles resulting in a pressure decrease and velocity increase of the gas.
  • the low pressure highly rotating gas then undergoes energy separation (vortex phenomenon) forming two internal low-pressure currents.
  • the present invention provides for improving the reliability of the vortex tubes designed per U.S. Pat. No. 5,749,231
  • the improvement is achieved by specifying the VT diaphragm hole preferably in a range of 0.25 to 0.80 of the slender tube's diameter, the vortex tube's length, preferably, as no less than 3 diameters of the slender tube and the vortex tube's uncontrolled opening diameter as no greater than 0.60 of the slender tube's diameter.
  • FIG. 1 is a schematic design and flow diagram of an embodiment of the invention.
  • FIG. 2 is a schematic design and flow diagram of a preferred embodiment of the invention.
  • FIG. 3 is a schematic design and flow diagram of a preferred embodiment of the invention.
  • FIG. 4 is a schematic design and flow diagram of a preferred embodiment of the invention.
  • the transmission of natural gas starts with the extraction point (typically a wellhead) at very high pressures through a pipeline to distribution hubs and then ultimately into low pressure networks for delivery of natural gas to the end user.
  • This process from wellhead to end user is comprised of a series of pressure reducing operations. It is common practice to preheat the gas at pipeline pressure regulation stations along the transmission line in an effort to compensate for the Joule-Thompson temperature drop in depressurized gas. This pre-heating process prevents water in the form of hydrocarbons condensing and freezing in the pressure regulating valves along the transmission system.
  • a glycol additive is used to prevent freezing.
  • the problem to be solved to which the present invention is directed is how to prevent non-preheated, non-glycol treated natural gas (and other non-dried gases) from freezing as the gas is expanded in pressure regulation.
  • the problem arises when the temperature of the gas being transmitted is dropped as a result of the pressure reduction that takes place with the use of a vortex tube in the transmission line. This results in cooling (refrigeration) in the vortex tube pressure reducing nozzle, which is what the present invention is directed to eliminate/reduce.
  • One way in which this refrigeration effect is minimized is to use the hot portion air of the vortex tube and direct it onto the cold flow portion where freezing is occurring. See, Tunkel U.S. Pat. No. 5,749,231. Further, the present invention discloses vortex tube geometric relationships aimed at increasing the vortex tube thermal efficiency by generating more heat out of the “hot side” of the vortex tube. This facilitates the more efficient warming pressure reducing nozzle on the “cold side” of the vortex tube.
  • a non-freeze vortex tube assembly 50 includes a vortex tube 10 provided with the inlet nozzle 12 , a diaphragm 14 provided with a central hole 16 , a slender tube 18 of the internal diameter D with its outlet opening 20 and a heat exchanger 22 provided with an inner passage 24 , two inlet openings 26 and 28 , one outlet opening 30 and an uncontrolled opening 32 set up on the inner passage's 24 surface.
  • the uncontrolled opening 32 is a hole without any air throttling device associated with it. Openings 26 and 30 also serve as inner passage's 24 inlet and outlet, respectively.
  • a gas flow in the direction of arrow 40 enters assembly 50 through the vortex tube's nozzles 12 and then undergoes an energy (temperature) separation forming a cold and hot fraction.
  • a cold fraction is discharged from the vortex tube 10 through diaphragm hole 16 and enters into a heat exchanger inlet opening 26 , then goes through inner passage 24 in the heat exchanger and leaves or exits the heat exchanger 22 through its outlet opening 30 .
  • a hot fraction passes through slender tube's 18 outlet opening 20 and is then directed through line 34 and its outlet 36 and enters into heat exchanger 22 through inlet opening 28 and goes toward the uncontrolled opening 32 simultaneously flowing over the surfaces on the inside of the heat exchanger 22 and leaves or exits the heat exchanger through uncontrolled opening 32 , mixing with the cold fraction exiting the vortex tube.
  • the uncontrolled opening is preferably located on such side of the passage 30 which is opposite to the heat exchanger inlet 28 ; the opening diameter is, preferably, less than vortex tube's diaphragm diameter.
  • the gas passing through the VT's pressure reducing nozzles generally, carries some liquid (water and hydrocarbons) condensed under the depressurized gas low thermodynamic temperatures and Joule-Thomson temperature drop.
  • the condensed liquid due to its gravity, provides for a substantial portion of the by-pass flow.
  • the two-phase chilled mixture mixing up with the vortex tube's cold outlet or with the vortex tube's single discharge flow results in freezing of the diaphragm hole which reduces the interior diameter of the orifice 16 and accordingly the vortex tube performance deteriorates.
  • Reduction of the diaphragm's hole 16 diameter is an efficient way to reduce the by-pass stream flow rate.
  • a smaller diaphragm hole increases the gas pressure in the vortex tube. This results in decreasing the vortex pressure ratio (ratio of the inlet gas pressure to the gas pressure in the vortex tube). This, in turn, reduces the intensity of the vortex energy division in the gas flow.
  • the best results with the present invention can be achieved by specifying the diaphragm's hole diameter 16 , preferably, in a range of 0.25 to 0.80 of the slender tube diameter D. See, FIG. 3 .
  • the length of the vortex tube shall allow for completing the vortex energy division, thus to efficiently warm the diaphragm in a heat exchanger as described US in U.S. Pat. No. 6,289,679.
  • the uncontrolled opening 32 in a heat exchanger shall allow for efficient circulation of just the vortex hot (peripheral) flow without blending it with the vortex cold (central) flows.
  • the optimal results with the present invention can be achieved by specifying the length of the vortex tube as no less than 3.0 diameters (D) of the slender tube (See FIG. 4 ) and the uncontrolled opening's diameter as no greater than 0.60 diameter (D) of the slender tube. See, FIG. 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A vortex tube is disclosed. A vortex tube is a slender tube with a diaphragm closing one end of the tube with a discharge hole in the center of the diaphragm with tangential inlet nozzles. The vortex tube separates an inlet gas stream into two compartments. The present invention relates to an optional geometry of the vortex tube for use with compressed natural gas.

Description

    PRIORITY
  • This application is a continuation-in-part and claims priority to U.S. Non-provisional application Ser. No. 14/559,334, filed Dec. 3, 2014.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • This invention is directed to the field of vortex tubes. More particularly, the present invention relates to a manufacture using a method of a vortex tube design, which provides a vortex tube having a high efficiency by eliminating freeze up in operations with natural gas.
  • Description of the Prior Art
  • A vortex tube (VT) comprises a slender tube with a diaphragm with a discharge hole in the center of the diaphragm, closing one end of the tube, one or more tangential inlet nozzles piercing the tube just inside of the diaphragm and, depending on the vortex tube's desirable performance, a controlled discharge opening (throttle valve) or plug (U.S. Pat. No. 5,911,740) on the other end of the slender tube.
  • In the vortex tube, the inlet high-pressure gas passes through the tangential nozzles resulting in a pressure decrease and velocity increase of the gas. The low pressure highly rotating gas then undergoes energy separation (vortex phenomenon) forming two internal low-pressure currents.
  • One current is cold and the other is hot. Under some circumstances a cold fraction or cold gas discharged from the vortex tube through the diaphragm opening may freeze up and reduce the diameter of the discharge orifice due to the formation of ice, resulting in the vortex tube's performance deterioration.
  • It is known to use a vortex tube's hot fraction to prevent freezing in the discharge diaphragm (U.S. Pat. No. 5,749,231 and U.S. Pat. No. 5,937,654) as well as, as it is practiced in the vortex tubes of the present invention to use the hot fraction to warm up the vortex tube's inlet nozzles.
  • SUMMARY OF THE INVENTION
  • The present invention provides for improving the reliability of the vortex tubes designed per U.S. Pat. No. 5,749,231 |and U.S. Pat. No. 5,937,654 in operation with compressed natural gas. The improvement is achieved by specifying the VT diaphragm hole preferably in a range of 0.25 to 0.80 of the slender tube's diameter, the vortex tube's length, preferably, as no less than 3 diameters of the slender tube and the vortex tube's uncontrolled opening diameter as no greater than 0.60 of the slender tube's diameter.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic design and flow diagram of an embodiment of the invention.
  • FIG. 2 is a schematic design and flow diagram of a preferred embodiment of the invention.
  • FIG. 3 is a schematic design and flow diagram of a preferred embodiment of the invention.
  • FIG. 4 is a schematic design and flow diagram of a preferred embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • The present invention will now be described in terms of the presently preferred embodiment thereof as illustrated in the drawings. Those of ordinary skill in the art will recognize that this embodiment is merely exemplary of the present invention and many obvious modifications may be made thereto without departing from the spirit or scope of the present invention as set forth in the appended claims.
  • The transmission of natural gas starts with the extraction point (typically a wellhead) at very high pressures through a pipeline to distribution hubs and then ultimately into low pressure networks for delivery of natural gas to the end user. This process from wellhead to end user is comprised of a series of pressure reducing operations. It is common practice to preheat the gas at pipeline pressure regulation stations along the transmission line in an effort to compensate for the Joule-Thompson temperature drop in depressurized gas. This pre-heating process prevents water in the form of hydrocarbons condensing and freezing in the pressure regulating valves along the transmission system. At the wellhead—where heating the gas cannot be employed—a glycol additive is used to prevent freezing.
  • The problem to be solved to which the present invention is directed is how to prevent non-preheated, non-glycol treated natural gas (and other non-dried gases) from freezing as the gas is expanded in pressure regulation. The problem arises when the temperature of the gas being transmitted is dropped as a result of the pressure reduction that takes place with the use of a vortex tube in the transmission line. This results in cooling (refrigeration) in the vortex tube pressure reducing nozzle, which is what the present invention is directed to eliminate/reduce.
  • One way in which this refrigeration effect is minimized is to use the hot portion air of the vortex tube and direct it onto the cold flow portion where freezing is occurring. See, Tunkel U.S. Pat. No. 5,749,231. Further, the present invention discloses vortex tube geometric relationships aimed at increasing the vortex tube thermal efficiency by generating more heat out of the “hot side” of the vortex tube. This facilitates the more efficient warming pressure reducing nozzle on the “cold side” of the vortex tube.
  • The flow diagram in FIG I illustrates an embodiment of the invention. A non-freeze vortex tube assembly 50 according to the invention includes a vortex tube 10 provided with the inlet nozzle 12, a diaphragm 14 provided with a central hole 16, a slender tube 18 of the internal diameter D with its outlet opening 20 and a heat exchanger 22 provided with an inner passage 24, two inlet openings 26 and 28, one outlet opening 30 and an uncontrolled opening 32 set up on the inner passage's 24 surface. The uncontrolled opening 32 is a hole without any air throttling device associated with it. Openings 26 and 30 also serve as inner passage's 24 inlet and outlet, respectively. A gas flow in the direction of arrow 40 enters assembly 50 through the vortex tube's nozzles 12 and then undergoes an energy (temperature) separation forming a cold and hot fraction. A cold fraction is discharged from the vortex tube 10 through diaphragm hole 16 and enters into a heat exchanger inlet opening 26, then goes through inner passage 24 in the heat exchanger and leaves or exits the heat exchanger 22 through its outlet opening 30. A hot fraction passes through slender tube's 18 outlet opening 20 and is then directed through line 34 and its outlet 36 and enters into heat exchanger 22 through inlet opening 28 and goes toward the uncontrolled opening 32 simultaneously flowing over the surfaces on the inside of the heat exchanger 22 and leaves or exits the heat exchanger through uncontrolled opening 32, mixing with the cold fraction exiting the vortex tube. The uncontrolled opening is preferably located on such side of the passage 30 which is opposite to the heat exchanger inlet 28; the opening diameter is, preferably, less than vortex tube's diaphragm diameter.
  • It is known that a small portion of the vortex tube's inlet gas flow does not participate in the vortex energy division but moves alongside the diaphragm inward surface directly into the diaphragm hole. The existence of such a bypass flow is due to the presence of the radial pressure gradient uncompensated by the centrifugal forces in the stationary boundary layer on the wall of the diaphragm. Mixture of the bypass flow that keeps the original inlet gas temperature with the cold gas passing through the diaphragm hole increases the vortex cold outlet temperature. Such thermal influence, at times noticeable, does not affect the vortex tube operations unless compressed natural gas is used as the vortex tube's working medium.
  • Here the gas passing through the VT's pressure reducing nozzles, generally, carries some liquid (water and hydrocarbons) condensed under the depressurized gas low thermodynamic temperatures and Joule-Thomson temperature drop. The condensed liquid, due to its gravity, provides for a substantial portion of the by-pass flow. The two-phase chilled mixture mixing up with the vortex tube's cold outlet or with the vortex tube's single discharge flow (per U.S. Pat. No. 5,911,740) results in freezing of the diaphragm hole which reduces the interior diameter of the orifice 16 and accordingly the vortex tube performance deteriorates.
  • Reduction of the diaphragm's hole 16 diameter is an efficient way to reduce the by-pass stream flow rate. However, a smaller diaphragm hole increases the gas pressure in the vortex tube. This results in decreasing the vortex pressure ratio (ratio of the inlet gas pressure to the gas pressure in the vortex tube). This, in turn, reduces the intensity of the vortex energy division in the gas flow.
  • The best results with the present invention can be achieved by specifying the diaphragm's hole diameter 16, preferably, in a range of 0.25 to 0.80 of the slender tube diameter D. See, FIG. 3. The length of the vortex tube shall allow for completing the vortex energy division, thus to efficiently warm the diaphragm in a heat exchanger as described US in U.S. Pat. No. 6,289,679. The uncontrolled opening 32 in a heat exchanger shall allow for efficient circulation of just the vortex hot (peripheral) flow without blending it with the vortex cold (central) flows. The optimal results with the present invention can be achieved by specifying the length of the vortex tube as no less than 3.0 diameters (D) of the slender tube (See FIG. 4) and the uncontrolled opening's diameter as no greater than 0.60 diameter (D) of the slender tube. See, FIG. 2.

Claims (3)

What is claimed is:
1. A method for a non-freeze enhancement in a vortex tube assembly, said non-freeze enhanced vortex tube assembly includes a heat exchanger having an uncontrolled opening with a diameter (d) in the heat exchanger's inner passage and a vortex tube comprising a slender tube with a diameter (D), the uncontrolled opening diameter (d) is no greater than 0.6 times the slender tube diameter (D), a diaphragm having a hole in the center thereof and closing one end of the vortex tube. one or more tangential nozzles piercing the slender tube just inside the diaphragm and an outlet opening on the other end of the vortex tube, the method comprises ways of connecting the non-freeze enhanced vortex tube as follows:
a. attaching the heat exchanger to an outward side of a vortex tube's diaphragm;
b. connecting a vortex tube's diaphragm for discharging a cold fraction flow with the heat exchanger's inlet opening and then connecting the inlet opening through the heat exchanger's inner passage with the heat exchanger's outlet opening to discharge gas flow from the non-freeze enhanced vortex tube assembly; and
c. connecting a vortex tube outlet opening at the far end of the vortex tube with another inlet opening of the heat exchanger, thus providing for the hot flow to flow over the surfaces on the inside of the heat exchanger and then leave or exit the heat exchanger through an uncontrolled opening in the heat exchanger's inner passage to mix with the cold fraction exiting the vortex tube.
2. A method for a non-freeze enhancement in a vortex tube assembly, said non-freeze enhanced vortex tube assembly includes a heat exchanger having an uncontrolled opening with a diameter (d) in the heat exchanger's inner passage and a vortex tube comprising a slender tube with a diameter (D), a diaphragm having a hole in the center thereof wherein the vortex tube diaphragm hole has a diameter in the range of 0.25 to 0.80 times the slender tube diameter (D) and closing one end of the vortex tube, one or more tangential nozzles piercing the slender tube just inside the diaphragm and an outlet opening on the other end of the vortex tube, the method comprises ways of connecting the non-freeze enhanced vortex tube as follows:
a. attaching the heat exchanger to an outward side of a vortex tube's diaphragm;
b. connecting a vortex tube's diaphragm for discharging a cold fraction flow with the heat exchanger's inlet opening and then connecting the inlet opening through the heat exchanger's inner passage with the heat exchanger's outlet opening to discharge gas flow from the non-freeze enhanced vortex tube assembly; and
c. connecting a vortex tube outlet opening at the far end of the vortex tube with another inlet opening of the heat exchanger, thus providing for the hot flow to flow over the surfaces on the inside of the heat exchanger and then leave or exit the heat exchanger through an uncontrolled opening in the heat exchanger's inner passage to mix with the cold fraction exiting the vortex tube.
3. A method for a non-freeze enhancement in a vortex tube assembly, said non-freeze enhanced vortex tube assembly includes a heat exchanger having an uncontrolled opening with a diameter (d) in the heat exchanger's inner passage and a vortex tube comprising a slender tube with a diameter (D), the length of the vortex tube is no less than 3 times the slender tube diameter (D), a diaphragm having a hole in the center thereof and closing one end of the vortex tube, one or more tangential nozzles piercing the slender tube just inside the diaphragm and an outlet opening on the other end of the vortex tube, the method comprises ways of connecting the non-freeze enhanced vortex tube as follows:
d. attaching the heat exchanger to an outward side of a vortex tube's diaphragm;
e. connecting a vortex tube's diaphragm for discharging a cold fraction flow with the heat exchanger's inlet opening and then connecting the inlet opening through the heat exchanger's inner passage with the heat exchanger's outlet opening to discharge gas flow from the non-freeze enhanced vortex tube assembly; and
f. connecting a vortex tube outlet opening at the far end of the vortex tube with another inlet opening of the heat exchanger, thus providing for the hot flow to flow over the surfaces on the inside of the heat exchanger and then leave or exit the heat exchanger through an uncontrolled opening in the heat exchanger's inner passage to mix with the cold fraction exiting the vortex tube.
US15/975,951 2014-12-03 2018-05-10 Vortex tube Abandoned US20180259227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/975,951 US20180259227A1 (en) 2014-12-03 2018-05-10 Vortex tube
US16/696,486 US20200096237A1 (en) 2014-12-03 2019-11-26 Vortex tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/559,334 US20160158900A1 (en) 2014-12-03 2014-12-03 Vortex Tube
US15/975,951 US20180259227A1 (en) 2014-12-03 2018-05-10 Vortex tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/559,334 Continuation-In-Part US20160158900A1 (en) 2014-12-03 2014-12-03 Vortex Tube

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/696,486 Continuation US20200096237A1 (en) 2014-12-03 2019-11-26 Vortex tube

Publications (1)

Publication Number Publication Date
US20180259227A1 true US20180259227A1 (en) 2018-09-13

Family

ID=63444525

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/975,951 Abandoned US20180259227A1 (en) 2014-12-03 2018-05-10 Vortex tube
US16/696,486 Pending US20200096237A1 (en) 2014-12-03 2019-11-26 Vortex tube

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/696,486 Pending US20200096237A1 (en) 2014-12-03 2019-11-26 Vortex tube

Country Status (1)

Country Link
US (2) US20180259227A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11493239B2 (en) 2018-09-28 2022-11-08 Universal Vortex, Inc. Method for reducing the energy necessary for cooling natural gas into liquid natural gas using a non-freezing vortex tube as a precooling device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289679B1 (en) * 1999-07-13 2001-09-18 Universal Vortex, Inc Non-freeze enhancement in the vortex tube
US6379411B1 (en) * 2000-04-26 2002-04-30 Bechtel Bwxt Idaho, Llc Two stroke engine exhaust emissions separator
US20020194988A1 (en) * 1998-12-31 2002-12-26 M. Betting Supersonic separator apparatus and method
US6962199B1 (en) * 1998-12-31 2005-11-08 Shell Oil Company Method for removing condensables from a natural gas stream, at a wellhead, downstream of the wellhead choke
US20060163054A1 (en) * 2002-07-23 2006-07-27 Ralf Spitzl Plasma reactor for carrying out gas reactions and method for the plasma-supported reaction of gases
US20060230765A1 (en) * 2005-04-14 2006-10-19 Fedorov Andrei G Vortex tube refrigeration systems and methods
US20080133110A1 (en) * 2006-03-27 2008-06-05 Jan Vetrovec Turbocharged internal combustion engine system
US7565808B2 (en) * 2005-01-13 2009-07-28 Greencentaire, Llc Refrigerator
US7654095B2 (en) * 2007-06-06 2010-02-02 Greencentaire, Llc Energy transfer apparatus and methods
US20100139292A1 (en) * 2008-12-08 2010-06-10 Ram Grand Temperature adjustable airflow device
US20130067905A1 (en) * 2010-11-12 2013-03-21 Eckert Engine Company, Inc. Heat Exchanger for Engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749231A (en) * 1996-08-13 1998-05-12 Universal Vortex, Inc. Non-freezing vortex tube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020194988A1 (en) * 1998-12-31 2002-12-26 M. Betting Supersonic separator apparatus and method
US6962199B1 (en) * 1998-12-31 2005-11-08 Shell Oil Company Method for removing condensables from a natural gas stream, at a wellhead, downstream of the wellhead choke
US6289679B1 (en) * 1999-07-13 2001-09-18 Universal Vortex, Inc Non-freeze enhancement in the vortex tube
US6379411B1 (en) * 2000-04-26 2002-04-30 Bechtel Bwxt Idaho, Llc Two stroke engine exhaust emissions separator
US20060163054A1 (en) * 2002-07-23 2006-07-27 Ralf Spitzl Plasma reactor for carrying out gas reactions and method for the plasma-supported reaction of gases
US7565808B2 (en) * 2005-01-13 2009-07-28 Greencentaire, Llc Refrigerator
US20060230765A1 (en) * 2005-04-14 2006-10-19 Fedorov Andrei G Vortex tube refrigeration systems and methods
US20080133110A1 (en) * 2006-03-27 2008-06-05 Jan Vetrovec Turbocharged internal combustion engine system
US7654095B2 (en) * 2007-06-06 2010-02-02 Greencentaire, Llc Energy transfer apparatus and methods
US20100139292A1 (en) * 2008-12-08 2010-06-10 Ram Grand Temperature adjustable airflow device
US20130067905A1 (en) * 2010-11-12 2013-03-21 Eckert Engine Company, Inc. Heat Exchanger for Engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11493239B2 (en) 2018-09-28 2022-11-08 Universal Vortex, Inc. Method for reducing the energy necessary for cooling natural gas into liquid natural gas using a non-freezing vortex tube as a precooling device

Also Published As

Publication number Publication date
US20200096237A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US6932858B2 (en) Vortex tube system and method for processing natural gas
NO752378L (en)
JP7175895B2 (en) Turbine engine fluid circuit
MX2022010740A (en) Mixed refrigerant system and method.
CN107126770B (en) Vortex tube device for condensing and separating natural gas moisture and light hydrocarbon
CN108568700A (en) A kind of metal cutting process low-temperature carbon dioxide cooling and lubricating system
US20160158900A1 (en) Vortex Tube
US20200096237A1 (en) Vortex tube
US6289679B1 (en) Non-freeze enhancement in the vortex tube
US2011100A (en) Fluid choke
CN104654647A (en) Adaptive frozen-blocking prevention vortex tube within all cold flow rate range
CN104121716B (en) Vortex tube
CN103807601A (en) LNG (Liquefied Natural Gas) air bath gasification device
CN204254927U (en) The CO of eddy current separating liquid and injector injection 2two temp, refrigerating system
KR20130143421A (en) Apparatus to cool drinking water
CN102369404B (en) Water supply device
CN110475963A (en) Thrust chamber device and method for running thrust chamber device
CN108759261B (en) Parallel precooler and deicing method thereof
CN109477692A (en) Jacketed type exchanger
CN110406824A (en) Double-channel gas vortex self-heating apparatus
CN203533997U (en) Separating and liquid equalizing device for heat pump water heater
US1735094A (en) Method and means for making carbon-dioxide snow
CN109974378A (en) Refrigerator
RU2580250C1 (en) Device for liquefaction of natural gas
CN109974364A (en) Refrigerator

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION